Nothing Special   »   [go: up one dir, main page]

WO2012147239A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2012147239A1
WO2012147239A1 PCT/JP2011/080591 JP2011080591W WO2012147239A1 WO 2012147239 A1 WO2012147239 A1 WO 2012147239A1 JP 2011080591 W JP2011080591 W JP 2011080591W WO 2012147239 A1 WO2012147239 A1 WO 2012147239A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
fixed scroll
involute
wrap
hole
Prior art date
Application number
PCT/JP2011/080591
Other languages
French (fr)
Japanese (ja)
Inventor
努 昆
敏 飯塚
哲広 林
克城 阿久沢
健二 相田
杉本 和禧
保則 清川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP11864486.3A priority Critical patent/EP2703648B1/en
Priority to CN201180070452.1A priority patent/CN103502646B/en
Publication of WO2012147239A1 publication Critical patent/WO2012147239A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0284Details of the wrap tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a scroll compressor, and more particularly to a scroll compressor capable of increasing the strength on the lap center side without lowering the compression performance.
  • a scroll compressor is known as an example of a compressor that compresses refrigerant in a refrigeration cycle (see, for example, Patent Document 1).
  • the scroll compressor 100 includes a compression container 110 formed in a cylindrical shape extending in the vertical direction, and a compression element 114 that compresses a refrigerant is disposed on the upper side of the compression container 110.
  • the electric element 115 that drives the compression element 114 is disposed on the lower side.
  • the compression element 114 includes a fixed scroll 119 and an orbiting scroll 120.
  • the wraps 132 and 139 of the fixed scroll 119 and the orbiting scroll 120 are engaged with each other to form a plurality of compression spaces 121 therein. is doing.
  • the fixed scroll 119 is fixed to the casing.
  • the movable scroll 120 that meshes with the fixed scroll 119 from below is integrally connected to the drive shaft 123 by inserting the eccentric shaft portion 123A of the drive shaft 123 into the bearing portion 122 provided on the lower surface. Then, the movable scroll 120 that is rotationally driven by the driving force of the motor 127 performs only revolution without rotating with respect to the fixed scroll 119, so that the volume of the compression space 121 formed between both the laps 132 and 139 is increased. Reduce and compress the refrigerant inside.
  • the refrigerant suction pipe 117 is directly connected to the suction port 111 of the compression element 114, and the inside of the compression container 110 is filled with the high-pressure refrigerant compressed by the compression element 114.
  • a space 113 is formed.
  • the bottom of the compression container 110 serves as an oil reservoir 116 in which lubricating oil for lubricating the compression element 114 and the like is stored.
  • a side surface of the compression container 110 is provided with a refrigerant suction pipe 117 that introduces refrigerant into the compression element 114 and a refrigerant discharge pipe 118 that discharges the refrigerant compressed by the compression element 114 to the outside of the apparatus. Yes.
  • an oil passage 144 through which the lubricating oil passes is formed inside the rotating shaft 123 in order to supply the lubricating oil to the compression element 114 and the bearings 128, 141, 149, etc. of the rotating shaft 123.
  • the oil passage 144 includes a lubricating oil suction port 145 formed at the lower end of the rotation shaft 123 and a paddle 146 formed at the upper portion of the suction port 145, and is formed along the axial direction of the rotation shaft 123.
  • the oil passage 144 includes an oil supply port 147 for supplying lubricating oil at a position corresponding to each bearing.
  • the lubricating oil accumulated in the oil reservoir 116 enters the oil passage 144 from the suction port 145 of the rotating shaft 123 and is pumped upward along the paddle 146 of the oil passage 144.
  • the pumped lubricating oil lubricates the bearings 128, 141, and 149 through the oil supply ports 147.
  • the lubricating oil pumped up to the boss accommodating portion 142 is guided to the outer peripheral portion of the main frame through a return pipe (not shown) formed in the main frame, and a discharge port (not shown) formed in the outer peripheral portion. The oil is returned to the oil sump 116 again.
  • the compression part surrounded by the wrap of the fixed scroll and the wrap of the movable scroll is constituted by a space formed by these both laps meshing with each other.
  • a discharge port is formed in the central spiral portion, which is the wrap tip portion of the fixed scroll, through the thickness direction of the end plate of the fixed scroll.
  • wrapping of both a fixed scroll and a movable scroll it compresses to a high voltage
  • the present invention can increase the strength at the end plate facing the through hole near the base of the wrap tip of the fixed scroll, and thus can improve the reliability and durability.
  • a scroll compressor according to the present invention includes a fixed scroll fixed inside a casing and a movable scroll meshing with the fixed scroll, and compresses a space formed between the two wraps.
  • the wrap front end side of the fixed scroll is formed thicker than the wrap front end side of the movable scroll.
  • the inner non-involute surface which is a concave curved surface between the start point of the inner involute surface and the start point of the outer involute surface constituting the wrap of the fixed scroll.
  • non-involute surface composed of an outer non-involute surface that is a convex curved surface, and the non-involute surface is a curved surface shape having a small radius of curvature with the inner non-involute surface being a concave curved surface
  • the fixed scroll The through-hole forming the discharge port formed in the spiral center portion that is the tip of the wrap has an opening shape in the approach region facing the inner non-involute surface that is the concave curved surface, and the curvature of the inner non-involute surface that is the concave curved surface It is formed to be a curved surface smaller than the radius, It is characterized in that it is configured to ensure a long clearance distance between the closest edge that faces the base of the wrap tip of the fixed scroll in the closest state and the base part of the wrap tip of the fixed scroll.
  • the movable scroll is provided with a recess that constitutes a dummy port in an arrangement state in which at least a part of the scroll scroll is at least partially overlapped with a through hole of the fixed scroll at a spiral central portion that is a wrap tip, and the size of the recess is,
  • the through-hole of the fixed scroll and the recess of the movable scroll are formed in a positional relationship that is 180 degrees out of phase with each other.
  • the non-involute surface is formed without changing positions of both start points of the inner involute surface and the outer involute surface. It is characterized by.
  • the end plate portion facing the through hole in the vicinity of the base of the wrap tip of the fixed scroll increases the strength of the portion by the thickness.
  • the reliability and durability of the fixed scroll can be improved.
  • the scroll type compressor of the above (2) the nearest edge portion of the peripheral portion of the through hole in the fixed scroll that faces the root of the wrap tip of the fixed scroll in the closest state and the root of the wrap tip. It is possible to ensure a long distance between the adjacent holes. As a result, it is possible to further increase the strength of the end plate facing the through-hole at the root portion of the wrap tip of the fixed scroll, thereby further improving the reliability and durability of the fixed scroll. It is done.
  • the height of the vertical wall where the through hole rises from the peripheral portion facing the base of the wrap tip of the fixed scroll is increased, so that the wrap tip of the fixed scroll Since the end plate facing the through-hole at the base portion is thick, there is an advantage that the strength of the fixed scroll can be further increased accordingly.
  • the height of the vertical wall of the through hole is formed to be approximately twice the thickness of the fixed scroll lap facing the intermediate pressure chamber. The effect that the intensity
  • the scroll compressor of the above (5) there is an effect that the timing of the discharge of the refrigerant gas from the compression chamber can be achieved by providing the movable scroll with the recess that constitutes the dummy port. can get.
  • the scroll compressor of the above (6) it is possible to increase the strength of the root of the center tip without changing the design compression ratio of the spiral.
  • FIG. 1 is a longitudinal sectional view showing a scroll compressor according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing the state of the lower surface of the fixed scroll of the scroll compressor shown in FIG.
  • FIG. 3 is a plan view showing the state of the upper surface of the movable scroll of the scroll compressor.
  • FIG. 4 is a cross-sectional view showing a state around the communication path of the scroll compressor.
  • FIG. 5A is an enlarged view of the main part showing the vicinity of the wrap tip of the fixed scroll of the scroll compressor
  • FIG. 5B is a fixed scroll (Table 1) of an ordinary general scroll compressor as a comparative example. It is a principal part enlarged view which shows the lap front-end
  • FIG. 6A is a cross-sectional view taken along line VIA-VIA in FIG. 5A
  • FIG. 6B is a cross-sectional view taken along line VIB-VIB in FIG.
  • FIG. 7 is an explanatory view showing a curved surface shape in the vicinity of the wrap tip portion in the fixed scroll of the scroll compressor shown in FIG.
  • FIG. 8 is an explanatory diagram showing the relationship between the through-holes near the wrap tip and the movable scroll dummy port in the fixed scroll shown in FIG. 7 and the relationship between the wrap thicknesses of both scrolls.
  • FIG. 9 is a cross-sectional view showing a configuration of a conventional general scroll compressor.
  • FIG. 1 shows a scroll compressor 1 having an internal high pressure according to an embodiment of the present invention, and this compressor 1 is connected to a refrigerant circuit (not shown) in which a refrigerant circulates and performs a refrigeration cycle operation.
  • the refrigerant is compressed by inverter control.
  • the compressor 1 has a vertically long cylindrical hermetic dome-shaped casing 3.
  • the casing 3 includes a casing body 5 that is a cylindrical body having an axis extending in the vertical direction, and a bowl-shaped upper cap having a convex surface that is welded and integrally joined to the upper end of the casing body 5.
  • the casing 3 accommodates a scroll compression mechanism 11 that compresses the refrigerant and a drive motor 13 that is disposed below the scroll compression mechanism 11.
  • the scroll compression mechanism 11 and the drive motor 13 are connected by a drive shaft 15 that is disposed so as to extend in the vertical direction in the casing 3.
  • a high-pressure space 17 that is a gap space is formed between the scroll compression mechanism 11 and the drive motor 13.
  • the scroll compression mechanism 11 includes a housing 21 that is a substantially bottomed cylindrical storage member that is open on the upper side, a fixed scroll 23 that is fastened with bolts in close contact with the upper surface of the housing 21, the fixed scroll 23,
  • the movable scroll 25 is disposed between the housings 21 and meshes with the fixed scroll 23.
  • the housing 21 is fixed to the casing body 5 on the outer peripheral surface thereof.
  • the casing 3 is partitioned into a high-pressure space 17 below the housing 21 and a discharge space 29 above the housing 21, and the spaces 17 and 29 are formed to extend vertically on the outer periphery of the housing 21 and the fixed scroll 23. Communicating through a vertical groove (not shown).
  • the drive motor 13 includes an annular stator 13A fixed to the inner wall surface of the casing 3, and a rotor 13B configured to be rotatable inside the stator 13A.
  • the motor 13 is composed of an inverter-controlled DC motor, and a movable scroll 25 of the scroll compression mechanism 11 is drivingly connected to the rotor 13B via a drive shaft 15.
  • the lower space 91 below the drive motor 13 is maintained at a high pressure, and oil is stored in the inner bottom portion of the lower cap 9 corresponding to the lower end portion thereof.
  • an oil supply passage 15 ⁇ / b> B as a part of the high pressure oil supply means is formed, and the oil supply passage 15 ⁇ / b> B communicates with an oil chamber 52 on the back surface of the movable scroll 25.
  • a pickup (not shown) is connected to the lower end of the drive shaft 15, and this pickup scoops up oil stored in the inner bottom portion of the lower cap 9. The scooped up oil passes through the oil supply passage 15B of the drive shaft 15 and is supplied to the oil chamber 52 on the back surface on the movable scroll 25 side. Then, the oil chamber 52 passes through a communication passage 51 and a communication hole 53 (described later) provided in the movable scroll 25 (see FIG.
  • the housing 21 is formed with a support portion 21A in which the eccentric shaft portion 15A of the drive shaft 15 rotates, and a radial bearing portion 21B extending downward from the center of the lower surface of the support portion 21A. Further, the housing 21 is provided with a radial bearing 21C penetrating between the lower end surface of the radial bearing portion 21B and the bottom surface of the support portion 21A.
  • a thin plate-like oil collector 24 that prevents the lubricating oil from entering a discharge pipe (not shown) extends along the inner peripheral surface of the casing body 5. Is suspended.
  • the upper cap 7 of the casing 3 has a suction pipe (not shown) that guides the refrigerant in the refrigerant circuit to the scroll compression mechanism 11, and the casing body 5 has a discharge pipe that discharges the refrigerant in the casing 3 to the outside of the casing 3. It is fixed in a penetrating manner.
  • the suction pipe extends vertically in the discharge space 29, and an inner end thereof passes through the fixed scroll 23 of the scroll compression mechanism 11 and communicates with the compression chamber 27, and the refrigerant is sucked into the compression chamber 27 by the suction pipe.
  • the fixed scroll 23 includes an end plate 23A, a spiral (involute) wrap 23B formed on the lower surface of the end plate 23A, and a spiral (involute) wrap 23B.
  • a through hole 23 ⁇ / b> C is formed in the central portion so as to penetrate the end plate and open toward the discharge valve 22.
  • the tip end surface lower surface 233; see FIG.
  • the movable scroll 25 includes an end plate 25A, a spiral (involute) wrap 25B formed on the upper surface of the end plate 25A, and a spiral (involute) center of the wrap 25B.
  • the recess 25 ⁇ / b> D is formed as a dummy port that adjusts the timing at which the refrigerant gas in the compression chamber 27 in a high-pressure state is discharged toward the discharge space 29.
  • the wrap 23B of the fixed scroll 23 and the wrap 25B of the movable scroll 25 are meshed with each other, and a plurality of compression chambers 27 are formed between the wraps 23B and 25B (see FIG. 1).
  • the movable scroll 25 has a flow restricting member (pin member) 55 inserted in a communication passage 51 described later.
  • the pin member 55 includes a first pin 55A that fits in the lower hole 51A on the back side of the communication path 51, and a second pin that comes into contact with the first pin 55A and fits in the insertion hole 51B on the near side of the communication path 51. It is comprised by the pin 55B.
  • a screw member with a hexagonal hole (not shown) is screwed into the female screw hole 51C so as to integrally press the second pin 55B and the first pin 55A toward the back end side, and the screw member is one end of the insertion hole 51B (FIG. 4). The left end is closed. Further, the screw member is fixed so as not to be loosened by an adhesive or the like. As shown in FIG. 1, the movable scroll 25 is supported by the fixed scroll 23 via the Oldham ring 61, and a bottomed cylindrical boss portion 25C projects from the center of the lower surface of the end plate 25A.
  • an eccentric shaft portion 15A is provided at the upper end of the drive shaft 15, and the eccentric shaft portion 15A is rotatably fitted into a boss portion 25C of the movable scroll 25.
  • the movable scroll 25 is formed with a communication passage 51 formed in the end plate 25 ⁇ / b> A with one end opened to the outside and linearly extended to the inside.
  • the communication path 51 forms a lower hole 51A of a communication path whose one end opens to the outside.
  • the lower hole 51A is reamed from one end to a predetermined depth position to form an insertion hole 51B having a predetermined depth.
  • a female screw hole 51C is screwed into the entrance of the insertion hole 51B.
  • the other end (high pressure opening) 51 ⁇ / b> D of the communication path 51 communicates with the oil chamber (high pressure portion in the hermetic container) 52 on the back surface of the movable scroll 25 described above.
  • a communication hole 53 having a perfect circle shape is opened on the inner peripheral surface on the entrance side of the communication path 51.
  • the communication hole 53 is formed in the end portion of the movable scroll 25 near the inlet facing the low pressure portion 27A of the compression chamber so as to penetrate the mirror surface 250 in the thickness direction, and is opened so that the fixed scroll 23 faces.
  • the drive shaft 15 below the radial bearing portion 21B of the housing 21 is provided with a counterweight portion 16 for dynamic balance with the movable scroll 25, the eccentric shaft portion 15A, and the like.
  • the movable scroll 25 By rotating the drive shaft 15 while balancing the weight, the movable scroll 25 is revolved without rotating. As the movable scroll 25 revolves, the compression chamber 27 is configured to compress the refrigerant sucked from the suction pipe when the volume between the wraps 23B and 25B contracts toward the center. .
  • a through hole 23 ⁇ / b> C constituting a discharge port is provided in the central portion of the fixed scroll 23, and the gas refrigerant discharged from the through hole 23 ⁇ / b> C is discharged to the discharge space 29 through the discharge valve 22. And it flows out to the space outside the oil collector 24 in the high-pressure space 17 below the housing 21 through vertical grooves (not shown) provided on the outer peripheries of the housing 21 and the fixed scroll 23.
  • Reference numerals E1 and E2 denote a major axis length in the through hole 23C of the fixed scroll 23 and a minor axis length orthogonal to the major axis length, respectively. Furthermore, the symbols e1 and e2 respectively indicate the major axis length in the recess 25D of the movable scroll 25 and the orthogonal axis length orthogonal thereto.
  • the wrap 23B is formed to have a height (h + ⁇ h) that is higher than the height (h) described in the specification 1 of Table 1 to be described later, and can be configured to increase the output as a compressor. Has been. Further, as shown in FIG.
  • the front end portion Z of the wrap 23B is the starting point P of the inner side surface (hereinafter referred to as “inner involute surface S1”) of the two surfaces constituting the wrap 23B of the fixed scroll 23.
  • a non-involute surface S3 is formed in a region ⁇ (see FIG. 5A) between the start point Q of the outer surface (hereinafter referred to as “outer involute surface S2”) of the two surfaces. .
  • the non-involute surface S3 is formed without changing the positions of both starting points of the inner involute surface S1 and the outer involute surface S2.
  • the region from point R through point Z to point Q is a convex surface portion and constitutes a convex curved surface S32 that is an outer non-involute surface of the non-involute surface S3.
  • the point Z corresponds to the vertex of the convex curved surface S32 that is the outer non-involute surface S3.
  • the point R is a starting point as a common non-involute surface for the concave curved surface S31 that is an inner non-involute surface and the convex curved surface S32 that is an outer non-involute surface.
  • the non-involute surface S3 of the present invention has a curved surface shape with a small radius of curvature r (r ⁇ r ′; r ′ represents the entire concave surface S31, particularly from the start point R to the end point P of the concave surface S31; B), the radius of curvature of the inner involute surface S′1 in the fixed scroll of the specification 1 in Table 1 described later). That is, the concave curved surface S31 has a shape as shown by a solid line shifted in a direction closer to the through hole 23C (rightward in the figure) than the inner involute surface shown by a broken line in FIG.
  • a curved surface having an appropriate shape different from the inner involute surface for example, the inner involute surface
  • An arbitrary shape such as an arc-shaped curve shifted outward may be used.
  • an arc having an appropriate curvature radius is used.
  • Desired Cartesian coordinates that is, as shown in FIG. 7, an orthogonal XY coordinate is set at a predetermined position as an origin O, and a basic circle ⁇ is drawn at the origin O on the two-dimensional coordinates.
  • the basic circle ⁇ is arbitrary for each of various compressors, and for example, the radius thereof is uniquely determined exclusively by the size of the fixed scroll and the output of the compressor.
  • intersection point P is the end point of the inner non-involute surface (ie, the concave curved surface S31) and the start point of the inner involute surface S1
  • intersection point Q is the end point of the outer non-involute surface (ie, the convex curved surface S32) and the outer involute surface S2.
  • the point R which is the starting point of the concave curved surface S31 that is the inner non-involute surface and the starting point of the convex curved surface S32 that is the outer non-involute surface, is a point where both curved surfaces intersect.
  • the non-involute surface S3 to be changed the concave curved surface S31 to be the inner non-involute surface formed in the region ⁇ 1 indicated by the two points P and R, as shown in FIG.
  • the starting point of the inner involute surface S1 is changed to the point P.
  • the installation position of the center point of the circle when forming this arc is not necessarily limited to the section PN on the straight line V, which is a tangent line, and may be on an extension line thereof.
  • the involute curve formed in the region ⁇ 1 in the region ahead of the starting point P on the already formed inner involute surface S1 is changed to an arc centered on the arbitrary point C described above.
  • the radius r of the circle in this case is smaller than the corresponding radius r ′ of the fixed roll 23 ′ of the specification 1 type (see Table 1 described later) shown in FIG. ⁇ R ′ is used.
  • the inner non-involute surface S31 formed in the region ⁇ 1 is shifted slightly outward from the inner involute curved surface before being changed to this, that is, closer to the through hole 23C.
  • the circular arc curve here, what passes through both the points of the end point P and the start point R is used.
  • the convex curved surface S32 that is the outer non-involute surface formed in the region ⁇ 2 of the three points Q, Z, and R among the region ⁇ that forms the non-involute surface S3 is described above. As you can see, it has been changed to an arc curve.
  • the through hole 23C constituting the discharge port formed in the spiral center portion of the wrap 23B of the fixed scroll 23 will be described with reference to FIGS.
  • the end plate at the point Z that is the tip of the wrap 23B of the fixed scroll 23 particularly the inner peripheral edge of the through hole 23C that forms the discharge port formed at the spiral central portion that is the tip of the wrap 23B of the fixed scroll 23.
  • close-to-hole distance L a long length (hereinafter referred to as “close-to-hole distance L”) with respect to the closest edge portion U of 23. That is, in the normal general through-hole, for example, the fixed scroll 23 'shown in FIG. 5B, the base portion with respect to the end plate 23'A at the point Z' which is the tip of the wrap 23'B (FIG. 5B ) Immediately below the portion indicated by the point Z ') and the closest edge of the fixed scroll 23' that faces the inner periphery of the through hole 23'C from the root at the tip Z 'of the wrap 23'B.
  • critical hole distance L ′ Compared to the length between U ′ (hereinafter referred to as “critical hole distance L ′”), at least the critical hole distance L of the present embodiment is longer, that is, L> L ′. It is configured as follows. As described above, the critical hole distance L in the fixed scroll 23 can be increased as compared with the critical hole distance L ′ in the fixed scroll 23 ′ of the specification 1. This is because the size is smaller than the through hole 23 ′ C in the fixed scroll 23 ′ described in 1. The base surface 232, in particular, the critical distance L, can be secured longer in the end plate 23A by the smaller amount. Therefore, in order to narrow down the through hole 23C, the present embodiment has the following configuration. In the through hole 23C of the present embodiment shown in FIG.
  • the opening area is narrowed to about 80% to 90% (in this embodiment, 90%) (see FIGS. 5A and 5B). That is, the through hole 23C has an opening shape in the approach region ( ⁇ ) facing the concave curved surface S31 of the non-involute surface S3, and the opening shape in the approach region ( ⁇ ′) in the through hole 23′C of the fixed scroll 23 ′. Compared with the opening shape, the opening is configured to be narrowed. For example, in the present embodiment, the critical hole distance L is increased by reducing the opening area by about 10%.
  • the opening radius of the through hole 23C is smaller than the radius of curvature r of the concave curved surface S31 so that the opening in the approach region ( ⁇ ) facing the concave curved surface S31 (see FIG. 5A) is narrowed. It is composed of a curved surface that forms the inner edge. That is, the opening edge in the approach region ( ⁇ ) is shifted and moved backward so as to approach toward the center direction of the through hole 23C (in FIG. 7, a portion indicated by a thick line from a portion indicated by a one-dot chain line). To the right). Thereby, the hole is narrowed to reduce the opening area.
  • the curved surface of this portion may be, for example, an arc having a radius of curvature smaller than the radius of curvature r of the concave curved surface S31.
  • region ((epsilon)) which faces the concave curved surface S31 of the non-involute surface S3 of the fixed scroll 23 approaches the hole center direction.
  • the shape of the fixed scroll 23 ′ described in the specification 1 at the through-hole 23′C is narrowed by retreating. It is the same as and has not been changed.
  • the fixed scroll according to the specification 1 of Table 1 is also used for the critical distance ⁇ L between the lap 23B and the through hole 23C at a portion slightly away from the vicinity of the tip Z of the lap 23B.
  • the size is larger than the critical hole distance ⁇ L ′ in the normal fixed scroll 23 ′ shown in FIG. 6B, which is a cross-sectional view taken along the corresponding portion 23 ′.
  • the increase of the critical hole distance ⁇ L can be realized because the through hole 23C of the fixed scroll 23 at the cut surface portion as shown in FIG.
  • the width W narrower than the width W ′ (where W ⁇ W ′) of the corresponding portion of the through hole 23′C in the fixed scroll 23 ′.
  • the through hole 23C constituting the discharge port formed in the spiral center portion that is the apex Z that is also the distal end portion of the wrap 23B of the fixed scroll 23 of the present embodiment.
  • the height H of the vertical wall 231 that rises vertically from the base surface 232, which is the surface portion connected to the base of the wrap 23B, of the mirror surface 230 of the end plate 23A of the fixed scroll 23 is increased. It has a formed configuration.
  • the wrap width t in the portion of the fixed scroll 23 excluding the lap 23B tip Z.
  • the fixed scroll 23 ′ of the specification 1 generally has a portion excluding the tip of the wrap 23′B of the fixed scroll 23 ′.
  • the vertical wall 231 ' is provided from the base surface 232' so that the height H 'is substantially the same as the width t' at H, that is, H' ⁇ t '.
  • the through-hole 23C of the present embodiment has a vertical wall 231 formed higher than a normal general through-hole, that is, the through-hole 23′C in the fixed scroll 23 ′ of the specification 1, and therefore the wrap 23B.
  • the end plate has a structure in which the thickness of the end plate 23A in the vicinity of the point Z is substantially increased, and the strength is greatly increased structurally.
  • the through hole 23C of the present embodiment is smaller than the size of the recess 25D constituting the dummy port formed in the spiral center portion of the wrap 25B of the movable scroll 25, that is, E1 ⁇ e1 and E2 ⁇ e2 It is formed to satisfy.
  • the through hole 23C is not the same area as the depression 25D, but has a smaller area.
  • the through-hole 23C of the fixed scroll 23 and the recess 25D of the movable scroll 25 are assembled in a relative positional relationship in which the phases are shifted 180 degrees from each other and reversed point-symmetrically.
  • point symmetry defines the relationship between figures that overlap each other when rotated 180 degrees around the center position of symmetry.
  • the rotor 13B rotates with respect to the stator 13A, and thereby the drive shaft 15 rotates.
  • the movable scroll 25 of the scroll compression mechanism 11 keeps its posture with respect to the fixed scroll 23 and does not rotate but only revolves.
  • the compressed refrigerant becomes high pressure and is discharged from the compression chamber 27 through the discharge valve 22 to the discharge space 29, and through the vertical grooves (not shown) provided on the outer circumferences of the housing 21 and the fixed scroll 23.
  • the high-pressure refrigerant is discharged out of the casing 3 through a discharge pipe (not shown) provided in the casing body 5.
  • the refrigerant discharged to the outside of the casing 3 circulates through a refrigerant circuit (not shown), is again sucked into the compressor 1 through the suction pipe, is compressed, and the circulation of the refrigerant is repeated.
  • a refrigerant circuit (not shown)
  • the lubricating oil stored in the inner bottom portion of the lower cap 9 in the casing 3 is scraped up by a pickup (not shown) provided at the lower end of the drive shaft 15 shown in FIG.
  • this lubricating oil is supplied to the oil supply passage 15B of the drive shaft 15. Then, the oil is supplied to the oil chamber 52 in the high pressure state on the back of the movable scroll 25. Further, the lubricating oil opens from the oil chamber 52 shown in FIG. 4 to the lower surface 233 which is the front end surface of the lap 23B on the fixed scroll 23 side through the communication passage 51 and the communication hole 53 provided in the movable scroll 25.
  • the oil groove 23 ⁇ / b> D (see FIGS. 2 and 4) is fed out using the differential pressure and supplied to the sliding portions of the scroll compression mechanism 11 and the compression chamber 27. Further, for example, in FIG.
  • the high-pressure space 17 has a thin plate shape. Since the oil collector 24, the cup 26, and the like are installed, the oil can be recovered to the inner bottom portion of the lower cap 9 while preventing entry into the discharge pipe.
  • the five types of scroll compressors provided with various types of fixed scrolls including the fixed scroll 23 according to the present embodiment are operated, the closest state to the through hole near the tip of the wrap described above
  • the specification 1 is usually a general low output type
  • the specification 2 is a general high output type.
  • the specification 5 shows the fixed scroll 23 used in the present embodiment.
  • the specification 5 corresponding to the fixed scroll of this embodiment has a scroll tooth height of ⁇ h compared to the specification 1 (low output type) which is a general configuration.
  • the discharge hole area is reduced by a factor of 0.9 and the vertical wall of the discharge hole is increased by a factor of 2.5.
  • the knowledge that the force acting on the root of the tip Z where the maximum stress of the fixed scroll was generated can be reduced by 28% by adopting such a configuration. Therefore, according to the compressor 1 of this embodiment provided with the fixed scroll shown in the specification 5, it was confirmed that the strength of the end plate 23A in the vicinity of the root Z of the wrap 23B tip Z of the fixed scroll 23 was increased.
  • this invention is not limited to the said embodiment, A various deformation
  • the fixed scroll of the present invention is not limited to the specification 5 in Table 1 above, and may have any of the specifications 3, 4 and 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

Provided is a scroll compressor with which it is possible to increase the strength of an end plate facing a penetration hole near the base of the distal end of a wrap of a fixed scroll, consequently improving reliability and durability. This scroll compressor is configured such that: of a non-involute surface (S3) formed between a starting point (P) of an inner involute surface (S1) and a starting point (Q) of an outer involute surface (S2) configuring a wrap (23B) of a fixed scroll (23), a concave surface (S32) is formed to have a curved shape with a small radius of curvature; of the fringe of a penetration hole (23C) formed in the central part of a spiral which is the distal end of the wrap (23B) of the fixed scroll (23), the shape of an opening in a proximate region (ε) facing the concave surface (S32) is formed as a curved surface with a radius of curvature smaller than a radius of curvature (r) of the concave surface (S32); and a long length is secured for a hole facing distance (L), which is the distance between the base section at the vertex (Z) of the convex surface (S32) of the non-involute surface (S3) and the nearest edge (U) of the penetration hole (23C) facing the base of a distal end (Z) of the wrap.

Description

スクロール型圧縮機Scroll compressor
 本発明は、スクロール型圧縮機に係り、特に圧縮性能を低下させることなくラップ中心部側の強度増大を図ることが可能なスクロール型圧縮機に関するものである。 The present invention relates to a scroll compressor, and more particularly to a scroll compressor capable of increasing the strength on the lap center side without lowering the compression performance.
 従来、冷凍サイクルで冷媒を圧縮する圧縮機の一例として、例えばスクロール型圧縮機が知られている(例えば、特許文献1参照)。
 図9に示すように、このスクロール型圧縮機100は、上下方向に沿って延びる円筒状に形成された圧縮容器110を備え、この圧縮容器110内の上側には冷媒を圧縮する圧縮要素114が配置され、下側にはこの圧縮要素114を駆動する電動要素115が配置されている。
 圧縮要素114には、固定スクロール119と揺動スクロール120とを備え、これら固定スクロール119および揺動スクロール120の各ラップ132,139を相互に噛み合わせてこれらの内部に複数の圧縮空間121を形成している。
 固定スクロール119は、ケーシングに固定される。一方、固定スクロール119に下側から噛合する可動スクロール120は、下面に設けた軸受部122に駆動軸123の偏心軸部123Aが嵌入されることで、駆動軸123と一体に連結されている。そして、モータ127の駆動力で回転駆動される可動スクロール120が、固定スクロール119に対して自転することなく公転のみを行うことで、両ラップ132,139間に形成される圧縮空間121の容積を減少させてその内部で冷媒を圧縮する。
 本構成のスクロール型圧縮機100では、冷媒吸込管117が圧縮要素114の吸込ポート111に直接接続されており、圧縮容器110内は、圧縮要素114で圧縮された高圧冷媒が充填される高圧側空間113となっている。また、圧縮容器110の底部は、圧縮要素114等を潤滑する潤滑油が貯留される油溜まり116となる。一方、圧縮容器110の側面には、上記圧縮要素114に冷媒を導入する冷媒吸込管117と、圧縮要素114にて圧縮された冷媒を機外に吐出する冷媒吐出管118と、が設けられている。
 さらに、このスクロール型圧縮機には、圧縮要素114および回転軸123の軸受128,141,149等に潤滑油を供給するため、回転軸123の内部に潤滑油が通過する油路144が形成されている。この油路144は、回転軸123の下端に形成された潤滑油の吸込口145と、この吸込口145の上部に形成されたパドル146とを備え、回転軸123の軸方向に沿って形成されている。また、この油路144は各軸受に相当する位置に潤滑油を給油する給油口147を備える。
 回転軸123が回転すると、油溜まり116に溜まった潤滑油は、回転軸123の吸込口145から油路144に入り、この油路144のパドル146に沿って上方に汲み上げられる。そして、この汲み上げられた潤滑油は、各給油口147を通じて各軸受128、141、149を潤滑する。また、ボス収容部142まで汲み上げられた潤滑油は、メインフレームに形成された返送管(不図示)を通じて当該メインフレームの外周部に導かれ、この外周部に形成された排出口(不図示)から排出されることにより、再び油溜まり116に戻される。
Conventionally, for example, a scroll compressor is known as an example of a compressor that compresses refrigerant in a refrigeration cycle (see, for example, Patent Document 1).
As shown in FIG. 9, the scroll compressor 100 includes a compression container 110 formed in a cylindrical shape extending in the vertical direction, and a compression element 114 that compresses a refrigerant is disposed on the upper side of the compression container 110. The electric element 115 that drives the compression element 114 is disposed on the lower side.
The compression element 114 includes a fixed scroll 119 and an orbiting scroll 120. The wraps 132 and 139 of the fixed scroll 119 and the orbiting scroll 120 are engaged with each other to form a plurality of compression spaces 121 therein. is doing.
The fixed scroll 119 is fixed to the casing. On the other hand, the movable scroll 120 that meshes with the fixed scroll 119 from below is integrally connected to the drive shaft 123 by inserting the eccentric shaft portion 123A of the drive shaft 123 into the bearing portion 122 provided on the lower surface. Then, the movable scroll 120 that is rotationally driven by the driving force of the motor 127 performs only revolution without rotating with respect to the fixed scroll 119, so that the volume of the compression space 121 formed between both the laps 132 and 139 is increased. Reduce and compress the refrigerant inside.
In the scroll compressor 100 of this configuration, the refrigerant suction pipe 117 is directly connected to the suction port 111 of the compression element 114, and the inside of the compression container 110 is filled with the high-pressure refrigerant compressed by the compression element 114. A space 113 is formed. Further, the bottom of the compression container 110 serves as an oil reservoir 116 in which lubricating oil for lubricating the compression element 114 and the like is stored. On the other hand, a side surface of the compression container 110 is provided with a refrigerant suction pipe 117 that introduces refrigerant into the compression element 114 and a refrigerant discharge pipe 118 that discharges the refrigerant compressed by the compression element 114 to the outside of the apparatus. Yes.
Further, in this scroll type compressor, an oil passage 144 through which the lubricating oil passes is formed inside the rotating shaft 123 in order to supply the lubricating oil to the compression element 114 and the bearings 128, 141, 149, etc. of the rotating shaft 123. ing. The oil passage 144 includes a lubricating oil suction port 145 formed at the lower end of the rotation shaft 123 and a paddle 146 formed at the upper portion of the suction port 145, and is formed along the axial direction of the rotation shaft 123. ing. Further, the oil passage 144 includes an oil supply port 147 for supplying lubricating oil at a position corresponding to each bearing.
When the rotating shaft 123 rotates, the lubricating oil accumulated in the oil reservoir 116 enters the oil passage 144 from the suction port 145 of the rotating shaft 123 and is pumped upward along the paddle 146 of the oil passage 144. The pumped lubricating oil lubricates the bearings 128, 141, and 149 through the oil supply ports 147. Further, the lubricating oil pumped up to the boss accommodating portion 142 is guided to the outer peripheral portion of the main frame through a return pipe (not shown) formed in the main frame, and a discharge port (not shown) formed in the outer peripheral portion. The oil is returned to the oil sump 116 again.
特開2008−50986号公報JP 2008-50986 A
 ところで、このようなスクロール型の圧縮機にあっては、固定スクロールのラップと可動スクロールのラップとで囲まれた圧縮部は、これら双方のラップとが互いに噛合することによって形成される空間で構成されているが、この固定スクロールのラップ先端部分である中心渦巻部分には、固定スクロールの鏡板の厚さ方向を貫通して吐出ポートが形成されている。
 そして、固定スクロール及び可動スクロールの双方のラップで囲まれる先端部分の中心渦巻部では、周辺部側の圧縮部から中心部側の圧縮部に向けて冷媒ガスが送り込まれながら高圧状態に圧縮されるように構成されている。このため、吐出ポートに臨む鏡板の比較的厚さが薄いラップの特に中心渦巻部分の根元の近傍は、強度的に脆弱であって強度不足となっている。
 即ち、これは、固定スクロールの中心部の渦巻部分のラップの内側面と外側面とにおいて圧縮された冷媒ガスから受ける圧力の差が大きく、先端部分のラップの内側面での根元に応力が集中して作用するからである。
 そこで、本発明は、上記した事情に鑑み、固定スクロールのラップ先端部の付け根の近傍の貫通孔に臨む鏡板での強度を高めることができ、延いては信頼性、耐久性を高めることができるスクロール型圧縮機を提供することを目的とする。
By the way, in such a scroll type compressor, the compression part surrounded by the wrap of the fixed scroll and the wrap of the movable scroll is constituted by a space formed by these both laps meshing with each other. However, a discharge port is formed in the central spiral portion, which is the wrap tip portion of the fixed scroll, through the thickness direction of the end plate of the fixed scroll.
And in the center spiral part of the front-end | tip part enclosed by the lap | wrapping of both a fixed scroll and a movable scroll, it compresses to a high voltage | pressure state, sending refrigerant gas from the compression part of a peripheral part side toward the compression part of a center part side. It is configured as follows. For this reason, especially the vicinity of the root of the central spiral portion of the wrap having a relatively thin end plate facing the discharge port is weak in strength and insufficient in strength.
That is, this is because the difference in pressure received from the compressed refrigerant gas at the inner surface and the outer surface of the wrap of the spiral portion at the center of the fixed scroll is large, and stress is concentrated at the root of the inner surface of the wrap at the tip portion. Because it works.
Therefore, in view of the above-described circumstances, the present invention can increase the strength at the end plate facing the through hole near the base of the wrap tip of the fixed scroll, and thus can improve the reliability and durability. An object is to provide a scroll compressor.
 上記目的を達成するため、
 (1)本発明のスクロール型圧縮機は、ケーシング内部に固定された固定スクロールと、この固定スクロールに噛合する可動スクロールとを備え、これら双方のラップの間に形成された空間を圧縮させるスクロール型圧縮機において、前記固定スクロールのラップの先端側は、前記可動スクロールのラップ先端側より厚さが厚く形成されていることを特徴とする。
 (2)また、上記(1)のスクロール型圧縮機において、前記固定スクロールのラップを構成するインナーインボリュート面の開始点とアウターインボリュート面の開始点との間に、凹曲面であるインナー非インボリュート面と凸曲面であるアウター非インボリュート面からなる非インボリュート面を形成するとともに、前記非インボリュート面は、前記凹曲面であるインナー非インボリュート面を曲率半径の小さな曲面形状に形成し、かつ、前記固定スクロールのラップ先端部である渦巻中心部分に形成した吐出ポートを構成する貫通孔は、前記凹曲面であるインナー非インボリュート面に臨む接近領域での開口形状が、凹曲面であるインナー非インボリュート面の曲率半径よりも小さな曲面となるように形成し、前記貫通孔の周縁のうち固定スクロールのラップ先端部の付け根に最接近状態で臨む最近接縁部と、固定スクロールのラップ先端部の付け根の部分との間の臨孔距離が長く確保されるように構成したことを特徴とする。
 (3)また、上記(1)又は(2)のスクロール型圧縮機において、固定スクロールのラップ先端部である渦巻中心部分に形成した、吐出ポートを構成する貫通孔の周縁近傍の鏡板において、前記貫通孔の周縁のうちラップ先端部の付け根に最接近状態で臨む最近接縁部から立ち上がった垂直壁の高さが高く形成されていることを特徴とする。
 (4)上記(3)のスクロール型圧縮機において、前記貫通孔の垂直壁の高さは、固定スクロールの中圧室に臨む部分でのラップの厚さの凡そ2倍に形成されていることを特徴とする。
 (5)上記(1)乃至(4)のいずれかのスクロール型圧縮機のいずれかにおいて、
 前記可動スクロールは、ラップ先端部である渦巻中心部分に、前記固定スクロールの貫通孔に少なくとも一部が常時重複する配置状態で、ダミーポートを構成する窪みを備えるとともに、前記窪みの大きさは、前記貫通孔の大きさより大きく形成され、かつ、前記固定スクロールの貫通孔と前記可動スクロールの窪みとは、互いに180度位相をずらした位置関係に形成されてあることを特徴とする。
 (6)上記(2)乃至(5)のいずれかのスクロール型圧縮機のいずれかにおいて、前記非インボリュート面は、前記インナーインボリュート面及びアウターインボリュート面の両開始点の位置を変えずに形成されていることを特徴とする。
To achieve the above objective,
(1) A scroll compressor according to the present invention includes a fixed scroll fixed inside a casing and a movable scroll meshing with the fixed scroll, and compresses a space formed between the two wraps. In the compressor, the wrap front end side of the fixed scroll is formed thicker than the wrap front end side of the movable scroll.
(2) Further, in the scroll compressor of (1), the inner non-involute surface which is a concave curved surface between the start point of the inner involute surface and the start point of the outer involute surface constituting the wrap of the fixed scroll. And a non-involute surface composed of an outer non-involute surface that is a convex curved surface, and the non-involute surface is a curved surface shape having a small radius of curvature with the inner non-involute surface being a concave curved surface, and the fixed scroll The through-hole forming the discharge port formed in the spiral center portion that is the tip of the wrap has an opening shape in the approach region facing the inner non-involute surface that is the concave curved surface, and the curvature of the inner non-involute surface that is the concave curved surface It is formed to be a curved surface smaller than the radius, It is characterized in that it is configured to ensure a long clearance distance between the closest edge that faces the base of the wrap tip of the fixed scroll in the closest state and the base part of the wrap tip of the fixed scroll. To do.
(3) In the scroll compressor according to (1) or (2), in the end plate in the vicinity of the periphery of the through-hole constituting the discharge port, formed in the spiral center portion that is the wrap tip portion of the fixed scroll, The height of the vertical wall rising from the closest edge that faces the base of the wrap tip in the closest state in the periphery of the through hole is high.
(4) In the scroll compressor of the above (3), the height of the vertical wall of the through hole is formed approximately twice the thickness of the wrap at the portion facing the intermediate pressure chamber of the fixed scroll. It is characterized by.
(5) In any one of the scroll compressors according to (1) to (4) above,
The movable scroll is provided with a recess that constitutes a dummy port in an arrangement state in which at least a part of the scroll scroll is at least partially overlapped with a through hole of the fixed scroll at a spiral central portion that is a wrap tip, and the size of the recess is, The through-hole of the fixed scroll and the recess of the movable scroll are formed in a positional relationship that is 180 degrees out of phase with each other.
(6) In any one of the scroll compressors according to (2) to (5), the non-involute surface is formed without changing positions of both start points of the inner involute surface and the outer involute surface. It is characterized by.
 上記(1)のスクロール型圧縮機によれば、固定スクロールのラップ先端部の付け根の近傍の貫通孔に臨む鏡板部分は、厚さが厚く形成されている分だけ、その部分の強度を高めることができ、延いては固定スクロールの信頼性、耐久性を高めることができる、という利点がある。
 上記(2)のスクロール型圧縮機によれば、固定スクロールにおける貫通孔の周縁部分のうちの、固定スクロールのラップ先端部の付け根に最接近状態で臨む最近接縁部とこのラップ先端部の付け根の部分との間の臨孔距離を長く確保することができる。これにより、固定スクロールのラップ先端部の根元部分の貫通孔に臨む鏡板での強度をさらに高めることができ、延いては固定スクロールの信頼性、耐久性をさらに高めることができる、といった効果も得られる。
 上記(3)のスクロール型圧縮機によれば、固定スクロールのラップ先端部の付け根に臨む周縁部分から前記貫通孔の立ち上がった垂直壁の高さを高く形成したことで、固定スクロールのラップ先端部の根元部分の貫通孔に臨む鏡板が厚くなっているので、その分固定スクロールの強度をさらに高めることができる、という利点がある。
 上記(4)のスクロール型圧縮機によれば、貫通孔の垂直壁の高さが、固定スクロールのラップの中圧室に臨む部分での厚さの凡そ2倍に形成されているので、固定スクロールのラップ先端部の根元部分の貫通孔に臨む鏡板での強度を一層高めることができる、といった効果も得られる。
 上記(5)のスクロール型圧縮機によれば、可動スクロールにダミーポートを構成する窪みを設けたことにより、圧縮室からの冷媒ガスの吐出のタイミングを図ることができるようになる、といった効果も得られる。
 上記(6)のスクロール型圧縮機によれば、渦巻の設計圧縮比を変更することなく、中心先端部付け根の強度アップを図ることが可能となる。
According to the scroll type compressor of (1) above, the end plate portion facing the through hole in the vicinity of the base of the wrap tip of the fixed scroll increases the strength of the portion by the thickness. As a result, there is an advantage that the reliability and durability of the fixed scroll can be improved.
According to the scroll type compressor of the above (2), the nearest edge portion of the peripheral portion of the through hole in the fixed scroll that faces the root of the wrap tip of the fixed scroll in the closest state and the root of the wrap tip. It is possible to ensure a long distance between the adjacent holes. As a result, it is possible to further increase the strength of the end plate facing the through-hole at the root portion of the wrap tip of the fixed scroll, thereby further improving the reliability and durability of the fixed scroll. It is done.
According to the scroll compressor of the above (3), the height of the vertical wall where the through hole rises from the peripheral portion facing the base of the wrap tip of the fixed scroll is increased, so that the wrap tip of the fixed scroll Since the end plate facing the through-hole at the base portion is thick, there is an advantage that the strength of the fixed scroll can be further increased accordingly.
According to the scroll compressor of the above (4), the height of the vertical wall of the through hole is formed to be approximately twice the thickness of the fixed scroll lap facing the intermediate pressure chamber. The effect that the intensity | strength in the end plate which faces the through-hole of the root part of the lap | wrap front-end | tip part of a scroll can be raised further is also acquired.
According to the scroll compressor of the above (5), there is an effect that the timing of the discharge of the refrigerant gas from the compression chamber can be achieved by providing the movable scroll with the recess that constitutes the dummy port. can get.
According to the scroll compressor of the above (6), it is possible to increase the strength of the root of the center tip without changing the design compression ratio of the spiral.
 図1は本発明の一実施形態に係るスクロール型圧縮機を示す縦断面図である。
 図2は図1に示すスクロール型圧縮機の固定スクロールにおける下面の状態を示す説明図である。
 図3はそのスクロール型圧縮機の可動スクロールにおける上面の状態を示す平面図である。
 図4はそのスクロール型圧縮機の連通路の周辺の状態を示す断面図である。
 図5(A)はそのスクロール型圧縮機の固定スクロールのラップ先端部付近を示す要部拡大図、図5(B)は比較例となる通常一般的なスクロール型圧縮機の固定スクロール(表1に示す、仕様1の固定スクロール)のラップ先端部付近を示す要部拡大図である。
 図6(A)は図5(A)におけるVIA−VIA線矢視断面図、図6(B)は図5(B)におけるVIB−VIB線矢視断面図である。
 図7は図1に示すスクロール型圧縮機の固定スクロールにおけるラップ先端部付近の曲面形状を示す説明図である。
 図8は図7に示す固定スクロールにおけるラップ先端部付近での貫通孔と可動スクロールのダミーポートの関係、および双方のスクロールのラップ厚さの関係などを示す説明図である。
 図9は従来の一般的なスクロール型圧縮機の構成を示す断面図である。
FIG. 1 is a longitudinal sectional view showing a scroll compressor according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing the state of the lower surface of the fixed scroll of the scroll compressor shown in FIG.
FIG. 3 is a plan view showing the state of the upper surface of the movable scroll of the scroll compressor.
FIG. 4 is a cross-sectional view showing a state around the communication path of the scroll compressor.
FIG. 5A is an enlarged view of the main part showing the vicinity of the wrap tip of the fixed scroll of the scroll compressor, and FIG. 5B is a fixed scroll (Table 1) of an ordinary general scroll compressor as a comparative example. It is a principal part enlarged view which shows the lap front-end | tip part vicinity of the fixed scroll of the specification 1 shown in FIG.
6A is a cross-sectional view taken along line VIA-VIA in FIG. 5A, and FIG. 6B is a cross-sectional view taken along line VIB-VIB in FIG.
FIG. 7 is an explanatory view showing a curved surface shape in the vicinity of the wrap tip portion in the fixed scroll of the scroll compressor shown in FIG.
FIG. 8 is an explanatory diagram showing the relationship between the through-holes near the wrap tip and the movable scroll dummy port in the fixed scroll shown in FIG. 7 and the relationship between the wrap thicknesses of both scrolls.
FIG. 9 is a cross-sectional view showing a configuration of a conventional general scroll compressor.
 以下、本発明の実施形態について添付図面を参照しながら詳細に説明する。
 図1は、本発明の実施形態に係る内部高圧となるスクロール型圧縮機1を示すものであり、この圧縮機1は、冷媒が循環して冷凍サイクル運転動作を行う図示外の冷媒回路に接続されており、インバータ制御によって冷媒を圧縮するようになっている。
 この圧縮機1は、縦長円筒状の密閉ドーム型のケーシング3を有する。このケーシング3は、上下方向に延びる軸線を有する円筒状の胴部であるケーシング本体5と、その上端部に気密状に溶接されて一体接合され、上方に突出した凸面を有する椀状の上キャップ7と、ケーシング本体5の下端部に気密状に溶接されて一体接合され、下方に突出した凸面を有する椀状の下キャップ9とで圧力容器が構成されており、その内部は空洞とされている。
 ケーシング3の内部には、冷媒を圧縮するスクロール圧縮機構11と、このスクロール圧縮機構11の下方に配置される駆動モータ13とが収容されている。スクロール圧縮機構11と駆動モータ13とは、ケーシング3内を上下方向に延びるように配置される駆動軸15によって連結されている。また、スクロール圧縮機構11と駆動モータ13との間には間隙空間である高圧空間17が形成されている。
 スクロール圧縮機構11は、上側に開放された略有底円筒状の収納部材であるハウジング21と、該ハウジング21の上面に密着した状態でボルトにより締結される固定スクロール23と、これら固定スクロール23及びハウジング21間に配置され、固定スクロール23に噛合する可動スクロール25とを備えている。ハウジング21はその外周面においてケーシング本体5に固定される。また、ケーシング3内がハウジング21の下方の高圧空間17と、ハウジング21の上方の吐出空間29とに区画され、各空間17,29は、ハウジング21及び固定スクロール23の外周に縦に延びて形成された図示外の縦溝を介して連通している。
 駆動モータ13は、ケーシング3の内壁面に固定された環状のステータ13Aと、このステータ13Aの内側に回転自在に構成されたロータ13Bとを備えている。該モータ13はインバータ制御方式の直流モータで構成され、ロータ13Bには、駆動軸15を介してスクロール圧縮機構11の可動スクロール25が駆動連結されている。
 駆動モータ13の下方の下部空間91は高圧に保たれており、その下端部に相当する下キャップ9の内底部には油が貯留されている。駆動軸15内には、高圧油供給手段の一部としての給油路15Bが形成され、この給油路15Bは、可動スクロール25の背面の油室52に連通している。駆動軸15の下端には図示外のピックアップが連結され、このピックアップが、下キャップ9の内底部に貯留した油を掻き上げる。この掻き上げた油は、駆動軸15の給油路15Bを通り、可動スクロール25側の背面の油室52に供給される。そして、この油室52から可動スクロール25に設けられた、後述する連通路51及び連通孔53を通り(図7参照)、固定スクロール23側のオイル溝23Dへ送り込まれ、オイル溝23Dからスクロール圧縮機構11の各摺動部分及び圧縮室27へ供給される(図3参照)。
 ハウジング21には、駆動軸15の偏心軸部15Aが回動する支持体部21Aと、この支持体部21Aの下面中央から下方に延びるラジアル軸受部21Bとが形成されている。また、ハウジング21には、ラジアル軸受部21Bの下端面と支持体部21Aの底面との間を貫通するラジアル軸受21Cが設けられている。また、この支持体部21Aの下面側の外周縁部近くには、潤滑油が図示外の吐出管に侵入するのを防止する薄板状のオイルコレクタ24がケーシング本体5の内周面に沿うように垂設されている。
 ケーシング3の上キャップ7には冷媒回路の冷媒をスクロール圧縮機構11に導く図示外の吸入管が、またケーシング本体5にはケーシング3内の冷媒をケーシング3外に吐出させる吐出管が、それぞれ気密状に貫通固定されている。吸入管は、吐出空間29を上下方向に延び、その内端部はスクロール圧縮機構11の固定スクロール23を貫通して圧縮室27に連通し、この吸入管により圧縮室27内に冷媒が吸入される。
 固定スクロール23は、図1及び図2に示すように、鏡板23Aと、この鏡板23Aの下面に形成された渦巻き状(インボリュート状)のラップ23Bと、このラップ23Bの渦巻き状(インボリュート状)の中心部に鏡板を貫通して穿設され、吐出弁22に向けて開口された吐出ポートを構成する貫通孔23Cとで構成されている。また、可動スクロール25の上面である鏡面250(図1参照)に摺動されながら対面する、固定スクロール23の特に冷媒入口側のラップ23Bの先端面(下面233;図4参照)には、この下面233に刻設した細幅形状のオイル溝23Dを有している。
 一方、可動スクロール25は、図3に示すように、鏡板25Aと、この鏡板25Aの上面に形成された渦巻き状(インボリュート状)のラップ25Bと、このラップ25Bの渦巻き状(インボリュート状)の中心部に凹状に形成され、高圧状態の圧縮室27内の冷媒ガスを吐出空間29へ向けて吐出させるタイミングを調整するダミーポートを構成する窪み25Dとで構成されている。そして、固定スクロール23のラップ23Bと、可動スクロール25のラップ25Bとは互いに噛合しており、両ラップ23B,25Bの間で複数の圧縮室27が形成される(図1参照)。
 可動スクロール25には、図4に示すように、後述する連通路51に流量制限部材(ピン部材)55を挿入している。このピン部材55は、連通路51の奥側の下孔51A内に嵌る第1ピン55Aと、この第1ピン55Aに当接して、連通路51の手前側の挿入孔51B内に嵌る第2ピン55Bとにより構成される。第2ピン55B及び第1ピン55Aを奥端側に一体に押し付けるように、めねじ孔51Cに図示外の六角穴付きのねじ部材が螺合され、ねじ部材が挿入孔51Bの一端(図4では左端)を閉塞している。また、ねじ部材は接着剤等によってゆるまないように固定される。
 可動スクロール25は、図1に示すように、オルダムリング61を介して固定スクロール23に支持され、その鏡板25Aの下面の中心部には有底円筒状のボス部25Cが突設されている。一方、駆動軸15の上端には偏心軸部15Aが設けられ、この偏心軸部15Aが、可動スクロール25のボス部25Cに回転可能に嵌入される。
 また、可動スクロール25には、図4に示すように、鏡板25Aに、一端が外部に開口し内部に直線状に延びた連通路51が形成されている。該連通路51は、一端が外部に開口する連通路の下孔51Aを形成している。該下孔51Aには、所定深さ位置まで、一端からリーマ加工を施して、所定深さの挿入孔51Bを形成している。また、挿入孔51Bの入り口には、めねじ孔51Cが螺設されている。連通路51の他端(高圧開口)51Dは、上述した可動スクロール25の背面の油室(密閉容器内の高圧部)52に連通している。また、連通路51の入り口側の内周面には、真円形状を呈する連通孔53が開口している。
 この連通孔53は、圧縮室の低圧部27Aに臨む入口近傍の可動スクロール25の鏡板25A部分に、厚さ方向に鏡面250まで貫通して形成されており、固定スクロール23の臨むように開口されている。
 さらに、ハウジング21のラジアル軸受部21B下側の駆動軸15には、可動スクロール25や偏心軸部15A等と動的バランスを取るためのカウンタウェイト部16が設けられており、このカウンタウェイト部16により重さのバランスを取りながら駆動軸15が回転することで、可動スクロール25を自転することなく公転させるようになっている。そして、この可動スクロール25の公転に伴い、圧縮室27は、両ラップ23B,25B間の容積が中心に向かって収縮することで、吸入管より吸入された冷媒を圧縮するように構成されている。
 固定スクロール23の中央部には吐出ポートを構成する貫通孔23Cが設けられており、この貫通孔23Cから吐出されたガス冷媒は、吐出弁22を通って吐出空間29に吐出される。そして、ハウジング21及び固定スクロール23の各外周に設けた図示外の縦溝を介し、ハウジング21の下方の高圧空間17内の、オイルコレクタ24の外側の空間へ流出するようになっている。この高圧冷媒は、最終的には、ケーシング本体5に設けた吐出管を介してケーシング3外に吐出される。
 次に、本発明の特徴的な構成である、固定スクロール23のラップ23Bの渦巻き状(インボリュート状)の先端部Z、換言すれば、後述する非インボリュート面S3での凸曲面S32の頂点である点Zの近傍の形状、つまり貫通孔23Cに臨む部分の形状、及び貫通孔23Cの構成について、特に図5乃至図8を参照しながら説明する。
 なお、例えば図5(B)に示す一般的な固定スクロール23´のような鏡板23´Aにおいて、ラップ23´Bの先端部Z´(図5(B)参照)の近傍の貫通孔23´Cに最接近状態で臨む部位が、FEM(有限要素法)での解析によって、スクロール型圧縮機運転中に最大応力発生部位を構成することが確認されている。因みに、本実施形態である図5(A)に示す固定スクロール23の鏡板23Aでは、詳細は後述するが、ラップ23Bの先端部Z(図5(A)参照)の近傍の貫通孔23Cに最接近状態で臨む、上記に対応する部位の物理的強度が大幅に補強されている。
 また、図8において、符号s1及びs2は、可動スクロール25でのインナーインボリュート面及びアウターインボリュート面をそれぞれ示す。また、符号E1及びE2は、固定スクロール23の貫通孔23Cにおける長軸長さ及びこれに直交する短軸長さをそれぞれ示す。さらに、符号e1及びe2は、可動スクロール25の窪み25Dにおける長軸長さ及びこれに直交する直交軸長さをそれぞれ示す。
 ラップ23Bは、後述する表1の仕様1に記載のものの高さ(h)に比べて、高さが高く(h+Δh)形成されており、圧縮機として高出力化を図ることができるように構成されている。また、このラップ23Bの先端部Zは、図7に示すように、固定スクロール23のラップ23Bを構成する2面のうちの内側面(以下、「インナーインボリュート面S1」とよぶ)の開始点Pと、2面のうちの外側面(以下、「アウターインボリュート面S2」とよぶ)の開始点Qとの間の領域α(図5(A)参照)に、非インボリュート面S3を形成している。なお、この非インボリュート面S3は、インナーインボリュート面S1とアウターインボリュート面S2との両開始点の位置を変えずに形成されている。
 この非インボリュート面S3は、図5(A)において、点P→点R→点Z→点Qまでの線分で示す曲線部分の領域α(=α1+α2)であって、点Rは、非インボリュート面S3の凹曲面S31と凸曲面S32とが交わる点に相当する。即ち、点Pから点Rまでの領域が、凹面部分であって、非インボリュート面S3のうちのインナー非インボリュート面である凹曲面S31を構成する。一方、点Rから点Zを通り点Qに至る領域が、凸面部分であって、非インボリュート面S3のうちのアウター非インボリュート面である凸曲面S32を構成する。なお、点Zは、アウター非インボリュート面S3である凸曲面S32の頂点に対応している。また、点Rは、前述したように、インナー非インボリュート面である凹曲面S31とアウター非インボリュート面である凸曲面S32とについて、共通の非インボリュート面としての開始点である。
 本発明の非インボリュート面S3は、特に凹曲面S31の開始点Rから終点Pまで、凹曲面S31の全体について、曲率半径rが小さな曲面形状(r<r´;なお、r´は図5(B)に示す、後述の表1の仕様1の固定スクロールでのインナーインボリュート面S´1の曲率半径)に形成してある。つまり、凹曲面S31については、図7において、破線で示すインナーインボリュート面よりも貫通孔23Cに近づく方向(同図では右方)にシフトした、実線で示すような形状で構成されている。
 一方、非インボリュート面S3のうちの凸曲面S32については、つまり、凸曲面S32での開始点でもある点Rから終点Qに至るまで、インナーインボリュート面とは異なる適宜形状の曲面、例えばインナーインボリュート面よりも外側にシフトした円弧形状の曲線など、任意の形状でよい。なお、本実施形態では、適宜の曲率半径を有する円弧を用いている。これにより、図8に示すように、固定スクロール23のラップ23Bの先端部でもある凸曲面S32の頂点Z側付近での厚さTも、少なくとも可動スクロール25のラップ25Bの先端部Z側付近での厚さTよりも厚くなる。
 次に、上述の非インボリュート面S3を構成する曲面の形成方法について説明する。
 (1)所望のデカルト座標、即ち図7に示すように、直交するX−Y座標を所定の位置を原点Oとして設定するとともに、この2次元座標上の原点Oで、基礎円βを描く。この基礎円βは各種圧縮機ごとに任意であって、例えばその半径などは専ら固定スクロールの大きさ、延いては圧縮機の出力などによって一意に決定される。
 (2)このようにして、基礎円βが所定位置に決定されたならば、この基礎円βを基準として、インボリュート関数を原始関数とするインボリュート曲線(図5において、2点鎖線で示す曲線、これを原始インボリュート曲線とよぶ)を描き、この原始インボリュート曲線を原点を中心として一定角度(即ち、インボリュート始点角δ)だけ両方向に回転移動させる。これにより、開始点Rで一定幅tを有する2本のインボリュート曲線が得られる。これらが、固定スクロール23におけるインナーインボリュート面S1及びアウターインボリュート面S2となるが、後述するように渦巻中心部側の開始点Rから一定領域αについては、非インボリュート面に変更させる。
 (3)次に、所要の圧縮比によって一義的に決定される、図7に示すようなインナー非インボリュート面及びアウター非インボリュート面を作成すべく、一定角度θの傾きを有する2本の直線を用意する。そして、これらの直線を用いて、基礎円βと接するときの2接線である直線V、V´を決定する。ここで、角度θは、インボリュート開始角を求めるためのものであって、圧縮比によって一意に決定されているものである。
 (4)そして、上記の直線Vがインナーインボリュート面S1と交わる交点Pと、同じく、上記直線V´がアウターインボリュート面S2と交わる交点Qとを決定する。
 なお、交点Pがインナー非インボリュート面(即ち、凹曲面S31)の終点及びインナーインボリュート面S1の開始点となり、交点Qがアウター非インボリュート面(即ち、凸曲面S32)の終点及びアウターインボリュート面S2の開始点となる。また、インナー非インボリュート面である凹曲面S31の開始点であり、アウター非インボリュート面である凸曲面S32での開始点でもある点Rについては、双方の曲面が交わるところの点である。
 (5)次に、図5(A)に示すように、上述した2点P,Qを含む4点、即ち、点P,R,Z,Qの間を結ぶ太線で示すα領域での曲線については、インボリュートとは異なる曲面、つまり非インボリュート面S3に変更させる。
 変更させるこの非インボリュート面S3うち、特に2点P,Rで示す領域α1内に形成するインナー非インボリュート面となる凹曲面S31については、図7に示すように、基礎円βに対する一方側の接線である直線Vにおける任意の点Cを中心とした半径rが描く円周の一部である円弧を形成し、元のインボリュート形状であったものを、これに変更させる。従って、インナーインボリュート面S1開始点を点Pに変更させる。なお、この円弧を形成する際の円の中心点の設置位置は、必ずしも接線である直線V上の区間PNに限定させる必要はなく、その延長線上でもよい。
 (6)これにより、既に形成してあるインナーインボリュート面S1における開始点Pより先の領域において、特に領域α1に形成されていたインボリュート曲線を、上記した任意の点Cを中心とした円弧に変更する。特に、この場合の円の半径rについては、図5(B)に示す、仕様1タイプ(後述の表1参照)の固定ロール23´での対応する半径r´に比べて小さな曲率半径、r<r´となるものを用いる。これにより、領域α1に形成するインナー非インボリュート面S31は、これに変更する前のインナーインボリュート曲面よりも若干外側に、つまり貫通孔23C寄りにシフトさせてある。なお、ここでの円弧曲線については、終点Pと開始点Rとの双方の点を共に通過するものを用いる。
 (7)また、非インボリュート面S3を形成する領域αのうち、3点Q,Z,Rの領域α2内に形成するアウター非インボリュート面である凸曲面S32については、本実施形態の場合、前述したように円弧曲線に変更させてある。これにより、これに変更する前のアウターインボリュート曲面よりも若干外側に広がる状態にシフトさせてある。なお、この場合の円弧については、凹曲面S31と同様、図7において、基礎円βに対する他方側接線である直線V´における接点N´と前述のアウターインボリュート面S2との交点Qとの2点N´,Qを通過するような、任意の点を中心とした半径が描く円周の一部であり、元のインボリュート形状であったものをこれに変更させる。
 このようにして形成した非インボリュート面S3を有する固定スクロール23のラップ23Bを用いることで、圧縮比を変更することなく固定スクロール23の強度アップを図ることができるようになっている。
 次に、固定スクロール23のラップ23Bの渦巻中心部分に形成した吐出ポートを構成する貫通孔23Cについて、図5乃至図8を参照しながら説明する。
 本実施形態では、固定スクロール23のラップ23B先端部である渦巻中心部分に形成した吐出ポートを構成する貫通孔23Cの内周縁のうち、特に固定スクロール23のラップ23B先端部である点Zにおける鏡板23Aの付け根の部位(図5(A)では点Zで示す部位の直下)と、このラップ23B先端部である点Zでの付け根部分から貫通孔23Cの内周縁に最接近状態で臨む固定スクロール23の最近接縁部Uとの間の長さ(以下、「臨孔距離L」とよぶ)を、長めに確保するように構成してある。
 即ち、通常の一般的な貫通孔、例えば図5(B)に示す固定スクロール23´において、ラップ23´B先端部である点Z´での鏡板23´Aに対する付け根の部位(図5(B)では点Z´で示す部位の直下)と、このラップ23´B先端部Z´での付け根部分から貫通孔23´Cの内周縁に最接近状態で臨む固定スクロール23´の最近接縁部U´との間の長さ(以下、これを「臨孔距離L´」とよぶ)に比べて、少なくとも、本実施形態の臨孔距離Lの方が長く、即ち、L>L´となるように構成されている。
 このように、固定スクロール23での臨孔距離Lが仕様1の固定スクロール23´での臨孔距離L´に比べて増大可能となっているのは、貫通孔23Cを、例えば表1の仕様1に記載の固定スクロール23´での貫通孔23´Cに比べて小さくさせたことによる。その小さくさせた分だけ鏡板23Aにおいて基底面232、特に臨孔距離Lを長く確保できる。
 そこで、この貫通孔23Cを小さく狭めるため、本実施形態では以下のような構成としている。
 図5(A)に示す本実施形態の貫通孔23Cでは、同図5(B)に示す表1での仕様1に対応する固定スクロール23´に開口した貫通孔23´Cの大きさに比べて、80%から90%程度(本実施形態では、90%)に、開口面積を狭くしてある(図5(A)、図5(B)参照)。即ち、貫通孔23Cは、非インボリュート面S3のうちの凹曲面S31に臨む接近領域(ε)での開口形状が、固定スクロール23´の貫通孔23´Cでの接近領域(ε´)での開口形状と比べ、開口が狭まるように構成されている。例えば本実施形態では、開口面積を10%程度狭く形成させることによって、臨孔距離Lを増大させている。
 具体的には、貫通孔23Cの開口部分のうち、凹曲面S31に臨む接近領域(ε)(図5(A)参照)での開口が狭まるように、凹曲面S31の曲率半径rよりも小さな内縁となるような曲面で構成している。つまり、接近領域(ε)内での開口縁部を貫通孔23Cの中心方向に向けて接近するように、シフトさせて後退させている(図7において、一点鎖線で示す部分から太線で示す部分へ、右方へシフトさせてある)。これにより、孔を狭めて開口面積を削減させているわけである。なお、この部分の曲面としては、例えば凹曲面S31の曲率半径rよりも小さな曲率半径を有する円弧などでよい。
 なお、この貫通孔23Cの開口形状については、上述したように、固定スクロール23の非インボリュート面S3の凹曲面S31に臨む接近領域(ε)での内縁部分を、孔中心方向に接近するように後退させて狭めているが、図5(A)に示す接近領域(ε)とは反対側の残り領域(λ)では、仕様1に記載の固定スクロール23´の貫通孔23´Cでの形状と同じとしてあり、変更させていない。つまり、貫通孔23Cの反ラップ側である、残り領域(λ)から圧縮室の連通が始まるが、こちら側については形状変更がないので、以前のものと同様、2対の圧縮室の吐出タイミングが同時であることに変わりはない。
 また、このような臨孔距離Lの関係については、固定スクロール23のラップ23B先端である点Zの近傍から若干離れた、図5(A)における矢視切断線VIA−VIAで切断したところでも同様である。
 即ち、図6(A)に示すように、ラップ23B先端部Zの近傍から若干離れた部分での貫通孔23Cとの間の臨孔距離ΔLについても、表1の仕様1に記載の固定スクロール23´の対応部位で切断した断面図である図6(B)に示す、通常一般の固定スクロール23´での臨孔距離ΔL´に比べて、大きさが拡大している。
 このように、上述した臨孔距離Lの場合と同様、臨孔距離ΔLの拡大が実現できるようになったのも、図6に示すように、切断面部分での固定スクロール23の貫通孔23Cでの幅Wを、固定スクロール23´での貫通孔23´Cの対応部分の幅W´(但し、W<W´)に比べて狭めたことにより可能になったものである。
 しかも、本実施形態の固定スクロール23のラップ23B先端部でもある頂点Zである渦巻中心部分に形成した吐出ポートを構成する貫通孔23Cは、図6(A)に示すように、この貫通孔23Cの内周面において、この固定スクロール23の鏡板23Aの鏡面230のうち、特にラップ23Bの付け根につながっている表面部分である基底面232から、垂直に立ち上がった垂直壁231の高さHを高く形成した構成となっている。
 特に、本実施形態の貫通孔23Cについては、図5(A)及び図6(A)に示すように、固定スクロール23のラップ23B先端部Zを除く部分でのラップ幅t(図5(A)参照)に対して略2倍程度の高さH、即ち、H=2tとなるように、垂直壁231を設けている。
 一方、仕様1の固定スクロール23´の貫通孔23´Cについては、図5(B)及び図6(B)に示すように、一般に、固定スクロール23´のラップ23´B先端部を除く部分での幅t´に対して略同じ程度の高さH´、即ち、H´≒t´となるように、基底面232´から垂直壁231´を設けている。
 従って、本実施形態の貫通孔23Cについては、通常一般的な貫通孔、即ち仕様1の固定スクロール23´における貫通孔23´Cなどに比べて垂直壁231を高く形成しているので、ラップ23Bの先端部である点Z近傍での鏡板23Aの厚さが実質的に増大した構造となり、構造的に強度が大幅増大している。
 次に、固定スクロール23の貫通孔23Cと可動スクロール25の窪み25Dとの関係について、図8を参照しながら説明する。
 本実施形態の貫通孔23Cは、可動スクロール25のラップ25Bの渦巻中心部分に形成したダミーポートを構成する窪み25Dの大きさよりも小さく、つまり、
 E1<e1、かつ、E2<e2
を満たすように形成してある。このように、貫通孔23Cは、窪み25Dとは同一面積ではなく、これより狭い面積を有している。
 また、この固定スクロール23の貫通孔23Cと可動スクロール25の窪み25Dとは、互いに180度位相をずらして点対称的に反転させた相対位置関係に組み付けてある。なお、ここで、初等幾何学によれば、周知のように「点対称」とは対称の中心位置を中心として180度回転させたときに互いに重なり合う図形の関係を定義するものであるが、本実施形態では相似形状であって大きさが異なるのでぴったりとは重ならない、といった事情を考慮して、「点対称的」と記載してあるものである。
 このような形状に貫通孔23Cを形成することにより、貫通孔23Cの反ラップ側である、残領域(λ;図5参照)から圧縮室の連通が始まるので、2対の圧縮室の吐出タイミングは同時であることに変わりはない。これにより、軸受荷重について必要以上に負荷が発生することなどを有効に回避でき、その結果、騒音、振動、耐久性などについて悪影響が発生するのを防止できるといった効果が得られる。
 次に、このスクロール型圧縮機1の運転動作について説明する。
 駆動モータ13を駆動すると、ステータ13Aに対してロータ13Bが回転し、それによって駆動軸15が回転する。駆動軸15が回転すると、スクロール圧縮機構11の可動スクロール25が固定スクロール23に対して姿勢を一定に保持したまま、自転せずに公転のみ行う。これにより、低圧の冷媒が、吸入管を通して圧縮室27の周縁側から圧縮室27に吸引され、圧縮室27の容積変化に伴って圧縮される。
 圧縮された冷媒は、高圧となって圧縮室27から吐出弁22を通って吐出空間29に吐出され、ハウジング21及び固定スクロール23の各外周に設けた図示外の縦溝を介して、ハウジング21の下方の高圧空間17側のオイルコレクタ24の外側に流出する。そして、この高圧冷媒は、ケーシング本体5に設けた図示外の吐出管を介してケーシング3外に吐出される。ケーシング3外に吐出された冷媒は、図示外の冷媒回路を循環した後、再度吸入管を通して圧縮機1に吸入されて圧縮され、冷媒の循環が繰り返される。
 次に、潤滑油の流れを説明する。
 ケーシング3における下キャップ9の内底部に貯留された潤滑油は、図1に示す駆動軸15の下端に設けた図示外のピックアップにより掻き上げられ、この潤滑油が、駆動軸15の給油路15Bを通じ、可動スクロール25背面の高圧状態の油室52に供給される。また、この潤滑油は、図4に示す油室52から、可動スクロール25に設けられた連通路51、連通孔53を介して、固定スクロール23側のラップ23Bの先端面である下面233に開口されたオイル溝23D(図2、図4参照)へと、差圧を利用して送り出され、スクロール圧縮機構11の各摺動部分及び圧縮室27へ供給される。
 また、例えば図1において、圧縮室27へ供給された油は、高圧の圧縮室である両スクロール中央部へ移動すると、ここで圧縮された高圧状態の冷媒の流れに伴って、吐出弁22を通って吐出空間29に吐出される。このようにして、高圧状態の冷媒とともに吐出弁22を通って吐出空間29に吐出された潤滑油は、ハウジング21及び固定スクロール23の各外周に設けた図示外の縦溝を介して、ハウジング21の下方の高圧空間17に流出する。そして、この油がケーシング本体5の内壁部や駆動モータ13の隙間を通って、下部空間91に相当する下キャップ9の内底部に貯留されるが、この場合、高圧空間17には薄板状のオイルコレクタ24やカップ26などが設置されているので、吐出管に侵入するのを防止しながら、下キャップ9の内底部へ回収させることができる。
 次に、本実施形態に係る固定スクロール23を含む各種タイプの固定スクロールを設けた5種類のスクロール型圧縮機を運転させたときに、前述したラップの先端部の近傍の貫通孔に最接近状態で臨む部位に作用する最大応力を調べる実験を行ってみた。その結果を示す[表1]を参照しながら、本実施形態の作用効果を説明する。なお、ここで、仕様1から仕様6に示す固定スクロールのうち、仕様1のものは通常一般的な低出力タイプのものであり、仕様2のものは通常一般的な高出力タイプのものである。また、仕様5に示すものが本実施形態に用いた固定スクロール23である。
Figure JPOXMLDOC01-appb-T000001
 上記の表1から分かるように、本実施形態の固定スクロールに対応する仕様5のものは、通常一般的な構成である仕様1(低出力タイプ)のものに比べて、スクロールの歯高をΔhだけ高め、吐出孔面積を0.9倍に狭め、吐出孔垂直壁を2.5倍に高くしてある。このような構成とすることで、固定スクロールの最大応力が発生していた先端部Zの付け根に作用する力を28%削減できるとの知見が得られた。従って、仕様5に示す固定スクロールを備えた本実施形態の圧縮機1によれば、固定スクロール23のラップ23B先端部Zの付け根近傍の鏡板23Aの強度が高められていることが確認された。
 なお、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載の要旨を逸脱しない範囲で各種の変形実施が可能である。例えば、本発明の固定スクロールについては、上記表1における仕様5に限らず、仕様3,4,6のいずかの構成であってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a scroll compressor 1 having an internal high pressure according to an embodiment of the present invention, and this compressor 1 is connected to a refrigerant circuit (not shown) in which a refrigerant circulates and performs a refrigeration cycle operation. The refrigerant is compressed by inverter control.
The compressor 1 has a vertically long cylindrical hermetic dome-shaped casing 3. The casing 3 includes a casing body 5 that is a cylindrical body having an axis extending in the vertical direction, and a bowl-shaped upper cap having a convex surface that is welded and integrally joined to the upper end of the casing body 5. 7 and a bowl-shaped lower cap 9 which is welded and integrally joined to the lower end portion of the casing body 5 and has a convex surface protruding downward, and a pressure vessel is formed inside thereof. Yes.
The casing 3 accommodates a scroll compression mechanism 11 that compresses the refrigerant and a drive motor 13 that is disposed below the scroll compression mechanism 11. The scroll compression mechanism 11 and the drive motor 13 are connected by a drive shaft 15 that is disposed so as to extend in the vertical direction in the casing 3. A high-pressure space 17 that is a gap space is formed between the scroll compression mechanism 11 and the drive motor 13.
The scroll compression mechanism 11 includes a housing 21 that is a substantially bottomed cylindrical storage member that is open on the upper side, a fixed scroll 23 that is fastened with bolts in close contact with the upper surface of the housing 21, the fixed scroll 23, The movable scroll 25 is disposed between the housings 21 and meshes with the fixed scroll 23. The housing 21 is fixed to the casing body 5 on the outer peripheral surface thereof. The casing 3 is partitioned into a high-pressure space 17 below the housing 21 and a discharge space 29 above the housing 21, and the spaces 17 and 29 are formed to extend vertically on the outer periphery of the housing 21 and the fixed scroll 23. Communicating through a vertical groove (not shown).
The drive motor 13 includes an annular stator 13A fixed to the inner wall surface of the casing 3, and a rotor 13B configured to be rotatable inside the stator 13A. The motor 13 is composed of an inverter-controlled DC motor, and a movable scroll 25 of the scroll compression mechanism 11 is drivingly connected to the rotor 13B via a drive shaft 15.
The lower space 91 below the drive motor 13 is maintained at a high pressure, and oil is stored in the inner bottom portion of the lower cap 9 corresponding to the lower end portion thereof. In the drive shaft 15, an oil supply passage 15 </ b> B as a part of the high pressure oil supply means is formed, and the oil supply passage 15 </ b> B communicates with an oil chamber 52 on the back surface of the movable scroll 25. A pickup (not shown) is connected to the lower end of the drive shaft 15, and this pickup scoops up oil stored in the inner bottom portion of the lower cap 9. The scooped up oil passes through the oil supply passage 15B of the drive shaft 15 and is supplied to the oil chamber 52 on the back surface on the movable scroll 25 side. Then, the oil chamber 52 passes through a communication passage 51 and a communication hole 53 (described later) provided in the movable scroll 25 (see FIG. 7), and is sent to an oil groove 23D on the fixed scroll 23 side, and scroll compression is performed from the oil groove 23D. It is supplied to each sliding part of the mechanism 11 and the compression chamber 27 (see FIG. 3).
The housing 21 is formed with a support portion 21A in which the eccentric shaft portion 15A of the drive shaft 15 rotates, and a radial bearing portion 21B extending downward from the center of the lower surface of the support portion 21A. Further, the housing 21 is provided with a radial bearing 21C penetrating between the lower end surface of the radial bearing portion 21B and the bottom surface of the support portion 21A. Further, near the outer peripheral edge portion on the lower surface side of the support portion 21A, a thin plate-like oil collector 24 that prevents the lubricating oil from entering a discharge pipe (not shown) extends along the inner peripheral surface of the casing body 5. Is suspended.
The upper cap 7 of the casing 3 has a suction pipe (not shown) that guides the refrigerant in the refrigerant circuit to the scroll compression mechanism 11, and the casing body 5 has a discharge pipe that discharges the refrigerant in the casing 3 to the outside of the casing 3. It is fixed in a penetrating manner. The suction pipe extends vertically in the discharge space 29, and an inner end thereof passes through the fixed scroll 23 of the scroll compression mechanism 11 and communicates with the compression chamber 27, and the refrigerant is sucked into the compression chamber 27 by the suction pipe. The
As shown in FIGS. 1 and 2, the fixed scroll 23 includes an end plate 23A, a spiral (involute) wrap 23B formed on the lower surface of the end plate 23A, and a spiral (involute) wrap 23B. A through hole 23 </ b> C is formed in the central portion so as to penetrate the end plate and open toward the discharge valve 22. In addition, the tip end surface (lower surface 233; see FIG. 4) of the wrap 23B on the refrigerant inlet side of the fixed scroll 23 facing the mirror surface 250 (see FIG. 1), which is the upper surface of the movable scroll 25, faces this. A narrow oil groove 23 </ b> D is formed on the lower surface 233.
On the other hand, as shown in FIG. 3, the movable scroll 25 includes an end plate 25A, a spiral (involute) wrap 25B formed on the upper surface of the end plate 25A, and a spiral (involute) center of the wrap 25B. The recess 25 </ b> D is formed as a dummy port that adjusts the timing at which the refrigerant gas in the compression chamber 27 in a high-pressure state is discharged toward the discharge space 29. The wrap 23B of the fixed scroll 23 and the wrap 25B of the movable scroll 25 are meshed with each other, and a plurality of compression chambers 27 are formed between the wraps 23B and 25B (see FIG. 1).
As shown in FIG. 4, the movable scroll 25 has a flow restricting member (pin member) 55 inserted in a communication passage 51 described later. The pin member 55 includes a first pin 55A that fits in the lower hole 51A on the back side of the communication path 51, and a second pin that comes into contact with the first pin 55A and fits in the insertion hole 51B on the near side of the communication path 51. It is comprised by the pin 55B. A screw member with a hexagonal hole (not shown) is screwed into the female screw hole 51C so as to integrally press the second pin 55B and the first pin 55A toward the back end side, and the screw member is one end of the insertion hole 51B (FIG. 4). The left end is closed. Further, the screw member is fixed so as not to be loosened by an adhesive or the like.
As shown in FIG. 1, the movable scroll 25 is supported by the fixed scroll 23 via the Oldham ring 61, and a bottomed cylindrical boss portion 25C projects from the center of the lower surface of the end plate 25A. On the other hand, an eccentric shaft portion 15A is provided at the upper end of the drive shaft 15, and the eccentric shaft portion 15A is rotatably fitted into a boss portion 25C of the movable scroll 25.
As shown in FIG. 4, the movable scroll 25 is formed with a communication passage 51 formed in the end plate 25 </ b> A with one end opened to the outside and linearly extended to the inside. The communication path 51 forms a lower hole 51A of a communication path whose one end opens to the outside. The lower hole 51A is reamed from one end to a predetermined depth position to form an insertion hole 51B having a predetermined depth. A female screw hole 51C is screwed into the entrance of the insertion hole 51B. The other end (high pressure opening) 51 </ b> D of the communication path 51 communicates with the oil chamber (high pressure portion in the hermetic container) 52 on the back surface of the movable scroll 25 described above. In addition, a communication hole 53 having a perfect circle shape is opened on the inner peripheral surface on the entrance side of the communication path 51.
The communication hole 53 is formed in the end portion of the movable scroll 25 near the inlet facing the low pressure portion 27A of the compression chamber so as to penetrate the mirror surface 250 in the thickness direction, and is opened so that the fixed scroll 23 faces. ing.
Further, the drive shaft 15 below the radial bearing portion 21B of the housing 21 is provided with a counterweight portion 16 for dynamic balance with the movable scroll 25, the eccentric shaft portion 15A, and the like. By rotating the drive shaft 15 while balancing the weight, the movable scroll 25 is revolved without rotating. As the movable scroll 25 revolves, the compression chamber 27 is configured to compress the refrigerant sucked from the suction pipe when the volume between the wraps 23B and 25B contracts toward the center. .
A through hole 23 </ b> C constituting a discharge port is provided in the central portion of the fixed scroll 23, and the gas refrigerant discharged from the through hole 23 </ b> C is discharged to the discharge space 29 through the discharge valve 22. And it flows out to the space outside the oil collector 24 in the high-pressure space 17 below the housing 21 through vertical grooves (not shown) provided on the outer peripheries of the housing 21 and the fixed scroll 23. This high-pressure refrigerant is finally discharged out of the casing 3 through a discharge pipe provided in the casing body 5.
Next, the spiral tip (involute) tip Z of the wrap 23B of the fixed scroll 23, which is a characteristic configuration of the present invention, in other words, the apex of the convex curved surface S32 on the non-involute surface S3 described later. The shape in the vicinity of the point Z, that is, the shape of the portion facing the through hole 23C and the configuration of the through hole 23C will be described with reference to FIGS. 5 to 8 in particular.
For example, in the end plate 23′A such as a general fixed scroll 23 ′ shown in FIG. 5 (B), a through hole 23 ′ in the vicinity of the tip Z ′ (see FIG. 5 (B)) of the wrap 23′B. It has been confirmed that the part that faces C in the closest state constitutes the maximum stress generation part during the operation of the scroll compressor by the analysis by FEM (finite element method). Incidentally, in the end plate 23A of the fixed scroll 23 shown in FIG. 5A, which is the present embodiment, the details will be described later, but the through hole 23C in the vicinity of the front end Z (see FIG. 5A) of the wrap 23B is the most. The physical strength of the part corresponding to the above that faces in the approaching state is greatly reinforced.
In FIG. 8, reference numerals s <b> 1 and s <b> 2 denote an inner involute surface and an outer involute surface in the movable scroll 25, respectively. Reference numerals E1 and E2 denote a major axis length in the through hole 23C of the fixed scroll 23 and a minor axis length orthogonal to the major axis length, respectively. Furthermore, the symbols e1 and e2 respectively indicate the major axis length in the recess 25D of the movable scroll 25 and the orthogonal axis length orthogonal thereto.
The wrap 23B is formed to have a height (h + Δh) that is higher than the height (h) described in the specification 1 of Table 1 to be described later, and can be configured to increase the output as a compressor. Has been. Further, as shown in FIG. 7, the front end portion Z of the wrap 23B is the starting point P of the inner side surface (hereinafter referred to as “inner involute surface S1”) of the two surfaces constituting the wrap 23B of the fixed scroll 23. And a non-involute surface S3 is formed in a region α (see FIG. 5A) between the start point Q of the outer surface (hereinafter referred to as “outer involute surface S2”) of the two surfaces. . The non-involute surface S3 is formed without changing the positions of both starting points of the inner involute surface S1 and the outer involute surface S2.
This non-involute surface S3 is a curved portion region α (= α1 + α2) indicated by a line segment from point P → point R → point Z → point Q in FIG. 5A, and the point R is a non-involute. This corresponds to the point where the concave curved surface S31 and the convex curved surface S32 of the surface S3 intersect. That is, the region from the point P to the point R is a concave surface portion, and constitutes the concave curved surface S31 that is the inner non-involute surface of the non-involute surface S3. On the other hand, the region from point R through point Z to point Q is a convex surface portion and constitutes a convex curved surface S32 that is an outer non-involute surface of the non-involute surface S3. Note that the point Z corresponds to the vertex of the convex curved surface S32 that is the outer non-involute surface S3. Further, as described above, the point R is a starting point as a common non-involute surface for the concave curved surface S31 that is an inner non-involute surface and the convex curved surface S32 that is an outer non-involute surface.
The non-involute surface S3 of the present invention has a curved surface shape with a small radius of curvature r (r <r ′; r ′ represents the entire concave surface S31, particularly from the start point R to the end point P of the concave surface S31; B), the radius of curvature of the inner involute surface S′1 in the fixed scroll of the specification 1 in Table 1 described later). That is, the concave curved surface S31 has a shape as shown by a solid line shifted in a direction closer to the through hole 23C (rightward in the figure) than the inner involute surface shown by a broken line in FIG.
On the other hand, for the convex curved surface S32 of the non-involute surface S3, that is, from the point R which is also the starting point on the convex curved surface S32 to the end point Q, a curved surface having an appropriate shape different from the inner involute surface, for example, the inner involute surface An arbitrary shape such as an arc-shaped curve shifted outward may be used. In the present embodiment, an arc having an appropriate curvature radius is used. As a result, as shown in FIG. 8, at least the thickness T of the convex curved surface S32 near the apex Z side of the wrap 23B of the fixed scroll 23 is also at least the tip Z of the wrap 25B of the movable scroll 25. 0 Thickness T near the side 0 It will be thicker.
Next, a method for forming a curved surface constituting the above-described non-involute surface S3 will be described.
(1) Desired Cartesian coordinates, that is, as shown in FIG. 7, an orthogonal XY coordinate is set at a predetermined position as an origin O, and a basic circle β is drawn at the origin O on the two-dimensional coordinates. The basic circle β is arbitrary for each of various compressors, and for example, the radius thereof is uniquely determined exclusively by the size of the fixed scroll and the output of the compressor.
(2) When the basic circle β is determined at a predetermined position in this way, an involute curve (a curve indicated by a two-dot chain line in FIG. 5) having an involute function as a primitive function with the basic circle β as a reference. This is called a primitive involute curve), and this primitive involute curve is rotated in both directions by a fixed angle (that is, the involute start point angle δ) around the origin. As a result, two involute curves having a constant width t at the starting point R are obtained. These are the inner involute surface S1 and the outer involute surface S2 in the fixed scroll 23, but the constant region α is changed to a non-involute surface from the starting point R on the spiral center portion side as described later.
(3) Next, in order to create an inner non-involute surface and an outer non-involute surface as shown in FIG. 7, which are uniquely determined by a required compression ratio, two straight lines having a constant angle θ are drawn. prepare. Then, using these straight lines, straight lines V and V ′ that are two tangent lines when contacting the basic circle β are determined. Here, the angle θ is for obtaining the involute start angle, and is uniquely determined by the compression ratio.
(4) Then, the intersection point P where the straight line V intersects the inner involute surface S1 and the intersection point Q where the straight line V 'intersects the outer involute surface S2 are determined.
The intersection point P is the end point of the inner non-involute surface (ie, the concave curved surface S31) and the start point of the inner involute surface S1, and the intersection point Q is the end point of the outer non-involute surface (ie, the convex curved surface S32) and the outer involute surface S2. This is the starting point. The point R, which is the starting point of the concave curved surface S31 that is the inner non-involute surface and the starting point of the convex curved surface S32 that is the outer non-involute surface, is a point where both curved surfaces intersect.
(5) Next, as shown in FIG. 5 (A), the curve in the α region indicated by the thick line connecting the four points including the two points P and Q, that is, the points P, R, Z, and Q, as shown in FIG. Is changed to a curved surface different from the involute, that is, the non-involute surface S3.
Of the non-involute surface S3 to be changed, the concave curved surface S31 to be the inner non-involute surface formed in the region α1 indicated by the two points P and R, as shown in FIG. An arc that is a part of the circumference drawn by a radius r centered on an arbitrary point C on the straight line V is formed, and the original involute shape is changed to this. Accordingly, the starting point of the inner involute surface S1 is changed to the point P. Note that the installation position of the center point of the circle when forming this arc is not necessarily limited to the section PN on the straight line V, which is a tangent line, and may be on an extension line thereof.
(6) As a result, the involute curve formed in the region α1 in the region ahead of the starting point P on the already formed inner involute surface S1 is changed to an arc centered on the arbitrary point C described above. To do. In particular, the radius r of the circle in this case is smaller than the corresponding radius r ′ of the fixed roll 23 ′ of the specification 1 type (see Table 1 described later) shown in FIG. <R ′ is used. Thereby, the inner non-involute surface S31 formed in the region α1 is shifted slightly outward from the inner involute curved surface before being changed to this, that is, closer to the through hole 23C. In addition, about the circular arc curve here, what passes through both the points of the end point P and the start point R is used.
(7) In the case of the present embodiment, the convex curved surface S32 that is the outer non-involute surface formed in the region α2 of the three points Q, Z, and R among the region α that forms the non-involute surface S3 is described above. As you can see, it has been changed to an arc curve. Thereby, it has shifted to the state which spreads a little outside rather than the outer involute curved surface before changing to this. As for the arc in this case, like the concave curved surface S31, in FIG. 7, two points of the contact point N ′ on the straight line V ′ that is the other side tangent to the basic circle β and the intersection point Q of the outer involute surface S2 described above. A part of the circumference drawn by a radius centered at an arbitrary point passing through N ′ and Q, which is the original involute shape, is changed to this.
By using the wrap 23B of the fixed scroll 23 having the non-involute surface S3 thus formed, the strength of the fixed scroll 23 can be increased without changing the compression ratio.
Next, the through hole 23C constituting the discharge port formed in the spiral center portion of the wrap 23B of the fixed scroll 23 will be described with reference to FIGS.
In the present embodiment, the end plate at the point Z that is the tip of the wrap 23B of the fixed scroll 23, particularly the inner peripheral edge of the through hole 23C that forms the discharge port formed at the spiral central portion that is the tip of the wrap 23B of the fixed scroll 23. A fixed scroll that faces the inner peripheral edge of the through-hole 23C from the root portion of point 23A (directly below the portion indicated by point Z in FIG. 5A) and the root portion at point Z that is the tip of this wrap 23B. 23 is configured to ensure a long length (hereinafter referred to as “close-to-hole distance L”) with respect to the closest edge portion U of 23.
That is, in the normal general through-hole, for example, the fixed scroll 23 'shown in FIG. 5B, the base portion with respect to the end plate 23'A at the point Z' which is the tip of the wrap 23'B (FIG. 5B ) Immediately below the portion indicated by the point Z ') and the closest edge of the fixed scroll 23' that faces the inner periphery of the through hole 23'C from the root at the tip Z 'of the wrap 23'B. Compared to the length between U ′ (hereinafter referred to as “critical hole distance L ′”), at least the critical hole distance L of the present embodiment is longer, that is, L> L ′. It is configured as follows.
As described above, the critical hole distance L in the fixed scroll 23 can be increased as compared with the critical hole distance L ′ in the fixed scroll 23 ′ of the specification 1. This is because the size is smaller than the through hole 23 ′ C in the fixed scroll 23 ′ described in 1. The base surface 232, in particular, the critical distance L, can be secured longer in the end plate 23A by the smaller amount.
Therefore, in order to narrow down the through hole 23C, the present embodiment has the following configuration.
In the through hole 23C of the present embodiment shown in FIG. 5A, the size of the through hole 23′C opened in the fixed scroll 23 ′ corresponding to the specification 1 in Table 1 shown in FIG. Thus, the opening area is narrowed to about 80% to 90% (in this embodiment, 90%) (see FIGS. 5A and 5B). That is, the through hole 23C has an opening shape in the approach region (ε) facing the concave curved surface S31 of the non-involute surface S3, and the opening shape in the approach region (ε ′) in the through hole 23′C of the fixed scroll 23 ′. Compared with the opening shape, the opening is configured to be narrowed. For example, in the present embodiment, the critical hole distance L is increased by reducing the opening area by about 10%.
Specifically, the opening radius of the through hole 23C is smaller than the radius of curvature r of the concave curved surface S31 so that the opening in the approach region (ε) facing the concave curved surface S31 (see FIG. 5A) is narrowed. It is composed of a curved surface that forms the inner edge. That is, the opening edge in the approach region (ε) is shifted and moved backward so as to approach toward the center direction of the through hole 23C (in FIG. 7, a portion indicated by a thick line from a portion indicated by a one-dot chain line). To the right). Thereby, the hole is narrowed to reduce the opening area. The curved surface of this portion may be, for example, an arc having a radius of curvature smaller than the radius of curvature r of the concave curved surface S31.
In addition, about the opening shape of this through-hole 23C, as mentioned above, the inner edge part in the approach area | region ((epsilon)) which faces the concave curved surface S31 of the non-involute surface S3 of the fixed scroll 23 approaches the hole center direction. In the remaining area (λ) opposite to the approach area (ε) shown in FIG. 5A, the shape of the fixed scroll 23 ′ described in the specification 1 at the through-hole 23′C is narrowed by retreating. It is the same as and has not been changed. That is, the communication of the compression chamber starts from the remaining area (λ) on the side opposite to the wrapping side of the through hole 23C, but there is no change in shape on this side, so that the discharge timings of the two pairs of compression chambers are the same as before. Are still the same.
Further, with regard to the relationship of the near hole distance L as described above, even when it is cut along an arrow cutting line VIA-VIA in FIG. 5 (A) that is slightly away from the vicinity of the point Z that is the tip of the lap 23B of the fixed scroll 23. It is the same.
That is, as shown in FIG. 6A, the fixed scroll according to the specification 1 of Table 1 is also used for the critical distance ΔL between the lap 23B and the through hole 23C at a portion slightly away from the vicinity of the tip Z of the lap 23B. The size is larger than the critical hole distance ΔL ′ in the normal fixed scroll 23 ′ shown in FIG. 6B, which is a cross-sectional view taken along the corresponding portion 23 ′.
Thus, as in the case of the critical hole distance L described above, the increase of the critical hole distance ΔL can be realized because the through hole 23C of the fixed scroll 23 at the cut surface portion as shown in FIG. This is made possible by making the width W narrower than the width W ′ (where W <W ′) of the corresponding portion of the through hole 23′C in the fixed scroll 23 ′.
Moreover, as shown in FIG. 6 (A), the through hole 23C constituting the discharge port formed in the spiral center portion that is the apex Z that is also the distal end portion of the wrap 23B of the fixed scroll 23 of the present embodiment. In the inner peripheral surface of the fixed scroll 23, the height H of the vertical wall 231 that rises vertically from the base surface 232, which is the surface portion connected to the base of the wrap 23B, of the mirror surface 230 of the end plate 23A of the fixed scroll 23 is increased. It has a formed configuration.
In particular, with respect to the through hole 23C of the present embodiment, as shown in FIGS. 5A and 6A, the wrap width t (see FIG. 5A) in the portion of the fixed scroll 23 excluding the lap 23B tip Z. The vertical wall 231 is provided so that the height H is about twice as high as that of (see (2)), that is, H = 2t.
On the other hand, as shown in FIG. 5 (B) and FIG. 6 (B), the fixed scroll 23 ′ of the specification 1 generally has a portion excluding the tip of the wrap 23′B of the fixed scroll 23 ′. The vertical wall 231 'is provided from the base surface 232' so that the height H 'is substantially the same as the width t' at H, that is, H'≈t '.
Accordingly, the through-hole 23C of the present embodiment has a vertical wall 231 formed higher than a normal general through-hole, that is, the through-hole 23′C in the fixed scroll 23 ′ of the specification 1, and therefore the wrap 23B. The end plate has a structure in which the thickness of the end plate 23A in the vicinity of the point Z is substantially increased, and the strength is greatly increased structurally.
Next, the relationship between the through hole 23C of the fixed scroll 23 and the recess 25D of the movable scroll 25 will be described with reference to FIG.
The through hole 23C of the present embodiment is smaller than the size of the recess 25D constituting the dummy port formed in the spiral center portion of the wrap 25B of the movable scroll 25, that is,
E1 <e1 and E2 <e2
It is formed to satisfy. Thus, the through hole 23C is not the same area as the depression 25D, but has a smaller area.
Further, the through-hole 23C of the fixed scroll 23 and the recess 25D of the movable scroll 25 are assembled in a relative positional relationship in which the phases are shifted 180 degrees from each other and reversed point-symmetrically. Here, according to elementary geometry, as is well known, “point symmetry” defines the relationship between figures that overlap each other when rotated 180 degrees around the center position of symmetry. In the embodiment, it is described as “point-symmetric” in consideration of the fact that the shapes are similar and the sizes are different so that they do not overlap exactly.
By forming the through hole 23C in such a shape, the communication between the compression chambers starts from the remaining region (λ; see FIG. 5) on the opposite side of the through hole 23C, so the discharge timing of the two pairs of compression chambers Are still the same. As a result, it is possible to effectively avoid the occurrence of an unnecessarily large load with respect to the bearing load. As a result, it is possible to prevent an adverse effect on noise, vibration, durability and the like from being generated.
Next, the operation of the scroll compressor 1 will be described.
When the drive motor 13 is driven, the rotor 13B rotates with respect to the stator 13A, and thereby the drive shaft 15 rotates. When the drive shaft 15 rotates, the movable scroll 25 of the scroll compression mechanism 11 keeps its posture with respect to the fixed scroll 23 and does not rotate but only revolves. As a result, the low-pressure refrigerant is sucked into the compression chamber 27 from the peripheral side of the compression chamber 27 through the suction pipe, and is compressed as the volume of the compression chamber 27 changes.
The compressed refrigerant becomes high pressure and is discharged from the compression chamber 27 through the discharge valve 22 to the discharge space 29, and through the vertical grooves (not shown) provided on the outer circumferences of the housing 21 and the fixed scroll 23. Flows out of the oil collector 24 on the high-pressure space 17 side below. The high-pressure refrigerant is discharged out of the casing 3 through a discharge pipe (not shown) provided in the casing body 5. The refrigerant discharged to the outside of the casing 3 circulates through a refrigerant circuit (not shown), is again sucked into the compressor 1 through the suction pipe, is compressed, and the circulation of the refrigerant is repeated.
Next, the flow of the lubricating oil will be described.
The lubricating oil stored in the inner bottom portion of the lower cap 9 in the casing 3 is scraped up by a pickup (not shown) provided at the lower end of the drive shaft 15 shown in FIG. 1, and this lubricating oil is supplied to the oil supply passage 15B of the drive shaft 15. Then, the oil is supplied to the oil chamber 52 in the high pressure state on the back of the movable scroll 25. Further, the lubricating oil opens from the oil chamber 52 shown in FIG. 4 to the lower surface 233 which is the front end surface of the lap 23B on the fixed scroll 23 side through the communication passage 51 and the communication hole 53 provided in the movable scroll 25. The oil groove 23 </ b> D (see FIGS. 2 and 4) is fed out using the differential pressure and supplied to the sliding portions of the scroll compression mechanism 11 and the compression chamber 27.
Further, for example, in FIG. 1, when the oil supplied to the compression chamber 27 moves to the center of both scrolls, which is a high-pressure compression chamber, the discharge valve 22 is caused to flow along with the flow of the refrigerant in the high-pressure state compressed here. It is discharged to the discharge space 29 through. Thus, the lubricating oil discharged into the discharge space 29 through the discharge valve 22 together with the high-pressure refrigerant passes through the vertical grooves (not shown) provided on the outer peripheries of the housing 21 and the fixed scroll 23. Flows out into the high-pressure space 17 below. The oil is stored in the inner bottom of the lower cap 9 corresponding to the lower space 91 through the inner wall of the casing body 5 and the gap of the drive motor 13. In this case, the high-pressure space 17 has a thin plate shape. Since the oil collector 24, the cup 26, and the like are installed, the oil can be recovered to the inner bottom portion of the lower cap 9 while preventing entry into the discharge pipe.
Next, when the five types of scroll compressors provided with various types of fixed scrolls including the fixed scroll 23 according to the present embodiment are operated, the closest state to the through hole near the tip of the wrap described above An experiment was conducted to investigate the maximum stress that acts on the part facing the surface. The effect of this embodiment is demonstrated referring [Table 1] which shows the result. Here, among the fixed scrolls shown in the specifications 1 to 6, the specification 1 is usually a general low output type, and the specification 2 is a general high output type. . The specification 5 shows the fixed scroll 23 used in the present embodiment.
Figure JPOXMLDOC01-appb-T000001
As can be seen from Table 1 above, the specification 5 corresponding to the fixed scroll of this embodiment has a scroll tooth height of Δh compared to the specification 1 (low output type) which is a general configuration. The discharge hole area is reduced by a factor of 0.9 and the vertical wall of the discharge hole is increased by a factor of 2.5. The knowledge that the force acting on the root of the tip Z where the maximum stress of the fixed scroll was generated can be reduced by 28% by adopting such a configuration. Therefore, according to the compressor 1 of this embodiment provided with the fixed scroll shown in the specification 5, it was confirmed that the strength of the end plate 23A in the vicinity of the root Z of the wrap 23B tip Z of the fixed scroll 23 was increased.
In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible in the range which does not deviate from the summary as described in a claim. For example, the fixed scroll of the present invention is not limited to the specification 5 in Table 1 above, and may have any of the specifications 3, 4 and 6.
 1  スクロール型圧縮機
 11  スクロール圧縮機構
 13  駆動モータ
 13A  ステータ
 13B  ロータ
 15  駆動軸
 15A  偏心軸部
 15B  給油路
 16  カウンタウェイト部
 17  高圧空間
 21  ハウジング
 21A  支持体部
 21B  ラジアル軸受部
 22  吐出弁
 23  固定スクロール
 23A  鏡板
 23B  ラップ
 23C  貫通孔(吐出ポート)
 23D  オイル溝
 230、250  鏡面
 231  垂直壁
 232  基底面
 24  オイルコレクタ
 25  可動スクロール
 25A  鏡板
 25C  ボス部
 25D  窪み(ダミーポート)
 27  圧縮室
 27A  低圧部
 29  吐出空間
 3  ケーシング
 5  ケーシング本体
 51  連通路
 51A  下孔
 51B  挿入孔
 51C  めねじ孔
 52  油室(密閉容器内の高圧部)
 53  連通孔
 55  流量制限部材(ピン部材)
 55A  第1ピン
 55B  第2ピン
 61  オルダムリング
 7  上キャップ
 9  下キャップ
 91  下部空間
 H  垂直壁の高さ
 L,ΔL  臨孔距離
 N  接点(基礎円と直線との交点である)
 P  インナーインボリュート面の開始点(インナー非インボリュート面の終点)
 Q  アウターインボリュート面の開始点(アウター非インボリュート面の終点)
 R  非インボリュート面の凹曲面と凸曲面とが接する点(双方の開始点)
 r  非インボリュート面の曲率半径
 S1  インナーインボリュート面
 S2  アウターインボリュート面
 S3  非インボリュート面
 S31  非インボリュート面での凹曲面(インナー非インボリュート面)
 S32  非インボリュート面での凸曲面(アウター非インボリュート面)
 T  固定スクロールのラップ先端部側の厚さ
 T  可動スクロールのラップ先端部側の厚さ
 t  固定スクロールのラップ先端部を除く部分でのラップ幅
 U  (固定スクロールのラップ先端部の付け根に臨む)最近接縁部
 V、V´  直線(基礎円との接線)
 Z  固定スクロールのラップ先端部(非インボリュート面の凸曲面での頂点)
 z  可動スクロールのラップ先端部(仕様1での非インボリュート面の凸曲面での頂点)
 α  非インボリュート面の形成領域
 β  基礎円
 ε  固定スクロールの非インボリュート面の凹曲面に臨む接近領域
DESCRIPTION OF SYMBOLS 1 Scroll type compressor 11 Scroll compression mechanism 13 Drive motor 13A Stator 13B Rotor 15 Drive shaft 15A Eccentric shaft part 15B Oil supply path 16 Counterweight part 17 High pressure space 21 Housing 21A Support part 21B Radial bearing part 22 Discharge valve 23 Fixed scroll 23A End plate 23B Wrap 23C Through hole (discharge port)
23D Oil groove 230, 250 Mirror surface 231 Vertical wall 232 Base surface 24 Oil collector 25 Movable scroll 25A End plate 25C Boss part 25D Dimple (dummy port)
27 Compression chamber 27A Low pressure part 29 Discharge space 3 Casing 5 Casing body 51 Communication path 51A Lower hole 51B Insertion hole 51C Female thread hole 52 Oil chamber (High pressure part in the sealed container)
53 Communication hole 55 Flow rate restricting member (pin member)
55A 1st pin 55B 2nd pin 61 Oldham ring 7 Upper cap 9 Lower cap 91 Lower space H Vertical wall height L, ΔL Near hole distance N Contact point (intersection of base circle and straight line)
P Start point of inner involute surface (end point of inner non-involute surface)
Q Starting point of outer involute surface (end point of outer non-involute surface)
R The point where the concave surface of the non-involute surface and the convex surface meet (the starting point of both)
r Curvature radius of non-involute surface S1 Inner involute surface S2 Outer involute surface S3 Non-involute surface S31 Concave surface on non-involute surface (inner non-involute surface)
S32 Convex curved surface on non-involute surface (outer non-involute surface)
T Thickness of the fixed scroll lap tip side T 0 Thickness of the movable scroll wrap tip side t Wrap width U of the portion other than the fixed scroll wrap tip portion U (facing the root of the fixed scroll wrap tip portion) Nearest edge V, V 'straight line (tangent to base circle)
Z Fixed scroll wrap tip (vertex of convex surface of non-involute surface)
z Moveable scroll wrap tip (vertex of convex surface of non-involute surface in specification 1)
α Formation region of non-involute surface β Fundamental circle ε Approach region facing fixed curved surface of non-involute surface of fixed scroll

Claims (6)

  1.  ケーシング内部に固定された固定スクロールと、この固定スクロールに噛合する可動スクロールとを備え、これら双方のラップの間に形成された空間を圧縮させるスクロール型圧縮機において、前記固定スクロールのラップの先端側は、前記可動スクロールのラップ先端側より厚さが厚く形成されていることを特徴とするスクロール型圧縮機。 A scroll type compressor that includes a fixed scroll fixed inside a casing and a movable scroll meshing with the fixed scroll, and compresses a space formed between the two wraps. Is a scroll compressor characterized in that it is formed thicker than the wrap tip side of the movable scroll.
  2.  前記固定スクロールのラップを構成するインナーインボリュート面の開始点とアウターインボリュート面の開始点との間に、凹曲面であるインナー非インボリュート面と凸曲面であるアウター非インボリュート面からなる非インボリュート面を形成するとともに、前記非インボリュート面は、前記凹曲面であるインナー非インボリュート面を曲率半径の小さな曲面形状に形成し、かつ、前記固定スクロールのラップ先端部である渦巻中心部分に形成した吐出ポートを構成する貫通孔は、前記凹曲面であるインナー非インボリュート面に臨む接近領域での開口形状が、凹曲面であるインナー非インボリュート面の曲率半径よりも小さな曲面となるように形成し、前記貫通孔の周縁のうち固定スクロールのラップ先端部の付け根に最接近状態で臨む最近接縁部と、固定スクロールのラップ先端部の付け根の部分との間の臨孔距離が長く確保されるように構成したことを特徴とする請求項1に記載のスクロール型圧縮機。 Between the starting point of the inner involute surface and the starting point of the outer involute surface constituting the fixed scroll lap, a non-involute surface comprising an inner non-involute surface that is a concave curved surface and an outer non-involute surface that is a convex curved surface is formed. In addition, the non-involute surface forms a discharge port formed in the inner non-involute surface, which is the concave curved surface, into a curved surface shape having a small radius of curvature, and at the spiral center portion, which is the wrap tip of the fixed scroll. The through hole is formed so that the opening shape in the approaching area facing the inner non-involute surface that is the concave curved surface is a curved surface that is smaller than the radius of curvature of the inner non-involute surface that is the concave curved surface. Closest to the base of the wrap tip of the fixed scroll No recent contact edge portion and the scroll-type compressor according to claim 1, 臨孔 distance between the root portion of the wrap tip of the fixed scroll is characterized by being configured so as to ensure a long.
  3.  固定スクロールのラップ先端部である渦巻中心部分に形成した、吐出ポートを構成する貫通孔の周縁近傍の鏡板において、前記貫通孔の周縁のうちラップ先端部の付け根に最接近状態で臨む最近接縁部から立ち上がった垂直壁の高さが高く形成されていることを特徴とする請求項1又は2に記載のスクロール型圧縮機。 In the end plate in the vicinity of the peripheral edge of the through hole that forms the discharge port, the closest edge that faces the base of the front end of the wrap in the peripheral edge of the through hole, formed at the center of the spiral that is the wrap distal end of the fixed scroll The scroll compressor according to claim 1 or 2, wherein the vertical wall rising from the portion is formed to have a high height.
  4.  前記貫通孔の垂直壁の高さは、固定スクロールの中圧室に臨む部分でのラップの厚さの凡そ2倍に形成されていることを特徴とする請求項3に記載のスクロール型圧縮機。 4. The scroll compressor according to claim 3, wherein the height of the vertical wall of the through hole is approximately twice the thickness of the wrap at the portion facing the intermediate pressure chamber of the fixed scroll. .
  5.  前記可動スクロールは、ラップ先端部である渦巻中心部分に、前記固定スクロールの貫通孔に少なくとも一部が常時重複する配置状態で、ダミーポートを構成する窪みを備えるとともに、前記窪みの大きさは、前記貫通孔の大きさより大きく形成され、かつ、前記固定スクロールの貫通孔と前記可動スクロールの窪みとは、互いに180度位相をずらした位置関係に形成されてあることを特徴とする請求項1乃至4のいずれか1項に記載のスクロール型圧縮機。 The movable scroll is provided with a recess that constitutes a dummy port in an arrangement state in which at least a part of the scroll scroll is at least partially overlapped with a through hole of the fixed scroll at a spiral central portion that is a wrap tip, and the size of the recess is, The through-hole of the fixed scroll and the recess of the movable scroll are formed in a positional relationship that is 180 degrees out of phase with each other. 5. The scroll compressor according to claim 4.
  6.  前記非インボリュート面は、前記インナーインボリュート面及びアウターインボリュート面の両開始点の位置を変えずに形成されていることを特徴とする請求項2乃至5のいずれか1項に記載のスクロール型圧縮機。 The scroll compressor according to any one of claims 2 to 5, wherein the non-involute surface is formed without changing the positions of both start points of the inner involute surface and the outer involute surface. .
PCT/JP2011/080591 2011-04-28 2011-12-27 Scroll compressor WO2012147239A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11864486.3A EP2703648B1 (en) 2011-04-28 2011-12-27 Scroll compressor
CN201180070452.1A CN103502646B (en) 2011-04-28 2011-12-27 Scrawl compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011101545A JP5879532B2 (en) 2011-04-28 2011-04-28 Scroll compressor
JP2011-101545 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147239A1 true WO2012147239A1 (en) 2012-11-01

Family

ID=47071775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080591 WO2012147239A1 (en) 2011-04-28 2011-12-27 Scroll compressor

Country Status (4)

Country Link
EP (1) EP2703648B1 (en)
JP (1) JP5879532B2 (en)
CN (1) CN103502646B (en)
WO (1) WO2012147239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114718863A (en) * 2022-04-19 2022-07-08 广东美的环境科技有限公司 Movable scroll, compression assembly, scroll compressor and air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318124B1 (en) * 2017-04-24 2021-10-27 엘지전자 주식회사 Scroll compressor
US10711782B2 (en) 2017-04-20 2020-07-14 Lg Electronics Inc. Scroll compressor with wrap contour modification
FR3070446B1 (en) 2017-08-29 2020-02-07 Danfoss Commercial Compressors A SPIRAL COMPRESSOR HAVING A CENTRAL MAIN OUTLET AND AN AUXILIARY OUTLET
CN110307153B (en) * 2018-03-27 2021-01-26 株式会社丰田自动织机 Scroll compressor
WO2020188738A1 (en) * 2019-03-19 2020-09-24 三菱電機株式会社 Scroll compressor
US12110887B2 (en) 2020-07-27 2024-10-08 Copeland Climate Technologies (Suzhou) Co. Ltd. Fixed scroll and scroll compressor
CN118855696A (en) * 2023-04-21 2024-10-29 丹佛斯(天津)有限公司 Scroll and scroll compressor having the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122167A (en) * 1996-10-24 1998-05-12 Mitsubishi Electric Corp Scroll compressor
JPH10169574A (en) * 1996-12-10 1998-06-23 Hitachi Ltd Scroll compressor
JP2000045969A (en) * 1998-08-03 2000-02-15 哲哉 ▲荒▼田 Scroll type fluid machine
JP2005273453A (en) * 2004-03-22 2005-10-06 Aisin Seiki Co Ltd Scroll compressor
JP2008050986A (en) 2006-08-24 2008-03-06 Sanyo Electric Co Ltd Hermetic scroll compressor
JP2010265756A (en) * 2009-05-12 2010-11-25 Panasonic Corp Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923096A (en) * 1982-07-30 1984-02-06 Toshiba Corp Scroll compressor
US7976296B2 (en) * 2008-12-03 2011-07-12 Emerson Climate Technologies, Inc. Scroll compressor having capacity modulation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122167A (en) * 1996-10-24 1998-05-12 Mitsubishi Electric Corp Scroll compressor
JPH10169574A (en) * 1996-12-10 1998-06-23 Hitachi Ltd Scroll compressor
JP2000045969A (en) * 1998-08-03 2000-02-15 哲哉 ▲荒▼田 Scroll type fluid machine
JP2005273453A (en) * 2004-03-22 2005-10-06 Aisin Seiki Co Ltd Scroll compressor
JP2008050986A (en) 2006-08-24 2008-03-06 Sanyo Electric Co Ltd Hermetic scroll compressor
JP2010265756A (en) * 2009-05-12 2010-11-25 Panasonic Corp Scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703648A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114718863A (en) * 2022-04-19 2022-07-08 广东美的环境科技有限公司 Movable scroll, compression assembly, scroll compressor and air conditioner

Also Published As

Publication number Publication date
CN103502646A (en) 2014-01-08
CN103502646B (en) 2016-04-13
EP2703648A4 (en) 2014-07-30
EP2703648B1 (en) 2016-07-06
EP2703648A1 (en) 2014-03-05
JP5879532B2 (en) 2016-03-08
JP2012233421A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5879532B2 (en) Scroll compressor
JP4310960B2 (en) Scroll type fluid machinery
JP5441982B2 (en) Rotary compressor
JP5888897B2 (en) Scroll member and scroll type fluid machine
JP5304868B2 (en) Scroll compressor
WO2020208803A1 (en) Scroll compressor
JP6615425B1 (en) Scroll compressor
JP4431160B2 (en) Fluid machinery
WO2020188738A1 (en) Scroll compressor
JP2008121481A (en) Scroll fluid machine
JP6906887B2 (en) Scroll fluid machine
JP2009068412A (en) Scroll compressor
WO2014108973A1 (en) Scroll compressor
JP2014152748A (en) Scroll compressor
JP6991111B2 (en) Scroll compressor
JP2008121490A (en) Rotary compressor
JP2008014288A (en) Scroll compressor
JP6701453B1 (en) Scroll compressor
JP3913072B2 (en) Scroll compressor
JP6008516B2 (en) Scroll compressor
JP2008248823A (en) Scroll fluid machine
JP3422744B2 (en) Scroll compressor
JP2006348933A (en) Rotary compressor
JP6464583B2 (en) Rotary compressor
JP2006070711A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011864486

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011864486

Country of ref document: EP