WO2012051211A2 - Antigen delivery platforms - Google Patents
Antigen delivery platforms Download PDFInfo
- Publication number
- WO2012051211A2 WO2012051211A2 PCT/US2011/055834 US2011055834W WO2012051211A2 WO 2012051211 A2 WO2012051211 A2 WO 2012051211A2 US 2011055834 W US2011055834 W US 2011055834W WO 2012051211 A2 WO2012051211 A2 WO 2012051211A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fragment
- protein
- self
- replicating rna
- cell
- Prior art date
Links
- 239000000427 antigen Substances 0.000 title description 12
- 108091007433 antigens Proteins 0.000 title description 12
- 102000036639 antigens Human genes 0.000 title description 12
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 331
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 302
- 241001529453 unidentified herpesvirus Species 0.000 claims abstract description 69
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 67
- 230000028993 immune response Effects 0.000 claims abstract description 32
- 238000001727 in vivo Methods 0.000 claims abstract description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 312
- 241000701022 Cytomegalovirus Species 0.000 claims description 225
- 210000004027 cell Anatomy 0.000 claims description 193
- 239000012634 fragment Substances 0.000 claims description 183
- 241000710929 Alphavirus Species 0.000 claims description 112
- 125000003729 nucleotide group Chemical group 0.000 claims description 82
- 239000000203 mixture Substances 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 58
- 230000014509 gene expression Effects 0.000 claims description 57
- 239000002773 nucleotide Substances 0.000 claims description 51
- 241000701085 Human alphaherpesvirus 3 Species 0.000 claims description 41
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 38
- 125000002091 cationic group Chemical group 0.000 claims description 34
- 239000002502 liposome Substances 0.000 claims description 31
- 108020004414 DNA Proteins 0.000 claims description 30
- 230000003362 replicative effect Effects 0.000 claims description 30
- 230000003612 virological effect Effects 0.000 claims description 30
- 210000002950 fibroblast Anatomy 0.000 claims description 27
- 210000002919 epithelial cell Anatomy 0.000 claims description 23
- 239000013612 plasmid Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 102000040430 polynucleotide Human genes 0.000 claims description 14
- 108091033319 polynucleotide Proteins 0.000 claims description 14
- 239000002157 polynucleotide Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 210000002889 endothelial cell Anatomy 0.000 claims description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 108020004511 Recombinant DNA Proteins 0.000 claims description 8
- 102000053602 DNA Human genes 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 6
- 239000007908 nanoemulsion Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 239000003981 vehicle Substances 0.000 claims description 3
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 claims 1
- 102000057593 human F8 Human genes 0.000 claims 1
- 229940047431 recombinate Drugs 0.000 claims 1
- 230000003389 potentiating effect Effects 0.000 abstract description 12
- 229960005486 vaccine Drugs 0.000 abstract description 6
- 235000018102 proteins Nutrition 0.000 description 248
- 150000001413 amino acids Chemical class 0.000 description 85
- 239000013598 vector Substances 0.000 description 63
- 150000007523 nucleic acids Chemical class 0.000 description 52
- 102000039446 nucleic acids Human genes 0.000 description 50
- 108020004707 nucleic acids Proteins 0.000 description 50
- 208000015181 infectious disease Diseases 0.000 description 44
- 101800000980 Protease nsP2 Proteins 0.000 description 43
- 241000699670 Mus sp. Species 0.000 description 40
- 150000002632 lipids Chemical class 0.000 description 38
- 101800001758 RNA-directed RNA polymerase nsP4 Proteins 0.000 description 36
- 239000000839 emulsion Substances 0.000 description 34
- 239000008279 sol Substances 0.000 description 34
- 101800000515 Non-structural protein 3 Proteins 0.000 description 32
- 102100036049 T-complex protein 1 subunit gamma Human genes 0.000 description 31
- 101150062912 cct3 gene Proteins 0.000 description 31
- 230000000295 complement effect Effects 0.000 description 31
- 238000006386 neutralization reaction Methods 0.000 description 28
- 239000005090 green fluorescent protein Substances 0.000 description 27
- 241000700605 Viruses Species 0.000 description 26
- -1 DNA (e.g. Chemical class 0.000 description 25
- 101710172711 Structural protein Proteins 0.000 description 25
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 23
- 102100029812 Protein S100-A12 Human genes 0.000 description 23
- 101710110949 Protein S100-A12 Proteins 0.000 description 23
- 239000003921 oil Substances 0.000 description 23
- 235000019198 oils Nutrition 0.000 description 23
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 22
- 238000010790 dilution Methods 0.000 description 22
- 239000012895 dilution Substances 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 21
- 238000004806 packaging method and process Methods 0.000 description 19
- 210000002966 serum Anatomy 0.000 description 19
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 18
- 239000011859 microparticle Substances 0.000 description 18
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 17
- 108090000288 Glycoproteins Proteins 0.000 description 16
- 241000700199 Cavia porcellus Species 0.000 description 15
- 230000005875 antibody response Effects 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 15
- 230000004044 response Effects 0.000 description 15
- 102000003886 Glycoproteins Human genes 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 14
- 230000003053 immunization Effects 0.000 description 14
- 238000002649 immunization Methods 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 238000003556 assay Methods 0.000 description 13
- 238000013518 transcription Methods 0.000 description 13
- 230000035897 transcription Effects 0.000 description 13
- 239000004094 surface-active agent Substances 0.000 description 12
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 11
- 239000000872 buffer Substances 0.000 description 11
- 239000007764 o/w emulsion Substances 0.000 description 11
- 230000010076 replication Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 11
- 102000007474 Multiprotein Complexes Human genes 0.000 description 10
- 108010085220 Multiprotein Complexes Proteins 0.000 description 10
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 10
- 210000004201 immune sera Anatomy 0.000 description 10
- 229940042743 immune sera Drugs 0.000 description 10
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 10
- 229920000053 polysorbate 80 Polymers 0.000 description 10
- 101000941029 Homo sapiens Endoplasmic reticulum junction formation protein lunapark Proteins 0.000 description 9
- 101000829958 Homo sapiens N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Proteins 0.000 description 9
- 101000991410 Homo sapiens Nucleolar and spindle-associated protein 1 Proteins 0.000 description 9
- 102100023315 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Human genes 0.000 description 9
- 102100030991 Nucleolar and spindle-associated protein 1 Human genes 0.000 description 9
- 241000710960 Sindbis virus Species 0.000 description 9
- 108091036066 Three prime untranslated region Proteins 0.000 description 9
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 9
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 8
- 108090000565 Capsid Proteins Proteins 0.000 description 8
- 102100023321 Ceruloplasmin Human genes 0.000 description 8
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 8
- 108091080980 Hepatitis delta virus ribozyme Proteins 0.000 description 8
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- WCDYMMVGBZNUGB-ORPFKJIMSA-N [(2r,3r,4s,5r,6r)-6-[[(1r,3r,4r,5r,6r)-4,5-dihydroxy-2,7-dioxabicyclo[4.2.0]octan-3-yl]oxy]-3,4,5-trihydroxyoxan-2-yl]methyl 3-hydroxy-2-tetradecyloctadecanoate Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](COC(=O)C(CCCCCCCCCCCCCC)C(O)CCCCCCCCCCCCCCC)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H]2OC[C@H]2O1 WCDYMMVGBZNUGB-ORPFKJIMSA-N 0.000 description 8
- 125000000129 anionic group Chemical group 0.000 description 8
- 230000001086 cytosolic effect Effects 0.000 description 8
- 230000002950 deficient Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 230000002458 infectious effect Effects 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- VWEWCZSUWOEEFM-WDSKDSINSA-N Ala-Gly-Ala-Gly Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(O)=O VWEWCZSUWOEEFM-WDSKDSINSA-N 0.000 description 7
- 102100040004 Gamma-glutamylcyclotransferase Human genes 0.000 description 7
- 101000886680 Homo sapiens Gamma-glutamylcyclotransferase Proteins 0.000 description 7
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 7
- 108700026244 Open Reading Frames Proteins 0.000 description 7
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 7
- 235000012000 cholesterol Nutrition 0.000 description 7
- 238000010166 immunofluorescence Methods 0.000 description 7
- 230000005847 immunogenicity Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000002777 nucleoside Substances 0.000 description 7
- 229920002113 octoxynol Polymers 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229940031439 squalene Drugs 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 6
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 6
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 6
- 241000701027 Human herpesvirus 6 Species 0.000 description 6
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 6
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 6
- ISXSJGHXHUZXNF-LXZPIJOJSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate;hydrochloride Chemical compound Cl.C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 ISXSJGHXHUZXNF-LXZPIJOJSA-N 0.000 description 6
- 230000009918 complex formation Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 210000002845 virion Anatomy 0.000 description 6
- GJTBSTBJLVYKAU-XVFCMESISA-N 2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C=C1 GJTBSTBJLVYKAU-XVFCMESISA-N 0.000 description 5
- 241000724252 Cucumber mosaic virus Species 0.000 description 5
- 101000869690 Homo sapiens Protein S100-A8 Proteins 0.000 description 5
- PKFBJSDMCRJYDC-GEZSXCAASA-N N-acetyl-s-geranylgeranyl-l-cysteine Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CSC[C@@H](C(O)=O)NC(C)=O PKFBJSDMCRJYDC-GEZSXCAASA-N 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 5
- 102100032442 Protein S100-A8 Human genes 0.000 description 5
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 5
- 239000007979 citrate buffer Substances 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 229920000136 polysorbate Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000011732 tocopherol Substances 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 4
- JTTIOYHBNXDJOD-UHFFFAOYSA-N 2,4,6-triaminopyrimidine Chemical compound NC1=CC(N)=NC(N)=N1 JTTIOYHBNXDJOD-UHFFFAOYSA-N 0.000 description 4
- 241000272525 Anas platyrhynchos Species 0.000 description 4
- 102100039339 Atrial natriuretic peptide receptor 1 Human genes 0.000 description 4
- 101710102163 Atrial natriuretic peptide receptor 1 Proteins 0.000 description 4
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 4
- 241000283073 Equus caballus Species 0.000 description 4
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 4
- 241000287828 Gallus gallus Species 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 108091006067 Goα proteins Proteins 0.000 description 4
- 101000724418 Homo sapiens Neutral amino acid transporter B(0) Proteins 0.000 description 4
- 241000701041 Human betaherpesvirus 7 Species 0.000 description 4
- 102100028267 Neutral amino acid transporter B(0) Human genes 0.000 description 4
- 241000710961 Semliki Forest virus Species 0.000 description 4
- 239000013504 Triton X-100 Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 210000000234 capsid Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 241001493065 dsRNA viruses Species 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 230000028996 humoral immune response Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 230000004807 localization Effects 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 150000003833 nucleoside derivatives Chemical class 0.000 description 4
- 125000003835 nucleoside group Chemical group 0.000 description 4
- 229920009441 perflouroethylene propylene Polymers 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 229940068968 polysorbate 80 Drugs 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 229930003799 tocopherol Natural products 0.000 description 4
- 238000002255 vaccination Methods 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 4
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- 102100039819 Actin, alpha cardiac muscle 1 Human genes 0.000 description 3
- 108010039224 Amidophosphoribosyltransferase Proteins 0.000 description 3
- 241000271566 Aves Species 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 101710094648 Coat protein Proteins 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 3
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 3
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 3
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 3
- 241000710188 Encephalomyocarditis virus Species 0.000 description 3
- 101710121417 Envelope glycoprotein Proteins 0.000 description 3
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 3
- 102100022662 Guanylyl cyclase C Human genes 0.000 description 3
- 101710198293 Guanylyl cyclase C Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000959247 Homo sapiens Actin, alpha cardiac muscle 1 Proteins 0.000 description 3
- 108700028075 Human Herpesvirus 3 gp 118 Proteins 0.000 description 3
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108060004795 Methyltransferase Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 239000004147 Sorbitan trioleate Substances 0.000 description 3
- 239000007984 Tris EDTA buffer Substances 0.000 description 3
- 101900123149 Varicella-zoster virus Envelope glycoprotein E Proteins 0.000 description 3
- 101900123145 Varicella-zoster virus Envelope glycoprotein L Proteins 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 3
- MVCRZALXJBDOKF-JPZHCBQBSA-N beta-hydroxywybutosine 5'-monophosphate Chemical compound C1=NC=2C(=O)N3C(CC(O)[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O MVCRZALXJBDOKF-JPZHCBQBSA-N 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 3
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000009295 crossflow filtration Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000003705 ribosome Anatomy 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 235000019337 sorbitan trioleate Nutrition 0.000 description 3
- 229960000391 sorbitan trioleate Drugs 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 3
- 229940045145 uridine Drugs 0.000 description 3
- 229940125575 vaccine candidate Drugs 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 2
- JEOQACOXAOEPLX-WCCKRBBISA-N (2s)-2-amino-5-(diaminomethylideneamino)pentanoic acid;1,3-thiazolidine-4-carboxylic acid Chemical compound OC(=O)C1CSCN1.OC(=O)[C@@H](N)CCCN=C(N)N JEOQACOXAOEPLX-WCCKRBBISA-N 0.000 description 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical group CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 2
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- HNLXNOZHXNSSPN-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCOCCOCCOCCO)C=C1 HNLXNOZHXNSSPN-UHFFFAOYSA-N 0.000 description 2
- 102100025230 2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial Human genes 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 2
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 description 2
- VZQXUWKZDSEQRR-SDBHATRESA-N 2-methylthio-N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)C)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VZQXUWKZDSEQRR-SDBHATRESA-N 0.000 description 2
- 102100039217 3-ketoacyl-CoA thiolase, peroxisomal Human genes 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- VSCNRXVDHRNJOA-PNHWDRBUSA-N 5-(carboxymethylaminomethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CNCC(O)=O)=C1 VSCNRXVDHRNJOA-PNHWDRBUSA-N 0.000 description 2
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 description 2
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 2
- QXDXBKZJFLRLCM-UAKXSSHOSA-N 5-hydroxyuridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(O)=C1 QXDXBKZJFLRLCM-UAKXSSHOSA-N 0.000 description 2
- YIZYCHKPHCPKHZ-PNHWDRBUSA-N 5-methoxycarbonylmethyluridine Chemical compound O=C1NC(=O)C(CC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 YIZYCHKPHCPKHZ-PNHWDRBUSA-N 0.000 description 2
- SNNBPMAXGYBMHM-JXOAFFINSA-N 5-methyl-2-thiouridine Chemical compound S=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 SNNBPMAXGYBMHM-JXOAFFINSA-N 0.000 description 2
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 2
- PNWOYKVCNDZOLS-UHFFFAOYSA-N 6-amino-5-chloro-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Cl PNWOYKVCNDZOLS-UHFFFAOYSA-N 0.000 description 2
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 description 2
- CLGFIVUFZRGQRP-UHFFFAOYSA-N 7,8-dihydro-8-oxoguanine Chemical class O=C1NC(N)=NC2=C1NC(=O)N2 CLGFIVUFZRGQRP-UHFFFAOYSA-N 0.000 description 2
- RGKBRPAAQSHTED-UHFFFAOYSA-N 8-oxoadenine Chemical compound NC1=NC=NC2=C1NC(=O)N2 RGKBRPAAQSHTED-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 108010087522 Aeromonas hydrophilia lipase-acyltransferase Proteins 0.000 description 2
- 241000608319 Bebaru virus Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 102100028253 Breast cancer anti-estrogen resistance protein 3 Human genes 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 241001502567 Chikungunya virus Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 208000003322 Coinfection Diseases 0.000 description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 206010066919 Epidemic polyarthritis Diseases 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 241000608297 Getah virus Species 0.000 description 2
- 102100040870 Glycine amidinotransferase, mitochondrial Human genes 0.000 description 2
- 241000724709 Hepatitis delta virus Species 0.000 description 2
- 101100153048 Homo sapiens ACAA1 gene Proteins 0.000 description 2
- 101000893303 Homo sapiens Glycine amidinotransferase, mitochondrial Proteins 0.000 description 2
- 101000957437 Homo sapiens Mitochondrial carnitine/acylcarnitine carrier protein Proteins 0.000 description 2
- 101001128634 Homo sapiens NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Proteins 0.000 description 2
- 101100315698 Human cytomegalovirus (strain Merlin) UL131A gene Proteins 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- 229920002884 Laureth 4 Polymers 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241000608292 Mayaro virus Species 0.000 description 2
- 102100038738 Mitochondrial carnitine/acylcarnitine carrier protein Human genes 0.000 description 2
- 241000868135 Mucambo virus Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- VQAYFKKCNSOZKM-IOSLPCCCSA-N N(6)-methyladenosine Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VQAYFKKCNSOZKM-IOSLPCCCSA-N 0.000 description 2
- 102100032194 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Human genes 0.000 description 2
- VQAYFKKCNSOZKM-UHFFFAOYSA-N NSC 29409 Natural products C1=NC=2C(NC)=NC=NC=2N1C1OC(CO)C(O)C1O VQAYFKKCNSOZKM-UHFFFAOYSA-N 0.000 description 2
- 101710138767 Non-structural glycoprotein 4 Proteins 0.000 description 2
- 101710144127 Non-structural protein 1 Proteins 0.000 description 2
- 101710144128 Non-structural protein 2 Proteins 0.000 description 2
- 101710144111 Non-structural protein 3 Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000868134 Pixuna virus Species 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010076039 Polyproteins Proteins 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 229930185560 Pseudouridine Natural products 0.000 description 2
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 230000006819 RNA synthesis Effects 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 241000710942 Ross River virus Species 0.000 description 2
- 102100031776 SH2 domain-containing protein 3A Human genes 0.000 description 2
- 102100021798 SH2 domain-containing protein 3C Human genes 0.000 description 2
- 102100031056 Serine protease 57 Human genes 0.000 description 2
- 101710197596 Serine protease 57 Proteins 0.000 description 2
- 241000272534 Struthio camelus Species 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 208000002687 Venezuelan Equine Encephalomyelitis Diseases 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- YXNIEZJFCGTDKV-UHFFFAOYSA-N X-Nucleosid Natural products O=C1N(CCC(N)C(O)=O)C(=O)C=CN1C1C(O)C(O)C(CO)O1 YXNIEZJFCGTDKV-UHFFFAOYSA-N 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- ALSPKRWQCLSJLV-UHFFFAOYSA-N azanium;acetic acid;acetate Chemical compound [NH4+].CC(O)=O.CC([O-])=O ALSPKRWQCLSJLV-UHFFFAOYSA-N 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229940013317 fish oils Drugs 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 229920001002 functional polymer Polymers 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229940029575 guanosine Drugs 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 102000027596 immune receptors Human genes 0.000 description 2
- 108091008915 immune receptors Proteins 0.000 description 2
- 239000012133 immunoprecipitate Substances 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 238000010212 intracellular staining Methods 0.000 description 2
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 2
- 229940062711 laureth-9 Drugs 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 2
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 2
- CJWXCNXHAIFFMH-AVZHFPDBSA-N n-[(2s,3r,4s,5s,6r)-2-[(2r,3r,4s,5r)-2-acetamido-4,5,6-trihydroxy-1-oxohexan-3-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]acetamide Chemical compound C[C@H]1O[C@@H](O[C@@H]([C@@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O)[C@H](O)[C@@H](NC(C)=O)[C@@H]1O CJWXCNXHAIFFMH-AVZHFPDBSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 235000019488 nut oil Nutrition 0.000 description 2
- 229940066429 octoxynol Drugs 0.000 description 2
- 229920002114 octoxynol-9 Polymers 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- ONJQDTZCDSESIW-UHFFFAOYSA-N polidocanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO ONJQDTZCDSESIW-UHFFFAOYSA-N 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 108010054624 red fluorescent protein Proteins 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- DWRXFEITVBNRMK-JXOAFFINSA-N ribothymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 DWRXFEITVBNRMK-JXOAFFINSA-N 0.000 description 2
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010686 shark liver oil Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229940032094 squalane Drugs 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical class N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 235000010384 tocopherol Nutrition 0.000 description 2
- 125000002640 tocopherol group Chemical class 0.000 description 2
- 235000019149 tocopherols Nutrition 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000007502 viral entry Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 230000006490 viral transcription Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- PHFMCMDFWSZKGD-IOSLPCCCSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-(methylamino)-2-methylsulfanylpurin-9-yl]oxolane-3,4-diol Chemical compound C1=NC=2C(NC)=NC(SC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PHFMCMDFWSZKGD-IOSLPCCCSA-N 0.000 description 1
- OFBLZCXWVROESG-PKPIPKONSA-N (2s)-1,2,3-trihydroxyheptan-4-one Chemical compound CCCC(=O)C(O)[C@@H](O)CO OFBLZCXWVROESG-PKPIPKONSA-N 0.000 description 1
- GPTUGCGYEMEAOC-IBZYUGMLSA-N (2s,3r)-2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]-methylcarbamoyl]-3-hydroxybutanamide Chemical compound C1=NC=2C(N(C)C(=O)NC(=O)[C@@H](N)[C@H](O)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GPTUGCGYEMEAOC-IBZYUGMLSA-N 0.000 description 1
- JZSSTKLEXRQFEA-HEIFUQTGSA-N (2s,3r,4s,5r)-2-(6-aminopurin-9-yl)-3,4-dihydroxy-5-(hydroxymethyl)oxolane-2-carboxamide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@]1(C(=O)N)O[C@H](CO)[C@@H](O)[C@H]1O JZSSTKLEXRQFEA-HEIFUQTGSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- 108010052418 (N-(2-((4-((2-((4-(9-acridinylamino)phenyl)amino)-2-oxoethyl)amino)-4-oxobutyl)amino)-1-(1H-imidazol-4-ylmethyl)-1-oxoethyl)-6-(((-2-aminoethyl)amino)methyl)-2-pyridinecarboxamidato) iron(1+) Proteins 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- XIJAZGMFHRTBFY-FDDDBJFASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-$l^{1}-selanyl-5-(methylaminomethyl)pyrimidin-4-one Chemical compound [Se]C1=NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XIJAZGMFHRTBFY-FDDDBJFASA-N 0.000 description 1
- UTQUILVPBZEHTK-ZOQUXTDFSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3-methylpyrimidine-2,4-dione Chemical compound O=C1N(C)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UTQUILVPBZEHTK-ZOQUXTDFSA-N 0.000 description 1
- BTFXIEGOSDSOGN-KWCDMSRLSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,3-diazinane-2,4-dione Chemical compound O=C1NC(=O)C(C)CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 BTFXIEGOSDSOGN-KWCDMSRLSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- QAQSNXHKHKONNS-UHFFFAOYSA-N 1-ethyl-2-hydroxy-4-methyl-6-oxopyridine-3-carboxamide Chemical compound CCN1C(O)=C(C(N)=O)C(C)=CC1=O QAQSNXHKHKONNS-UHFFFAOYSA-N 0.000 description 1
- GFYLSDSUCHVORB-IOSLPCCCSA-N 1-methyladenosine Chemical compound C1=NC=2C(=N)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GFYLSDSUCHVORB-IOSLPCCCSA-N 0.000 description 1
- UTAIYTHAJQNQDW-KQYNXXCUSA-N 1-methylguanosine Chemical compound C1=NC=2C(=O)N(C)C(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UTAIYTHAJQNQDW-KQYNXXCUSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- 101800001779 2'-O-methyltransferase Proteins 0.000 description 1
- IQZWKGWOBPJWMX-UHFFFAOYSA-N 2-Methyladenosine Natural products C12=NC(C)=NC(N)=C2N=CN1C1OC(CO)C(O)C1O IQZWKGWOBPJWMX-UHFFFAOYSA-N 0.000 description 1
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- FKMHSNTVILORFA-UHFFFAOYSA-N 2-[2-(2-dodecoxyethoxy)ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCO FKMHSNTVILORFA-UHFFFAOYSA-N 0.000 description 1
- SOEYIPCQNRSIAV-IOSLPCCCSA-N 2-amino-5-(aminomethyl)-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=2NC(N)=NC(=O)C=2C(CN)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SOEYIPCQNRSIAV-IOSLPCCCSA-N 0.000 description 1
- BIRQNXWAXWLATA-IOSLPCCCSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-oxo-1h-pyrrolo[2,3-d]pyrimidine-5-carbonitrile Chemical compound C1=C(C#N)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BIRQNXWAXWLATA-IOSLPCCCSA-N 0.000 description 1
- QNIZHKITBISILC-RPKMEZRRSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-methyloxolan-2-yl]-3h-purin-6-one Chemical compound C1=NC(C(NC(N)=N2)=O)=C2N1[C@]1(C)O[C@H](CO)[C@@H](O)[C@H]1O QNIZHKITBISILC-RPKMEZRRSA-N 0.000 description 1
- PBFLIOAJBULBHI-JJNLEZRASA-N 2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]carbamoyl]acetamide Chemical compound C1=NC=2C(NC(=O)NC(=O)CN)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PBFLIOAJBULBHI-JJNLEZRASA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical class NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- KMEMIMRPZGDOMG-UHFFFAOYSA-N 2-cyanoethoxyphosphonamidous acid Chemical compound NP(O)OCCC#N KMEMIMRPZGDOMG-UHFFFAOYSA-N 0.000 description 1
- VWSLLSXLURJCDF-UHFFFAOYSA-N 2-methyl-4,5-dihydro-1h-imidazole Chemical compound CC1=NCCN1 VWSLLSXLURJCDF-UHFFFAOYSA-N 0.000 description 1
- IQZWKGWOBPJWMX-IOSLPCCCSA-N 2-methyladenosine Chemical compound C12=NC(C)=NC(N)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O IQZWKGWOBPJWMX-IOSLPCCCSA-N 0.000 description 1
- QEWSGVMSLPHELX-UHFFFAOYSA-N 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)CO)=C2N=CN1C1OC(CO)C(O)C1O QEWSGVMSLPHELX-UHFFFAOYSA-N 0.000 description 1
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 1
- GIIGHSIIKVOWKZ-UHFFFAOYSA-N 2h-triazolo[4,5-d]pyrimidine Chemical class N1=CN=CC2=NNN=C21 GIIGHSIIKVOWKZ-UHFFFAOYSA-N 0.000 description 1
- YXNIEZJFCGTDKV-JANFQQFMSA-N 3-(3-amino-3-carboxypropyl)uridine Chemical compound O=C1N(CCC(N)C(O)=O)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 YXNIEZJFCGTDKV-JANFQQFMSA-N 0.000 description 1
- RDPUKVRQKWBSPK-UHFFFAOYSA-N 3-Methylcytidine Natural products O=C1N(C)C(=N)C=CN1C1C(O)C(O)C(CO)O1 RDPUKVRQKWBSPK-UHFFFAOYSA-N 0.000 description 1
- UTQUILVPBZEHTK-UHFFFAOYSA-N 3-Methyluridine Natural products O=C1N(C)C(=O)C=CN1C1C(O)C(O)C(CO)O1 UTQUILVPBZEHTK-UHFFFAOYSA-N 0.000 description 1
- BINGDNLMMYSZFR-QYVSTXNMSA-N 3-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,7-dimethyl-5h-imidazo[1,2-a]purin-9-one Chemical compound C1=NC=2C(=O)N3C(C)=C(C)N=C3NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BINGDNLMMYSZFR-QYVSTXNMSA-N 0.000 description 1
- RDPUKVRQKWBSPK-ZOQUXTDFSA-N 3-methylcytidine Chemical compound O=C1N(C)C(=N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RDPUKVRQKWBSPK-ZOQUXTDFSA-N 0.000 description 1
- ZLOIGESWDJYCTF-UHFFFAOYSA-N 4-Thiouridine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-UHFFFAOYSA-N 0.000 description 1
- QUZQVVNSDQCAOL-WOUKDFQISA-N 4-demethylwyosine Chemical compound N1C(C)=CN(C(C=2N=C3)=O)C1=NC=2N3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QUZQVVNSDQCAOL-WOUKDFQISA-N 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 1
- UVGCZRPOXXYZKH-QADQDURISA-N 5-(carboxyhydroxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(O)C(O)=O)=C1 UVGCZRPOXXYZKH-QADQDURISA-N 0.000 description 1
- FAWQJBLSWXIJLA-VPCXQMTMSA-N 5-(carboxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(O)=O)=C1 FAWQJBLSWXIJLA-VPCXQMTMSA-N 0.000 description 1
- NFEXJLMYXXIWPI-JXOAFFINSA-N 5-Hydroxymethylcytidine Chemical compound C1=C(CO)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NFEXJLMYXXIWPI-JXOAFFINSA-N 0.000 description 1
- ZYEWPVTXYBLWRT-UHFFFAOYSA-N 5-Uridinacetamid Natural products O=C1NC(=O)C(CC(=O)N)=CN1C1C(O)C(O)C(CO)O1 ZYEWPVTXYBLWRT-UHFFFAOYSA-N 0.000 description 1
- BISHACNKZIBDFM-UHFFFAOYSA-N 5-amino-1h-pyrimidine-2,4-dione Chemical compound NC1=CNC(=O)NC1=O BISHACNKZIBDFM-UHFFFAOYSA-N 0.000 description 1
- LOEDKMLIGFMQKR-JXOAFFINSA-N 5-aminomethyl-2-thiouridine Chemical compound S=C1NC(=O)C(CN)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LOEDKMLIGFMQKR-JXOAFFINSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- ZYEWPVTXYBLWRT-VPCXQMTMSA-N 5-carbamoylmethyluridine Chemical compound O=C1NC(=O)C(CC(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZYEWPVTXYBLWRT-VPCXQMTMSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- JDBGXEHEIRGOBU-UHFFFAOYSA-N 5-hydroxymethyluracil Chemical compound OCC1=CNC(=O)NC1=O JDBGXEHEIRGOBU-UHFFFAOYSA-N 0.000 description 1
- HLZXTFWTDIBXDF-PNHWDRBUSA-N 5-methoxycarbonylmethyl-2-thiouridine Chemical compound S=C1NC(=O)C(CC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HLZXTFWTDIBXDF-PNHWDRBUSA-N 0.000 description 1
- ZXIATBNUWJBBGT-JXOAFFINSA-N 5-methoxyuridine Chemical compound O=C1NC(=O)C(OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXIATBNUWJBBGT-JXOAFFINSA-N 0.000 description 1
- ZXQHKBUIXRFZBV-FDDDBJFASA-N 5-methylaminomethyluridine Chemical compound O=C1NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXQHKBUIXRFZBV-FDDDBJFASA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- USVMJSALORZVDV-UHFFFAOYSA-N 6-(gamma,gamma-dimethylallylamino)purine riboside Natural products C1=NC=2C(NCC=C(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O USVMJSALORZVDV-UHFFFAOYSA-N 0.000 description 1
- QFVKLKDEXOWFSL-UHFFFAOYSA-N 6-amino-5-bromo-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Br QFVKLKDEXOWFSL-UHFFFAOYSA-N 0.000 description 1
- NLLCDONDZDHLCI-UHFFFAOYSA-N 6-amino-5-hydroxy-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1O NLLCDONDZDHLCI-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- RYYIULNRIVUMTQ-UHFFFAOYSA-N 6-chloroguanine Chemical class NC1=NC(Cl)=C2N=CNC2=N1 RYYIULNRIVUMTQ-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical class NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 241000023308 Acca Species 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- PEMQXWCOMFJRLS-UHFFFAOYSA-N Archaeosine Natural products C1=2NC(N)=NC(=O)C=2C(C(=N)N)=CN1C1OC(CO)C(O)C1O PEMQXWCOMFJRLS-UHFFFAOYSA-N 0.000 description 1
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 1
- CPMKYMGGYUFOHS-FSPLSTOPSA-N Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CC(O)=O CPMKYMGGYUFOHS-FSPLSTOPSA-N 0.000 description 1
- 241000178568 Aura virus Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 241000710946 Barmah Forest virus Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108700016947 Bos taurus structural-GP Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000231316 Buggy Creek virus Species 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical class CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 241000232908 Cabassous Species 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102100034330 Chromaffin granule amine transporter Human genes 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010062343 Congenital infection Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- MIKUYHXYGGJMLM-UUOKFMHZSA-N Crotonoside Chemical compound C1=NC2=C(N)NC(=O)N=C2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O MIKUYHXYGGJMLM-UUOKFMHZSA-N 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 101800000620 Disintegrin-like Proteins 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014611 Encephalitis venezuelan equine Diseases 0.000 description 1
- 241000701867 Enterobacteria phage T7 Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 244000140063 Eragrostis abyssinica Species 0.000 description 1
- 235000014966 Eragrostis abyssinica Nutrition 0.000 description 1
- 241000465885 Everglades virus Species 0.000 description 1
- 241000272186 Falco columbarius Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000231322 Fort Morgan virus Species 0.000 description 1
- 102100035233 Furin Human genes 0.000 description 1
- 108090001126 Furin Proteins 0.000 description 1
- 102100036263 Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Human genes 0.000 description 1
- 241000711557 Hepacivirus Species 0.000 description 1
- 208000037262 Hepatitis delta Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000710948 Highlands J virus Species 0.000 description 1
- 101000641221 Homo sapiens Chromaffin granule amine transporter Proteins 0.000 description 1
- 101001001786 Homo sapiens Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Proteins 0.000 description 1
- 101001064302 Homo sapiens Lipase member I Proteins 0.000 description 1
- 101000804764 Homo sapiens Lymphotactin Proteins 0.000 description 1
- 101000653469 Homo sapiens T-complex protein 1 subunit zeta Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 1
- 241000231318 Kyzylagach virus Species 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 101710180643 Leishmanolysin Proteins 0.000 description 1
- 102100030659 Lipase member I Human genes 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 102100035304 Lymphotactin Human genes 0.000 description 1
- 101150002398 MCM5 gene Proteins 0.000 description 1
- QWZLBLDNRUUYQI-UHFFFAOYSA-M Methylbenzethonium chloride Chemical compound [Cl-].CC1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 QWZLBLDNRUUYQI-UHFFFAOYSA-M 0.000 description 1
- 241000710949 Middelburg virus Species 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000985214 Mus musculus 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 1
- IYYIBFCJILKPCO-WOUKDFQISA-O N(2),N(2),N(7)-trimethylguanosine Chemical compound C1=2NC(N(C)C)=NC(=O)C=2N(C)C=[N+]1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O IYYIBFCJILKPCO-WOUKDFQISA-O 0.000 description 1
- RSPURTUNRHNVGF-IOSLPCCCSA-N N(2),N(2)-dimethylguanosine Chemical compound C1=NC=2C(=O)NC(N(C)C)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RSPURTUNRHNVGF-IOSLPCCCSA-N 0.000 description 1
- ZBYRSRLCXTUFLJ-IOSLPCCCSA-O N(2),N(7)-dimethylguanosine Chemical compound CNC=1NC(C=2[N+](=CN([C@H]3[C@H](O)[C@H](O)[C@@H](CO)O3)C=2N=1)C)=O ZBYRSRLCXTUFLJ-IOSLPCCCSA-O 0.000 description 1
- SLEHROROQDYRAW-KQYNXXCUSA-N N(2)-methylguanosine Chemical compound C1=NC=2C(=O)NC(NC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SLEHROROQDYRAW-KQYNXXCUSA-N 0.000 description 1
- NIDVTARKFBZMOT-PEBGCTIMSA-N N(4)-acetylcytidine Chemical compound O=C1N=C(NC(=O)C)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NIDVTARKFBZMOT-PEBGCTIMSA-N 0.000 description 1
- WVGPGNPCZPYCLK-WOUKDFQISA-N N(6),N(6)-dimethyladenosine Chemical compound C1=NC=2C(N(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WVGPGNPCZPYCLK-WOUKDFQISA-N 0.000 description 1
- USVMJSALORZVDV-SDBHATRESA-N N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O USVMJSALORZVDV-SDBHATRESA-N 0.000 description 1
- WVGPGNPCZPYCLK-UHFFFAOYSA-N N-Dimethyladenosine Natural products C1=NC=2C(N(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O WVGPGNPCZPYCLK-UHFFFAOYSA-N 0.000 description 1
- UNUYMBPXEFMLNW-DWVDDHQFSA-N N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine Chemical compound C1=NC=2C(NC(=O)N[C@@H]([C@H](O)C)C(O)=O)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UNUYMBPXEFMLNW-DWVDDHQFSA-N 0.000 description 1
- SLLVJTURCPWLTP-UHFFFAOYSA-N N-[9-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]acetamide Chemical compound C1=NC=2C(NC(=O)C)=NC=NC=2N1C1OC(CO)C(O)C1O SLLVJTURCPWLTP-UHFFFAOYSA-N 0.000 description 1
- LZCNWAXLJWBRJE-ZOQUXTDFSA-N N4-Methylcytidine Chemical compound O=C1N=C(NC)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LZCNWAXLJWBRJE-ZOQUXTDFSA-N 0.000 description 1
- GOSWTRUMMSCNCW-UHFFFAOYSA-N N6-(cis-hydroxyisopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1OC(CO)C(O)C1O GOSWTRUMMSCNCW-UHFFFAOYSA-N 0.000 description 1
- 241000608287 Ndumu virus Species 0.000 description 1
- 101100059382 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ccg-6 gene Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- VZQXUWKZDSEQRR-UHFFFAOYSA-N Nucleosid Natural products C12=NC(SC)=NC(NCC=C(C)C)=C2N=CN1C1OC(CO)C(O)C1O VZQXUWKZDSEQRR-UHFFFAOYSA-N 0.000 description 1
- 241000710944 O'nyong-nyong virus Species 0.000 description 1
- JXNORPPTKDEAIZ-QOCRDCMYSA-N O-4''-alpha-D-mannosylqueuosine Chemical compound NC(N1)=NC(N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=C2CN[C@H]([C@H]3O)C=C[C@@H]3O[C@H]([C@H]([C@H]3O)O)O[C@H](CO)[C@H]3O)=C2C1=O JXNORPPTKDEAIZ-QOCRDCMYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000004520 Passiflora ligularis Species 0.000 description 1
- 235000013744 Passiflora ligularis Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000710778 Pestivirus Species 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 101000972349 Phytolacca americana Lectin-A Proteins 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 229940022005 RNA vaccine Drugs 0.000 description 1
- 101710200092 Replicase polyprotein Proteins 0.000 description 1
- 241001068263 Replication competent viruses Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000122129 Roseolovirus Species 0.000 description 1
- 241000710801 Rubivirus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100269369 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) AGE1 gene Proteins 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241000608282 Sagiyama virus Species 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 241000144282 Sigmodon Species 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 101500008203 Sindbis virus Capsid protein Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 102100030664 T-complex protein 1 subunit zeta Human genes 0.000 description 1
- 201000008754 Tenosynovial giant cell tumor Diseases 0.000 description 1
- WPMWEFXCIYCJSA-UHFFFAOYSA-N Tetraethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCO WPMWEFXCIYCJSA-UHFFFAOYSA-N 0.000 description 1
- 108030003004 Triphosphatases Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000608278 Una virus Species 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 201000009145 Venezuelan equine encephalitis Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108700022715 Viral Proteases Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 230000010530 Virus Neutralization Effects 0.000 description 1
- 241000710951 Western equine encephalitis virus Species 0.000 description 1
- 241000231320 Whataroa virus Species 0.000 description 1
- JCZSFCLRSONYLH-UHFFFAOYSA-N Wyosine Natural products N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3C1OC(CO)C(O)C1O JCZSFCLRSONYLH-UHFFFAOYSA-N 0.000 description 1
- ZBNRGEMZNWHCGA-PDKVEDEMSA-N [(2r)-2-[(2r,3r,4s)-3,4-bis[[(z)-octadec-9-enoyl]oxy]oxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC ZBNRGEMZNWHCGA-PDKVEDEMSA-N 0.000 description 1
- TVGUROHJABCRTB-MHJQXXNXSA-N [(2r,3s,4r,5s)-5-[(2r,3r,4r,5r)-2-(2-amino-6-oxo-3h-purin-9-yl)-4-hydroxy-5-(hydroxymethyl)oxolan-3-yl]oxy-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate Chemical compound O([C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C=NC=2C(=O)N=C(NC=21)N)[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O TVGUROHJABCRTB-MHJQXXNXSA-N 0.000 description 1
- PQIHYNWPAJABTB-QCNRFFRDSA-N [O-]S(CCNC[S+]=C(N1)N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=CC1=O)(=O)=O Chemical compound [O-]S(CCNC[S+]=C(N1)N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=CC1=O)(=O)=O PQIHYNWPAJABTB-QCNRFFRDSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- PEMQXWCOMFJRLS-RPKMEZRRSA-N archaeosine Chemical compound C1=2NC(N)=NC(=O)C=2C(C(=N)N)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PEMQXWCOMFJRLS-RPKMEZRRSA-N 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- SMTUJUHULKBTBS-UHFFFAOYSA-N benzyl(trimethyl)azanium;methanolate Chemical compound [O-]C.C[N+](C)(C)CC1=CC=CC=C1 SMTUJUHULKBTBS-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229940023860 canarypox virus HIV vaccine Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000005101 cell tropism Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- SXPWTBGAZSPLHA-UHFFFAOYSA-M cetalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SXPWTBGAZSPLHA-UHFFFAOYSA-M 0.000 description 1
- 229960000228 cetalkonium chloride Drugs 0.000 description 1
- 229940115457 cetyldimethylethylammonium bromide Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000749 co-immunoprecipitation Methods 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 208000035647 diffuse type tenosynovial giant cell tumor Diseases 0.000 description 1
- ZPTBLXKRQACLCR-XVFCMESISA-N dihydrouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)CC1 ZPTBLXKRQACLCR-XVFCMESISA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- BPHQZTVXXXJVHI-UHFFFAOYSA-N dimyristoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-UHFFFAOYSA-N 0.000 description 1
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QBHFVMDLPTZDOI-UHFFFAOYSA-N dodecylphosphocholine Chemical compound CCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C QBHFVMDLPTZDOI-UHFFFAOYSA-N 0.000 description 1
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000000797 effect on infection Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- RRCFLRBBBFZLSB-XIFYLAFSSA-N epoxyqueuosine Chemical compound C1=C(CN[C@@H]2[C@H]([C@@H](O)[C@@H]3O[C@@H]32)O)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RRCFLRBBBFZLSB-XIFYLAFSSA-N 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- VUFOSBDICLTFMS-UHFFFAOYSA-M ethyl-hexadecyl-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)CC VUFOSBDICLTFMS-UHFFFAOYSA-M 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000002195 fatty ethers Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 108010064833 guanylyltransferase Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000029570 hepatitis D virus infection Diseases 0.000 description 1
- KLHSDMQFUVANEB-MELZOAELSA-L hexadecyl-[(2r,3r)-4-[hexadecyl(dimethyl)azaniumyl]-2,3-dimethoxybutyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C[C@@H](OC)[C@H](OC)C[N+](C)(C)CCCCCCCCCCCCCCCC KLHSDMQFUVANEB-MELZOAELSA-L 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 208000024697 human cytomegalovirus infection Diseases 0.000 description 1
- 239000001257 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 229940124590 live attenuated vaccine Drugs 0.000 description 1
- 229940023012 live-attenuated vaccine Drugs 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 108700021021 mRNA Vaccine Proteins 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- HLZXTFWTDIBXDF-UHFFFAOYSA-N mcm5sU Natural products COC(=O)Cc1cn(C2OC(CO)C(O)C2O)c(=S)[nH]c1=O HLZXTFWTDIBXDF-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- GWKIZNPISGBQGY-GNLDREGESA-N methyl (2S)-4-[4,6-dimethyl-9-oxo-3-[(2R,3R,4S,5R)-2,3,4-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]imidazo[1,2-a]purin-7-yl]-2-(methoxycarbonylamino)butanoate Chemical class O[C@@]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(=O)N3C(CC[C@@H](C(=O)OC)NC(=O)OC)=C(C)N=C3N(C)C21 GWKIZNPISGBQGY-GNLDREGESA-N 0.000 description 1
- XOTXNXXJZCFUOA-UGKPPGOTSA-N methyl 2-[1-[(2r,3r,4r,5r)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]-2,4-dioxopyrimidin-5-yl]acetate Chemical compound CO[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(=O)OC)=C1 XOTXNXXJZCFUOA-UGKPPGOTSA-N 0.000 description 1
- JNVLKTZUCGRYNN-LQGIRWEJSA-N methyl 2-[1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,4-dioxopyrimidin-5-yl]-2-hydroxyacetate Chemical compound O=C1NC(=O)C(C(O)C(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 JNVLKTZUCGRYNN-LQGIRWEJSA-N 0.000 description 1
- WCNMEQDMUYVWMJ-UHFFFAOYSA-N methyl 4-[3-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4,6-dimethyl-9-oxoimidazo[1,2-a]purin-7-yl]-3-hydroperoxy-2-(methoxycarbonylamino)butanoate Chemical compound C1=NC=2C(=O)N3C(CC(C(NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O WCNMEQDMUYVWMJ-UHFFFAOYSA-N 0.000 description 1
- WZRYXYRWFAPPBJ-PNHWDRBUSA-N methyl uridin-5-yloxyacetate Chemical compound O=C1NC(=O)C(OCC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 WZRYXYRWFAPPBJ-PNHWDRBUSA-N 0.000 description 1
- 229960002285 methylbenzethonium chloride Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 101150084874 mimG gene Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- KHGRPHJXYWLEFQ-HKTUAWPASA-N n,n-dimethyl-2,3-bis[(9z,12z,15z)-octadeca-9,12,15-trienoxy]propan-1-amine Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/C\C=C/CC KHGRPHJXYWLEFQ-HKTUAWPASA-N 0.000 description 1
- DDBRXOJCLVGHLX-UHFFFAOYSA-N n,n-dimethylmethanamine;propane Chemical compound CCC.CN(C)C DDBRXOJCLVGHLX-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 230000004719 natural immunity Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 229940098514 octoxynol-9 Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000002023 papillomaviral effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 1
- 150000008106 phosphatidylserines Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- PSHHQIGKVLIVBD-UHFFFAOYSA-N purine-2,4-diamine Chemical class C1=NC(N)=NC2(N)N=CN=C21 PSHHQIGKVLIVBD-UHFFFAOYSA-N 0.000 description 1
- QQXQGKSPIMGUIZ-AEZJAUAXSA-N queuosine Chemical compound C1=2C(=O)NC(N)=NC=2N([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=C1CN[C@H]1C=C[C@H](O)[C@@H]1O QQXQGKSPIMGUIZ-AEZJAUAXSA-N 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 150000003290 ribose derivatives Chemical class 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 229940069764 shark liver oil Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000008362 succinate buffer Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 208000002918 testicular germ cell tumor Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- KMVDECFGXJKYHV-UHFFFAOYSA-L trimethyl-[10-(trimethylazaniumyl)decyl]azanium;dichloride Chemical compound [Cl-].[Cl-].C[N+](C)(C)CCCCCCCCCC[N+](C)(C)C KMVDECFGXJKYHV-UHFFFAOYSA-L 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- RVCNQQGZJWVLIP-VPCXQMTMSA-N uridin-5-yloxyacetic acid Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(OCC(O)=O)=C1 RVCNQQGZJWVLIP-VPCXQMTMSA-N 0.000 description 1
- YIZYCHKPHCPKHZ-UHFFFAOYSA-N uridine-5-acetic acid methyl ester Natural products COC(=O)Cc1cn(C2OC(CO)C(O)C2O)c(=O)[nH]c1=O YIZYCHKPHCPKHZ-UHFFFAOYSA-N 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 108010027510 vaccinia virus capping enzyme Proteins 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000005570 vertical transmission Effects 0.000 description 1
- 230000007501 viral attachment Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- JCZSFCLRSONYLH-QYVSTXNMSA-N wyosin Chemical compound N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JCZSFCLRSONYLH-QYVSTXNMSA-N 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/90—Fusion polypeptide containing a motif for post-translational modification
- C07K2319/92—Fusion polypeptide containing a motif for post-translational modification containing an intein ("protein splicing")domain
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16111—Cytomegalovirus, e.g. human herpesvirus 5
- C12N2710/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16111—Cytomegalovirus, e.g. human herpesvirus 5
- C12N2710/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16711—Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
- C12N2710/16722—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16711—Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
- C12N2710/16734—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36141—Use of virus, viral particle or viral elements as a vector
- C12N2770/36143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/20—Vector systems having a special element relevant for transcription transcription of more than one cistron
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
Definitions
- Herpes viruses are widespread and cause a wide range of diseases in humans that in the worst cases can lead to substantial morbidity and mortality, primarily in immunocompromised individuals (e.g., transplant recipients and HIV-infected individuals). Humans are susceptible to infection by at least eight herpes viruses.
- Herpes simplex virus-1 HSV-1 , HHV-1
- Herpes simplex virus-2 HSV-2, HHV-2
- VZV Varicella zoster virus
- CMV cytomegalovirus
- HHV-5 and Roseoloviruses HHV-6 and HHV-7
- EBV Epstein-Barr virus
- KSHV Kaposi's sarcoma- associated herpesvirus
- CMV infection leads to substantial morbidity and mortality in immunocompromised individuals (e.g., transplant recipients and HIV-infected individuals) and congenital infection can result in devastating defects in neurological development in neonates.
- CMV envelope glycoproteins gB, gH, gL, gM and gN represent attractive vaccine candidates as they are expressed on the viral surface and can elicit protective virus- neutralizing humoral immune responses.
- Some CMV vaccine strategies have targeted the major surface glycoprotein B (gB), which can induce a dominant antibody response. (Go and Pollard, JID 197: 1631-1633 (2008)).
- CMV glycoprotein gB can induce a neutralizing antibody response, and a large fraction of the antibodies that neutralize infection of fibroblasts in sera from CMV-positive patients is directed against gB (Britt 1990).
- gH and gM/gN are targets of the immune response to natural infection (Urban et al (1996) J. Gen. Virol. 77(Pt. 7): 1537-47; Mach et al (2000) J. Virol. 74(24): 1 1881-92).
- Complexes of CMV proteins are also attractive vaccine candidates because they appear to be involved in important processes in the viral life cycle. For example, the gH/gL/gO complex seems to have important roles in both fibroblast and
- CMV gH/gL can also associate with UL128, UL130, and UL131A (referred to here as UL131) and form a pentameric complex that is required for entry into several cell types, including epithelial cells, endothelial cells, and dendritic cells (Hahn et al (2004) J. Virol. 78(18): 10023-33; Wang and Shenk (2005) Proc. Natl. Acad. Sci USA 102(50): 18153-8; Gerna et al (2005). J. Gen. Virol. 84(Pt 6): 1431-6; Ryckman et al (2008) J. Virol. 82:60-70).
- UL131 UL131
- this complex is not required for infection of fibroblasts.
- Laboratory hCMV isolates carry mutations in the UL128-UL131 locus, and mutations arise in clinical isolates after only a few passages in cultured fibroblasts (Akter et al (2003) J. Gen. Virol. 84(Pt 5): 1117-22).
- the pentameric complex elicits antibodies that neutralize infection of epithelial cells, endothelial cells (and likely any other cell type where the pentameric complex mediates viral entry) with very high potency (Macagno et al (2010) J. Virol.
- WO 2004/076645 describes recombinant DNA molecules that encode CMV proteins.
- combinations of distinct DNA molecules that encode different CMV proteins can be introduced into cells to cause co-expression of the encoded CMV proteins.
- gM and gN were co-expressed in this way, they formed a disulfide-linked complex.
- Rabbits immunized with DNA constructs that produced the gM/gN complex or with a DNA construct encoding gB produced equivalent neutralizing antibody responses.
- the invention relates to platforms for co-delivery of two or more herpesvirus proteins, such as cytomegalovirus (CMV) proteins, to cells, particularly proteins that form complexes in vivo.
- CMV cytomegalovirus
- the invention is a recombinant polycistronic nucleic acid molecules that contain a first sequence encoding a first herpesvirus (e.g., CMV) protein or fragment thereof, and a second sequence encoding a second herpesvirus (e.g., CMV) protein or fragment thereof.
- the invention provides a self-replicating RNA molecule comprising a polynucleotide which comprises a) a first nucleotide sequence encoding a first protein or fragment thereof from a herpes virus; and b) a second nucleotide sequence encoding a second protein or fragment thereof from the herpes virus.
- the first nucleotide sequence and second nucleotide sequence are operably linked to one or more control elements so that when the self-replicating RNA molecule is introduced into a suitable cell, the first and second herpes virus proteins or fragments thereof are produced in an amount sufficient for the formation of a complex in the cell that contains the first and second proteins or fragments.
- the first protein and the second protein are not the same protein or fragments of the same protein, the first protein is not a fragment of the second protein, and the second protein is not a fragment of the first protein.
- the first nucleotide sequence can be operably linked to a first control element and the second nucleotide sequence can be operably linked to a second control element.
- the self-replicating RNA molecule can further comprise a third nucleotide sequence encoding a third protein or fragment thereof from said herpes virus, optionally a fourth nucleotide sequence encoding a fourth protein or fragment thereof from said herpes virus; and optionally a fifth nucleotide sequence encoding a fifth protein or fragment thereof from said herpes virus.
- sequences encoding additional proteins or fragments from a herpes virus are present (i.e., the third, fourth and fifth nucleotide sequences) they are operably linked to one or more control elements.
- the first nucleotide sequence is operably linked to a first control element
- the second nucleotide sequence is operably linked to a second control element
- the third nucleotide sequence is operably linked to a third control element
- the fourth nucleotide sequence is operably linked to a fourth control element
- the fifth nucleotide sequence is operably linked to a fifth control element.
- the control elements present in the construct e.g., first, second, third, fourth and fifth control elements
- the herpes virus can be HSV-1, 1, HSV-2, VZV, EBV type 1, EBV type 2, CMV, HHV-6 type A, HHV-6 type B, HHV-7 and HHV-8.
- the recombinant polycistronic nucleic acid molecule e.g., self replicating RNA
- the herpes virus is CMV or VZV.
- RNA encodes two or more VZV proteins
- the proteins can be selected from the group consisting of gB, gE, gH, gl, gL and a fragment (e.g., of at least 10 amino acids) thereof.
- the recombinant polycistronic nucleic acid molecule e.g., self replicating RNA
- VZV gH or a fragment thereof and VZV gL or a fragment thereof.
- the invention provides a self-replicating RNA molecule comprising a polynucleotide which comprises a) a first sequence encoding a first cytomegalovirus (CMV) protein or fragment thereof; and b) a second sequence encoding a second CMV protein or fragment thereof.
- the first sequence and second sequence are operably linked to one or more control elements so that when the self- replicating RNA molecule is introduced into a suitable cell, the first and second CMV proteins are produced in an amount sufficient for the formation of a complex in the cell that contains the first and second CMV proteins or fragments.
- the first CMV protein and the second CMV protein are independently selected from the group consisting of gB, gH, gL; gO; gM, gN; UL128, UL130, UL131, and a fragment of any one of the foregoing.
- the first CMV protein and the second CMV protein are not the same protein or fragments of the same protein, the first CMV protein is not a fragment of the second CMV protein, and the second CMV protein is not a fragment of the first CMV protein.
- the self-replicating RNA molecule can further comprise a third sequence encoding a third CMV protein, wherein the third sequences is operably linked to a control element.
- additional sequences encoding additional CMV proteins can be included.
- the control elements can be independently selected from the group consisting of a subgenomic promoter, and IRES, and a viral 2A site.
- the self replicating nucleic acid molecule encodes the CMV proteins gH and gL. In other embodiments, the self-replicating RNA molecule encodes the CMV proteins gH, gL, and gO. In other embodiments, the self- replicating RNA molecule encodes the CMV proteins gH, gL, UL128, UL130 and UL131.
- the self replicating RNA molecules can be an alphavirus replicon.
- the alphavirus replicon can be delivered in the form of an alphavirus replicon particle (VRP).
- VRP alphavirus replicon particle
- the self replicating RNA molecule can also be in the form of a "naked" RNA molecule.
- the invention also relates to a recombinant DNA molecule that encodes a self
- the recombinant DNA molecule is a plasmid. In some embodiments, the recombinant DNA molecule includes a mammalian promoter that drive transcription of the encoded self replicating RNA molecule.
- compositions that comprise a self-replicating RNA
- the composition comprises a self-replicating RNA molecule that encodes the CMV proteins gH and gL.
- the composition further comprises a self-replicating RNA molecule that encodes the CMV protein gB.
- the composition can also contain an RNA delivery system such as a liposome, a polymeric nanoparticle, an oil-in-water cationic nanoemulsion or combinations thereof.
- the self-replicating RNA molecule can be encapsulated in a liposome.
- the composition comprises a VRP that contains a alphavirus replicon that encodes two or more CMV proteins.
- the VRP comprises a replicon that encodes CMV gH and gL.
- the composition can further comprising a second VRP containing a replicon that encodes CMV gB.
- the composition can also comprise an adjuvant.
- the invention also relates to methods of forming a CMV protein complex.
- a self-replicating RNA encoding two or more CMV proteins is delivered to a cell, the cell is maintained under conditions suitable for expression of the CMV proteins, wherein a CMV protein complex is formed.
- a VRP that contains a self-replicating RNA encoding two or more CMV proteins is delivered to a cell, the cell is maintained under conditions suitable for expression of the CMV proteins, wherein a CMV protein complex is formed.
- the method can be used to form a CMV protein complex in a cell in vivo.
- the invention also relates to a method for inducing an immune response in an
- a self-replicating RNA encoding two or more CMV proteins is administered to the individual.
- the self-replicating RNA molecule can be administered as a composition that contains an RNA delivery system, such as a liposome.
- a VRP that contains a self-replicating RNA encoding two or more CMV proteins is administered to the individual.
- the self-replicating R A molecule encodes CMV proteins gH and gL.
- the induced immune response comprises the production of neutralizing anti-CMV antibodies. More preferably, the neutralizing antibodies are complement- independent.
- the invention also relates to a method of inhibiting CMV entry into a cell comprising contacting the cell with a self-replicating RNA molecule that encodes two or more CMV proteins, such as gH and gL.
- the cell can be selected from the group consisting of an epithelial cell, an endothelial cell, a fibroblast and combinations thereof.
- the cell is contacted with a VRP that contains a self-replicating RNA encoding two or more CMV proteins.
- the invention also relates to the use of a self-replicating RNA molecule that encodes two or more CMV proteins (e.g., a VRP, a composition comprising the self- replicating RNA molecule and a liposome) form a CMV protein complex in a cell, to induce an immune response or to inhibit CMV entry into a cell.
- a self-replicating RNA molecule that encodes two or more CMV proteins e.g., a VRP, a composition comprising the self- replicating RNA molecule and a liposome
- FIG. 1 is a schematic of CMV identifying known glycoprotein complexes involved in CMV entry into target cells. Envelope glycoproteins represent attractive vaccine candidates as they are expressed on the viral surface and can elicit protective and long lasting virus-neutralizing humoral immune responses.
- the structural glycoproteins mediating these processes can be divided into two classes; those that are conserved throughout the herpes virus family and those that are not. Among those that are conserved are gB, gH, gL, gM and gN.
- glycoproteins form complexes with one another (gH/gL/ ⁇ gO; gH/gL/UL128/UL130/UL131; gM/gN) to facilitate localization to the viral surface and to carry out their functions in viral attachment, entry and cell fusion.
- FIGS. 2A-2F are schematics of CMV constructs.
- FIG. 2A Schematic of the gB
- FIG. 2B Schematic of the gB replicon vectors used to produce viral replicaton particles (VRPs).
- FIGS 2B, 2D and 2F Schematic of the gH constructs ("gH FL", full-length gH; soluble gH “gH sol") described in Example 1. A single soluble version of gH was constructed which lacked the transmembrane spanning domain.
- FIG. 2D Schematic of the gH replicon vectors used to produce VRPs.
- FIG. 2E Schematic of gL construct described in Example 1.
- FIG. 2F Schematic of the gL replicon vector used to produce VRPs.
- "NSP1," "NSP2,” “NSP3,” and “NSP4,” are alphavirus nonstructural proteins 1-4, respectively, required for replication of the virus.
- FIGS. 3A and 3B show that mice immunized with gB (FL, sol 750, sol 692) or gH (FL, sol) VRPs induced antibody responses that were neutralizing in the presence of guinea pig complement.
- the neutralization assay was done by pre-incubating the CMV virus strain TB40UL32E-GFP (which encodes the enhanced green fluorescent protein-GFP, Sampaio et al (2005) J. Virol. 79(5):2754-67), with mouse sera and guinea pig complement before infection of ARPE-19 epithelial cells. Five days postinfection, the number of GFP positive cells was determined.
- FIG. 3A Serum dilution curves for all sera analyzed in ARPE-19 cells in the presence of complement.
- FIG. 3B 50% neutralization titers for the sera samples. Virus incubated with pre-immune sera yielded low neutralization at low dilutions (1 :40-l :80). gB (FL, sol 750, sol 692) sera had very strong neutralizing activity with 50% neutralization titers between 1 : 1800- 1 :2100. All gB immunized mice yielded a similar neutralization profile. gH (FL, sol) sera had neutralizing activity with 50% neutralization titers around 1 : 160. See Example 1.
- FIG. 4A is a schematic illustration of monocistronic replicons encoding green
- GFP fluorescent protein
- mCherry red fluorescent protein
- NFP1, or NFP2 red fluorescent protein
- NFP3 red fluorescent protein
- NSP4 alphavirus nonstructural proteins 1-4, respectively.
- the polycistronic alphavirus replicon system was designed by making modifications to the existing alphavirus replicon system to accommodate multiple subgenomic promoters driving genes of interest.
- FIG. 4B are fluorescence plots showing FACS analysis of BHKV cells infected with VRPs containing mono- and bicistronic RNAs.
- Polycistronic alphavirus VRPs yield more cells expressing both genes of interest at approximately equal amounts (GFP and mCherry; 72.48%) than co-infection of GFP VRP + mCherry VRP (26.30%). See Example 2.
- FIG. 5A is a schematic illustration of construction of polycistronic alphavirus
- FIG. 5B show that gH/gL form a complex in vitro. VRPs containing replicons
- gH, gL, gO, gH/gL or gH/gL/gO were produced in BHKV cells.
- the resulting VRPs were used to infect ARPE-19 cells to demonstrate complex formation in vitro.
- the alphavirus infected ARPE-19 cells were harvested and analyzed for the presence of gH and gL.
- ARPE-19 cells infected with VRPs encoding gH/gL produced disulfide linked complexes of gH/gL (see in the absence of DTT, heat). gO did not detectably alter the gH/gL association.
- the left hand blot shows expression of gH protein.
- the right hand blot shows expression of gL protein.
- Molecular weight markers are indicated between the blots.
- FIG. 5C shows immunoprecipitation of gH and gH/gL complexes from BHKV cells infected with VRPs.
- Immunoprecipitation was performed using mouse IgG antibodies as a control (Lanes 2, 4, 7, and 10) or mouse anti-gH antibodies (Genway) to immunoprecipitate gH (Lanes 3, 5, 8, and 11).
- Western blots were performed using pooled rabbit anti-gL antibody and rabbit anti-gH antibody.
- Lanes 1, 6, and 9 show gH protein (upper band ⁇ 75 kDa) and gL protein (lower band ⁇ 30 kDa) for reference.
- Lanes 2 and 3 are lysates infected with gH-VRP.
- Lane 2 shows that the control antibody did not immunoprecipitate gH.
- Lane 3 shows the anti-gH antibody immunoprecipitated gH.
- Lanes 4 and 5 are from lysates infected with gL-VRP only. No gH protein was immunoprecipitated.
- Lanes 7 and 8 are from lysates infected with bicistronic gH/gL- VRP. Lane 8 shows that gL was immunoprecipitated using the gH antibody. (See asterisk).
- Lanes 10 and 11 are from lysates infected with tricistronic gH/gL/gO-VRP. Lane 11 shows that gL was immunoprecipitated using the gH antibody. (See asterisk).
- FIG. 6 shows that VRPs that affect gH/gL complex formation in vitro induce potent immune response to CMV which is qualitatively and quantitatively superior to the response to gB VRPs.
- FIG. 6A and FIG. 6B show serum dilution curves for gH, gL, gO, gH + gL, gH + gL + gO, gH/gL and gH/gL/gO VRP -immunized mice in neutralization of TB40-UL32-EGFP infection of ARPE-19 cells in the presence (FIG. 6A) or absence (FIG. 6B) of complement.
- FIG 6C is a graph showing 50% neutralization titers obtained in the presence and absence of complement. "3wp3," three weeks post-third immunization. VRPs expressing single CMV proteins (gH, gL, gO VRPs or co-administered gH, gL and gO VRPs) did not enhance neutralizing activity beyond that of gH alone.
- FIG. 7 shows that VRPs that affect gH/gL complex formation in vitro induced antibodies that potently neutralized infection of MRC-5 fibroblast cells.
- FIG 7A shows serum dilution curves for gH, gL, gO, gH + gL, gH + gL + gO, gH/gL and gH/gL/gO VRP -immunized mice in MRC-5 cells in the absence of complement.
- Various dilutions of sera were pre -incubated with TB40GFP in the presence or absence of guinea pig complement and then added to MRC-5 fibroblast cells. After 5 day infection with the virus, GFP-positive cells were counted.
- FIG 7B is a graph showing 50% neutralization titers obtained in a MRC-5 fibroblast cell model in the absence of complement. "3wp3," three weeks post-third immunization. VRPs expressing single CMV proteins (gH, gL, gO VRPs or co-administered gH, gL and gO VRPs) did not enhance neutralizing activity beyond that of gH alone. In contrast, sera from mice immunized with bicistronic gH/gL or tricistronic gH/gL/gO VRPs demonstrated extremely potent neutralizing responses. See Example 4.
- FIGS. 8A and 8B are graphs showing that the neutralizing antibodies induced by delivery of the polycistronic VRPs were cross-neutralizing antibodies.
- the sera from mice immunized with gH/gL and gH/gL/gO VRPs were able to neutralize TB40UL32E-GFP and VR1814 clinical strains of CMV in both ARPE-19 epithelial cells (FIG. 8A) and MRC-5 fibroblast cells (FIG. 8B) in the absence of guinea pig complement in an IE-1 neutralization assay.
- FIG. 9 is a graph showing that the neutralizing antibodies elicited against gH FL/gL are complement-independent and similar to natural immunity in titer.
- Mice were immunized with gB FL or gH FL/gL VRPs at lxlO 6 IU, 3 times, 3 weeks apart before the terminal bleed.
- Sera was analyzed for ability to neutralizeTB40UL32E-EGFP CMV infection of ARPE-19 cells in the presence and absence of guinea pig complement in a neutralization assay.
- antibodies elicited by gB are complement-independent.
- gH FL/gL antibodies in these vaccinated mice were similar in titer to those found in naturally infected human subjects.
- FIG. 10 shows a plasmid map for pVCR modified gH-SGPgL-SGPgO.
- FIG. 11 show a plasmid map for pVCR modified gH-SGPgL.
- FIG. 12 show a plasmid map for pVCR modified gH sol-SGPgL.
- FIG. 13 show a plasmid map for pVCR modified gH sol-SGPgL-SGPgO.
- FIG. 14A-14G show the nucleotide sequence (SEQ ID NO: ) of the plasmid encoding the A160 self-replicating RNA molecule which encodes CMV surface glycoprotein H (gH) and CMV surface glycoprotein L (gL).
- the nucleotide sequences encoding gH and gL are underlined.
- FIG. 15A-15H show the nucleotide sequence (SEQ ID NO: ) of the plasmid encoding the A322 self-replicating RNA molecule which encodes the soluble form of CMV surface glycoprotein H (gHsol) and CMV surface glycoprotein L (gL).
- the nucleotide sequences encoding gHsol and gL are underlined.
- FIG. 16A-16H show the nucleotide sequence (SEQ ID NO: ) of the plasmid encoding the A323 self-replicating RNA molecule which encodes CMV surface glycoprotein B (gB). The nucleotide sequence encoding gB is underlined.
- FIG. 17A and 17B are histograms showing 50% neutralizing titers of sera from mice that were immunized with VRP or self-replicating RNA.
- FIG. 17A shows 50% neutralizing titers against human CMV strain TB40UL32E-EGFP ("TB40) on ARPE- 19 cells
- FIG. 17B shows 50% neutralizing titers against human CMV strain 8819 on ARPE- 19 cells
- FIG. 18 is a schematic of petacistronic RNA replicons, A526, A527, A554, A555 and A556, that encode five CMV proteins. Subgenomic promoters are shown by arrows, other control elements are labeled.
- FIG. 19 is a fluorescence histogram showing that BHKV cells trans fected with the A527 RNA replicon express the gH/gL/UL128/UL130/UL131 pentameric complex. Cell stain was performed using antibodies that bind a conformational epitope present on the pentameric complex (Macagno (2010) J. Virol. 84(2): 1005-13).
- FIG. 20 is a schematic and graph.
- the schematic shows bicistronic RNA replicons, A160 and A531-A537, that encode CMV gH and gL.
- the graph shows neutralizing activity of immune sera from mice immunized with VRPs that contained the replicons.
- FIG. 21 is a graph showing anti-VZV protein antibody response in immune sera from mice immunized with monocistronic RNA replicons that encoded VZV proteins or bicistronic RNA replicons that encoded VZV gE and gl, or gH and gL.
- the mice were immunized with 7 g RNA formulated with a CNE (see, Example 7).
- FIG. 22 is a graph showing anti-VZV protein antibody response in immune sera from mice immunized with monocistronic RNA replicons that encoded VZV proteins or bicistronic RNA replicons that encoded VZV gE and gl, or gH and gL.
- the mice were immunized with 1 ⁇ g RNA formulated with a CNE (see, Example 7).
- the invention provides platforms for co-delivery of herpesvirus proteins, such as cytomegalovirus (CMV) proteins, to cells, particularly proteins that form complexes in vivo. In some embodiments, these proteins and the complexes they form elicit potent neutralizing antibodies.
- CMV cytomegalovirus
- the immune response produced by co-delivery of herpesvirus (e.g., CMV) proteins, particularly those that form complexes in vivo (e.g,. gH/gL), can be superior to the immune response produced using other approaches.
- an R A molecule e.g., a replicon
- an R A molecule that encodes both gH and gL of CMV can induce better neutralizing titers and/or protective immunity in comparison to an RNA molecule that encodes gB, an RNA molecule that encodes gH, an RNA molecule that encodes gL, or even a mixture of RNA molecules that individually encode gH or gL.
- a replicon encoding gH/gL/UL128/UL130/UL131 can provide responses superior to those encoding only gH/gL.
- the invention relates to platforms for delivery of two or more herpesvirus (e.g., CMV) proteins to cells.
- the platforms comprise recombinant polycistronic nucleic acid molecules that contain a first sequence encoding a first herpesvirus (e.g., CMV) protein or fragment thereof, and a second sequence encoding a second herpesvirus (e.g., CMV) protein or fragment thereof.
- one or more additional sequences encoding additional proteins for example, a third herpesvirus (e.g., CMV) protein or fragment thereof, a fourth herpesvirus (e.g., CMV) protein or fragment thereof, a fifth herpesvirus (e.g., CMV) protein or fragment thereof etc. can be present in the recombinant polycistronic nucleic acid molecule.
- the sequences encoding herpesvirus (e.g., CMV) proteins or fragments thereof are operably linked to one or more suitable control elements so that the herpesvirus (e.g., CMV) proteins or fragments are produced by a cell that contains the recombinant polycistronic nucleic acid.
- herpesvirus proteins or fragments and the encoded third, forth and fifth herpes virus proteins or fragments, if present, generally and preferably are from the same herpes virus.
- all herpes virus proteins or fragments encoded by a polycistronic vector are CMV proteins or VZV proteins.
- the recombinant polycistronic nucleic acid molecules described herein provide the advantage of delivering sequences that encode two or more herpesvirus (e.g., CMV) proteins to a cell, and driving the expression of the herpesvirus (e.g., CMV) proteins at sufficient levels to result in the formation of a protein complex containing the two or more herpesvirus (e.g., CMV) proteins in vivo.
- the two or more encoded herpesvirus (e.g., CMV) proteins can be expressed at sufficient intracellular levels for the formation of herpesvirus (e.g., CMV) protein complexes (e.g., gH/gL).
- the encoded herpesvirus (e.g., CMV) proteins or fragments thereof can be expressed at substantially the same level, or if desired, at different levels by selecting appropriate expression control sequences (e.g., promoters, IRES, 2A site etc.). This is significantly more efficient way to produce protein complexes in vivo than by co-delivering two or more individual DNA molecules that encode different herpesvirus (e.g., CMV) to the same cell, which can be inefficient and highly variable. See, e.g., WO 2004/076645.
- the recombinant polycistronic nucleic acid molecule can be based on any desired nucleic acid such as DNA (e.g., plasmid or viral DNA) or RNA. Any suitable DNA or RNA can be used as the nucleic acid vector that carries the open reading frames that encode herpesvirus (e.g., CMV) proteins or fragments thereof. Suitable nucleic acid vectors have the capacity to carry and drive expression of more than one protein gene.
- nucleic acid vectors include, for example, plasmids, DNA obtained from DNA viruses such as vaccinia virus vectors (e.g., NYVAC, see US 5,494,807), and poxvirus vectors (e.g., ALVAC canarypox vector, Sanofi Pasteur), and RNA obtained from suitable RNA viruses such as an alphavirus.
- DNA viruses such as vaccinia virus vectors (e.g., NYVAC, see US 5,494,807)
- poxvirus vectors e.g., ALVAC canarypox vector, Sanofi Pasteur
- RNA obtained from suitable RNA viruses such as an alphavirus.
- the recombinant polycistronic nucleic acid molecule can be modified, e.g., contain modified nucleobases and or linkages as described further herein.
- the polycistronic nucleic acid molecule is an RNA molecule.
- the recombinant polycistronic nucleic acid molecule is a DNA
- DNA molecules such as plasmid DNA.
- DNA molecules can, for example, encode a polycistronic replicon and contain a mammalian promoter that drives transcription of the replicon.
- Recombinant polycistronic nucleic acid molecules or this type can be administered to a mammal and then be transcribed in situ to produce a polycistronic replicon that expresses herpesvirus proteins.
- the invention is a polycistronic nucleic acid molecule that contains a sequence encoding a herpesvirus gH or fragment thereof, and a herpesvirus gL or a fragment thereof.
- the gH and gL proteins, or fragments thereof can be from any desired herpes virus such as HSV-1, HSV-2, VZV, EBV type 1, EBV type 2, CMV, HHV-6 type A, HHV-6 type B, HHV-7, KSHV, and the like.
- the herpesvirus is VZV, HSV-2, HSV-1, EBV (type 1 or type 2) or CMV. More preferably, the herpesvirus is VZV, HSV-2 or CMV.
- the herpesvirus is CMV.
- the sequences of gH and gL proteins and of nucleic acids that encode the proteins from these viruses are well known in the art. Exemplary sequences are identified in Table 1.
- the polycistronic nucleic acid molecule can contain a first sequence encoding a gH protein disclosed in Table 1 , or a fragment thereof, or a sequence that is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%), 98%o, or 99% identical thereto.
- the polycistronic nucleic acid molecule can also contain a second sequence encoding a gL protein disclosed in Table 1 , or a fragment thereof, or a sequence that is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical thereto.
- first sequence a "second sequence,” etc.
- first and second sequences can appear in any desired order or orientation, and that no particular order or orientation is intended by the words “first”, “second” etc.
- protein complexes are referred to by listing the proteins that are present in the complex, e.g., gH/gL. This is intended to describe the complex by the proteins that are present in the complex and does not indicate relative amounts of the proteins or the order or orientation of sequences that encode the proteins on a recombinant nucleic acid.
- sequences encoding CMV proteins are further described herein. It is intended that the sequences encoding CMV proteins in such preferred embodiments, can be replaced with sequences encoding proteins, such as gH and gL from other herpesviruses.
- CMV proteins are delivered to a cell using alphavirus replicon particles (VRP) which employ polycistronic replicons (or vectors) as described below.
- VRP alphavirus replicon particles
- polycistronic includes bicistronic vectors as well as vectors comprising three or more cistrons.
- Cistrons in a polycistronic vector can encode CMV proteins from the same CMV strains or from different CMV strains.
- the cistrons can be oriented in any 5' - 3' order. Any nucleotide sequence encoding a CMV protein can be used to produce the protein. Exemplary sequences useful for preparing the polycistronic nucleic acids that encode two or more CMV proteins or fragments thereof are described herein.
- alphavirus has its conventional meaning in the art and
- VEE Venezuelan equine encephalitis virus
- SFV Semliki Forest virus
- Sindbis virus Sindbis virus
- Ross River virus Western equine encephalitis virus
- Eastern equine encephalitis virus Chikungunya virus
- S.A Venezuelan equine encephalitis virus
- alphavirus may also include chimeric alphaviruses (e.g., as described by Perri et al, (2003) J. Virol. 77(19): 10394-403) that contain genome sequences from more than one alphavirus.
- VRP alphavirus replicon particle
- an "alphavirus replicon” (or “replicon”) is an RNA molecule which can direct its own amplification in vivo in a target cell.
- the replicon encodes the polymerase(s) which catalyze RNA amplification (nsPl, nsP2, nsP3, nsP4) and contains cis RNA sequences required for replication which are recognized and utilized by the encoded polymerase(s).
- An alphavirus replicon typically contains the following ordered elements: 5' viral sequences required in cis for replication, sequences which encode biologically active alphavirus nonstructural proteins (nsPl, nsP2, nsP3, nsP4), 3' viral sequences required in cis for replication, and a polyadenylate tract.
- An alphavirus replicon also may contain one or more viral subgenomic "junction region" promoters directing the expression of heterologous nucleotide sequences, which may, in certain embodiments, be modified in order to increase or reduce viral transcription of the subgenomic fragment and heterologous sequence(s) to be expressed.
- Other control elements can be used, as described below.
- Alphavirus replicons encoding CMV proteins are used to produce VRPs. Such
- alphavirus replicons comprise sequences encoding at least two CMV proteins or fragments thereof. These sequences are operably linked to one or more suitable control elements, such as a subgenomic promoter, an IRES (e.g., EMCV, EV71), and a viral 2A site, which can be the same or different. Delivery of components of these complexes using the polycistronic vectors disclosed herein is an efficient way of providing nucleic acid sequences that encode two or more CMV proteins in desired relative amounts; whereas if multiple alphavirus constructs were used to deliver individual CMV proteins for complex formation, efficient co-delivery of VRPs would be required.
- IRES e.g., EMCV, EV71
- a single subgenomic promoter is operable linked to two sequences encoding two different CMV proteins, and an IRES is positioned between the two coding sequences.
- two sequences that encode two different CMV proteins are operably linked to separate promoters.
- the two sequences that encode two different CMV proteins are operably linked to a single promoter.
- the two sequences that encode two different CMV proteins are linked to each other through a nucleotide sequence encoding a viral 2A site, and thus encode a single amino acid chain that contain the amino acid sequences of both CMV proteins.
- the viral 2A site in this context is used to generate two CMV proteins from encoded polyprotein.
- junction region promoters also known as junction region promoters can be used to promote expression
- a polycistronic polynucleotide can comprise a subgenomic promoter from any alphavirus.
- the promoters can be the same or different.
- the subgenomic promoter can have the sequence CTCTCTACGGCTAACCTGAATGGA
- subgenomic promoters can be modified in order to increase or reduce viral transcription of the proteins. See U.S. Patent No. 6,592,874.
- one or more control elements is an internal ribosomal entry site (IRES).
- IRES allows multiple proteins to be made from a single mRNA transcript as ribosomes bind to each IRES and initiate translation in the absence of a 5 '-cap, which is normally required to initiate translation of protein in eukaryotic cells.
- the IRES can be EV71 or EMCV.
- the FMDV 2A protein is a short peptide that serves to separate the structural proteins of FMDV from a nonstructural protein (FMDV 2B).
- FMDV 2B nonstructural protein
- Early work on this peptide suggested that it acts as an autocatalytic protease, but other work (e.g., Donnelly et al, (2001), J.Gen.Virol. 82, 1013-1025) suggest that this short sequence and the following single amino acid of FMDV 2B (Gly) acts as a translational stop-start. Regardless of the precise mode of action, the sequence can be inserted between two polypeptides, and effect the production of multiple individual polypeptides from a single open reading frame.
- FMDV 2A sequences can be inserted between the sequences encoding at least two CMV proteins, allowing for their synthesis as part of a single open reading frame.
- the open reading frame may encode a gH protein and a gL protein separated by a sequence encoding a viral 2A site.
- a single mRNA is transcribed then, during the translation step, the gH and gL peptides are produced separately due to the activity of the viral 2A site.
- Any suitable viral 2A sequence may be used.
- a viral 2A site comprises the consensus sequence Asp-Val/Ile-Glu-X-Asn-Pro-Gly-Pro, where X is any amino acid
- the Foot and Mouth Disease Virus 2 A peptide sequence is DVESNPGP (SEQ ID NO: ). See Trichas et al, "Use of the viral 2A peptide for bicistronic expression in transgenic mice," BMC Biol. 2008 Sep 15;6:40, and Halpin et al, "Self-processing 2A-polyproteins ⁇ a system for co-ordinate expression of multiple proteins in transgenic plants," Plant J. 1999 Feb;17(4):453-9.
- an alphavirus replicon is a chimeric replicon, such as a VEE- Sindbis chimeric replicon (VCR) or a VEE strain TC83 replicon (TC83R) or a TC83- Sindbis chimeric replicon (TC83CR).
- VCR VEE- Sindbis chimeric replicon
- T83R VEE strain TC83 replicon
- TC83CR TC83- Sindbis chimeric replicon
- TC83CR contains the packaging signal and 3' UTR from a Sindbis replicon in place of sequences in nsP3 and at the 3' end of aVEE strain TC83replicon.
- VRPs Methods of preparing VRPs are well known in the art. In some embodiments an
- alphavirus packaging cell is a cell that contains one or more alphavirus structural protein expression cassettes and that produces recombinant alphavirus particles after introduction of an alphavirus replicon, eukaryotic layered vector initiation system (e.g., U.S. Patent 5,814,482), or recombinant alphavirus particle.
- the one or more different alphavirus structural protein cassettes serve as "helpers" by providing the alphavirus structural proteins.
- alphavirus structural protein cassette is an expression cassette that encodes one or more alphavirus structural proteins and comprises at least one and up to five copies (i.e., 1, 2, 3, 4, or 5) of an alphavirus replicase recognition sequence.
- Structural protein expression cassettes typically comprise, from 5' to 3', a 5' sequence which initiates transcription of alphavirus RNA, an optional alphavirus subgenomic region promoter, a nucleotide sequence encoding the alphavirus structural protein, a 3' untranslated region (which also directs RNA transcription), and a polyA tract. See, e.g., WO 2010/019437.
- an alphavirus structural protein cassette encodes the capsid protein (C) but not either of the glycoproteins (E2 and El). In some embodiments an alphavirus structural protein cassette encodes the capsid protein and either the El or E2 glycoproteins (but not both). In some embodiments an alphavirus structural protein cassette encodes the E2 and El glycoproteins but not the capsid protein. In some embodiments an alphavirus structural protein cassette encodes the El or E2 glycoprotein (but not both) and not the capsid protein.
- VRPs are produced by the simultaneous introduction of
- BHKV cells (lxl 0 7 ) are electroporated at, for example, 220 volts, ⁇ , 2 manually pulses with 10 ⁇ g replicon RNA ⁇ g defective helper Cap RNA: 10 ⁇ g defective helper Gly RNA, alphavirus containing supernatant is collected ⁇ 24 hours later.
- Replicons and/or helpers can also be introduced in DNA forms which launch suitable RNAs within the transfected cells.
- a packaging cell may be a mammalian cell or a non-mammalian cell, such as an
- avian sources of cells include, but are not limited to, avian embryonic stem cells such as EB66® (VIVALIS); chicken cells, including chicken embryonic stem cells such as EBx® cells, chicken embryonic fibroblasts, and chicken embryonic germ cells; duck cells such as the AGE1.CR and AGEl .CR.pIX cell lines (ProBioGen) which are described, for example, in Vaccine 27:4975-4982 (2009) and WO2005/042728); and geese cells.
- a packaging cell is a primary duck fibroblast or duck retinal cell line, such as AGE.CR (PROBIOGEN).
- packaging cells include, but are not limited to, human or non-human primate cells, including PerC6 (PER.C6) cells (CRUCELL N.V.), which are described, for example, in WO 01/38362 and WO 02/40665, as well as deposited under ECACC deposit number 96022940); MRC-5 (ATCC CCL-171); WI-38 (ATCC CCL-75); fetal rhesus lung cells (ATCC CL-160); human embryonic kidney cells (e.g., 293 cells, typically transformed by sheared adenovirus type 5 DNA); VERO cells from monkey kidneys); cells of horse, cow (e.g., MDBK cells), sheep, dog (e.g., MDCK cells from dog kidneys, ATCC CCL34 MDCK (NBL2) or MDCK 33016, deposit number DSM ACC 2219 as described in WO 97/37001); cat, and rodent (e.g., hamster cells such as BHK21-F, HKCC cells, or
- a packaging cell is stably transformed with one or more
- Structural protein expression cassettes can be introduced into cells using standard recombinant DNA techniques, including transferrin-polycation-mediated DNA transfer, transfection with naked or
- Structural protein expression cassettes typically are introduced into a host cell as DNA molecules, but can also be introduced as in vzYro-transcribed RNA. Each expression cassette can be introduced separately or substantially simultaneously.
- stable alphavirus packaging cell lines are used to produce recombinant alphavirus particles. These are alphavirus-permissive cells comprising DNA cassettes expressing the defective helper RNA stably integrated into their genomes. See Polo et al, Proc. Natl. Acad. Sci. USA 96, 4598-603, 1999.
- the helper RNAs are constitutively expressed but the alphavirus structural proteins are not, because the genes are under the control of an alphavirus subgenomic promoter (Polo et al., 1999).
- replicase enzymes are produced and trigger expression of the capsid and glycoprotein genes on the helper RNAs, and output VRPs are produced.
- Introduction of the replicon can be accomplished by a variety of methods, including both transfection and infection with a seed stock of alphavirus replicon particles.
- the packaging cell is then incubated under conditions and for a time sufficient to produce packaged alphavirus replicon particles in the culture supernatant.
- VRPs to be produced in much the same manner, and using the same equipment, as that used for live attenuated vaccines or other viral vectors that have producer cell lines available, such as replication-incompetent adenovirus vectors grown in cells expressing the adenovirus El A and E1B genes.
- a two-step process comprises producing a seed stock of alphavirus replicon particles by transfecting a packaging cell with a replicon RNA or plasmid DNA-based replicon. A much larger stock of replicon particles is then produced in a second step, by infecting a fresh culture of packaging cells with the seed stock.
- replicon particles can be harvested from packaging cells infected with the seed stock. In some embodiments, replicon particles can then be passaged in yet larger cultures of naive packaging cells by repeated low- multiplicity infection, resulting in commercial scale preparations with the same high titer.
- Two or more CMV proteins can be produced by expression of recombinant nucleic acids that encode the proteins in the cells of a subject.
- the recombinant nucleic acid molecules encode two or more CMV proteins, e.g., are polycistronic.
- polycistronic includes bicistronic.
- Preferred nucleic acids that can be administered to a subject to cause the production of CMV proteins are self- replicating RNA molecules.
- the self-replicating RNA molecules of the invention are based on the genomic RNA of RNA viruses, but lack the genes encoding one or more structural proteins.
- the self-replicating RNA molecules are capable of being translated to produce non-structural proteins of the RNA virus and CMV proteins encoded by the self-replicating RNA.
- the self-replicating RNA generally contains at least one or more genes selected from the group consisting of viral replicase, viral proteases, viral helicases and other nonstructural viral proteins, and also comprise 5 '- and 3 '-end cis-active replication sequences, and a heterologous sequences that encodes two or more desired CMV proteins.
- a subgenomic promoter that directs expression of the heterologous sequence(s) can be included in the self-replicating RNA.
- a heterologous sequence may be fused in frame to other coding regions in the self-replicating RNA and/or may be under the control of an internal ribosome entry site (IRES).
- Self-replicating RNA molecules of the invention can be designed so that the self- replicating RNA molecule cannot induce production of infectious viral particles. This can be achieved, for example, by omitting one or more viral genes encoding structural proteins that are necessary for the production of viral particles in the self-replicating RNA.
- an alpha virus such as Sindbis virus (SIN), Semliki forest virus and Venezuelan equine encephalitis virus (VEE)
- Sindbis virus Sindbis virus
- VEE Venezuelan equine encephalitis virus
- one or more genes encoding viral structural proteins, such as capsid and/or envelope glycoproteins can be omitted.
- self-replicating RNA molecules of the invention can be designed to induce production of infectious viral particles that are attenuated or virulent, or to produce viral particles that are capable of a single round of subsequent infection.
- a self-replicating RNA molecule can, when delivered to a vertebrate cell even
- the self-replicating RNA can be directly translated after delivery to a cell, and this translation provides a RNA-dependent RNA polymerase which then produces transcripts from the delivered RNA.
- the delivered RNA leads to the production of multiple daughter RNAs.
- These transcripts are antisense relative to the delivered RNA and may be translated themselves to provide in situ expression of encoded CMV protein, or may be transcribed to provide further transcripts with the same sense as the delivered RNA which are translated to provide in situ expression of the encoded CMV protein(s).
- RNA replicon such as an alphavirus replicon as described herein.
- These + stranded replicons are translated after delivery to a cell to produce a replicase (or replicase- transcriptase).
- the replicase is translated as a polyprotein which auto cleaves to provide a replication complex which creates genomic - strand copies of the + strand delivered R A.
- These - strand transcripts can themselves be transcribed to give further copies of the + stranded parent RNA and also to give rise to one or more subgenomic transcript which encodes two or more CMV proteins.
- Suitable alphavirus replicons can use a replicase from a Sindbis virus, a Semliki forest virus, an eastern equine encephalitis virus, a Venezuelan equine encephalitis virus, etc.
- a preferred self-replicating RNA molecule thus encodes (i) a RNA-dependent RNA polymerase which can transcribe RNA from the self-replicating RNA molecule and (ii) two or more CMV proteins or fragments thereof.
- the polymerase can be an alphavirus replicase e.g. comprising alphavirus protein nsP4. Protein nsP4 is the key catalytic component of the replicase.
- an alphavirus based self- replicating RNA molecule of the invention does not encode all alphavirus structural proteins.
- the self replicating RNA can lead to the production of genomic RNA copies of itself in a cell, but not to the production of RNA-containing alphavirus virions.
- the inability to produce these virions means that, unlike a wild-type alphavirus, the self-replicating RNA molecule cannot perpetuate itself in infectious form.
- the alphavirus structural proteins which are necessary for perpetuation in wild- type viruses are absent from self replicating RNAs of the invention and their place is taken by gene(s) encoding the desired gene product (CMV protein or fragment thereof), such that the subgenomic transcript encodes the desired gene product rather than the structural alphavirus virion proteins.
- RNA molecule useful with the invention have two sequences that encode different CMV proteins or fragments thereof.
- the sequences encoding the CMV proteins or fragments can be in any desired orientation, and can be operably linked to the same or separate promoters. If desired, the sequences encoding the CMV proteins or fragments can be part of a single open reading frame. In some embodiments the RNA may have one or more additional (downstream) sequences or open reading frames e.g. that encode other additional CMV proteins or fragments thereof.
- a self-replicating RNA molecule can have a 5' sequence which is compatible with the encoded replicase.
- the self-replicating RNA molecule is derived from or based on an
- the self- replicating RNA molecule is derived from or based on a virus other than an alphavirus, preferably, a positive-stranded RNA viruses, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus.
- a virus other than an alphavirus preferably, a positive-stranded RNA viruses, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus.
- Suitable wild-type alphavirus sequences are well-known and are available from sequence depositories, such as the American Type Culture Collection, Rockville, Md.
- alphaviruses include Aura (ATCC VR-368), Bebaru virus (ATCC VR-600, ATCC VR-1240), Cabassou (ATCC VR-922), Chikungunya virus (ATCC VR-64, ATCC VR-1241), Eastern equine
- encephalomyelitis virus (ATCC VR-65, ATCC VR-1242), Fort Morgan (ATCC VR- 924), Getah virus (ATCC VR-369, ATCC VR-1243), Kyzylagach (ATCC VR-927), Mayaro virus(ATCC VR-66; ATCC VR-1277), Middleburg (ATCC VR-370), Mucambo virus (ATCC VR-580, ATCC VR-1244), Ndumu (ATCC VR-371), Pixuna virus (ATCC VR-372, ATCC VR-1245), Ross River virus (ATCC VR-373, ATCC VR-1246), Semliki Forest (ATCC VR-67, ATCC VR-1247), Sindbis virus (ATCC VR-68, ATCC VR-1248), Tonate (ATCC VR-925), Triniti (ATCC VR-469), Una (ATCC VR-374), Venezuelan equine encephalomyelitis (ATCC VR-69, ATCC VR- 923, ATCC VR-1250 ATCC VR-1249, ATCC VR-532),
- the self-replicating RNA molecules of the invention can contain one or more
- modified nucleotides and therefore have improved stability and be resistant to degradation and clearance in vivo, and other advantages.
- self-replicating RNA molecules that contain modified nucleotides avoid or reduce stimulation of endosomal and cytoplasmic immune receptors when the self-replicating RNA is delivered into a cell. This permits self-replication, amplification and expression of protein to occur. This also reduces safety concerns relative to self-replicating RNA that does not contain modified nucleotides, because the self-replicating RNA that contains modified nucleotides reduce activation of the innate immune system and subsequent undesired consequences (e.g., inflammation at injection site, irritation at injection site, pain, and the like).
- RNA molecules that contain modified nucleotides provide for efficient amplification of the RNA in a host cell and expression of CMV proteins, as well as adjuvant effects.
- RNA sequence can be modified with respect to its codon usage, for example, to increase translation efficacy and half-life of the RNA.
- a poly A tail e.g., of about 30 adenosine residues or more
- the 5' end of the RNA may be capped with a modified ribonucleotide with the structure m7G (5') ppp (5') N (cap 0 structure) or a derivative thereof, which can be incorporated during RNA synthesis or can be enzymatically engineered after RNA transcription (e.g., by using Vaccinia Virus Capping Enzyme (VCE) consisting of mRNA triphosphatase, guanylyl- transferase and guanine-7-methytransferase, which catalyzes the construction of N7-monomethylated cap 0 structures).
- VCE Vaccinia Virus Capping Enzyme
- Cap 0 structure can provide stability and translational efficacy to the RNA molecule.
- the 5' cap of the RNA molecule may be further modified by a 2 '-O-Methyltransferase which results in the generation of a cap 1 structure (m7Gppp [m2 '- ⁇ ] N), which may further increases translation efficacy.
- a cap 1 structure may also increase in vivo potency.
- modified nucleotide refers to a nucleotide that contains one or more chemical modifications (e.g., substitutions) in or on the nitrogenous base of the nucleoside (e.g., cytosine (C), thymine (T) or uracil (U), adenine (A) or guanine (G)).
- a self replicating RNA molecule can contain chemical modifications in or on the sugar moiety of the nucleoside (e.g., ribose, deoxyribose, modified ribose, modified deoxyribose, six-membered sugar analog, or open-chain sugar analog), or the phosphate.
- the self-replicating RNA molecules can contain at least one modified nucleotide, that preferably is not part of the 5' cap (e.g., in addition to the modification that are part of the 5" cap). Accordingly, the self-replicating RNA molecule can contain a modified nucleotide at a single position, can contain a particular modified nucleotide (e.g., pseudouridine, N6-methyladenosine, 5-methylcytidine, 5-methyluridine) at two or more positions, or can contain two, three, four, five, six, seven, eight, nine, ten or more modified nucleotides (e.g., each at one or more positions).
- the self- replicating RNA molecules comprise modified nucleotides that contain a modification on or in the nitrogenous base, but do not contain modified sugar or phosphate moieties.
- nucleotides in a self- replicating RNA molecule are modified nucleotides.
- 0.001% - 25%, 0.01%-25%, 0.1%-25%, or l%-25% of the nucleotides in a self-replicating RNA molecule are modified nucleotides.
- a particular unmodified nucleotide in a self-replicating RNA molecule is replaced with a modified nucleotide.
- a modified nucleotide for example, about 1% of the nucleotides in the self-replicating RNA molecule that contain uridine can be modified, such as by replacement of uridine with
- the desired amount (percentage) of two, three, or four particular nucleotides (nucleotides that contain uridine, cytidine, guanosine, or adenine) in a self-replicating RNA molecule are modified nucleotides.
- 0.001% - 25%, 0.01%-25%, 0.1%-25, or l%-25% of a particular nucleotide in a self- replicating RNA molecule are modified nucleotides.
- 0.001% - 20%, 0.001% - 15%, 0.001% - 10%, 0.01%-20%, 0.01%-15%, 0.1%-25, 0.01%-10%, l%-20%, 1%-15%, 1%-10%, or about 5%, about 10%, about 15%, about 20% of a particular nucleotide in a self-replicating RNA molecule are modified nucleotides.
- RNA molecules are modified nucleotides. It is also preferred that less than 100% of a particular nucleotide in a self-replicating RNA molecule are modified nucleotides. Thus, preferred self-replicating RNA molecules comprise at least some unmodified nucleotides.
- RNA mammalian RNA. See, e.g., Limbach et al., Nucleic Acids Research, 22(12):2183- 2196 (1994).
- the preparation of nucleotides and modified nucleotides and nucleosides are well-known in the art, e.g. from US Patent Numbers 4373071, 4458066, 4500707, 4668777, 4973679, 5047524, 5132418, 5153319, 5262530, 5700642 all of which are incorporated herein by reference in their entirety, and many modified nucleosides and modified nucleotides are commercially available.
- Modified nucleobases which can be incorporated into modified nucleosides and nucleotides and be present in the RNA molecules include: m5C (5-methylcytidine), m5U (5-methyluridine), m6A (N6-methyladenosine), s2U (2-thiouridine), Um (2'-0- methyluridine), ml A (1-methyladenosine); m2A (2-methyladenosine); Am (2-1-0- methyladenosine); ms2m6A (2-methylthio-N6-methyladenosine); i6A (N6- isopentenyladenosine); ms2i6A (2-methylthio-N6isopentenyladenosine); io6A (N6- (cis-hydroxyisopentenyl)adenosine); ms2io6A (2-methylthio-N6-(cis- hydroxyisopentenyl) adeno
- m6t6A N6-methyl-N6-threonylcarbamoyladenosine
- hn6A (N6-hydroxynorvalylcarbamoyl adenosine); ms2hn6A (2-methylthio-N6- hydroxynorvalyl carbamoyladenosine); Ar(p) (2'-0-ribosyladenosine (phosphate)); I (inosine); mil (1-methylinosine); m'lm (l,2'-0-dimethylinosine); m3C (3- methylcytidine); Cm (2T-0-methylcytidine); s2C (2-thiocytidine); ac4C (N4- acetylcytidine); f5C (5-fonnylcytidine); m5Cm (5,2-O-dimethylcytidine); ac4Cm (N4acetyl2TOmethylcytidine); k2C (lysidine); mlG (1-methylguanosine); m2G (N2-
- nm5se2U (5-methylaminomethyl-2-selenouridine); ncm5U (5-carbamoylmethyl uridine); ncm5Um (5-carbamoylmethyl-2'-0-methyluridine); cmnm5U (5- carboxymethylaminomethyluridine); cnmm5Um (5-carboxymethy 1 aminomethyl-2-L Omethy luridine); cmnm5s2U (5-carboxymethylaminomethyl-2-thiouridine); m62A (N6,N6-dimethyladenosine); Tm (2'-0-methylinosine); m4C (N4-methylcytidine); m4Cm (N4,2-0-dimethylcytidine); hm5C (5-hydroxymethylcytidine); m3U (3- methyluridine); cm5U (5-carboxymethyluridine); m6Am (N6,T-0- dimethyladenosine);
- hypoxanthine inosine, 8-oxo-adenine, 7-substituted derivatives thereof,
- the self-replicating RNA molecule can contain phosphoramidate, phosphorothioate, and/or methylphosphonate linkages.
- Self-replicating RNA molecules that comprise at least one modified nucleotide can be prepared using any suitable method. Several suitable methods are known in the art for producing RNA molecules that contain modified nucleotides.
- a self- replicating RNA molecule that contains modified nucleotides can be prepared by transcribing (e.g., in vitro transcription) a DNA that encodes the self-replicating RNA molecule using a suitable DNA-dependent RNA polymerase, such as T7 phage RNA polymerase, SP6 phage RNA polymerase, T3 phage RNA polymerase, and the like, or mutants of these polymerases which allow efficient incorporation of modified nucleotides into RNA molecules.
- the transcription reaction will contain nucleotides and modified nucleotides, and other components that support the activity of the selected polymerase, such as a suitable buffer, and suitable salts.
- nucleotide analogs into a self-replicating RNA may be engineered, for example, to alter the stability of such RNA molecules, to increase resistance against RNases, to establish replication after introduction into appropriate host cells ("infectivity" of the RNA), and/or to induce or reduce innate and adaptive immune responses.
- Suitable synthetic methods can be used alone, or in combination with one or more other methods (e.g., recombinant DNA or RNA technology), to produce a self- replicating RNA molecule that contain one or more modified nucleotides.
- Suitable methods for de novo synthesis are well-known in the art and can be adapted for particular applications. Exemplary methods include, for example, chemical synthesis using suitable protecting groups such as CEM (Masuda et al., (2007) Nucleic Acids Symposium Series 57:3-4), the ⁇ -cyanoethyl phosphoramidite method (Beaucage S L et al.
- Nucleic acid synthesis can also be performed using suitable recombinant methods that are well- known and conventional in the art, including cloning, processing, and/or expression of polynucleotides and gene products encoded by such polynucleotides. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic polynucleotides are examples of known techniques that can be used to design and engineer polynucleotide sequences.
- Site-directed mutagenesis can be used to alter nucleic acids and the encoded proteins, for example, to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations and the like. Suitable methods for transcription, translation and expression of nucleic acid sequences are known and conventional in the art. (See generally, Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel, et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13, 1988; Glover, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3, 1986; Bitter, et al., in Methods in Enzymology 153:516-544 (1987); The Molecular Biology of the Yeast Saccharomyces, Eds.
- RNA can be digested to monophosphates (e.g., using nuclease PI) and dephosphorylated (e.g., using a suitable phosphatase such as CIAP), and the resulting nucleosides analyzed by reversed phase HPLC (e.g., usings a YMC Pack ODS-AQ column (5 micron, 4.6 X 250 mm) and elute using a gradient, 30% B (0-5 min) to 100 % B (5 - 13 min) and at 100 % B (13-40) min, flow Rate (0.7 ml/min), UV detection (wavelength: 260 nm), column temperature (30°C). Buffer A (20mM acetic acid - ammonium acetate pH 3.5), buffer B (20mM acetic acid - ammonium acetate pH
- the self-replicating RNA may be associated with a delivery system.
- the self- replicating RNA may be administered with or without an adjuvant.
- the self-replicating RNA described herein are suitable for delivery in a variety of modalities, such as naked RNA delivery or in combination with lipids, polymers or other compounds that facilitate entry into the cells.
- Self-replicating RNA molecules can be introduced into target cells or subjects using any suitable technique, e.g., by direct injection, microinjection, electroporation, lipofection, biolystics, and the like.
- the self-replicating RNA molecule may also be introduced into cells by way of receptor-mediated endocytosis. See e.g., U.S. Pat. No. 6,090,619; Wu and Wu, J. Biol. Chem., 263: 14621 (1988); and Curiel et al, Proc. Natl.
- U.S. Pat. No. 6,083,741 discloses introducing an exogenous nucleic acid into mammalian cells by associating the nucleic acid to a polycation moiety ⁇ e.g., poly-L-lysine having 3-100 lysine residues), which is itself coupled to an integrin receptor-binding moiety ⁇ e.g. , a cyclic peptide having the sequence Arg-Gly-Asp (SEQ ID NO: ).
- the self-replicating RNA molecules can be delivered into cells via amphiphiles. See e.g., U.S. Pat. No. 6,071,890.
- a nucleic acid molecule may form a complex with the cationic amphiphile. Mammalian cells contacted with the complex can readily take it up.
- the self-replicating RNA can be delivered as naked RNA ⁇ e.g. merely as an aqueous solution of RNA) but, to enhance entry into cells and also subsequent intercellular effects, the self-replicating RNA is preferably administered in combination with a delivery system, such as a particulate or emulsion delivery system.
- a delivery system such as a particulate or emulsion delivery system.
- delivery systems include, for example liposome-based delivery (Debs and Zhu (1993) WO 93/24640; Mannino and Gould-Fogerite (1988) BioTechniques 6(7): 682-691; Rose U.S. Pat. No.
- biodegradable polymer microparticles and (iii) cationic submicron oil-in-water emulsions.
- RNA-containing aqueous core encapsulate a RNA-containing aqueous core as a liposome.
- lipids can have an anionic, cationic or zwitterionic hydrophilic head group. Formation of liposomes from anionic phospholipids dates back to the 1960s, and cationic liposome-forming lipids have been studied since the 1990s. Some phospholipids are anionic whereas other are zwitterionic. Suitable classes of phospholipid include, but are not limited to, phosphatidylethanolamines, phosphatidylcholines, phosphatidylserines, and phosphatidylglycerols, and some useful phospholipids are listed in Table 2.
- Useful cationic lipids include, but are not limited to, dioleoyl trimethylammonium propane (DOTAP), l,2-distearyloxy-N,N-dimethyl-3-aminopropane (DSDMA), 1,2- dioleyloxy-N,Ndimethyl-3-aminopropane (DODMA), 1 ,2-dilinoleyloxy-N,N- dimethyl-3-aminopropane (DLinDMA), 1 ,2-dilinolenyloxy-N,N-dimethyl-3- aminopropane (DLenDMA).
- DOTAP dioleoyl trimethylammonium propane
- DSDMA 1,2- dioleyloxy-N,Ndimethyl-3-aminopropane
- DODMA 1,2- dioleyloxy-N,Ndimethyl-3-aminopropane
- DLinDMA 1,2- dioleyloxy-N,Ndimethyl-3-aminopropan
- Zwitterionic lipids include, but are not limited to, acyl zwitterionic lipids and ether zwitterionic lipids.
- Examples of useful zwitterionic lipids are DPPC, DOPC and dodecylphosphocholine.
- the lipids can be saturated or unsaturated.
- Liposomes can be formed from a single lipid or from a mixture of lipids.
- a mixture may comprise (i) a mixture of anionic lipids (ii) a mixture of cationic lipids (iii) a mixture of zwitterionic lipids (iv) a mixture of anionic lipids and cationic lipids (v) a mixture of anionic lipids and zwitterionic lipids (vi) a mixture of zwitterionic lipids and cationic lipids or (vii) a mixture of anionic lipids, cationic lipids and zwitterionic lipids.
- a mixture may comprise both saturated and unsaturated lipids.
- a mixture may comprise DSPC (zwitterionic, saturated), DlinDMA
- DMPG anionic, saturated
- hydrophilic portion of a lipid can be PEGylated (i.e. modified by covalent
- lipids can be conjugated to PEG using techniques such as those disclosed in Heyes et al. (2005) J Controlled Release 107:276-87.
- a mixture of DSPC, DlinDMA, PEG-DMPG and cholesterol can be used to form
- a separate aspect of the invention is a liposome comprising DSPC, DlinDMA, PEG-DMG and cholesterol.
- This liposome preferably encapsulates R A, such as a self-replicating RNA e.g. encoding an immunogen.
- Liposomes are usually divided into three groups: multilamellar vesicles (MLV); small unilamellar vesicles (SUV); and large unilamellar vesicles (LUV).
- MLVs have multiple bilayers in each vesicle, forming several separate aqueous compartments.
- SUVs and LUVs have a single bilayer encapsulating an aqueous core; SUVs typically have a diameter ⁇ 50nm, and LUVs have a diameter >50nm.
- Liposomes useful with of the invention are ideally LUVs with a diameter in the range of 50-220nm.
- compositions comprising a population of LUVs with different diameters: (i) at least 80% by number should have diameters in the range of 20-220nm, (ii) the average diameter (Zav, by intensity) of the population is ideally in the range of 40-200nm, and/or (iii) the diameters should have a polydispersity index ⁇ 0.2.
- One useful method involves mixing (i) an ethanolic solution of the lipids (ii) an aqueous solution of the nucleic acid and (iii) buffer, followed by mixing, equilibration, dilution and purification (Heyes et al. (2005) J Controlled Release 107:276-87.).
- RNA is preferably encapsulated within the liposomes, and so the liposome forms a outer layer around an aqueous RNA-containing core. This encapsulation has been found to protect RNA from RNase digestion.
- the liposomes can include some external RNA ⁇ e.g. on the surface of the liposomes), but preferably, at least half of the RNA (and ideally substantially all of it) is encapsulated.
- RNA molecules can form microparticles to encapsulate or adsorb RNA.
- the use of a substantially non-toxic polymer means that a recipient can safely receive the particles, and the use of a biodegradable polymer means that the particles can be metabolised after delivery to avoid long-term persistence.
- Useful polymers are also sterilisable, to assist in preparing pharmaceutical grade formulations.
- Suitable non-toxic and biodegradable polymers include, but are not limited to, poly(a- hydroxy acids), polyhydroxy butyric acids, polylactones (including
- polycaprolactones polydioxanones, polyvalerolactone, polyorthoesters,
- polyanhydrides polycyanoacrylates, tyrosine-derived polycarbonates, polyvinyl- pyrrolidinones or polyester-amides, and combinations thereof.
- the microparticles are formed from poly(a-hydroxy acids), such as a poly(lactides) ("PL A”), copolymers of lactide and glycolide such as a poly(D,L-lactide-co-glycolide) (“PLG”), and copolymers of D,L-lactide and caprolactone.
- PL A poly(lactides)
- PLG poly(D,L-lactide-co-glycolide)
- Useful PLG polymers include those having a lactide/glycolide molar ratio ranging, for example, from 20:80 to 80:20 e.g. 25:75, 40:60, 45:55, 55:45, 60:40, 75:25.
- Useful PLG polymers include those having a molecular weight between, for example, 5,000-200,000 Da e.g. between 10,000-100,000, 20,000-70,000, 40,000- 50,000 Da.
- microparticles ideally have a diameter in the range of 0.02 ⁇ to 8 ⁇ .
- a composition comprising a population of microparticles with different diameters at least 80% by number should have diameters in the range of 0.03-7 ⁇ .
- Techniques for preparing suitable microparticles are well known in the art e.g. see Functional Polymer Colloids and Microparticles volume 4 (Microspheres, microcapsules & liposomes), (eds. Arshady & Guyot). Citus Books, 2002; Polymers in Drug Delivery, (eds. Uchegbu & Schatzlein). CRC Press, 2006. (in particular chapter 7) and Microparticulate Systems for the Delivery of Proteins and Vaccines.
- a microparticle may include a cationic surfactant and/or lipid e.g. as disclosed in O'Hagan et al. (2001) J Virologyl5: 9037-9043; and Singh et al. (2003)
- polymeric microparticles are by molding and curing e.g. as disclosed in WO2009/132206.
- Microparticles of the invention can have a zeta potential of between 40-100 mV.
- RNA can be adsorbed to the microparticles, and adsorption is facilitated by including cationic materials ⁇ e.g. cationic lipids) in the microparticle.
- Oil-in-water emulsions are known for adjuvanting influenza vaccines e.g. the MF59TM adjuvant in the FLUADTM product, and the AS03 adjuvant in the PREPANDRIXTM product.
- RNA delivery can be accomplished with the use of an oil-in-water emulsion, provided that the emulsion includes one or more cationic molecules.
- a cationic lipid can be included in the emulsion to provide a positively charged droplet surface to which negatively-charged RNA can attach.
- the emulsion comprises one or more oils.
- Suitable oil(s) include those from, for example, an animal (such as fish) or a vegetable source.
- the oil is ideally
- Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils.
- Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used.
- 6-10 carbon fatty acid esters of glycerol and 1 ,2-propanediol may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and so may be used. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art.
- cod liver oil cod liver oil
- shark liver oils and whale oil such as spermaceti exemplify several of the fish oils which may be used herein.
- a number of branched chain oils are synthesized biochemically in 5 -carbon isoprene units and are generally referred to as terpenoids.
- Squalane the saturated analog to squalene
- Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art.
- oil phase of an emulsion includes a tocopherol
- any of the ⁇ , ⁇ , ⁇ , ⁇ , ⁇ or ⁇ tocopherols can be used, but a-tocopherols are preferred.
- DL-a-tocopherol can both be used.
- a preferred a-tocopherol is DL-a-tocopherol.
- An oil combination comprising squalene and a tocopherol (e.g. DL-a-tocopherol) can be used.
- Preferred emulsions comprise squalene, a shark liver oil which is a branched,
- the oil in the emulsion may comprise a combination of oils e.g. squalene and at least one further oil.
- the aqueous component of the emulsion can be plain water (e.g. w.f.i.) or can include further components e.g. solutes. For instance, it may include salts to form a buffer e.g. citrate or phosphate salts, such as sodium salts.
- Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer.
- a buffered aqueous phase is preferred, and buffers will typically be included in the 5-20mM range.
- the emulsion also includes a cationic lipid.
- this lipid is a surfactant so that it can facilitate formation and stabilization of the emulsion.
- Useful cationic lipids generally contains a nitrogen atom that is positively charged under physiological conditions e.g. as a tertiary or quaternary amine. This nitrogen can be in the hydrophilic head group of an amphiphilic surfactant.
- Useful cationic lipids include, but are not limited to: l,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 3'- [N-(N',N'-Dimethylaminoethane)-carbamoyl]Cholesterol (DC Cholesterol), dimethyldioctadecyl-ammonium (DDA e.g. the bromide), l,2-Dimyristoyl-3- Trimethyl-AmmoniumPropane (DMTAP), dipalmitoyl(C16:0)trimethyl ammonium propane (DPTAP), distearoyltrimethylammonium propane (DSTAP).
- DOTAP l,2-dioleoyloxy-3-(trimethylammonio)propane
- DC Cholesterol dimethyldioctadecyl-ammonium
- DMTAP dipalmitoyl(C16:0)trimethyl ammonium
- benzalkonium chloride BAK
- benzethonium chloride cetramide (which contains tetradecyltrimethylammonium bromide and possibly small amounts of dedecyltrimethylammonium bromide and hexadecyltrimethyl ammonium bromide)
- cetylpyridinium chloride CPC
- cetyl trimethylammonium chloride CAC
- ⁇ , ⁇ ', ⁇ '-polyoxyethylene (10)-N-tallow-l,3 -diaminopropane benzalkonium chloride
- cetramide which contains tetradecyltrimethylammonium bromide and possibly small amounts of dedecyltrimethylammonium bromide and hexadecyltrimethyl ammonium bromide
- CPC cetylpyridinium chloride
- CTAC cetyl trimethylammonium chloride
- cetylpyridinium bromide and cetylpyridinium chloride N-alkylpiperidinium salts, dicationic bolaform electrolytes (C12Me6; C12BU6), dialkylglycetylphosphorylcholine, lysolecithin, L-a dioleoylphosphatidylethanolamine, cholesterol hemisuccinate choline ester, lipopolyamines, including but not limited to
- dioctadecylamidoglycylspermine DOGS
- dipalmitoyl phosphatidylethanol- amidospermine DPES
- lipopoly-L or D)- lysine
- poly (L (or D)- lysine conjugated to N- glutarylphosphatidylethanolamine didodecyl glutamate ester with pendant amino group (C A GluPhCnN )
- ditetradecyl glutamate ester with pendant amino group C14GIuCnN+
- cationic derivatives of cholesterol including but not limited to cholesteryl-3 ⁇ -oxysuccinamidoethylenetrimethylammonium salt, cholesteryl-3 ⁇ -oxysuccinamidoethylene-dimethylamine, cholesteryl-3 ⁇ - carboxyamidoethylenetrimethylammonium salt, and cholesteryl-3
- cationic lipid is preferably biodegradable (metabolizable) and biocompatible.
- an emulsion can include a non-ionic surfactant and/or a zwitterionic surfactant.
- surfactants include, but are not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAXTM tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-l,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest;
- octylphenoxy polyethoxyethanol
- phospholipids such as phosphatidylcholine (lecithin); polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); polyoxyethylene-9-lauryl ether; and sorbitan esters (commonly known as the Spans), such as sorbitan trioleate (Span 85) and sorbitan monolaurate.
- Preferred surfactants for including in the emulsion are polysorbate 80 (Tween 80; polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
- Mixtures of these surfactants can be included in the emulsion e.g. Tween 80/Span 85 mixtures, or Tween 80/Triton-X100 mixtures.
- a combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxy-polyethoxyethanol (Triton X-100) is also suitable.
- Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
- Useful mixtures can comprise a surfactant with a HLB value in the range of 10-20 ⁇ e.g.
- polysorbate 80 with a HLB of 15.0
- a surfactant with a HLB value in the range of 1-10 ⁇ e.g. sorbitan trioleate, with a HLB of 1.8.
- Preferred amounts of oil (% by volume) in the final emulsion are between 2-20% e.g. 5-15%, 6-14%, 7-13%, 8-12%.
- a squalene content of about 4-6% or about 9-11% is particularly useful.
- Preferred amounts of surfactants (% by weight) in the final emulsion are between 0.001 ) and 8%.
- polyoxyethylene sorbitan esters such as polysorbate 80
- sorbitan esters such as polysorbate 80
- sorbitan esters such as sorbitan trioleate
- octyl- or nonylphenoxy polyoxyethanols such as Triton X-100
- 0.001 to 0.1%) in particular 0.005 to 0.02%>
- polyoxyethylene ethers such as laureth 9) 0.1 to 8%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.
- the most effective emulsions have a droplet size in the submicron range.
- the droplet sizes will be in the range 50-750nm.
- the average droplet size is less than 250nm e.g. less than 200nm, less than 150nm.
- the average droplet size is usefully in the range of 80-180nm.
- at least 80%> (by number) of the emulsion's oil droplets are less than 250 nm in diameter, and preferably at least 90%.
- Apparatuses for determining the average droplet size in an emulsion, and the size distribution are commercially available. These typically use the techniques of dynamic light scattering and/or single -particle optical sensing e.g. the AccusizerTM and NicompTM series of instruments available from Particle Sizing Systems (Santa Barbara, USA), or the ZetasizerTM instruments from Malvern Instruments (UK), or the Particle Size
- the distribution of droplet sizes has only one maximum i.e. there is a single population of droplets distributed around an average (mode), rather than having two maxima.
- Preferred emulsions have a polydispersity of ⁇ 0.4 e.g. 0.3, 0.2, or less.
- Suitable emulsions with submicron droplets and a narrow size distribution can be obtained by the use of microfluidization.
- This technique reduces average oil droplet size by propelling streams of input components through geometrically fixed channels at high pressure and high velocity. These streams contact channel walls, chamber walls and each other. The results shear, impact and cavitation forces cause a reduction in droplet size. Repeated steps of microfluidization can be performed until an emulsion with a desired droplet size average and distribution are achieved.
- thermal methods can be used to cause phase inversion. These methods can also provide a submicron emulsion with a tight particle size distribution.
- Preferred emulsions can be filter sterilized i.e. their droplets can pass through a
- this procedure also removes any large droplets in the emulsion.
- the cationic lipid in the emulsion is DOTAP.
- the cationic oil-in-water emulsion may comprise from about 0.5 mg/ml to about 25 mg/ml DOTAP.
- the cationic oil-in-water emulsion may comprise DOTAP at from about 0.5 mg/ml to about 25 mg/ml, from about 0.6 mg/ml to about 25 mg/ml, from about 0.7 mg/ml to about 25 mg/ml, from about 0.8 mg/ml to about 25 mg/ml, from about 0.9 mg/ml to about 25 mg/ml, from about 1.0 mg/ml to about 25 mg/ml, from about 1.1 mg/ml to about 25 mg/ml, from about 1.2 mg/ml to about 25 mg/ml, from about 1.3 mg/ml to about 25 mg/ml, from about 1.4 mg/ml to about 25 mg/ml, from about 1.5 mg/ml to about 25 mg/ml
- the cationic oil-in-water emulsion comprises from about 0.8 mg/ml to about 1.6 mg/ml DOTAP, such as 0.8 mg/ml, 1.2 mg/ml, 1.4 mg/ml or 1.6 mg/ml.
- the cationic lipid is DC Cholesterol.
- the cationic oil-in- water emulsion may comprise DC Cholesterol at from about 0.1 mg/ml to about 5 mg/ml DC Cholesterol.
- the cationic oil-in-water emulsion may comprise DC Cholesterol from about 0.1 mg/ml to about 5 mg/ml, from about 0.2 mg/ml to about 5 mg/ml, from about 0.3 mg/ml to about 5 mg/ml, from about 0.4 mg/ml to about 5 mg/ml, from about 0.5 mg/ml to about 5 mg/ml, from about 0.62 mg/ml to about 5 mg/ml, from about 1 mg/ml to about 5 mg/ml, from about 1.5 mg/ml to about 5 mg/ml, from about 2 mg/ml to about 5 mg/ml, from about 2.46 mg/ml to about 5 mg/ml, from about 3 mg/ml to about 5 mg/
- the cationic lipid is DDA.
- the cationic oil-in-water emulsion may comprise from about 0.1 mg/ml to about 5 mg/ml DDA.
- the cationic oil-in-water emulsion may comprise DDA at from about 0.1 mg/ml to about 5 mg/ml, from about 0.1 mg/ml to about 4.5 mg/ml, from about 0.1 mg/ml to about 4 mg/ml, from about 0.1 mg/ml to about 3.5 mg/ml, from about 0.1 mg/ml to about 3 mg/ml, from about 0.1 mg/ml to about 2.5 mg/ml, from about 0.1 mg/ml to about 2 mg/ml, from about 0.1 mg/ml to about 1.5 mg/ml, from about 0.1 mg/ml to about 1.45 mg/ml, from about 0.2 mg/ml to about 5 mg/ml, from about 0.3 mg/ml to about 5 mg/ml, from about 0.4
- the cationic oil-in-water emulsion may comprise DDA at about 20 mg/ml, about 21 mg/ml, about 21.5 mg/ml, about 21.6 mg/ml, about 25 mg/ml.
- the cationic oil-in-water emulsion comprises from about 0.73 mg/ml to about 1.45 mg/ml DDA, such as 1.45 mg/ml.
- RNA molecules of the invention may be used to deliver the self-replicating RNA molecules of the invention, as naked RNA or in combination with a delivery system, into a target organ or tissue.
- Suitable catheters are disclosed in, e.g., U.S. Pat. Nos. 4,186,745; 5,397,307; 5,547,472; 5,674,192; and 6,129,705, all of which are incorporated herein by reference.
- the present invention includes the use of suitable delivery systems, such as
- liposomes polymer microparticles or submicron emulsion microparticles with encapsulated or adsorbed self-replicating RNA, to deliver a self-replicating RNA molecule that encodes two or more CMV proteins, for example, to elicit an immune response alone, or in combination with another macromolecule.
- the invention includes liposomes, microparticles and submicron emulsions with adsorbed and/or encapsulated self-replicating RNA molecules, and combinations thereof.
- emulsion microparticles can be effectively delivered to a host cell, and can induce an immune response to the protein encoded by the self-replicating RNA.
- Polycistronic self replicating RNA molecules that encode CMV proteins, and VRPs produced using polycistronic alphavirus replicons can be used to form CMV protein complexes in a cell. Complexes include, but are not limited to, gB/gH/gL; gH/gL; gH/gL/gO; gM/gN; gH/gL/UL128/UL130/UL131; and UL128/UL130/UL131.
- combinations of VRPs are delivered to a cell. Combinations include, but are not limited to:
- Combinations include, but are not limited to:
- RNA molecule encoding gH and gL, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
- RNA molecule encoding gH, gL, and gO, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
- RNA molecule encoding gM and gN, a self-replicating RNA molecule encoding gH and gL, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
- RNA molecule encoding gM and gN, a self-replicating RNA molecule encoding gH, gL and gO, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
- CMV proteins Suitable CMV proteins include gB, gH, gL, gO, and can be from any CMV strain.
- Other suitable CMV proteins include UL128, UL130 and UL131, and can be from any CMV strain.
- CMV proteins can be from Merlin, AD 169, VR1814, Towne, Toledo, TR, PH, TB40, or Fix strains of CMV.
- Exemplary CMV proteins and fragments are described herein. These proteins and fragments can be encoded by any suitable nucleotide sequence, including sequences that are codon optimized or deoptimized for expression in a desired host, such as a human cell. Exemplary sequences of CMV proteins and nucleic acids encoding the proteins are provided in Table 2 [147] Table 2.
- a gB protein can be full length or can omit one or more regions of the protein.
- fragments of a gB protein can be used.
- gB amino acids are numbered according to the full-length gB amino acid sequence (CMV gB FL) shown in SEQ ID NO: , which is 907 amino acids long.
- Suitable regions of a gB protein, which can be excluded from the full-length protein or included as fragments include: the signal sequence (amino acids 1-24), a gB-DLD disintegrin-like domain (amino acids 57- 146), a furin cleavage site (amino acids 459-460), a heptad repeat region (679-693), a membrane spanning domain (amino acids 751-771), and a cytoplasmic domain from amino acids 771-906.
- a gB protein includes amino acids 67-86 (Neutralizing Epitope AD2) and/or amino acids 532-635 (Immunodominant Epitope AD1).
- Specific examples of gB fragments include "gB sol 692,” which includes the first 692 amino acids of gB, and "gB sol 750,” which includes the first 750 amino acids of gB.
- the signal sequence, amino acids 1-24, can be present or absent from gB sol 692 and gB sol 750 as desired.
- the gB protein can be a gB fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, or 875 amino acids.
- a gB fragment can begin at any of residue number: 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
- a gB fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a gB fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- a gH protein is a full-length gH protein (CMV gH FL, SEQ ID NO: 1]
- gH has a membrane spanning domain and a cytoplasmic domain starting at position 716 to position 743. Removing amino acids from 717 to 743 provides a soluble gH (e.g., CMV gH sol,
- the gH protein can be a gH fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, or 725 amino acids.
- the gH protein can be a gH fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, or 725 amino acids.
- a gH fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
- gH residues are numbered according to the full-length gH amino acid sequence (CMV gH FL) shown in SEQ ID NO: .
- a gH fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a gH fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- CMV gL proteins CMV gL proteins
- a gL protein is a full-length gL protein (CMV gL FL, SEQ ID NO: 1]
- a gL fragment can be used.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, or 250 amino acids.
- a gL fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
- gL residues are numbered according to the full-length gL amino acid sequence (CMV gL FL) shown in SEQ ID NO: .
- a gL fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a gL fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- a gO protein is a full-length gO protein (CMV gO FL, SEQ ID NO: 1
- the gO protein can be a gO fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, or 450 amino acids.
- a gO fragment can begin at any of residue number: 1, 2 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- gO residues are numbered according to the full-length gO amino acid sequence (CMV gO FL) shown in SEQ ID NO: .
- a gO fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a gO fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- CMV gM proteins CMV gM proteins
- a gM protein is a full-length gM protein (CMV gM FL, SEQ
- the gM protein can be a gM fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, or 350 amino acids.
- a gM fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 , 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
- gM residues are numbered according to the full-length gM amino acid sequence
- CMV gM FL shown in SEQ ID NO: .
- a gM fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a gM fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- a gN protein is a full-length gN protein (CMV gN FL, SEQ ID NO: 1]
- the gN protein can be a gN fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, or 125 amino acids.
- a gN fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
- gN residues are numbered according to the full-length gN amino acid sequence (CMV gN FL) shown in SEQ ID NO: .
- a gN fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a gN fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- a UL128 protein is a full-length UL128 protein (CMV UL128
- the UL128 protein can be a UL128 fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, or 150 amino acids.
- a UL128 fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
- a UL128 fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a UL128 fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- a UL130 protein is a full-length UL130 protein (CMV UL130
- the UL130 protein can be a UL130 fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acids.
- a UL130 fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 , 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
- CMV UL130 FL shown in SEQ ID NO: .
- a UL130 fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a UL130 fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- a UL131 protein is a full-length UL131 protein (CMV UL131,
- the UL131 protein can be a UL131 fragment of 10 amino acids or longer.
- the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acids.
- a UL131 fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 , 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
- a UL131 fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment.
- a UL131 fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.
- the invention relates to recombinant polycistronic nucleic acid
- sequences encoding CMV proteins in such preferred embodiments can be replaced with sequences encoding proteins, such as gH and gL, or fragements thereof that are 10 amino acids long or longer, from other herpesviruses such as HHV-1, HHV-2, HHV-3, HHV-4, HHV-6, HHV-7 and HHV-8.
- suitable VZV (HHV-3) proteins include gB, gE, gH, gl, and gL, amd fragements thereof that are 10 amino acids long or longer, and can be from any VZV strain.
- VZV proteins or fragments thereof can be from pOka, Dumas, HJO, CA123, or DR strains of VZV.
- These exemplary VZV proteins and fragments thereof can be encoded by any suitable nucleotide sequence, including sequences that are codon optimized or deoptimized for expression in a desired host, such as a human cell. Exemplary sequences of VZV proteins are provided herein.
- the polycistronic nucleic acid molecule contains a first sequence encoding a VZV gH protein or fragment thereof, and a second sequence encoding a VZV gL protein or fragment thereof.
- polycistronic nucleic acid molecule is operably linked to its own control elements.
- each sequences encoding a herpes virus protein or fragment is operably linked to its own subgenomic promoter.
- the polycistronic nucleic acid molecule such as an alphavirus replicon
- this type of polycistronic nucleic acid molecule is a self replicating RNA, such as an alphavirus replicon, it can be packaged as a VRP, or associate or formulated with an RNA delivery system.
- self-replicating RNA molecules or VRPs are administered to an individual to stimulate an immune response.
- self-replicating RNA molecules or VRPs typically are present in a composition which may comprise a pharmaceutically acceptable carrier and, optionally, an adjuvant. See, e.g., U.S. 6,299,884; U.S. 7,641,911; U.S. 7,306,805; and US 2007/0207090.
- the immune response can comprise a humoral immune response, a cell-mediated immune response, or both.
- an immune response is induced against each delivered CMV protein.
- a cell-mediated immune response can comprise a Helper T-cell (T ) response, a CD8+ cytotoxic T-cell (CTL) response, or both.
- the immune response comprises a humoral immune response, and the antibodies are neutralizing antibodies.
- Neutralizing antibodies block viral infection of cells. CMV infects epithelial cells and also fibroblast cells.
- the immune response reduces or prevents infection of both cell types.
- Neutralizing antibody responses can be complement-dependent or complement- independent.
- the neutralizing antibody response is complement-independent.
- the neutralizing antibody response is cross-neutralizing; i.e., an antibody generated against an administered composition neutralizes a CMV virus of a strain other than the strain used in the composition.
- a useful measure of antibody potency in the art is "50% neutralization titer.”
- this titer is in a range having a lower limit of about 200, about 400, about 600, about 800, about 1000, about 1500, about 2000, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 6500, or about 7000.
- the 50% neutralization titer range can have an upper limit of about 400, about 600, about 800, about 1000, about 1500, about 200, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 6500, about 7000, about 8000, about 9000, about 10000, about 11000, about 12000, about 13000, about 14000, about 15000, about 16000, about 17000, about 18000, about 19000, about 20000, about 21000, about 22000, about 23000, about 24000, about 25000, about 26000, about 27000, about 28000, about 29000, or about 30000.
- the 50% neutralization titer can be about 3000 to about 6500.
- "About" means plus or minus 10%> of the recited value. Neutralization titer can be measured as described in the specific examples, below.
- An immune response can be stimulated by administering VRPs or self-replicating
- RNA to an individual, typically a mammal, including a human.
- the immune response induced is a protective immune response, i.e., the response reduces the risk or severity of CMV infection.
- Stimulating a protective immune response is particularly desirable in some populations particularly at risk from CMV infection and disease.
- at-risk populations include solid organ transplant (SOT) patients, bone marrow transplant patients, and hematopoietic stem cell transplant (HSCT) patients.
- SOT solid organ transplant
- HSCT hematopoietic stem cell transplant
- VRPs can be administered to a transplant donor pre- transplant, or a transplant recipient pre- and/or post-transplant. Because vertical transmission from mother to child is a common source of infecting infants, administering VRPs or self-replicating RNA to a woman who can become pregnant is particularly useful.
- compositions can be administered intra-muscularly, intra-peritoneally, sub-cutaneously, or trans-dermally. Some embodiments will be administered through an intra-mucosal route such as intra- orally, intra-nasally, intra- vaginally, and intra-rectally. Compositions can be administered according to any suitable schedule.
- accession number nucleotide and amino acid sequences referred to by accession number, are expressly incorporated herein by reference.
- accession number nucleotide and amino acid sequences referred to by accession number
- Each CMV antigen was cloned into a pcDNA-6His vector (Invitrogen) and tested for protein expression before cloning into an alphavirus replicon vector, pVCR 2.1 Sall/Xbal derived from the plasmid described by Perri et al. (J. Virol 77(19)10394- 10403 (2003)) producing the constructs shown in Figure 2.
- pVCR 2.1 Sall/Xbal is a self-replicating RNA vector that, when electroporated with defective helper capsid and glycoprotein RNA, forms an infectious alphavirus particle.
- pVCR vectors were used to make RNA which was electroporated into baby hamster kidney (BHKV) cells in the presence of defective helper capsid and glycoprotein RNAs derived from Venezuelan equine encephalitis virus (VEE).
- VRPs secreted alphavirus vector particles
- transmembrane spanning domain and cytoplasmic domain and "gB sol 692" also lacks a hydrophobic region (FIG. 2A) and is similar to the Reap et al. construct.
- Sera from immunized mice were screened in several assays. Immunoblot (data not shown) and immunofluorescence assays were used to confirm specific antibody responses to the antigens.
- Neutralization assays were used to demonstrate that the elicited antibody responses were able to neutralize CMV infection.
- SGP subgenomic promoters
- GOI genes of interest
- 2.1SalI/XbaI Apal site at 11026-31bp was changed from GGGCCC (SEQ ID NO:_) to GGCGCC (SEQ ID NO:_). Clal and Pmll restriction sites added in the region immediately downstream of the first subgenomic promoter and Sall-Xbal insert sites. The sequence at 7727-7754 bp was changed from ctcgatgtacttccgaggaactgatgtg (SEQ ID NO: ) to ATCGATGTACTTCCGAGGAACTCACGTG (SEQ ID NO: ).
- a shuttling vector system was designed to allow insertion of a GOI directly
- pcDNA 3.1 (-) C was modified as follows. Three Sail sites were deleted: positions 1046-105 lbp, 3332-3337bp and 5519-21, 1-3 bp from GTCGAC (SEQ ID NO:_) to GTCTAC (SEQ ID NO:_). pcDNA 3.1 (-) C was modified to mutate an Xbal site at position 916-921 bp from TCTAGA (SEQ ID NO:_) to TCAAGA (SEQ ID NO:_). pcDNA 3.1 (-) C was modified to add a Clal site and SacII site at positions 942-947 (Clal) and 950-955
- Reverse SGP S-X Sac R 5 TCCCCGCGGTGGGTGGGCGCGCCGTCTAG 3' (S SEQ ID NO: ).
- the amplified regions were added into the modified pcDNA 3.1(-)C vector to make shuttling vectors (pcDNA SV) between appropriate sites (Notl-Clal or Clal-SacII). Insertion of the Notl-SGP Sal-Xba-Clal forms pcDNA SV cassette 2, insertion of the Clal-SGP Sal-Xba-SacII forms pcDNA SV cassette 3. These SV cassettes were sequenced.
- the pcDNA SV cassette 2 contains an additional 12bp between the Xbal site and the Clal site (CCACTGTGATCG) (SEQ ID NO: ) because the Clal site was not cut in the pcDNA SV cassette 2 vector.
- a Pmll site was therefore added.
- the Pmll site was inserted at bp 1012 (CACGTG) (SEQ ID NO:_).
- cassette 3 Pmll site was added at bp 935-940 (ACTGTG (SEQ ID NO:_) was changed to CACGTG (SEQ ID NO:_).
- ACTGTG SEQ ID NO:_
- the second gene was ligated into pcDNA SV cassette 2 using Sall-Xbal and excised using Notl-Pmll, Notl-SacII or PCRed using primers for Notl-Clal and digested using Notl and Clal.
- the resulting insert SGP— Sail— GOI— Xba was ligated into the modified pVCR 2.1 vector using Notl- Pmll, Notl-SacII, or Notl-Clal sites.
- the Notl-Clal insert was used only when a desired gene in the construct contained a Pmll site.
- a third gene was ligated into pcDNA SV cassette 3 using Sall-Xbal and excised using Pmll-SacII or PCRed using primers for Clal-SacII and digested using Clal and SacII.
- the resulting insert SGP— Sail— GOI— Xbal was ligated into the modified pVCR 2.1 using Pmll-SacII or Clal-SacII.
- RNA quality was checked by running a sample aliquot on an RNA agarose gel.
- GFP green fluorescent protein
- mCherry red fluorescent protein
- polynucleotide (GFP) was inserted directly into the modified alphavirus replicon vector.
- the second polynucleotide (mCherry) was inserted first into a shuttling vector that contains a subgenomic promoter directly upstream of the coding sequence.
- a fragment containing both the second subgenomic promoter and the second polynucleotide was isolated and ligated into the modified alphavirus replicon vector containing the first polynucleotide, providing an alphavirus replicon with multiple subgenomic promoters.
- VRPs were produced in BHKV cells by electroporating replicon RNAs with defective helper RNAs for Cap and Gly. The VRPs were harvested 24 hours after
- VRP-infected BHKV cells were examined 24 hours postinfection to determine percent of colocalization. Nearly all the cells were positive for GFP or mCherry when singly infected. Cells infected with two separate VRPs appeared either green or red. Very few cells were yellow, indicating that few cells expressed GFP and mCherry at equal levels and that there was a low level of co- infection. These data were confirmed using FACS analysis (FIG. 4B).
- CMV protein complexes can be formed in a cell after delivery of the complex components from a polycistronic alphavirus replicon vector.
- VRPs containing gH, gL, gO, gH/gL and gH/gL/gO encoding replicons were produced in BHKV cells as described above and used to infect BHKV cells to demonstrate complex formation in vitro.
- VRP infected ARPE-19 cells produced disulfide linked complexes of gH/gL.
- gO did not detectably alter gH/gL association (FIG. 5B).
- Immunofluorescence studies were conducted to evaluate the localization of gH and gL delivered alone and when delivered using a polycistronic alphavirus to look at relocalization of the proteins when co-expressed. gH localization did not appear to change in the presence or absence of gL, or gL/gO. gL localization did change when in the presence of gH and gH/gO.
- VRPs that effect gH/gL complex formation in vitro induce potent immune response to CMV which is qualitatively and quantitatively superior to the immune response elicited to gB VRPs.
- This example demonstrates the induction of robust immune responses to complexes formed by delivering polycistronic gH/gL VRPs or gH/gL/gO VRPs compared with immune responses obtained using VRPs delivering single components or single- component VRPs administered in combination or to responses elicited by gB VRPs.
- mice were infected three times with VRPs administered 3 weeks apart (10 6 IU per mouse; 5 BalbC mice/group). Sera collected from immunizations with single and polycistronic VRPs were screened for neutralizing antibodies using a CMV
- Neutralization assay as described above. Neutralization titer was measured as follows. Various dilutions of sera were pre-incubated with TB40-UL32-EGFP in the presence or absence of guinea pig complement and then added to ARPE-19 epithelial cells or MRC-5 fibroblast cells and incubated for 5 days. After 5 days infection with the virus, GFP-positive cells were counted. Results for the ARPE-19 cells are shown in FIG. 6A, FIG. 6B, and FIG. 6C. Results for the MRC-5 cells are shown in FIG. 7A and FIG. 7B.
- VRPs expressing single CMV proteins did not enhance neutralizing activity beyond that of gH alone.
- gH/gL/gO VRPs (lxlO 6 IU/mouse) demonstrated robust neutralizing responses. Moreover, the responses were similar in the presence and absence of guinea pig complement, showing that polycistronic VRPs successfully induced a complement- independent immune response.
- FIG. 6C. The 50% neutralization titer was 1 :3500- 6400+ sera dilution in ARPE-19 cells with TB40-GFP CMV virus. This titer is approximately 3-4 fold higher titer than the 50% complement-dependent
- Plasmid DNA encoding alphavirus replicons (see Figs. 14 - 16) served as a template for synthesis of RNA in vitro.
- Alphavirus replicons contain the genetic elements required for RNA replication but lack those encoding gene products necessary for particle assembly; the structural genes of the alphavirus genome are replaced by sequences encoding a heterologous protein.
- the positive-stranded RNA is translated to produce four nonstructural proteins, which together replicate the genomic RNA and transcribe abundant subgenomic mRNAs encoding the heterologous gene product or gene of interest (GOI).
- a bacteriophage (T7 or SP6) promoter upstream of the alphavirus cDNA facilitates the synthesis of the replicon RNA in vitro and the hepatitis delta virus (HDV) ribozyme immediately downstream of the poly(A)-tail generates the correct 3 '-end through its self-cleaving activity.
- HDV hepatitis delta virus
- Uncapped RNA was capped post-transcripionally with Vaccinia Capping Enzyme (VCE) using the ScriptCap m 7 G Capping System (Epicentre Biotechnologies, Madison, WI) as outlined in the user manual. Post-transcriptionally capped RNA was precipitated with LiCl and reconstituted in nuclease-free water. The concentration of the RNA samples was determined by measuring the optical density at 260 nm. Integrity of the in vitro transcripts was confirmed by denaturing agarose gel electrophoresis.
- VCE Vaccinia Capping Enzyme
- l,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane was synthesized using a previously published procedure [Heyes, J., Palmer, L., Bremner, K., MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. Journal of Controlled Release, 107: 276-287 (2005)].
- 1, 2-Diastearoyl-sn- glycero-3-phosphocholine (DSPC) was purchased from Genzyme. Cholesterol was obtained from Sigma- Aldrich (St. Lois, MO).
- 1, 2-dimyristoyl-sn-glycero-3- phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) was obtained from Avanti Polar Lipids.
- LNPs (RV01(14))were formulated using the following method. 150 ⁇ g batch, (PES hollow fibers and no mustang): Fresh lipid stock solutions in ethanol were prepared. 37 mg of DlinDMA, 11.8 mg of DSPC, 27.8 mg of Cholesterol and 8.07 mg of PEG DMG 2000 were weighed and dissolved in 7.55 mL of ethanol. The freshly prepared lipid stock solution was gently rocked at 37 °C for about 15 min to form a
- lipids with 150 ⁇ g R A at a 8: 1 N:P (Nitrogen to Phosphate) ratio.
- the protonatable nitrogen on DlinDMA (the cationic lipid) and phosphates on the RNA are used for this calculation.
- Each ⁇ g of self-replicating RNA molecule was assumed to contain 3 nmoles of anionic phosphate, each ⁇ g of DlinDMA was assumed to contains 1.6 nmoles of cationic nitrogen.
- RNA was also prepared from a stock solution of ⁇ ⁇ ⁇ / ⁇ , in 100 mM citrate buffer (pH 6) (Teknova). Three 20 mL glass vials (with stir bars) were rinsed with RNase Away solution (Molecular BioProducts) and washed with plenty of MilliQ water before use to decontaminate the vials of RNAses. One of the vials was used for the RNA working solution and the others for collecting the lipid and RNA mixes (as described later). The working lipid and RNA solutions were heated at 37 °C for 10 min before being loaded into 3cc luer- lok syringes (BD Medical).
- the two syringes were driven at 7mL/min flow rate using a syringe pump and the final mixture collected in a 20 mL glass vial (while stirring).
- LNPs were concentrated to 2 mL and dialyzed against 10-15 volumes of IX PBS (from Teknova) using the Tangential Flow Filtration (TFF) system before recovering the final product.
- TFF Tangential Flow Filtration
- the TFF system and hollow fiber filtration membranes were purchased from Spectrum Labs and were used according to the manufacturer's guidelines.
- Polyethersulfone (PES) hollow fiber filtration membranes (part number P-Cl-lOOE-100-OlN) with a 100 kD pore size cutoff and 20 cm 2 surface area were used.
- formulations were diluted to the required RNA concentration with IX PBS (from Teknova).
- Quant-iT RiboGreen RNA reagent kit (Invitrogen). Manufacturer's instructions were followed in the assay. The ribosomal RNA standard provided in the kit was used to generate a standard curve. LNPs either obtained from method 1 or methods 2-5 were diluted ten fold or one hundred fold respectively in IX TE buffer (from kit), before addition of the dye. Separately, LNPs were diluted ten or 100 fold in IX TE buffer containing 0.5% Triton X (Sigma-Aldrich), before addition of the dye. Thereafter an equal amount of dye was added to each solution and then -180 of each solution after dye addition was loaded in duplicate into a 96 well tissue culture plate (obtained from VWR, catalog # 353072). The fluorescence (Ex 485 nm, Em 528 nm) was read on a microplate reader (from BioTek Instruments, Inc.).
- Triton X was used to disrupt the LNPs, providing a fluorescence reading
- RNA encapsulation [(F t -Fi)/F t ] X 100, where F t is the fluorescence intensity of LNPs with triton X addition and Fi is the fluorescence intensity of the LNP solution without detergent addition. These values (F t and Fi) were obtained after subtraction from blank (IX TE buffer) fluorescence intensity. The concentration of encapsulated RNA was obtained by comparing F t -Fi with the standard curve generated. All LNP formulations were dosed in vivo based on the encapsulated dose.
- VRP Viral replicon particles
- VRPs viral replicon particles
- encephalitis virus engineered to contain the 3 ' terminal sequences (3 ' UTR) of Sindbis virus and a Sindbis virus packaging signal (PS) (see Fig. 2 of Perri et al).
- PS Sindbis virus packaging signal
- the replicons were packaged into VRPs by co-electroporating them into baby hamster kidney (BHK) cells along with defective helper RNAs encoding the Sindbis virus capsid and glycoprotein genes (see Fig. 2 of Perri et al).
- the VRPs were then harvested and partially purified by ultracentrifugation on a sucrose cushion and concentrated on an Amicon concentrator.
- the resulting VRP stock was titrated by standard methods and inoculated into animals in culture fluid or other isotonic buffers.
- An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and Sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol 77, 10394-104
- mice Groups of 10 female BALB/c mice aged 8-10 weeks and weighing about 20 g were immunized with lxl 0 6 IU (VRP) or 1.0 ⁇ g (RNA) at day 0, 21 and 42 with bleeds taken 3 weeks after the 2 nd and 3 weeks after the 3 rd vaccinations. All animals were injected in the quadriceps in the two hind legs each getting an equivalent volume (50 ⁇ 1 per site).
- VRP lxl 0 6 IU
- RNA 1.0 ⁇ g
- Serum samples were tested for the presence of neutralizing antibodies by an infection reduction neutralization test. Two-fold serial dilutions of HI-serum (in DMEM with 10% HI FBS) were added to an equal volume of CMV (strain TB40 or clinical isolate 8819) previously titered to give approximately 200 ⁇ /50 ⁇ 1. The VR1814, Towne, AD 169 strains and the clinical isolate 8822 were also used. Serum/virus mixtures were incubated for 2 hours at 37°C and 5% C02, to allow virus neutralization to occur, and then 50 ⁇ of this mixture (containing approximately 200 IU) was inoculated on duplicate wells of ARPE-19 cells in 96 half well plates. Plates were incubated for 40-44 hours.
- the number of positive infected foci was determined by immunostaining with an AlexaFluor 488 conjugated IE1 CMV monoclonal antibody followed by automated counting.
- the neutralization titer is defined as the reciprocal of the serum dilution producing a 50% reduction in number of positive virus foci per well, relative to controls (no serum).
- the A323 replicon that expresses the surface glycoprotein B (gB) of CMV, the A160 replicon that expresses the membrane complex of the full-length glycoprotein H and L (gH/gL) and the A322 replicon that expresses the membrane complex of the soluble form of glycoprotein H and L (gHsol/gL) were used for this experiment.
- mice 10 animals per group, were given bilateral intramuscular vaccinations (50 per leg) on days 0, 21 and 42 with VRPs expressing gB (lxlO 6 IU), VRPs expressing gH/gL (lxlO 6 IU), VRP's expressing gHsol/gL (lxlO 6 IU) and PBS as the controls.
- the three test groups received self-replicating RNA (A160, A322 or A323) formulated in LNP (RV01(14). Serum was collected for immunological analysis on days 39 (3wp2) and 63 (3wp3).
- RV# Lipid Composition (% RNA pKa of Particle pdl Percent RNA moles of total) cationic Size Zav Encapsulation lipid (nm)
- RNA expressing either a full-length or a presumed soluble form of the HCMV gH/gL complex elicit high titers of neutralizing antibody, as assayed on epithelial cells using two different HCMV strains.
- the average titers elicited by the gH/gL RNAs are at least as high as the average titer for the corresponding gH/gL VRPs (see FIG. 17).
- glycoprotein complexes from human cytomegalovirus were prepared, and are shown schematically in FIGS. 18 and 20.
- the alphavirus replicons were based on Venezuelan equine encephalitis virus (VEE).
- VEE Venezuelan equine encephalitis virus
- the replicons were packaged into viral replicon particles (VRPs), encapsulated in lipid nanoparticles (LNP), or formulated with a cationic nanoemulsion (CNE). Expression of the encoded HCMV proteins and protein complexes from each of the replicons was confirmed by immunoblot, co- immunoprecipitation, and flow cytometry.
- FIG. 19 shows that these antibodies bind to BHKV cells transfected with replicon RNA expressing the HCMV
- mice were immunize Balb/c mice by intramuscular injections in the rear quadriceps. The mice were immunized three times, three weeks apart, and serum samples were collected prior to each immunization as well as three weeks after the third and final
- the sera were evaluated in microneutralization assays to measure the potency of the neutralizing antibody response that was elicited by the vaccinations.
- the titers are expressed as 50% neutralizing titer.
- FIG. 20 shows that VRPs expressing the membrane-anchored, full-length gH/gL complex elicited potent neutralizing antibodies at slightly higher titers than the soluble complex (gHsol/gL) expressed from a similar bicistronic expression cassette.
- VRPs expressing the pentameric complex elicited higher titers of neutralizing antibodies than VRPs expressing gH/gL.
- 10 6 infectious units of VRPs are at least as potent as 1 ⁇ g of LNP-encapsulated RNA when the VRPs and the RNA encoded the same protein complexes.
- Nucleic acids encoding VZV proteins were cloned into a VEE replicon vector to produce monocystronic replicons that encode gB, gH, gL, gE, and gl, and to produce bicistronic replicons that encode gH/gL or gE/gl.
- expression of each VZV open reading frame was driven by a separate subgenomic promoter.
- plasmid encoding the replicon was linearized by digestion with Pmel, and the linearized plasmid was extracted with
- RNA was prepared by In vitro transcription of 1 ⁇ g of linearized DNA using the
- MEGAscript T7 kit (AMBION# AM 1333).
- a 20 ⁇ 1 reaction was set up according to the manufacturer's instruction without cap analog and incubated for 2 hours at 32°C.
- TURBO DNase ( ⁇ ) was added and the mixture was incubate for 30 min. at 32°C.
- RNase-free water (30 ⁇ 1) and ammonium acetate solution (30 ⁇ 1) were added.
- the solution was mixed and chilled for at least 30 min at -20°C.
- the solution was centrifuged at maximum speed for 25 min. at 4°C.
- the supernatant was discarded, and the pellet was rinsed with 70% ethanol, and again centrifuged at maximum speed for 10 min. at 4°C.
- the pellet was air dried and resuspended in 50 ⁇ of RNase-free water.
- the concentration of RNA was measured and quality was check on a denaturing gel.
- the reaction was scaled by combining the RNA and RNase-free water. The RNA was then denatured for 5-10 min. at 65°C. The denatured RNA was transfered quickly to ice and the following reagents were added in the following order: ScriptCap Capping Buffer, 10 mM GTP, 2 mM SAM fresh prepared,
- RNA-Lipofectamine complex was placed onto the cells, and mixed by gently rocking the plate. The plates were incubated for 24 hours at 37°C in a C0 2 incubator.
- VZV proteins expression of the VZV proteins in transfected cells was assessed by western blot and immunofluorescence.
- western blots lysates of transfected cells were separated by electrophoresis (5 ⁇ g total proteins/lane) and blotted.
- transfected cells were harvested and seeded in 96 well plate, and intracellular staining was performed using commercially available mouse mAbs (dilution range 1 : 100 1 :400). Cell pellets were fixed and permeabilized with Citofix-Citoperm solutions. A secondary reagent, Alexa488 labelled goat anti-mouse F(ab') 2 (1 :400 final dilution), was used.
- gE or gl monocistronic constructs
- expression of both gE and gl was detected in cells transfected with a bicistronic gE/gl construct in western blots using
- VZV protein gB was detected in cells transfected with a monocistronic construct encoding gB, by immunofluorescence using commercially available antibody 10G6.
- Expression of the VZV protein complex gH/gL was detected by immunofluorescence in cells transfected with monocistronic gH and monocistronic gL, or with a bicistronic gH/gL construct.
- the gH/gL complex was detected using commercially available antibody SG3.
- VZV-replicon transfected MRC-5 cells were maintained in Dulbecco Modified Eagle's Medium with 10% fetal bovine serum.
- VZV Oka strain inoculum obtained from ATCC was used to infect MRC-5 cell culture and infected whole cells were used for subpassage of virus. The ratio between infected and uninfected cells was 1 : 10. 30 hrs post infection cells were trypsin-dispersed for seeding in a 96 well plate to perform an intracellular staining with pools of mice sera (dilution range 1 :200 to 1 :800) obtained after immunization. Commercial mAbs were used as controls to quantify the infection level. Cell pellets ware fixed and permeabilized with Citofix-Citoperm solutions. A secondary reagent, Alexa488 labelled goat anti- mouse F(ab') 2 was used (1 :400 final dilution).
- Each immunized mouse serum was serially diluted by two fold increments starting at 1 :20 in standard culture medium, and added to the equal volume of VZV suspension in the presence of guinea pig complement. After incubation for 1 hour at 37°C, the human epithelial cell line A549, was added. Infected cells can be measured after one week of culture by counting plaques formed in the culture under microscope. From the plaque number the % inhibition at each serum dilution was calculated. A chart for each serum sample was made by plotting the value of % inhibition against the logarithmic scale the dilution factor. Subsequently an approximate line of relationship between dilution factor and % inhibition was drawn. Then the 50% neutralization titer was determined as the dilution factor where the line crossed at the value of 50% inhibition.
- Table 11 shows that sera obtained from mice immunized with monocistronic gE, bicistrnic gE/gl, and bicistronic gH/gL contained robust neutralizing antibody titers.
- Hutchinson CA Kouzarides T, Martignetti JA, Preddie E, Satchwell SC, Tomlinson P, Weston KM and Barrell BG. 1990. Analysis of the protein- coding content of the sequence of human cytomegalovirus strain AD 169. Curr. Top. Microbiol. Immunol. 154: 125-70.
- Varnum SM Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L, Wang D, Camp II DG, Rodland K, Wiley, Britt W, Shenk T, Smith RD and Nelson JA. 2004. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol. 78: 10960-66. (Erratum, 78: 13395).
- HCMV TR strain glycoprotein O acts as a chaperone promoting gH/gL incorporation into virions, but is not present in virions. J. Virol.
- A526 Vector SGP-gH-SGP-gL-SGP-UL128-2A-UL130-2Amod-UL131
- A527 Vector SGP-gH-SGP-gL-SGP-UL128-EMCV-UL130-EV71-UL131
- AGC GCAC CTG TCCC CCAGTGG6 CCCTGAGA CAG ATCGC CGACTTCG CCCTGAAG CTGC CAAG CC CATCT GGCCAGOTTTOTGA-GCGCOTTCGCCAGGCA-GGAAOTGTACCTGATGGGCAGCCTGGTCCACA-GCATGCTGGTGCA TACCACOGAGCGGCGGGAGATCT CATCGTGGAGACAGGCCTGTGTAGCOTGGCOGAGCTGTCCCACTTTACCCA GCTGCTGGC CACCC ⁇ CACCACGAGTACCTGAG GACCTGTACACCCCCTGCAGCAG AGCGGCAGACGGGAC A
- CAACCC CGAC CAGCTGAGAGCC CTGCTGAC CCTGCTG CCAG CGACACCG CCCC CAGATGGATGAC CGTGATGCG
- A531 Vector SGP-gHsol-SGP-gL
- A532 Vector SGP-gHsol-2A-gL
- GC CCTC CT AC CTGATCAT CCTGG CCG GTG CCTGT CA ⁇ 3 CC ACCTG C GT CI3 ⁇ 4G CAG ATACGG CGC CGAGG CCGT GAG CG AGCCC CTGG ACAAISGCTTTCC ACCTGCTG CTG AACAC CTACGGC AGACC CATC CGGTTTCTG CGGGAGAA CA.CCAC CCAGTGC ACCTA.CAAC AGC AG CCTGCGGAACAGCAC CGTCGTG AGAG AGAACG CC ATCAG CTTCAACTT TTTCCAGAGCTAOAACCAG TACTACGTGT CCACATG CCAGATG CTG TTGC CQGC CCTCTQG CGAGCAGTT CCTG CC& T CCT ACC G ⁇
- A533 Vector SGP-gHsol-EV71-gL
- GAGCGAGCCC CTGGACAAGGCTTTCC CCTGCTGCTGAACAC CTACGGCAGACC CATC CGGTTTCTGCGGGAGAA
- A534 Vector SGP-gL-EV71-gH
- TCGACGACGACACCCC CATGCTGCT3AT C TT CGGC CACCTGCC CAGAGTGCTGTT C&AGGCCC CCTACCAGCGGGACAACTTCA CCTGCGGCAGACCGAGAAG CACGAGC GCTGGTGC GG CAAGAAGGACCAGCTGAACCGG ⁇ CTCC ACC GAAGGACCCCGACT CCTGGAC GC CGCC CTGG ACTT CAACTACCTGG CCT AGCG CCCTG CTG AGAAA CAG CTTC CAC GATA CGCCGTG A CGTG CTGAAGTCCGGACGGT
- A535 Vector SGP-342-EV71-gHsol-2A-gL
- A536 Vector SGP-342-EV71-gHsol-EMCV-gL
- CAG CTG ATCCGGT ACAGA CCCGTGAC CCCCG& OCCGC CA3 ⁇ 4T AGCGTGCTG CTGGACG AGGC CTTC C GGATAC C GGATGACCGTGATQCGGGGCTACAGCGAGTGTGGAGATGGCAGCCCTGCCGTGTACACCTGCGTGGACGACOTG GTGCCCCCCAGCCTGTTCAACGTOGT ⁇ 3 ⁇ 43TGGCCATCCGGAACGAGGCCACCAGAACCAACAGASCCGTGCG'3CTG COTGTGTCTACAGC03CTGCACOTGAGGGCATCACACTGTTCTACGGCCTGTACAACGCCGTGAAAGAGTTCTGC
- A554 Vector SGP-gH-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131
- A555 Vector SGP-gHsol-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131
- A556 Vector SGP-gHsol6His-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131
- CTGCAGT CAGCGGCTTCCAGAGAGTGT CCAC CGGC CCTGAGTGCCGGAACGAGACACTGTACCTGCTGTACA ACC G GCC ⁇ CACT GT AGC G CAG ⁇ CC ⁇ GT A A G G tl C G ATC GCG CC G AC CAGA CCAT CCTG CAGCGGATG CCC GAA CCGC CAGC AAGC CCAG CGACGGC AA CGTGCA ATC AGCGTGGAGG ACGCCAAAATCTTCGGAGCCCAC&TGGTGCCCAAGCAGACCAAGCTGCTGAGATTCGTGGTCAACGACGGC&CCA GA.TATCAGATGTGCGTGA.TGAAGCTGGAAAGCTGG3CC CACGTGTT CCGGGACT ACTC C3TGAGCTTCCAGGTC C ⁇ CTTTGTACGCCTGTTTTATACCCCCTCCCTGATTTGCAACTTAGAAGCAACGCAAACCAGATCAATAGTAGGTGT GACATACCAGTCGCATCTTGATCAAGCACTTC
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Virology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180058783.3A CN103269713B (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platform |
EP11785510.6A EP2627351B1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
CA2814386A CA2814386C (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
AU2011316707A AU2011316707A1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
MX2013003939A MX363307B (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms. |
EP22175211.6A EP4098324A1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
BR112013008700A BR112013008700B8 (en) | 2010-10-11 | 2011-10-11 | SELF-REPLICATING RNA MOLECULE, ALPHAVIRUS REPLICON PARTICLE, COMPOSITION, RECOMBINANT DNA MOLECULE, USE OF SELF-REPLICATING RNA MOLECULE |
US13/878,835 US20140030292A1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
RU2013121582/10A RU2597974C2 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
KR1020207027706A KR102266691B1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
KR1020137011527A KR102162111B1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
EP18212078.2A EP3520813B1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
ES11785510T ES2716243T3 (en) | 2010-10-11 | 2011-10-11 | Antigen Supply Platforms |
JP2013533016A JP2013544504A (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platform |
EP22175212.4A EP4098325A1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
ZA2013/02548A ZA201302548B (en) | 2010-10-11 | 2013-04-09 | Antigen delivery platforms |
AU2016238966A AU2016238966B2 (en) | 2010-10-11 | 2016-10-07 | Antigen delivery platforms |
US16/114,621 US11078237B2 (en) | 2010-10-11 | 2018-08-28 | Antigen delivery platforms |
US17/360,320 US11639370B2 (en) | 2010-10-11 | 2021-06-28 | Antigen delivery platforms |
US17/696,143 US20220213149A1 (en) | 2010-10-11 | 2022-03-16 | Antigen delivery platforms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39196010P | 2010-10-11 | 2010-10-11 | |
US61/391,960 | 2010-10-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/878,835 A-371-Of-International US20140030292A1 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
US16/114,621 Continuation US11078237B2 (en) | 2010-10-11 | 2018-08-28 | Antigen delivery platforms |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012051211A2 true WO2012051211A2 (en) | 2012-04-19 |
WO2012051211A3 WO2012051211A3 (en) | 2012-06-07 |
Family
ID=45002110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/055834 WO2012051211A2 (en) | 2010-10-11 | 2011-10-11 | Antigen delivery platforms |
Country Status (15)
Country | Link |
---|---|
US (4) | US20140030292A1 (en) |
EP (4) | EP3520813B1 (en) |
JP (3) | JP2013544504A (en) |
KR (2) | KR102266691B1 (en) |
CN (1) | CN103269713B (en) |
AU (2) | AU2011316707A1 (en) |
BR (1) | BR112013008700B8 (en) |
CA (1) | CA2814386C (en) |
CL (1) | CL2013000984A1 (en) |
ES (2) | ES2716243T3 (en) |
MX (1) | MX363307B (en) |
RU (1) | RU2597974C2 (en) |
TR (1) | TR201903651T4 (en) |
WO (1) | WO2012051211A2 (en) |
ZA (1) | ZA201302548B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013055905A1 (en) * | 2011-10-11 | 2013-04-18 | Novartis Ag | Recombinant self-replicating polycistronic rna molecules |
WO2014005959A1 (en) | 2012-07-06 | 2014-01-09 | Novartis Ag | Complexes of cytomegalovirus proteins |
WO2015170287A1 (en) * | 2014-05-08 | 2015-11-12 | Redvax Gmbh | Means and methods for treating cmv |
EP3048114A1 (en) | 2015-01-22 | 2016-07-27 | Novartis AG | Cytomegalovirus antigens and uses thereof |
WO2017070623A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Herpes simplex virus vaccine |
WO2017070601A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (vzv) |
WO2017070613A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US9872900B2 (en) | 2014-04-23 | 2018-01-23 | Modernatx, Inc. | Nucleic acid vaccines |
WO2018075980A1 (en) * | 2016-10-21 | 2018-04-26 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US10022436B2 (en) | 2016-01-11 | 2018-07-17 | Verndari, Inc. | Microneedle compositions and methods of using same |
WO2018170270A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Varicella zoster virus (vzv) vaccine |
WO2018170256A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Herpes simplex virus vaccine |
WO2019052975A1 (en) * | 2017-09-13 | 2019-03-21 | Sanofi Pasteur | Human cytomegalovirus immunogenic composition |
WO2019234219A1 (en) * | 2018-06-08 | 2019-12-12 | Vakzine Projekt Management Gmbh | Viral particle - based vaccine |
US10611800B2 (en) | 2016-03-11 | 2020-04-07 | Pfizer Inc. | Human cytomegalovirus gB polypeptide |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
WO2021014385A1 (en) | 2019-07-24 | 2021-01-28 | Glaxosmithkline Biologicals Sa | Modified human cytomegalovirus proteins |
EP3641810A4 (en) * | 2017-04-26 | 2021-08-18 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11168337B2 (en) | 2016-03-21 | 2021-11-09 | Moniech RNA Pharmecenticais GmbH | RNA replicon for versatile and efficient gene expression |
US20210346492A1 (en) * | 2020-05-11 | 2021-11-11 | Janssen Pharmaceuticals, Inc. | SARS-CoV-2 Vaccines |
WO2021245611A1 (en) | 2020-06-05 | 2021-12-09 | Glaxosmithkline Biologicals Sa | Modified betacoronavirus spike proteins |
US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US11629172B2 (en) | 2018-12-21 | 2023-04-18 | Pfizer Inc. | Human cytomegalovirus gB polypeptide |
WO2023104114A3 (en) * | 2021-12-07 | 2023-07-20 | Immorna (hangzhou) Biotechnology Co., Ltd. | Rna formulations and lipids |
WO2023144665A1 (en) | 2022-01-28 | 2023-08-03 | Glaxosmithkline Biologicals Sa | Modified human cytomegalovirus proteins |
US11857622B2 (en) | 2020-06-21 | 2024-01-02 | Pfizer Inc. | Human cytomegalovirus GB polypeptide |
WO2024120490A1 (en) * | 2022-12-07 | 2024-06-13 | Immorna (hangzhou) Biotechnology Co., Ltd. | Self-replicating rna vaccines and methods of use |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8580276B2 (en) | 2009-06-05 | 2013-11-12 | City Of Hope | Genetically stable recombinant modified vaccinia ankara (rMVA) vaccines and methods of preparation thereof |
WO2012006369A2 (en) | 2010-07-06 | 2012-01-12 | Novartis Ag | Immunisation of large mammals with low doses of rna |
SI3243526T1 (en) | 2010-07-06 | 2020-02-28 | Glaxosmithkline Biologicals S.A. | Delivery of rna to trigger multiple immune pathways |
JP2013537518A (en) | 2010-07-06 | 2013-10-03 | ノバルティス アーゲー | Liposomes containing lipids with pKa values advantageous for RNA delivery |
CA2807552A1 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
EP4119155A1 (en) | 2010-08-31 | 2023-01-18 | GlaxoSmithKline Biologicals S.A. | Pegylated liposomes for delivery of immunogen-encoding rna |
EP2857499A1 (en) | 2010-10-01 | 2015-04-08 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
ES2716243T3 (en) | 2010-10-11 | 2019-06-11 | Glaxosmithkline Biologicals Sa | Antigen Supply Platforms |
CA2831613A1 (en) | 2011-03-31 | 2012-10-04 | Moderna Therapeutics, Inc. | Delivery and formulation of engineered nucleic acids |
JP2014522842A (en) * | 2011-07-06 | 2014-09-08 | ノバルティス アーゲー | Immunogenic combination compositions and uses thereof |
LT2791160T (en) | 2011-12-16 | 2022-06-10 | Modernatx, Inc. | Modified mrna compositions |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
WO2013151667A1 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
CN116376983A (en) | 2012-07-27 | 2023-07-04 | 希望之城 | MVA vaccine for delivering UL128 complex and preventing CMV infection |
WO2014028429A2 (en) | 2012-08-14 | 2014-02-20 | Moderna Therapeutics, Inc. | Enzymes and polymerases for the synthesis of rna |
EP2922554B1 (en) | 2012-11-26 | 2022-02-23 | ModernaTX, Inc. | Terminally modified rna |
EP2943221A1 (en) * | 2013-01-10 | 2015-11-18 | Novartis AG | Influenza virus immunogenic compositions and uses thereof |
US20160024181A1 (en) | 2013-03-13 | 2016-01-28 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
EP3015475A1 (en) * | 2014-10-31 | 2016-05-04 | Novartis AG | Mammalian cells expressing cytomegalovirus antigens |
WO2017044895A2 (en) | 2015-09-10 | 2017-03-16 | City Of Hope | MVA-gH/gL-PC VACCINE DERIVED ANTIBODIES NEUTRALIZING HUMAN CYTOMEGALOVIRUS INFECTIVITY AND METHODS THEREOF |
AU2016336344A1 (en) | 2015-10-05 | 2018-04-19 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
WO2017162265A1 (en) * | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
JP2020515522A (en) * | 2017-01-27 | 2020-05-28 | ザ ヘンリー エム. ジャクソン ファウンデーション フォー ザ アドヴァンスメント オブ ミリタリー メディシン インコーポレイテッド | Vaccine composition of a combination of herpesvirus envelope proteins that induces an immune response |
US11389529B2 (en) | 2017-07-13 | 2022-07-19 | City Of Hope | Expression system for expressing herpesvirus glycoprotein complexes |
EP3668833A1 (en) | 2017-08-16 | 2020-06-24 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
EP3790578A4 (en) | 2018-05-11 | 2022-04-06 | City of Hope | Genetically modified recombinant vaccinia ankara (rmva) vaccines of improved stability and methods of preparation thereof |
US20210363543A1 (en) * | 2018-10-30 | 2021-11-25 | Nantbio, Inc. | Self Replicating RNA System |
EP4085130A4 (en) | 2019-12-31 | 2024-04-10 | Elixirgen Therapeutics, Inc. | Temperature-based transient delivery of nucleic acids and proteins to cells and tissues |
WO2022236008A1 (en) * | 2021-05-07 | 2022-11-10 | Board Of Regents, The University Of Texas System | Methods and compositions for transport, storage, and delivery of adeno-associated viral vector and other molecules |
WO2023114943A2 (en) | 2021-12-16 | 2023-06-22 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186745A (en) | 1976-07-30 | 1980-02-05 | Kauzlarich James J | Porous catheters |
US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
WO1991006309A1 (en) | 1989-11-03 | 1991-05-16 | Vanderbilt University | Method of in vivo delivery of functioning foreign genes |
US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
WO1993024640A2 (en) | 1992-06-04 | 1993-12-09 | The Regents Of The University Of California | Methods and compositions for in vivo gene therapy |
WO1993024641A2 (en) | 1992-06-02 | 1993-12-09 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Adeno-associated virus with inverted terminal repeat sequences as promoter |
US5279833A (en) | 1990-04-04 | 1994-01-18 | Yale University | Liposomal transfection of nucleic acids into animal cells |
US5397307A (en) | 1993-12-07 | 1995-03-14 | Schneider (Usa) Inc. | Drug delivery PTCA catheter and method for drug delivery |
US5494807A (en) | 1991-03-07 | 1996-02-27 | Virogenetics Corporation | NYVAC vaccinia virus recombinants comprising heterologous inserts |
US5547472A (en) | 1994-01-20 | 1996-08-20 | Terumo Kabushiki Kaisha | Catheter with medicament injection pores |
US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
WO1997037001A1 (en) | 1996-04-01 | 1997-10-09 | Chiron Behring Gmbh & Co. | Processes for the replication of influenza viruses in cell culture, and the influenza viruses obtainable by the process |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
US5767250A (en) | 1992-07-29 | 1998-06-16 | Chiron Corporation | Complexes comprising truncated CMV gH polypeptides and escort proteins |
US5814482A (en) | 1993-09-15 | 1998-09-29 | Dubensky, Jr.; Thomas W. | Eukaryotic layered vector initiation systems |
US6071890A (en) | 1994-12-09 | 2000-06-06 | Genzyme Corporation | Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy |
US6083741A (en) | 1994-11-17 | 2000-07-04 | Imperial College Of Science Technology And Medicine | Internalisation of DNA, using conjugates of poly-l-lysine and an integrin receptor ligand |
US6090619A (en) | 1997-09-08 | 2000-07-18 | University Of Florida | Materials and methods for intracellular delivery of biologically active molecules |
US6129705A (en) | 1997-10-01 | 2000-10-10 | Medtronic Ave, Inc. | Drug delivery and gene therapy delivery system |
WO2001038362A2 (en) | 1999-11-26 | 2001-05-31 | Crucell Holland B.V. | Production of vaccines |
US6299884B1 (en) | 1989-05-25 | 2001-10-09 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
WO2002040665A2 (en) | 2000-11-15 | 2002-05-23 | Crucell Holland B.V. | Complementing cell lines |
US6592874B2 (en) | 1996-04-05 | 2003-07-15 | The Washington University | Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis |
WO2004076645A2 (en) | 2003-02-27 | 2004-09-10 | University Of Massachusetts | Compositions and methods for cytomegalovirus treatment |
WO2005042728A2 (en) | 2003-11-03 | 2005-05-12 | Probiogen Ag | Immortalized avian cell lines for virus production |
US20070207090A1 (en) | 2002-05-14 | 2007-09-06 | Novartis Vaccines And Diagnostics, Inc. | Mucosal meningococcal vaccines |
US7306805B2 (en) | 2003-03-27 | 2007-12-11 | Children's Hospital, Inc. | Nontypeable Haemophilus influenzae virulence factors |
US20080057080A1 (en) | 2004-05-18 | 2008-03-06 | Vical Incorporated | Influenza virus vaccine composition and methods of use |
US20080085870A1 (en) | 2002-12-23 | 2008-04-10 | Vical Incorporated | Codon-optimized polynucleotide-based vaccines against human cytomegalovirus infection |
US7445924B2 (en) | 2000-11-23 | 2008-11-04 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
WO2009132206A1 (en) | 2008-04-25 | 2009-10-29 | Liquidia Technologies, Inc. | Compositions and methods for intracellular delivery and release of cargo |
US7641911B2 (en) | 2002-03-21 | 2010-01-05 | Novartis Vaccines And Diagnostics, Inc. | Immunological adjuvant compositions |
WO2010019437A1 (en) | 2008-08-15 | 2010-02-18 | Novartis Ag | Alphavirus packaging cell lines |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
Family Cites Families (238)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090406A (en) | 1984-04-12 | 2000-07-18 | The Liposome Company, Inc. | Potentiation of immune responses with liposomal adjuvants |
US4853228A (en) | 1987-07-28 | 1989-08-01 | Micro-Pak, Inc. | Method of manufacturing unilamellar lipid vesicles |
US6867195B1 (en) | 1989-03-21 | 2005-03-15 | Vical Incorporated | Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected |
WO1990011092A1 (en) | 1989-03-21 | 1990-10-04 | Vical, Inc. | Expression of exogenous polynucleotide sequences in a vertebrate |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5264618A (en) | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
FR2676072B1 (en) * | 1991-05-03 | 1994-11-18 | Transgene Sa | RNA DELIVERY VECTOR. |
US5750390A (en) | 1992-08-26 | 1998-05-12 | Ribozyme Pharmaceuticals, Inc. | Method and reagent for treatment of diseases caused by expression of the bcl-2 gene |
US5693535A (en) | 1992-05-14 | 1997-12-02 | Ribozyme Pharmaceuticals, Inc. | HIV targeted ribozymes |
AU4769893A (en) | 1992-07-17 | 1994-02-14 | Ribozyme Pharmaceuticals, Inc. | Method and reagent for treatment of animal diseases |
US20020102273A1 (en) | 1995-08-08 | 2002-08-01 | Robert B. Grieve | Use of alphavirus expression vectors to produce parasite anitgens |
WO1994027435A1 (en) | 1993-06-01 | 1994-12-08 | Life Technologies, Inc. | Genetic immunization with cationic lipids |
IL112820A0 (en) * | 1994-03-07 | 1995-05-26 | Merck & Co Inc | Coordinate in vivo gene expression |
WO1995027721A1 (en) | 1994-04-07 | 1995-10-19 | Akzo Nobel N.V. | Freeze-dried compositions comprising rna |
US5993850A (en) | 1994-09-13 | 1999-11-30 | Skyepharma Inc. | Preparation of multivesicular liposomes for controlled release of encapsulated biologically active substances |
US5885613A (en) | 1994-09-30 | 1999-03-23 | The University Of British Columbia | Bilayer stabilizing components and their use in forming programmable fusogenic liposomes |
JPH11504802A (en) * | 1994-11-30 | 1999-05-11 | カイロン コーポレイション | Recombinant alphavirus vector |
WO1996017072A2 (en) | 1994-11-30 | 1996-06-06 | Chiron Viagene, Inc. | Recombinant alphavirus vectors |
US5965434A (en) | 1994-12-29 | 1999-10-12 | Wolff; Jon A. | Amphipathic PH sensitive compounds and delivery systems for delivering biologically active compounds |
US5664701A (en) | 1995-01-25 | 1997-09-09 | Uniplast, Inc. | Glue gun system with removable cartridges |
US5792462A (en) | 1995-05-23 | 1998-08-11 | University Of North Carolina At Chapel Hill | Alphavirus RNA replicon systems |
US5981501A (en) | 1995-06-07 | 1999-11-09 | Inex Pharmaceuticals Corp. | Methods for encapsulating plasmids in lipid bilayers |
US7422902B1 (en) | 1995-06-07 | 2008-09-09 | The University Of British Columbia | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
JPH11512609A (en) | 1995-09-27 | 1999-11-02 | アメリカ合衆国 | Production of infectious respiratory syncytial virus from cloned nucleotide sequence |
EP0871757B1 (en) * | 1995-11-28 | 2003-03-12 | The Johns Hopkins University School Of Medicine | Conditionally replicating viral vectors and their use |
AU724716B2 (en) | 1996-02-12 | 2000-09-28 | Ml Laboratories Plc | Novel methods of vaccination and vaccines therefore comprising a nucleic acid encoding a first epitope and a peptide containing a second epitope |
DE19605548A1 (en) | 1996-02-15 | 1997-09-04 | Boehringer Ingelheim Int | Composition for transfection of higher eukaryotic cells |
CA2259179C (en) | 1996-07-03 | 2008-09-23 | University Of Pittsburgh | Emulsion formulations for hydrophilic active agents |
EP0938298B1 (en) | 1996-09-13 | 2002-12-04 | Lipoxen Technologies Limited | Liposome-based composition |
US7384923B2 (en) | 1999-05-14 | 2008-06-10 | Lipoxen Technologies Limited | Liposomes |
US6395302B1 (en) | 1996-11-19 | 2002-05-28 | Octoplus B.V. | Method for the preparation of microspheres which contain colloidal systems |
CA2289702C (en) | 1997-05-14 | 2008-02-19 | Inex Pharmaceuticals Corp. | High efficiency encapsulation of charged therapeutic agents in lipid vesicles |
US6048546A (en) | 1997-07-31 | 2000-04-11 | Sandia Corporation | Immobilized lipid-bilayer materials |
US6060308A (en) | 1997-09-04 | 2000-05-09 | Connaught Laboratories Limited | RNA respiratory syncytial virus vaccines |
JP2002500003A (en) | 1997-11-28 | 2002-01-08 | ザ・クラウン・イン・ザ・ライト・オヴ・ザ・クイーンズランド・デパートメント・オヴ・ヘルス | Flavivirus expression and delivery systems |
US6009406A (en) | 1997-12-05 | 1999-12-28 | Square D Company | Methodology and computer-based tools for re-engineering a custom-engineered product line |
GB9726555D0 (en) | 1997-12-16 | 1998-02-11 | Smithkline Beecham Plc | Vaccine |
WO1999055310A1 (en) | 1998-04-27 | 1999-11-04 | Altus Biologics Inc. | Stabilized protein crystals, formulations containing them and methods of making them |
US6432925B1 (en) | 1998-04-16 | 2002-08-13 | John Wayne Cancer Institute | RNA cancer vaccine and methods for its use |
US6517842B1 (en) | 1998-06-29 | 2003-02-11 | The United States Of America As Represented By The Secretary Of The Army | Marburg virus vaccines |
WO2000003683A2 (en) | 1998-07-20 | 2000-01-27 | Inex Pharmaceuticals Corporation | Liposomal encapsulated nucleic acid-complexes |
EP1980617A1 (en) * | 1998-12-31 | 2008-10-15 | Novartis Vaccines and Diagnostics, Inc. | Improved expression of HIV polypeptides and production of virus-like particles |
EP1541690A3 (en) | 1999-09-09 | 2005-07-27 | CureVac GmbH | Transfer of mRNA using polycationic compounds |
AU784605B2 (en) | 1999-10-20 | 2006-05-11 | Johns Hopkins University School Of Medicine, The | Chimeric immunogenic compositions and nucleic acids encoding them |
US8541008B2 (en) | 1999-11-19 | 2013-09-24 | Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center | Pharmaceutical compositions and methods to vaccinate against candidiasis |
US20030212022A1 (en) | 2001-03-23 | 2003-11-13 | Jean-Marie Vogel | Compositions and methods for gene therapy |
CA2403508A1 (en) | 2000-04-18 | 2001-10-25 | Human Genome Sciences, Inc. | Extracellular matrix polynucleotides, polypeptides, and antibodies |
CA2411542A1 (en) | 2000-06-09 | 2001-12-13 | Teni Boulikas | Encapsulation of polynucleotides and drugs into targeted liposomes |
JP2004502415A (en) | 2000-07-03 | 2004-01-29 | カイロン エセ.ピー.アー. | Immunization against Chlamydiapneumoniae |
US7318928B2 (en) | 2000-08-01 | 2008-01-15 | The Johns Hopkins University | Molecular vaccine linking intercellular spreading protein to an antigen |
US20040142474A1 (en) | 2000-09-14 | 2004-07-22 | Expression Genetics, Inc. | Novel cationic lipopolymer as a biocompatible gene delivery agent |
BR0114305A (en) | 2000-09-28 | 2003-07-01 | Chiron Corp | Microparticles for release of heterologous nucleic acids |
NZ540544A (en) | 2000-10-27 | 2007-08-31 | Inst Genomic Research | Nucleic acids and proteins from streptococcus groups A & B |
US7731975B2 (en) | 2001-01-31 | 2010-06-08 | The United States Of America As Represented By The Secretary Of The Army | Chimeric filovirus glycoprotein |
US7557200B2 (en) | 2001-02-01 | 2009-07-07 | Johns Hopkins University | Superior molecular vaccine based on self-replicating RNA, suicidal DNA or naked DNA vector, that links antigen with polypeptide that promotes antigen presentation |
AU2002306709A1 (en) | 2001-03-14 | 2002-09-24 | Replicon Technologies, Inc. | Oncolytic rna replicons |
AU2002306736A1 (en) | 2001-03-16 | 2002-10-03 | Johns Hopkins University | A replication-defective alphavirus vaccine linking antigen with an immunogenicity-potentiating polypeptide and a method of delivery the same |
US20030203865A1 (en) | 2001-04-30 | 2003-10-30 | Pierrot Harvie | Lipid-comprising drug delivery complexes and methods for their production |
US7514099B2 (en) | 2005-02-14 | 2009-04-07 | Sirna Therapeutics, Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
US20030077251A1 (en) | 2001-05-23 | 2003-04-24 | Nicolas Escriou | Replicons derived from positive strand RNA virus genomes useful for the production of heterologous proteins |
DE50214201D1 (en) | 2001-06-05 | 2010-03-25 | Curevac Gmbh | Stabilized mRNA with increased G / C content, encoding a bacterial antigen and its use |
CA2458854A1 (en) | 2001-08-31 | 2003-03-06 | Chiron Srl | Helicobacter pylori vaccination |
AU2002327614B2 (en) | 2001-09-06 | 2007-12-06 | Alphavax, Inc. | Alphavirus replicon vector systems |
WO2003068190A1 (en) | 2002-02-13 | 2003-08-21 | Northeastern University | Intracellular delivery of therapeutic agents |
DE10207177A1 (en) | 2002-02-19 | 2003-09-04 | Novosom Ag | Optionally cationic lipids |
DK1519714T3 (en) | 2002-06-28 | 2011-01-31 | Protiva Biotherapeutics Inc | Method and apparatus for preparing liposomes |
WO2004004758A1 (en) | 2002-07-05 | 2004-01-15 | Lipoxen Technologies Limited | Method to enhance an immune response of nucleic acid vaccination |
US20060251620A1 (en) | 2002-08-22 | 2006-11-09 | Lidia Ivanova | Inducible alphaviral/orip based gene expression system |
WO2004024919A1 (en) | 2002-09-13 | 2004-03-25 | Replicor, Inc. | Non-sequence complementary antiviral oligonucleotides |
ES2618309T3 (en) * | 2002-12-13 | 2017-06-21 | Alphavax, Inc. | Multi-antigenic alphavirus replicon particles and methods |
WO2004069148A2 (en) | 2003-02-04 | 2004-08-19 | Bar-Ilan University | Snornai-small nucleolar rna degradation by rna interference in trypanosomatids |
NZ542353A (en) | 2003-03-20 | 2008-07-31 | Alphavax Inc | Improved alphavirus replicons and helper constructs |
US7731967B2 (en) | 2003-04-30 | 2010-06-08 | Novartis Vaccines And Diagnostics, Inc. | Compositions for inducing immune responses |
KR20060063788A (en) | 2003-05-30 | 2006-06-12 | 니뽄 신야쿠 가부시키가이샤 | Oligonucleic acid-bearing composite and pharmaceutical composition containing the composite |
US20100255002A1 (en) | 2003-06-26 | 2010-10-07 | Chiron Corporation | Immunogenic compositions for chlamydia trachomatis |
EP1651666B1 (en) * | 2003-07-11 | 2009-05-27 | Alphavax, Inc. | Alphavirus-based cytomegalovirus vaccines |
US7368537B2 (en) | 2003-07-15 | 2008-05-06 | Id Biomedical Corporation Of Quebec | Subunit vaccine against respiratory syncytial virus infection |
NZ544637A (en) | 2003-07-16 | 2010-04-30 | Protiva Biotherapeutics Inc | Lipid encapsulated interfering RNA |
JP4875490B2 (en) | 2003-07-31 | 2012-02-15 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | Immunogenic composition for Streptococcus pyogenes |
EP1512393A1 (en) | 2003-09-08 | 2005-03-09 | BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG | Process for the production of homogeneous liposomes and lipoplexes |
EP1687033A4 (en) | 2003-11-12 | 2008-06-11 | Us Navy | Enhancement of vaccine-induced immune responses and protection by heterologous boosting with alphavirus replicon vaccines |
US7303881B2 (en) | 2004-04-30 | 2007-12-04 | Pds Biotechnology Corporation | Antigen delivery compositions and methods of use |
GB0410866D0 (en) | 2004-05-14 | 2004-06-16 | Chiron Srl | Haemophilius influenzae |
EP1751289B1 (en) * | 2004-05-18 | 2009-01-14 | Alphavax, Inc. | Tc-83-derived alphavirus vectors, particles and methods |
EP2811027A1 (en) | 2004-05-21 | 2014-12-10 | Novartis Vaccines and Diagnostics, Inc. | Alphavirus vectors for RSV and PIV vaccines |
GB0411428D0 (en) | 2004-05-21 | 2004-06-23 | Got A Gene Ab | Vectors |
JP4796062B2 (en) | 2004-06-07 | 2011-10-19 | プロチバ バイオセラピューティクス インコーポレイティッド | Lipid-encapsulating interfering RNA |
CA2569645C (en) | 2004-06-07 | 2014-10-28 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
CA2572921C (en) | 2004-07-09 | 2017-01-03 | The University Of North Carolina At Chapel Hill | Replication-competent and propagation-defective venezuelan equine encephalitis (vee) viral adjuvants |
WO2006007712A1 (en) | 2004-07-19 | 2006-01-26 | Protiva Biotherapeutics, Inc. | Methods comprising polyethylene glycol-lipid conjugates for delivery of therapeutic agents |
US20080311158A1 (en) | 2004-10-01 | 2008-12-18 | Marcello Merola | Hepatitis C Virus Replication System |
JP2008520600A (en) | 2004-11-19 | 2008-06-19 | ノヴォソム アクチェンゲゼルシャフト | Improvements in or relating to pharmaceutical compositions for topical administration |
GB2421025A (en) | 2004-12-09 | 2006-06-14 | Oxxon Therapeutics Ltd | HSV vaccination vectors |
US7404969B2 (en) | 2005-02-14 | 2008-07-29 | Sirna Therapeutics, Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
NZ597685A (en) | 2005-02-18 | 2013-12-20 | Novartis Vaccines & Diagnostic | Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli |
US8062644B2 (en) | 2005-02-18 | 2011-11-22 | Novartis Vaccines & Diagnostics Srl. | Immunogens from uropathogenic Escherichia coli |
EP1853227B1 (en) | 2005-03-02 | 2009-08-05 | The Secretary of State for Defence | Pharmaceutical composition |
GB0504436D0 (en) | 2005-03-03 | 2005-04-06 | Glaxosmithkline Biolog Sa | Vaccine |
AU2006235045A1 (en) | 2005-03-30 | 2006-10-19 | J. Craig Venter Institute, Inc. | Haemophilus influenzae type b |
AU2006236910B2 (en) * | 2005-04-11 | 2012-06-07 | Purdue Research Foundation | Vaccine against pandemic strains of influenza viruses |
US7618393B2 (en) | 2005-05-03 | 2009-11-17 | Pharmajet, Inc. | Needle-less injector and method of fluid delivery |
US8133973B2 (en) | 2005-05-12 | 2012-03-13 | Novartis Vaccines And Diagnostics, S.R.L. | Immunogenic compositions for Chlamydia trachomatis |
US8703095B2 (en) | 2005-07-07 | 2014-04-22 | Sanofi Pasteur S.A. | Immuno-adjuvant emulsion |
EP1909758A1 (en) | 2005-08-02 | 2008-04-16 | I.D.M. Immuno-Designed Molecules | Process for the preparation of liposomal formulations |
US7951384B2 (en) | 2005-08-05 | 2011-05-31 | University Of Massachusetts | Virus-like particles as vaccines for paramyxovirus |
ES2735531T3 (en) | 2005-08-23 | 2019-12-19 | Univ Pennsylvania | RNA containing modified nucleosides and methods of use thereof |
EP1764089A1 (en) | 2005-09-15 | 2007-03-21 | Novosom AG | Serum stable liposomes comprising amphoter II lipid mixtures |
DE102005046490A1 (en) | 2005-09-28 | 2007-03-29 | Johannes-Gutenberg-Universität Mainz | New nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency |
NZ567270A (en) | 2005-09-29 | 2011-06-30 | Elan Pharm Inc | Pyrimidinyl amide compounds which inhibit leukocyte adhesion mediated by VLA-4 |
CA2626253A1 (en) | 2005-10-18 | 2007-04-26 | Novartis Vaccines And Diagnostics, Inc. | Mucosal and systemic immunizations with alphavirus replicon particles |
JP2007112768A (en) | 2005-10-24 | 2007-05-10 | Kyoto Univ | Liver-directed liposome composition |
WO2007049155A2 (en) | 2005-10-25 | 2007-05-03 | Novartis Vaccines And Diagnostics Srl | Compositions comprising yersinia pestis antigens |
ES2514316T3 (en) | 2005-11-22 | 2014-10-28 | Novartis Vaccines And Diagnostics, Inc. | Norovirus and Sapovirus virus-like particles (VLPs) |
CA2631714C (en) | 2005-12-02 | 2014-09-16 | Novartis Ag | Nanoparticles for use in immunogenic compositions |
EP2004141A2 (en) | 2006-03-17 | 2008-12-24 | Novosom AG | An efficient method for loading amphoteric liposomes with nucleic acid active substances |
EP2037959B1 (en) * | 2006-06-07 | 2016-01-27 | The Trustees Of Princeton University | Cytomegalovirus surface protein complex for use in vaccines and as a drug target |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
JP2009541328A (en) | 2006-06-21 | 2009-11-26 | ザ・スクリプス・リサーチ・インステイチユート | DNA composition for tumor stromal antigen FAP and method of use thereof |
AU2007278831B2 (en) * | 2006-07-28 | 2013-03-21 | The Trustees Of The University Of Pennsylvania | Improved vaccines and methods for using the same |
AU2007285484B2 (en) | 2006-08-16 | 2013-05-02 | Novartis Ag | Immunogens from uropathogenic Escherichia coli |
CA2663295C (en) | 2006-09-12 | 2020-03-10 | Alphavax, Inc. | Alphavirus replicon particles matched to protein antigens as immunological adjuvants |
DE102007001370A1 (en) | 2007-01-09 | 2008-07-10 | Curevac Gmbh | RNA-encoded antibodies |
US20100015218A1 (en) | 2007-02-16 | 2010-01-21 | Vasant Jadhav | Compositions and methods for potentiated activity of biologically active molecules |
US20100196492A1 (en) | 2007-03-08 | 2010-08-05 | Green Jordan J | Electrostatic coating of particles for drug delivery |
US8877206B2 (en) | 2007-03-22 | 2014-11-04 | Pds Biotechnology Corporation | Stimulation of an immune response by cationic lipids |
AP3018A (en) | 2007-03-29 | 2014-10-31 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting expressionof a gene from the ebola |
US8748591B2 (en) | 2007-04-17 | 2014-06-10 | The Board Of Regents Of The University Of Texas System | Chimeric sindbis-western equine encephalitis virus and uses thereof |
AU2008247488B2 (en) | 2007-05-04 | 2014-02-27 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
WO2008148068A1 (en) | 2007-05-23 | 2008-12-04 | Mannkind Corporation | Multicistronic vectors and methods for their design |
DE102007029471A1 (en) | 2007-06-20 | 2008-12-24 | Novosom Ag | New optional cationic sterols |
NZ582495A (en) * | 2007-06-21 | 2012-05-25 | Alphavax Inc | Promoterless cassettes for expression of alphavirus structural proteins |
EP2173771A1 (en) | 2007-07-04 | 2010-04-14 | Ribovax Biotechnologies SA | Antibodies against human cytomegalovirus (hcmv) |
GB0714963D0 (en) | 2007-08-01 | 2007-09-12 | Novartis Ag | Compositions comprising antigens |
WO2009026328A2 (en) | 2007-08-21 | 2009-02-26 | Immune Disease Institute, Inc. | Methods of delivery of agents to leukocytes and endothelial cells |
GB0717187D0 (en) | 2007-09-04 | 2007-10-17 | Novartis Ag | Compositions comprising yersinia pestis antigens |
WO2009042794A2 (en) | 2007-09-26 | 2009-04-02 | Vanderbilt University | Venezuelan equine encephalitis replicons expressing paramyxovirus glycoproteins as vaccine |
EP2042193A1 (en) | 2007-09-28 | 2009-04-01 | Biomay AG | RNA Vaccines |
CA2705787A1 (en) | 2007-11-26 | 2009-06-25 | Novartis Ag | Methods of generating alphavirus particles |
EP2067749A1 (en) | 2007-11-29 | 2009-06-10 | Total Petrochemicals France | Process for purification of an aqueous phase containing polyaromatics |
WO2009074861A2 (en) | 2007-12-10 | 2009-06-18 | Powderject Research Limited | Improved vaccine |
WO2009111088A2 (en) | 2008-01-02 | 2009-09-11 | The Johns Hopkins University | Antitumor immunization by liposomal delivery of vaccine to the spleen |
EP2224912B1 (en) | 2008-01-02 | 2016-05-11 | TEKMIRA Pharmaceuticals Corporation | Improved compositions and methods for the delivery of nucleic acids |
ITMI20081249A1 (en) | 2008-07-09 | 2010-01-09 | Novartis Vaccines & Diagnostic | ESCHERICHIA COLI IMMUNOGENES WITH IMPROVED SOLUBILITY. |
WO2009109860A2 (en) | 2008-03-06 | 2009-09-11 | Novartis Ag | Mutant forms of chlamydia htra |
ES2638448T3 (en) | 2008-04-15 | 2017-10-20 | Protiva Biotherapeutics Inc. | Novel lipid formulations for nucleic acid administration |
WO2009127230A1 (en) | 2008-04-16 | 2009-10-22 | Curevac Gmbh | MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION |
WO2009132131A1 (en) | 2008-04-22 | 2009-10-29 | Alnylam Pharmaceuticals, Inc. | Amino lipid based improved lipid formulation |
US20100040650A1 (en) | 2008-05-30 | 2010-02-18 | Crowe Jr James E | Virus-Like paramyxovirus particles and vaccines |
EP2130912A1 (en) | 2008-06-04 | 2009-12-09 | Institut für Viruskrankeiten und Immunprophylaxe | Pestivirus replicons providing an RNA-based viral vector system |
EP2310045A1 (en) | 2008-06-25 | 2011-04-20 | Novartis AG | Rapid responses to delayed booster immunisations |
WO2009156155A1 (en) * | 2008-06-25 | 2009-12-30 | Probiogen Ag | Cell line for propagation of highly attenuated alphaviruses |
PT2303923E (en) * | 2008-07-16 | 2015-08-25 | Inst Research In Biomedicine | Human cytomegalovirus neutralising antibodies and use thereof |
JP2010025644A (en) | 2008-07-16 | 2010-02-04 | Kochi Univ Of Technology | Coloration reagent of nitrate ions and method for detecting and quantifying nitrate ions using it |
PL3009449T3 (en) | 2008-07-16 | 2018-09-28 | Institute For Research In Biomedicine | Human cytomegalovirus neutralizing antibodies and use thereof |
WO2010017330A1 (en) | 2008-08-06 | 2010-02-11 | Novartis Ag | Microparticles for use in immunogenic compositions |
CL2008002322A1 (en) | 2008-08-07 | 2009-06-05 | Univ Concepcion | Veterinary pharmaceutical formulation comprising a viral vector system consisting of a recombinant RNA particle encoding a cu / zn superoxide dismutase from the pathogenic bacterium of bovine brucella abortus, and at least one arn alphavirus belonging to the family of the semliki forest virus (sfv) , useful as a vaccine. |
WO2010019718A2 (en) | 2008-08-13 | 2010-02-18 | California Institute Of Technology | Carrier nanoparticles and related compositions, methods and systems |
US20110177122A1 (en) | 2008-09-26 | 2011-07-21 | The United States Of America, As Represented By The Secretary, Dept. Of Health & Human Services | Dna prime/activated vaccine boost immunization to influenza virus |
CN102245590B (en) | 2008-10-09 | 2014-03-19 | 泰米拉制药公司 | Improved amino lipids and methods for the delivery of nucleic acids |
CA3006395C (en) | 2008-11-07 | 2022-05-31 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US9220683B2 (en) | 2008-11-10 | 2015-12-29 | Tekmira Pharmaceuticals Corporation | Lipids and compositions for the delivery of therapeutics |
US20120093855A1 (en) | 2008-11-18 | 2012-04-19 | Ligocyte Pharmaceuticals, Inc. | RSV F VLPs AND METHODS OF MANUFACTURE AND USE THEREOF |
EP2391343B1 (en) | 2009-01-29 | 2017-03-01 | Arbutus Biopharma Corporation | Improved lipid formulation for the delivery of nucleic acids |
EP2510947B1 (en) | 2009-04-14 | 2016-02-10 | GlaxoSmithKline Biologicals SA | Compositions for immunising against Staphylococcus aureus |
JP5889783B2 (en) | 2009-05-05 | 2016-03-22 | テクミラ ファーマシューティカルズ コーポレイションTekmira Pharmaceuticals Corporation | Methods for delivering oligonucleotides to immune cells |
EA028860B1 (en) | 2009-06-10 | 2018-01-31 | Арбутус Биофарма Корпорэйшн | Improved lipid formulation |
IL292615B2 (en) | 2009-07-01 | 2023-11-01 | Protiva Biotherapeutics Inc | Nucleic acid-lipid particles, compositions comprising the same and uses thereof |
WO2011001780A1 (en) | 2009-07-02 | 2011-01-06 | コニカミノルタホールディングス株式会社 | Method for producing liposomes by two-stage emulsification method using outer aqueous phase containing specific dispersing agent, method for producing liposome dispersion or dry powder thereof using the method for producing liposomes, and liposome dispersion or dry powder thereof produced thereby |
WO2011005799A2 (en) | 2009-07-06 | 2011-01-13 | Novartis Ag | Self replicating rna molecules and uses thereof |
PT3178490T (en) | 2009-07-15 | 2022-06-30 | Glaxosmithkline Biologicals Sa | Rsv f protein compositions and methods for making same |
EP2453914B1 (en) | 2009-07-16 | 2018-09-05 | Vaxil Biotherapeutics Ltd. | Antigen specific multi epitope -based anti-infective vaccines |
WO2011012316A2 (en) | 2009-07-31 | 2011-02-03 | Ludwig-Maximilians-Universität | Rna with a combination of unmodified and modified nucleotides for protein expression |
TWI445708B (en) | 2009-09-02 | 2014-07-21 | Irm Llc | Compounds and compositions as tlr activity modulators |
US9950062B2 (en) | 2009-09-02 | 2018-04-24 | Glaxosmithkline Biologicals Sa | Compounds and compositions as TLR activity modulators |
US20110070260A1 (en) | 2009-09-09 | 2011-03-24 | Baric Ralph S | Multivalent Immunogenic Compositions Against Noroviruses and Methods of Use |
CA2816925C (en) | 2009-11-04 | 2023-01-10 | The University Of British Columbia | Nucleic acid-containing lipid particles and related methods |
US20110112353A1 (en) | 2009-11-09 | 2011-05-12 | Circulite, Inc. | Bifurcated outflow cannulae |
LT3338765T (en) | 2009-12-01 | 2019-06-25 | Translate Bio, Inc. | Steroid derivative for the delivery of mrna in human genetic diseases |
NO3112467T3 (en) | 2009-12-07 | 2018-07-14 | ||
US9687550B2 (en) | 2009-12-07 | 2017-06-27 | Arbutus Biopharma Corporation | Compositions for nucleic acid delivery |
CA2784568A1 (en) | 2009-12-18 | 2011-06-23 | Martin A. Maier | Lipid particles for delivery of nucleic acids |
CA2785492C (en) | 2009-12-23 | 2018-07-24 | Novartis Ag | Lipids, lipid compositions, and methods of using them |
ES2536429T3 (en) | 2010-01-24 | 2015-05-25 | Novartis Ag | Irradiated biodegradable polymer microparticles |
DK2544693T3 (en) | 2010-03-09 | 2017-12-04 | Biomedical Res Models Inc | Hitherto UNKNOWN ACCESS TO VACCINATION THROUGH MILKHINDER AGAINST HERPES SIMPLEX VIRUS TYPE-2 |
BR112012025364A2 (en) | 2010-04-07 | 2015-09-22 | Novartis Ag | parvovirus b19 virus-like particle generation method |
US9770463B2 (en) | 2010-07-06 | 2017-09-26 | Glaxosmithkline Biologicals Sa | Delivery of RNA to different cell types |
JP2013537518A (en) | 2010-07-06 | 2013-10-03 | ノバルティス アーゲー | Liposomes containing lipids with pKa values advantageous for RNA delivery |
SI3243526T1 (en) | 2010-07-06 | 2020-02-28 | Glaxosmithkline Biologicals S.A. | Delivery of rna to trigger multiple immune pathways |
PL4005592T3 (en) * | 2010-07-06 | 2023-02-06 | Glaxosmithkline Biologicals S.A. | Virion-like delivery particles for self-replicating rna molecules |
EP2591097A1 (en) | 2010-07-06 | 2013-05-15 | Novartis AG | Norovirus derived immunogenic compositions and methods |
US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
EP2590625B1 (en) | 2010-07-06 | 2017-09-20 | GlaxoSmithKline Biologicals SA | Cationic oil-in-water emulsions |
WO2012006369A2 (en) | 2010-07-06 | 2012-01-12 | Novartis Ag | Immunisation of large mammals with low doses of rna |
US8898852B2 (en) | 2010-08-04 | 2014-12-02 | Honeywell International Inc. | Air burst to clear detection window |
CA2807552A1 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
CA2809863A1 (en) | 2010-08-31 | 2012-03-08 | Novartis Ag | Lipids suitable for liposomal delivery of protein-coding rna |
EP4119155A1 (en) | 2010-08-31 | 2023-01-18 | GlaxoSmithKline Biologicals S.A. | Pegylated liposomes for delivery of immunogen-encoding rna |
PT4008357T (en) | 2010-08-31 | 2023-01-11 | Glaxosmithkline Biologicals Sa | Small liposomes for delivery of immunogen-encoding rna |
US20130164289A1 (en) | 2010-09-09 | 2013-06-27 | Virginia Commonwealth University | Human cytomegalovirus vaccine |
EP2857499A1 (en) | 2010-10-01 | 2015-04-08 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
ES2716243T3 (en) | 2010-10-11 | 2019-06-11 | Glaxosmithkline Biologicals Sa | Antigen Supply Platforms |
CA2815664C (en) | 2010-10-25 | 2018-04-17 | Stepan Company | Quaternized fatty amines, amidoamines, and their derivatives from natural oil metathesis |
EP2667892B1 (en) | 2011-01-26 | 2019-03-27 | GlaxoSmithKline Biologicals SA | Rsv immunization regimen |
WO2012106377A2 (en) | 2011-01-31 | 2012-08-09 | The Trustees Of The University Of Pennsylvania | Nucleic acid molecules encoding novel herpes antigens, vaccine comprising the same, and methods of use thereof |
WO2012116714A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in elderly patients |
CA2831613A1 (en) | 2011-03-31 | 2012-10-04 | Moderna Therapeutics, Inc. | Delivery and formulation of engineered nucleic acids |
PT2707385T (en) | 2011-05-13 | 2017-12-19 | Glaxosmithkline Biologicals Sa | Pre-fusion rsv f antigens |
BR112013029490A2 (en) | 2011-05-17 | 2019-09-24 | Moderna Therapeutics Inc | engineered nucleic acids and methods of use for non-human vertebrates |
EP3674292B1 (en) | 2011-06-08 | 2024-04-10 | Translate Bio, Inc. | Cleavable lipids |
EP3821879A1 (en) | 2011-07-06 | 2021-05-19 | GlaxoSmithKline Biologicals S.A. | Liposomes having useful n:p ratio for delivery of rna molecules |
JP2014522842A (en) | 2011-07-06 | 2014-09-08 | ノバルティス アーゲー | Immunogenic combination compositions and uses thereof |
JP2014520807A (en) | 2011-07-06 | 2014-08-25 | ノバルティス アーゲー | Immunogenic compositions and uses thereof |
MX350258B (en) | 2011-07-06 | 2017-08-31 | Novartis Ag | Cationic oil-in-water emulsions. |
TR201802662T4 (en) | 2011-07-06 | 2018-03-21 | Glaxosmithkline Biologicals Sa | Oil-in-water emulsions containing nucleic acids. |
HUE041800T2 (en) | 2011-08-31 | 2019-05-28 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding rna |
EP3384938A1 (en) | 2011-09-12 | 2018-10-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
RU2648950C2 (en) | 2011-10-03 | 2018-04-02 | Модерна Терапьютикс, Инк. | Modified nucleosides, nucleotides and nucleic acids and their application |
AU2012322704B2 (en) | 2011-10-11 | 2017-09-07 | Novartis Ag | Recombinant self-replicating polycistronic RNA molecules |
US20140348863A1 (en) | 2011-10-12 | 2014-11-27 | Alessia Bianchi | Cmv antigens and uses thereof |
EP2791364A4 (en) | 2011-12-14 | 2015-11-11 | Moderna Therapeutics Inc | Methods of responding to a biothreat |
LT2791160T (en) | 2011-12-16 | 2022-06-10 | Modernatx, Inc. | Modified mrna compositions |
CN104968354A (en) | 2011-12-21 | 2015-10-07 | 现代治疗公司 | Methods of increasing the viability or longevity of an organ or organ explant |
WO2013151667A1 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides |
CN108949772A (en) | 2012-04-02 | 2018-12-07 | 现代泰克斯公司 | For generating the modification polynucleotides of biological agent relevant to human diseases and protein |
EP2922554B1 (en) | 2012-11-26 | 2022-02-23 | ModernaTX, Inc. | Terminally modified rna |
EP2943221A1 (en) | 2013-01-10 | 2015-11-18 | Novartis AG | Influenza virus immunogenic compositions and uses thereof |
US9504747B2 (en) | 2013-03-08 | 2016-11-29 | Novartis Ag | Lipids and lipid compositions for the delivery of active agents |
US20160032316A1 (en) | 2013-03-14 | 2016-02-04 | The Trustees Of The University Of Pennsylvania | Purification and Purity Assessment of RNA Molecules Synthesized with Modified Nucleosides |
EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
ES2774968T3 (en) | 2013-12-19 | 2020-07-23 | Novartis Ag | Lipids and lipid compositions for the administration of active agents |
EP3736261B1 (en) | 2015-09-17 | 2023-10-11 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
EP3368507B1 (en) | 2015-10-28 | 2022-12-07 | Acuitas Therapeutics Inc. | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
KR20190120160A (en) | 2016-11-10 | 2019-10-23 | 트랜슬레이트 바이오 인코포레이티드 | Improved ICE-Based Lipid Nanoparticle Formulations for MRNA Delivery |
US11045540B2 (en) | 2017-03-15 | 2021-06-29 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
CA3120647A1 (en) | 2018-11-21 | 2020-05-28 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of nebulized mrna encoding cftr |
EP4021407A1 (en) | 2019-08-30 | 2022-07-06 | GlaxoSmithKline Biologicals S.A. | Jet mixing lipid nanoparticle manufacturing process |
WO2022137133A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Rna vaccine against sars-cov-2 variants |
-
2011
- 2011-10-11 ES ES11785510T patent/ES2716243T3/en active Active
- 2011-10-11 RU RU2013121582/10A patent/RU2597974C2/en active
- 2011-10-11 KR KR1020207027706A patent/KR102266691B1/en active IP Right Grant
- 2011-10-11 WO PCT/US2011/055834 patent/WO2012051211A2/en active Application Filing
- 2011-10-11 TR TR2019/03651T patent/TR201903651T4/en unknown
- 2011-10-11 CN CN201180058783.3A patent/CN103269713B/en active Active
- 2011-10-11 ES ES18212078T patent/ES2945135T3/en active Active
- 2011-10-11 MX MX2013003939A patent/MX363307B/en unknown
- 2011-10-11 BR BR112013008700A patent/BR112013008700B8/en active IP Right Grant
- 2011-10-11 EP EP18212078.2A patent/EP3520813B1/en active Active
- 2011-10-11 EP EP22175212.4A patent/EP4098325A1/en active Pending
- 2011-10-11 JP JP2013533016A patent/JP2013544504A/en not_active Withdrawn
- 2011-10-11 EP EP22175211.6A patent/EP4098324A1/en active Pending
- 2011-10-11 CA CA2814386A patent/CA2814386C/en active Active
- 2011-10-11 AU AU2011316707A patent/AU2011316707A1/en not_active Abandoned
- 2011-10-11 EP EP11785510.6A patent/EP2627351B1/en active Active
- 2011-10-11 KR KR1020137011527A patent/KR102162111B1/en active IP Right Grant
- 2011-10-11 US US13/878,835 patent/US20140030292A1/en not_active Abandoned
-
2013
- 2013-04-09 ZA ZA2013/02548A patent/ZA201302548B/en unknown
- 2013-04-11 CL CL2013000984A patent/CL2013000984A1/en unknown
-
2016
- 2016-02-19 JP JP2016030088A patent/JP2016096827A/en not_active Withdrawn
- 2016-10-07 AU AU2016238966A patent/AU2016238966B2/en active Active
-
2017
- 2017-08-25 JP JP2017162235A patent/JP2017205126A/en active Pending
-
2018
- 2018-08-28 US US16/114,621 patent/US11078237B2/en active Active
-
2021
- 2021-06-28 US US17/360,320 patent/US11639370B2/en active Active
-
2022
- 2022-03-16 US US17/696,143 patent/US20220213149A1/en not_active Abandoned
Patent Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186745A (en) | 1976-07-30 | 1980-02-05 | Kauzlarich James J | Porous catheters |
US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US6299884B1 (en) | 1989-05-25 | 2001-10-09 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
WO1991006309A1 (en) | 1989-11-03 | 1991-05-16 | Vanderbilt University | Method of in vivo delivery of functioning foreign genes |
US5279833A (en) | 1990-04-04 | 1994-01-18 | Yale University | Liposomal transfection of nucleic acids into animal cells |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
US5494807A (en) | 1991-03-07 | 1996-02-27 | Virogenetics Corporation | NYVAC vaccinia virus recombinants comprising heterologous inserts |
WO1993024641A2 (en) | 1992-06-02 | 1993-12-09 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Adeno-associated virus with inverted terminal repeat sequences as promoter |
WO1993024640A2 (en) | 1992-06-04 | 1993-12-09 | The Regents Of The University Of California | Methods and compositions for in vivo gene therapy |
US5767250A (en) | 1992-07-29 | 1998-06-16 | Chiron Corporation | Complexes comprising truncated CMV gH polypeptides and escort proteins |
US5814482A (en) | 1993-09-15 | 1998-09-29 | Dubensky, Jr.; Thomas W. | Eukaryotic layered vector initiation systems |
US5397307A (en) | 1993-12-07 | 1995-03-14 | Schneider (Usa) Inc. | Drug delivery PTCA catheter and method for drug delivery |
US5547472A (en) | 1994-01-20 | 1996-08-20 | Terumo Kabushiki Kaisha | Catheter with medicament injection pores |
US6083741A (en) | 1994-11-17 | 2000-07-04 | Imperial College Of Science Technology And Medicine | Internalisation of DNA, using conjugates of poly-l-lysine and an integrin receptor ligand |
US6071890A (en) | 1994-12-09 | 2000-06-06 | Genzyme Corporation | Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
WO1997037001A1 (en) | 1996-04-01 | 1997-10-09 | Chiron Behring Gmbh & Co. | Processes for the replication of influenza viruses in cell culture, and the influenza viruses obtainable by the process |
US6592874B2 (en) | 1996-04-05 | 2003-07-15 | The Washington University | Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis |
US6090619A (en) | 1997-09-08 | 2000-07-18 | University Of Florida | Materials and methods for intracellular delivery of biologically active molecules |
US6129705A (en) | 1997-10-01 | 2000-10-10 | Medtronic Ave, Inc. | Drug delivery and gene therapy delivery system |
WO2001038362A2 (en) | 1999-11-26 | 2001-05-31 | Crucell Holland B.V. | Production of vaccines |
WO2002040665A2 (en) | 2000-11-15 | 2002-05-23 | Crucell Holland B.V. | Complementing cell lines |
US7445924B2 (en) | 2000-11-23 | 2008-11-04 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
US7641911B2 (en) | 2002-03-21 | 2010-01-05 | Novartis Vaccines And Diagnostics, Inc. | Immunological adjuvant compositions |
US20070207090A1 (en) | 2002-05-14 | 2007-09-06 | Novartis Vaccines And Diagnostics, Inc. | Mucosal meningococcal vaccines |
US20080085870A1 (en) | 2002-12-23 | 2008-04-10 | Vical Incorporated | Codon-optimized polynucleotide-based vaccines against human cytomegalovirus infection |
WO2004076645A2 (en) | 2003-02-27 | 2004-09-10 | University Of Massachusetts | Compositions and methods for cytomegalovirus treatment |
US7306805B2 (en) | 2003-03-27 | 2007-12-11 | Children's Hospital, Inc. | Nontypeable Haemophilus influenzae virulence factors |
WO2005042728A2 (en) | 2003-11-03 | 2005-05-12 | Probiogen Ag | Immortalized avian cell lines for virus production |
US20080057080A1 (en) | 2004-05-18 | 2008-03-06 | Vical Incorporated | Influenza virus vaccine composition and methods of use |
WO2009132206A1 (en) | 2008-04-25 | 2009-10-29 | Liquidia Technologies, Inc. | Compositions and methods for intracellular delivery and release of cargo |
WO2010019437A1 (en) | 2008-08-15 | 2010-02-18 | Novartis Ag | Alphavirus packaging cell lines |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
Non-Patent Citations (99)
Title |
---|
ADLER B, SCRIVANO L, RUZCICS Z, RUPP B, SINZGER C, KOSINOWSKI U: "Role of human cytomegalovirus UL131A in cell type-specific virus entry and release", J. GEN. VIROL., vol. 87, 2006, pages 2451 - 60, XP002500659, DOI: doi:10.1099/VIR.0.81921-0 |
ADLER ET AL., J. GEN. VIROL., vol. 87, 2006, pages 2451 - 60 |
AKTER ET AL., J. GEN. VIROL., vol. 84, 2003, pages 1117 - 22 |
ALI ET AL., GENE THER., vol. 1, 1994, pages 367 - 384 |
ARSHADY & GUYOT: "Microspheres, microcapsules & liposomes", vol. 4, 2002, CITUS BOOKS, article "Functional Polymer Colloids and Microparticles" |
AUSUBEL, ET AL.,: "Current Protocols in Molecular Biology", vol. 2, 1988, GREENE PUBLISH. ASSOC. & WILEY INTERSCIENCE |
BALASURIYA UBR, HEIDNER HW, HEDGES JF, WILLIAMS JC, DAVIS NL, JOHNSTON RE, MACLACHLAN NJ: "Expression of the two major envelope proteins of equine arteritis virus as a heterodimer is necessary for induction of neutralizing antibodies in mice immunized with recombinant Venezuelan equine encephalitis virus replicon particles", J. VIROL., vol. 74, 2000, pages 10623 - 30, XP002672534, DOI: doi:10.1128/JVI.74.22.10623-10630.2000 |
BEAUCAGE S L ET AL., TETRAHEDRON LETT, vol. 22, 1981, pages 1859 |
BERNS ET AL., ANN. NY ACAD. SCI., vol. 772, 1995, pages 95 - 104 |
BITTER ET AL., METHODS IN ENZYMOLOGY, vol. 153, 1987, pages 516 - 544 |
BRITT ET AL., J. VIROL., vol. 64, no. 3, 1990, pages 1079 - 85 |
BRITT WJ, ALFORD CA: "Fields Virology", 1996, LIPPINCOTT/RAVEN, article "Cytomegalovirus", pages: 2493 - 523 |
BRITT WJ, ALFORD CA: "Human cytomegalovirus virion proteins", HUM. IMMUNOL., vol. 65, 2004, pages 395 - 402 |
BRITT WJ, VUGLER L, BUTFILOSKI EJ, STEPHENS EB: "Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-vaccinia recombinant virus infected cells in analysis of the human neutralizing antibody response", J. VIROL., vol. 64, 1990, pages 1079 - 85, XP002635126 |
BUCHSCHER ET AL., J. VIROL., vol. 66, no. 5, 1992, pages 2731 - 2739 |
CHA TA, TOM E, KEMBLE GW, DUKE GM, MOCARSKI ES, SPAETE RR: "Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains", J. VIROL., vol. 70, 1996, pages 78 - 83 |
CHEE MS, BANKIER AT, BECK S, BOHNI R, BROWN CM, CERNY R, HORSNELL T, HUTCHINSON CA, KOUZARIDES T, MARTIGNETTI JA: "Analysis of the protein- coding content of the sequence of human cytomegalovirus strain AD169", CURR. TOP. MICROBIOL. IMMUNOL., vol. 154, 1990, pages 125 - 70 |
COHEN & BERNSTEIN: "Microparticulate Systems for the Delivery nf Prnteins and Vaccines", 1996, CRC PRESS |
COMPTON T.: "Receptors and immune sensors: the complex entry path of human cytomegalovirus", TRENDS CELL. BIO., vol. 14, no. 1, 2004, pages 5 - 8, XP002732257, DOI: doi:10.1016/j.tcb.2003.10.009 |
CRUMPACKER CS, WADHWA S.: "Principles and practice of infectious diseases", vol. 2, 2005, ELSEVIER, article "Cytomegalovirus", pages: 1786 - 1800 |
CURIEL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 8850 |
DAVISON AJ, DOLAN A, AKTER P, ADDISON C, DARGAN DJ, ALCENDOR DJ, MCGEOCH DJ, HAYWARD GS: "The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome", J. GEN. VIROL., vol. 84, 2003, pages 17 - 28, XP055151325, DOI: doi:10.1099/vir.0.18606-0 |
DONNELLY ET AL., J.GEN.VIROL., vol. 82, 2001, pages 1013 - 1025 |
DUNN W, CHOU C, LI H, HAI R, PATTERSON D, STOIC V, ZHU H, LIU F: "Functional profiling of a human cytomcgalovirus gcnomc", PROC. NATL. ACAD. SCI USA, vol. 100, 2003, pages 14223 - 28 |
DUNN, PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 14223 - 28 |
FELGNER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 7413 - 7414 |
FROEHLER B C ET AL., NUCL ACID RES, vol. 14, 1986, pages 5399 - 407 |
GAFFNEY B L ET AL., TETRAHEDRON LETT, vol. 29, 1988, pages 2619 - 22 |
GAREGG P ET AL., TETRAHEDRON LETT, vol. 27, 1986, pages 4051 - 4 |
GAREGG P ET AL., TETRAHEDRON LETT, vol. 27, 1986, pages 4055 - 8 |
GEMA ET AL., J. GEN. VIROL., vol. 84, 2005, pages 1431 - 6 |
GENINI ET AL., J. CLIN. VIROL., vol. 52, no. 2, 2011, pages 113 - 8 |
GLOVER: "DNA Cloning", vol. II, 1986, IRL PRESS |
GO, POLLARD, JID, vol. 197, 2008, pages 1631 - 1633 |
GOODCHILD J, BIOCONJUGATE CHEM, vol. 1, 1990, pages 165 |
GREGORIADIS: "Liposome Technology", vol. I, II,, 2006, INFORMA HEALTHCARE |
HADDADA ET AL., CURR. TOP. MICROBIOL. IMMUNOL., vol. 199, 1995, pages 297 - 306 |
HAHN ET AL., J. VIROL., vol. 78, no. 18, 2004, pages 10023 - 33 |
HALPIN ET AL.: "Self-processing 2A-polyproteins--a system for co-ordinate expression of multiple proteins in transgenic plants", PLANT J., vol. 17, no. 4, February 1999 (1999-02-01), pages 453 - 9, XP002172906, DOI: doi:10.1046/j.1365-313X.1999.00394.x |
HERMONAT, MUZYCZKA, PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6466 - 6470 |
HEYES ET AL., J CONTROLLED RELEASE, vol. 107, 2005, pages 276 - 87 |
HEYES, J., PALMER, L., BREMNER, K., MACLACHLAN, I.: "Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids", JOURNAL OF CONTROLLED RELEASE, vol. 107, 2005, pages 276 - 287, XP008157522, DOI: doi:10.1016/j.jconrel.2005.06.014 |
HOBOM U, BRUNE W, MESSERLE M, HAHN G, KOSINOWSKI UH: "Fast screening procedures for random transposon llibrarics of cloned herpes virus gcnomcs: mutational analysis of human cytomegalovirus envelope glycoprotein genes", J. VIROL., vol. 74, 2000, pages 7720 - 29 |
HOBOM, J. VIROL., vol. 74, 2000, pages 7720 - 29 |
J. VIROL., vol. 77, pages 10394 - 10403 |
JOHANN ET AL., J. VIROL., vol. 66, no. 5, 1992, pages 1635 - 1640 |
KOTIN, HUMAN GENE THERAPY, vol. 5, 1994, pages 793 - 801 |
LIMBACH ET AL., NUCLEIC ACIDS RESEARCH, vol. 22, no. 12, 1994, pages 2183 - 2196 |
LJUNGMAN P, GRIFFITHS P, PAYA C.: "Definitions of cytomegalovirus infection and disease in transplant recipients", CLIN. INFECT. DIS., vol. 34, 2002, pages 1094 - 97 |
MACAGNO ET AL., J. VIROL., vol. 84, no. 2, 2010, pages 1005 - 13 |
MACAGNO, J. VIROL., vol. 84, no. 2, 2010, pages 1005 - 13 |
MACH ET AL., J. VIROL., vol. 74, no. 24, 2000, pages 11881 - 92 |
MANNINO, GOULD-FOGERITE, BIOTECHNIQUES, vol. 6, no. 7, 1988, pages 682 - 691 |
MASUDA ET AL., NUCLEIC ACIDS SYMPOSIUM SERIES, vol. 51, 2007, pages 3 - 4 |
MILLER ET AL., J. VIROL., vol. 65, 1991, pages 2220 - 2224 |
MOCARSKI ES, TAN COURCELLE C: "Fields Virology, 4 th edition,", vol. 2, 2001, LIPPINCOTT WILLIAMS AND WILKINS, article "Cytomegalovirus and their replication", pages: 2629 - 73 |
MURPHY E, YU D, GRIMWOOD J, SCHMUTZ J, DICKSON M, JARVIS MA, NELSON JA, MYERS RM, SHCNK TE: "Coding potential of laboratory and clinical strains of cytomegalovirus", PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 14976 - 81, XP002348007, DOI: doi:10.1073/pnas.2136652100 |
MUZYCZKA, J. CLIN. INVST., vol. 94, 1994, pages 1351 |
O'HAGAN ET AL., J VIROLOGY, vol. 75, 2001, pages 9037 - 9043 |
PCRRI ET AL., J. VIROL., vol. 77, 2003, pages 10394 - 403 |
PERRI ET AL., J. VIROL, vol. 77, no. 19, 2003, pages 10394 - 10403 |
PERRI ET AL., J. VIROL., vol. 77, no. 19, 2003, pages 10394 - 403 |
POLO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 4598 - 603 |
POMCROY C, ENGLUND JA: "Cyotmcgalovirus: epidemiology and infection control", AM J INFECT CONTROL, vol. 15, 1987, pages 107 - 119 |
REAP EA, DRYGA SA, MORRIS J, RIVERS B, NORBERG PK, OLMSTED RA, CHULAY JD: "Cellular and Humoral Immune Responses to Alphavirus Replicon Vaccines expressing Cytomegalovirus pp65, ILl and gB proteins", CLIN. VACC. IMMUNOL., vol. 14, 2007, pages 748 - 55, XP055478013, DOI: doi:10.1128/CVI.00037-07 |
REAP ET AL., CLIN. VACC. TMMUNOL., vol. 14, 2007, pages 748 - 55 |
ROSENBURG, FAUCI: "Fundamental Immunology, Third Edition", 1993, RAVEN PRESS, LTD. |
RUBIN R.: "Infection in the organ transplant recipient", 2002, KLUWER ACADEMIC PRESS, article "Clinical approach to infection in the compromised host", pages: 573 - 679 |
RYCKMAN BJ, CHASE MC, JOHNSON DC: "HCMV TR strain glycoprotein 0 acts as a chaperone promoting gH/gL incorporation into virions, but is not present in virions", J. VIROL., 2009 |
RYCKMAN BJ, RAINISH BL, CHASE MC, BORTON JA, NELSON JA, JARVIS JA, JOHNSON DC: "Characterization of the human cytomegalovirus gH/gL/LTL128-UL131 complex that mediates entry into epithelial and endothelial cells", J. VIROL ., vol. 82, 2008, pages 60 - 70, XP002519851, DOI: doi:10.1128/JVI.01910-07 |
RYCKMAN ET AL., J. VIROL., vol. 82, 2008, pages 60 - 70 |
RYCKMAN, J. VIROL, vol. 82, 2009, pages 60 - 70 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR PRESS |
SAMPAIO ET AL., J. VIROL., vol. 79, no. 5, 2005, pages 2754 - 67 |
SAMULSKI ET AL., J. VIROL., vol. 63, 1989, pages 03822 - 3828 |
SHIMAMURA M, MACH M, BRITT WJ: "Human Cytomegalovirus infection elicits a glycoprotein M (gM)/gN-specific virus-neutralizing antibody response", J. VIROL., vol. 80, 2006, pages 4591 - 4600, XP055040453, DOI: doi:10.1128/JVI.80.9.4591-4600.2006 |
SINGH ET AL., PHARMACEUTICAL RESEARCH, vol. 20, 2003, pages 247 - 251 |
SOMMCRFCLT ET AL., VIROL., vol. 176, 1990, pages 58 - 59 |
STAGNO S, BRITT WJ: "Infectious diseases of the fetus and newborn infant 6htt edition", 2005, article "Cytomegalovirus", pages: 389 - 424 |
STRATHEM ET AL.,: "The Molecular Biology of the Yeast Saccharomyces", vol. I, II, 1982, COLD SPRING HARBOR PRESS |
STRAUSS, STRAUSS: "The alphaviruses: gene expression, replication, and evolution", MICROBIOL REV., vol. 58, no. 3, September 1994 (1994-09-01), pages 491 - 562 |
TRATSCHIN ET AL., MOL. CELL. BIOL., vol. 4, 1984, pages 2072 - 2081 |
TRATSCHIN ET AL., MOL. CELL. BIOL., vol. 5, no. 11, 1985, pages 3251 - 3260 |
TRICHAS ET AL.: "Use of the viral 2A peptide for bicistronic expression in transgenic mice", BMC BIOL., vol. 6, 15 September 2008 (2008-09-15), pages 40, XP021044858, DOI: doi:10.1186/1741-7007-6-40 |
UCHEGBU & SCHATZLEIN: "Polymers in Drug Delivery", 2006, CRC PRESS |
UHLMANN ET AL., CHEM REV, vol. 90, 1990, pages 544 - 84 |
URBAN ET AL., J. GEN. VIROL., vol. 77, 1996, pages 1537 - 47 |
VACCINE, vol. 27, 2009, pages 4975 - 4982 |
VARNUM SM, STREBLOW DN, MONROE ME, SMITH P, AUBERRY KJ, PASA-TOLIC L, WANG D, CAMP II DG, RODLAND K, WILEY: "Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome", J. VIROL., vol. 78, 2004, pages 10960 - 66 |
WANG D, SHENK T: "Human cytomegalovirus. virion protein complex required for epithelial and endothelial cell tropism", PROC. NATL. ACAD. SCI. USA, vol. 102, 2005, pages 18153 - 58, XP002463457, DOI: doi:10.1073/pnas.0509201102 |
WANG, SHENK, PROC. NATL. ACAD. SCI USA, vol. 102, no. 50, 2005, pages 18153 - 8 |
WANG, SHENK, PROC. NATL. ACAD. SCI. USA, vol. 102, no. 50, 2005, pages 18153 - 8 |
WEISSIG: "Pharmaceutical Nanocarriers: Methods and Protocols", vol. 1, 2009, HUMANA PRESS, article "Liposomes: Methods and Protocols" |
WEST ET AL., VIROLOGY, vol. 160, 1987, pages 38 - 47 |
WILLE PT, KNOCHE AJ, NELSON JA, JARVIS MA, JOHNSON JC: "An HCMV gO-null mutant fails to incorporate gH/gL into the virion envelope and is unable to enter fibroblasts, epithelial, and endothelial cells", J. VIROL., 2009 |
WILLE, J. VIROL., vol. 84, no. 5, 2010, pages 2585 - 96 |
WILSON ET AL., J. VIROL., vol. 63, 1989, pages 2374 - 2378 |
WU, WU, J. BIOL. CHEM., vol. 263, 1988, pages 14621 |
YU ET AL., GENE THERAPY, 1994 |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013055905A1 (en) * | 2011-10-11 | 2013-04-18 | Novartis Ag | Recombinant self-replicating polycistronic rna molecules |
AU2012322704B2 (en) * | 2011-10-11 | 2017-09-07 | Novartis Ag | Recombinant self-replicating polycistronic RNA molecules |
US9683022B2 (en) | 2012-07-06 | 2017-06-20 | Glaxosmithkline Biologicals S.A. | Complexes of cytomegalovirus proteins |
WO2014005959A1 (en) | 2012-07-06 | 2014-01-09 | Novartis Ag | Complexes of cytomegalovirus proteins |
JP2015522581A (en) * | 2012-07-06 | 2015-08-06 | ノバルティス アーゲー | Cytomegalovirus protein complex |
CN104853771A (en) * | 2012-07-06 | 2015-08-19 | 诺华股份有限公司 | Complexes of cytomegalovirus proteins |
AU2013286093B2 (en) * | 2012-07-06 | 2018-01-04 | Novartis Ag | Complexes of cytomegalovirus proteins |
JP2017192400A (en) * | 2012-07-06 | 2017-10-26 | ノバルティス アーゲー | Complexes of cytomegalovirus proteins |
GB2513768A (en) * | 2012-07-06 | 2014-11-05 | Novartis Ag | Complexes of cytomegalovirus proteins |
EP2869843B1 (en) | 2012-07-06 | 2019-08-07 | GlaxoSmithKline Biologicals SA | Complexes of cytomegalovirus proteins |
US10287322B2 (en) | 2012-07-06 | 2019-05-14 | Glaxosmithkline Biologicals S.A. | Complexes of cytomegalovirus proteins |
GB2513768B (en) * | 2012-07-06 | 2015-04-15 | Novartis Ag | Complexes of cytomegalovirus proteins and nucleic acids encoding such proteins |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10022435B2 (en) | 2014-04-23 | 2018-07-17 | Modernatx, Inc. | Nucleic acid vaccines |
US10709779B2 (en) | 2014-04-23 | 2020-07-14 | Modernatx, Inc. | Nucleic acid vaccines |
US9872900B2 (en) | 2014-04-23 | 2018-01-23 | Modernatx, Inc. | Nucleic acid vaccines |
WO2015170287A1 (en) * | 2014-05-08 | 2015-11-12 | Redvax Gmbh | Means and methods for treating cmv |
WO2016116904A1 (en) | 2015-01-22 | 2016-07-28 | Glaxosmithkline Biologicals Sa | Cytomegalovirus antigens and uses thereof |
EP3048114A1 (en) | 2015-01-22 | 2016-07-27 | Novartis AG | Cytomegalovirus antigens and uses thereof |
US10167321B2 (en) | 2015-01-22 | 2019-01-01 | Glaxosmithkline Biologicals, Sa | Cytomegalovirus antigens and uses thereof |
EP4180056A1 (en) | 2015-01-22 | 2023-05-17 | GlaxoSmithKline Biologicals SA | Cytomegalovirus antigens and uses thereof |
WO2017070623A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Herpes simplex virus vaccine |
US10064935B2 (en) | 2015-10-22 | 2018-09-04 | Modernatx, Inc. | Human cytomegalovirus RNA vaccines |
AU2016342371B2 (en) * | 2015-10-22 | 2023-05-11 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
US11643441B1 (en) | 2015-10-22 | 2023-05-09 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
US11484590B2 (en) | 2015-10-22 | 2022-11-01 | Modernatx, Inc. | Human cytomegalovirus RNA vaccines |
WO2017070613A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
WO2017070601A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (vzv) |
US10383937B2 (en) | 2015-10-22 | 2019-08-20 | Modernatx, Inc. | Human cytomegalovirus RNA vaccines |
US10716846B2 (en) | 2015-10-22 | 2020-07-21 | Modernatx, Inc. | Human cytomegalovirus RNA vaccines |
US10363303B2 (en) | 2016-01-11 | 2019-07-30 | Verndari, Inc. | Microneedle compositions and methods of using same |
US10022436B2 (en) | 2016-01-11 | 2018-07-17 | Verndari, Inc. | Microneedle compositions and methods of using same |
US10611800B2 (en) | 2016-03-11 | 2020-04-07 | Pfizer Inc. | Human cytomegalovirus gB polypeptide |
US11168337B2 (en) | 2016-03-21 | 2021-11-09 | Moniech RNA Pharmecenticais GmbH | RNA replicon for versatile and efficient gene expression |
US10695419B2 (en) | 2016-10-21 | 2020-06-30 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US11541113B2 (en) | 2016-10-21 | 2023-01-03 | Modernatx, Inc. | Human cytomegalovirus vaccine |
WO2018075980A1 (en) * | 2016-10-21 | 2018-04-26 | Modernatx, Inc. | Human cytomegalovirus vaccine |
EP3528821A4 (en) * | 2016-10-21 | 2020-07-01 | ModernaTX, Inc. | Human cytomegalovirus vaccine |
US11197927B2 (en) | 2016-10-21 | 2021-12-14 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11045540B2 (en) | 2017-03-15 | 2021-06-29 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11918644B2 (en) | 2017-03-15 | 2024-03-05 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
WO2018170270A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Varicella zoster virus (vzv) vaccine |
WO2018170256A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Herpes simplex virus vaccine |
EP3641810A4 (en) * | 2017-04-26 | 2021-08-18 | Modernatx, Inc. | Herpes simplex virus vaccine |
WO2019052975A1 (en) * | 2017-09-13 | 2019-03-21 | Sanofi Pasteur | Human cytomegalovirus immunogenic composition |
US11524069B2 (en) | 2017-09-13 | 2022-12-13 | Sanofi Pasteur | Human cytomegalovirus immunogenic composition |
IL273120B2 (en) * | 2017-09-13 | 2023-10-01 | Sanofi Pasteur | Human cytomegalovirus immunogenic composition |
US11207403B2 (en) | 2017-09-13 | 2021-12-28 | Sanofi Pasteur | Human cytomegalovirus immunogenic composition |
IL273120B1 (en) * | 2017-09-13 | 2023-06-01 | Sanofi Pasteur | Human cytomegalovirus immunogenic composition |
US11986521B2 (en) | 2018-06-08 | 2024-05-21 | Vakzine Projekt Management Gmbh | Viral particle-based vaccine |
WO2019234219A1 (en) * | 2018-06-08 | 2019-12-12 | Vakzine Projekt Management Gmbh | Viral particle - based vaccine |
US11629172B2 (en) | 2018-12-21 | 2023-04-18 | Pfizer Inc. | Human cytomegalovirus gB polypeptide |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
WO2021014385A1 (en) | 2019-07-24 | 2021-01-28 | Glaxosmithkline Biologicals Sa | Modified human cytomegalovirus proteins |
US20210346492A1 (en) * | 2020-05-11 | 2021-11-11 | Janssen Pharmaceuticals, Inc. | SARS-CoV-2 Vaccines |
WO2021245611A1 (en) | 2020-06-05 | 2021-12-09 | Glaxosmithkline Biologicals Sa | Modified betacoronavirus spike proteins |
US11857622B2 (en) | 2020-06-21 | 2024-01-02 | Pfizer Inc. | Human cytomegalovirus GB polypeptide |
US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
WO2023104114A3 (en) * | 2021-12-07 | 2023-07-20 | Immorna (hangzhou) Biotechnology Co., Ltd. | Rna formulations and lipids |
WO2023144665A1 (en) | 2022-01-28 | 2023-08-03 | Glaxosmithkline Biologicals Sa | Modified human cytomegalovirus proteins |
WO2024120490A1 (en) * | 2022-12-07 | 2024-06-13 | Immorna (hangzhou) Biotechnology Co., Ltd. | Self-replicating rna vaccines and methods of use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11639370B2 (en) | Antigen delivery platforms | |
AU2012322704B2 (en) | Recombinant self-replicating polycistronic RNA molecules | |
US10342862B2 (en) | RSV immunization regimen | |
CN104853770A (en) | Immunogenic compositions and uses thereof | |
KR20220035457A (en) | treatment antivirus | |
CA2086740A1 (en) | Equine herpesvirus-4 tk-vaccine | |
US20240091345A1 (en) | Therapeutic Viral Vaccine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11785510 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/003939 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2013533016 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2814386 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013000984 Country of ref document: CL |
|
ENP | Entry into the national phase |
Ref document number: 20137011527 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2011316707 Country of ref document: AU Date of ref document: 20111011 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011785510 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013121582 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13878835 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013008700 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013008700 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130410 |