WO2012076728A1 - Hppe member and method of making a hppe member - Google Patents
Hppe member and method of making a hppe member Download PDFInfo
- Publication number
- WO2012076728A1 WO2012076728A1 PCT/EP2011/072493 EP2011072493W WO2012076728A1 WO 2012076728 A1 WO2012076728 A1 WO 2012076728A1 EP 2011072493 W EP2011072493 W EP 2011072493W WO 2012076728 A1 WO2012076728 A1 WO 2012076728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hppe
- medical
- radiopaque
- radiopaque component
- polyethylene
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- -1 polyethylene Polymers 0.000 claims abstract description 49
- 239000004698 Polyethylene Substances 0.000 claims abstract description 48
- 229920000573 polyethylene Polymers 0.000 claims abstract description 43
- 230000008439 repair process Effects 0.000 claims abstract description 40
- 239000002245 particle Substances 0.000 claims abstract description 36
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 35
- 239000007943 implant Substances 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 29
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 27
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 15
- 230000005855 radiation Effects 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 7
- 238000010791 quenching Methods 0.000 claims description 6
- 239000004753 textile Substances 0.000 claims description 6
- 206010039722 scoliosis Diseases 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 230000003073 embolic effect Effects 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 210000003709 heart valve Anatomy 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 28
- 238000010276 construction Methods 0.000 description 20
- 238000002474 experimental method Methods 0.000 description 20
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 17
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Inorganic materials [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 6
- 238000001891 gel spinning Methods 0.000 description 6
- 238000002386 leaching Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- PXXNTAGJWPJAGM-VCOUNFBDSA-N Decaline Chemical compound C=1([C@@H]2C3)C=C(OC)C(OC)=CC=1OC(C=C1)=CC=C1CCC(=O)O[C@H]3C[C@H]1N2CCCC1 PXXNTAGJWPJAGM-VCOUNFBDSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 229910000014 Bismuth subcarbonate Inorganic materials 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 229940073609 bismuth oxychloride Drugs 0.000 description 1
- MGLUJXPJRXTKJM-UHFFFAOYSA-L bismuth subcarbonate Chemical compound O=[Bi]OC(=O)O[Bi]=O MGLUJXPJRXTKJM-UHFFFAOYSA-L 0.000 description 1
- 229940036358 bismuth subcarbonate Drugs 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/041—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/12—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
- D01F11/123—Oxides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/12—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
- D01F11/127—Metals
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/47—Oxides or hydroxides of elements of Groups 5 or 15 of the Periodic Table; Vanadates; Niobates; Tantalates; Arsenates; Antimonates; Bismuthates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2927—Rod, strand, filament or fiber including structurally defined particulate matter
Definitions
- the invention relates to a high performance polyethylene (HPPE) member. More particularly, the invention relates to a radiopaque HPPE member.
- HPPE high performance polyethylene
- the invention relates to a method of making a radiopaque HPPE member and applications of a radiopaque HPPE member.
- High performance polyethylene is widely used in medical devices such as sutures, cables, meshes etc, many of which is used in minimally invasive surgery. There is hence a desire to verify the position of the medical device in applications where visual inspection is not possible during or after surgery.
- X-rays are commonly used for visualization of other types of medical devices comprising metal parts, however, HPPE absorbs substantially the same amount of x-rays as soft human tissue and HPPE members are traditionally hence not visible using x-ray visualization techniques.
- Various approaches have been attempted to introduce radiopacity into medical devices comprising HPPE including impregnation with solutions of radiopaque salts such as BaS0 4 followed by drying, incorporation of a metal wire in the
- WO 2009/115291 discloses an implant, which may comprise
- the implant also may comprise tantalum metal fiber.
- the improvement may for example be one or more of increased radiopacity combined with substantially the same ultimate tensile strength of the HPPE member; an improved mechanical property of the HPPE member; or another feature of the invention.
- HPPE high performance polyethylene
- HPPE member comprises at least 5 wt-% of a radiopaque component
- the HPPE member is biocompatible and the radiopaque component is a particulate.
- the radiopaque component is at least partially arranged inside a HPPE filament of the HPPE member, and the radiopaque component has a particle size of at most 1 ⁇ , preferably the radiopaque component has a particle size of at most ⁇ . ⁇ .
- the HPPE members possessed a strength of about the same as a HPPE member with the same amount of polyethylene and in other words, that adding the radiopaque component did not deteriorate the performance of the member even at high contents of radiopaque component in HPPE members comprising thin filaments.
- one or more of the above and/or other objects of the invention are realised by a method of manufacturing a HPPE member, which method comprises the steps of
- polyethylene is a UHMWPE
- a radiopaque particulate component is added into the extruder in an amount of at least 5 wt% of the combination of polyethylene and radiopaque component.
- a medical repair product or implant comprising a HPPE member according to the first aspect of the invention wherein the medical repair product or implant is a medical suture, a medical cable, a laminar wire, a (scoliosis) tether, a (stent) graft, a heart valve, an intervertebral disc, a medical mesh, or a pacing lead.
- the medical repair product or implant is a medical suture, a medical cable, a laminar wire, a (scoliosis) tether, a (stent) graft, a heart valve, an intervertebral disc, a medical mesh, or a pacing lead.
- the medical repair product according to the invention exhibited substantially the same or similar mechanical properties as a medical device with another type of HPPE member but with the added feature that the medical repair product is radiopaque and that the position of the medical repair product hence may be determined by x-ray.
- HPPE High Performance Polyethylene, which is stretched polyethylene with a Young's modulus (also referred to as E- modulus or just modulus) of at least 30 GPa.
- HPPE may for example be prepared by a meltspinning process (as for example disclosed in EP1445356), by solid state process (as for example disclosed in EP1627719) or by gelspinning (as for example disclosed in WO 2005/066401). Typically, stretching of the member is required to realize sufficient Young's modulus and/or strength.
- Preferred types of HPPE are meltspun and gelspun HPPE, which have been stretched to increase the Young's modulus to at least 100 GPa.
- HPPE gelspun ultra high molecular weight polyethylene (UHMWPE) yarns with a Young's modulus of at least 100 GPa, as such yarn allows for manufacturing of medical devices with very low profile (e.g. very small size such as cross sectional size of HPPE element, like wall thickness of a catheter or a (stent) graft or diameter of a suture or a cable).
- UHMWPE ultra high molecular weight polyethylene
- polyethylene members are often prepared by molding or extrusion of (UHMW) polyethylene powder followed by treatment with ionizing radiation to introduce cross linking between polyethylene molecules. This may lead to a tougher member but strongly reduces the strength and stiffness of the member.
- the Young's modulus of cross linked polyethylene are below 2 GPa (see for example S.M. Kurtz, The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement, Academic Press, New York (2009) 2nd edition or Medel, FJ; Pena, P; Cegonino, J; Gomez-Barrena, E; Puertolas, JA; Comparative Fatigue Behavior and Toughness of Remelted and Annealed Highly Crosslinked Polyethylenes; Inc.
- polyethylene members like gel spun UHMWPE members, as the radiation leads to chain scissoring and due to the stretched molecules disintegration or at least considerable reduction in strength of the member.
- HPPE member according to the invention may be a
- the HPPE member is a multifilament yarn or a sheet, tape or film, as this allows for manufacturing a wide range of medical repair products, implants and medical devices as described elsewhere herein.
- the HPPE member is a HPPE yarn having an ultimate tensile strength of at least 1.5 GPa, more preferably at least 2.5 GPa, more preferably at least 3.0 GPa, more preferably at least 3.5 GPa, and most preferably at least 4.0 GPa.
- ultimate tensile strength like at least 3.0, 3.5 and 4.0 GPa highly superior medical devices can be obtained, such as sutures, that combines high strength with very small size (diameter) and radiopacity.
- Ultimate tensile strength also simply referred to as strength or tenacity of such fibres are determined by known methods based on ASTM D885-85 or D2256-97.
- HPPE fibres typically are of tenacity at most about 5 GPa to 6 GPa.
- the HPPE members also have a high tensile modulus (also referred to as Young's modulus). It is preferred that the HPPE member has a Young's modulus of at least 70 GPa, preferably at least 100 GPa or at least 125 GPa.
- HPPE fibres are also sometimes referred to as high-modulus polyethylene fibres.
- HPPE fibres can be prepared by spinning of a solution of ultrahigh molecular weight polyethylene (UHMWPE) in a suitable solvent into gel fibres and drawing the fibres before, during and/or after partial or complete removal of the solvent; that is via a so-called gel-spinning process.
- UHMWPE ultrahigh molecular weight polyethylene
- Gel spinning of a solution of UHMWPE is well known to the skilled person; and is described in numerous publications, including EP 0205960 A, EP 0213208 A1 , US 4413110, GB 2042414 A, EP 0200547 B1 , EP 0472114 B1 , WO 01/73173 A1 , and in Advanced Fiber Spinning Technology, Ed. T. Nakajima, Woodhead Publ. Ltd (1994), ISBN 1-855-73182-7, and in references cited therein, all incorporated herein by reference.
- UHMWPE is understood to be polyethylene having an intrinsic viscosity (IV, as measured on solution in decalin at 135°C) of at least 5 dl/g, preferably of between about 8 and 40 dl/g.
- IV intrinsic viscosity
- M n and M w molar mass
- M w 5.37 * 10 4 [IV] 1 37 (see EP 0504954 A1) an IV of 8 dl/g would be equivalent to M w of about 930 kg/mol.
- the UHMWPE is a linear polyethylene with less than one branch per 100 carbon atoms, and preferably less than one branch per 300 carbon atoms; a branch or side chain or chain branch usually containing at least 1 carbon atoms.
- the linear polyethylene may further contain up to 5 mol% of one or more comonomers, such as alkenes like propylene, butene, pentene, 4-methylpentene or octene.
- radiopaque component is herein meant a substance, which has an X-ray absorbance higher than soft human tissue.
- Radiopaque components are known in the art and include metals such as for example gold, silver, steel, tantalum, tungsten; salts and bio ceramics such as BaS0 4 , Bi 2 0 3 , hydroxy apatite, Ca 3 P0 4 , bismuth oxychloride and bismuth subcarbonate. Mixtures of radiopaque components may also be utilized but are not preferred.
- the radiopaque component is a particulate, which here means that it is a solid not soluble or with a very low solubility in polyethylene and in body fluids below 40°C.
- radiopaque components are tantalum and Bi 2 0 3 .
- the radiopaque component should be arranged at least partially inside a HPPE filament of the HPPE member. It could be theorized that this will reduce interaction between the radiopaque component and the body as well as prevent that the x-ray image of the HPPE member will be blurred by migration away from the HPPE member of radiopaque component during use.
- the particle size of the radiopaque component was found to be highly important for the mechanical properties of the HPPE member.
- the radiopaque component has a particle size of at most ⁇ . ⁇ .
- the particle size is the diameter of the primary particle established as described elsewhere herein.
- WO 2009/115291 discloses an implant, which may comprise UHMWPE yarn and a metal fiber, which metal fiber is incorporated into a textile structure.
- WO 2009/115291 does not disclose or hint to that the metal may be a particulate.
- a medical implant with a metal fiber is prone to flexfatique breakage and is hence inferior to a medical implant prepared based on a HPPE member according to the present invention.
- the HPPE member being biocompatible is herein meant that the HPPE member comprises less than 100 ppm organic solvent.
- the HPPE member comprises less than 60 ppm organic solvent, and more preferably the HPPE member comprises less than 50 ppm organic solvent.
- the organic solvent may for example be a solvent used in gelspinning or an additive used during the stretching or cleaning procedure, such as a spin finish or an extrudant.
- the HPPE member passes biological testing selected and conducted according to ISO 10993-1 : 2009 (Biological evaluation of medical devices - Part 1 : Evaluation and testing within a risk
- the radiopaque component has a particle size of at least ⁇ . ⁇ , and preferably the particle size is at least 0.075 ⁇ as this reduces the numbers of particles to realize suitable radiopacity of the HPPE member as well as reduces the bioactivity of the particulates. It was found that for particle size above ⁇ . ⁇ - and particularly for particle size above 0.075 ⁇ - separation of agglomerates particulates could be readily obtained during mixing step of gel spinning when utilizing Bi 2 0 3 or tantalum as radiopaque component.
- Powders with sub-micron particles are usually agglomerated into larger clusters. It is important that such clusters to a large extent are broken up into the individual particles in order to be able to achieve high concentrations of particles in the HPPE members. This may for example be achieved by use of a stabilizer like OLOA combined with sufficient mechanical action for example by a dissolver disk, grinding or via ultrasonic vibration. Furthermore, it was found that the process of preparing the HPPE member itself (e.g. the mixing and extrusion steps in gelspinning) was also very efficient in separating the agglomerated particles into the primary particles.
- particle size is herein meant average particle diameter of the primary particles as measured by a Zetasizer nano after sonication in a sonics vibracell of the radiopaque particulate in decaline with 1 % OLOA 1200.
- the suitable X-ray linear attenuation coefficient of the HPPE member according to the invention depends on the application of the HPPE member. However, for multifilament yarns it was found to be highly advantageous to have an X-ray linear attenuation coefficient of at least 1 cm "1 for 40 keV X-ray radiation, as this allowed to prepare sutures, cables and other constructions, which are radiopaque towards soft tissue without requiring very high thickness of the construction.
- a medical cable of 5mm diameter would have an x-ray absorbance similar to that of ca. 20mm soft tissue.
- a multifilament yarns with an X-ray linear attenuation coefficient of at least 5 cm "1 for 40 keV X-ray radiation which corresponds to a content of about 30 wt% Bi 2 0 3 .
- a medical suture having a diameter of 0.5mm would have an X-ray absorbance similar to that of ca. 9mm soft tissue.
- multifilament yarns with an X-ray linear attenuation coefficient of at least 10 cm "1 for 50 keV X-ray radiation, which corresponds to a content of about 62 wt% Bi 2 0 3 .
- a medical suture having a diameter of only 0.1 mm would have an X-ray absorbance similar to that of ca. 2mm bone.
- HPPE member is a multifilament yarn having a filament diameter of less than 18 ⁇ .
- the filament diameter is less than 15 ⁇ and more preferably the filament diameter is less than 12 ⁇ such as less than 9 ⁇ .
- the smaller diameter allows for more filaments per multifilament yarn for the same size of the multifilament yarn, which was found to be more advantageous in realizing reduced sensitivity to filament breakage and a more even X-ray absorbance.
- the filament diameter is at least 5 ⁇ , as thinner filaments require very fine radiopaque particles to prevent substantial reduction of strength as compared to the filament without radiopaque particles.
- diameter is herein meant the diameter of a circle with the same area as the cross section the filament orthogonal to the length of the filament. The diameter of the filaments is measured by scanning electron microscope.
- the HPPE member when the HPPE member is a multifilament yarn, the HPPE member according to the invention may comprise yarns of any linear density, however, multifilament yarns according to the invention are particularly advantageous when the linear density is relatively low.
- the linear density of the polyethylene part of the yarn is at most 500 dtex, more preferably at most 120 dtex, more preferably at most 50 dtex. Extreme low linear density of the polyethylene part of the yarn is also feasible such as linear density of the polyethylene part of the yarn below 25 dtex.
- the linear density of such HPPE multifilament yarns including polyethylene and radiopaque component may for example be at most 2000 dtex, more preferably at most 1000 dtex, more preferably at most 500 dtex, such as at most 100 dtex.
- the content of the radiopaque component deviates less than 2% in the length direction of the HPPE member.
- the deviation in radiopaque component was determined as described in the experimental part below.
- Such low variation in content of radiopaque component was found to be highly advantageous particularly for surgical repair products or implants prepared from monofilament but also for surgical repair products, implants and medical devices comprising multifilament yarns.
- the content of the radiopaque component deviates less 1 % in the length direction of the HPPE member.
- Another aspect of the invention concerns a method of manufacturing a HPPE member comprising the steps of preparing a mixture of polyethylene in a solvent.
- the mixture is preferably homogeneous on a micro or a macro scale, however this is not essential as in most cases the mixing continues in the following processing steps.
- the solvent may for example be decalin-based or paraffin-based, where decalin-based solvents are preferred as removing of the solvent is easier for such systems.
- the mixture may also contain additives that are customary for such processes, such as anti-oxidants, thermal stabilizers, antistatics, colorants, etc., up to 15 wt%, preferably 0-10 wt%.
- the mixture is then fed to an extruder, such as a double screw extruder, and a polyethylene member is extruded into an air gap, whereafter the polyethylene member is cooled in a quench bath.
- the polyethylene member is then stretched before, during or after removing at least a part of the solvent from the polyethylene member.
- the solvent may for example be removed by heating leading to evaporation of the solvent or by extruding with an extrusion solvent followed by removal of the extrusion solvent.
- the type of polyethylene and particularly the molecular weight may vary, but the best results were obtained for UHMWPE as this allows for manufacturing of HPPE exhibiting very high strength.
- a radiopaque particulate component were added into the extruder
- radiopaque component (optionally as a component in the mixture comprising polyethylene and solvent) in an amount of at least 5 wt% of the combination of polyethylene and radiopaque component.
- the amount of radiopaque particulate may be considerably higher than 5 wt%, such as at least 15 wt%, at least 25 wt%, at least 35 wt% or even at least 50 wt%. It was found that the concentration of the radiopaque component preferably should be less than about 80 wt% as the mechanical properties such as ultimate tensile strength, decreased rapidly for higher contents. In one embodiment, the concentration of the radiopaque component is less than about 60 wt%.
- the content of radiopaque component is measured by thermogravimetry.
- the radiopaque component should be a particulate having a particle size of at most 1 ⁇ , and preferably the particle size is at most ⁇ . ⁇ the radiopaque as discussed elsewhere herein.
- the radiopaque component may have a particle size of at least ⁇ . ⁇ , and preferably a particle size is at least 0.075 ⁇
- the radiopaque component may be added as (dry) solid powder or as stable mixture of one or more solvents and preferably the one or more solvents is also the solvent for preparation of the mixture of polyethylene and solvent.
- stable mixture is here meant that the radiopaque component settles very slow to that no substantial variation in concentration exists in the mixture within two hours. This may for example be realized by adding a surfactant in which case it is highly preferred that the surfactant is FDA approved to reduce the risk of the surfactant being not biocompatible.
- the radiopaque component may be added by feeding to the mixture comprising UHMWPE and solvent or it may be added directly into the extruder. If added directly into the extruder (without first mixing into the mixture of polyethylene and solvent), then it is preferred that the radiopaque component is added as a stable mixture as described above.
- the HPPE member is a sheet, a tape or a film.
- Such sheets, tapes or films may be for example produced by feeding the (UHMW)PE and a radiopaque component to an extruder, extruding a sheet, a tape or a film at a temperature above the melting point of the PE and drawing the extruded polymeric sheet, tape or film unidirectionally or biaxially.
- the PE and the radiopaque component may be mixed with a suitable liquid organic compound such as for example decaline or parafin, for instance to form a gel, such as is preferably the case when using
- UHMWPE Ultra High Density Polyethylene
- Another way for producing such sheets, tapes or films is via a solid state process comprising the steps of calendaring powdered PE and radiopaque component at elevated temperature to form a coherent sheet, tape or film, followed by stretching the sheet, tape or film unidirectionally or biaxially.
- Sheets, tapes and films are highly suitable for manufacturing of medical repair products or implants such as for example stent grafts and (heart) valves.
- the HPPE member tape or film is a porous membrane.
- the medical repair product or implant is preferably a medical suture, a medical cable, a laminar wire, a (scoliosis) tether, a (stent) graft, a heart valve, an intervertebral disc, a distal / embolic protection device, a medical mesh or a pacing lead.
- a medical suture preferably a medical suture, a medical cable, a laminar wire, a (scoliosis) tether, a (stent) graft, a heart valve, an intervertebral disc, a distal / embolic protection device, a medical mesh or a pacing lead.
- the medical repair product or implant comprises at least 50 weight-% HPPE members and preferably HPPE members according to the first aspect of the invention.
- the elongated medical repair product or implant comprises at least 80 weight-% HPPE members and most preferably the elongated medical repair product or implant comprises at least 90 weight-% HPPE members.
- the rest of the medical repair product or implant may for example be another polymer, a metal (for example a needle or an (electrical) cable or a wire) or a coating.
- the medical repair product or implant consists of HPPE members according to the invention.
- Such medical repair products may for example be orthopaedic sutures or cables.
- a preferred embodiment concerns a medical repair product that is an elongated medical repair product.
- elongated medical repair products are medical sutures and medical cable (for example for orthopaedic or cardio vascular applications), laminar wires, (scoliosis) tether, (stent) grafts, and a pacing lead.
- At least a part of the medical repair product or implant has an X-ray linear attenuation coefficient of at least 1 cm "1 at 40 keV X-ray radiation, and preferably at least 5 cm "1 at 40 keV X-ray radiation, as this allows for the medical repair product or implant to be observable on an X-ray image.
- a further aspect of the invention concerns medical device comprising a HPPE member according to the first aspect of the invention.
- Preferred examples of such medical devices are medicals balloons, (balloon) catheter, pacing leads, distal / embolic protection devices and textile such as operation gloves and (radiation) protective garment.
- the medical devices (as well as medical repair products and implants) according to the invention may consist of or consist substantially of the HPPE member according to the invention, such as forming more than 95 wt% the product.
- the HPPE member according to the invention only forms a minor part of the medical devices, medical repair products or implants (such as for example less than 10 wt% of the product) for example as X-ray marker whereas other parts of the medical devices, medical repair products or implants may be formed by other materials including for example non- radiopaque HPPE.
- HPPE member is medical grade as in many cases, smaller traces of solvent and/or spin finish may be acceptable for non-implant applications.
- Such textiles may for example be highly advantageous for surgeons having to work under X-ray during procedure or for personnel working permanently with X-ray equipment.
- the invention concerns a textile construction comprising a HPPE yarn according to the invention and the textile construction contains no metal fiber.
- a suspension of radiopaque component (bismuth-trioxide, Sigma- Aldrich, ⁇ 100nm) in decalin was prepared containing 50wt% Bi 2 0 3 .
- Particle size of the radiopaque component was measured using a Zetasizer nano after sonication in a sonics vibracell of the radiopaque particulate in decaline with 1 % OLOA 1200 to be 0.082 ⁇ .
- Different amounts of the suspension of radiopaque component was added to a slurry containing decalin, UHMWPE powder, and mixed. The resulting mixtures contained 2, 10, 30 and 50 wt% of Bi 2 0 3 with respect to total solid weight (i.e.
- the mixtures were fed to a twin screw extruder.
- the UHMWPE was dissolved in the decalin and the so obtained mixture of the UHMWPE dissolved in the decalin and homogeneously distributed Bi 2 0 3 was extruded through a spin plate into and air gap, and cooled in a quench bath. Thereafter the solvent was removed during multistage stretching of the yarn whereby HPPE members according to the invention was obtained.
- the content of decalin in the HPPE multifilament yarns after manufacturing was 40-60 ppm.
- Table 1 Content of radiopaque component in HPPE members.
- a slurry containing decalin, UHMWPE powder and a surfactant was mixed.
- the resulting mixture was fed to a twin screw extruder.
- the UHMWPE was dissolved in the decalin and the so obtained mixture of the UHMWPE dissolved in the decalin was extruded through a spin plate into and air gap, and cooled in a quench bath. Thereafter the solvent was removed during multistage stretching of the yarn whereby HPPE members without radiopaque component was obtained.
- Ultimate tensile strength, Young's modulus and elongation-at-break were measured by a procedure derived from ASTM D 885, ASTM D 2256 and ISO 2062 and optimized for HPPE yarns.
- a gauge length of the yarn of 500 mm was used, a pre-tension (in Newton) of 0.2% of the yarn linear density (in dtex), a crosshead speed of half the gauge length per minute and pneumatic yarn grips from the Instron type CP103684 with Instron 1498K stainless steel faces.
- the modulus is determined as the gradient between 0.3 and 1 % strain.
- the tensile forces measured are divided by the yarn linear density, as determined by ASTM D 1907.
- Values in GPa are calculated assuming a density of 0.97 g/cm 3 for UHMWPE and 8.9 g/cm 3 for Bi 2 0 3 . Results are presented in Table 2.
- the deviation in radiopaque component was determined by measuring the content of radiopaque component by thermogravimetry for four samples of 1 g, where the samples were sampled with 100m distance in the length direction of the HPPE member. Thermo gravimetric analysis was done by heating the yarns under helium at 20°C/min up to 800°C and determining the residual weight, corresponding to the Bi 2 0 3 mass in the yarn. Thereafter the mean content of radiopaque component was calculated and the deviation for each sample to the mean content was calculated as a percentage of the mean content.
- the radiopaque component (here Bi 2 0 3 ) is observed as a light spots.
- an enlarged image of another filament is shown. It is observed that the radiopaque component mainly is evenly distributed inside the filament as individual particles separated by and fully enclosed in the dark (almost not scattering) colored polyethylene phase.
- a view of a similar filament seen from the side is shown. Also here, it is observed that the radiopaque component is distributed in throughout the filament lengthwise and cross sectional. It should be noticed that the backscatter technique used here only has limited sensitive to dept and hence backscatter from the radiopaque particles inside the filament will also be observed.
- Radiopacity was measured on a Siemens Axiom Aristos FX Plus at 50kV, 2.5mAs.
- the multi sample piece had a range of HPPE members from single multifilament yarn (sample 4) and constructions of multifilament yarns twisted together of increasing linear density.
- Sample 1 (not visible) is the yarn of Experiment 1 (2.2wt% Bi 2 0 3 ) having a linear density of 1 10dtex.
- Sample 4 is a single multifilament yarn of Experiment 4 (20.6 wt% Bi 2 0 3 )
- Sample 6-1 is two multifilament yarns of Experiment 3 (7.5 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 6-2 is two multifilament yarns of Experiment 4 (20.6 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 7-1 (not visible) is a construction of four multifilament yarns of
- Sample 7-2 (not visible) is construction of four multifilament yarns of
- Sample 8-1 (not visible) is a construction of four multifilament yarns of
- Sample 8-2 (not visible) is construction of four multifilament yarns of
- Sample 9-1 is a construction of eight multifilament yarns of Experiment 1 (2.2 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 9-2 is construction of eight multifilament yarns of Experiment 2 (3.3 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 10-1 is a construction of eight multifilament yarns of Experiment 3 (7.5 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 10-2 is construction of eight multifilament yarns of Experiment 4 (20.6 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 11-1 is a construction of sixteen multifilament yarns of Experiment 1 (2.2 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 11-2 is construction of sixteen multifilament yarns of Experiment 2 (3.3 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 12-1 is a construction of sixteen multifilament yarns of Experiment 3 (7.5 wt% Bi 2 0 3 ) each having a linear density of 1 10 dtex.
- Sample 12-2 is construction of sixteen multifilament yarns of Experiment 4.
- a radiopaque component (BaS0 4 , Sachtleben nano, primary particle size 50-100nm) was utilized. Different amounts of the radiopaque component was added to a slurry containing decalin, UHMWPE powder, and mixed. The resulting mixtures contained 0, 10, 20 and 30 wt% of BaS0 4 with respect to total solid weight (i.e. UHMWPE and radiopaque particulate), respectively.
- the mixtures were fed to a twin screw extruder.
- the UHMWPE was dissolved in the decalin and the so obtained mixture of the UHMWPE dissolved in the decalin and BaS0 4 was extruded through a spin plate into and air gap, and cooled in a quench bath. Thereafter the solvent was removed during multistage stretching of the yarn.
- Ultimate tensile strength, Young's modulus and elongation-at-break were measured by a procedure derived from ASTM D 885, ASTM D 2256 and ISO 2062 and optimized for HPPE yarns.
- a gauge length of the yarn of 500 mm was used, a pre-tension (in Newton) of 0.2% of the yarn linear density (in dtex), a crosshead speed of half the gauge length per minute and pneumatic yarn grips from the Instron type CP103684 with Instron 1498K stainless steel faces.
- the modulus is determined as the gradient between 0.3 and 1 % strain.
- the tensile forces measured are divided by the yarn linear density, as determined by ASTM D 1907. Results are presented in Table 5.
- Radiopacity of yarns of Examples 1 1-16 were investigated and the radiopacity appeared to be much lower than the radiopacity of Samples comprising An individual feature or combination of features from an embodiment of the invention described herein, as well as obvious variations thereof, are
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Materials For Medical Uses (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180067282.1A CN103354826B (en) | 2010-12-10 | 2011-12-12 | HPPE component and the method preparing HPPE component |
ES11796685.3T ES2605369T3 (en) | 2010-12-10 | 2011-12-12 | HPPE member and method of manufacturing an HPPE member |
US13/992,342 US9687593B2 (en) | 2010-12-10 | 2011-12-12 | HPPE member and method of making a HPPE member |
DK11796685.3T DK2649122T3 (en) | 2010-12-10 | 2011-12-12 | Hppe element and method of producing a hppe element |
JP2013542574A JP5835596B2 (en) | 2010-12-10 | 2011-12-12 | HPPE member and method of manufacturing HPPE member |
EP11796685.3A EP2649122B1 (en) | 2010-12-10 | 2011-12-12 | Hppe member and method of making a hppe member |
BR112013014435A BR112013014435A2 (en) | 2010-12-10 | 2011-12-12 | hppe member and method of preparing an hppe member |
HK14102570.8A HK1189613A1 (en) | 2010-12-10 | 2014-03-14 | Hppe member and method of making a hppe member hppe hppe |
US15/610,190 US10485900B2 (en) | 2010-12-10 | 2017-05-31 | HPPE member and method of making a HPPE member |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42171410P | 2010-12-10 | 2010-12-10 | |
US61/421,714 | 2010-12-10 | ||
EP10194439.5 | 2010-12-10 | ||
EP10194439 | 2010-12-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/992,342 A-371-Of-International US9687593B2 (en) | 2010-12-10 | 2011-12-12 | HPPE member and method of making a HPPE member |
US15/610,190 Continuation US10485900B2 (en) | 2010-12-10 | 2017-05-31 | HPPE member and method of making a HPPE member |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012076728A1 true WO2012076728A1 (en) | 2012-06-14 |
Family
ID=43478184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/072493 WO2012076728A1 (en) | 2010-12-10 | 2011-12-12 | Hppe member and method of making a hppe member |
Country Status (10)
Country | Link |
---|---|
US (2) | US9687593B2 (en) |
EP (1) | EP2649122B1 (en) |
JP (1) | JP5835596B2 (en) |
CN (1) | CN103354826B (en) |
BR (1) | BR112013014435A2 (en) |
DK (1) | DK2649122T3 (en) |
ES (1) | ES2605369T3 (en) |
HK (1) | HK1189613A1 (en) |
PL (1) | PL2649122T3 (en) |
WO (1) | WO2012076728A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019170769A1 (en) | 2018-03-06 | 2019-09-12 | Dsm Ip Assets B.V. | Osteoconductive fibers, medical implant comprising such osteoconductive fibers, and methods of making |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3562663A1 (en) * | 2016-12-29 | 2019-11-06 | DSM IP Assets B.V. | Multilayer composite material and method for manufacturing |
US11541636B2 (en) * | 2016-12-29 | 2023-01-03 | Dsm Protective Materials B.V. | Multilayer composite material and method for manufacturing |
CN109517244A (en) * | 2017-09-20 | 2019-03-26 | 江苏亨通电力电缆有限公司 | Heat resistant type extendible capacity optical fiber composite low-voltage cable |
JP7018300B2 (en) * | 2017-11-28 | 2022-02-10 | 旭化成株式会社 | Agricultural polyolefin multilayer film |
US11813413B2 (en) | 2018-03-27 | 2023-11-14 | St. Jude Medical, Cardiology Division, Inc. | Radiopaque outer cuff for transcatheter valve |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2042414A (en) | 1979-02-08 | 1980-09-24 | Stamicarbon | Dry-spinning polymer filaments |
US4413110A (en) | 1981-04-30 | 1983-11-01 | Allied Corporation | High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore |
EP0205960A2 (en) | 1985-06-17 | 1986-12-30 | AlliedSignal Inc. | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber |
EP0213208A1 (en) | 1985-02-15 | 1987-03-11 | Toray Industries, Inc. | Polyethylene multifilament yarn |
EP0200547B1 (en) | 1985-05-01 | 1991-07-03 | Mitsui Petrochemical Industries, Ltd. | Highly oriented molded article of ultrahigh-molecular-weight polyethylene and process for production thereof |
US5045072A (en) * | 1989-06-13 | 1991-09-03 | Cordis Corporation | Catheter having highly radiopaque, flexible tip |
EP0504954A1 (en) | 1991-02-18 | 1992-09-23 | Dsm N.V. | Microporous film of polyethylene and process for the production thereof |
EP0472114B1 (en) | 1985-01-11 | 1999-04-14 | AlliedSignal Inc. | Shaped polyethylene articles of intermediate molecular weight and high modulus |
WO2001073173A1 (en) | 2000-03-27 | 2001-10-04 | Honeywell International Inc. | High tenacity, high modulus filament |
EP1445356A1 (en) | 2001-08-08 | 2004-08-11 | Toyo Boseki Kabushiki Kaisha | High-strength polyethylene fiber |
WO2005066401A1 (en) | 2004-01-01 | 2005-07-21 | Dsm Ip Assets B.V. | Process for making high-performance polyethylene multifilament yarn |
EP1627719A1 (en) | 2004-08-16 | 2006-02-22 | FMS Enterprises Migun Ltd. | Multilayered polyethylene material and ballistic resistant articles manufactured therefrom |
WO2007019874A1 (en) | 2005-08-18 | 2007-02-22 | Zimmer Gmbh | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles |
WO2009115291A1 (en) | 2008-03-17 | 2009-09-24 | Dsm Ip Assets B.V. | Medical component |
EP2143387A1 (en) * | 2008-07-09 | 2010-01-13 | Tyco Healthcare Group LP | Anastomosis sheath & method of use |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55155659A (en) * | 1979-05-18 | 1980-12-04 | Kinnosuke Furukawa | Preparation of catheter |
NL8006994A (en) * | 1980-12-23 | 1982-07-16 | Stamicarbon | LARGE TENSILE FILAMENTS AND MODULUS AND METHOD OF MANUFACTURE THEREOF. |
US5292584A (en) * | 1991-04-11 | 1994-03-08 | E. I. Du Pont De Nemours And Company | Ultrahigh molecular weight polyethylene and lightly-filled composites thereof |
US5851668A (en) * | 1992-11-24 | 1998-12-22 | Hoechst Celanese Corp | Cut-resistant fiber containing a hard filler |
JPH1052497A (en) * | 1996-08-09 | 1998-02-24 | Sumitomo Bakelite Co Ltd | Medical tube |
US6340367B1 (en) * | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US6077880A (en) * | 1997-08-08 | 2000-06-20 | Cordis Corporation | Highly radiopaque polyolefins and method for making the same |
US6841791B2 (en) * | 1998-12-07 | 2005-01-11 | Meridian Research And Development | Multiple hazard protection articles and methods for making them |
US6200338B1 (en) * | 1998-12-31 | 2001-03-13 | Ethicon, Inc. | Enhanced radiopacity of peripheral and central catheter tubing |
US6599448B1 (en) * | 2000-05-10 | 2003-07-29 | Hydromer, Inc. | Radio-opaque polymeric compositions |
US7608058B2 (en) * | 2002-07-23 | 2009-10-27 | Micrus Corporation | Stretch resistant therapeutic device |
JP2005066354A (en) * | 2004-10-01 | 2005-03-17 | Takiron Co Ltd | Composite osteosynthesis material |
KR101208656B1 (en) * | 2005-07-05 | 2012-12-05 | 디에스엠 아이피 어셋츠 비.브이. | Surgical repair product based on uhmwpe filaments |
CN101370956A (en) * | 2006-01-30 | 2009-02-18 | 变色龙科学公司 | Radiopaque coatings for polymer substrates |
JP5294578B2 (en) * | 2006-10-04 | 2013-09-18 | ユニチカ株式会社 | X-ray contrast composite yarn and X-ray contrast fiber structure |
CA2686533C (en) * | 2007-05-23 | 2015-02-10 | Dsm Ip Assets B.V. | Colored suture |
US7998576B2 (en) * | 2008-02-15 | 2011-08-16 | Unitika Ltd. | Radiopaque monofilament for contrast X-ray radiography |
CN101230499B (en) * | 2008-02-26 | 2010-10-06 | 山东爱地高分子材料有限公司 | Coloured high-strength polyethylene fibre and method for manufacturing same |
CA2736084C (en) * | 2008-09-05 | 2018-01-02 | Richard Elton | Balloon with radiopaque adhesive |
WO2010051488A1 (en) * | 2008-10-30 | 2010-05-06 | R4 Vascular, Inc. | Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure |
JP5475291B2 (en) * | 2009-01-20 | 2014-04-16 | アルフレッサファーマ株式会社 | Fastening aid for bone fastening cable |
AU2010317948B2 (en) * | 2009-11-13 | 2015-07-09 | Dsm Ip Assets B.V. | Metal sputtered monofilament or multifilament HPPE yarns |
-
2011
- 2011-12-12 JP JP2013542574A patent/JP5835596B2/en active Active
- 2011-12-12 DK DK11796685.3T patent/DK2649122T3/en active
- 2011-12-12 US US13/992,342 patent/US9687593B2/en active Active
- 2011-12-12 WO PCT/EP2011/072493 patent/WO2012076728A1/en active Application Filing
- 2011-12-12 PL PL11796685T patent/PL2649122T3/en unknown
- 2011-12-12 ES ES11796685.3T patent/ES2605369T3/en active Active
- 2011-12-12 BR BR112013014435A patent/BR112013014435A2/en not_active Application Discontinuation
- 2011-12-12 EP EP11796685.3A patent/EP2649122B1/en active Active
- 2011-12-12 CN CN201180067282.1A patent/CN103354826B/en active Active
-
2014
- 2014-03-14 HK HK14102570.8A patent/HK1189613A1/en not_active IP Right Cessation
-
2017
- 2017-05-31 US US15/610,190 patent/US10485900B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2042414A (en) | 1979-02-08 | 1980-09-24 | Stamicarbon | Dry-spinning polymer filaments |
US4413110A (en) | 1981-04-30 | 1983-11-01 | Allied Corporation | High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore |
EP0472114B1 (en) | 1985-01-11 | 1999-04-14 | AlliedSignal Inc. | Shaped polyethylene articles of intermediate molecular weight and high modulus |
EP0213208A1 (en) | 1985-02-15 | 1987-03-11 | Toray Industries, Inc. | Polyethylene multifilament yarn |
EP0200547B1 (en) | 1985-05-01 | 1991-07-03 | Mitsui Petrochemical Industries, Ltd. | Highly oriented molded article of ultrahigh-molecular-weight polyethylene and process for production thereof |
EP0205960A2 (en) | 1985-06-17 | 1986-12-30 | AlliedSignal Inc. | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber |
US5045072A (en) * | 1989-06-13 | 1991-09-03 | Cordis Corporation | Catheter having highly radiopaque, flexible tip |
EP0504954A1 (en) | 1991-02-18 | 1992-09-23 | Dsm N.V. | Microporous film of polyethylene and process for the production thereof |
WO2001073173A1 (en) | 2000-03-27 | 2001-10-04 | Honeywell International Inc. | High tenacity, high modulus filament |
EP1445356A1 (en) | 2001-08-08 | 2004-08-11 | Toyo Boseki Kabushiki Kaisha | High-strength polyethylene fiber |
WO2005066401A1 (en) | 2004-01-01 | 2005-07-21 | Dsm Ip Assets B.V. | Process for making high-performance polyethylene multifilament yarn |
EP1627719A1 (en) | 2004-08-16 | 2006-02-22 | FMS Enterprises Migun Ltd. | Multilayered polyethylene material and ballistic resistant articles manufactured therefrom |
WO2007019874A1 (en) | 2005-08-18 | 2007-02-22 | Zimmer Gmbh | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles |
WO2009115291A1 (en) | 2008-03-17 | 2009-09-24 | Dsm Ip Assets B.V. | Medical component |
EP2143387A1 (en) * | 2008-07-09 | 2010-01-13 | Tyco Healthcare Group LP | Anastomosis sheath & method of use |
Non-Patent Citations (3)
Title |
---|
"Advanced Fiber Spinning Technology", 1994, WOODHEAD PUBL. LTD |
MEDEL, FJ; PENA, P; CEGONINO, J; GOMEZ-BARRENA, E; PUERTOLAS, JA: "Comparative Fatigue Behavior and Toughness of Remelted and Annealed Highly Crosslinked Polyethylenes; Inc.", J BIOMED MATER RES PART B: APPL BIOMATER, vol. 83B, 2007, pages 380 - 390 |
S.M. KURTZ: "The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement", 2009, ACADEMIC PRESS |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019170769A1 (en) | 2018-03-06 | 2019-09-12 | Dsm Ip Assets B.V. | Osteoconductive fibers, medical implant comprising such osteoconductive fibers, and methods of making |
Also Published As
Publication number | Publication date |
---|---|
DK2649122T3 (en) | 2016-12-19 |
US10485900B2 (en) | 2019-11-26 |
PL2649122T3 (en) | 2017-02-28 |
CN103354826B (en) | 2015-08-19 |
US20140065419A1 (en) | 2014-03-06 |
EP2649122A1 (en) | 2013-10-16 |
JP2014504315A (en) | 2014-02-20 |
CN103354826A (en) | 2013-10-16 |
BR112013014435A2 (en) | 2016-09-13 |
EP2649122B1 (en) | 2016-08-31 |
HK1189613A1 (en) | 2014-06-13 |
US9687593B2 (en) | 2017-06-27 |
US20170319753A1 (en) | 2017-11-09 |
ES2605369T3 (en) | 2017-03-14 |
JP5835596B2 (en) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10485900B2 (en) | HPPE member and method of making a HPPE member | |
EP4215223B1 (en) | Medical implant component comprising a composite biotextile and method of making | |
JP7315145B2 (en) | Osteoconductive fibers, medical implants containing such osteoconductive fibers, and methods of manufacture | |
EP3930774B1 (en) | Method of making a composite biotextile and a medical implant comprising such composite biotextile | |
Saito et al. | Effect of titania-based surface modification of polyethylene terephthalate on bone–implant bonding and peri-implant tissue reaction | |
Kashan et al. | Effect of multi-walled carbon nanotube on the microstructure, physical and mechanical properties of ZrO2–CaO/Poly (methyl methacrylate) biocomposite for bone reconstruction application | |
CN108697821A (en) | The biocompatible articles of coating are discharged with embedding copper ion and copper ion | |
Nugroho et al. | The Fabrication and characterization of electrospun PVA-snail mucin nanofiber membrane | |
Eng | A Review of Some Recent Breakthroughs in Medical Textiles Research |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11796685 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011796685 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011796685 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013542574 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13992342 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013014435 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013014435 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130610 |