Nothing Special   »   [go: up one dir, main page]

WO2012043271A1 - 2次電池型燃料電池システム - Google Patents

2次電池型燃料電池システム Download PDF

Info

Publication number
WO2012043271A1
WO2012043271A1 PCT/JP2011/071199 JP2011071199W WO2012043271A1 WO 2012043271 A1 WO2012043271 A1 WO 2012043271A1 JP 2011071199 W JP2011071199 W JP 2011071199W WO 2012043271 A1 WO2012043271 A1 WO 2012043271A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water vapor
fuel cell
secondary battery
partial pressure
Prior art date
Application number
PCT/JP2011/071199
Other languages
English (en)
French (fr)
Inventor
雅之 上山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012536347A priority Critical patent/JP5617928B2/ja
Priority to US13/824,942 priority patent/US20150140460A1/en
Priority to EP11828831.5A priority patent/EP2624354A4/en
Publication of WO2012043271A1 publication Critical patent/WO2012043271A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
  • Fuel cells take out power when water is generated from hydrogen and oxygen. In principle, the efficiency of power energy that can be taken out is high, which not only saves energy but also produces only water. Therefore, it is an environmentally friendly power generation method and is expected as a trump card for solving global energy and environmental problems.
  • Fuel cells can be used in various forms, one of which is mounted on an EV (electric vehicle) and used as a power source for the EV.
  • EV is a moving body, and it is desired to supply fuel over a long period of time in order to increase the moving distance.
  • Patent Document 1 and Patent Document 2 disclose a fuel cell system including a plurality of hydrogen storage alloy tanks and sequentially using these hydrogen storage alloy tanks.
  • an object of the present invention is to provide a secondary battery type fuel cell system that can perform power generation and charging seamlessly.
  • a secondary battery type fuel cell system includes a hydrogen generation unit that generates hydrogen by an oxidation reaction with water and can be regenerated by a reduction reaction with hydrogen.
  • a power generation / electrolysis unit having a power generation function for generating electricity using hydrogen supplied as fuel and an electrolysis function for electrolyzing water for generating hydrogen to be supplied to the hydrogen generation unit, the hydrogen generation
  • a secondary battery type fuel cell system for circulating a gas containing hydrogen and water vapor between a gas generator and the power generation / electrolysis unit, comprising a water vapor partial pressure ratio setting unit for setting a water vapor partial pressure ratio of the hydrogen generation unit It is configured.
  • the power generation / electrolysis section performs, for example, a power generation operation for generating power using hydrogen supplied from the hydrogen generation section as fuel, and electrolysis of water for generating hydrogen supplied to the hydrogen generation section.
  • the fuel cell may be configured to switch between an electrolysis operation to be performed, and for example, a fuel cell that generates power using hydrogen supplied from the hydrogen generator as a fuel, and hydrogen supplied to the hydrogen generator.
  • generating this may be provided separately.
  • a secondary battery type fuel cell system capable of seamlessly generating and charging can be realized.
  • FIG. 7 is a diagram for explaining the operation of a secondary battery type fuel cell system according to another embodiment of the present invention by simplifying FIG. 6.
  • FIG. 1 is a diagram showing an overall configuration of a secondary battery type fuel cell system according to an embodiment of the present invention.
  • a secondary battery type fuel cell system according to an embodiment of the present invention shown in FIG. 1 includes a hydrogen generator 1 in which an iron fine particle compact is accommodated.
  • the secondary battery type fuel cell system according to an embodiment of the present invention shown in FIG. 1 includes a heater 2 that heats the hydrogen generator 1, a temperature sensor 3 that detects the temperature of the hydrogen generator 1, and hydrogen generation. And a remaining amount sensor 4 for detecting the remaining iron amount of the container 1.
  • the remaining amount sensor 4 for example, a sensor that detects the remaining amount of iron in the hydrogen generator 1 from the change in the weight of the hydrogen generator 1 using the weight difference between iron and iron oxide can be used. This remaining iron amount can be said to be the remaining hydrogen amount that can be generated from the hydrogen generator 1.
  • a secondary battery type fuel cell system includes a solid oxide fuel cell (SOFC) 5 that is one of fuel cells that generate water using hydrogen as a fuel to generate water. ing.
  • SOFC solid oxide fuel cell
  • the hydrogen generator 1 is connected to the SOFC 5 by a gas circulation path through which gas can be circulated.
  • a circulator 6 is provided in the circulation path.
  • the circulator 6 is a blower or a pump and forcibly circulates the gas in the circulation path.
  • the controller 7 controls the entire system, and individually controls the heater 2 and the circulator 6 based on the temperature information output from the temperature sensor 3 and the remaining amount information output from the remaining amount sensor 4. Then, the reaction conditions of the hydrogen generator 1 are set, hydrogen is supplied to the SOFC 5 to cause the SOFC 5 to perform a power generation operation, and the motor 8 as a load is driven.
  • controller 7 operates the SOFC 5 as an electrolyzer when the regenerative power of the motor 8 is generated or when power from an external power source (not shown) is supplied to the external power input terminal 9 to generate a hydrogen generator. 1 is played to charge the system.
  • the lithium ion secondary battery 10 connected to the controller 7 supplies power for operating the heater 2 and the like at the start-up.
  • the lithium ion secondary battery 10 is connected to the power generation of the SOFC 5 or an external power source (connected to the external power input terminal 9). It can be recharged with electric power from (not shown).
  • the SOFC 5 has a three-layer structure in which a solid electrolyte 11 that transmits O 2 ⁇ is sandwiched and an oxidant electrode 12 and a fuel electrode 13 are formed on both sides thereof.
  • the following reaction (1) occurs in the fuel electrode 13 during the power generation operation.
  • Electrons generated by the reaction of the above formula (1) pass through the motor 8 as a load and reach the oxidant electrode 12, and the reaction of the following formula (2) occurs at the oxidant electrode 12. 1 / 2O 2 + 2e ⁇ ⁇ O 2 ⁇ (2)
  • gas hydrogen gas, water vapor gas
  • gas consumed or generated on the fuel electrode 13 side circulates between the fuel electrode 13 side of the SOFC 5 and the hydrogen generator 1.
  • iron (Fe) is the energy higher than that of iron oxide (Fe 3 O 4)
  • the reaction iron (Fe) is changed to iron oxide (Fe 3 O 4) (oxidation) is an exothermic reaction which releases heat to the outside
  • the reaction (reduction reaction) in which iron oxide (Fe 3 O 4 ) changes to iron (Fe) becomes an endothermic reaction.
  • the molecule needs to have an energy higher than the activation energy Ea, but as can be seen from FIG. 3, the activation energy Ea (Fe ⁇ Fe 3 O 4 ) of the oxidation reaction
  • the activation energy Ea (Fe 3 O 4 ⁇ Fe) of the reverse reduction reaction is larger. That is, the iron oxide reduction reaction is less likely to react than the iron oxidation reaction.
  • the reaction rate constant k indicating the ease of reaction can be expressed by the following equation (4) using the gas constant R, the absolute temperature T, the frequency factor A, and the activation energy Ea.
  • the reaction rate is given by the product of the reaction rate constant k and the concentration. If a catalyst is used, the activation energy Ea can be lowered.
  • k Aexp ( ⁇ Ea / RT) (4)
  • Ea is about 60 kJ
  • the reduction rate is about 3 ⁇ mol / min in terms of the number of moles of H 2 per gram of Fe at 320 ° C. in the experiment by the inventors.
  • Reduction of Fe 3 O 4 requires 0.0238 mol of H 2 per gram of Fe, and considering a practical reduction time of 10 hours, a reduction rate of about 40 ⁇ mol / min in terms of moles of H 2 per gram of Fe is obtained. It is desirable to be obtained.
  • Ea / T at which a reduction rate of 40 ⁇ mol / min is obtained is 0.0797 kJ / K.
  • FIG. 4 is a diagram for explaining the steam partial pressure ratio in the hydrogen generator 1.
  • the reaction of the oxidation reaction of iron It stabilizes in an equilibrium state where the rate and the rate of reduction of iron oxide coincide.
  • the curve shown in FIG. 4 shows this equilibrium state. Therefore, the water vapor partial pressure ratio in the equilibrium state becomes higher as the temperature becomes higher.
  • the water vapor partial pressure ratio in an equilibrium state is 4% ( ⁇ 10%).
  • the oxidation reaction becomes dominant and finally becomes stable at a water vapor partial pressure ratio of 4%.
  • the water vapor partial pressure ratio in the equilibrium state is 10% (> 4%).
  • the reduction reaction of the produced iron oxide becomes dominant and finally stabilizes at a water vapor partial pressure ratio of 10%.
  • the controller 7 heats the hydrogen generator 1 with the heater 2 (in this case, heats it to 320 ° C.) and activates the circulator 6. Circulate the gas.
  • the SOFC 5 generates power while consuming hydrogen gas in the circulation path and generating water vapor gas.
  • the steam generated in the SOFC 5 becomes dominant when the partial pressure ratio becomes higher than 4.5% of the equilibrium steam partial pressure ratio at 320 ° C., and the steam gas is hydrogen in the hydrogen generator 1. It replaces with gas and tries to return to a state where the water vapor partial pressure ratio is 4.5% and the hydrogen partial pressure ratio is 95.5%. Power generation is continued in a cycle in which this hydrogen gas is consumed again by the SOFC 5 and steam gas is generated.
  • the controller 7 heats the hydrogen generator 1 with the heater 2 (here, 320 ° C.) and activates the circulator 6 to circulate the gas. Further, the SOFC 5 is operated as an electrolyzer. In this case, the SOFC 5 consumes water vapor gas in the circulation path and generates hydrogen gas.
  • the partial pressure ratio is lower than 4.5% of the equilibrium partial pressure ratio of steam at 320 ° C.
  • the steam generated in the hydrogen generator 1 becomes dominant, and the reduction reaction of iron oxide becomes dominant.
  • the gas is replaced with water vapor gas and attempts to return to a state where the water vapor partial pressure ratio is 4.5% and the hydrogen partial pressure ratio is 95.5%.
  • the hydrogen generator 1 is regenerated in a cycle in which the water vapor gas is consumed again by the SOFC 5 and hydrogen gas is generated, and charging of the system is continued.
  • the reaction toward the 4.5% of the equilibrium water vapor partial pressure ratio at 320 ° C. is naturally performed only by setting the temperature to 320 ° C. at which reversible oxidation-reduction reaction is possible. . Therefore, the power generation and charging of the system can be repeated in a short time without performing any special switching operation in the hydrogen generator 1 and without changing the set temperature.
  • one SOFC 5 performs both power generation and water electrolysis.
  • the hydrogen generator 1 includes a fuel cell (for example, a SOFC dedicated to power generation) and a water electrolyzer (for example, water electrolysis).
  • a dedicated SOFC may be connected in parallel on the gas circulation path.
  • the base material (main component) of the hydrogen generator 1 is not limited to iron, but may be any material that can be oxidized with water and reduced with hydrogen (for example, a magnesium alloy).
  • the hydrogen gas consumed for power generation is abundant
  • the water vapor gas consumed for charging is abundant.
  • the power generation operation mode if the setting of the water vapor partial pressure ratio is reduced, the generation of hydrogen gas is promoted, so that the generated current can be increased.
  • the charging operation mode if the setting of the water vapor partial pressure ratio is increased, the generation of water vapor gas is promoted, so that the charging current can be increased. Therefore, in the flowchart shown in FIG. 5, a control operation is performed such that more gas is consumed in each mode.
  • the controller 7 determines whether or not an external power source is connected to the external power input terminal 9 (step S10).
  • step S10 If an external power supply is connected to the external power input terminal 9 (YES in step S10), the charging operation mode is set, and the process proceeds to step S60 described later.
  • the controller 7 receives information on the EV operating state from the control unit of the EV body, and based on the information. It is determined whether the EV is traveling (step S20). In addition, although it is desirable to include it during driving
  • step S20 If the EV is not traveling (NO in step S20), the process returns to step S10. If the EV is traveling (YES in step S20), the power generation operation mode is set, and the process proceeds to step S30.
  • step S30 the controller 7 determines whether or not to set power regeneration. For example, when EV is traveling at a predetermined speed or higher, the power can be regenerated, and when EV is traveling at a speed lower than the predetermined speed, the power regeneration is not performed. If the power regeneration is not possible (NO in step S30), the controller 7 sets the temperature setting of the hydrogen generator 1 to 100 ° C. (step S40), and then returns to step S10. In this case, the equilibrium water vapor partial pressure ratio is 0.1%. On the other hand, if the power regeneration setting is possible (YES in step S30), the controller 7 sets the temperature of the hydrogen generator 1 to 320 ° C. (step S50), and then returns to step S10. In this case, the equilibrium water vapor partial pressure ratio is 4.5%.
  • the temperature setting in this power generation operation mode is used to control the heater 2, and the heater 2 may be turned on until the set temperature is reached, and the heater 2 may be turned off when the set temperature is reached. This is because, in this power generation operation mode, an exothermic reaction that generates hydrogen by an oxidation reaction of iron occurs, so that it is not necessary to continuously heat by the heater 2. Furthermore, even if the temperature detected by the temperature sensor 3 becomes higher than the set temperature, the reaction is accelerated and there is no need for cooling.
  • the controller 7 determines whether or not to set to perform fast charging (fast charging mode) (step S60). If it is a setting that does not perform fast charging (normal charging mode) (NO in step S60), the controller 7 sets the temperature setting of the hydrogen generator 1 to 400 ° C. (step S70), and then returns to step S10. In this case, the equilibrium water vapor partial pressure ratio is 10%. On the other hand, if it is the setting which performs high-speed charge (YES of step S60), the controller 7 will set the temperature setting of the hydrogen generator 1 to 600 degreeC (step S80), and will return to step S10 after that. In this case, the equilibrium water vapor partial pressure ratio is 20%.
  • the temperature setting in this charging operation mode is also used to control the heater 2, and the driving control of the heater 2 is performed so as to maintain the set temperature.
  • the driving control of the heater 2 is performed so as to maintain the set temperature.
  • an endothermic reaction that generates water vapor occurs due to a reduction reaction of iron oxide, and thus heating by the heater 2 needs to be continuously performed. Therefore, the drive of the heater 2 is controlled so that the temperature detected by the temperature sensor 3 becomes the set temperature.
  • FIG. 6 is a diagram showing an overall configuration of a secondary battery type fuel cell system according to another embodiment of the present invention.
  • the secondary battery type fuel cell system according to another embodiment of the present invention shown in FIG. 6 includes two hydrogen generators 1 in which iron fine particle compacts are accommodated.
  • the secondary battery type fuel cell system according to another embodiment of the present invention shown in FIG. 6 includes a plurality of heaters 2 for individually heating each hydrogen generator 1 and the temperature of each hydrogen generator 1 individually.
  • a plurality of temperature sensors 3 to be detected and a remaining amount sensor 4 for individually detecting the remaining iron amount of each hydrogen generator 1 are provided.
  • the remaining amount sensor 4 for example, a sensor that detects the remaining amount of iron in the hydrogen generator 1 from the change in the weight of the hydrogen generator 1 using the weight difference between iron and iron oxide can be used.
  • a secondary battery type fuel cell system includes a solid oxide fuel cell (SOFC) 5 which is one of fuel cells that generate water using hydrogen as fuel and generate water. I have.
  • SOFC solid oxide fuel cell
  • Each hydrogen generator 1 is connected in parallel to the SOFC 5 by a gas circulation path through which gas can be circulated.
  • a circulator 6 is provided in the circulation path.
  • the circulator 6 is a blower or a pump and forcibly circulates the gas in the circulation path.
  • the circulation path is provided with a flow rate controller 14 for individually controlling the gas flow rate of each hydrogen generator 1.
  • the flow rate controller 14 is illustrated only on one side of each hydrogen generator 1, but controls the flow rate of the gas passing through each hydrogen generator 1 from the circulation path. .
  • the controller 7 controls the entire system, and in this embodiment, the heater 2 is based on each temperature information output from each temperature sensor 3 and each remaining amount information output from each remaining amount sensor 4.
  • the circulator 6 and the flow rate controller 14 are individually controlled, the reaction conditions of each hydrogen generator 1 are set, hydrogen is supplied to the SOFC 5 to cause the SOFC 5 to perform a power generation operation, and the motor 8 as a load is driven. .
  • controller 7 operates the SOFC 5 as an electrolyzer when the regenerative power of the motor 8 is generated or when power from an external power source (not shown) is supplied to the external power input terminal 9 to generate a hydrogen generator. 1 is played to charge the system.
  • the lithium ion secondary battery 10 connected to the controller 7 supplies electric power for operating the heater 2 and the like at the start-up.
  • the power source of the SOFC 5 or an external power source input terminal 9 is connected to an external power source (not shown). It can be recharged with electric power from
  • FIG. 7 is a diagram for explaining the power regeneration compatible operation of the secondary battery type fuel cell system according to another embodiment of the present invention by simplifying FIG.
  • the right hydrogen generator 1 is set to a high temperature (for example, 400 ° C.)
  • the left hydrogen generator 1 is set to a low temperature (for example, 100 ° C.).
  • the equilibrium water vapor partial pressure ratio corresponding to the set temperature of the right hydrogen generator 1 and the left hydrogen is the equilibrium water vapor partial pressure ratio set in the secondary battery type fuel cell system according to another embodiment of the present invention shown in FIGS. Become.
  • the water vapor partial pressure ratio in the circulation path is an intermediate value of the equilibrium water vapor partial pressure ratio based on the temperature of both hydrogen generators 1, the reduction reaction becomes dominant in the right hydrogen generator 1 set to a high temperature.
  • the oxidation reaction becomes dominant in the left hydrogen generator 1 set at a low temperature. Therefore, the power generation operation and the charging operation can be performed simultaneously.
  • the flow of the gas to the hydrogen generator 1 on the right side is stopped using the flow rate controller 14 and only the hydrogen generator 1 on the left side is used.
  • the circulation of the gas to the left hydrogen generator 1 can be stopped using the flow rate controller 14 and only the right hydrogen generator 1 can be used.
  • the set value of the water vapor partial pressure ratio can be changed depending on which hydrogen generator 1 is used. Also, when the remaining amount of iron oxide in the right-side hydrogen generator 1 and the remaining amount of iron in the left-side hydrogen generator 1 are less than a predetermined amount, the settings of high temperature and low temperature are switched. Is also possible. Thereby, the hydrogen generator 1 used for a power generation operation and a charging operation can be switched.
  • controller 7 uses the flow rate controller 14 to control the ratio of the amount of gas flowing into the right hydrogen generator 1 and the amount of gas flowing into the left hydrogen generator 1, thereby generating right hydrogen generation.
  • the setting of the equilibrium water vapor partial pressure ratio can be smoothly changed without changing the temperature setting of the generator 1 and the temperature setting of the left hydrogen generator 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 2次電池型燃料電池システムは、水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生器(1)と、発電機能及び水の電気分解機能を有するSOFC(5)とを備え、水素発生部(1)とSOFC(5)との間で水素及び水蒸気を含むガスを循環させるシステムであって、さらに、水素発生器(1)の水蒸気分圧比を設定する水蒸気分圧比設定部(ヒータ(2)、温度センサ(3)、コントローラ(7))を備える。

Description

2次電池型燃料電池システム
 本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。
 燃料電池は、水素と酸素から水を生成した際に電力を取り出すものであり、原理的に取り出せる電力エネルギの効率が高いため、省エネルギになるだけでなく、発電時の排出物が水のみであるため、環境に優れた発電方式であり、地球規模でのエネルギや環境問題解決の切り札として期待されている。
 燃料電池の利用形態は様々であるが、その一つにEV(electric vehicle)に搭載され、EVの動力源として利用される形態がある。このような利用形態では、EVが移動体であり、移動距離を長くするために、長期間に渡って燃料を供給することが望まれる。
 このため、特許文献1や特許文献2は、複数の水素吸蔵合金タンクを備え、これらの水素吸蔵合金タンクを順次使用する燃料電池システムを開示している。
特開2001-295996号公報 特開2007―26683号公報
 しかしながら、特許文献1や特許文献2で開示された燃料電池システムのいずれも、複数の水素吸蔵合金タンクを順次使用するものであるが、当該タンクからは水素が出力されるだけであり、2次電池として機能するものではない。したがって、発電と充電とをシームレスに行うことはできない。
 本発明は、上記の状況に鑑み、発電と充電をシームレスに行うことができる2次電池型燃料電池システムを提供することを目的とする。
 上記目的を達成するために本発明に係る2次電池型燃料電池システムは、水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生部と、前記水素発生部から供給される水素を燃料にして発電を行う発電機能及び前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、前記水素発生部と前記発電・電気分解部との間で水素及び水蒸気を含むガスを循環させる2次電池型燃料電池システムであって、前記水素発生部の水蒸気分圧比を設定する水蒸気分圧比設定部を備える構成としている。尚、前記発電・電気分解部は、例えば、前記水素発生部から供給される水素を燃料にして発電を行う発電動作と、前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解動作とを切り替える燃料電池を備える構成であってもよく、また、例えば、前記水素発生部から供給される水素を燃料にして発電を行う燃料電池と、前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解器とを別個に備える構成であってもよい。
 本発明によると、発電と充電をシームレスに行うことができる2次電池型燃料電池システムを実現することができる。
本発明の一実施形態に係る燃料電池システムの概略構成を示す模式図である。 固体酸化物型燃料電池(SOFC)の概略構成を示す模式図である。 鉄と酸化鉄とのエネルギの関係を示す図である。 水素発生器内の水蒸気分圧比について説明する図である。 本発明の一実施形態に係る燃料電池システムの動作例を示すフローチャートである。 本発明の他の実施形態に係る燃料電池システムの概略構成を示す模式図である。 図6を簡略化して本発明の他の実施形態に係る2次電池型燃料電池システムの動作を説明する図である。
 本発明の実施形態について図面を参照して以下に説明する。尚、本発明は、後述する実施形態に限られない。
<2次電池型燃料電池システムの構成>
 図1は、本発明の一実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、鉄の微粒子圧縮体が収容された水素発生器1を備えている。さらに、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、水素発生器1を加熱するヒーター2と、水素発生器1の温度を検出する温度センサ3と、水素発生器1の鉄残量を検出する残量センサ4とを備えている。残量センサ4は、例えば、鉄と酸化鉄の重量差を利用して、水素発生器1の重量変化から水素発生器1の鉄残量を検出するものを用いることができる。なお、この鉄残量は、水素発生器1から発生することが可能な水素残量ということができる。
 図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、水素を燃料として発電し水を発生する燃料電池の一つである固体酸化物型燃料電池(SOFC)5を備えている。水素発生器1は、ガスを循環できるガス循環経路によってSOFC5に接続されている。
 上記循環経路には循環器6が設けられている。循環器6は、ブロア又はポンプであって、上記循環経路内のガスを強制循環させる。
 コントローラ7は、システム全体の制御を行うものであり、温度センサ3から出力される温度情報及び残量センサ4から出力される残量情報を元に、ヒーター2、循環器6を個別に制御し、水素発生器1の反応条件を設定し、SOFC5に水素を供給してSOFC5に発電動作を行わせ、負荷であるモータ8を駆動させる。
 また、コントローラ7は、モータ8の回生電力が発生した場合や外部電源入力端子9に外部電源(不図示)からの電力が供給された場合に、SOFC5を電気分解器として作動させ、水素発生器1の再生を行ってシステムの充電を行う。
 コントローラ7に接続されているリチウムイオン2次電池10は、起動時にヒーター2等を動作させるための電力を供給するものであって、SOFC5の発電又は外部電源入力端子9に接続された外部電源(不図示)からの電力により再充電可能である。
<SOFCの構成及び動作>
 SOFC5は、図2に示す通り、O2-を透過する固体電解質11を挟み、その両側にそれぞれ酸化剤極12と燃料極13が形成されている3層構造をなしている。SOFC5では、発電動作時に、燃料極13において下記の(1)式の反応が起こる。
+O2-→HO+2e …(1)
 上記の(1)式の反応によって生成された電子は、負荷であるモータ8を通って、酸化剤極12に到達し、酸化剤極12において下記の(2)式の反応が起こる。
1/2O+2e→O2- …(2)
 そして、上記の(2)式の反応によって生成された酸素イオンは、固体電解質11を通って、燃料極13に到達する。上記の一連の反応を繰り返すことにより、SOFC5が発電動作を行うことになる。また、上記の(1)式から分かるように、発電動作時には、燃料極13側においてHが消費されHOが生成されることになる。
 一方、SOFC5では、電気分解器として作動する場合、上記の(1)式及び(2)式の逆反応が起こり、燃料極13側においてHOが消費されHが生成される。
 上記のように燃料極13側で消費されたり生成されたりするガス(水素ガス、水蒸気ガス)が、SOFC5の燃料極13側と水素発生器1との間を循環する。
<水素発生器での反応>
 水素発生器1は、鉄の微粒子圧縮体を収容しているので、下記の(3)式に示す酸化反応により、水素を発生することができる。
  3Fe+4HO→Fe+4H …(3)
 上記の(3)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(3)式の逆反応(還元反応)により、水素発生器1を再生することができ、システムを充電することができる。
 ここで、鉄(Fe)と酸化鉄(Fe)とのエネルギの関係を図3に示す。鉄(Fe)は酸化鉄(Fe)よりもエネルギが高いので、鉄(Fe)が酸化鉄(Fe)に変化する反応(酸化反応)は外部に熱を放出する発熱反応になり、酸化鉄(Fe)が鉄(Fe)に変化する反応(還元反応)は吸熱反応になる。
 また、反応が起こるには分子が活性化エネルギEa以上のエネルギを持つことが必要であるが、図3から分かるように、酸化反応の活性化エネルギEa(Fe→Fe)よりも、逆の還元反応の活性化エネルギEa(Fe→Fe)の方が大きい。すなわち、鉄の酸化反応よりも酸化鉄の還元反応の方が反応しにくい。
 反応しやすさを示す反応速度定数kは、気体定数R、絶対温度T、頻度因子A、及び活性化エネルギEaを用いた下記の(4)式で表すことができる。そして、反応速度定数kと濃度との積で反応速度が与えられる。尚、触媒を用いると、活性化エネルギEaを下げることができる。
 k=Aexp(-Ea/RT) …(4)
 上記の(4)式から分かるように、温度を上げると、指数関数的に反応速度kが上がることになる。
 触媒なしのFeの場合Eaは約60kJであり、還元速度として、発明者による実験では、320℃でFe1gあたりHのモル数換算で約3μmol/minが得られている。Feの還元にはFe1gあたり0.0238molのHが必要であり、実用的な還元時間として10時間を考えると、Fe1gあたりHのモル数換算で約40μmol/minの還元速度が得られることが望ましい。上述の触媒なしのFeの場合の還元速度に基づいて、40μmol/minの還元速度が得られるEa/Tを計算すると0.0797kJ/Kとなる。したがって、下記の(5)式を満足することが望ましい。触媒として、例えばAlを用いるとEaを約46kJ、Ni-Crを用いるとEaを約21.5kJと下げることができ、必要となる温度を低減することができる。
 T>12.55Ea …(5)
<水素発生器内の水蒸気分圧比>
 図4は、水素発生器1内の水蒸気分圧比について説明する図である。水素発生器1内に鉄(Fe)と酸化鉄(Fe)が混在する状態で、水素発生器1内に水素ガスと水蒸気ガスの混合気体が存在するとき、鉄の酸化反応の反応速度と酸化鉄の還元反応の反応速度とが一致する平衡状態で安定する。図4に示す曲線はこの平衡状態を示している。したがって、平衡状態における水蒸気分圧比は、高温になるほど高くなる。例えば、300℃の温度条件下で水蒸気分圧比10%の混合ガスを水素発生器1に投入すると、平衡状態での水蒸気分圧比は4%(<10%)であるので、水蒸気を消費する鉄の酸化反応が優勢になり、最終的に水蒸気分圧比4%で安定する。これに対して、400℃の温度条件下で水蒸気分圧比4%の混合ガスを水素発生器1に投入すると、平衡状態での水蒸気分圧比は10%(>4%)であるので、水蒸気を生成する酸化鉄の還元反応が優勢になり、最終的に水蒸気分圧比10%で安定する。
<2次電池型燃料電池システムの動作>
 次に、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムをEVに搭載し、EVの動力源として利用した場合を例に挙げて、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムの動作について説明する。
 EVを走行させるために水素発生器1に水素を発生させて発電を行う場合、コントローラ7は、水素発生器1をヒーター2によって加熱(ここでは320℃に加熱)し、循環器6を起動してガスを循環させる。SOFC5は、循環経路内にある水素ガスを消費し水蒸気ガスを発生させながら発電を行う。ここで、SOFC5で発生した水蒸気は、320℃での平衡水蒸気分圧比の4.5%よりも分圧比が高くなれば鉄の酸化反応が優勢になり、水素発生器1内で水蒸気ガスが水素ガスに置き換わり、水蒸気分圧比4.5%、水素分圧比95.5%の状態に戻ろうとする。この水素ガスが、再びSOFC5で消費され水蒸気ガスが発生するというサイクルで発電が継続される。
 一方、水素発生器1を再生してシステムの充電を行う場合、コントローラ7は、水素発生器1をヒーター2によって加熱(ここでは320℃)し、循環器6を起動してガスを循環させる。また、SOFC5を電気分解器として作動させる。この場合、SOFC5は循環経路内にある水蒸気ガスを消費し水素ガスを発生させる。ここで、水素発生器1で発生した水蒸気は、320℃での平衡水蒸気分圧比の4.5%よりも分圧比が低ければ酸化鉄の還元反応が優勢になり、水素発生器1内で水素ガスが水蒸気ガスに置き換わり、水蒸気分圧比4.5%、水素分圧比95.5%の状態に戻ろうとする。この水蒸気ガスが、再びSOFC5で消費され水素ガスが発生するというサイクルで水素発生器1が再生されシステムの充電が継続される。
 上記の通り水素発生器1では、酸化還元の可逆反応が可能な320℃に設定しているだけで、320℃での平衡水蒸気分圧比の4.5%に向かうような反応が自然に行われる。したがって、水素発生器1において特別な切り替え動作をせず、さらに設定温度の変更もしなくても、システムの発電充電を短期に繰り返すことができる。
 なお、本実施形態では、1つのSOFC5が発電も水の電気分解も行っているが、水素発生器1が、燃料電池(例えば発電専用のSOFC)と水の電気分解器(例えば水の電気分解専用のSOFC)それぞれにガス循環経路上並列に接続される構成にしてもよい。また、水素発生器1の基材料(主成分)は、鉄に限定されず、水で酸化し水素で還元できるもの(例えばマグネシウム合金等)であればよい。
<2次電池型燃料電池システムの他の動作>
 次に、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムをEVに搭載し、EVの動力源として利用した場合を例に挙げ、図5に示すフローチャートを参照して、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムの他の動作について説明する。
 発電動作モードでは、発電のために消費される水素ガスが潤沢にあることが望ましく、充電動作モードでは、充電のために消費される水蒸気ガスが潤沢にあることが望ましい。発電動作モードにおいて、水蒸気分圧比の設定を小さくすれば、水素ガスの発生が促進されるので発電電流を大きくすることができる。また、充電動作モードにおいて、水蒸気分圧比の設定を大きくすれば、水蒸気ガスの発生が促進されるので充電電流を大きくすることができる。そこで、図5に示すフローチャートでは、各モードで消費される各ガスがより多く存在するような制御動作を実行している。
 図1に示す本発明の一実施形態に係る2次電池型燃料電池システムが起動すると、図5に示すフローチャート動作が開始する。まず、コントローラ7は、外部電源入力端子9に外部電源が接続されているか否かを判定する(ステップS10)。
 外部電源入力端子9に外部電源が接続されていれば(ステップS10のYES)、充電動作モードになり、後述するステップS60に移行する。
 これに対して、外部電源入力端子9に外部電源が接続されていなければ(ステップS10のNO)、コントローラ7は、EV本体の制御部からEVの運転状態に関する情報を受け取り、当該情報に基づいてEVが走行中であるか否かを判定する(ステップS20)。なお、信号待ち等のアイドリング状態である場合は走行中に含めることが望ましいが、所定時間を越える一時停止は走行中から除外するようにしてもよい。
 EVが走行中でなければ(ステップS20のNO)、ステップS10に戻り、EVが走行中であれば(ステップS20のYES)、発電動作モードになり、ステップS30に移行する。
 ステップS30において、コントローラ7は、電力回生可能な設定にするか否かを判定する。例えば、EVが所定の速度以上で走行中の場合は電力回生可能な設定とし、EVが所定の速度未満で走行中の場合は電力回生を行わない設定とすればよい。電力回生可能な設定でなければ(ステップS30のNO)、コントローラ7は、水素発生器1の温度設定を100℃にし(ステップS40)、その後、ステップS10に戻る。この場合、平衡水蒸気分圧比は0.1%となる。これに対して、電力回生可能な設定であれば(ステップS30のYES)、コントローラ7は、水素発生器1の温度設定を320℃にし(ステップS50)、その後、ステップS10に戻る。この場合、平衡水蒸気分圧比は4.5%となる。
 なお、この発電動作モードにおける温度設定は、ヒーター2を制御するために用いられ、設定された温度になるまでヒーター2をオンし、設定された温度になればヒーター2をオフすればよい。これは、この発電動作モードでは、鉄の酸化反応により水素を発生させる発熱反応が生じるため、ヒーター2によって継続的に加熱する必要はないためである。更に、設定された温度よりも温度センサ3で検出された温度が高くなったとしても、反応が加速されるため冷却する必要はない。
 一方、上述した充電動作モードでは、コントローラ7は、高速充電を行う設定(高速充電モード)にするか否かを判定する(ステップS60)。高速充電を行わない設定(通常充電モード)であれば(ステップS60のNO)、コントローラ7は、水素発生器1の温度設定を400℃にし(ステップS70)、その後、ステップS10に戻る。この場合、平衡水蒸気分圧比は10%となる。これに対して、高速充電を行う設定であれば(ステップS60のYES)、コントローラ7は、水素発生器1の温度設定を600℃にし(ステップS80)、その後、ステップS10に戻る。この場合、平衡水蒸気分圧比は20%となる。
 なお、この充電動作モードにおける温度設定もまた、ヒーター2を制御するために用いられ、設定された温度に維持するようにヒーター2の駆動制御を行う。この充電動作モードでは、酸化鉄の還元反応により水蒸気を発生させる吸熱反応が生じるため、ヒーター2による加熱を継続的に行う必要がある。したがって、温度センサ3で検出された温度が設定された温度となるようにヒーター2の駆動を制御する。
<2次電池型燃料電池システムの他の構成>
 図6は、本発明の他の実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。なお、図6において図1と同一の部分には同一の符号を付す。図6に示す本発明の他の実施形態に係る2次電池型燃料電池システムは、鉄の微粒子圧縮体が収容された水素発生器1を2つ備えている。さらに、図6に示す本発明の他の実施形態に係る2次電池型燃料電池システムは、各水素発生器1を個別に加熱する複数のヒーター2と、各水素発生器1の温度を個別に検出する複数の温度センサ3と、各水素発生器1の鉄残量を個別に検出する残量センサ4とを備えている。残量センサ4は、例えば、鉄と酸化鉄の重量差を利用して、水素発生器1の重量変化から水素発生器1の鉄残量を検出するものを用いることができる。
 図6に示す本発明の他の実施形態に係る2次電池型燃料電池システムは、水素を燃料として発電し水を発生する燃料電池の一つである固体酸化物型燃料電池(SOFC)5を備えている。各水素発生器1はそれぞれ、ガスを循環できるガス循環経路によってSOFC5に並列に接続されている。
 上記循環経路には循環器6が設けられている。循環器6は、ブロア又はポンプであって、上記循環経路内のガスを強制循環させる。また、上記循環経路には、各水素発生器1のガス流量を個別に制御する流量制御器14が設けられている。なお、図中、流量制御器14は、各水素発生器1の一方側だけに簡略的に図示しているが、循環経路から各水素発生器1を経由するガスの流量を制御するものである。
 コントローラ7は、システム全体の制御を行うものであり、本実施形態では、各温度センサ3から出力される各温度情報及び各残量センサ4から出力される各残量情報を元に、ヒーター2、循環器6、流量制御器14を個別に制御し、各水素発生器1の反応条件を設定し、SOFC5に水素を供給してSOFC5に発電動作を行わせ、負荷であるモータ8を駆動させる。
 また、コントローラ7は、モータ8の回生電力が発生した場合や外部電源入力端子9に外部電源(不図示)からの電力が供給された場合に、SOFC5を電気分解器として作動させ、水素発生器1の再生を行ってシステムの充電を行う。
 コントローラ7に接続されているリチウムイオン2次電池10は、起動時にヒーター2等を動作させるための電力を供給するものであって、SOFC5の発電又は外部電源入力端子9に外部電源(不図示)からの電力により再充電可能である。
 図7は、図6を簡略化して本発明の他の実施形態に係る2次電池型燃料電池システムの電力回生対応動作を説明する図である。図7において、右側の水素発生器1は高温(例えば400℃)にし、左側の水素発生器1は低温(例えば100℃)にしている状態とする。
 右側の水素発生器1に流入するガス量と左側の水素発生器1に流入するガス量とが同等であれば、右側の水素発生器1の設定温度に対応する平衡水蒸気分圧比と左側の水素発生器1の設定温度に対応する平衡水蒸気分圧比との平均が、図6及び7に示す本発明の他の実施形態に係る2次電池型燃料電池システムにおいて設定している平衡水蒸気分圧比となる。
 この状態で循環経路の水蒸気分圧比が両水素発生器1の温度に基づく平衡水蒸気分圧比の中間の値であれば、高温に設定されている右側の水素発生器1で還元反応が優勢になり、低温に設定されている左側の水素発生器1で酸化反応が優勢になる。したがって、発電動作と充電動作とを同時に行うことが可能となる。一方、発電動作のみを実行する場合には、流量制御器14を用いて右側の水素発生器1へのガスの循環を停止し、左側の水素発生器1だけを用いればよい。逆に、充電動作のみを実行する場合には、流量制御器14を用いて左側の水素発生器1へのガスの循環を停止し、右側の水素発生器1だけを用いることができる。このように複数の水素発生器1の温度を異なる値に設定しておくことで、どちらの水素発生器1を用いるかによって水蒸気分圧比の設定値を変更することができる。また、右側の水素発生器1内での酸化鉄の残量、左側の水素発生器1内での鉄の残量がそれぞれ所定量よりも少なくなると、高温と低温の設定を入れ替えるようにすることも可能である。これにより、発電動作及び充電動作に用いる水素発生器1を切り替えることができる。
 さらに、コントローラ7が、流量制御器14を用いて、右側の水素発生器1に流入するガス量と左側の水素発生器1に流入するガス量との比を制御することで、右側の水素発生器1の温度設定及び左側の水素発生器1の温度設定を変更することなく、平衡水蒸気分圧比の設定をスムーズに変更することができる。
   1 水素発生器
   2 ヒーター
   3 温度センサ
   4 残量センサ
   5 固体酸化物型燃料電池(SOFC)
   6 循環器
   7 コントローラ
   8 モータ
   9 外部電源入力端子
   10 リチウムイオン2次電池
   11 固体電解質
   12 酸化剤極
   13 燃料極
   14 流量制御器

Claims (6)

  1.  水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生部と、
     前記水素発生部から供給される水素を燃料にして発電を行う発電機能及び前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、
     前記水素発生部と前記発電・電気分解部との間で水素及び水蒸気を含むガスを循環させる2次電池型燃料電池システムであって、
     前記水素発生部の水蒸気分圧比を設定する水蒸気分圧比設定部を備えることを特徴とする2次電池型燃料電池システム。
  2.  前記水蒸気分圧比設定部が、前記水素発生部の温度を設定する温度設定部であり、
     前記温度設定部によって設定される温度に基づいて制御されるヒーターを備えたことを特徴とする請求項1に記載の2次電池型燃料電池システム。
  3.  前記水素発生部における還元反応の活性化エネルギEaと前記温度設定部によって設定される温度Tとが、
     T>12.55Ea
    の関係を満たすことを特徴とする請求項2に記載の2次電池型燃料電池システム。
  4.  前記水素発生部が複数の水素発生器によって構成され、
     前記水蒸気分圧比設定部が、前記複数の水素発生器それぞれを個別に温度設定することができる温度設定部を有することを特徴とする請求項1に記載の2次電池型燃料電池システム。
  5.  前記水蒸気分圧比設定部が、前記複数の水素発生器それぞれを循環するガスの流量を個別に制御することができる流量制御部を有することを特徴とする請求項4に記載の2次電池型燃料電池システム。
  6.  通常充電モードと高速充電モードとを有し、
     前記高速充電モード時は前記通常充電モード時よりも、前記水蒸気分圧比設定部によって設定される水蒸気分圧比が大きいことを特徴とする請求項1~5のいずれか1項に記載の2次電池型燃料電池システム。
PCT/JP2011/071199 2010-09-29 2011-09-16 2次電池型燃料電池システム WO2012043271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012536347A JP5617928B2 (ja) 2010-09-29 2011-09-16 2次電池型燃料電池システム
US13/824,942 US20150140460A1 (en) 2010-09-29 2011-09-16 Secondary Battery Type Fuel Cell System
EP11828831.5A EP2624354A4 (en) 2010-09-29 2011-09-16 FUEL CELL SYSTEM WITH SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-218581 2010-09-29
JP2010218581 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043271A1 true WO2012043271A1 (ja) 2012-04-05

Family

ID=45892738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071199 WO2012043271A1 (ja) 2010-09-29 2011-09-16 2次電池型燃料電池システム

Country Status (4)

Country Link
US (1) US20150140460A1 (ja)
EP (1) EP2624354A4 (ja)
JP (1) JP5617928B2 (ja)
WO (1) WO2012043271A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053133A (ja) * 2012-09-06 2014-03-20 Konica Minolta Inc 燃料電池システム
WO2014045894A1 (ja) 2012-09-19 2014-03-27 コニカミノルタ株式会社 燃料電池システム
WO2014045895A1 (ja) * 2012-09-18 2014-03-27 コニカミノルタ株式会社 2次電池型燃料電池システム
WO2014123020A1 (ja) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 燃料電池システム
WO2014188904A1 (ja) * 2013-05-23 2014-11-27 コニカミノルタ株式会社 給電システム
WO2014192795A1 (ja) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 2次電池型燃料電池システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT523920B1 (de) * 2020-08-14 2022-01-15 Avl List Gmbh Gaserzeugungsvorrichtung zur Umwandlung elektrischer Energie in speicherbares Nutzgas
CN113764706B (zh) * 2020-12-31 2023-03-21 厦门大学 一种具有主动循环系统的二次燃料电池
CN113764709A (zh) * 2020-12-31 2021-12-07 厦门大学 一种基于复合材料的二次燃料电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501448A (ja) * 1995-01-25 1999-02-02 ウエスチングハウス・エレクトリック・コーポレイション 電気化学的エネルギ変換貯蔵装置
JP2001295996A (ja) 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2002161999A (ja) * 2000-11-27 2002-06-07 Honda Motor Co Ltd 水素貯蔵タンク
JP2005206459A (ja) * 2003-12-26 2005-08-04 Itec Co Ltd 水素ガス発生装置及び水素ガス発生方法
JP2005289680A (ja) * 2004-03-31 2005-10-20 Toho Gas Co Ltd 水素製造装置および水素製造方法
JP2005336016A (ja) * 2004-05-28 2005-12-08 Uchiya Thermostat Kk 水素発生媒体及び水素製造方法
JP2007026683A (ja) 2005-07-12 2007-02-01 Japan Steel Works Ltd:The 燃料電池システム
JP2008121096A (ja) * 2006-11-15 2008-05-29 Mitsubishi Electric Corp 金属酸化物の還元方法及び水素製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008904A1 (en) * 2003-07-11 2005-01-13 Suppes Galen J. Regenerative fuel cell technology

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501448A (ja) * 1995-01-25 1999-02-02 ウエスチングハウス・エレクトリック・コーポレイション 電気化学的エネルギ変換貯蔵装置
JP2001295996A (ja) 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2002161999A (ja) * 2000-11-27 2002-06-07 Honda Motor Co Ltd 水素貯蔵タンク
JP2005206459A (ja) * 2003-12-26 2005-08-04 Itec Co Ltd 水素ガス発生装置及び水素ガス発生方法
JP2005289680A (ja) * 2004-03-31 2005-10-20 Toho Gas Co Ltd 水素製造装置および水素製造方法
JP2005336016A (ja) * 2004-05-28 2005-12-08 Uchiya Thermostat Kk 水素発生媒体及び水素製造方法
JP2007026683A (ja) 2005-07-12 2007-02-01 Japan Steel Works Ltd:The 燃料電池システム
JP2008121096A (ja) * 2006-11-15 2008-05-29 Mitsubishi Electric Corp 金属酸化物の還元方法及び水素製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624354A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053133A (ja) * 2012-09-06 2014-03-20 Konica Minolta Inc 燃料電池システム
WO2014045895A1 (ja) * 2012-09-18 2014-03-27 コニカミノルタ株式会社 2次電池型燃料電池システム
WO2014045894A1 (ja) 2012-09-19 2014-03-27 コニカミノルタ株式会社 燃料電池システム
WO2014123020A1 (ja) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 燃料電池システム
WO2014188904A1 (ja) * 2013-05-23 2014-11-27 コニカミノルタ株式会社 給電システム
WO2014192795A1 (ja) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 2次電池型燃料電池システム
JP5679097B1 (ja) * 2013-05-29 2015-03-04 コニカミノルタ株式会社 2次電池型燃料電池システム

Also Published As

Publication number Publication date
EP2624354A1 (en) 2013-08-07
US20150140460A1 (en) 2015-05-21
JP5617928B2 (ja) 2014-11-05
JPWO2012043271A1 (ja) 2014-02-06
EP2624354A4 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5617928B2 (ja) 2次電池型燃料電池システム
JP5556892B2 (ja) 2次電池型燃料電池システム
JP4888519B2 (ja) 燃料電池システムおよびその制御方法
JP5640884B2 (ja) 2次電池型燃料電池システム
JP2008527648A (ja) 再充電可能な蓄電装置の使用による電圧サイクリングにより引き起こされる電圧損失の減少
JPWO2011040182A1 (ja) 燃料電池装置
JP5617592B2 (ja) 2次電池型燃料電池システム
US20150044584A1 (en) Fuel Cell System
WO2012070487A1 (ja) 2次電池型燃料電池システム
JP5505583B1 (ja) 2次電池型燃料電池システム
JP2002110210A (ja) ハイブリッド燃料電池システム
JP2005346984A (ja) 電子機器システム、燃料電池ユニットおよび給電制御方法
JP5168431B2 (ja) 2次電池型固体酸化物燃料電池システム
JP5896015B2 (ja) 2次電池型燃料電池システム
JP2012079558A (ja) 2次電池型燃料電池システム
JP5673907B1 (ja) 2次電池型燃料電池システム
JP5679097B1 (ja) 2次電池型燃料電池システム
JP5895736B2 (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP5516726B2 (ja) 燃料電池装置
WO2014188904A1 (ja) 給電システム
JP5776842B2 (ja) 2次電池型燃料電池システム
JP2012119127A (ja) 2次電池型燃料電池システム
CN104885279A (zh) 发电系统
JP2012252877A (ja) 2次電池型燃料電池システム
JP2010129343A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536347

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011828831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13824942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE