WO2012060326A1 - エンジン排気エネルギー回収装置 - Google Patents
エンジン排気エネルギー回収装置 Download PDFInfo
- Publication number
- WO2012060326A1 WO2012060326A1 PCT/JP2011/075069 JP2011075069W WO2012060326A1 WO 2012060326 A1 WO2012060326 A1 WO 2012060326A1 JP 2011075069 W JP2011075069 W JP 2011075069W WO 2012060326 A1 WO2012060326 A1 WO 2012060326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- power
- generator
- engine
- exhaust
- Prior art date
Links
- 239000000446 fuel Substances 0.000 claims abstract description 61
- 238000011084 recovery Methods 0.000 claims description 58
- 238000002347 injection Methods 0.000 claims description 40
- 239000007924 injection Substances 0.000 claims description 40
- 230000003111 delayed effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 230000005611 electricity Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 116
- 238000010248 power generation Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 11
- 230000002000 scavenging effect Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000011017 operating method Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/06—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K15/00—Adaptations of plants for special use
- F01K15/02—Adaptations of plants for special use for driving vehicles, e.g. locomotives
- F01K15/04—Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/04—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/007—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/02—Drives of pumps; Varying pump drive gear ratio
- F02B39/08—Non-mechanical drives, e.g. fluid drives having variable gear ratio
- F02B39/10—Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/10—Engines with prolonged expansion in exhaust turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
- F02D23/02—Controlling engines characterised by their being supercharged the engines being of fuel-injection type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/04—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an engine exhaust energy recovery device that recovers exhaust energy of exhaust gas (combustion gas) discharged from an engine body of a marine diesel engine (main engine) as power.
- Patent Document 1 As an exhaust energy recovery device that recovers exhaust energy contained in exhaust gas (combustion gas) as power, for example, the one disclosed in Patent Document 1 is known.
- the exhaust gas is supplied to the engine body 2, more specifically, the air supply manifold 8 from the viewpoint of ensuring the performance and reliability of the engine body 2.
- the scavenging amount and the scavenging pressure are secured with the highest priority. Therefore, in the exhaust energy recovery device disclosed in FIG. 1 of Patent Document 1, the exhaust gas guided to the turbine portion 5a of the power turbine 5 that drives the generator 5b via the third valve (gas inlet control valve).
- a marine diesel engine that rotationally drives a generator other than the generator 5b when the gas flow rate (the amount of extracted gas) is inevitably limited and the amount of power generated by the generator 5b is less than the amount of power required in the ship.
- the diesel engine (auxiliary) having a lower fuel efficiency than the (main engine) must be started to meet the demand for inboard power, resulting in an increase in total operation cost.
- the present invention has been made in view of the above circumstances, and can respond to the demand for inboard power without starting a diesel engine (auxiliary) having a lower fuel consumption than a marine diesel engine (main engine) as much as possible.
- An object of the present invention is to provide an engine exhaust energy recovery device that can suppress the operation cost of the engine.
- An engine exhaust energy recovery device includes a power turbine driven by exhaust gas guided from an engine body of a marine diesel engine, and guides the exhaust gas from the engine body to the power turbine.
- the gas An engine exhaust energy recovery device including a controller for adjusting the opening of the inlet valve, wherein the opening of the gas inlet control valve reaches a predetermined threshold, and the amount of power generated by the generator When less than the required amount of power, fuel is supplied from the control unit to the engine body according to the difference between the amount of power generated by the generator and the amount of power required in the ship.
- Control command for delaying the timing of elevation, and / or control commands to advance the timing of opening the exhaust valve is adapted to be delivered.
- An engine exhaust energy recovery device includes a turbine section driven by exhaust gas guided from an engine body of a marine diesel engine, and pumped outside air to the engine body driven by the turbine section. And a hybrid exhaust turbine supercharger having a compressor section, a generator having a rotating shaft coupled to the turbine section and the rotating shaft of the compressor section, and the amount of power generated by the generator, and required onboard
- An engine exhaust energy recovery device including a control unit that adjusts the power generation amount in the generator according to a difference from the power amount, wherein the power generation amount in the generator has reached a predetermined threshold, If the amount of power generated by the machine is less than the amount of power required on board, the amount of power generated by the generator and the power required on board According to the difference between, on the engine body from the control unit, a control command for delaying the timing of injecting fuel, and / or control command to advance the timing of opening the exhaust valve is adapted to be delivered.
- the operating method of the engine exhaust energy recovery apparatus includes a power turbine driven by exhaust gas guided from an engine body of a marine diesel engine, and the exhaust gas from the engine body to the power turbine.
- a gas inlet control valve provided in the middle of an exhaust pipe for guiding gas and a generator driven by the power turbine, and the difference between the amount of power generated by the generator and the amount of power required in the ship
- the engine exhaust energy recovery device operating method for adjusting the opening of the gas inlet valve, the opening of the gas inlet control valve reaches a predetermined threshold, the amount of power generated by the generator is If the amount of power required on board is less than the amount of power generated by the generator, the difference between the amount of power required on board the ship is mounted on the engine body.
- Charge fuel injection timing of the injector to delay, and / or so as to advance the timing of opening the exhaust valve mounted on the engine body.
- An engine exhaust energy recovery apparatus operating method includes a turbine section driven by exhaust gas guided from an engine body of a marine diesel engine, and the engine body driven by the turbine section. Necessary on the ship, a hybrid exhaust turbine supercharger having a compressor section for pumping outside air, a generator having a rotating shaft connected to the turbine section and a rotating shaft of the compressor section, the amount of power generated by the generator
- the engine exhaust energy recovery device operating method adjusts the power generation amount in the generator according to the difference between the power amount and the power generation amount, the power generation amount in the generator reaches a predetermined threshold, When the amount of power generated by the machine is less than the amount of power required on board, the amount of power generated by the generator and required on board According to the difference between the force, so as to delay the fuel injection timing of the fuel injection valve mounted on the engine body, and / or so as to advance the timing of opening the exhaust valve mounted on the engine body.
- the fuel injection timing is delayed or the exhaust valve opening timing is advanced, or the fuel injection timing is delayed.
- the exhaust valve is opened earlier, the exhaust gas temperature to the power turbine or hybrid exhaust turbine supercharger rises, and the energy recovery rate in the power turbine or hybrid exhaust turbine supercharger increases. Without starting a diesel engine (auxiliary machine) having a lower fuel efficiency than the engine (main engine), it is possible to meet the demand for inboard power and to reduce the total operating cost.
- An engine exhaust energy recovery device includes a power turbine driven by exhaust gas guided from an engine body of a marine diesel engine, and guides the exhaust gas from the engine body to the power turbine.
- the gas An engine exhaust energy recovery device including a controller for adjusting the opening of the inlet valve, wherein the opening of the gas inlet control valve reaches a predetermined threshold, and the amount of power generated by the generator.
- An engine exhaust energy recovery device includes a turbine section driven by exhaust gas guided from an engine body of a marine diesel engine, and pumped outside air to the engine body driven by the turbine section. And a hybrid exhaust turbine supercharger having a compressor section, a generator having a rotating shaft coupled to the turbine section and the rotating shaft of the compressor section, and the amount of power generated by the generator, and required onboard
- An engine exhaust energy recovery device including a control unit that adjusts the power generation amount in the generator according to a difference from the power amount, wherein the power generation amount in the generator has reached a predetermined threshold, When it is assumed that the amount of power generated by the machine is less than the amount of power required on board, the amount of power generated by the generator and on board
- a control command for delaying the timing of injecting fuel and / or a control command for advancing the timing of opening the exhaust valve are sent in advance from the control unit to the engine body according to the difference from the amount of electric power to be generated. It has become.
- the operating method of the engine exhaust energy recovery apparatus includes a power turbine driven by exhaust gas guided from an engine body of a marine diesel engine, and the exhaust gas from the engine body to the power turbine.
- a power turbine driven by exhaust gas guided from an engine body of a marine diesel engine
- the generator driven by the power turbine
- the amount of power generated by the generator and the amount of power required in the ship
- An operation method of the engine exhaust energy recovery device for adjusting the opening of the gas inlet valve, wherein the opening of the gas inlet control valve reaches a predetermined threshold, and the amount of power generated by the generator is If it is assumed that the amount of electric power is less than the required amount of electricity, it is mounted on the engine body according to the difference between the amount of electric power generated by the generator and the amount of electric power required in the ship.
- the fuel injection timing of the fuel injection valve which, and / or to hasten advance the timing of opening of the mounted exhaust valve in the engine body.
- An engine exhaust energy recovery apparatus operating method includes a turbine section driven by exhaust gas guided from an engine body of a marine diesel engine, and the engine body driven by the turbine section. Necessary on the ship, a hybrid exhaust turbine supercharger having a compressor section for pumping outside air, a generator having a rotating shaft connected to the turbine section and a rotating shaft of the compressor section, the amount of power generated by the generator
- the engine exhaust energy recovery device operating method adjusts the power generation amount in the generator according to the difference between the power amount and the power generation amount, the power generation amount in the generator reaches a predetermined threshold, If the amount of power generated by the machine is assumed to be less than the amount of power required on board, the amount of power generated by the generator and Depending on the difference from the required amount of electric power, the fuel injection timing of the fuel injection valve mounted on the engine body is delayed in advance and / or the timing of opening the exhaust valve mounted on the engine body is set. I tried to advance it in advance.
- the fuel injection timing is delayed or the exhaust valve opening timing is advanced, or the fuel injection timing is delayed.
- the exhaust valve is opened earlier, the exhaust gas temperature to the power turbine or hybrid exhaust turbine supercharger rises, and the energy recovery rate in the power turbine or hybrid exhaust turbine supercharger increases. Without starting a diesel engine (auxiliary machine) having a lower fuel efficiency than the engine (main engine), it is possible to meet the demand for inboard power and to reduce the total operating cost.
- the fuel injection timing is delayed in advance or the exhaust valve opening timing is advanced in advance, or the fuel So that the so-called feed-forward control is performed, in which the timing for injecting the fuel is delayed in advance and the timing for opening the exhaust valve is advanced in advance, the difference between the amount of power generated by the generator and the amount of power required in the ship Can always be reduced, and the inboard power can be supplied stably.
- a ship according to the ninth aspect of the present invention is equipped with any of the engine exhaust energy recovery devices described above.
- the ship according to the ninth aspect of the present invention it is possible to meet the demand for inboard power without starting a diesel engine (auxiliary machine) having a fuel efficiency lower than that of a marine diesel engine (main engine), and total operation Cost can be suppressed.
- the engine exhaust energy recovery device of the present invention it is possible to meet the demand for inboard power without starting a diesel engine (auxiliary) having a fuel efficiency lower than that of a marine diesel engine (main engine) as much as possible. There is an effect that the cost can be suppressed.
- FIG. 1 is a schematic configuration diagram of an engine exhaust energy recovery device according to a first embodiment of the present invention. It is a block diagram for demonstrating the principal part of FIG. 1 in detail. It is a block diagram for demonstrating in detail the principal part of the engine exhaust energy recovery apparatus which concerns on 2nd Embodiment of this invention.
- FIG. 1 is a schematic configuration diagram of an engine exhaust energy recovery apparatus according to a first embodiment of the present invention
- FIG. 2 is a configuration diagram for explaining the main part of FIG. 1 in more detail. Note that the dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the scope of the present invention only, unless otherwise specified, and are merely descriptions. It is just an example.
- a marine diesel engine (main engine) 1 includes a diesel engine main body (for example, a low-speed two-cycle diesel engine) 2 and an exhaust manifold 7 of a diesel engine main body 2 (hereinafter referred to as “engine main body”). And a cylinder 6 in which fuel injected by a fuel injection device (not shown) is burned in the engine body 2 (in this embodiment, a 6-cylinder engine having 6 cylinders is shown).
- Reference numeral 3 denotes an exhaust turbine section 3a driven by exhaust gas discharged from the exhaust manifold 7, and a rotational drive driven coaxially with the exhaust turbine section 3a to scavenge outside air into the engine body 2 (supply air).
- An exhaust turbine supercharger provided with a compressor unit 3b that supplies pressure and a reference symbol L1 connect the exhaust manifold 7 and the exhaust turbine unit 3a, and the first gas is sent to the exhaust turbine unit 3a.
- An exhaust pipe, symbol 18 is an intercooler for cooling the scavenging air (supply air) compressed by the compressor unit 3 b to increase the air density
- a symbol K 1 is a first air supply pipe connecting the compressor unit 3 b and the intercooler 18.
- K2 connects the intercooler 18 and the air supply manifold 8 of the engine body 2, and scavenging (air supply) cooled by the intercooler 18. Which is the second supply pipe to pass feed to the intake manifold 8 of the engine body 2.
- Reference numeral 4 denotes a power turbine that is driven by exhaust gas diverted from the exhaust manifold 7 and is a drive source of a generator described later.
- Reference numeral 9 denotes a power turbine 4 and an exhaust turbine section 3 a of the exhaust turbine supercharger 3.
- the heat exchanger 9 is a device that passes water supplied through the water supply pipe L10 through an evaporation pipe (not shown) and converts the water into steam by the heat of the exhaust gas.
- Reference numeral L2 is a second exhaust pipe that connects the exhaust manifold 7 and the power turbine 4 and sends exhaust gas to the power turbine 4.
- Reference numeral L3 is a connection between the power turbine 4 and the heat exchanger 9, and the power turbine 4 is connected to the exhaust turbine section 3a and the third exhaust pipe L3 of the exhaust turbine supercharger 3 to connect the exhaust gas discharged from the exhaust gas to the heat exchanger 9, and the exhaust turbine section
- the fourth exhaust pipe L5, which sends the exhaust gas from 3a to the heat exchanger 9, is connected to the steam turbine 5 and the heat exchanger 9 as a driving source of the generator in cooperation with the power turbine 4 described above.
- the exhaust pipe, symbol L7 is a heat exchanger 9
- Water is a seventh exhaust pipe to be discharged overboard through feed the funnel (chimney) (not shown) exhaust gas heat exchanger to the steam.
- the water condensed by condensing steam with a condenser (condenser) is supplied to the heat exchanger 9 through a water supply pipe L10.
- Reference sign V1 is a gas inlet control valve which is interposed in the middle of the second exhaust pipe L2 and whose opening is adjusted by a controller (not shown) in order to control the exhaust gas flow rate to the power turbine 4.
- Reference sign V2 Is a steam flow rate adjusting valve that is interposed in the middle of the fifth exhaust pipe L5, and whose opening degree is adjusted by the above-mentioned controller, and the symbol V3 is a gas inlet control of the second exhaust pipe L2.
- An exhaust gas bypass control valve interposed in the middle of the first bypass pipe L8 that connects the upstream position of the valve V1 and the third exhaust pipe L3, symbol V4 is an upstream side of the flow rate adjustment valve V2 of the fifth exhaust pipe L5
- This is a steam bypass flow control valve interposed in the middle of the second bypass pipe L11 that connects the position and the sixth exhaust pipe L6.
- an orifice 19 is interposed in the middle of the exhaust gas bypass control valve V3 and the third exhaust pipe L3.
- the orifice 19 is operated when the engine body 2 is in a high load operation (normal navigation operation) and the power turbine 4 is in a full load operation state (that is, the exhaust gas bypass control valve V3 is fully closed and the gas inlet control valve V1 is When the gas inlet control valve V1 is fully closed (when the power turbine 4 is stopped), the exhaust gas bypass control valve V3 supplies the same amount of exhaust gas flowing through the gas inlet control valve V1 when the gas inlet control valve V1 is fully opened. Has been adjusted to flow.
- the orifice 19 has the same amount of exhaust gas as the exhaust gas flowing through the power turbine 4 when the engine body 2 is operated at high load (normal navigation operation) and the power turbine 4 is at full load operation. Is adjusted such that when the gas inlet control valve V1 is fully closed, the exhaust gas flowing through the orifice 19 is exhausted from the exhaust turbine supercharger. Since the flow rate of the exhaust gas supplied to the third side does not flow so as to decrease, it is possible to prevent the scavenging pressure of the exhaust turbine supercharger 3 from becoming a predetermined value or less and to ensure the optimum operation of the engine body 2.
- a rotating shaft (not shown) of the power turbine 4 and a rotating shaft (not shown) of the steam turbine 5 are connected via a speed reducer (not shown) and a coupling 10.
- a rotating shaft (not shown) and a rotating shaft (not shown) of the generator 11 are connected via a speed reducer (not shown) and a coupling 12.
- the generator 11 is electrically connected to a switchboard 14 separately installed in the ship (in this embodiment, the engine room) via a control resistor 13, and the power generated by the generator 11 is supplied to the ship power supply. It can be used as.
- the engine exhaust energy recovery apparatus includes a power management system 21 and a power turbine control system (power turbine controller: control unit :) in addition to the above-described components.
- a control device) 22 and an engine control system (engine controller: control unit: control device) 23 are provided.
- Inboard power frequency detection value (data) detected by the inboard power frequency detection unit 24 (see FIG. 2) that detects the frequency of the power supplied to the ship is input to the power management system 21 every moment (sequentially).
- the power management system 21 is configured to output a necessary power command (control signal) to the power turbine control system 22 based on the input ship power frequency detection value.
- the power turbine control system 22 receives a necessary power command output from the power management system 21 and an engine load (described later) output from the engine control system 23 every moment (sequentially).
- the control system 22 outputs a gas inlet control valve control command (valve opening command) to the gas inlet control valve V1, and sends a gas inlet control valve opening signal (extraction gas valve opening) to the engine control system 23. It is designed to output.
- the gas inlet control valve V1 receives the gas inlet control valve control command output from the power turbine control system 22 every moment (sequentially), and the gas inlet control valve V1 receives the gas inlet control valve V1.
- the opening is automatically adjusted based on the control valve control command.
- the demand for inboard power increases from the power management system 21 to the power turbine control system 22.
- a signal (command) indicating that the opening degree is not sufficient is supplied, and a signal (command) indicating that the opening degree is to be increased is transmitted from the power turbine control system 22 to the gas inlet control valve V1.
- the opening of the gas inlet control valve V1 increases, the flow rate of the exhaust gas to the power turbine 4 increases, and the frequency of the electric power supplied to the ship is greater than the (first) predetermined value F1 or the predetermined value F1.
- the increase in the opening degree of the gas inlet control valve V1 is stopped, and the opening degree adjustment of the gas inlet control valve V1 is once ended.
- the power management system 21 when the demand for inboard power decreases and the frequency of the electric power supplied to the ship increases above a predetermined value F3 (a third value) larger than the predetermined values F1 and F2, the power management system 21 generates power.
- a signal (command) is sent to the turbine control system 22 indicating that the demand for inboard power is decreasing (the inboard power is excessively supplied), and the power inlet control valve V1 opens from the power turbine control system 22 to the gas inlet control valve V1.
- a signal (command) to decrease the degree is sent. Then, the opening of the gas inlet control valve V1 is decreased, the exhaust gas flow rate to the power turbine 4 is decreased, and the frequency of the electric power supplied to the ship is greater than the (third) predetermined value F3 or the predetermined value F3.
- the value is smaller than the predetermined value F4 (fourth) greater than the predetermined value F2
- the decrease in the opening degree of the gas inlet control valve V1 is stopped, and the opening degree adjustment of the gas inlet control valve V1
- the engine load detection unit 25 (see FIG. 2) that detects the engine load of the marine diesel engine 1 is detected.
- the scavenging pressure (data) detected by the scavenging pressure detecting unit 27 (see FIG. 2) for detecting the scavenging pressure is inputted every moment (sequentially), and the engine control system 23 is inputted.
- the engine load detected by the engine load detector 25 is determined. It outputs to the war turbine control system 22 and outputs a fuel injection timing command and / or an exhaust valve opening timing command to the engine body 2, and an (exhaust gas) bypass control valve control command (valve opening command) to an exhaust gas bypass control It outputs to the valve V3.
- the fuel injection timing command output from the engine control system 23 is input to the engine body 2, more specifically, a fuel injection valve (not shown) mounted on the engine body 2 every moment.
- the fuel injection valve mounted on the engine main body 2, more specifically, the engine main body 2 is configured to automatically delay the fuel injection timing based on the input fuel injection timing command. Yes.
- the exhaust valve opening timing command output from the engine control system 23 is input to the engine body 2, more specifically, an exhaust valve (not shown) mounted on the engine body 2 every moment (sequentially).
- the exhaust valve mounted on the engine main body 2, more specifically, the engine main body 2 can automatically advance the opening timing of the exhaust valve based on the input exhaust valve opening timing command. ing.
- the exhaust gas bypass control valve V3 is inputted with the bypass control valve control command outputted from the engine control system 23 every time (sequentially), and the exhaust gas bypass control valve V3 is inputted.
- the opening degree is automatically adjusted based on the bypass control valve control command.
- the demand for inboard power increases from the power management system 21 to the power turbine control system 22.
- a signal (command) indicating that the inboard power supply is insufficient is sent, and a gas inlet control valve opening signal (extraction gas valve opening) is sent from the power turbine control system 22 to the engine control system 23.
- a signal (command) for reducing the opening degree is sent to the exhaust gas bypass control valve V3.
- the opening degree of the exhaust gas bypass control valve V3 is decreased, the flow rate of the exhaust gas to the power turbine 4 is increased, and the frequency of the electric power supplied to the ship is greater than the (first) predetermined value F1 or the predetermined value F1. Is also greater than or equal to a large (second) predetermined value F2, the decrease in the opening degree of the exhaust gas bypass control valve V3 is stopped, and the adjustment of the opening degree of the exhaust gas bypass control valve V3 is once ended.
- the power management system 21 when the demand for inboard power decreases and the frequency of the electric power supplied to the ship increases above a predetermined value F3 (a third value) larger than the predetermined values F1 and F2, the power management system 21 generates power.
- a signal (command) is sent to the turbine control system 22 indicating that the demand for inboard power is decreasing (the inboard power is excessively supplied), and gas inlet control is performed from the power turbine control system 22 to the engine control system 23.
- a valve opening signal (extraction gas valve opening) is sent, and a signal (command) for increasing the opening is sent to the exhaust gas bypass control valve V3.
- the opening degree of the exhaust gas bypass control valve V3 is increased, the flow rate of the exhaust gas to the power turbine 4 is decreased, and the frequency of the electric power supplied to the ship is greater than the (third) predetermined value F3 or the predetermined value F3. Is less than the predetermined value F4 that is greater than the predetermined value F2 (fourth), the increase in the opening degree of the exhaust gas bypass control valve V3 is stopped, and the adjustment of the opening degree of the exhaust gas bypass control valve V3 is once ended.
- the engine control system 23 controls the engine.
- a fuel injection timing command and / or an exhaust valve opening timing command is sent to the main body 2.
- the fuel injection timing is delayed or the exhaust valve opening timing is advanced, or the fuel injection timing is delayed and the exhaust valve opening timing is advanced, so that
- the energy recovery rate in the power turbine 4 increases, and the frequency of the electric power supplied to the ship reaches a predetermined value F1 or a predetermined value F2 greater than the predetermined value F1, the fuel injection timing and / or Alternatively, the adjustment of the exhaust valve opening timing is once ended.
- Exhaust gas to the power turbine 4 by delaying the fuel injection timing or by opening the exhaust valve opening timing, or by delaying the fuel injection timing and opening the exhaust valve opening timing. While the temperature is raised, the demand for inboard power decreases, and the timing of fuel injection is advanced when the frequency of the power supplied to the ship increases above a predetermined value F3 that is greater than the predetermined values F1 and F2.
- the timing of opening the exhaust valve is delayed, or the timing of injecting fuel is advanced and the timing of opening the exhaust valve is delayed, so that the temperature of the exhaust gas to the power turbine 4 decreases, and the power turbine 4
- the frequency of the power supplied to the ship There smaller than a predetermined value F3 or predetermined value F3, and becomes equal to or less than the predetermined value F4 is greater than a predetermined value F2, the fuel injection timing and / or adjustment of the exhaust valve opening timing is temporarily terminated.
- the fuel injection timing and / or the exhaust valve opening timing returns to the normal (regular) timing.
- the frequency adjustment of the electric power supplied to the ship becomes possible by adjusting the opening of the gas inlet control valve V1 and the exhaust gas bypass control valve V3, the gas inlet control valve V1 and the exhaust gas bypass control valve described above are used.
- the opening degree of V3 By adjusting the opening degree of V3, the frequency of the electric power supplied to the ship is adjusted. If the fuel injection timing is delayed to a predetermined value or the opening timing of the exhaust valve is advanced to a predetermined value, and the demand for inboard power further increases, power generation different from the generator 11 is performed.
- a diesel engine (auxiliary machine) (not shown) that rotates and drives a machine (not shown) is automatically or manually started by a crew member to meet the demand for inboard power.
- the timing for injecting fuel is delayed or the timing for opening the exhaust valve is advanced, or the timing for injecting fuel is delayed and the exhaust valve is opened.
- the timing is advanced, the exhaust gas temperature to the power turbine 4 rises, the energy recovery rate in the power turbine 4 increases, and a diesel engine (auxiliary) having a fuel efficiency lower than that of the marine diesel engine 1 is started.
- auxiliary diesel engine
- FIG. 3 is a block diagram for explaining in more detail the main part of the engine exhaust energy recovery apparatus according to the second embodiment of the present invention.
- the engine exhaust energy recovery apparatus according to the present embodiment generates the power generation amount of the generator 11 (see FIG. 1) calculated by the power management system 21 or the power turbine control system 22 and the current shipboard.
- the difference from the amount of electric power required in the above is different from that of the first embodiment described above in that feedforward control is performed based on the difference signal output to the engine control system 23. Since other components are the same as those of the first embodiment described above, description of these components is omitted here.
- symbol is attached
- the power supply by the generator 11 is The gas inlet control valve V1, the exhaust gas bypass control valve V3, the fuel injection valve, and the exhaust valve are operated in advance before the demand for electric power actually required on the ship is reduced or increased. The difference between the power generation amount of 11 and the amount of power currently required on board the ship is minimized.
- the difference between the power generation amount of the generator 11 calculated by the power management system 21 or the power turbine control system 22 and the power amount currently required in the ship is Since it is output to the engine control system 23 as a deviation signal and feedforward control is performed based on the deviation signal, the difference between the power generation amount of the generator 11 and the power amount currently required in the ship is always reduced. It is possible to supply the inboard power stably.
- Other functions and effects are the same as those of the above-described first embodiment, and thus description thereof is omitted here.
- the present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the gist of the present invention.
- the power turbine 4 is used as a drive source of the generator 11, but instead of the power turbine 4, for example, a hybrid exhaust turbine supercharger (for example, JP, A 2009-191794) may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
本発明の第1の態様に係るエンジン排気エネルギー回収装置は、舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるパワータービンと、前記エンジン本体から前記パワータービンに、前記排気ガスを導く排気管の途中に設けられたガス入口制御弁と、前記パワータービンにより駆動される発電機と、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記ガス入口弁の開度を調整する制御部とを備えたエンジン排気エネルギー回収装置であって、前記ガス入口制御弁の開度が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回る場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記制御部から前記エンジン本体に、燃料を噴射するタイミングを遅延させる制御指令、および/または排気弁の開くタイミングを早める制御指令が送出されるようになっている。
また、発電機による発電量が、船内で必要とされる電力量を下回ると想定される場合、燃料を噴射するタイミングが予め遅延させられるか排気弁の開くタイミングが予め早められることにより、または燃料を噴射するタイミングが予め遅延させられるとともに排気弁の開くタイミングが予め早められる、いわゆるフィードフォワード制御が行われることになるので、発電機による発電量と、船内で必要とされる電力量との差を常に小さくすることができて、船内電力を安定的に供給することができる。
以下、本発明の第1実施形態に係るエンジン排気エネルギー回収装置について、図1および図2を参照しながら説明する。図1は本発明の第1実施形態に係るエンジン排気エネルギー回収装置の概略構成図、図2は図1の要部をより詳しく説明するための構成図である。
なお、本実施形態に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
なお、蒸気をコンデンサ(復水器)で凝結させ復水した水は、給水管L10によって熱交換器9へ給水される。
一方、上述の通り、オリフィス19はエンジン本体2が高負荷運転(通常の航行運転)され、パワータービン4が全負荷運転状態されている時に、パワータービン4を流れる排気ガスと同量の排気ガスが流れる(ガス入口制御弁V1を全閉している時)ように調整されていることは、ガス入口制御弁V1を全閉している時に、オリフィス19を流れる排気ガスが排気タービン過給機3側に供給される排気ガスの流量が減少するほど流れないので、排気タービン過給機3の掃気圧力が所定値以下になることをも防止し、エンジン本体2の最適運転が確保できる。
また、発電機11は、制御用抵抗器13を介して船内(本実施形態では機関室内)に別途設置された配電盤14と電気的に接続されており、発電機11が発電した電力を船内電源として利用することができるようになっている。
パワーマネジメントシステム21には、船内に供給される電力の周波数を検出する船内電力周波数検出部24(図2参照)で検出された船内電力周波数検出値(データ)が刻一刻(逐次)入力されるようになっており、パワーマネジメントシステム21は、入力された船内電力周波数検出値に基づいて、必要電力指令(制御信号)をパワータービン制御システム22に出力するようになっている。
ガス入口制御弁V1には、パワータービン制御システム22から出力されたガス入口制御弁制御指令が刻一刻(逐次)入力されるようになっており、ガス入口制御弁V1は、入力されたガス入口制御弁制御指令に基づいて、開度が自動的に調整されるようになっている。
また、エンジン本体2、より詳しくは、エンジン本体2に装着された排気弁(図示せず)には、エンジン制御システム23から出力された排気弁開タイミング指令が刻一刻(逐次)入力されるようになっており、エンジン本体2、より詳しくは、エンジン本体2に装着された排気弁は、入力された排気弁開タイミング指令に基づいて、排気弁の開くタイミングが自動的に早められるようになっている。
さらに、排気ガスバイパス制御弁V3には、エンジン制御システム23から出力されたバイパス制御弁制御指令が刻一刻(逐次)入力されるようになっており、排気ガスバイパス制御弁V3は、入力されたバイパス制御弁制御指令に基づいて、開度が自動的に調整されるようになっている。
なお、燃料を噴射するタイミングが所定値まで遅延させられるか排気弁の開くタイミングが所定値まで早められて、その上さらに船内電力の需要が多くなる場合には、発電機11とは別の発電機(図示せず)を回転駆動する図示しないディーゼル機関(補機)が自動的にまたは乗組員の手で起動され、船内電力の需要に応えることになる。
本発明の第2実施形態に係るエンジン排気エネルギー回収装置について、図3を参照しながら説明する。図3は本発明の第2実施形態に係るエンジン排気エネルギー回収装置の要部をより詳しく説明するための構成図である。
本実施形態に係るエンジン排気エネルギー回収装置は、図3に破線で示すように、パワーマネジメントシステム21またはパワータービン制御システム22により算出された発電機11(図1参照)の発電量と、現在船内で必要とされる電力量との差を、エンジン制御システム23に偏差信号として出力し、それを元にフィードフォワード制御を行っているという点で上述した第1実施形態のものと異なる。その他の構成要素については上述した第1実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
なお、上述した第1実施形態と同一の部材には同一の符号を付している。
その他の作用効果は、上述した第1実施形態のものと同じであるので、ここではその説明を省略する。
例えば、上述した実施形態では、発電機11の駆動源としてパワータービン4が用いられているが、パワータービン4の代わりに、例えば、発電機を内蔵したハイブリッド排気タービン過給機(例えば、特開2009-191794号公報参照)を用いてもよい。
2 エンジン本体
4 パワータービン
11 発電機
22 パワータービン制御システム(制御部)
23 エンジン制御システム(制御部)
L2 第2の排気管(排気管)
V1 ガス入口制御弁
Claims (9)
- 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるパワータービンと、
前記エンジン本体から前記パワータービンに、前記排気ガスを導く排気管の途中に設けられたガス入口制御弁と、
前記パワータービンにより駆動される発電機と、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記ガス入口弁の開度を調整する制御部とを備えたエンジン排気エネルギー回収装置であって、
前記ガス入口制御弁の開度が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回る場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記制御部から前記エンジン本体に、燃料を噴射するタイミングを遅延させる制御指令、および/または排気弁の開くタイミングを早める制御指令が送出されるエンジン排気エネルギー回収装置。 - 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるパワータービンと、
前記エンジン本体から前記パワータービンに、前記排気ガスを導く排気管の途中に設けられたガス入口制御弁と、
前記パワータービンにより駆動される発電機と、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記ガス入口弁の開度を調整する制御部とを備えたエンジン排気エネルギー回収装置であって、
前記ガス入口制御弁の開度が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回ると想定される場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記制御部から前記エンジン本体に、燃料を噴射するタイミングを遅延させる制御指令、および/または排気弁の開くタイミングを早める制御指令が予め送出されるエンジン排気エネルギー回収装置。 - 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるタービン部と、このタービン部により駆動されて前記エンジン本体に外気を圧送するコンプレッサ部と、前記タービン部および前記コンプレッサ部の回転軸と連結される回転軸を有する発電機とを有するハイブリッド排気タービン過給機と、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記発電機における発電量を調整する制御部とを備えたエンジン排気エネルギー回収装置であって、
前記発電機における発電量が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回る場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記制御部から前記エンジン本体に、燃料を噴射するタイミングを遅延させる制御指令、および/または排気弁の開くタイミングを早める制御指令が送出されるエンジン排気エネルギー回収装置。 - 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるタービン部と、このタービン部により駆動されて前記エンジン本体に外気を圧送するコンプレッサ部と、前記タービン部および前記コンプレッサ部の回転軸と連結される回転軸を有する発電機とを有するハイブリッド排気タービン過給機と、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記発電機における発電量を調整する制御部とを備えたエンジン排気エネルギー回収装置であって、
前記発電機における発電量が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回ると想定される場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記制御部から前記エンジン本体に、燃料を噴射するタイミングを遅延させる制御指令、および/または排気弁の開くタイミングを早める制御指令が予め送出されるエンジン排気エネルギー回収装置。 - 請求項1から4のいずれか一項に記載のエンジン排気エネルギー回収装置を具備していることを特徴とする船舶。
- 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるパワータービンと、
前記エンジン本体から前記パワータービンに、前記排気ガスを導く排気管の途中に設けられたガス入口制御弁と、
前記パワータービンにより駆動される発電機とを備え、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記ガス入口弁の開度を調整するエンジン排気エネルギー回収装置の運転方法であって、
前記ガス入口制御弁の開度が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回る場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記エンジン本体に装着された燃料噴射弁の燃料噴射タイミングを遅延させるように、および/または前記エンジン本体に装着された排気弁の開くタイミングを早めるようにしたエンジン排気エネルギー回収装置の運転方法。 - 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるパワータービンと、
前記エンジン本体から前記パワータービンに、前記排気ガスを導く排気管の途中に設けられたガス入口制御弁と、
前記パワータービンにより駆動される発電機とを備え、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記ガス入口弁の開度を調整するエンジン排気エネルギー回収装置の運転方法であって、
前記ガス入口制御弁の開度が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回ると想定される場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記エンジン本体に装着された燃料噴射弁の燃料噴射タイミングを予め遅延させるように、および/または前記エンジン本体に装着された排気弁の開くタイミングを予め早めるようにしたエンジン排気エネルギー回収装置の運転方法。 - 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるタービン部と、このタービン部により駆動されて前記エンジン本体に外気を圧送するコンプレッサ部と、前記タービン部および前記コンプレッサ部の回転軸と連結される回転軸を有する発電機とを有するハイブリッド排気タービン過給機とを備え、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記発電機における発電量を調整するエンジン排気エネルギー回収装置の運転方法であって、
前記発電機における発電量が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回る場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記エンジン本体に装着された燃料噴射弁の燃料噴射タイミングを遅延させるように、および/または前記エンジン本体に装着された排気弁の開くタイミングを早めるようにしたエンジン排気エネルギー回収装置の運転方法。 - 舶用ディーゼル機関のエンジン本体から導かれた排気ガスによって駆動されるタービン部と、このタービン部により駆動されて前記エンジン本体に外気を圧送するコンプレッサ部と、前記タービン部および前記コンプレッサ部の回転軸と連結される回転軸を有する発電機とを有するハイブリッド排気タービン過給機とを備え、
前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記発電機における発電量を調整するエンジン排気エネルギー回収装置の運転方法であって、
前記発電機における発電量が予め定められた閾値に達し、前記発電機による発電量が、船内で必要とされる電力量を下回ると想定される場合、前記発電機による発電量と、船内で必要とされる電力量との差に応じて、前記エンジン本体に装着された燃料噴射弁の燃料噴射タイミングを予め遅延させるように、および/または前記エンジン本体に装着された排気弁の開くタイミングを予め早めるようにしたエンジン排気エネルギー回収装置の運転方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11837976.7A EP2636876B1 (en) | 2010-11-05 | 2011-10-31 | Apparatus for recovering engine exhaust gas energy |
KR1020137002090A KR101320130B1 (ko) | 2010-11-05 | 2011-10-31 | 엔진 배기 에너지 회수 장치 |
DK11837976.7T DK2636876T3 (en) | 2010-11-05 | 2011-10-31 | ENGINE EXHAUST GAS ENERGY RECOVERY |
CN201180036912.9A CN103026037B (zh) | 2010-11-05 | 2011-10-31 | 发动机排气能量回收装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-248521 | 2010-11-05 | ||
JP2010248521A JP5167326B2 (ja) | 2010-11-05 | 2010-11-05 | エンジン排気エネルギー回収装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012060326A1 true WO2012060326A1 (ja) | 2012-05-10 |
Family
ID=46024440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075069 WO2012060326A1 (ja) | 2010-11-05 | 2011-10-31 | エンジン排気エネルギー回収装置 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2636876B1 (ja) |
JP (1) | JP5167326B2 (ja) |
KR (1) | KR101320130B1 (ja) |
CN (1) | CN103026037B (ja) |
DK (1) | DK2636876T3 (ja) |
WO (1) | WO2012060326A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107387217A (zh) * | 2017-07-31 | 2017-11-24 | 中国船舶重工集团公司第七研究所 | 动力涡轮发电装置 |
EP2682339B1 (en) * | 2012-07-06 | 2022-06-15 | GE Energy Power Conversion Technology Ltd | Power distribution systems |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014170559A1 (fr) * | 2013-04-15 | 2014-10-23 | Valeo Systemes De Controle Moteur | Procède d'amélioration du rendement énergétique d'un système d'entraînement |
US9624850B2 (en) * | 2014-11-10 | 2017-04-18 | Ford Global Technologies, Llc | Systems and methods for control of turbine-generator via exhaust valve timing and duration modulation in a split exhaust engine system |
DE102015212783A1 (de) * | 2015-07-08 | 2017-01-12 | Volkswagen Aktiengesellschaft | Bestimmung einer Gaseigenschaft einer Verbrennungskraftmaschine und Motorsteuerverfahren |
WO2017051450A1 (ja) * | 2015-09-24 | 2017-03-30 | 三菱重工業株式会社 | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 |
JP2017166405A (ja) * | 2016-03-16 | 2017-09-21 | トヨタ自動車株式会社 | 内燃機関の発電システム |
CN107654286A (zh) * | 2017-10-27 | 2018-02-02 | 福州大学 | 余热利用的双涡双压混合涡轮增压试验装置及提高瞬态响应的试验方法 |
IT201900006696A1 (it) * | 2019-05-09 | 2020-11-09 | Ferrari Spa | Veicolo ibrido a quattro ruote motrici comprendente un motore termico a combustione interna provvisto di una turbina elettrificata e corrispondente metodo di controllo |
CN111946431B (zh) * | 2020-08-05 | 2021-12-17 | 武汉理工大学 | 利用柴油发电机余热的船舶热电联产优化控制系统及控制方法 |
CN113446094B (zh) * | 2021-03-31 | 2022-08-02 | 北京航空工程技术研究中心 | 一种涡轴涡桨发动机尾气发电系统和方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345409A (ja) * | 1986-08-13 | 1988-02-26 | Ishikawajima Harima Heavy Ind Co Ltd | 動力プラント |
JP2004156528A (ja) * | 2002-11-06 | 2004-06-03 | Toyota Motor Corp | 発電機付タービンを備える車両の制御装置 |
JP2009137383A (ja) * | 2007-12-05 | 2009-06-25 | Nishishiba Electric Co Ltd | 船内電力システム |
JP2009191794A (ja) | 2008-02-15 | 2009-08-27 | Mitsubishi Heavy Ind Ltd | ハイブリッド排気タービン過給機 |
JP2009257097A (ja) | 2008-04-11 | 2009-11-05 | Mitsubishi Heavy Ind Ltd | 排気エネルギー回収装置 |
JP2009257098A (ja) * | 2008-04-11 | 2009-11-05 | Mitsubishi Heavy Ind Ltd | 過給装置 |
JP2010138875A (ja) * | 2008-12-15 | 2010-06-24 | Mitsubishi Heavy Ind Ltd | 排気エネルギー回収装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH667495A5 (de) * | 1985-04-25 | 1988-10-14 | Bbc Brown Boveri & Cie | Aufgeladener schiffsdieselmotor. |
JPS6225832A (ja) * | 1985-07-24 | 1987-02-03 | 三井造船株式会社 | 船内電源装置 |
JPS63124810A (ja) * | 1986-11-13 | 1988-05-28 | Mitsubishi Heavy Ind Ltd | 蒸気・排気ガスタ−ビンの負荷制御装置 |
US8096127B2 (en) * | 2007-02-09 | 2012-01-17 | Mitsubishi Heavy Industries, Ltd. | Exhaust turbo-supercharger |
KR101118661B1 (ko) * | 2007-05-03 | 2012-03-06 | 맨 디젤 앤드 터보 필리얼 아프 맨 디젤 앤드 터보 에스이 티스크랜드 | 크로스 헤드를 구비한 대형 2행정 슈퍼 차져 디젤 엔진 |
GB2453561B (en) * | 2007-10-11 | 2012-07-25 | Ford Global Tech Llc | A method of regenerating an exhaust aftertreatment device |
US20110167809A1 (en) * | 2008-09-26 | 2011-07-14 | Renault Trucks | Energy recovering system for an internal combustion engine |
WO2010074173A1 (ja) * | 2008-12-26 | 2010-07-01 | 三菱重工業株式会社 | 排熱回収システムの制御装置 |
JP5249866B2 (ja) * | 2009-06-25 | 2013-07-31 | 三菱重工業株式会社 | エンジン排気エネルギー回収装置 |
-
2010
- 2010-11-05 JP JP2010248521A patent/JP5167326B2/ja not_active Expired - Fee Related
-
2011
- 2011-10-31 WO PCT/JP2011/075069 patent/WO2012060326A1/ja active Application Filing
- 2011-10-31 CN CN201180036912.9A patent/CN103026037B/zh not_active Expired - Fee Related
- 2011-10-31 KR KR1020137002090A patent/KR101320130B1/ko active IP Right Grant
- 2011-10-31 DK DK11837976.7T patent/DK2636876T3/en active
- 2011-10-31 EP EP11837976.7A patent/EP2636876B1/en not_active Not-in-force
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345409A (ja) * | 1986-08-13 | 1988-02-26 | Ishikawajima Harima Heavy Ind Co Ltd | 動力プラント |
JP2004156528A (ja) * | 2002-11-06 | 2004-06-03 | Toyota Motor Corp | 発電機付タービンを備える車両の制御装置 |
JP2009137383A (ja) * | 2007-12-05 | 2009-06-25 | Nishishiba Electric Co Ltd | 船内電力システム |
JP2009191794A (ja) | 2008-02-15 | 2009-08-27 | Mitsubishi Heavy Ind Ltd | ハイブリッド排気タービン過給機 |
JP2009257097A (ja) | 2008-04-11 | 2009-11-05 | Mitsubishi Heavy Ind Ltd | 排気エネルギー回収装置 |
JP2009257098A (ja) * | 2008-04-11 | 2009-11-05 | Mitsubishi Heavy Ind Ltd | 過給装置 |
JP2010138875A (ja) * | 2008-12-15 | 2010-06-24 | Mitsubishi Heavy Ind Ltd | 排気エネルギー回収装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682339B1 (en) * | 2012-07-06 | 2022-06-15 | GE Energy Power Conversion Technology Ltd | Power distribution systems |
CN107387217A (zh) * | 2017-07-31 | 2017-11-24 | 中国船舶重工集团公司第七研究所 | 动力涡轮发电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103026037B (zh) | 2015-08-12 |
KR20130029433A (ko) | 2013-03-22 |
JP2012097716A (ja) | 2012-05-24 |
DK2636876T3 (en) | 2018-01-15 |
EP2636876A4 (en) | 2015-07-22 |
EP2636876A1 (en) | 2013-09-11 |
EP2636876B1 (en) | 2017-12-06 |
JP5167326B2 (ja) | 2013-03-21 |
KR101320130B1 (ko) | 2013-10-23 |
CN103026037A (zh) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012060326A1 (ja) | エンジン排気エネルギー回収装置 | |
JP2012097716A5 (ja) | ||
KR101234466B1 (ko) | 터보 컴파운드 시스템 및 그 운전 방법 | |
WO2012039063A1 (ja) | タービン発電機の制御方法および装置 | |
JP5138643B2 (ja) | タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶 | |
JP2008111384A (ja) | 船舶用エンジンの余剰排気エネルギ回収システム | |
JP2011027053A5 (ja) | ||
EP1888906B1 (en) | A method and an arrangement in connection with a turbocharged piston engine | |
CN104487661B (zh) | 内燃机系统及具备该内燃机系统的船舶以及内燃机系统的运行方法 | |
WO2016175194A1 (ja) | 内燃機関の過給機余剰動力回収装置 | |
KR101692173B1 (ko) | 배열 회수 시스템 및 배열 회수 방법 | |
JP2013029111A (ja) | 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶 | |
JP6302226B2 (ja) | エンジンシステム | |
JP6554159B2 (ja) | エンジンシステム | |
JP6090898B2 (ja) | 内燃機関システムおよびこれを備えた船舶ならびに内燃機関システムの制御方法 | |
JP5675932B2 (ja) | 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶 | |
KR20170140999A (ko) | 선박 엔진의 소기를 이용한 기포 배출시스템 및 방법 | |
KR20170073809A (ko) | 선박 엔진의 에어 공급 시스템 | |
JP2019007376A (ja) | 内燃機関の過給機余剰動力回収装置及び船舶 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180036912.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11837976 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011837976 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137002090 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |