WO2012019009A1 - Corticosteroids for the treatment of joint pain - Google Patents
Corticosteroids for the treatment of joint pain Download PDFInfo
- Publication number
- WO2012019009A1 WO2012019009A1 PCT/US2011/046601 US2011046601W WO2012019009A1 WO 2012019009 A1 WO2012019009 A1 WO 2012019009A1 US 2011046601 W US2011046601 W US 2011046601W WO 2012019009 A1 WO2012019009 A1 WO 2012019009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corticosteroid
- microparticles
- formulation
- class
- population
- Prior art date
Links
- 239000003246 corticosteroid Substances 0.000 title claims abstract description 501
- 229960001334 corticosteroids Drugs 0.000 title description 76
- 238000011282 treatment Methods 0.000 title description 23
- 208000006820 Arthralgia Diseases 0.000 title description 6
- 239000011859 microparticle Substances 0.000 claims abstract description 645
- 239000000203 mixture Substances 0.000 claims abstract description 333
- 238000009472 formulation Methods 0.000 claims abstract description 310
- 239000012730 sustained-release form Substances 0.000 claims abstract description 99
- 238000013268 sustained release Methods 0.000 claims abstract description 92
- 208000002193 Pain Diseases 0.000 claims abstract description 47
- 230000036407 pain Effects 0.000 claims abstract description 47
- 201000008482 osteoarthritis Diseases 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 206010039073 rheumatoid arthritis Diseases 0.000 claims abstract description 18
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 claims description 280
- 229960002117 triamcinolone acetonide Drugs 0.000 claims description 229
- 229920001577 copolymer Polymers 0.000 claims description 141
- 230000004179 hypothalamic–pituitary–adrenal axis Effects 0.000 claims description 125
- 229920001223 polyethylene glycol Polymers 0.000 claims description 79
- 239000002202 Polyethylene glycol Substances 0.000 claims description 78
- 239000003405 delayed action preparation Substances 0.000 claims description 72
- 238000002360 preparation method Methods 0.000 claims description 72
- 238000002347 injection Methods 0.000 claims description 67
- 239000007924 injection Substances 0.000 claims description 67
- 239000011159 matrix material Substances 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 54
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 47
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 46
- 229960002537 betamethasone Drugs 0.000 claims description 42
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 claims description 42
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 40
- 238000013270 controlled release Methods 0.000 claims description 36
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 34
- 150000003839 salts Chemical class 0.000 claims description 32
- 230000002411 adverse Effects 0.000 claims description 30
- 206010061218 Inflammation Diseases 0.000 claims description 29
- 230000004054 inflammatory process Effects 0.000 claims description 29
- 229960005205 prednisolone Drugs 0.000 claims description 27
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 claims description 27
- 239000000243 solution Substances 0.000 claims description 26
- 229960000289 fluticasone propionate Drugs 0.000 claims description 25
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 21
- 239000004310 lactic acid Substances 0.000 claims description 17
- 235000014655 lactic acid Nutrition 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 13
- 229960002714 fluticasone Drugs 0.000 claims description 13
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 claims description 13
- 230000001154 acute effect Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 230000000451 tissue damage Effects 0.000 claims description 10
- 231100000827 tissue damage Toxicity 0.000 claims description 10
- 238000000935 solvent evaporation Methods 0.000 claims description 7
- 201000004595 synovitis Diseases 0.000 claims description 7
- 208000037976 chronic inflammation Diseases 0.000 claims description 6
- 208000037893 chronic inflammatory disorder Diseases 0.000 claims description 6
- 230000000750 progressive effect Effects 0.000 claims description 6
- 201000005569 Gout Diseases 0.000 claims description 5
- 206010018634 Gouty Arthritis Diseases 0.000 claims description 5
- 239000003125 aqueous solvent Substances 0.000 claims description 5
- 238000004945 emulsification Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 239000007764 o/w emulsion Substances 0.000 claims description 5
- 238000009987 spinning Methods 0.000 claims description 5
- 238000001694 spray drying Methods 0.000 claims description 5
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 abstract description 384
- 229960000890 hydrocortisone Drugs 0.000 abstract description 192
- 239000012729 immediate-release (IR) formulation Substances 0.000 abstract description 76
- 230000000694 effects Effects 0.000 abstract description 41
- 230000006378 damage Effects 0.000 abstract description 18
- 208000027866 inflammatory disease Diseases 0.000 abstract description 9
- 239000002552 dosage form Substances 0.000 abstract description 2
- 230000001629 suppression Effects 0.000 description 123
- 230000005764 inhibitory process Effects 0.000 description 94
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 75
- 229920000642 polymer Polymers 0.000 description 47
- 239000003814 drug Substances 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- 229940079593 drug Drugs 0.000 description 35
- 238000000338 in vitro Methods 0.000 description 34
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- -1 PLGA Substances 0.000 description 30
- 238000004128 high performance liquid chromatography Methods 0.000 description 29
- 230000001186 cumulative effect Effects 0.000 description 28
- 229920002988 biodegradable polymer Polymers 0.000 description 27
- 239000004621 biodegradable polymer Substances 0.000 description 27
- 235000002639 sodium chloride Nutrition 0.000 description 27
- 239000002245 particle Substances 0.000 description 25
- 230000035945 sensitivity Effects 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 20
- 230000002459 sustained effect Effects 0.000 description 19
- 230000001052 transient effect Effects 0.000 description 19
- 238000005259 measurement Methods 0.000 description 18
- 210000000845 cartilage Anatomy 0.000 description 17
- 230000009885 systemic effect Effects 0.000 description 17
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 16
- 239000003862 glucocorticoid Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- 239000004372 Polyvinyl alcohol Substances 0.000 description 14
- 229960003957 dexamethasone Drugs 0.000 description 14
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 14
- 229920002451 polyvinyl alcohol Polymers 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 210000003127 knee Anatomy 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 13
- 230000036470 plasma concentration Effects 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 241000700159 Rattus Species 0.000 description 12
- OMFXVFTZEKFJBZ-UHFFFAOYSA-N Corticosterone Natural products O=C1CCC2(C)C3C(O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 OMFXVFTZEKFJBZ-UHFFFAOYSA-N 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- 229920001213 Polysorbate 20 Polymers 0.000 description 11
- OMFXVFTZEKFJBZ-HJTSIMOOSA-N corticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OMFXVFTZEKFJBZ-HJTSIMOOSA-N 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 229960004275 glycolic acid Drugs 0.000 description 11
- 239000004005 microsphere Substances 0.000 description 11
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 11
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 11
- 230000002035 prolonged effect Effects 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 230000007420 reactivation Effects 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 210000004872 soft tissue Anatomy 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000002560 therapeutic procedure Methods 0.000 description 9
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 8
- 229920002674 hyaluronan Polymers 0.000 description 8
- 229960003160 hyaluronic acid Drugs 0.000 description 8
- 239000000017 hydrogel Substances 0.000 description 8
- 230000003902 lesion Effects 0.000 description 8
- 229920000747 poly(lactic acid) Polymers 0.000 description 8
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 8
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 206010003246 arthritis Diseases 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000002757 inflammatory effect Effects 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 230000001839 systemic circulation Effects 0.000 description 7
- 208000012659 Joint disease Diseases 0.000 description 6
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 6
- TZIZWYVVGLXXFV-FLRHRWPCSA-N Triamcinolone hexacetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)CC(C)(C)C)[C@@]1(C)C[C@@H]2O TZIZWYVVGLXXFV-FLRHRWPCSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 229920001610 polycaprolactone Polymers 0.000 description 6
- 239000004632 polycaprolactone Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 150000003431 steroids Chemical class 0.000 description 6
- 229960004221 triamcinolone hexacetonide Drugs 0.000 description 6
- 208000003947 Knee Osteoarthritis Diseases 0.000 description 5
- 229920002534 Polyethylene Glycol 1450 Polymers 0.000 description 5
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 238000012377 drug delivery Methods 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 238000003760 magnetic stirring Methods 0.000 description 5
- 229960004584 methylprednisolone Drugs 0.000 description 5
- 208000037821 progressive disease Diseases 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 5
- 229940037128 systemic glucocorticoids Drugs 0.000 description 5
- 206010007710 Cartilage injury Diseases 0.000 description 4
- LUKZNWIVRBCLON-GXOBDPJESA-N Ciclesonide Chemical compound C1([C@H]2O[C@@]3([C@H](O2)C[C@@H]2[C@@]3(C[C@H](O)[C@@H]3[C@@]4(C)C=CC(=O)C=C4CC[C@H]32)C)C(=O)COC(=O)C(C)C)CCCCC1 LUKZNWIVRBCLON-GXOBDPJESA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 201000011275 Epicondylitis Diseases 0.000 description 4
- 206010022562 Intermittent claudication Diseases 0.000 description 4
- 229920000954 Polyglycolide Polymers 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 208000028911 Temporomandibular Joint disease Diseases 0.000 description 4
- 206010043220 Temporomandibular joint syndrome Diseases 0.000 description 4
- 208000004760 Tenosynovitis Diseases 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 229960003728 ciclesonide Drugs 0.000 description 4
- 208000024980 claudication Diseases 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000005021 gait Effects 0.000 description 4
- 206010025005 lumbar spinal stenosis Diseases 0.000 description 4
- 229960001664 mometasone Drugs 0.000 description 4
- QLIIKPVHVRXHRI-CXSFZGCWSA-N mometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O QLIIKPVHVRXHRI-CXSFZGCWSA-N 0.000 description 4
- 230000001272 neurogenic effect Effects 0.000 description 4
- 229940068196 placebo Drugs 0.000 description 4
- 239000000902 placebo Substances 0.000 description 4
- 229920001308 poly(aminoacid) Polymers 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 4
- 208000005198 spinal stenosis Diseases 0.000 description 4
- 229960005294 triamcinolone Drugs 0.000 description 4
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 4
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 description 3
- 206010006811 Bursitis Diseases 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 229920006022 Poly(L-lactide-co-glycolide)-b-poly(ethylene glycol) Polymers 0.000 description 3
- 229920000436 Poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) Polymers 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 210000004404 adrenal cortex Anatomy 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000036592 analgesia Effects 0.000 description 3
- 230000001760 anti-analgesic effect Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 229960004648 betamethasone acetate Drugs 0.000 description 3
- AKUJBENLRBOFTD-QZIXMDIESA-N betamethasone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]1(C)C[C@@H]2O AKUJBENLRBOFTD-QZIXMDIESA-N 0.000 description 3
- CBGUOGMQLZIXBE-XGQKBEPLSA-N clobetasol propionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CBGUOGMQLZIXBE-XGQKBEPLSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 3
- 229960000258 corticotropin Drugs 0.000 description 3
- 208000031513 cyst Diseases 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 description 3
- 239000012737 fresh medium Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 229940014259 gelatin Drugs 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 239000002395 mineralocorticoid Substances 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 239000008177 pharmaceutical agent Substances 0.000 description 3
- 230000003285 pharmacodynamic effect Effects 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 229940037129 plain mineralocorticoids for systemic use Drugs 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 208000023924 subacute bursitis Diseases 0.000 description 3
- 210000001738 temporomandibular joint Anatomy 0.000 description 3
- BISFDZNIUZIKJD-XDANTLIUSA-N tixocortol pivalate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CSC(=O)C(C)(C)C)(O)[C@@]1(C)C[C@@H]2O BISFDZNIUZIKJD-XDANTLIUSA-N 0.000 description 3
- 238000000825 ultraviolet detection Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- QCBCPALLWXTPLW-SFHVURJKSA-N (2S)-2-(3,4-dihydroxyphenyl)-8,8-dimethyl-2,3,9,10-tetrahydropyrano[2,3-h]chromen-4-one Chemical compound C1([C@@H]2CC(=O)C=3C=CC4=C(C=3O2)CCC(O4)(C)C)=CC=C(O)C(O)=C1 QCBCPALLWXTPLW-SFHVURJKSA-N 0.000 description 2
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 2
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- ZOCUOMKMBMEYQV-GSLJADNHSA-N 9alpha-Fluoro-11beta,17alpha,21-trihydroxypregna-1,4-diene-3,20-dione 21-acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ZOCUOMKMBMEYQV-GSLJADNHSA-N 0.000 description 2
- 206010001367 Adrenal insufficiency Diseases 0.000 description 2
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 2
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- FBRAWBYQGRLCEK-AVVSTMBFSA-N Clobetasone butyrate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CCC)[C@@]1(C)CC2=O FBRAWBYQGRLCEK-AVVSTMBFSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 2
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- VPGRYOFKCNULNK-ACXQXYJUSA-N Deoxycorticosterone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)COC(=O)C)[C@@]1(C)CC2 VPGRYOFKCNULNK-ACXQXYJUSA-N 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- MUQNGPZZQDCDFT-JNQJZLCISA-N Halcinonide Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CCl)[C@@]1(C)C[C@@H]2O MUQNGPZZQDCDFT-JNQJZLCISA-N 0.000 description 2
- YCISZOVUHXIOFY-HKXOFBAYSA-N Halopredone acetate Chemical compound C1([C@H](F)C2)=CC(=O)C(Br)=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2CC[C@](OC(C)=O)(C(=O)COC(=O)C)[C@@]2(C)C[C@@H]1O YCISZOVUHXIOFY-HKXOFBAYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010062767 Hypophysitis Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- HUXCOHMTWUSXGY-GAPIFECDSA-N Meclorisone dibutyrate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CCC)(OC(=O)CCC)[C@@]1(C)C[C@@H]2Cl HUXCOHMTWUSXGY-GAPIFECDSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 201000009053 Neurodermatitis Diseases 0.000 description 2
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 2
- 241001111421 Pannus Species 0.000 description 2
- HYRKAAMZBDSJFJ-LFDBJOOHSA-N Paramethasone acetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]2(C)C[C@@H]1O HYRKAAMZBDSJFJ-LFDBJOOHSA-N 0.000 description 2
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- 208000004880 Polyuria Diseases 0.000 description 2
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 2
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 2
- 241000219061 Rheum Species 0.000 description 2
- 208000008765 Sciatica Diseases 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- FBRAWBYQGRLCEK-UHFFFAOYSA-N [17-(2-chloroacetyl)-9-fluoro-10,13,16-trimethyl-3,11-dioxo-7,8,12,14,15,16-hexahydro-6h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)C=CC2(C)C2(F)C1C1CC(C)C(C(=O)CCl)(OC(=O)CCC)C1(C)CC2=O FBRAWBYQGRLCEK-UHFFFAOYSA-N 0.000 description 2
- 229940022663 acetate Drugs 0.000 description 2
- 230000001919 adrenal effect Effects 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 238000012382 advanced drug delivery Methods 0.000 description 2
- DJHCCTTVDRAMEH-DUUJBDRPSA-N alclometasone dipropionate Chemical compound C([C@H]1Cl)C2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O DJHCCTTVDRAMEH-DUUJBDRPSA-N 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 229960003099 amcinonide Drugs 0.000 description 2
- ILKJAFIWWBXGDU-MOGDOJJUSA-N amcinonide Chemical compound O([C@@]1([C@H](O2)C[C@@H]3[C@@]1(C[C@H](O)[C@]1(F)[C@@]4(C)C=CC(=O)C=C4CC[C@H]13)C)C(=O)COC(=O)C)C12CCCC1 ILKJAFIWWBXGDU-MOGDOJJUSA-N 0.000 description 2
- 230000000202 analgesic effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000002365 anti-tubercular Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 210000001188 articular cartilage Anatomy 0.000 description 2
- 229950000210 beclometasone dipropionate Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229960001102 betamethasone dipropionate Drugs 0.000 description 2
- CIWBQSYVNNPZIQ-XYWKZLDCSA-N betamethasone dipropionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CIWBQSYVNNPZIQ-XYWKZLDCSA-N 0.000 description 2
- SNHRLVCMMWUAJD-SUYDQAKGSA-N betamethasone valerate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O SNHRLVCMMWUAJD-SUYDQAKGSA-N 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 229960004436 budesonide Drugs 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229960004703 clobetasol propionate Drugs 0.000 description 2
- 229960001146 clobetasone Drugs 0.000 description 2
- 229960005465 clobetasone butyrate Drugs 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- BMCQMVFGOVHVNG-TUFAYURCSA-N cortisol 17-butyrate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CO)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O BMCQMVFGOVHVNG-TUFAYURCSA-N 0.000 description 2
- 229960004544 cortisone Drugs 0.000 description 2
- 229960003662 desonide Drugs 0.000 description 2
- WBGKWQHBNHJJPZ-LECWWXJVSA-N desonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O WBGKWQHBNHJJPZ-LECWWXJVSA-N 0.000 description 2
- 229960002593 desoximetasone Drugs 0.000 description 2
- VWVSBHGCDBMOOT-IIEHVVJPSA-N desoximetasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@H](C(=O)CO)[C@@]1(C)C[C@@H]2O VWVSBHGCDBMOOT-IIEHVVJPSA-N 0.000 description 2
- BOBLHFUVNSFZPJ-JOYXJVLSSA-N diflorasone diacetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)COC(C)=O)(OC(C)=O)[C@@]2(C)C[C@@H]1O BOBLHFUVNSFZPJ-JOYXJVLSSA-N 0.000 description 2
- 230000035619 diuresis Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 229960000676 flunisolide Drugs 0.000 description 2
- 229960001347 fluocinolone acetonide Drugs 0.000 description 2
- 229960003973 fluocortolone Drugs 0.000 description 2
- GAKMQHDJQHZUTJ-ULHLPKEOSA-N fluocortolone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)CO)[C@@]2(C)C[C@@H]1O GAKMQHDJQHZUTJ-ULHLPKEOSA-N 0.000 description 2
- 229960002383 halcinonide Drugs 0.000 description 2
- 229960002475 halometasone Drugs 0.000 description 2
- GGXMRPUKBWXVHE-MIHLVHIWSA-N halometasone Chemical compound C1([C@@H](F)C2)=CC(=O)C(Cl)=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O GGXMRPUKBWXVHE-MIHLVHIWSA-N 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229960001524 hydrocortisone butyrate Drugs 0.000 description 2
- 210000003016 hypothalamus Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229960002037 methylprednisolone aceponate Drugs 0.000 description 2
- DALKLAYLIPSCQL-YPYQNWSCSA-N methylprednisolone aceponate Chemical compound C1([C@@H](C)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@](C(=O)COC(C)=O)(OC(=O)CC)[C@@]2(C)C[C@@H]1O DALKLAYLIPSCQL-YPYQNWSCSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 210000003635 pituitary gland Anatomy 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 2
- 229920001855 polyketal Polymers 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229960002794 prednicarbate Drugs 0.000 description 2
- FNPXMHRZILFCKX-KAJVQRHHSA-N prednicarbate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)CC)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O FNPXMHRZILFCKX-KAJVQRHHSA-N 0.000 description 2
- 201000001474 proteinuria Diseases 0.000 description 2
- MIXMJCQRHVAJIO-TZHJZOAOSA-N qk4dys664x Chemical compound O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O MIXMJCQRHVAJIO-TZHJZOAOSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 201000000306 sarcoidosis Diseases 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 229960003339 sodium phosphate Drugs 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229960003114 tixocortol pivalate Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- KQZSMOGWYFPKCH-UJPCIWJBSA-N (8s,9s,10r,11s,13s,14s,17r)-17-acetyl-11,17-dihydroxy-10,13-dimethyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthren-3-one Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)C[C@@H]2O KQZSMOGWYFPKCH-UJPCIWJBSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- QTQGHKVYLQBJLO-UHFFFAOYSA-N 4-methylbenzenesulfonate;(4-methyl-1-oxo-1-phenylmethoxypentan-2-yl)azanium Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1.CC(C)CC(N)C(=O)OCC1=CC=CC=C1 QTQGHKVYLQBJLO-UHFFFAOYSA-N 0.000 description 1
- 102100033051 40S ribosomal protein S19 Human genes 0.000 description 1
- UBOIMZIXNXGQOH-RTWVSBIPSA-N 58497-00-0 Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)CC)[C@@]2(C)C[C@@H]1O UBOIMZIXNXGQOH-RTWVSBIPSA-N 0.000 description 1
- TZBDXWBBMOEVPI-XBQQDWOSSA-N 58524-83-7 Chemical compound O=C([C@]12[C@@]3(C)C[C@H](O)[C@]4(F)[C@@]5(C)C=CC(=O)C=C5[C@@H](F)C[C@H]4[C@@H]3C[C@H]1OC(O2)(C)C)COC(=O)C1CC1 TZBDXWBBMOEVPI-XBQQDWOSSA-N 0.000 description 1
- MYYIMZRZXIQBGI-HVIRSNARSA-N 6alpha-Fluoroprednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3C[C@H](F)C2=C1 MYYIMZRZXIQBGI-HVIRSNARSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 208000005676 Adrenogenital syndrome Diseases 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 206010027654 Allergic conditions Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- ZMYGOSBRLPSJNB-SOMXGXJRSA-N Amelometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O ZMYGOSBRLPSJNB-SOMXGXJRSA-N 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 235000003911 Arachis Nutrition 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 206010004485 Berylliosis Diseases 0.000 description 1
- 208000033932 Blackfan-Diamond anemia Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010048962 Brain oedema Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 208000023355 Chronic beryllium disease Diseases 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000008448 Congenital adrenal hyperplasia Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- ITRJWOMZKQRYTA-RFZYENFJSA-N Cortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)CC2=O ITRJWOMZKQRYTA-RFZYENFJSA-N 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- DRSFVGQMPYTGJY-GNSLJVCWSA-N Deprodone propionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)CC)[C@@]1(C)C[C@@H]2O DRSFVGQMPYTGJY-GNSLJVCWSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012441 Dermatitis bullous Diseases 0.000 description 1
- 206010012455 Dermatitis exfoliative Diseases 0.000 description 1
- 201000004449 Diamond-Blackfan anemia Diseases 0.000 description 1
- WYQPLTPSGFELIB-JTQPXKBDSA-N Difluprednate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2CC[C@@](C(=O)COC(C)=O)(OC(=O)CCC)[C@@]2(C)C[C@@H]1O WYQPLTPSGFELIB-JTQPXKBDSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010013700 Drug hypersensitivity Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- WJOHZNCJWYWUJD-IUGZLZTKSA-N Fluocinonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)C)[C@@]2(C)C[C@@H]1O WJOHZNCJWYWUJD-IUGZLZTKSA-N 0.000 description 1
- PUWHHWCHAVXSIG-NCLPIGKXSA-N Fluocortin Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)C(O)=O)[C@@]2(C)C[C@@H]1O PUWHHWCHAVXSIG-NCLPIGKXSA-N 0.000 description 1
- POPFMWWJOGLOIF-XWCQMRHXSA-N Flurandrenolide Chemical compound C1([C@@H](F)C2)=CC(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O POPFMWWJOGLOIF-XWCQMRHXSA-N 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 201000005708 Granuloma Annulare Diseases 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 1
- FOGXJPFPZOHSQS-AYVLZSQQSA-N Hydrocortisone butyrate propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)CC)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O FOGXJPFPZOHSQS-AYVLZSQQSA-N 0.000 description 1
- DLVOSEUFIRPIRM-KAQKJVHQSA-N Hydrocortisone cypionate Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(CCC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCC1CCCC1 DLVOSEUFIRPIRM-KAQKJVHQSA-N 0.000 description 1
- 208000004454 Hyperalgesia Diseases 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010021074 Hypoplastic anaemia Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010025327 Lymphopenia Diseases 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- 206010027259 Meningitis tuberculous Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 206010027940 Mood altered Diseases 0.000 description 1
- 208000002472 Morton Neuroma Diseases 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 208000023178 Musculoskeletal disease Diseases 0.000 description 1
- 206010056969 Necrobiosis lipoidica diabeticorum Diseases 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 244000021150 Orbignya martiana Species 0.000 description 1
- 235000014643 Orbignya martiana Nutrition 0.000 description 1
- 241000906034 Orthops Species 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- HUMXXHTVHHLNRO-KAJVQRHHSA-N Prednisolone tebutate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)CC(C)(C)C)(O)[C@@]1(C)C[C@@H]2O HUMXXHTVHHLNRO-KAJVQRHHSA-N 0.000 description 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 1
- 208000003670 Pure Red-Cell Aplasia Diseases 0.000 description 1
- 206010059604 Radicular pain Diseases 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 206010039094 Rhinitis perennial Diseases 0.000 description 1
- 208000036284 Rhinitis seasonal Diseases 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 206010039807 Secondary adrenocortical insufficiency Diseases 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- DXEXNWDGDYUITL-FXSSSKFRSA-N Tipredane Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](SC)(SCC)[C@@]1(C)C[C@@H]2O DXEXNWDGDYUITL-FXSSSKFRSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000003441 Transfusion reaction Diseases 0.000 description 1
- XGMPVBXKDAHORN-RBWIMXSLSA-N Triamcinolone diacetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](OC(C)=O)[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O XGMPVBXKDAHORN-RBWIMXSLSA-N 0.000 description 1
- 206010044608 Trichiniasis Diseases 0.000 description 1
- 208000022971 Tuberculous meningitis Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- IYBYNRHXGXDDDS-VRRJBYJJSA-N [(1r,4as,4bs,10ar,10bs,11s,12as)-1-acetyl-11-hydroxy-10a,12a-dimethyl-8-oxo-2,3,4,4a,4b,5,6,10b,11,12-decahydrochrysen-1-yl] butanoate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CCC[C@@](C(C)=O)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O IYBYNRHXGXDDDS-VRRJBYJJSA-N 0.000 description 1
- CDKNUFNIFGPFSF-AYVLZSQQSA-N [(8s,9s,10r,11s,13s,14s,17r)-11-hydroxy-10,13-dimethyl-3-oxo-17-(2-propanoylsulfanylacetyl)-2,6,7,8,9,11,12,14,15,16-decahydro-1h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CSC(=O)CC)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O CDKNUFNIFGPFSF-AYVLZSQQSA-N 0.000 description 1
- HOAKOHHSHOCDLI-TUFAYURCSA-N [(8s,9s,10r,11s,13s,14s,17r)-11-hydroxy-10,13-dimethyl-3-oxo-17-(2-sulfanylacetyl)-2,6,7,8,9,11,12,14,15,16-decahydro-1h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CS)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O HOAKOHHSHOCDLI-TUFAYURCSA-N 0.000 description 1
- DPHFJXVKASDMBW-RQRKFSSASA-N [2-[(8s,9r,10s,11s,13s,14s,16r,17r)-9-fluoro-11,17-dihydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]-2-oxoethyl] acetate;hydrate Chemical compound O.C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]1(C)C[C@@H]2O DPHFJXVKASDMBW-RQRKFSSASA-N 0.000 description 1
- WBNNIURTBZHJTI-WDCKKOMHSA-N [2-[(8s,9s,10r,11s,13s,14s,17r)-11,17-dihydroxy-10,13-dimethyl-3-oxo-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl] dihydrogen phosphate;2-[(2-propan-2-ylphenoxy)methyl]-4,5-dihydro-1h-imidazole Chemical compound CC(C)C1=CC=CC=C1OCC1=NCCN1.O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COP(O)(O)=O)[C@@H]4[C@@H]3CCC2=C1 WBNNIURTBZHJTI-WDCKKOMHSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- MGVGMXLGOKTYKP-ZFOBEOMCSA-N acetic acid;(6s,8s,9s,10r,11s,13s,14s,17r)-11,17-dihydroxy-17-(2-hydroxyacetyl)-6,10,13-trimethyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthren-3-one Chemical compound CC(O)=O.C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 MGVGMXLGOKTYKP-ZFOBEOMCSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 201000004208 acquired thrombocytopenia Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009798 acute exacerbation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229960000552 alclometasone Drugs 0.000 description 1
- 229960004229 alclometasone dipropionate Drugs 0.000 description 1
- 208000002029 allergic contact dermatitis Diseases 0.000 description 1
- 201000010105 allergic rhinitis Diseases 0.000 description 1
- 206010053552 allodynia Diseases 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 229950008046 amelometasone Drugs 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 239000010480 babassu oil Substances 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- 229940038482 beclomethasone dipropionate monohydrate Drugs 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 208000006752 brain edema Diseases 0.000 description 1
- 229950001167 butixocort Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001925 catabolic effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006790 cellular biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 229950002649 ciprocinonide Drugs 0.000 description 1
- 229960002842 clobetasol Drugs 0.000 description 1
- 229960004299 clocortolone Drugs 0.000 description 1
- YMTMADLUXIRMGX-RFPWEZLHSA-N clocortolone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(Cl)[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)CO)[C@@]2(C)C[C@@H]1O YMTMADLUXIRMGX-RFPWEZLHSA-N 0.000 description 1
- 229960001357 clocortolone pivalate Drugs 0.000 description 1
- SXYZQZLHAIHKKY-GSTUPEFVSA-N clocortolone pivalate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(Cl)[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)COC(=O)C(C)(C)C)[C@@]2(C)C[C@@H]1O SXYZQZLHAIHKKY-GSTUPEFVSA-N 0.000 description 1
- 229960002219 cloprednol Drugs 0.000 description 1
- YTJIBEDMAQUYSZ-FDNPDPBUSA-N cloprednol Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3C=C(Cl)C2=C1 YTJIBEDMAQUYSZ-FDNPDPBUSA-N 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- FZCHYNWYXKICIO-FZNHGJLXSA-N cortisol 17-valerate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O FZCHYNWYXKICIO-FZNHGJLXSA-N 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- BGSOJVFOEQLVMH-VWUMJDOOSA-N cortisol phosphate Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COP(O)(O)=O)[C@@H]4[C@@H]3CCC2=C1 BGSOJVFOEQLVMH-VWUMJDOOSA-N 0.000 description 1
- 229960003290 cortisone acetate Drugs 0.000 description 1
- 229960003840 cortivazol Drugs 0.000 description 1
- RKHQGWMMUURILY-UHRZLXHJSA-N cortivazol Chemical compound C([C@H]1[C@@H]2C[C@H]([C@]([C@@]2(C)C[C@H](O)[C@@H]1[C@@]1(C)C2)(O)C(=O)COC(C)=O)C)=C(C)C1=CC1=C2C=NN1C1=CC=CC=C1 RKHQGWMMUURILY-UHRZLXHJSA-N 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000011262 co‐therapy Methods 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229960001145 deflazacort Drugs 0.000 description 1
- FBHSPRKOSMHSIF-GRMWVWQJSA-N deflazacort Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)=N[C@@]3(C(=O)COC(=O)C)[C@@]1(C)C[C@@H]2O FBHSPRKOSMHSIF-GRMWVWQJSA-N 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229950007161 deprodone Drugs 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 229960004486 desoxycorticosterone acetate Drugs 0.000 description 1
- 229960003654 desoxycortone Drugs 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960003657 dexamethasone acetate Drugs 0.000 description 1
- 229960002344 dexamethasone sodium phosphate Drugs 0.000 description 1
- PLCQGRYPOISRTQ-FCJDYXGNSA-L dexamethasone sodium phosphate Chemical compound [Na+].[Na+].C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP([O-])([O-])=O)(O)[C@@]1(C)C[C@@H]2O PLCQGRYPOISRTQ-FCJDYXGNSA-L 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229950009888 dichlorisone Drugs 0.000 description 1
- YNNURTVKPVJVEI-GSLJADNHSA-N dichlorisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2Cl YNNURTVKPVJVEI-GSLJADNHSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960004154 diflorasone Drugs 0.000 description 1
- 229960002124 diflorasone diacetate Drugs 0.000 description 1
- 229960004091 diflucortolone Drugs 0.000 description 1
- OGPWIDANBSLJPC-RFPWEZLHSA-N diflucortolone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)CO)[C@@]2(C)C[C@@H]1O OGPWIDANBSLJPC-RFPWEZLHSA-N 0.000 description 1
- 229960004875 difluprednate Drugs 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 229950009486 domoprednate Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003617 erythrocyte membrane Anatomy 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 208000004526 exfoliative dermatitis Diseases 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229960001440 fluclorolone Drugs 0.000 description 1
- VTWKPILBIUBMDS-OTJLYDAYSA-N fluclorolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(Cl)[C@@H](Cl)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3C[C@H](F)C2=C1 VTWKPILBIUBMDS-OTJLYDAYSA-N 0.000 description 1
- 229960003721 fluclorolone acetonide Drugs 0.000 description 1
- NJNWEGFJCGYWQT-VSXGLTOVSA-N fluclorolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(Cl)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1Cl NJNWEGFJCGYWQT-VSXGLTOVSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- SYWHXTATXSMDSB-GSLJADNHSA-N fludrocortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O SYWHXTATXSMDSB-GSLJADNHSA-N 0.000 description 1
- 229960004511 fludroxycortide Drugs 0.000 description 1
- 229960003469 flumetasone Drugs 0.000 description 1
- WXURHACBFYSXBI-GQKYHHCASA-N flumethasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O WXURHACBFYSXBI-GQKYHHCASA-N 0.000 description 1
- 229940042902 flumethasone pivalate Drugs 0.000 description 1
- JWRMHDSINXPDHB-OJAGFMMFSA-N flumethasone pivalate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)COC(=O)C(C)(C)C)(O)[C@@]2(C)C[C@@H]1O JWRMHDSINXPDHB-OJAGFMMFSA-N 0.000 description 1
- 229940043075 fluocinolone Drugs 0.000 description 1
- 229960000785 fluocinonide Drugs 0.000 description 1
- 229960005355 fluocortin Drugs 0.000 description 1
- 229960003336 fluorocortisol acetate Drugs 0.000 description 1
- 229960001048 fluorometholone Drugs 0.000 description 1
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 1
- 229960001629 fluorometholone acetate Drugs 0.000 description 1
- YRFXGQHBPBMFHW-SBTZIJSASA-N fluorometholone acetate Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 YRFXGQHBPBMFHW-SBTZIJSASA-N 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- 229960003590 fluperolone Drugs 0.000 description 1
- HHPZZKDXAFJLOH-QZIXMDIESA-N fluperolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)[C@@H](OC(C)=O)C)(O)[C@@]1(C)C[C@@H]2O HHPZZKDXAFJLOH-QZIXMDIESA-N 0.000 description 1
- 229960003238 fluprednidene Drugs 0.000 description 1
- YVHXHNGGPURVOS-SBTDHBFYSA-N fluprednidene Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](C(=C)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 YVHXHNGGPURVOS-SBTDHBFYSA-N 0.000 description 1
- 229960002650 fluprednidene acetate Drugs 0.000 description 1
- DEFOZIFYUBUHHU-IYQKUMFPSA-N fluprednidene acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC(=C)[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O DEFOZIFYUBUHHU-IYQKUMFPSA-N 0.000 description 1
- 229960000618 fluprednisolone Drugs 0.000 description 1
- 229960001469 fluticasone furoate Drugs 0.000 description 1
- XTULMSXFIHGYFS-VLSRWLAYSA-N fluticasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(F)[C@@]4(C)C=CC(=O)C=C4[C@@H](F)C[C@H]3[C@@H]2C[C@H]1C)C(=O)SCF)C(=O)C1=CC=CO1 XTULMSXFIHGYFS-VLSRWLAYSA-N 0.000 description 1
- 229960000671 formocortal Drugs 0.000 description 1
- QNXUUBBKHBYRFW-QWAPGEGQSA-N formocortal Chemical compound C1C(C=O)=C2C=C(OCCCl)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)C)[C@@]1(C)C[C@@H]2O QNXUUBBKHBYRFW-QWAPGEGQSA-N 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 244000144993 groups of animals Species 0.000 description 1
- 210000004349 growth plate Anatomy 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229950008940 halopredone Drugs 0.000 description 1
- 229950004611 halopredone acetate Drugs 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 230000008935 histological improvement Effects 0.000 description 1
- 229950000208 hydrocortamate Drugs 0.000 description 1
- FWFVLWGEFDIZMJ-FOMYWIRZSA-N hydrocortamate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)CN(CC)CC)(O)[C@@]1(C)C[C@@H]2O FWFVLWGEFDIZMJ-FOMYWIRZSA-N 0.000 description 1
- 229960002453 hydrocortisone aceponate Drugs 0.000 description 1
- MFBMYAOAMQLLPK-FZNHGJLXSA-N hydrocortisone aceponate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(C)=O)(OC(=O)CC)[C@@]1(C)C[C@@H]2O MFBMYAOAMQLLPK-FZNHGJLXSA-N 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 229960003331 hydrocortisone cypionate Drugs 0.000 description 1
- 229960002846 hydrocortisone probutate Drugs 0.000 description 1
- 229960004204 hydrocortisone sodium phosphate Drugs 0.000 description 1
- 229960001401 hydrocortisone sodium succinate Drugs 0.000 description 1
- 229960000631 hydrocortisone valerate Drugs 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 208000018022 idiopathic eosinophilic pneumonia Diseases 0.000 description 1
- 208000016036 idiopathic nephrotic syndrome Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229960002857 isoflupredone Drugs 0.000 description 1
- 229960003317 isoflupredone acetate Drugs 0.000 description 1
- 229950010574 itrocinonide Drugs 0.000 description 1
- GCELVROFGZYBHY-JUVXQCODSA-N itrocinonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3O[C@@H](CCC)O[C@@]3(C(=O)O[C@H](C)OC(=O)OCC)[C@@]2(C)C[C@@H]1O GCELVROFGZYBHY-JUVXQCODSA-N 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 201000011486 lichen planus Diseases 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 238000012153 long-term therapy Methods 0.000 description 1
- 229960003744 loteprednol etabonate Drugs 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 229950002555 mazipredone Drugs 0.000 description 1
- CZBOZZDZNVIXFC-VRRJBYJJSA-N mazipredone Chemical compound C1CN(C)CCN1CC(=O)[C@]1(O)[C@@]2(C)C[C@H](O)[C@@H]3[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2CC1 CZBOZZDZNVIXFC-VRRJBYJJSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229950001137 meclorisone Drugs 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 208000001223 meningeal tuberculosis Diseases 0.000 description 1
- 229960001810 meprednisone Drugs 0.000 description 1
- PIDANAQULIKBQS-RNUIGHNZSA-N meprednisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)CC2=O PIDANAQULIKBQS-RNUIGHNZSA-N 0.000 description 1
- 230000004066 metabolic change Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960001293 methylprednisolone acetate Drugs 0.000 description 1
- 229960000334 methylprednisolone sodium succinate Drugs 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229960002744 mometasone furoate Drugs 0.000 description 1
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 1
- 229960004123 mometasone furoate monohydrate Drugs 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 201000008043 necrobiosis lipoidica Diseases 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 229950006746 nivacortol Drugs 0.000 description 1
- ZQLOAGFNRKBEAJ-BDPSOKNUSA-N nivazol Chemical compound C([C@@H]1[C@@H]([C@]2(C3)C)CC[C@]4([C@H]1CC[C@@]4(O)C#C)C)CC2=CC1=C3C=NN1C1=CC=C(F)C=C1 ZQLOAGFNRKBEAJ-BDPSOKNUSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 229960002858 paramethasone Drugs 0.000 description 1
- 229960000865 paramethasone acetate Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 208000022719 perennial allergic rhinitis Diseases 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 229960001297 prednazoline Drugs 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- JDOZJEUDSLGTLU-VWUMJDOOSA-N prednisolone phosphate Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COP(O)(O)=O)[C@@H]4[C@@H]3CCC2=C1 JDOZJEUDSLGTLU-VWUMJDOOSA-N 0.000 description 1
- 229960002943 prednisolone sodium phosphate Drugs 0.000 description 1
- 229950010987 prednisolone steaglate Drugs 0.000 description 1
- RBJROVWIRLFZFC-PNLFXGMVSA-N prednisolone steaglate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)COC(=O)CCCCCCCCCCCCCCCCC)(O)[C@@]1(C)C[C@@H]2O RBJROVWIRLFZFC-PNLFXGMVSA-N 0.000 description 1
- 229960004259 prednisolone tebutate Drugs 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960001917 prednylidene Drugs 0.000 description 1
- WSVOMANDJDYYEY-CWNVBEKCSA-N prednylidene Chemical group O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](C(=C)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WSVOMANDJDYYEY-CWNVBEKCSA-N 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 229950000504 procinonide Drugs 0.000 description 1
- 230000022558 protein metabolic process Effects 0.000 description 1
- 230000029983 protein stabilization Effects 0.000 description 1
- 230000001823 pruritic effect Effects 0.000 description 1
- 208000008128 pulmonary tuberculosis Diseases 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000010499 rapseed oil Substances 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 201000007529 rheumatic myocarditis Diseases 0.000 description 1
- 229960001487 rimexolone Drugs 0.000 description 1
- QTTRZHGPGKRAFB-OOKHYKNYSA-N rimexolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CC)(C)[C@@]1(C)C[C@@H]2O QTTRZHGPGKRAFB-OOKHYKNYSA-N 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- IXTCZMJQGGONPY-XJAYAHQCSA-N rofleponide Chemical compound C1([C@@H](F)C2)=CC(=O)CC[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3O[C@@H](CCC)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O IXTCZMJQGGONPY-XJAYAHQCSA-N 0.000 description 1
- 229950004432 rofleponide Drugs 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 208000017022 seasonal allergic rhinitis Diseases 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 206010040400 serum sickness Diseases 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000002636 symptomatic treatment Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 206010043778 thyroiditis Diseases 0.000 description 1
- 229950008689 timobesone Drugs 0.000 description 1
- NWJQIUPQBDVVLW-QZIXMDIESA-N timobesone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)SC)(OC(C)=O)[C@@]1(C)C[C@@H]2O NWJQIUPQBDVVLW-QZIXMDIESA-N 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 229950001669 tipredane Drugs 0.000 description 1
- 229960004631 tixocortol Drugs 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- OGZHZYVCWDUIJV-VSXGLTOVSA-N tralonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(Cl)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CF)[C@@]2(C)C[C@@H]1Cl OGZHZYVCWDUIJV-VSXGLTOVSA-N 0.000 description 1
- 229950004108 tralonide Drugs 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- DZQIYNZZUKIZNS-RCFDOMGHSA-N triamcinolone acetonide 21-palmitate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)CCCCCCCCCCCCCCC)[C@@]1(C)C[C@@H]2O DZQIYNZZUKIZNS-RCFDOMGHSA-N 0.000 description 1
- GUYPYYARYIIWJZ-CYEPYHPTSA-N triamcinolone benetonide Chemical compound O=C([C@]12[C@H](OC(C)(C)O1)C[C@@H]1[C@@]2(C[C@H](O)[C@]2(F)[C@@]3(C)C=CC(=O)C=C3CC[C@H]21)C)COC(=O)C(C)CNC(=O)C1=CC=CC=C1 GUYPYYARYIIWJZ-CYEPYHPTSA-N 0.000 description 1
- 229950006782 triamcinolone benetonide Drugs 0.000 description 1
- 229960004320 triamcinolone diacetate Drugs 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 208000003982 trichinellosis Diseases 0.000 description 1
- 201000007588 trichinosis Diseases 0.000 description 1
- 229950008396 ulobetasol propionate Drugs 0.000 description 1
- BDSYKGHYMJNPAB-LICBFIPMSA-N ulobetasol propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]2(C)C[C@@H]1O BDSYKGHYMJNPAB-LICBFIPMSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/06—Antigout agents, e.g. antihyperuricemic or uricosuric agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/38—Drugs for disorders of the endocrine system of the suprarenal hormones
- A61P5/44—Glucocorticosteroids; Drugs increasing or potentiating the activity of glucocorticosteroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
Definitions
- This invention relates to the use of corticosteroids to treat pain, including pain caused by inflammatory diseases such as osteoarthritis or rheumatoid arthritis, and to slow, arrest or reverse structural damage to tissues caused by an inflammatory disease, for example damage to articular and/or peri-articular tissues caused by osteoarthritis or rheumatoid arthritis. More specifically, a corticosteroid is administered locally as a sustained release dosage form (with or without an immediate release component) that results in efficacy accompanied by clinically insignificant or no measurable effect on endogenous Cortisol production.
- a sustained release dosage form with or without an immediate release component
- Corticosteroids influence all tissues of the body and produce various cellular effects. These steroids regulate carbohydrate, lipid, protein biosynthesis and metabolism, and water and electrolyte balance. Corticosteroids influencing cellular biosynthesis or metabolism are referred to as glucocorticoids while those affecting water and electrolyte balance are mineralocorticoids. Both glucocorticoids and mineralocorticoids are released from the cortex of the adrenal gland.
- the administration of corticosteroids can have a number of unwanted side effects.
- the interdependent feedback mechanism between the hypothalamus, which is responsible for secretion of corticotrophin-releasing factor, the pituitary gland, which is responsible for secretion of adrenocorticotropic hormone, and the adrenal cortex, which secretes Cortisol, is termed the hypothalamic - pituitary-adrenal (HP A) axis.
- HPA axis may be suppressed by the administration of corticosteroids, leading to a variety of unwanted side effects.
- compositions and methods for the treatment of pain and inflammation using corticosteroids use one or more corticosteroids in a microparticle formulation.
- the corticosteroid microparticle formulations provided herein are effective at treating pain and/or inflammation with minimal long-term side effects of corticosteroid administration, including for example, prolonged suppression of the HPA axis.
- the corticosteroid microparticle formulations are suitable for administration, for example, local administration by injection into a site at or near the site of a patient's pain and/or inflammation.
- corticosteroid microparticle formulations provided herein are effective in slowing, arresting, reversing or otherwise inhibiting structural damage to tissues associated with progressive disease with minimal long-term side effects of corticosteroid administration, including for example, prolonged suppression of the HPA axis.
- the corticosteroid microparticle formulations are suitable for administration, for example, local administration by injection into a site at or near the site of structural tissue damage.
- prolonged suppression of the HPA axis refers to levels of Cortisol suppression greater than 35% by day 14 post-administration, for example post-injection.
- the corticosteroid microparticle formulations provided herein deliver the corticosteroid in a dose and in a controlled or sustained release manner such that the levels of Cortisol suppression are at or below 35% by day 14 post-administration, for example post-injection.
- the corticosteroid microparticle formulations provided herein deliver the corticosteroid in a dose and in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible and/or undetectable by 14 post-administration, for example post-injection.
- the corticosteroid microparticle formulations provided herein deliver the corticosteroid in a dose and in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible at any time post-injection.
- the corticosteroid microparticle formulations in these embodiments are effective in the absence of any significant HPA axis suppression.
- Administration of the corticosteroid microparticle formulations provided herein can result in an initial "burst" of HPA axis suppression, for example, within the first few days, within the first two days and/or within the first 24 hours post-injection, but by day 14 post-injection, suppression of the HPA axis is less than 35%.
- a sustained release form of corticosteroids is administered locally to treat pain and inflammation.
- Local administration of a corticosteroids is administered locally to treat pain and inflammation.
- corticosteroid microparticle formulation can occur, for example, by injection into the intraarticular space, peri-articular space, soft tissues, lesions, epidural space, perineural space, or the foramenal space at or near the site of a patient's pain.
- the formulation additionally contains an immediate release component.
- a sustained release form of corticosteroids is administered (e.g., by single injection or as sequential injections) into an intra-articular space for the treatment of pain, for example, due to osteoarthritis, rheumatoid arthritis, gouty arthritis, bursitis, tenosynovitis, epicondylitis, synovitis or other joint disorder.
- a sustained release form of corticosteroids is administered (e.g., by single injection or as sequential injections) into soft tissues or lesions for the treatment of inflammatory disorders, for example, the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses such as psoriasis.
- a sustained release form of corticosteroids is administered (e.g., by single injection or as sequential injections) into an epidural space, a perineural space, a foramenal space or other spinal space for the treatment of corticosteroid- responsive degenerative musculoskeletal disorders such as Neurogenic Claudication.
- a sustained release form of corticosteroids is administered (e.g., by single injection or as sequential injections) into an intra-articular space or into soft tissues to slow, arrest, reverse or otherwise inhibit structural damage to tissues associated with progressive disease such as, for example, the damage to cartilage associated with progression of osteoarthritis.
- a combination of an immediate release form and a sustained release form of corticosteroids is administered (e.g., by single injection or as sequential injections) into an intra-articular space for the treatment of pain, for example, due to osteoarthritis, rheumatoid arthritis or other joint disorder(s).
- a combination of an immediate release form and a sustained release form of corticosteroids is administered (e.g., by single injection or as sequential injections) into an intra-articular space or into soft tissues to slow, arrest, reverse or otherwise inhibit structural damage to tissues associated with progressive disease such as, for example, the damage to cartilage associated with progression of osteoarthritis.
- compositions and methods of embodiments of the invention can achieve immediate relief of the acute symptoms (e.g., pain and inflammation) of these diseases or conditions and additionally provide a sustained or long term therapy (e.g., slowing, arresting, reversing or otherwise inhibiting structural damage to tissues associated with progressive disease), while avoiding long term systemic side effects associated with corticosteroid administration, including HPA suppression.
- a sustained or long term therapy e.g., slowing, arresting, reversing or otherwise inhibiting structural damage to tissues associated with progressive disease
- a formulation wherein a microparticle matrix (such as PLGA, PLA, hydrogels, hyaluronic acid, etc.) incorporates a corticosteroid, and the corticosteroid microparticle formulation provides at least two weeks, preferably at least three weeks, including up to and beyond 30 days, or 60 days, or 90 days of a sustained, steady state release of the corticosteroid.
- a microparticle matrix such as PLGA, PLA, hydrogels, hyaluronic acid, etc.
- a formulation wherein a microparticle matrix (such as PLGA, PLA, hydrogels, hyaluronic acid, etc.) incorporates a corticosteroid, and the corticosteroid microparticle formulation provides at least two weeks, preferably at least three weeks, including up to and beyond 30 days, or 60 days, or 90 days of a sustained, steady state release of the corticosteroid at a rate that does not adversely suppress the HPA axis.
- a microparticle matrix such as PLGA, PLA, hydrogels, hyaluronic acid, etc.
- the corticosteroid microparticle formulation retains sustained efficacy even after the corticosteroid is no longer resident at the site of administration, for example, in the intraarticular space, and/or after the corticosteroid is no longer detected in the systemic circulation.
- the corticosteroid microparticle formulation retains sustained efficacy even after the corticosteroid microparticle formulation is no longer resident at the site of administration, for example, in the intra-articular space, and/or the corticosteroid microparticle formulation is no longer detected in the systemic circulation.
- corticosteroid microparticle formulation retains sustained efficacy even after the corticosteroid microparticle formulation ceases to release therapeutically effective amounts of corticosteroid.
- the corticosteroid released by the microparticle formulation retains efficacy for at least one week, at least two weeks, at least three weeks, at least four weeks, at least five weeks, at least six weeks, at least seven weeks, at least eight weeks, at least nine weeks, at least twelve weeks, or more than twelve-weeks post-administration.
- the corticosteroid released by the microparticle formulation retains efficacy for a time period that is at least twice as long, at least three times as long, or more than three times as long as the residency period for the corticosteroid and/or the corticosteroid microparticle formulation.
- the sustained, steady state release of corticosteroid will not adversely suppress the HPA axis.
- a controlled or sustained-release formulation wherein a microparticle matrix (such as PLGA, hydrogels, hyaluronic acid, etc.) incorporates a corticosteroid, and the formulation may or may not exhibit an initial rapid release, also referred to herein as an initial "burst" of the corticosteroid for a first length of time of between 0 and 14 days, for example, between the beginning of day 1 through the end of day 14, in addition to the sustained, steady state release of the corticosteroid for a second length of time of at least two weeks, preferably at least three weeks, including up to and beyond 30 days, or 60 days, or 90 days.
- an initial burst of corticosteroid release from the microparticle formulation can be seen, but this initial burst may or may not be seen in vivo.
- a controlled or sustained-release formulation wherein a microparticle matrix (such as PLGA, hydrogels, hyaluronic acid, etc.) incorporates a corticosteroid, and the formulation may or may not exhibit an initial rapid release, also referred to herein as an initial "burst" of the corticosteroid for a first length of time of between 0 and 14 days, e.g., between the beginning of day 1 through the end of day 14, in addition to the sustained, steady state release of the corticosteroid for a second length of time of at least two weeks, preferably at least three weeks, including up to and beyond 30 days, or 60 days, or 90 days where the sustained, steady state release of corticosteroid is released at a rate that does not suppress the HPA axis at a level greater than 50% at day 14 post-administration.
- a microparticle matrix such as PLGA, hydrogels, hyaluronic acid, etc.
- the sustained, steady state release of corticosteroid will not adversely suppress the HPA axis, for example, the level of HPA axis suppression at or less than 35% by day 14 post-administration. In some embodiments, the sustained, steady state release of corticosteroid does not significantly suppress the HPA axis, for example, the level of HPA axis suppression is negligible and/or undetectable by day 14 post-injection. In some embodiments, the sustained, steady state release of corticosteroid does not significantly suppress the HPA axis, for example, the level of HPA axis suppression is negligible at all times post-injection. In some embodiments, the length of sustained release is between 21 days and 90 days.
- the length of sustained release is between 21 days and 60 days. In some embodiments, the length of sustained release is between 14 days and 30 days. In some embodiments, the length of release of the initial "burst" component is between 0 and 10 days, for example between the beginning of day 1 through the end of day 10. In some embodiments, the length of release of the initial "burst” component is between 0 and 6 days, for example between the beginning of day 1 through the end of day 6. In some embodiments, the length of initial
- burst component is between 0 and 2 days, for example between the beginning of day 1 through the end of day 2. In some embodiments, the length of initial “burst” component is between 0 and 1 day, for example between the beginning of day 1 through the end of day 1.
- corticosteroid microparticle formulations can be used in combination with any of a variety of therapeutics, also referred to herein as "co-therapies.”
- the corticosteroid microparticle formulations can be used in combination with an immediate release corticosteroid solution or suspension, which provides high local exposures for between 1 day and 14 days following administration and which produce systemic exposures that may be associated with transient suppression of the HPA axis.
- an immediate release corticosteroid solution or suspension which provides high local exposures for between 1 day and 14 days following administration and which produce systemic exposures that may be associated with transient suppression of the HPA axis.
- 40 mg of immediate release triamcinolone acetonide co-administered with the corticosteroid microparticle formulation in the intra-articular space would be expected to produce high local concentrations lasting for about 12 days.
- the contribution of the immediate release component to the plasma concentration would be small, less than 0.1 ng/ml, and the contribution to the intra articular concentration of the immediate release component would also be small.
- the corticosteroid microparticle formulation would continue to release corticosteroid in the intra articular space at a rate that extends the duration of therapeutic effect and does not suppress the HPA axis.
- the same corticosteroid is used in both the immediate release and sustained release components.
- the immediate release component contains a corticosteroid that is different from that of the sustained release component.
- the sustained, steady state release of corticosteroid will not adversely suppress the HPA axis.
- the period of sustained release is between 21 days and 90 days. In some embodiments, the period of sustained release is between 21 days and 60 days. In some embodiments, the period of sustained release is between 14 days and 30 days.
- the high local exposure attributable to the immediate release component lasts for between 1 day and 14 days. In some embodiments, the high local exposure attributable to the immediate release component lasts for between 1 day and 10 days. In some embodiments, the high local exposure attributable to the immediate release component lasts between 1 days and 8 days. In some embodiments, the high local exposure attributable to the immediate release component lasts between 1 days and 6 days. In some embodiments, the high local exposure attributable to the immediate release component lasts for between 1 day and 4 days.
- the corticosteroid microparticle formulation may provide an initial release of corticosteroid at the site of administration, for example, in the intraarticular space and/or peri-articular space.
- the controlled or sustained release of the corticosteroid microparticle formulations continues to provide therapeutic (e.g., intra-articular and/or peri-articular) concentrations of corticosteroid to suppress inflammation, maintain analgesia, and/or slow, arrest or reverse structural damage to tissues for an additional period of therapy following administration (Fig. 1, top tracings).
- therapeutic e.g., intra-articular and/or peri-articular
- the invention includes therapies and formulations that may exhibit an initial release of corticosteroid followed by controlled or sustained release where the therapy comprises a period of therapy wherein the corticosteroid is released from the sustained release component and the plasma levels of the corticosteroid does not adversely suppress the HPA axis.
- the length of sustained release is between 21 days and 90 days. In some embodiments, the length of sustained release is between 21 days and 60 days. In some embodiments, the length of sustained release is between 14 days and 30 days. In some embodiments, the length of release of the immediate release form is In some embodiments, the length of release of the immediate release form is between 1 day and 14 days. In some embodiments, the length of release of the immediate release form is between 1 day and 10 days. In some embodiments, the length of release of the immediate release form is between 1 day and 8 days. In some embodiments, the length of release of the immediate release form is between 1 day and 6 days. In some embodiments, the length of release of the immediate release form is between 1 day and 4 days.
- the invention provides populations of microparticles including a Class B corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a lactic acid-glycolic acid copolymer matrix, wherein the Class B corticosteroid is between 22% to 28% of the microparticles.
- the invention also provides controlled or sustained release preparation of a Class B corticosteroid that include a lactic acid-glycolic acid copolymer microparticle containing the Class B corticosteroid, wherein the Class B corticosteroid is between 22% to 28% of the lactic acid-glycolic acid copolymer microparticle matrix.
- the invention also provides formulations that include (a) controlled- or sustained- release microparticles comprising a Class B corticosteroid and a lactic acid- glycolic acid copolymer matrix, wherein the Class B corticosteroid comprises between 22% to 28% of the microparticles and wherein the lactic acid-glycolic acid copolymer has one of more of the following characteristics: (i) a molecular weight in the range of about 40 to 70 kDa; (ii) an inherent viscosity in the range of 0.3 to 0.5 dL/g; (iii) a lactide:glycolide molar ratio of 80:20 to 60:40; and/or (iv) the lactic acid-glycolic acid copolymer is carboxylic acid endcapped.
- the copolymer is biodegradable.
- the lactic acid-glycolic acid copolymer is a poly(lactic-co-glycolic) acid copolymer (PLGA).
- the lactic acid- glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid from the range of about 80:20 to 60:40.
- the lactic acid-glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid of 75:25.
- the invention also provides populations of microparticles including a Class B corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a mixed molecular weight lactic acid-glycolic acid copolymer matrix, wherein the Class B corticosteroid is between 12% to 28% of the microparticles.
- the corticosteroid microparticle formulation includes a Class B corticosteroid and a microparticle made using 75:25 PLGA formulation with two PLGA polymers, one of low molecular weight and one of high molecular weight in a two to one ratio, respectively.
- the low molecular weight PLGA has a molecular weight of range of 15-35 kDa and an inherent viscosity range from 0.2 to 0.35 dL/g and the high molecular weight PLGA has a range of 70-95 kDa and an inherent viscosity range of 0.5 to 0.70 dL/g.
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10- 90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the invention also provides populations of microparticles including a Class B corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a lactic acid-glycolic acid copolymer matrix containing 10-20 % triblock (PEG-PLGA-PEG) having an inherent viscosity in the range from 0.6 to 0.8 dL/g, wherein the Class B corticosteroid is between 22% to 28% of the microparticles.
- a Class B corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a lactic acid-glycolic acid copolymer matrix containing 10-20 % triblock (PEG-PLGA-PEG) having an inherent viscosity in the range from 0.6 to 0.8 dL/g, wherein the Class B corticosteroid is between 22% to 28% of the microparticles.
- the corticosteroid microparticle formulation includes a Class B corticosteroid and a microparticle made using 75:25 PLGA formulation and containing 10-20 % triblock (PEG-PLGA-PEG) having an inherent viscosity in the range from 0.6 to 0.8 dL/g.
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- Class B corticosteroid microparticle formulations, preparations, and populations thereof when administered to a patient, exhibit reduced undesirable side effects in patient, for example, undesirable effects on a patient's cartilage or other structural tissue, as compared to the administration, for example administration into the intra-articular space of a joint, of an equivalent amount of the Class B corticosteroid absent any microparticle or other type of incorporation, admixture, or encapsulation.
- the Class B corticosteroid is triamcinolone acetonide or a commercially available chemical analogue or a pharmaceutically-acceptable salt thereof.
- the total dose of corticosteroid contained in the microparticles is in the range of 10-90 mg, where the Class B corticosteroid is between 12-28% of the
- microparticle for example, between 22-28% of the microparticle (i.e., when the microparticle
- corticosteroid is 28% of the microparticle
- the microparticle is in the range of 35.7-321.4 mgs, and so on for all values between 22-28% load dose
- when the corticosteroid is 25% of the microparticle the microparticle is in the range of 40-360 mgs
- the corticosteroid is 22% of the microparticle
- the microparticle is in the range of 45.5-409.1 mgs
- when the corticosteroid is 12% of the microparticle the microparticle is in the range of 83.3-750 mgs, and so on for all values between 12-28% load dose).
- the Class B corticosteroid contained in the microparticles is 12-28% of the microparticle, for example, between 22-28% of the microparticle and the total dose of corticosteroid is in a range selected from 10-80 mg, 10-70 mg, 10-60 mg, 10-50 mg, 10-40 mg, 10-30 mg, 10-20 mg, 20-90 mg, 20-80 mg, 20-70 mg, 20-60 mg, 20-50 mg, 20-40 mg, 20-30 mg, 30-90 mg, 30- 80 mg, 30-70 mg, 30-60 mg, 30-50 mg, 30-40 mg, 40-90 mg, 40-80 mg, 40-70 mg, 40- 60 mg, 40-50 mg, 50-90 mg, 50-80 mg, 50-70 mg, 50-60 mg, 60-90 mg, 60-80 mg, 60- 70 mg, 70-90 mg, 70-80 mg, and 80-90 mg.
- the Class B is 12-28% of the microparticle, for example, between 22-28% of the microparticle and the total dose of corticosteroid is in a range selected
- corticosteroid is released for between 14 days and 90 days.
- the microparticles have a mean diameter of between 10 ⁇ m to 100 ⁇ m, for example, the microparticles have a mean diameter in the range of 20- 100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the corticosteroid microparticle formulation includes triamcinolone acetonide (TCA) and a microparticle made using 75:25 PLGA formulation having an inherent viscosity in the range from 0.3 to 0.5 dL/g and/or a molecular weight in the range of 40-70 kDa, for example between 50-60 kDa.
- TCA triamcinolone acetonide
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the range of TCA load percentage is between 22-28%. In one embodiment, the load percentage of TCA in the microparticles in 25%.
- the microparticles in the TCA PLGA microparticle formulations can be formulated using PLGA polymers having a range of molecular weights from 40 to 70 kDa, most preferably from 50 to 60 kDa and range of inherent viscosities from 0.5 to 0.5 dL/g, most preferably from 0.38 to 0.42dL/g.
- the total dose of corticosteroid contained in the microparticles is in the range of 10-90 mg, where TCA is between 22-28% of the microparticle (i.e., when TCA is 25% of the microparticle, the microparticle is in the range of 40-360 mgs, when TCA is 22% of the microparticle, the microparticle is in the range of 45.5-409.1 mgs, when TCA is 28% of the microparticle, the microparticle is in the range of 35.7-321.4 mgs, and so on for all values between 22-28% load dose).
- total dose of corticosteroid contained in the microparticles is in the range of 10-90 mg, where TCA is between 22-28% of the microparticle (i.e., when TCA is 25% of the microparticle, the microparticle is in the range of 40-360 mgs, when TCA is 22% of the microparticle, the microparticle is in the range of 45.5-409.1 mgs, when TCA is 28% of the microparticle, the
- microparticles is in a range selected from 10-80 mg, 10-70 mg, 10-60 mg, 10-50 mg, 10- 40 mg, 10-30 mg, 10-20 mg, 20-90 mg, 20-80 mg, 20-70 mg, 20-60 mg, 20-50 mg, 20-40 mg, 20-30 mg, 30-90 mg, 30-80 mg, 30-70 mg, 30-60 mg, 30-50 mg, 30-40 mg, 40-90 mg, 40-80 mg, 40-70 mg, 40-60 mg, 40-50 mg, 50-90 mg, 50-80 mg, 50-70 mg, 50-60 mg, 60- 90 mg, 60-80 mg, 60-70 mg, 70-90 mg, 70-80 mg, and 80-90mg.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the corticosteroid microparticle formulation includes triamcinolone acetonide (TCA) and a microparticle made using 75:25 PLGA formulation and containing 10-20 % triblock (PEG- PLGA-PEG) having an inherent viscosity in the range from 0.6 to 0.8 dL/g.
- TCA triamcinolone acetonide
- PEG- PLGA-PEG 10-20 % triblock
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the corticosteroid microparticle formulation includes triamcinolone acetonide (TCA) and a microparticle made using 75:25 PLGA formulation with two PLGA polymers, one of low molecular weight and one of high molecular weight in a two to one ratio, respectively.
- TCA triamcinolone acetonide
- the low molecular weight PLGA has a molecular weight of range of 15-35 kDa and an inherent viscosity range from 0.2 to 0.35 dL/g and the high molecular weight PLGA has a range of 70-95 kDa and an inherent viscosity range of 0.5 to 0.70 dL/g.
- the microparticles have a mean diameter in the range of 10-100 ⁇ . In some embodiments, the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- TCA microparticle formulations, preparations, and populations thereof when administered to a patient, exhibit reduced undesirable side effects in patient, for example, undesirable effects on a patient's cartilage or other structural tissue, as compared to the administration, for example administration into the intra-articular space of a joint, of an equivalent amount of TCA absent any microparticle or other type of incorporation, admixture, or encapsulation.
- the corticosteroid microparticle formulation includes a
- Class A, C, or D corticosteroid and a microparticle made using 50:50 PLGA formulation.
- the Class A corticosteroid is prednisolone.
- the Class C corticosteroid is betamethasone.
- the Class A corticosteroid is prednisolone.
- the Class C corticosteroid is betamethasone.
- the Class C corticosteroid is betamethasone.
- Class D corticosteroid is fluticasone or fluticasone propionate.
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the range of corticosteroid load percentage is between 10-40%, for example, between 15%-30%.
- the range of corticosteroid load percentage is between 8-20%.
- microparticles in the Class A, C or D PLGA microparticle formulations can be formulated using PLGA polymers having a range of inherent viscosities from 0.35 to 0.5 dL/g and approximated molecular weights from 40 kDa to 70 kDa.
- Class A, C or D corticosteroid microparticle formulations, preparations, and populations thereof when administered to a patient, exhibit reduced undesirable side effects in patient, for example, undesirable effects on a patient's cartilage or other structural tissue, as compared to the administration, for example administration into the intra-articular space of a joint, of an equivalent amount of the Class A, C or D corticosteroid absent any microparticle or other type of incorporation, admixture, or encapsulation.
- the invention provides populations of microparticles including a Class A corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a lactic acid-glycolic acid copolymer matrix, wherein the Class A corticosteroid is between 15% to 30% of the microparticles.
- the invention also provides controlled or sustained release preparations of a Class A corticosteroid including a lactic acid-glycolic acid copolymer microparticle containing the Class A corticosteroid, wherein the Class A corticosteroid is between 10% to 40%, for example between 15% to 30% of the lactic acid-glycolic acid copolymer microparticle matrix.
- the invention provides formulations that include (a) controlled- or sustained- release microparticles including a Class A corticosteroid and a lactic acid-glycolic acid copolymer matrix, wherein the Class A corticosteroid is between 15% to 30% of the microparticles and wherein the lactic acid-glycolic acid copolymer has one of more of the following characteristics: (i) a molecular weight in the range of about 40 to 70 kDa; (ii) an inherent viscosity in the range of 0.35 to 0.5 dL/g; (iii) a lactide:glycolide molar ratio of 60:40 to 45:55; and/or (iv) the lactic acid-glycolic acid copolymer is carboxylic acid endcapped
- the copolymer is biodegradable.
- the lactic acid-glycolic acid copolymer is a poly(lactic-co-glycolic) acid copolymer
- the lactic acid-glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid from the range of about 60:40 to 45:55. In some embodiments, the lactic acid-glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid of 50:50.
- the Class A corticosteroid is prednisolone or a commercially available chemical analogue or a pharmaceutically-acceptable salt thereof.
- total dose of the Class A corticosteroid contained in the microparticles is in a range selected from 10-250 mg, where the Class A corticosteroid is between 10-40%, for example, between 15-30% of the microparticle (i.e., when the corticosteroid is 10% of the microparticle, the microparticle is in the range of 100-2500 mgs, when the corticosteroid is 15% of the microparticle, the microparticle is in the range of 66.7-1666.7 mgs, when the corticosteroid is 20% of the microparticle, the microparticle is in the range of 50-1250 mgs, when the corticosteroid is 25% of the microparticle, the microparticle is in the range of 40-
- the microparticle is in the range of 33.3-833.3 mgs, when the corticosteroid is 40% of the microparticle, the microparticle is in the range of 25-625 mgs and so on for all values between 10-40% load dose).
- the total dose of corticosteroid is in the range of
- 40-175 mg 40-150 mg, 40-120 mg, 40-100 mg, 40-75 mg, 50-250 mg, 50-225 mg, 50-
- Class A corticosteroid is released for between 14 days and 90 days.
- the microparticles have a mean diameter of between
- the microparticles have a mean diameter in the range of 20- 100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the corticosteroid microparticle formulation includes prednisolone and a microparticle made using 50:50 PLGA formulation having a molecular weight in the range of 40 kDa to 70 kDa.
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30- 90 ⁇ , or 10-90 ⁇ .
- prednisolone/50 50 PLGA microparticle formulations
- the range of prednisolone load percentage is between 10-40%, for example, between 15-30%.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the invention provides populations of microparticles including a Class C corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a lactic acid-glycolic acid copolymer matrix, wherein the Class C corticosteroid is between 10% to 40% of the microparticles, for example between 15% to 30% of the microparticles.
- the invention also provides controlled or sustained release preparations of a Class C corticosteroid including a lactic acid-glycolic acid copolymer microparticle containing the Class C corticosteroid, wherein the Class C corticosteroid is between 15% to 30% of the lactic acid-glycolic acid copolymer microparticle matrix.
- the invention provides formulations that include (a) controlled- or sustained- release microparticles having a Class C corticosteroid and a lactic acid-glycolic acid copolymer matrix, wherein the Class C corticosteroid is between 15% to 30% of the microparticles and wherein the lactic acid-glycolic acid copolymer has one of more of the following characteristics: (i) a molecular weight in the range of about 40 to 70 kDa; (ii) an inherent viscosity in the range of 0.35 to 0.5 dL/g; (iii) a lactide:glycolide molar ratio of 60:40 to 45:55; and/or (iv) the lactic acid-glycolic acid copolymer is carboxylic acid endcapped.
- the copolymer is biodegradable.
- the lactic acid-glycolic acid copolymer is a poly(lactic-co-glycolic) acid copolymer (PLGA).
- the lactic acid- glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid from the range of about 60:40 to 45:55.
- the lactic acid-glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid of 50:50.
- the Class C corticosteroid is betamethasone or a commercially available chemical analogue or a pharmaceutically-acceptable salt thereof.
- total dose of the Class C corticosteroid contained in the microparticles is in a range selected from 2-250 mg, where the Class C corticosteroid is between 10-40%, for example, between 15-30% of the microparticle (i.e., when the corticosteroid is 10% of the microparticle, the microparticle is in the range of 20-2500 mgs, when the corticosteroid is 15% of the microparticle, the microparticle is in the range of 13.3-1666.7 mgs, when the corticosteroid is 20% of the microparticle, the microparticle is in the range of 10-1250 mgs, when the corticosteroid is 25% of the microparticle, the microparticle is in the range of 8-
- the microparticle is in the range of 6.67-833.3 mgs, when the corticosteroid is 40% of the microparticle, the microparticle is in the range of 5-625 mgs and so on for all values between 10-40% load dose).
- the total dose of corticosteroid is in the range of
- the microparticles have a mean diameter of between 10 ⁇ m to 100 ⁇ m, for example, the microparticles have a mean diameter in the range of 20- 100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the corticosteroid microparticle formulation includes betamethasone and a microparticle made using 50:50 PLGA formulation having a molecular weight in the range of 40 kDa to
- the microparticles have a mean diameter in the range of 10-100 ⁇ . In some embodiments, the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30- 90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the range of prednisolone load percentage is between 10-40%, for example, between 15-30%.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the invention provides populations of microparticles including a Class D corticosteroid or a pharmaceutically acceptable salt thereof incorporated in, admixed, encapsulated or otherwise associated with a lactic acid-glycolic acid copolymer matrix, wherein the Class D corticosteroid is between 8% to 20% of the microparticles, for example, between 10% to 20% of the microparticles.
- the invention also provides controlled or sustained release preparation of a Class D corticosteroid including a lactic acid-glycolic acid copolymer microparticle containing the Class D corticosteroid, wherein the Class D corticosteroid is between 8% to 20%, for example, between 10% to 20% of the microparticles of the lactic acid-glycolic acid copolymer microparticle matrix.
- the invention provides formulations including (a) controlled- or sustained- release microparticles having a Class D corticosteroid and a lactic acid-glycolic acid copolymer matrix, wherein the Class D corticosteroid is between 8% to 20% of the microparticles, for example, between 10% to 20% of the microparticles, and wherein the lactic acid-glycolic acid copolymer has one of more of the following characteristics: (i) a molecular weight in the range of about 40 to 70 kDa; (ii) an inherent viscosity in the range of 0.35 to 0.5 dL/g; (iii) a lactide:glycolide molar ratio of 60:40 to 45:55; and/or (iv) the lactic acid-glycolic acid copolymer is carboxylic acid endcapped.
- the copolymer is biodegradable.
- the lactic acid-glycolic acid copolymer is a poly(lactic-co-glycolic) acid copolymer (PLGA).
- the lactic acid- glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid from the range of about 60:40 to 45:55.
- the lactic acid-glycolic acid copolymer has a molar ratio of lactic acid: glycolic acid of 50:50.
- the Class D corticosteroid is fluticasone propionate, fluticasone, or a commercially available chemical analogue or a pharmaceutically- acceptable salt thereof.
- total dose of the Class D corticosteroid contained in the microparticles is in a range selected from 1-250 mg, where the Class D corticosteroid is between 8-20% of the microparticle (i.e., when the corticosteroid is 8% of the microparticle, the microparticle is in the range of 12.5-3125 mgs, when the
- the corticosteroid is 10% of the microparticle, the microparticle is in the range of 10-2500 mgs, when the corticosteroid is 15% of the microparticle, the microparticle is in the range of 6.67-1666.7 mgs, when the corticosteroid is 20% of the microparticle, the microparticle is in the range of 5-1250 mgs, and so on for all values between 10-20% load dose).
- the total dose of corticosteroid is in the range of 1-225 mg, 1- 200 mg, 1-175 mg, 1-150 mg, 1-120 mg, 1-100 mg, 1-75 mg, 1-60 mg, 1-55 mg, 1-50 mg,
- the microparticles have a mean diameter of between 10 ⁇ m to 100 ⁇ m, for example, the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- the corticosteroid microparticle formulation includes fluticasone propionate or fluticasone, and a microparticle made using 50:50 PLGA formulation having a molecular weight in the range of 40 kDa to 70 kDa.
- the microparticles have a mean diameter in the range of 10-100 ⁇ .
- the microparticles have a mean diameter in the range of 20-100 ⁇ , 20-90 ⁇ , 30-100 ⁇ , 30-90 ⁇ , or 10-90 ⁇ . It is understood that these ranges refer to the mean diameter of all microparticles in a given population. The diameter of any given individual microparticle could be within a standard deviation above or below the mean diameter.
- the range of prednisolone load percentage is between 10-20%.
- the microparticles further comprise a polyethylene glycol (PEG) moiety, wherein the PEG moiety comprises between 25% to 0% weight percent of the microparticle.
- PEG polyethylene glycol
- the populations, preparations and/or formulations of the invention do not require the presence of PEG to exhibit the desired corticosteroid sustained release kinetics and bioavailability profile.
- corticosteroid microparticle formulations have been selected because the combination of class of corticosteroid, type of microparticle, molecular weight of polymers used to create the microparticles, lactide:glycolide molar ratio, and/or load percentage of the corticosteroid exhibit the desired release kinetics.
- embodiments also exhibit the desired release kinetics with minimal prolonged HPA axis suppression.
- the invention provides methods of treating pain or inflammation in a patient comprising administering to said patient a therapeutically effective amount of a population of microparticles selected from the following populations: (i) a population of microparticles comprising a Class B corticosteroid or a pharmaceutically acceptable salt thereof incorporated in a lactic acid-glycolic acid copolymer matrix, wherein the Class B corticosteroid comprises between 22% to 28% of the microparticles; (ii) a population of microparticles comprising a Class A corticosteroid or a pharmaceutically acceptable salt thereof incorporated in a lactic acid-glycolic acid copolymer matrix, wherein the Class A corticosteroid comprises between 15% to 30% of the microparticles; (iii) a population of microparticles comprising a Class C corticosteroid or a pharmaceutically acceptable salt thereof incorporated in a lactic acid-glycolic acid copolymer matrix, wherein the Class C corticosteroid comprises
- the population of microparticles releases the corticosteroid for at least 14 days at a rate that does not adversely suppress the hypothalamic -pituitary-adrenal axis (HPA axis). In some embodiments, the population of microparticles releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are at or below 35% by day 14 post-administration, for example post-administration. In some embodiments, the population of microparticles releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible and/or undetectable by 14 post-administration. In some embodiments, the population of microparticles releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible at any time post-administration.
- HPA axis hypothalamic -pituitary-adrenal axis
- the invention provides methods of treating pain or inflammation in a patient comprising administering to said patient a therapeutically effective amount of a controlled or sustained release preparation selected from the following preparations: (i) a controlled or sustained release preparation of a Class B corticosteroid comprising a lactic acid-glycolic acid copolymer microparticle containing the Class B corticosteroid, wherein the Class B corticosteroid comprises between 22% to 28% of the lactic acid-glycolic acid copolymer microparticle matrix; (ii) a controlled or sustained release preparation of a Class A corticosteroid comprising a lactic acid-glycolic acid copolymer microparticle containing the Class A corticosteroid, wherein the Class A corticosteroid comprises between 15% to 30% of the lactic acid-glycolic acid copolymer microparticle matrix; (iii) a controlled or sustained release preparation of a Class C corticosteroid comprising a lactic acid-glycolic acid
- the controlled or sustained release preparation releases the corticosteroid for at least 14 days at a rate that does not adversely suppress the hypothalamic-pituitary-adrenal axis (HPA axis).
- the controlled or sustained release preparation releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are at or below 35% by day 14 post-administration, for example post- administration.
- the controlled or sustained release preparation releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible and/or undetectable by 14 post-administration.
- the controlled or sustained release preparation releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible at any time post-administration.
- the invention provides methods of treating pain or inflammation in a patient comprising administering to said patient a therapeutically effective amount of a formulation selected from the following preparations: (i) a formulation comprising (a) controlled- or sustained- release microparticles comprising a Class B corticosteroid and a lactic acid- glycolic acid copolymer matrix, wherein the Class B corticosteroid comprises between 22% to 28% of the microparticles and wherein the lactic acid-glycolic acid copolymer has one of more of the following characteristics: (1) a molecular weight in the range of about 40 to 70 kDa; (2) an inherent viscosity in the range of 0.5 to 0.5 dL/g; or (3) a lactide:glycolide molar ratio of 80:20 to 60:40; (ii) a formulation comprising (a) controlled- or sustained- release microparticles comprising a Class A corticosteroid and a lactic acid-glycolic acid copolymer matrix
- the formulation releases the corticosteroid for at least 14 days at a rate that does not adversely suppress the hypothalamic -pituitary-adrenal axis (HPA axis). In some embodiments, the formulation releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are at or below 35% by day 14 post-administration, for example post-administration. In some embodiments, the formulation releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible and/or undetectable by 14 post-administration. In some embodiments, the formulation releases the corticosteroid in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible at any time post-administration.
- HPA axis hypothalamic -pituitary-adrenal axis
- the population of microparticles, the controlled or sustained release preparation or formulation is administered as one or more intra-articular injections.
- the patient has osteoarthritis, rheumatoid arthritis, acute gouty arthritis, and synovitis.
- the patient has acute bursitis, subacute bursitis, acute nonspecific tenosynovitis, or epicondylitis.
- a method of treating pain and/or inflammation in a joint of a patient includes administering intra-articularly (e.g., by one or more injections) to a patient with joint disease (e.g., osteoarthritis or rheumatoid arthritis) a formulation that contains one or more corticosteroids, such as those formulations described herein.
- a formulation that contains one or more corticosteroids such as those formulations described herein.
- Therapeutically effective amounts of the one or more corticosteroids are released for a period of time at a rate that does not suppress (e.g., adversely and/or measurably) the HP A axis.
- a method of treating pain and/or inflammation in a joint of a patient includes administering intra-articularly (e.g., by one or more injections) a therapeutically effective amount of one or more corticosteroids in a formulation to a patient with joint disease (e.g., osteoarthritis or rheumatoid arthritis).
- the formulation has a sustained release microparticle formulation that may or may not release detectable levels of corticosteroid for a length of time following administration and that releases a detectable amount of corticosteroid's) following administration, where the rate of corticosteroid release from the sustained release microparticle formulation does not adversely suppress the HPA axis.
- corticosteroid released from the sustained release microparticle formulation will not measurably suppress the HPA axis.
- the formulation comprises a population of biodegradable polymer microparticles that contain the corticosteroids.
- the corticosteroids are 2% to 75% (w/w) of the microparticles, preferably about 5% to 50% (w/w) of the microparticles, and more preferably 5% to 40% or 10% to 30% (w/w) of the microparticles.
- the microparticles have a mass mean diameter of between 10 ⁇ m to 100 ⁇ m.
- the microparticles are formed from a hydrogel, hyaluronic acid, PLA or
- the microparticles are formed from PLGA with a lactide to glycolide co-polymer ratio of about 45:55 to about 80:20.
- the corticosteroid is betamethasone, dexamethasone, triamcinolone acetonide, triamcinolone hexacetonide, prednisolone, methylprednisolone, budenoside, mometasone, ciclesonide, fluticasone, salts thereof, esters thereof or combinations thereof.
- a composition in yet another aspect, includes a population of biodegradable polymer microparticles that contain corticosteroid(s).
- the corticosteroid is betamethasone, dexamethasone, triamcinolone acetonide, triamcinolone hexacetonide, prednisolone, methylprednisolone, budenoside, mometasone, ciclesonide, fluticasone, salts thereof, esters thereof or combinations thereof.
- a therapeutically effective amount of corticosteroid ⁇ is released for a period of time at a rate that does not suppress the HPA axis.
- the corticosteroid(s) released will not adversely suppress the HPA axis.
- the corticosteroid(s) released will not measurably suppress the HPA axis.
- a composition in yet a further aspect, includes a population of biodegradable polymer microparticles that contain corticosteroid(s).
- the corticosteroid is betamethasone, dexamethasone, triamcinolone acetonide, triamcinolone hexacetonide, prednisolone, methylprednisolone, budenoside, mometasone, ciclesonide, fluticasone, salts thereof, esters thereof or combinations thereof.
- composition When the composition is administered intra-articularly (e.g., by one or more injections), therapeutically effective amounts of corticosteroid(s) are released following administration from a first component for a first length of time and from a sustained release component for a second length of time. Furthermore, the rate of corticosteroid(s) released from the sustained release component does not suppress the HPA axis. In some embodiments, the corticosteroid(s) released from the sustained release component during the second length of time will not adversely suppress the HPA axis. In some embodiments, the corticosteroid(s) released from the sustained release component during the second length of time will not measurably suppress the HPA axis.
- the first component comprises a corticosteroid containing solution or suspension. In some embodiments, the first component contains a corticosteroid that is different from that of the sustained release component. In other embodiments, the same corticosteroid is used in both the first and sustained release components.
- the corticosteroids are 2% to 75% (w/w) of the microparticles, preferably about 5% to 50% (w/w) of the microparticles, and more preferably 5% to 40% (w/w) of the microparticles.
- the microparticles have a mass mean diameter of between 10 ⁇ m to 100 ⁇ m.
- the microparticles are formed from a hydrogel, hyaluronic acid, PLA or PLGA.
- the microparticles are formed from PLGA with a lactide to glycolide co-polymer ratio of about 45:55 to about 80:20.
- the compositions further comprise a corticosteroid containing solution or suspension.
- the corticosteroid containing solution or suspension contains a corticosteroid that is different from that found in the microparticles.
- the invention also provides methods of slowing, arresting or reversing progressive structural tissue damage associated with chronic inflammatory disease in a patient comprising administering to said patient a therapeutically effective amount of a population of microparticles selected from the following populations: (i) a population of microparticles comprising a Class B corticosteroid or a pharmaceutically acceptable salt thereof incorporated in a lactic acid-glycolic acid copolymer matrix, wherein the Class B corticosteroid comprises between 22% to 28% of the microparticles; (ii) a population of microparticles comprising a Class A corticosteroid or a pharmaceutically acceptable salt thereof incorporated in a lactic acid-glycolic acid copolymer matrix, wherein the Class A corticosteroid comprises between 15% to 30% of the microparticles; (iii) a population of microparticles comprising a Class C corticosteroid or a pharmaceutically acceptable salt thereof incorporated in a lactic acid-glycolic acid
- the invention also provides methods of slowing, arresting or reversing progressive structural tissue damage associated with chronic inflammatory disease in a patient comprising administering to said patient a therapeutically effective amount of a controlled or sustained release preparation selected from the following preparations: (i) a controlled or sustained release preparation of a Class B corticosteroid comprising a lactic acid-glycolic acid copolymer microparticle containing the Class B corticosteroid, wherein the Class B corticosteroid comprises between 22% to 28% of the lactic acid-glycolic acid copolymer microparticle matrix; (ii) a controlled or sustained release preparation of a Class
- a corticosteroid comprising a lactic acid-glycolic acid copolymer microparticle containing the Class A corticosteroid, wherein the Class A corticosteroid comprises between 15% to
- a controlled or sustained release preparation of a Class C corticosteroid comprising a lactic acid-glycolic acid copolymer microparticle containing the Class C corticosteroid, wherein the Class C corticosteroid comprises between 15% to 30% of the lactic acid-glycolic acid copolymer microparticle matrix; and (iv) a controlled or sustained release preparation of a Class D corticosteroid comprising a lactic acid-glycolic acid copolymer microparticle containing the
- the controlled or sustained release preparation releases the corticosteroid for at least 14 days at a rate that does not adversely suppress the hypothalamic -pituitary-adrenal axis (HPA axis).
- HPA axis hypothalamic -pituitary-adrenal axis
- the invention also provides methods of slowing, arresting or reversing progressive structural tissue damage associated with chronic inflammatory disease in a patient comprising administering to said patient a therapeutically effective amount of a formulation selected from the following preparations: (i) a formulation comprising (a) controlled- or sustained- release microparticles comprising a Class B corticosteroid and a lactic acid-glycolic acid copolymer matrix, wherein the Class B corticosteroid comprises between 22% to 28% of the microparticles and wherein the lactic acid-glycolic acid copolymer has one of more of the following characteristics: (1) a molecular weight in the range of about 40 to 70 kDa; (2) an inherent viscosity in the range of 0.3 to 0.5 dL/g; or (3) a lactide:glycolide molar ratio of 80:20 to 60:40; (ii) a formulation comprising (a) controlled- or sustained- release microparticles comprising a Class A cortico
- the population of microparticles, the controlled or sustained release preparation or formulation is administered as one or more intra-articular injections.
- the patient has osteoarthritis, rheumatoid arthritis, acute gouty arthritis, and synovitis.
- the patient has acute bursitis, subacute bursitis, acute nonspecific tenosynovitis, or epicondylitis.
- the invention also provides methods to slow, arrest, reverse or otherwise inhibit progressive structural tissue damage associated with chronic inflammatory disease, for example, damage to cartilage associated with osteoarthritis.
- the method includes the administration to a patient, for example local administration, of a therapeutically effective amount of one or more corticosteroids in a formulation, wherein the formulation releases the corticosteroid(s) for at least 14 days at a rate that does not adversely suppress the hypothalamic -pituitary-adrenal axis (HPA axis).
- HPA axis hypothalamic -pituitary-adrenal axis
- the methods to assess the effect of corticosteroid formulations on disease progression include controlled clinical studies that assess clinical end points and /or employ imaging technologies such as, for example Magnetic Resonance Imaging (MRI), to determine effects on the structure in chronically inflamed tissues, for example the effects on cartilage volume and other articular and peri-articular structures in osteoarthritis and rheumatoid arthritis.
- imaging technologies such as, for example Magnetic Resonance Imaging (MRI), to determine effects on the structure in chronically inflamed tissues, for example the effects on cartilage volume and other articular and peri-articular structures in osteoarthritis and rheumatoid arthritis.
- MRI Magnetic Resonance Imaging
- corticosteroid microparticle formulations appear to exhibit little to no negative effects, e.g., structural tissue damage, and from preliminary data and studies described in the Examples below, these corticosteroid microparticle formulations appear to have a positive effect, e.g., slowing, arresting or reversing structural tissue damage.
- the invention also provides methods of treating pain and/or inflammation of a patient by administering to the patient a therapeutically effective amount of one or more corticosteroids in a formulation, wherein the formulation releases the corticosteroid(s) for at least 14 days at a rate that does not adversely suppress the hypothalamic -pituitary-adrenal axis (HP A axis).
- the invention also provides methods of manufacturing the corticosteroid microparticle formulations.
- the microparticle formulations provided herein can be manufactured using any of a variety of suitable methods.
- the microparticles are manufactured as described in the Examples provided below.
- the microparticles are manufactured as described in U.S. Patent No. 7,261,529 and U.S. Patent No. 7,758,778, the contents of each of which are hereby incorporated by reference in their entirety.
- the microparticles are manufactured using a solvent evaporation process wherein the Class B corticosteroid is dispersed in a lactic acid-glycolic acid copolymer organic solution and the mixture is treated to remove the solvent from the mixture, thereby producing microparticles.
- the solvent evaporation process utilizes a spray drying or fluid bed apparatus to remove the solvent and produce microparticles.
- the solvent evaporation process utilizes a spinning disk.
- the spinning disk is the spinning disk as described in U.S. Patent No. 7,261,529 and U.S. Patent No. 7,758,778.
- the microparticles are manufactured using a solid in oil in water emulsion process wherein TCA is dispersed in a lactic acid-glycolic acid copolymer organic solution and added to an aqueous solvent to produce microparticles.
- the microparticles are manufactured as described in the Examples provided below.
- the microparticles are manufactured as described in PCT Publication No. WO 95/13799, the contents of which are hereby incorporated by reference in their entirety.
- the microparticles are manufactured using a solid in oil in water emulsion process wherein the Class A corticosteroid, Class C corticosteroid and/or Class D corticosteroid is dispersed in a lactic acid-glycolic acid copolymer organic solution and added to an aqueous solvent to produce microparticles.
- Figure 1 is a graph depicting the intra-articular concentrations (top solid line) and the systemic concentrations (bottom solid line) of the glucocorticoid administered according to certain embodiments of the present invention following intra-articular injection.
- the systemic glucocorticoid concentration associated with clinically significant suppression of the HPA axis is shown as the bottom dotted line.
- the top dotted line represents the minimal intra-articular concentration required to maintain efficacy (defined as relief of pain and inflammation, or slowing, arrest, or reversal of structural damage to tissues caused by inflammatory diseases.
- Sustained release of the corticosteroid provides sufficient intra-articular concentrations to maintain efficacy in the longer term, and has transient, clinically insignificant effect on the HPA axis.
- Figure 2 is a graph depicting the change in sensitivity over time to suppression of endogenous Cortisol production (EC5 0 (ng/mL) vs. time) for triamcinolone acetonide 40 mg given by intra-articular administration.
- Figure 3 is a graph depicting the change in sensitivity over time to suppression of endogenous Cortisol production (EC5 0 (ng/mL) vs. time) for various corticosteroids administered as a single, intra-articular injection in the listed dose.
- Figure 4 is a graph depicting plasma levels of endogenous Cortisol over time, without (Column 1) adjustment for a change in the sensitivity of the HPA axis after intraarticular corticosteroids and with (Column 2) adjustment for a change in the sensitivity of the HPA axis after intra-articular corticosteroids.
- Figure 5 is a graph depicting the cumulative percent release of a nominal 25% (w/w) triamcinolone acetonide in PLGA 75:25 microparticles.
- Figure 6 is a graph depicting the calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 25% TCA PLGA 75:25 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 7 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 25% TCA PLGA 75:25
- microparticles The dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 8 is a graph depicting cumulative percent release of a second preparation of nominal 25% triamcinolone acetonide in PLGA 75:25 microparticles using an alternate preparation.
- Figure 9 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using a second preparation of nominal 25% TCA PLGA 75:25 microparticles made by an alternate preparation.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 10 is a graph depicting: calculated human dose that does not affect the
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 1 1 is a graph depicting cumulative percent release of nominal 25% triamcinolone acetonide in 5% PEG 1450/PLGA 75:25 microparticles.
- Figure 12 is a graph depicting cumulative percent release of nominal 25% triamcinolone acetonide in 10% PEG 3350/PLGA 75:25 microparticles.
- Figure 13 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 25% TCA 5% PEG 1450/PLGA 75:25 microparticles. The dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 14 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 25% TCA 10% PEG 3350/PLGA 75:25 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 15 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 25% TCA 5% PEG
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 16 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 25% TCA 10% PEG
- 3350/PLGA 75:25 microparticles The dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 17 is a graph depicting cumulative percent triamcinolone acetonide release of nominal 40%, 25% 20%, 15% and 10% TCA containing PLGA 75:25 microparticles.
- Figure 18 is a graph depicting cumulative percent release of nominal 25% TCA PLGA 75:25 (29 kDa) and PLGA 75:25 (54 kDa) containing microparticles.
- Figure 19 is a graph depicting cumulative percent release of triamcinolone acetonide in PLGA 50:50 microparticle formulations.
- Figure 20 is a graph depicting cumulative percent release of nominal 28.6% triamcinolone acetonide in PLGA 75:25 plus Triblock microparticle formulations.
- Figure 21 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 28.6% TCA 10% Triblock/PLGA 75:25 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 22 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 28.6% TCA 20% Triblock/PLGA 75:25 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 23 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 28.6% TCA 10%
- Triblock/PLGA 75:25 microparticles The dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 24 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 28.6% TCA 20%
- Triblock/PLGA 75:25 microparticles The dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 25 is a graph depicting cumulative percent release of nominal 16.7% triamcinolone acetonide in mixed molecular weight PLGA 75:25 microparticle
- Figure 26 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 16.7% TCA mixed molecular weight PLGA 75:25 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 27 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 16.7% TCA mixed molecular weight PLGA 75:25 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 28 is a graph depicting cumulative percent release of nominal 28.6% triamcinolone acetonide in various polymer microparticle formulations.
- Figure 29 is a graph depicting cumulative percent release of nominal 28.6% Prednisolone in PLGA 50:50 microparticle formulation.
- Figure 30 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 28.6% PRED PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 31 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 28.6% PRED PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 32 is a graph depicting cumulative percent release of nominal 28.6% Betamethasone PLGA 50:50 microparticle formulation.
- Figure 33 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 28.6% BETA PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 34 is a graph depicting calculated human dose that does not affect the HPA axis, less than 35% Cortisol suppression using nominal 28.6% BETA PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 35 is a graph depicting cumulative percent release of nominal 16.7% Fluticasone Propionate PLGA 50:50 microparticle formulation.
- Figure 36 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression using nominal 16.7% FLUT PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 37 is a graph depicting calculated human dose that does not affect the
- HPA axis less than 35% Cortisol suppression using nominal 16.7% FLUT PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figure 38 is a graph depicting cumulative percent release of various Fluticasone Propionate PLGA microparticle formulations.
- Figure 39 is a graph depicting cumulative percent release of nominal 28.6% DEX PLGA 50:50 microparticle formulation.
- Figure 40 is a graph depicting calculated human dose to achieve transient Cortisol suppression and within 14 days achieve less than 35% Cortisol suppression and does not affect the HPA axis, less than 35% Cortisol suppression using nominal 28.6% DEX PLGA 50:50 microparticles.
- the dotted lines represent, from top to bottom of the graph, 50% Cortisol inhibition dose, 40% Cortisol inhibition dose, 35% Cortisol inhibition dose and 5% Cortisol inhibition dose.
- Figures 41A-41D are a series of graphs depicting the mean concentration-time profiles of various doses of TCA IR and FX006 in rat plasma following single intraarticular doses.
- Concentrations for the first 72 hr are presented in Figures 41C and 41D on a larger time scale.
- Figure 42 is a graph depicting corticosteroid inhibition and recovery with TCA IR (immediate release) and FX006 (microparticle formulation) in rats.
- Figure 43 is a graph depicting the pharmacokinetic/pharmacodynamic (PK/PD) relationship of systemic TCA levels and corticosterone inhibition.
- FIGs 44A-44C are a series of graphs depicting the gait analysis scores, an indicator of pain, in rats injected with doses of either immediate release triamcinolone acetonide (TCA IR) or TCA microparticles (FX006) in a model of osteoarthritis.
- TCA IR immediate release triamcinolone acetonide
- FX006 at 0.28, 0.12 and 0.03 mg is expressed as TCA concentrations of the dosing formulation (4.67, 2 and 0.5 mg/ml).
- TCA concentrations of the dosing formulation (4.67 mg/ml).
- TCA IR at 0.03 mg is expressed as triamcinolone at 0.5 mg/ml.
- FX006 at 0.28, 0.12 and 0.03 mg is expressed as TCA concentrations of the dosing formulation (4.67, 2 and 0.5 mg/ml).
- TCA IR at 0.06 and 0.03 mg is expressed as triamcinolone at 1 and 0.5 mg/ml.
- Figure 45 is a graph depicting peak pain response following repeated reactivations of arthritis in the right knee. All treatments were administered as a single IA dose in the right knee on Day 0.
- Figure 46 is a graph depicting the time course of corticosterone recovery for various groups in the rat study in a model of osteoarthritis.
- Figures 47A-47B are a series of graphs depicting the plasma TCA concentration- time data for various groups in the rat study in a model of osteoarthritis. Only the groups that received injections of TCA microparticles (FX006 groups) are shown in Figure 47B on an expanded scale.
- Figure 48 is a graph depicting the end-of-study histopathology scores for various treatment groups in the rat study in a model of osteoarthritis.
- the invention provides compositions and methods for the treatment of pain and inflammation using corticosteroids.
- the compositions and methods provided herein use one or more corticosteroids in a microparticle formulation.
- the corticosteroid microparticle formulations provided herein are effective at treating pain and/or inflammation with minimal prolonged suppression of the HPA axis and/or other long term side effects of corticosteroid administration.
- the corticosteroid microparticle formulations provided herein are effective in slowing, arresting, reversing or otherwise inhibiting structural damage to tissues associated with progressive disease with minimal prolonged suppression of the HPA axis and/or other long term side effects of corticosteroid administration.
- corticosteroid microparticle formulations deliver the corticosteroid in a dose and in a sustained release manner such that the levels of Cortisol suppression are at or below 35% by day 14 post-injection.
- the corticosteroid in some embodiments, the corticosteroid
- microparticle formulations provided herein deliver the corticosteroid in a dose and in a controlled or sustained release manner such that the levels of Cortisol suppression are negligible and/or undetectable by 14 post-injection.
- the corticosteroid microparticle formulations in these embodiments are effective in the absence of any significant HPA axis suppression.
- Administration of the corticosteroid microparticle formulations provided herein can result in an initial "burst" of HPA axis suppression, for example, within the first few days, within the first two days and/or within the first 24 hours post-injection, but by day 14 post-injection, suppression of the HPA axis is less than 35%.
- corticosteroids are known to be useful for the symptomatic treatment of inflammation and pain.
- synovitis may be associated with the structural damage, for example, the deterioration of cartilage and other peri-articular associated with the progression of osteoarthritis and rheumatoid arthritis. (See e.g., Hill CL, et al.
- the administration of corticosteroids can have a number of unwanted side effects.
- the HPA axis the interdependent feedback mechanism between the hypothalamus, the pituitary gland and the adrenal cortex, may be suppressed by the administration of corticosteroids, leading to a variety of unwanted side effects.
- the extent of HPA axis suppression, and related inhibition of endogenous Cortisol production, has been attributed to the potency of the corticosteroid, the dose, systemic concentration, protein binding, rate of elimination (Meibohm et al. "Mechanism-based
- corticosteroid a change in sensitivity of the HPA axis (Derendorf et al. "Clinical PK/PD modelling as a tool in drug development of corticosteroids.” Int J Clin Pharmacol Ther.
- An amount of a corticosteroid that does not "suppress the hypothalamic - pituitary-adrenal axis (HPA axis)" refers to the amount of the sustained release
- corticosteroid delivered locally to relieve pain due to inflammation, which provides a systemic concentration that will not have a clinically significant effect or "adverse effect" on the HPA axis. Suppression of the HPA axis is generally manifested by a reduction in endogenous glucocorticoid production. It is useful to consider both basal and augmented production of endogenous glucocorticoids. Under ordinary, “unstressed” conditions, glucocorticoid production occurs at a normal, basal level. There is some natural variation of production during the course of the 24-hour day. Under extraordinary, “stressed” conditions associated with, e.g., infection or trauma and the like, augmented endogenous production of glucocorticoids occurs.
- Endogenous Cortisol production may be determined by measuring glucocorticoid concentrations in plasma, saliva, urine or by any other means known in the art. It is known that systemic concentrations of corticosteroids can suppress the HPA axis. For example, on day 3 after an intra-articular injection of 20 mg
- administration of the formulation may result in a clinically acceptable HPA suppression, particularly during the initial release period of the therapy. In some embodiments of the present invention, administration of the formulation will not result in any significant level of HPA
- the adverse events associated with exogenous corticosteroid administration e.g., hyperglycemia, hypertension, altered mood, etc. will generally not be observed.
- the number of clinical adverse events during this period will not substantially exceed the number achieved by an immediate release formulation alone or by KENALOGTM or its bioequivalent and will, preferably, be fewer than during the prior, initial release period of the therapy, if any corticosteroid release occurs.
- the formulation can be considered as avoiding clinically significant (or adverse) suppression of the HPA axis where the endogenous Cortisol level is substantially the same in the steady state between a patient population receiving a therapeutically beneficial amount of an immediate release formulation and those receiving a therapeutically beneficial amount of a sustained release formulation.
- Such a formulation would be deemed to have no clinically significant effect on the HPA axis.
- a small but measurable reduction in steady-state glucocorticoid production can result from the formulation during the sustained release period of the therapy with adequate preservation of the augmented, stress response needed during infection or trauma can be deemed a clinically insignificant suppression of the HPA axis.
- Endogenous glucocorticoid production may be assessed by administering various doses of adrenocorticotropin hormone or by other tests known to those skilled in the art.
- Embodiments of the current invention provide for controlling the release of corticosteroid, as may be desired, to achieve either no measurable effect on endogenous glucocorticoid production or a target, or a measurable effect that is, however, without adverse clinical consequence.
- intraarticular doses of corticosteroids that suppress Cortisol production by 20-35%, and sometimes more provide very useful sustained anti-inflammatory and analgesic activity.
- Patient refers to a human diagnosed with a disease or condition that can be treated in accordance to the inventions described herein. In some embodiments it is contemplated that the formulations described herein may also be used in horses.
- Delivery refers to any means used to place the drug into a patient. Such means may include without limitation, placing matrices into a patient that release the drug into a target area.
- matrices may be delivered by a wide variety of methods, e.g., injection by a syringe, placement into a drill site, catheter or canula assembly, or forceful injection by a gun type apparatus or by placement into a surgical site in a patient during surgery.
- treatment and “treating” a patient refer to reducing, alleviating, stopping, blocking, or preventing the symptoms of pain and/or inflammation in a patient.
- treatment includes partial alleviation of symptoms as well as complete alleviation of the symptoms for a time period. The time period can be hours, days, months, or even years.
- an “effective” amount or a “therapeutically effective amount” of a drug or pharmacologically active agent is meant a nontoxic but sufficient amount of the drug or agent to provide the desired effect, e.g., analgesia.
- An appropriate "effective" amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
- Site of a patient's pain refers to any area within a body causing pain, e.g., a knee joint with osteoarthritis, nerve root causing sciatic pain, nerve fibers growing into annular tears in discs causing back pain, temporomandibular joint (TMJ) pain, for example TMJ pain associated with temporomandibular joint disorder (TMD) or pain radiating from epidural or perineural spaces.
- TMJ temporomandibular joint
- TMD temporomandibular joint disorder
- the pain perceived by the patient may result from inflammatory responses, mechanical stimuli, chemical stimuli, thermal stimuli, as well as allodynia.
- the site of a patient's pain can comprise one or multiple sites in the spine, such as between the cervical, thoracic, or lumbar vertebrae, or can comprise one or multiple sites located within the immediate area of inflamed or injured joints such as the shoulder, hip, or other joints.
- a “biocompatible” material refers to a material that is not toxic to the human body, it is not carcinogenic and it should induce limited or no inflammation in body tissues.
- a “biodegradable” material refers to a material that is degraded by bodily processes (e.g., enzymatic) to products readily disposable by the body or absorbed into body tissue. The biodegraded products should also be biocompatible with the body.
- such polymers may be used to fabricate, without limitation: microparticles, micro-spheres, matrices, microparticle matrices, microsphere matrices, capsules, hydrogels, rods, wafers, pills, liposomes, fibers, pellets, or other appropriate pharmaceutical delivery compositions that a physician can administer into the joint.
- the biodegradable polymers degrade into non-toxic residues that the body easily removes or break down or dissolve slowly and are cleared from the body intact.
- the polymers may be cured ex-vivo forming a solid matrix that incorporates the drug for controlled release to an inflammatory region.
- Suitable biodegradable polymers may include, without limitation natural or synthetic biocompatible biodegradable material.
- Natural polymers include, but are not limited to, proteins such as albumin, collagen, gelatin synthetic poly(aminoacids), and prolamines; glycosaminoglycans, such as hyaluronic acid and heparin; polysaccharides, such as alginates, chitosan, starch, and dextrans; and other naturally occurring or chemically modified biodegradable polymers.
- biocompatible biodegradable materials include, but are not limited to, poly(lactide-co- glycolide) (PLGA), polylactide (PLA), polyglycolide (PG), polyhydroxybutyric acid, poly(trimethylene carbonate), polycaprolactone (PCL), polyvalerolactone, poly(alpha- hydroxy acids), poly(lactones), poly(amino-acids), poly(anhydrides), polyketals poly(arylates), poly(orthoesters), polyurethanes, polythioesters, poly(orthocarbonates), poly(phosphoesters), poly(ester-co-amide), poly(lactide-co-urethane, polyethylene glycol (PEG), polyvinyl alcohol (PVA), PVA-g-PLGA, PEGT-PBT copolymer (polyactive), methacrylates, poly(N-isopropylacrylamide), PEO-PPO-PEO (pluronics), PEO-PPO-PAA copoly
- the biocompatible biodegradable material can include a combination of biocompatible biodegradable materials.
- the biocompatible biodegradable material can be a triblock, or other multi-block, formation where a combination of biocompatible biodegradable polymers are joined together.
- the triblock can be PLGA-PEG-PLGA.
- a corticosteroid microparticle formulation can occur, for example, by injection into the intra-articular space, peri-articular space, soft tissues, lesions, epidural space, perineural space, or the foramenal space at or near the site of a patient's pain and/or structural tissue damage.
- Local injection of the formulations described herein into articular or periarticular spaces may be useful in the treatment of, for example, juvenile rheumatoid arthritis, sciatica and other forms of radicular pain (e.g., arm, neck, lumbar, thorax), psoriatic arthritis, acute gouty arthritis, Morton's neuroma, acute and subacute bursitis, acute and subacute nonspecific tenosynovitis and epicondylitis, acute rheumatic carditis and ankylosing spondylitis.
- radicular pain e.g., arm, neck, lumbar, thorax
- psoriatic arthritis e.g., acute gouty arthritis
- Morton's neuroma e.g., acute and subacute bursitis, acute and subacute nonspecific tenosynovitis and epicondylitis
- Injection of the microparticles described herein into soft tissues or lesions may be useful in the treatment of, for example, alopecia areata, discoid lupus, erythematosus; keloids, localized hypertrophic, infiltrated inflammatory lesions of granuloma annulare, lichen planus, lichen simplex chronicus (neurodermatitis), psoriasis and psoriatic plaques; necrobiosis lipoidica diabeticorum, and psoriatic arthritis.
- Injection of the microparticles described herein into epidural spaces may be useful in the treatment of, for example, neurogenic claudication.
- Intramuscular or other soft tissues or lesions injections may also be useful in providing systemic exposures that are effective in the control of incapacitating allergic conditions (including but not limited to asthma, atopic dermatitis, contact dermatitis, drug hypersensitivity reactions, seasonal or perennial allergic rhinitis, serum sickness, transfusion reactions), bullous dermatitis herpetiformis, exfoliative dermatitis, mycosis fungoides, pemphigus, severe erythema multiforme (Stevens-Johnson syndrome), Primary or secondary adrenocortical insufficiency in conjunction with mineralocorticoids where applicable; congenital adrenal hyperplasia, hypercalcemia associated with cancer, nonsupportive thyroiditis, exacerbations of regional enteritis and ulcerative colitis, acquired (autoimmune) hemolytic anemia, congenital (erythroid) hypoplastic anemia (Diamond blackfan anemia), pure red cell aplasia, select cases of secondary thrombocytopenia, trichinosis with neurologic
- the corticosteroid microparticle formulations provided herein are useful in treating, alleviating a symptom of, ameliorating and/or delaying the progression of sciatica. In one embodiment, corticosteroid microparticle formulations provided herein are useful in treating, alleviating a symptom of, ameliorating and/or delaying the progression of temporomandibular joint disorder (TMD).
- TMD temporomandibular joint disorder
- the corticosteroid microparticle formulations provided herein are useful in treating, alleviating a symptom of, ameliorating and/or delaying the progression of neurogenic claudication secondary to lumbar spinal stenosis (LSS).
- LSS implies spinal canal narrowing with possible subsequent neural compression (classified by anatomy or etiology).
- Neurogenic Claudication (NC) is a hallmark symptom of lumbar stenosis, in which the column of the spinal cord (or the canals that protect the nerve roots) narrows at the lower back. This narrowing can also occur in the spaces between the vertebrae where the nerves leave the spine to travel to other parts of the body.
- the microparticles of the invention are used to treat, alleviate a symptom of, ameliorate and/or delay the progression patients suffering from NC secondary to LSS.
- the corticosteroid microparticle formulations can be administered, for example, by epidural steroid injection (ESI).
- a corticosteroid microparticle formulation e.g., a TCA microparticle formulation
- a corticosteroid microparticle formulation e.g., a TCA microparticle formulation
- administration of a corticosteroid microparticle formulation is considered successful if one or more of the symptoms associated with the disease is alleviated, reduced, inhibited or does not progress to a further, i.e., worse, state.
- Administration of a corticosteroid microparticle formulation is considered successful if the disease, e.g., an arthritic or other inflammatory disease, enters remission or does not progress to a further, i.e., worse, state.
- Corticosteroids associated with embodiments of the present invention can be any naturally occurring or synthetic steroid hormone. Naturally occurring corticosteroids are secreted by the adrenal cortex or generally the human body. [00165] Corticosteroid molecules have the following basic structure:
- Corticosteroids have been classified into four different groups (A, B, C, and D). (See e.g., Foti et al. "Contact Allergy to Topical Corticosteroids: Update and Review on Cross-Sensitization.” Recent Patents on Inflammation & Allergy Drug Discovery 3 (2009): 33-39; Coopman et al., "Identification of cross-reaction patterns in allergic contact dermatitis to topical corticosteroids.” Br J Dermatol 121 (1989): 27-34). Class A corticosteroids are hydrocortisone types with no modification of the D ring or C20-C21 or short chain esters on C20-C21.
- Class A corticosteroids include prednisolone, hydrocortisone and methylprednisolone and their ester acetate, sodium phosphate and succinate, cortisone, prednisone, and tixocortol pivalate.
- Class B corticosteroids
- corticosteroids are triamcinolone acetonide (TCA) types with cis/ketalic or diolic modifications on C16-C17.
- TCA triamcinolone acetonide
- Main examples of Class B corticosteroids include
- Class C corticosteroids are betamethasone types with a -CH3 mutilation on CI 6, but no esterification on C17-C21.
- Main examples of Class C corticosteroids include betamethasone, dexamethasone, desoxymethasone, fluocortolone, and halomethasone.
- Class D corticosteroids are clobetasone or hydrocortisone esterified types with a long chain on C17 and/or C21 and with no methyl group on CI 6.
- Class D corticosteroids include fluticasone, clobetasone butyrate, clobetasol propionate, hydrocortisone- 17-aceponate, hydrocortisone- 17-butyrate, beclomethasone dipropionate, betamethasone- 17-valerate, betamethasone dipropionate, methylprednisolone aceponate, and prednicarbate.
- corticosteroids may include: betamethasone, betamethasone acetate, betamethasone dipropionate, betamethasone 17- valerate, cortivazol, dexamethasone, dexamethasone acetate, dexamethasone sodium phosphate, hydrocortisone, hydrocortisone aceponate, hydrocortisone acetate,
- hydrocortisone butyrate hydrocortisone cypionate
- hydrocortisone probutate hydrocortisone probutate
- dichlorisone diflorasone, diflorasone diacetate, diflucortolone, difluprednate, fluclorolone, fluclorolone acetonide, fludrocortisone, fludrocortisone acetate, fludroxycortide, flumethasone, flumethasone pivalate, flunisolide, fluocinolone, fluocinolone acetonide, fluocortin, fluocortolone, fluorometholone, fluticasone, fluticasone furoate, fluticasone propionate, fluorometholone acetate, fluoxymesterone, fluperolone, fluprednidene, fluprednidene acetate, fluprednisolone, formocortal, halcinonide, halobetasol propionate, halometasone, halopredone, halopredone acetate, hydrocortamate, is
- Embodiments of the invention include using sustained release corticosteroids delivered to treat pain at dosages that do not adversely suppress the HPA axis. Such amounts delivered locally to relieve pain due to inflammation, will provide a systemic concentration that does not have a measurable adverse effect on the HPA axis (differences if any are not significant because any such differences are within normal assay variability) or, as desired, may have a measurable but clinically insignificant effect on the HPA axis (basal Cortisol is suppressed to some measurable extent but stress responses are adequately preserved). Further embodiments of the invention include doses during a second period of time selected to adjust for a change in sensitivity of the HPA axis to suppression following exposure during a first period of time to the corticosteroid ( Figure 1).
- Additional embodiments include doses during first and/or the second period of time selected to adjust for corticosteroid-specific (or corticosteroid- and potentially dose- specific) changes in the rate of change of sensitivity of the HPA axis to suppression that begin with initial exposure.
- the rate of change of the sensitivity of the HPA axis to exogenous corticosteroids is both non-uniform and non- linear ( Figure 2).
- the rate and pattern of change in such sensitivity varies widely as a function of the particular corticosteroid that is selected ( Figure 3).
- corticosteroids can be administered successfully by intraarticular injection, maximizing the likelihood of observing anti-inflammatory and analgesic responses while minimizing or eliminating adverse events from HPA axis suppression or otherwise excessive tissue exposure, is of profound clinical consequence for improving the treatment of patients with arthritis.
- a single component sustained release formulation releases a dose (in mg/day) that suppresses the HPA axis by no more than between 5 - 40% at steady state as shown in Table 2, more preferably no more than between 10 - 35% at steady state as shown in Table 2. These doses are therapeutically effective without adverse side effects.
- a single component sustained release formulation releases a dose (in mg/day) that does not measurably suppress the HPA axis at steady state. These doses are therapeutically effective without adverse side effects.
- immediate release dose would be as shown in Table 4 and the sustained release dose would be a dose (in mg/day) that suppresses the HPA axis by no more than between 5 - 40% as shown in Table 2, more preferably no more than between 10 - 35% as shown in Table 2.
- sustained release doses described previously will follow immediate release doses as shown in Table 4.
- microparticles or methods of making biodegradable polymer microparticles are known in the art.
- Microparticles from any of the biodegradable polymers listed below can be made by, but not limited to, spray drying, solvent evaporation, phase separation, spray drying, fluidized bed coating or combinations thereof.
- the microparticles are made from a biodegradable polymer that may include, without limitation, natural or synthetic biocompatible biodegradable materials.
- Natural polymers include, but are not limited to, proteins such as albumin, collagen, gelatin synthetic poly(aminoacids), and prolamines; glycosaminoglycans, such as hyaluronic acid and heparin; polysaccharides, such as alginates, chitosan, starch, and dextrans; and other naturally occurring or chemically modified biodegradable polymers.
- Synthetic biocompatible biodegradable materials include, but are not limited to the group comprising of, poly(lactide-co-glycolide) (PLGA), polylactide (PLA), polyglycolide (PG), polyhydroxybutyric acid, poly(trimethylene carbonate), polycaprolactone (PCL), polyvalerolactone, poly(alpha-hydroxy acids), poly(lactones), poly(amino-acids), poly(anhydrides), polyketals poly(arylates),
- the microparticles are formed from poly(d,l-lactic- co-glycolic acid) (PLGA), which is commercially available from a number of sources.
- PLGA poly(d,l-lactic- co-glycolic acid)
- Biodegradable PLGA copolymers are available in a wide range of molecular weights and ratios of lactic to glycolic acid. If not purchased from a supplier, then the biodegradable PLGA copolymers may be prepared by the procedure set forth in U.S. Pat. No. 4,293,539 (Ludwig, et al.), the disclosure of which is hereby incorporated by reference in its entirety.
- Ludwig prepares such copolymers by condensation of lactic acid and glycolic acid in the presence of a readily removable polymerization catalyst (e.g., a strong acid ion-exchange resin such as Dowex HCR-W2-H).
- a readily removable polymerization catalyst e.g., a strong acid ion-exchange resin such as Dowex HCR-W2-H.
- any suitable method known in the art of making the polymer can be used.
- a suitable biodegradable polymer is dissolved in an organic solvent.
- Suitable organic solvents for the polymeric materials include, but are not limited to acetone, halogenated hydrocarbons such as chloroform and methylene chloride, aromatic hydrocarbons such as toluene, halogenated aromatic hydrocarbons such as chlorobenzene, and cyclic ethers such as dioxane.
- the organic solvent containing a suitable biodegradable polymer is then mixed with a non-solvent such as silicone based solvent. By mixing the miscible non -solvent in the organic solvent, the polymer precipitates out of solution in the form of liquid droplets.
- the liquid droplets are then mixed with another non- solvent, such as heptane or petroleum ether, to form the hardened microparticles.
- the microparticles are then collected and dried. Process parameters such as solvent and non- solvent selections, polymer/solvent ratio, temperatures, stirring speed and drying cycles are adjusted to achieve the desired particle size, surface smoothness, and narrow particle size distribution.
- phase separation or phase inversion procedures entrap dispersed agents in the polymer to prepare microparticles.
- Phase separation is similar to coacervation of a biodegradable polymer.
- a nonsolvent such as petroleum ether
- the polymer is precipitates from the organic solvent to form microparticles.
- a suitable biodegradable polymer is dissolved in an aqueous miscible organic solvent.
- Suitable water miscible organic solvents for the polymeric materials include, but are not limited to acetone, as acetone, acetonitrile, and tetrahydrofuran.
- the water miscible organic solvent containing a suitable biodegradable polymer is then mixed with an aqueous solution containing salt.
- Suitable salts include, but are not limited to electrolytes such as magnesium chloride, calcium chloride, or magnesium acetate and non-electrolytes such as sucrose.
- the polymer precipitates from the organic solvent to form microparticles, which are collected and dried. Process parameters such as solvent and salt selection, polymer/solvent ratio, temperatures, stirring speed and drying cycles are adjusted to achieve the desired particle size, surface smoothness, and narrow particle size distribution.
- the microparticles may be prepared by the process of Ramstack et al., 1995, described in published international patent application WO 95/13799, the disclosure of which is incorporated herein in its entirety.
- the Ramstack et al. process essentially provides for a first phase, including an active agent and a polymer, and a second phase, that are pumped through a static mixer into a quench liquid to form microparticles containing the active agent.
- the first and second phases can optionally be substantially immiscible and the second phase is preferably free from solvents for the polymer and the active agent and includes an aqueous solution of an emulsifier.
- a suitable biodegradable polymer is dissolved in an organic solvent and then sprayed through nozzles into a drying environment provided with sufficient elevated temperature and/or flowing air to effectively extract the solvent. Adding surfactants, such as sodium lauryl sulfate can improve the surface smoothness of the microparticles.
- a suitable biodegradable polymer can be dissolved or dispersed in supercritical fluid, such as carbon dioxide. The polymer is either dissolved in a suitable organic solvent, such as methylene chloride, prior to mixing in a suitable supercritical fluid or directly mixed in the supercritical fluid and then sprayed through a nozzle. Process parameters such as spray rate, nozzle diameter, polymer/solvent ratio, and temperatures, are adjusted to achieve the desired particle size, surface smoothness, and narrow particle size distribution.
- the drug is dissolved in an organic solvent along with the polymer.
- the solution is then processed, e.g., through a Wurster air suspension coating apparatus to form the final microcapsule product.
- the microparticles can be prepared in a size distribution range suitable for local infiltration or injection.
- the diameter and shape of the microparticles can be manipulated to modify the release characteristics.
- other particle shapes such as, for example, cylindrical shapes, can also modify release rates of a sustained release corticosteroid by virtue of the increased ratio of surface area to mass inherent to such alternative geometrical shapes, relative to a spherical shape.
- the microparticles have a mass mean diameter ranging between about 0.5 to 500 microns. In a preferred embodiment, the microparticles have a mass mean diameter of between 10 to about 100 microns.
- corticosteroids may be suspended in suitable aqueous or non-aqueous carriers which may include, but is not limited to water, saline, pharmaceutically acceptable oils, low melting waxes, fats, lipids, liposomes and any other pharmaceutically acceptable substance that is lipophilic, substantially insoluble in water, and is biodegradable and/or eliminatable by natural processes of a patient's body. Oils of plants such as vegetables and seeds are included.
- oils made from corn, sesame, cannoli, soybean, castor, peanut, olive, arachis, maize, almond, flax, safflower, sunflower, rape, coconut, palm, babassu, and cottonseed oil; waxes such as carnoba wax, beeswax, and tallow; fats such as triglycerides, lipids such as fatty acids and esters, and liposomes such as red cell ghosts and phospholipid layers.
- preferred loadings of said corticosteroid are from about 5% to about 40% (w/w) of the polymer, preferably about 5% to about 30%, more preferably about 5% to about 28% of the polymer.
- the corticosteroid As the biodegradable polymers undergo gradual bio-erosion within the joint, the corticosteroid is released to the inflammatory site.
- the pharmacokinetic release profile of the corticosteroid by the biodegradable polymer may be first order, zero order, bi- or multiphasic, to provide desired treatment of inflammatory related pain.
- the bio-erosion of the polymer and subsequent release of the corticosteroid may result in a controlled release of a corticosteroid from the polymer matrix. The rate of release at dosages that do not suppress the HPA axis are described above.
- the release rate of the corticosteroid from a biodegradable polymer matrix can be modulated or stabilized by adding a pharmaceutically acceptable excipient to the formulation.
- An excipient may include any useful ingredient added to the biodegradable polymer depot that is not a corticosteroid or a biodegradable polymer.
- Pharmaceutically acceptable excipients may include without limitation lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, PEG, polysorbate 20, polysorbate 80,
- An excipient for modulating the release rate of a corticosteroid from the biodegradable drug depot may also include without limitation pore formers, pH modifiers, reducing agents, antioxidants, and free radical scavengers.
- formulations of the invention can be effected by intra-articular injection or other injection using a needle.
- needles having a gauge of about 14-28 gauge are suitable. It will be appreciated by those skilled in the art that formulations of the present invention may be delivered to a treatment site by other conventional methods, including catheters, infusion pumps, pens devices, injection guns and the like.
- the microparticle formulation contains a copolymer of DL- lactide (or L-lactide) and glycolide in a 45:55 molar ratio (up to 75:25 molar ratio) with an inherent viscosity ranging from 0.15 to 0.60 dL/g with either an ester or acid end group plus either the corticosteroid betamethasone or triamcinolone acetonide. If betamethasone is used, then the betamethasone is in the form of either betamethasone acetate, betamethasone diproprionate or a combination thereof. The total amount of betamethasone or
- triamcinolone acetonide incorporated into the microparticle ranges from 10% to 30% (w/w).
- the microparticles are formulated to mean mass range in size from 10 to 100 microns.
- the population of microparticles is formulated to be delivered through a 19 gauge or higher needle. Additional excipients may be added such as, but not limited to,
- betamethasone carboxymethylcellulose sodium, mannitol, polysorbate-80, sodium phosphate, sodium chloride, polyethylene glycol to achieve isotonicity and promote syringeability. If betamethasone is used, then the betamethasone incorporated into the microparticle population provides an initial release (burst) of about 5-20 mg of drug over a period of 1 to 12 hours, followed by a steady state release of drug at a rate of about 0.1 to 1.0 mg/day over a period of 14 to 90 days.
- the microparticle formulation of Example 1 is further admixed with an immediate release betamethasone or triamcinolone acetonide component, such as a betamethasone or triamcinolone acetonide containing solution.
- an immediate release betamethasone or triamcinolone acetonide component such as a betamethasone or triamcinolone acetonide containing solution.
- betamethasone is used, then the betamethasone in the immediate release component is in the form of either betamethasone acetate, betamethasone diproprionate or a combination thereof.
- the immediate release component provides an initial release of a total of about 5 to 20 mg of betamethasone over the first 1-10 days, while the sustained release component releases betamethasone at a rate of about 0.1 to 1.0 mg/day over the first 14 to 90 days following administration.
- the immediate release component provides an initial release of a total of 10 to 40 mg of drug over the first 1-10 days, while the sustained release component releases drug at a rate of about 0.2 to 1.7 mg/day over the first 14 to 90 days following administration.
- a pharmaceutical depot was prepared comprised of the corticosteroid, triamcinolone acetonide (TCA, 9a-Fluoro-l l p, 16a,17a,21-tetrahydroxy-l,4-pregnadiene- 3,20-dione 16, 17-acetonide; 9a-Fluoro-16a-hydroxyprednisolone 16a, 17a-acetonide) incorporated into PLGA microparticles.
- TCA triamcinolone acetonide
- microparticles were collected using a cyclone separator and, subsequently, sieved through a 150 ⁇ m sieve.
- Particle size of the TCA incorporated microparticles was determined using laser diffraction (Malvern Mastersizer 2000) by dispersing a 250 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. Sonication was maintained as the sample was stirred at 2500 rpm and measurements taken every 15 seconds, with the average of three measurements reported. 10 mg of TCA containing microparticles were added to 10 mL of dimethylsulfoxide (DMSO), mixed until dissolved and an aliquot analyzed by HPLC to determine the microparticle drug load.
- DMSO dimethylsulfoxide
- TCA containing microparticles were suspended in 20 mL of phosphate buffered saline (PBS) containing 0.5% sodium dodecyl sulfate (SDS) maintained at 37°C.
- PBS phosphate buffered saline
- SDS sodium dodecyl sulfate
- 0.5 mL of the media was removed at regular intervals, replaced at each interval with an equivalent amount of fresh media to maintain a constant volume, and analyzed by HPLC to determine microparticle in vitro release. Analysis by HPLC was conducted using a CI 8 (Waters Nova-Pack C-18, 3.9 x 150 mm) and 35% acetonitrile mobile phase at 1 ml/min flow rate with UV detection at 240 nm. The results are shown in Table 5.
- the amount of TCA released per day was calculated based on a human dose, as exemplified in Table 2, that would achieve a transient suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35% as shown in Figure 6.
- the amount of triamcinolone acetonide released per day was calculated based on a human dose, as exemplified in Table 2 that would not suppress the HPA axis, i.e. endogenous Cortisol suppression never exceeding 35% as shown in Figure 7.
- These calculated doses equal 376 mg of microparticles containing 94 mg of TCA and 80 mg of microparticles containing 20 mg of TCA, respectively.
- 250 mg of triamcinolone acetonide, 100 mg of polyethylene glycol (PEG 3350) and 650 mg of PLGA (lactide: glycolide molar ratio of 75:25, inherent viscosity of 0.4 dL/g and molecular weight of 54 kDa) were dispersed in 13 grams of dichloromethane.
- the dispersions were atomized into micro-droplets by adding the dispersion to the feed well of a rotating disk, rotating at a speed of approximately 3300 rpm inside a temperature controlled chamber maintained at 38-45°C.
- the solvent was evaporated to produce solid microparticles.
- the microparticles were collected using a cyclone separator and, subsequently, sieved through a 150 ⁇ m sieve.
- microparticles were analyzed as described above and the data is shown in Table 7.
- the amount of TCA released per day was calculated based on a human dose, as exemplified in Table 2, that would achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35% as shown in Figure 13 and Figure 14.
- These calculated doses equal 296 mg of microparticles containing 74 mg of TCA and 316 mg of microparticles containing 79 mg of TCA, respectively.
- TCA containing formulations were tried with PEG and PLGA 75 :25 without success.
- a PLGA microparticle formulation containing 25% TCA and 25% PEG 1450 agglomerated during manufacture and storage.
- Another PLGA formulation containing 40% TCA and 15% PEG 1450 gave similar results to the microparticles containing 40% TCA and no PEG.
- Triamcinolone Acetonide containing microparticle depots were prepared and analyzed, as described above, with the exception of using 100 mg, 150 mg, 200 mg and 400 mg triamcinolone acetonide and adding to a 5% PLGA dichloromethane solution. The physical characteristics of these formulations are shown in Table 8.
- the in vitro cumulative release profiles for these four other TCA containing PLGA 75:25 microparticle depots are graphed in Figure 17, along with the preferred formulation (25% TCA).
- the tabulated data and graph show the impact of the percent TCA incorporated in the PLGA microparticles on the in vitro release profile.
- the 10%, 15% and 20% TCA containing PLGA microparticles exhibit a slower release profile, with a significant less cumulative release over 28 days, less than 20%, 30% and 55% respectively, than the 25% TCA PLGA depot exemplified in Example 4.
- the 40% TCA containing depot exhibits a faster release profile, with greater than 80% of the triamcinolone released by day 7 with a similar total cumulative release, than the 25% TCA PLGA depot exemplified in Example 4.
- Formulations In another microparticle formulation, triamcinolone acetonide was incorporated in PLGA of the same lactide to glycolide molar ratio as cited in Example 4 but of a lower molecular weight. Low molecular weight PLGA is known to allow for more complete and faster release of pharmaceutical agents incorporated into microparticles than their higher molecular weight counterparts. (Anderson et al. "Biodegradation and biocompatibility of PLA and PLGA microspheres.” Advanced Drug Delivery Reviews 28 (1997): 5-24; Bouissou et al., "Poly(lactic-co-glycolicacid) Microspheres.” Polymer in Drug Delivery (2006): Chapter 7).
- Particle size of the TCA incorporated microparticles was determined using laser diffraction (Malvern Mastersizer 2000) by dispersing a 250 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. Sonication was maintained as the sample was stirred at 2500 rpm and measurements taken every 15 seconds, with the average of three measurements reported. 10 mg of TCA containing microparticles were added to 10 mL of dimethylsulfoxide (DMSO), mixed until dissolved and an aliquot analyzed by HPLC to determine the microparticle drug load.
- DMSO dimethylsulfoxide
- TCA containing microparticles were suspended in 20 mL of phosphate buffered saline (PBS) containing 0.5% sodium dodecyl sulfate (SDS) maintained at 37°C.
- PBS phosphate buffered saline
- SDS sodium dodecyl sulfate
- 0.5 mL of the media was removed at regular intervals, replaced at each interval with an equivalent amount of fresh media to maintain a constant volume, and analyzed by HPLC to determine microparticle in vitro release. Analysis by HPLC was conducted using a CI 8 (Waters Nova-Pack C-18, 3.9 x 150 mm) and 35% acetonitrile mobile phase at 1 ml/min flow rate with UV detection at 240 nm. The results are shown in Table 9.
- Formulations were prepared with 200 mg, 250 mg, 300 mg and 350 mg of triamcinolone acetonide and corresponding amount of PLGA (lactide: glycolide molar ratio of 50:50, inherent viscosity of 0.48 dL/g and molecular weight of 66 kDa) to yield 1000 mg total solids were dispersed into a quantity of dichloromethane to a achieve a 5% PLGA solution.
- PLGA lactide: glycolide molar ratio of 50:50, inherent viscosity of 0.48 dL/g and molecular weight of 66 kDa
- triamcinolone acetonide 100 mg of polyethylene glycol (PEG 3350) and 650 mg of PLGA (lactide: glycolide molar ratio of 50:50, inherent viscosity of 0.48 dL/g and molecular weight of 66 kDa) were dispersed in 14.25 grams of dichloromethane.
- PEG 3350 polyethylene glycol
- PLGA lactide: glycolide molar ratio of 50:50, inherent viscosity of 0.48 dL/g and molecular weight of 66 kDa
- PLGA lactide: glycolide molar ratio of 50:50, inherent viscosity of 0.18 dL/g and molecular weight of 18 kDa
- the dispersions were atomized into micro-droplets by adding the dispersion to the feed well of a rotating disk, rotating at a speed of approximately 3300 rpm inside a temperature controlled chamber maintained at 38-45°C.
- the solvent was evaporated to produce solid microparticles.
- the microparticles were collected using a cyclone separator and, subsequently, sieved through a 150 ⁇ m sieve.
- Particle size of the TCA incorporated microparticles was determined using laser diffraction (Malvern Mastersizer 2000) by dispersing a 250 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. Sonication was maintained as the sample was stirred at 2500 rpm and measurements taken every 15 seconds, with the average of three measurements reported. 10 mg of TCA containing microparticles were added to 10 mL of dimethylsulfoxide (DMSO), mixed until dissolved and an aliquot analyzed by HPLC to determine the microparticle drug load.
- DMSO dimethylsulfoxide
- TCA containing microparticles were suspended in 20 mL of phosphate buffered saline (PBS) containing 0.5% sodium dodecyl sulfate (SDS) maintained at 37°C.
- PBS phosphate buffered saline
- SDS sodium dodecyl sulfate
- 0.5 mL of the media was removed at regular intervals, replaced at each interval with an equivalent amount of fresh media to maintain a constant volume, and analyzed by HPLC to determine microparticle in vitro release. Analysis by HPLC was conducted using a CI 8 (Waters Nova-Pack C-18, 3.9 x 150 mm) and 35% acetonitrile mobile phase at 1 ml/min flow rate with UV detection at 240 nm. The results are shown in Table 10.
- TCA PLGA 75:25 formulations As observed with TCA PLGA 75:25 formulations, increasing the amount of TCA increases the rate of release and allows for more TCA to be released before entering the lag phase. Similarly, the addition of PEG has minimal influence on the release rate of TCA, while lower molecular weight PLGA 50:50 decrease the release rate as observed with PLGA 75:25 formulations.
- the Class B corticosteroid microparticle formulations for example, the TCA microparticle formulations, exhibiting the desired release kinetics have the following characteristics: (i) the corticosteroid is between 22%- 28% of the microparticle; and (ii) the polymer is PLGA having a molecular weight in the range of about 40 to 70 kDa, having an inherent viscosity in the range of 0.3 to 0.5 dL/g, and or having a lactide:glycolide molar ratio of 80:20 to 60:40.
- a pharmaceutical depot was prepared comprised of the corticosteroid, triamcinolone acetonide (TCA, 9a-Fluoro-l l , 16a, 17a,21-tetrahydroxy-l,4-pregnadiene- 3,20-dione 16, 17-acetonide; 9a-Fluoro-16a-hydroxyprednisolone 16a, 17a-acetonide) incorporated into microparticles.
- TCA triamcinolone acetonide
- Formulations were prepared by dissolving approximately 1 gram of PLGA in 6.67 mL of dichloromethane (DCM). To the polymer solution, 400 mg of triamcinolone acetonide was added and sonicated. Subsequently, the corticosteroid containing dispersion was poured into 200 mL of 0.3% polyvinyl alcohol (PVA) solution while homogenizing with a Silverson homogenizer using a rotor fixed with a Silverson Square Hole High Shear ScreenTM, set to rotate at approximately 2,000 rpm to form the microparticles.
- PVA polyvinyl alcohol
- the beaker was removed, and a glass magnetic stirrer) added to the beaker, which was then placed onto a multi-way magnetic stirrer and stirred for four hours at 300 rpm to evaporate the DCM.
- the microparticles were then washed with 2 liters of distilled water, sieved through a 100 micron screen. The microparticles were then lyophilized for greater than 96 hours and vacuum packed.
- Particle size of the TCA incorporated microparticles was determined using laser diffraction (Beckman Coulter LS 230) by dispersing a 50 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. The sample was stirred at the particle size measurement measurements taken and the results reported.
- Drug load was determined by suspending a nominal 10 mg of microparticles in 8ml HPLC grade methanol and sonicating for 2 hours. Samples were then centrifuged at 14,000g for 15 mins before an aliquot of the supernatant was assayed via HPLC as described below. Corticosteroid-loaded microparticle samples, nominally 1 g were placed in 22 ml glass vials in 8- 20ml of 0.5% v/v Tween 20 in 100mM phosphate buffered saline and stored in a 37°C incubator with magnetic stirring at 130 rpm. Each test sample was prepared and analyzed in duplicate to monitor possible variability.
- microparticles were allowed to settle, and an aliquot of between 4-1 6 ml of supernatant were taken, and replaced with an equal volume of fresh 0.5% v/v Tween 20 in 100mM phosphate buffered saline.
- Drug load and in vitro release samples were analyzed by HPLC using a Hypersil C18 column (100mm, i.d. 5mm, particle size 5 ⁇ m; ThermoFisher) and Beckman HPLC. All samples were run using a sample injection volume of 5 ⁇ m, and column temperature of 40 °C. An isocratic mobile phase of 60% methanol and 40% water was used at a flow rate of lml/min, with detection at a wavelength of 254nm.
- the PLGA is an ester end capped PLGA (lactide: glycolide molar ratio of 75:25, inherent viscosity of 0.71 dL/g and molecular weight ofl 14 kDa) with 10% or 20% triblock (TB) polymer (PLGA-PEG- PLGA).
- Triblock polymer was synthesized using a method described by Zentner et al 2001 (Zentner et al.
- the amount of TCA released per day was calculated based on a human dose, as exemplified in Table 2, that may achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35%.
- These calculated doses equal 149 mg of microparticles containing 35 mg of TCA and 252 microparticles containing 62mg of TCA, for the 10% and 20% triblock formulations respectively (Figure 21 and Figure 22).
- the amount of TCA released per day was calculated based on a human dose, as exemplified in Table 2, that would not have an suppress the HPA axis, i.e. endogenous Cortisol suppression more than 35%.
- These calculated doses equal 66 mg of microparticles containing 16 mg of TCA and 47 microparticles containing 12 mg of TCA, for the 10% and 20% triblock formulations respectively ( Figure 23 and Figure 24).
- the PLGA polymer in another suitable formulation lasting greater than 30 days and up to 90 days, the PLGA polymer consists of two different molecular weight PLGA 75:25 polymers in a two to one ratio, PLGA 75:25 (lactide: glycolide molar ratio of 75:25, inherent viscosity of 0.27 dL/g and molecular weight of 29 kDa) and ester end capped PLGA 5.5E (lactide: glycolide molar ratio of 75:25, inherent viscosity of 0.58 dL/g and molecular weight of 86 kDa), respectively.
- the formulation was processed as described above with the exception that 200 mg of triamcinolone acetonide was used in the formulation instead of 400 mg and similarly analyzed as describe for other formulations. The results are shown in the Table 12.
- in vitro cumulative percent TCA release data is graphed in Figure 25.
- the amount of TCA released per day was calculated based on a human dose, as exemplified in Table 2, which may achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35%. This calculated dose equals 317 mg of microparticles containing 46 mg of TCA.
- the amount of TCA released per day was calculated based on a human dose, as exemplified in Table 2, that would not have an suppress the HPA axis, i.e. endogenous Cortisol suppression more than 35%. This calculated dose equals 93 mg of microparticles containing 14 mg of TCA.
- the in vitro cumulative percent release of triamcinolone acetonide is shown in Figure 28. None of these formulations were suitable for a nominal thirty day or longer duration pharmaceutical depot. Polycaprolactone release all the triamcinolone acetonide prior to 14 days.
- the PLGA 50:50 microparticles released about 35% of its content by day 12 and then entered a lag phase where no drug was released up to 30 days.
- the PLGA 85: 15 microparticles exhibited similar in vitro release kinetics as the PLGA 50:50,releasing about 30% of its content by day 12 and then entered a lag phase where no drug was released up to 30 days (See Figure 28).
- a similar phenomenon is seen as shown in Example 4, where the mixed molecular weight PLGA 75:25 unexpectedly exhibits faster initial release of the triamcinolone acetonide than PLGA 50:50.
- the Class B corticosteroid microparticle formulations for example, the TCA microparticle formulations, exhibiting the desired release kinetics have the following characteristics: (i) the corticosteroid is between 12%-
- the polymer is (1) PLGA having a molecular weight in the range of about 40 to 70 kDa, having an inherent viscosity in the range of 0.3 to 0.5 dL/g, containing 10%-20% Triblock and/or having a lactide:glycolide molar ratio of 80:20 to
- the low molecular weight PLGA has a molecular weight of range of 15-35 kDa and an inherent viscosity range from 0.2 to 0.35 dL/g
- the high molecular weight PLGA has a range of 70-95 kDa and an inherent viscosity range of 0.5 to 0.70 dL/g.
- a pharmaceutical depot was prepared comprised of the corticosteroid, prednisolone (PRED, 1 l ⁇ 17,21-trihydroxypregna-l,4-diene-3,20- dione) incorporated into microparticles in PLGA 50:50.
- PRED prednisolone
- Formulations were prepared by dissolving approximately 1 gram of PLGA 50:50 (lactide: glycolide molar ratio of 50:50, inherent viscosity 0.44 dL/g, MW 56 kDa) in 6.67 mL of dichloromethane (DCM). To the polymer solution, 400 mg of prednisolone was added and sonicated. Subsequently, the corticosteroid containing dispersion was poured into 200 mL of 0.3% polyvinyl alcohol (PVA) solution while homogenizing with a
- PVA polyvinyl alcohol
- Silverson homogenizer using a rotor fixed with a Silverson Square Hole High Shear ScreenTM, set to spin at 2,000 rpm to form the microparticles. After two minutes, the beaker was removed, and a glass magnetic stirrer) added to the beaker, which was then placed onto a multi-way magnetic stirrer and stirred for four hours at 300 rpm to evaporate the DCM. The microparticles were then washed with 2 liters of distilled water, sieved through a 100 micron screen. The microparticles were then lyophilized for greater than 96 hours and vacuum packed.
- Particle size of the PRED incorporated microparticles was determined using laser diffraction (Beckman Coulter LS 230) by dispersing a 50 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. The sample was stirred at the particle size measurement measurements taken and the results reported. Drug load was determined by suspending a nominal 10 mg of microparticles in 8ml HPLC grade methanol and sonicating for 2 hours. Samples were then centrifuged at 14,000g for 15 mins before an aliquot of the supernatant was assayed via HPLC as described below.
- Corticosteroid-loaded microparticle samples nominally 1 g were placed in 22 ml glass vials in 8- 20ml of 0.5% v/v Tween 20 in 100mM phosphate buffered saline and stored in a 37°C incubator with magnetic stirring at 130 rpm. Each test sample was prepared and analyzed in duplicate to monitor possible variability. At each time point in the release study, microparticles were allowed to settle, and an aliquot of between 4-1 6 ml of supernatant were taken, and replaced with an equal volume of fresh 0.5% v/v Tween 20 in 100mM phosphate buffered saline.
- Drug load and in vitro release samples were analyzed by HPLC using a Hypersil C18 column (100mm, i.d. 5mm, particle size 5 ⁇ m; ThermoFisher) and Beckman HPLC. All samples were run using a sample injection volume of 5 ⁇ m, and column temperature of 40°C. An isocratic mobile phase of 60% methanol and 40% water was used at a flow rate of lml/min, with detection at a wavelength of 254nm. The analytical results are shown in the Table 13.
- the amount of prednisolone released per day was calculated based on a human dose, as exemplified in Table 2, which may achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35% (Figure 30).
- the calculated dose equals 699 mg of microparticles containing 133 mg of PRED.
- the amount of PRED released per day was calculated based on a human dose, as exemplified in Table 2 that would not suppress the HPA axis, i.e. endogenous Cortisol suppression of less than 35% (Figure 31). This calculated dose equals 377 mg of microparticles containing 72 mg of PRED.
- the Class A corticosteroid microparticle formulations for example, the prednisolone microparticle formulations, exhibiting the desired release kinetics have the following characteristics: (i) the corticosteroid is between 10%-40% of the microparticle, for example, between 15%-30% of the microparticle; and (ii) the polymer is PLGA having a molecular weight in the range of about 45 to 75 kDa, having an inherent viscosity in the range of 0.35 to 0.5 dL/g, and or having a
- lactide:glycolide molar ratio 60:40 to 45:55.
- a pharmaceutical depot was prepared comprised of the corticosteroid, betamethasone (BETA, 9-Fluoro- 1 IB, 17,21 -trihydroxy- 16 ⁇ -methylpregna- 1 ,4-diene-3 ,20- dione) incorporated into microparticles in PLGA 50:50.
- betamethasone BETA, 9-Fluoro- 1 IB, 17,21 -trihydroxy- 16 ⁇ -methylpregna- 1 ,4-diene-3 ,20- dione
- a formulation was prepared by dissolving approximately 1 gram of PLGA 50:50 (lactide: glycolide molar ratio of 50:50, inherent viscosity 0.44 dL/g, MW 56 kDa) in 6.67 mL of dichloromethane (DCM). To the polymer solution, 400 mg of betamethasone was added and sonicated. Subsequently, the corticosteroid containing dispersion was poured into 200 mL of 0.3% polyvinyl alcohol (PVA) solution while homogenizing with a
- Silverson homogenizer using a rotor fixed with a Silverson Square Hole High Shear ScreenTM, set to spin at 2,000 rpm to form the microparticles. After two minutes, the beaker was removed, and a glass magnetic stirrer) added to the beaker, which was then placed onto a multi-way magnetic stirrer and stirred for four hours at 300 rpm to evaporate the DCM. The microparticles were then washed with 2 liters of distilled water, sieved through a 100 micron screen. The microparticles were then lyophilized for greater than 96 hours and vacuum packed.
- Particle size of the BETA incorporated microparticles was determined using laser diffraction (Beckman Coulter LS 230) by dispersing a 50 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. The sample was stirred at the particle size measurement measurements taken and the results reported.
- Drug load was determined by suspending a nominal 10 mg of microparticles in 8ml HPLC grade methanol and sonicating for 2 hours. Samples were then centrifuged at 14,000g for 15 mins before an aliquot of the supernatant was assayed via HPLC as described below. Corticosteroid-loaded microparticle samples, nominally 1 g were placed in 22 ml glass vials in 8- 20ml of 0.5% v/v Tween 20 in 100mM phosphate buffered saline and stored in a 37°C incubator with magnetic stirring at 130 rpm. Each test sample was prepared and analyzed in duplicate to monitor possible variability.
- microparticles were allowed to settle, and an aliquot of between 4-1 6 ml of supernatant were taken, and replaced with an equal volume of fresh 0.5% v/v Tween 20 in 100mM phosphate buffered saline.
- Drug load and in vitro release samples were analyzed by HPLC using a Hypersil C18 column (100mm, i.d. 5mm, particle size 5 ⁇ m; ThermoFisher) and Beckman HPLC. All samples were run using a sample injection volume of 5 ⁇ m, and column temperature of 40 °C.
- the amount of betamethasone released per day was calculated based on a human dose, as exemplified in Table 2, which may achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35%.
- This calculated dose equals 1 11 mg of microparticles containing 25 mg of betamethasone.
- the amount of betamethasone released per day was calculated based on a human dose, as exemplified in Table 2 that would not suppress the HPA axis, i.e. endogenous Cortisol suppression never exceeding 35%.
- This calculated dose equals 38 mg of microparticles containing 9 mg of betamethasone.
- the Class C corticosteroid microparticle formulations for example, the betamethasone microparticle formulations, exhibiting the desired release kinetics have the following characteristics: (i) the corticosteroid is between 10%-40% of the microparticle, for example, between 15%-30% of the microparticle; and (ii) the polymer is PLGA having a molecular weight in the range of about 40 to 70 kDa, having an inherent viscosity in the range of 0.35 to 0.5 dL/g, and or having a
- lactide:glycolide molar ratio 60:40 to 45:55.
- a pharmaceutical depot was prepared comprised of the corticosteroid, fluticasone propionate (FLUT, S-(fluoromethyl) 6a,9-difluoro-l l ⁇ , 17-dihydroxy-16a- methyl-3-oxoandrosta-l,4-diene-17 ⁇ -carbothioate, 17-propionate) incorporated into microparticles in PLGA 50:50.
- FLUT fluticasone propionate
- a formulation was prepared by dissolving approximately 1 gram of PLGA 50:50
- Particle size of the FLUT incorporated microparticles was determined using laser diffraction (Beckman Coulter LS 230) by dispersing a 50 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. The sample was stirred at the particle size measurement measurements taken and the results reported. Drug load was determined by suspending a nominal 10 mg of microparticles in 8ml HPLC grade methanol and sonicating for 2 hours. Samples were then centrifuged at 14,000g for 15 mins before an aliquot of the supernatant was assayed via HPLC as described below.
- Corticosteroid-loaded microparticle samples nominally 1 g were placed in 22 ml glass vials in 8- 20ml of 0.5% v/v Tween 20 in 100mM phosphate buffered saline and stored in a 37°C incubator with magnetic stirring at 130 rpm. Each test sample was prepared and analyzed in duplicate to monitor possible variability. At each time point in the release study, microparticles were allowed to settle, and an aliquot of between 4-1 6 ml of supernatant were taken, and replaced with an equal volume of fresh 0.5% v/v Tween 20 in 100mM phosphate buffered saline.
- the amount of fluticasone propionate released per day was calculated based on a human dose, as exemplified in Table 2, which may achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35%.
- This calculated dose equals 178 mg of microparticles containing 15 mg of fluticasone propionate.
- the amount of fluticasone propionate released per day was calculated based on a human dose, as exemplified in Table 2 that would not suppress the HPA axis, i.e.
- the Class D corticosteroid microparticle formulations for example, the fluticasone or fluticasone propionate microparticle formulations, exhibiting the desired release kinetics have the following characteristics: (i) the corticosteroid is between 8%-20% of the microparticle, and (ii) the polymer is PLGA having a molecular weight in the range of about 40 to 70 kDa, having an inherent viscosity in the range of 0.35 to 0.5 dL/g, and or having a lactide:glycolide molar ratio of 60:40 to 45:55.
- the corticosteroid is between 8%-20% of the microparticle
- the polymer is PLGA having a molecular weight in the range of about 40 to 70 kDa, having an inherent viscosity in the range of 0.35 to 0.5 dL/g, and or having a lactide:glycolide molar ratio of 60:40 to 45:55.
- a pharmaceutical depot was prepared comprised of the corticosteroid, dexamethasone (DEX, 9-Fluoro-l l ⁇ , 17,21-trihydroxy-16a-methylpregna-l,4-diene- 3,20- dione) incorporated into microparticles in PLGA 50:50.
- DEX dexamethasone
- a formulation was prepared by dissolving approximately 1 gram of PLGA 50:50
- Hole High Shear ScreenTM set to spin at 2,000 rpm to form the microparticles. After two minutes, the beaker was removed, and a glass magnetic stirrer) added to the beaker, which was then placed onto a multi-way magnetic stirrer and stirred for four hours at 300 rpm to evaporate the DCM. The microparticles were then washed with 2 liters of distilled water, sieved through a 100 micron screen. The microparticles were then lyophilized for greater than 96 hours and vacuum packed.
- Particle size of the DEX incorporated microparticles was determined using laser diffraction (Beckman Coulter LS 230) by dispersing a 50 mg aliquot in water, with the refractive index (RI) for water and PLGA, set at 1.33 and 1.46 respectively. The sample was stirred at the particle size measurement measurements taken and the results reported. Drug load was determined by suspending a nominal 10 mg of microparticles in 8ml HPLC grade methanol and sonicating for 2 hours. Samples were then centrifuged at 14,000g for 15 mins before an aliquot of the supernatant was assayed via HPLC as described below.
- Corticosteroid-loaded microparticle samples nominally 1 g were placed in 22 ml glass vials in 8- 20ml of 0.5% v/v Tween 20 in 100mM phosphate buffered saline and stored in a 37°C incubator with magnetic stirring at 130 rpm. Each test sample was prepared and analyzed in duplicate to monitor possible variability. At each time point in the release study, microparticles were allowed to settle, and an aliquot of between 4-1 6 ml of supernatant were taken, and replaced with an equal volume of fresh 0.5% v/v Tween 20 in 100mM phosphate buffered saline.
- Drug load and in vitro release samples were analyzed by HPLC using a Hypersil C18 column (100mm, i.d. 5mm, particle size 5 ⁇ m; ThermoFisher) and Beckman HPLC. All samples were run using a sample injection volume of 5 ⁇ m, and column temperature of 40 °C. An isocratic mobile phase of 60% methanol and 40% water was used at a flow rate of lml/min, with detection at a wavelength of 254nm. The analytical results for the dexamethasone PLGA microparticles are shown in Table 16.
- the amount of dexamethasone released per day was calculated based on a human dose, as exemplified in Table 2, which may achieve a temporary suppression of endogenous Cortisol (greater than 50%) and, within 14 days, achieve Cortisol suppression of endogenous Cortisol of less than 35%.
- the amount of dexamethasone released per day was calculated based on a human dose, as exemplified in Table 2 that would not suppress the HPA axis, i.e. endogenous Cortisol suppression never exceeding 35%.
- the mean AUC 0- t values of TCA following 1.125 mg administration of FX006 were 2.1-fold lower than those observed for TCA IR (i.e., 2856 vs. 6065 ng.h/mL, respectively).
- the mean C max values of TCA following 1.125 mg administration of FX006 were 15-fold lower than those observed for TCA IR (i.e., 125 vs. 8.15 ng/mL, respectively).
- the absorption of TCA following administration of FX006 was slower than that observed for TCA IR, with mean T max values observed at 3.33 and 1.00 h, respectively.
- the elimination half- life of TCA following administration of 1.125 mg FX006 and TCA IR were 451 and 107 h, respectively.
- both knees in the high dose TCA IR and the high and mid-dose FX006 - groups showed some mild bone marrow hypocellularity and growth plate atrophy (dose dependent for FX006).
- Both knees in the low dose TCA IR and FX006 animals were normal.
- Spontaneous cartilage cysts noted in placebo animals were also noted in all groups dosed with FX006 with no increase in incidence or severity.
- High dose TCA IR increased cartilage cysts at Day 42 but not at Day 28.
- FX006-treated animals had normal articular cartilage despite the presence of catabolic effects on other joint structures, which was likely more readily observed on account of the young age of the animals.
- a PK-PD analysis demonstrated that inhibition of corticosterone was correlated with systemic TCA levels and followed a classical inhibitory model as shown in Figure 43.
- the IC5 0 was about 1 ng/mL and the E max was achieved at 50-80 ng/mL.
- EXAMPLE 11 Evaluation of Efficacy of Single Doses of TCA Immediate Release and TCA Microparticle Formulation in Animal Model of Osteoarthritis
- Efficacy of single intra-articular (IA) doses of FX006 (TCA in 75 :25 PLGA formulation microparticles) and TCA IR (immediate release) was evaluated in a rat model of osteoarthritis of the knee via sensitization and challenge by peptidoglycan polysaccharide (PGPS).
- the model involves priming the animals with an intra-articular injection of PGPS in the right knee. The following day, any animals with no knee discomfort were eliminated from the test article groups and placed into the baseline group.
- FX006 provides more prolonged pain relief as compared to TCA IR - Since only about 10% of the TCA payload is expected to be released from FX006 in the first 24 hr, one TCA IR dose group (0.03 mg) was chosen to match 10% of the TCA in FX006 at a dose of 0.28 mg
- Plasma levels of TCA were measured in samples taken from all rats at baseline (Day -4), Days 0 (2 hr post dosing), 1, 3, 8, 14, 17, 21, 28, and 31. Concentration-time curves for all treatment groups are shown in Figure 47A. Figure 47B shows only the FX006 dose groups on a larger scale since maximal plasma concentrations with FX006 were far lower than those with TCA IR.
- formulations provides prolonged pain relief relative to intra-articular injection of immediate release steroids.
- formulations is efficacious in reducing pain and inflammation at doses that do not inhibit the HPA axis.
- microparticle formulations is a function of dose. • Intra-articular injection of sustained release corticosteroid microparticle formulations slows, arrests, reverses, or otherwise inhibits structural damage to tissues caused by inflammation.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Dermatology (AREA)
- Rheumatology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Immunology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Transplantation (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA201301676A UA111162C2 (en) | 2010-08-04 | 2011-04-08 | INJECTION COMPOSITION OF TRIAMCINOLONE ACETONIDE FOR TREATMENT OF PAIN |
ES11815323T ES2799419T3 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
BR112013002601A BR112013002601A2 (en) | 2010-08-04 | 2011-08-04 | corticosteroids for joint pain treatment |
SG2013007703A SG187665A1 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
EP11815323.8A EP2600836B1 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
AU2011285691A AU2011285691B2 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
NZ607797A NZ607797A (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
KR1020187034479A KR20180132159A (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
JP2013523336A JP5873492B2 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
CN201180047943.4A CN103260603B (en) | 2010-08-04 | 2011-08-04 | For treating arthralgic corticosteroid |
MX2013001433A MX353466B (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain. |
CA2807150A CA2807150C (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
MYPI2013000361A MY171929A (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
KR1020137004667A KR101927551B1 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
EP20170586.0A EP3701941A1 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
RU2013109362A RU2642279C2 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for joint pain treatment |
ZA2013/00831A ZA201300831B (en) | 2010-08-04 | 2013-01-31 | Corticosteroids for the treatment of joint pain |
IL224547A IL224547B (en) | 2010-08-04 | 2013-02-03 | Compositions comprising corticosteroids for use in treating joint pain |
AU2015268647A AU2015268647B2 (en) | 2010-08-04 | 2015-12-10 | Corticosteroids for the Treatment of Joint Pain |
AU2017268620A AU2017268620A1 (en) | 2010-08-04 | 2017-11-30 | Corticosteroids for the Treatment of Joint Pain |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37066610P | 2010-08-04 | 2010-08-04 | |
US61/370,666 | 2010-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012019009A1 true WO2012019009A1 (en) | 2012-02-09 |
Family
ID=45559826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/046601 WO2012019009A1 (en) | 2010-08-04 | 2011-08-04 | Corticosteroids for the treatment of joint pain |
Country Status (23)
Country | Link |
---|---|
US (8) | US20120282298A1 (en) |
EP (2) | EP2600836B1 (en) |
JP (3) | JP5873492B2 (en) |
KR (2) | KR101927551B1 (en) |
CN (2) | CN107669640A (en) |
AR (1) | AR082471A1 (en) |
AU (1) | AU2011285691B2 (en) |
BR (1) | BR112013002601A2 (en) |
CA (2) | CA2956556A1 (en) |
CL (1) | CL2013000347A1 (en) |
CO (1) | CO6700827A2 (en) |
ES (1) | ES2799419T3 (en) |
IL (1) | IL224547B (en) |
MX (1) | MX353466B (en) |
MY (1) | MY171929A (en) |
NZ (1) | NZ607797A (en) |
RU (2) | RU2018100114A (en) |
SG (3) | SG187665A1 (en) |
TW (2) | TWI630001B (en) |
UA (1) | UA111162C2 (en) |
UY (1) | UY33546A (en) |
WO (1) | WO2012019009A1 (en) |
ZA (1) | ZA201300831B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014116876A1 (en) * | 2013-01-23 | 2014-07-31 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation comprising an insoluble corticosteroid and a soluble corticosteroid |
EP2739287A4 (en) * | 2011-08-04 | 2015-03-18 | Flexion Therapeutics Inc | Corticosteroids for the treatment of joint pain |
JP2016514728A (en) * | 2013-03-21 | 2016-05-23 | ユープラシア ファーマシューティカルズ ユーエスエー エルエルシーEupraxia Pharmaceuticals Usa Llc | Injectable sustained-release composition for treating joint inflammation and associated pain and methods of use thereof |
CN105705141A (en) * | 2013-03-15 | 2016-06-22 | 奥克伍德实验室有限责任公司 | Sustained release microspheres and method of producing the same |
US9555048B2 (en) | 2010-08-04 | 2017-01-31 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
WO2017053346A1 (en) | 2015-09-21 | 2017-03-30 | Teva Pharmaceuticals International Gmbh | Sustained release olanzapine formulations |
WO2017160818A1 (en) | 2016-03-14 | 2017-09-21 | Flexion Therapeutics, Inc. | Triamcinolone acetonide formulations for joint pain in diabetics |
WO2018172850A1 (en) | 2017-03-20 | 2018-09-27 | Teva Pharmaceuticals International Gmbh | Sustained release olanzapine formulaitons |
US10098882B2 (en) | 2011-04-25 | 2018-10-16 | Shandong Luye Pharmaceutical Co., Ltd. | Risperidone sustained release microsphere composition |
US10117938B2 (en) | 2015-01-21 | 2018-11-06 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
CN110237052A (en) * | 2019-07-11 | 2019-09-17 | 苏州大学 | A kind of triamcinolone acetonide acetate sustained-release micro-spheres and preparation method thereof |
WO2020014118A1 (en) * | 2018-07-09 | 2020-01-16 | Taiwan Liposome Co., Ltd. | Methods to reduce complications of intra-articular steroid |
US11351124B2 (en) | 2015-10-27 | 2022-06-07 | Eupraxia Pharmaceuticals Inc. | Sustained release of formulations of local anesthetics |
WO2022153262A1 (en) | 2021-01-18 | 2022-07-21 | Anton Frenkel | Pharmaceutical dosage form |
WO2022200461A1 (en) | 2021-03-25 | 2022-09-29 | Medincell | Pharmaceutical composition |
WO2022219089A1 (en) | 2021-04-16 | 2022-10-20 | Fondazione Istituto Italiano Di Tecnologia | Polymeric microparticles for the local treatment of chronic inflammatory diseases |
WO2023281406A1 (en) | 2021-07-06 | 2023-01-12 | Mark Hasleton | Treatment of serotonin reuptake inhibitor withdrawal syndrome |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8927529B2 (en) | 2012-01-30 | 2015-01-06 | SpineThera | Treatment of back pain by injection of microparticles of dexamethasone acetate and a polymer |
WO2014153384A1 (en) * | 2013-03-19 | 2014-09-25 | Flexion Therapeutics, Inc. | Corticosteroid formulations for the treatment of joint pain and methods of use thereof |
WO2015018461A1 (en) * | 2013-08-09 | 2015-02-12 | Genbiotech | Therapeutic compositions comprising hyaluronic acid |
CN105764539B (en) * | 2013-11-27 | 2022-03-11 | 伊西康有限责任公司 | Absorbent polymer blend compositions having precisely controllable absorption rates, methods of processing, and dimensionally stable medical devices therefrom |
CN111514108B (en) * | 2014-04-08 | 2022-11-29 | 帝斯曼知识产权资产管理有限公司 | Biodegradable polyesteramides for the treatment of arthritic disorders |
KR20180016732A (en) * | 2015-06-10 | 2018-02-19 | 에보니크 룀 게엠베하 | Process for preparing a powder comprising a human coagulation factor protein and a lactic acid polymer |
US20170100411A1 (en) * | 2015-10-13 | 2017-04-13 | Flexion Therapeutics, Inc. | Corticosteroid formulations for maintaining corticosteroid synovial fluid concentrations |
WO2018112408A1 (en) * | 2016-12-15 | 2018-06-21 | Flexion Therapeutics, Inc. | Fluticasone formulations and methods of use thereof |
CN106727358A (en) * | 2017-01-24 | 2017-05-31 | 广州帝奇医药技术有限公司 | The slow releasing composition of Aripiprazole and its derivative and the preparation method of the slow releasing composition |
CN106983733A (en) * | 2017-03-08 | 2017-07-28 | 江苏富泽药业有限公司 | Triamcinolone acetonide PLGA sustained-release microspheres injections, its preparation method and its application in treatment osteo-arthritic pain medicine is prepared |
WO2018170386A1 (en) * | 2017-03-17 | 2018-09-20 | Flexion Therapeutics, Inc. | Fluticasone extended-release formulations and methods of use thereof |
KR102101969B1 (en) * | 2017-09-06 | 2020-04-22 | (주)인벤티지랩 | Microparticles containing moxidectin and method for manufacturing same |
US20190336511A1 (en) * | 2018-05-02 | 2019-11-07 | Georgiy Brusovanik | Treatment for Inflammation and Pain with Reduced Gastro-Intestinal Side Effects Combining Methylprednisolone, Paracetamol, and Lansoprazole |
RU2703257C1 (en) * | 2018-12-04 | 2019-10-16 | Закрытое акционерное общество "СКАЙ ЛТД" | Method of treating inflammatory processes of joints and prostatitis |
CN109700770B (en) * | 2019-01-31 | 2021-02-12 | 浙江圣兆药物科技股份有限公司 | Triamcinolone acetonide microsphere preparation and preparation method thereof |
EP3943073A4 (en) | 2019-03-19 | 2023-01-04 | Regenbiotech, Inc. | Biodegradable polymer microparticle containing steroid-based drug and preparation method therefor |
KR102377975B1 (en) * | 2019-03-19 | 2022-03-23 | (주)리젠바이오텍 | Biodegradable polymer microparticles containing steroid drugs and a method for manufacturing the same |
CN113795246B (en) * | 2019-05-06 | 2024-10-11 | 福多兹制药公司 | Injectable sustained release formulation for the treatment of joint pain and inflammation |
EP3976106A4 (en) | 2019-05-31 | 2023-01-11 | DOSE Medical Corporation | Bioerodible polyester polymer implants and related methods of use |
CN111803647A (en) * | 2020-08-14 | 2020-10-23 | 山东谷雨春生物科技有限公司 | Medicine for treating degenerative arthritis and preparation method thereof |
EP4313021A1 (en) * | 2021-03-26 | 2024-02-07 | The Regents Of The University Of California | Immunoregulatory microparticles for modulating inflammatory arthritides |
WO2024085581A1 (en) * | 2022-10-17 | 2024-04-25 | (주)인벤티지랩 | Sustained-release injectable composition for treating or preventing inflammatory disease, and method for preparing same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4293539A (en) | 1979-09-12 | 1981-10-06 | Eli Lilly And Company | Controlled release formulations and method of treatment |
WO1995013799A1 (en) | 1993-11-19 | 1995-05-26 | Alkermes Controlled Therapeutics Inc. Ii | Preparation of biodegradable microparticles containing a biologically active agent |
US20070053990A1 (en) * | 2005-09-07 | 2007-03-08 | Southwest Research Institute | Pharmaceutical formulations exhibiting improved release rates |
US7261529B2 (en) | 2005-09-07 | 2007-08-28 | Southwest Research Institute | Apparatus for preparing biodegradable microparticle formulations containing pharmaceutically active agents |
US20070264343A1 (en) * | 2003-09-30 | 2007-11-15 | Acusphere, Inc. | Methods for making and using particulate pharmaceutical formulations for sustained release |
US20080248122A1 (en) * | 2006-10-06 | 2008-10-09 | Baxter International Inc. | Microencapsules Containing Surface-Modified Microparticles And Methods Of Forming And Using The Same |
US7758778B2 (en) | 2005-09-07 | 2010-07-20 | Southwest Research Institute | Methods for preparing biodegradable microparticle formulations containing pharmaceutically active agents |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4530840A (en) * | 1982-07-29 | 1985-07-23 | The Stolle Research And Development Corporation | Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents |
US5700485A (en) * | 1992-09-10 | 1997-12-23 | Children's Medical Center Corporation | Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid |
CA2172508C (en) | 1993-10-22 | 2005-08-23 | Jeffrey L. Cleland | Method for preparing microspheres comprising a fluidized bed drying step |
CA2302569A1 (en) | 1997-09-05 | 1999-03-18 | Maruho Kabushikikaisha | Nanocapsule preparation for treatment of intra-articular diseases |
TW577758B (en) * | 1997-10-27 | 2004-03-01 | Ssp Co Ltd | Intra-articular preparation for the treatment of arthropathy |
JPH11222425A (en) * | 1997-10-27 | 1999-08-17 | Ss Pharmaceut Co Ltd | Intra-articular injection preparation for treating articular disease |
US6726918B1 (en) * | 2000-07-05 | 2004-04-27 | Oculex Pharmaceuticals, Inc. | Methods for treating inflammation-mediated conditions of the eye |
US6824822B2 (en) | 2001-08-31 | 2004-11-30 | Alkermes Controlled Therapeutics Inc. Ii | Residual solvent extraction method and microparticles produced thereby |
US20040043964A1 (en) | 2000-11-06 | 2004-03-04 | Gomi Shun?Apos;Ichi | Cellulosic particle for pharmaceuticals preparation |
KR100446101B1 (en) | 2000-12-07 | 2004-08-30 | 주식회사 삼양사 | Sustained delivery composition for poorly water soluble drugs |
ATE375145T1 (en) | 2000-12-21 | 2007-10-15 | Alrise Biosystems Gmbh | INDUCED PHASE TRANSITION METHOD FOR PRODUCING MICROPARTICLES CONTAINING HYDROPHILIC ACTIVE INGREDIENTS |
US20040022853A1 (en) | 2001-04-26 | 2004-02-05 | Control Delivery Systems, Inc. | Polymer-based, sustained release drug delivery system |
WO2004030659A1 (en) * | 2002-09-30 | 2004-04-15 | Acusphere, Inc. | Sustained release porous microparticles for inhalation |
WO2004034975A2 (en) | 2002-10-17 | 2004-04-29 | Alkermes Controlled Therapeutics, Inc. | Sustained release profile modification |
EP3103422A1 (en) | 2003-03-14 | 2016-12-14 | Intersect ENT, Inc. | Sinus delivery of sustained release therapeutics |
US20040224030A1 (en) * | 2003-05-06 | 2004-11-11 | Shastri Venkatram R. | Microsphere delivery systems |
MXPA05013340A (en) | 2003-06-09 | 2006-03-09 | Nastech Pharm Co | Compositions and methods for enhanced mucosal delivery of growth hormone. |
US7456254B2 (en) * | 2004-04-15 | 2008-11-25 | Alkermes, Inc. | Polymer-based sustained release device |
US8119154B2 (en) | 2004-04-30 | 2012-02-21 | Allergan, Inc. | Sustained release intraocular implants and related methods |
US20090324678A1 (en) * | 2004-07-16 | 2009-12-31 | Spinal Restoration, Inc. | Methods and kits for treating joints and soft tissues |
CA2621395A1 (en) | 2005-09-07 | 2007-03-15 | Southwest Research Institute | Biodegradable microparticle pharmaceutical formulations exhibiting improved release rates |
EP1986603A2 (en) | 2006-01-13 | 2008-11-05 | SurModics, Inc. | Microparticle containing matrices for drug delivery |
US20070298073A1 (en) * | 2006-06-23 | 2007-12-27 | Allergan, Inc. | Steroid-containing sustained release intraocular implants and related methods |
US20080317805A1 (en) * | 2007-06-19 | 2008-12-25 | Mckay William F | Locally administrated low doses of corticosteroids |
WO2009026539A1 (en) * | 2007-08-23 | 2009-02-26 | Genzyme Corporation | Treatment with kallikrein inhibitors |
US20110206773A1 (en) | 2008-05-20 | 2011-08-25 | Yale University | Sustained delivery of drugs from biodegradable polymeric microparticles |
US20110311630A1 (en) | 2008-06-09 | 2011-12-22 | Boehringer Ingelheim International Gmbh | Novel embedment particles for inhalation |
JP5757872B2 (en) * | 2008-09-11 | 2015-08-05 | エボニック コーポレイションEvonik Corporation | Solvent extraction microencapsulation with adjustable extraction rate |
WO2010085609A2 (en) | 2009-01-23 | 2010-07-29 | Surmodics Pharmaceuticals, Inc. | Controlled release systems from polymer blends |
WO2011084518A2 (en) | 2009-12-15 | 2011-07-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising corticosteroids and methods of making and using same |
UA111162C2 (en) | 2010-08-04 | 2016-04-11 | Флекшен Терап'Ютікс, Інк. | INJECTION COMPOSITION OF TRIAMCINOLONE ACETONIDE FOR TREATMENT OF PAIN |
-
2011
- 2011-04-08 UA UAA201301676A patent/UA111162C2/en unknown
- 2011-08-03 TW TW105118771A patent/TWI630001B/en active
- 2011-08-03 TW TW100127548A patent/TWI548412B/en active
- 2011-08-03 UY UY0001033546A patent/UY33546A/en not_active Application Discontinuation
- 2011-08-03 AR ARP110102807A patent/AR082471A1/en unknown
- 2011-08-04 AU AU2011285691A patent/AU2011285691B2/en active Active
- 2011-08-04 CN CN201710992399.XA patent/CN107669640A/en active Pending
- 2011-08-04 EP EP11815323.8A patent/EP2600836B1/en active Active
- 2011-08-04 CN CN201180047943.4A patent/CN103260603B/en active Active
- 2011-08-04 SG SG2013007703A patent/SG187665A1/en unknown
- 2011-08-04 SG SG10201607891VA patent/SG10201607891VA/en unknown
- 2011-08-04 BR BR112013002601A patent/BR112013002601A2/en not_active Application Discontinuation
- 2011-08-04 KR KR1020137004667A patent/KR101927551B1/en active IP Right Grant
- 2011-08-04 MX MX2013001433A patent/MX353466B/en active IP Right Grant
- 2011-08-04 SG SG10201602789XA patent/SG10201602789XA/en unknown
- 2011-08-04 WO PCT/US2011/046601 patent/WO2012019009A1/en active Application Filing
- 2011-08-04 KR KR1020187034479A patent/KR20180132159A/en not_active Application Discontinuation
- 2011-08-04 EP EP20170586.0A patent/EP3701941A1/en not_active Withdrawn
- 2011-08-04 MY MYPI2013000361A patent/MY171929A/en unknown
- 2011-08-04 RU RU2018100114A patent/RU2018100114A/en not_active Application Discontinuation
- 2011-08-04 JP JP2013523336A patent/JP5873492B2/en active Active
- 2011-08-04 ES ES11815323T patent/ES2799419T3/en active Active
- 2011-08-04 CA CA2956556A patent/CA2956556A1/en not_active Abandoned
- 2011-08-04 NZ NZ607797A patent/NZ607797A/en unknown
- 2011-08-04 RU RU2013109362A patent/RU2642279C2/en active
- 2011-08-04 CA CA2807150A patent/CA2807150C/en active Active
-
2012
- 2012-02-08 US US13/368,580 patent/US20120282298A1/en not_active Abandoned
- 2012-03-16 US US13/422,994 patent/US8828440B2/en active Active
-
2013
- 2013-01-31 ZA ZA2013/00831A patent/ZA201300831B/en unknown
- 2013-02-03 IL IL224547A patent/IL224547B/en active IP Right Grant
- 2013-02-04 CL CL2013000347A patent/CL2013000347A1/en unknown
- 2013-03-04 CO CO13043214A patent/CO6700827A2/en unknown
- 2013-12-16 US US14/107,188 patent/US20140242170A1/en not_active Abandoned
-
2014
- 2014-08-18 US US14/461,884 patent/US9555048B2/en active Active
- 2014-08-18 US US14/461,883 patent/US9555047B2/en active Active
-
2015
- 2015-09-09 JP JP2015177143A patent/JP2016028070A/en not_active Ceased
-
2017
- 2017-01-31 US US15/420,829 patent/US20170135957A1/en not_active Abandoned
- 2017-03-15 US US15/459,961 patent/US9949987B2/en active Active
-
2018
- 2018-03-27 US US15/937,053 patent/US10624905B2/en active Active
- 2018-11-29 JP JP2018223009A patent/JP2019059752A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4293539A (en) | 1979-09-12 | 1981-10-06 | Eli Lilly And Company | Controlled release formulations and method of treatment |
WO1995013799A1 (en) | 1993-11-19 | 1995-05-26 | Alkermes Controlled Therapeutics Inc. Ii | Preparation of biodegradable microparticles containing a biologically active agent |
US20070264343A1 (en) * | 2003-09-30 | 2007-11-15 | Acusphere, Inc. | Methods for making and using particulate pharmaceutical formulations for sustained release |
US20070053990A1 (en) * | 2005-09-07 | 2007-03-08 | Southwest Research Institute | Pharmaceutical formulations exhibiting improved release rates |
US7261529B2 (en) | 2005-09-07 | 2007-08-28 | Southwest Research Institute | Apparatus for preparing biodegradable microparticle formulations containing pharmaceutically active agents |
US7758778B2 (en) | 2005-09-07 | 2010-07-20 | Southwest Research Institute | Methods for preparing biodegradable microparticle formulations containing pharmaceutically active agents |
US20080248122A1 (en) * | 2006-10-06 | 2008-10-09 | Baxter International Inc. | Microencapsules Containing Surface-Modified Microparticles And Methods Of Forming And Using The Same |
Non-Patent Citations (4)
Title |
---|
ECKSTEIN F ET AL.: "Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment", OSTEOARTHRITIS CARTILAGE, vol. 14, 2006, pages 46 - 75, XP005505328, DOI: doi:10.1016/j.joca.2006.02.026 |
LO GH ET AL.: "Bone marrow lesions in the knee are associated with increased local bone density", ARTHRITIS RHEUM, vol. 52, 2005, pages 2814 - 21 |
LO GH ET AL.: "The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis", OSTEOARTHRITIS CARTILAGE, vol. 14, 2006, pages 984 - 90, XP005631270, DOI: doi:10.1016/j.joca.2006.04.010 |
See also references of EP2600836A4 |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10624905B2 (en) | 2010-08-04 | 2020-04-21 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
US9949987B2 (en) | 2010-08-04 | 2018-04-24 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
US9555048B2 (en) | 2010-08-04 | 2017-01-31 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
US9555047B2 (en) | 2010-08-04 | 2017-01-31 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
US10406161B2 (en) | 2011-04-25 | 2019-09-10 | Shandong Luye Pharmaceutical Co., Ltd. | Risperidone sustained release microsphere composition |
US10098882B2 (en) | 2011-04-25 | 2018-10-16 | Shandong Luye Pharmaceutical Co., Ltd. | Risperidone sustained release microsphere composition |
US11110094B2 (en) | 2011-04-25 | 2021-09-07 | Shandong Luye Pharmaceutical Co., Ltd. | Risperidone sustained release microsphere composition |
AU2012290683B2 (en) * | 2011-08-04 | 2017-07-13 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
EP3281631A1 (en) * | 2011-08-04 | 2018-02-14 | Flexion Therapeutics, Inc. | Corticosteroids for the treatment of joint pain |
EP2739287A4 (en) * | 2011-08-04 | 2015-03-18 | Flexion Therapeutics Inc | Corticosteroids for the treatment of joint pain |
US11364251B2 (en) | 2013-01-23 | 2022-06-21 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
WO2014116876A1 (en) * | 2013-01-23 | 2014-07-31 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation comprising an insoluble corticosteroid and a soluble corticosteroid |
US9833460B2 (en) | 2013-01-23 | 2017-12-05 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
US10744144B2 (en) | 2013-01-23 | 2020-08-18 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
US12016867B2 (en) | 2013-01-23 | 2024-06-25 | Semnur Pharmaceuticals, Inc. | Methods of treating inflammation and/or pain |
EP2968184A4 (en) * | 2013-03-15 | 2016-09-07 | Oakwood Lab Llc | Sustained release microspheres and method of producing the same |
CN105705141A (en) * | 2013-03-15 | 2016-06-22 | 奥克伍德实验室有限责任公司 | Sustained release microspheres and method of producing the same |
US9956177B2 (en) | 2013-03-15 | 2018-05-01 | Oakwood Laboratories LLC | Sustained release microspheres and method of producing same |
CN105705141B (en) * | 2013-03-15 | 2018-12-28 | 奥克伍德实验室有限责任公司 | Sustained-release micro-spheres and preparation method thereof |
US11219604B2 (en) | 2013-03-21 | 2022-01-11 | Eupraxia Pharmaceuticals USA LLC | Injectable sustained release composition and method of using the same for treating inflammation in joints and pain associated therewith |
JP2019214588A (en) * | 2013-03-21 | 2019-12-19 | ユープラシア ファーマシューティカルズ ユーエスエー エルエルシーEupraxia Pharmaceuticals Usa Llc | Injectable sustained release composition and method of using the same for treating inflammation in joints and pain associated therewith |
JP2016514728A (en) * | 2013-03-21 | 2016-05-23 | ユープラシア ファーマシューティカルズ ユーエスエー エルエルシーEupraxia Pharmaceuticals Usa Llc | Injectable sustained-release composition for treating joint inflammation and associated pain and methods of use thereof |
JP2018052941A (en) * | 2013-03-21 | 2018-04-05 | ユープラシア ファーマシューティカルズ ユーエスエー エルエルシーEupraxia Pharmaceuticals Usa Llc | Injectable sustained release composition and method of using the same for treating inflammation in joints and pain associated therewith |
US10500284B2 (en) | 2015-01-21 | 2019-12-10 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
US10117938B2 (en) | 2015-01-21 | 2018-11-06 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
US11020485B2 (en) | 2015-01-21 | 2021-06-01 | Semnur Pharmaceuticals, Inc. | Pharmaceutical formulation |
EP4331570A1 (en) | 2015-09-21 | 2024-03-06 | Teva Pharmaceuticals International GmbH | Sustained release olanzapine formulations |
WO2017053346A1 (en) | 2015-09-21 | 2017-03-30 | Teva Pharmaceuticals International Gmbh | Sustained release olanzapine formulations |
US11351124B2 (en) | 2015-10-27 | 2022-06-07 | Eupraxia Pharmaceuticals Inc. | Sustained release of formulations of local anesthetics |
WO2017160818A1 (en) | 2016-03-14 | 2017-09-21 | Flexion Therapeutics, Inc. | Triamcinolone acetonide formulations for joint pain in diabetics |
US10646443B2 (en) | 2017-03-20 | 2020-05-12 | Teva Pharmaceuticals International Gmbh | Sustained release olanzapine formulations |
WO2018172850A1 (en) | 2017-03-20 | 2018-09-27 | Teva Pharmaceuticals International Gmbh | Sustained release olanzapine formulaitons |
US11813359B2 (en) | 2017-03-20 | 2023-11-14 | Teva Pharmaceuticals International Gmbh | Sustained release olanzapine formulations |
WO2020014118A1 (en) * | 2018-07-09 | 2020-01-16 | Taiwan Liposome Co., Ltd. | Methods to reduce complications of intra-articular steroid |
US12083138B2 (en) | 2018-07-09 | 2024-09-10 | Taiwan Liposome Co., Ltd. | Methods to reduce complications of intra-articular steroid |
CN110237052B (en) * | 2019-07-11 | 2021-07-13 | 苏州大学 | Triamcinolone acetonide acetate sustained-release microsphere and preparation method thereof |
CN110237052A (en) * | 2019-07-11 | 2019-09-17 | 苏州大学 | A kind of triamcinolone acetonide acetate sustained-release micro-spheres and preparation method thereof |
WO2022153262A1 (en) | 2021-01-18 | 2022-07-21 | Anton Frenkel | Pharmaceutical dosage form |
WO2022200461A1 (en) | 2021-03-25 | 2022-09-29 | Medincell | Pharmaceutical composition |
WO2022219089A1 (en) | 2021-04-16 | 2022-10-20 | Fondazione Istituto Italiano Di Tecnologia | Polymeric microparticles for the local treatment of chronic inflammatory diseases |
WO2023281406A1 (en) | 2021-07-06 | 2023-01-12 | Mark Hasleton | Treatment of serotonin reuptake inhibitor withdrawal syndrome |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10624905B2 (en) | Corticosteroids for the treatment of joint pain | |
AU2017245408A1 (en) | Corticosteroids For The Treatment Of Joint Pain | |
AU2015268647B2 (en) | Corticosteroids for the Treatment of Joint Pain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11815323 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2807150 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013523336 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12013500215 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013000347 Country of ref document: CL |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/001433 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137004667 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011815323 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013109362 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201301676 Country of ref document: UA |
|
ENP | Entry into the national phase |
Ref document number: 2011285691 Country of ref document: AU Date of ref document: 20110804 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013002601 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013002601 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130201 |