Nothing Special   »   [go: up one dir, main page]

WO2011122881A2 - 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유 - Google Patents

탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유 Download PDF

Info

Publication number
WO2011122881A2
WO2011122881A2 PCT/KR2011/002236 KR2011002236W WO2011122881A2 WO 2011122881 A2 WO2011122881 A2 WO 2011122881A2 KR 2011002236 W KR2011002236 W KR 2011002236W WO 2011122881 A2 WO2011122881 A2 WO 2011122881A2
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
carbon fiber
precursor
elongation
carbon
Prior art date
Application number
PCT/KR2011/002236
Other languages
English (en)
French (fr)
Other versions
WO2011122881A3 (ko
Inventor
윤준영
조은정
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN2011800179177A priority Critical patent/CN102822400A/zh
Priority to JP2013502483A priority patent/JP5722991B2/ja
Priority to EP11763053.3A priority patent/EP2554725B1/en
Priority to US13/638,706 priority patent/US9187847B2/en
Publication of WO2011122881A2 publication Critical patent/WO2011122881A2/ko
Publication of WO2011122881A3 publication Critical patent/WO2011122881A3/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch

Definitions

  • the present invention relates to a method for producing carbon fibers and precursor fibers for carbon fibers.
  • carbon fiber Since carbon fiber has higher specific strength and inelasticity than other fibers, it is a reinforcing fiber for composite materials.
  • carbon fiber In addition to conventional sports use, aerospace and aerospace applications, carbon fiber is used in automobiles, civil engineering, construction, pressure vessels and windmill blades. It is widely deployed in general industrial use, and there is a high demand for further productivity improvement or production stabilization.
  • PAN Polyacrylonitrile
  • Such carbon fibers are continuously expanding their applications and demand high performance.
  • the precursor fiber for producing conventional carbon fiber has a water content of about 4% or less, so that additional stretching for improving physical properties in the flameproofing process is performed. It is difficult to give, and there is a limit to improving the strength of the carbon fiber finally manufactured.
  • the present invention improves the mechanical properties by giving additional stretching or shrinkage freely in the flameproofing and carbonization process, to provide a method for producing a carbon fiber that can provide a high-performance carbon fiber and a precursor fiber for the carbon fiber therefor .
  • Method for producing a carbon fiber of the present invention comprises the steps of preparing a polyacrylonitrile-based polymer solution; Spinning a spinning solution comprising a polyacrylonitrile-based polymer to prepare precursor fibers for carbon fibers having a water content of 20 to 50%; Converting the precursor fibers for carbon fibers into preliminary flame resistant fibers while drawing them at a rate of -10 to -0.1% or 0.1 to 5% in air at a temperature of 180 ° C to 220 ° C; Converting the precursor fibers for carbon fibers, which are converted into preliminary flame resistant fibers, into flame resistant fibers while drawing in an elongation of -5.0 to 5.0% in air at a temperature of 200 to 300 ° C; And carbonizing by heating in an inert atmosphere.
  • the process for producing the precursor fiber for carbon fiber spinning the spinning solution containing a polyacrylonitrile-based polymer and discharged into a coagulation bath to coagulate the yarn (collected body of the spun multifilament), washed with water, extended , Emulsification and dry densification processes.
  • the step of converting the preliminary flame-resistant fiber is preferably carried out so that the elongation is 0.1 to 5.0% when the carbon fiber is to specifically improve the high strength properties.
  • the process of converting the preliminary flameproof fiber into flameproof fiber may be performed such that the elongation is 0 to 5%.
  • the step of carbonizing the flame-resistant fiber may be precarbonized in an inert atmosphere at a temperature of 300 to 800 ° C, and carbonized while stretching in an inert atmosphere at a temperature of 1,000 to 3,000 ° C.
  • the stretching in the carbonization treatment of the pre-carbonized fiber may be performed so that the elongation is -5.0 ⁇ 5.0%. At this time, more preferable elongation is 3.1 to 5.0%.
  • the total elongation of the precursor fiber for carbon fiber may be performed such that the total elongation of the carbon fiber precursor fiber is -10.0 to 10.0%. At this time, more preferable elongation is 5.1-10.0%.
  • Precursor fiber for carbon fiber of the present invention is a polyacrylonitrile-based fiber, the water content is 20.0 ⁇ 50.0%.
  • the carbon fiber manufacturing method of the present invention by applying a precursor fiber for carbon fiber having a high water content, it is possible to perform a preliminary flameproofing step before the flameproofing step and also to improve the stretching ratio. The mechanical properties can be improved, and as a result, high performance carbon fibers can be provided.
  • the precursor fiber for carbon fiber of the present invention consists of a polymer containing a polyacrylonitrile-based polymer (sometimes abbreviated as PAN-based polymer), wherein the polyacrylonitrile-based polymer is a polymer containing acrylonitrile as a main component.
  • PAN-based polymer a polyacrylonitrile-based polymer
  • the polyacrylonitrile-based polymer is a polymer containing acrylonitrile as a main component.
  • PAN-based polymer a polymer containing at least 85 mol% of acrylonitrile in all monomers.
  • the polyacrylonitrile-based polymer may be obtained by solution polymerization by introducing a polymerization initiator into a solution containing a monomer composed mainly of acrylonitrile (sometimes referred to as AN). Besides the solution polymerization method, suspension polymerization method or emulsion polymerization method can be applied.
  • monomers copolymerizable with acrylonitrile may be included, which may serve to promote flame resistance, and examples thereof include acrylic acid, methacrylic acid, or itaconic acid.
  • the polymerization After the polymerization, it usually involves a process of neutralizing using a polymerization terminator, which serves to prevent rapid solidification in the coagulation bath when spinning the spinning stock solution containing the obtained polyacrylonitrile-based polymer.
  • a polymerization terminator which serves to prevent rapid solidification in the coagulation bath when spinning the spinning stock solution containing the obtained polyacrylonitrile-based polymer.
  • ammonia may be used as the polymerization terminator, but is not limited thereto.
  • a polymer is obtained from a monomer containing acrylonitrile as a main component, and then neutralized using the polymerization terminator described above to prepare a solution containing a polyacrylonitrile-based polymer in the form of a salt with ammonium ions.
  • the polymerization initiator used for the polymerization is not particularly limited, and oil-soluble azo compounds, water-soluble azo compounds, peroxides, and the like are preferable, and from the viewpoint of polymerization in terms of safety in handling and industrial efficiency,
  • polymerization at the time of decomposition is used preferably, and when superposing
  • polymerization initiator examples include 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2,4'-dimethylvaleronitrile), and 2 And 2'-azobisisobutyronitrile.
  • polymerization temperature according to the kind and quantity of a polymerization initiator, Preferably it may be 30 degreeC or more and 90 degrees C or less.
  • the solution containing the obtained polyacrylonitrile-based polymer has a solid content of 10 to 25% by weight, and when it is applied as a spinning stock solution for preparing precursor fibers for carbon fibers, solvent removal during spinning is easy and It may be advantageous in terms of preventing tar and impurities generated during the flameproofing process and maintaining a uniform density of the filament.
  • the solution containing the polyacrylonitrile-based polymer thus obtained can be used as a spinning stock solution in a precursor fiber manufacturing process for carbon fibers, and the spinning stock solution can be spun to obtain precursor fibers for carbon fibers.
  • the spinning stock solution may include an organic or inorganic solvent as a solvent together with the polyacrylonitrile-based copolymer. Examples of the organic solvent include dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, and the like.
  • the spinning method may be a dry spinning method, a wet spinning method or a dry wet spinning method.
  • the dry spinning method is a method of discharging a spinning stock solution from a hole in a high-temperature gas atmosphere to evaporate the solvent to concentrate and solidify it. As the winding speed becomes the evaporation speed of the solvent, the closed spinning method increases as the winding speed increases. There may be drawbacks such as the chamber becoming very long.
  • the wet spinning method is a method of discharging a spinning solution from a hole in a coagulation bath, and since solidification proceeds with three times or more swelling occurring immediately after the spinning solution is discharged from a hole, spinning even if the winding speed is increased.
  • the draft is not greatly increased, there is a problem that thread breakage may occur in terms of detention as the actual draft rate increases rapidly, and thus there may be a limitation in setting the winding speed high.
  • melt spinning method and other well-known methods can be used.
  • a method of discharging the above-mentioned spinning stock solution from the detention by a wet spinning method or a dry wet spinning method, and introducing the same into a coagulation bath to coagulate the fibers is preferably, a method of discharging the above-mentioned spinning stock solution from the detention by a wet spinning method or a dry wet spinning method, and introducing the same into a coagulation bath to coagulate the fibers.
  • the solidification rate and the stretching method can be appropriately set according to the purpose of the refractory fiber or carbon fiber.
  • the coagulation bath may contain so-called coagulation promoting components in addition to solvents such as dimethyl sulfoxide, dimethylformamide, and dimethyl acetamide.
  • coagulation promoting component it may be preferable to have a solvent and usability used in a spinning stock solution without dissolving the polyacrylonitrile-based polymer.
  • water examples include water.
  • the temperature of the coagulation bath and the amount of the coagulation facilitating component can be appropriately set depending on the purpose of the refractory fiber or carbon fiber as the target.
  • the precursor fibers for the carbon fibers can be obtained by washing with water, extending the oil, applying oil (oiling) and drying densification. At this time, it may extend
  • multistage stretching may be performed at low magnification or high magnification stretching with hot steam.
  • an oil agent to yarns, in order to prevent adhesion of short fibers, and to give an oil agent which consists of silicone etc. as an example. It is preferable that such silicone emulsion is modified silicone, and it may be preferable to contain network modified silicone having high heat resistance.
  • the short fiber fineness of the precursor fiber for carbon fiber obtained in this way is 0.01-3.0 dtex, More preferably, it is 0.05-1.8 dtex, More preferably, it is 0.8-1.5 dtex. If the short fiber fineness is too small, the process stability of the spinning process and the carbon fiber firing process may be lowered due to the occurrence of thread breakage due to contact with the roller or the guide. On the other hand, when the short fiber fineness is too large, the structural difference between the cross sections and the inner and outer layers in each short fiber after flame-proofing becomes large, and the processability fall in the subsequent carbonization process, and the tensile strength and tensile elastic modulus of the carbon fiber obtained may fall. That is, outside the above range, the firing efficiency may be drastically lowered.
  • the short fiber fineness (dtex) in this invention is the weight (g) per 10,000 m of short fibers.
  • the crystal orientation degree of the precursor fiber for carbon fiber of this invention is 85% or more, More preferably, it is 90% or more. If the crystal orientation is less than 85%, the strength of the precursor fiber obtained may be low.
  • the precursor fiber for carbon fiber of the present invention is preferably controlled so that the water content is 20 to 50%.
  • the control of the water content of the precursor fiber for carbon fiber may be performed through any step of discharging the spun polymer into the coagulation bath to coagulate thread, followed by washing, extending, emulsifying and dry densification (dry heat treatment).
  • the moisture content is controlled by controlling the heat treatment temperature in the dry heat treatment process step after reaching the final crystal orientation degree of 85% or more, or by controlling the oil supply concentration and amount when applying the emulsion to improve the process passability during the carbonization process of the carbon fiber precursor.
  • the moisture content of the precursor fiber for carbon fiber is controlled so that the water content is 20 to 50%.
  • the control of the water content of the precursor fiber for carbon fiber may be performed through any step of discharging the spun polymer into the coagulation bath to coagulate thread, followed by washing, extending, emulsifying and dry densification (dry heat treatment).
  • the moisture content is controlled by controlling the heat treatment temperature in
  • the carbon fiber precursor In general, in the case of the carbon fiber precursor, it is common to maintain the internal moisture content around 4%, which is the process moisture content level. This is generally applied to improve the strength and elongation of the carbon fiber precursor through dry densification in the drying process after the final stretching.
  • the present invention is based on the more effective mechanical properties of the carbon fiber in accordance with the stretching relaxation characteristics in the carbonization process than the physical properties of the carbon fiber precursor. Therefore, when the carbon fiber precursor is prepared, the heat treatment temperature may be heat treated at 100 to 180 ° C. in the final heat treatment process, but the heat treatment speed may be increased or the surface of the carbon fiber precursor fiber may be lightly heated using a far infrared heater. . When the moisture content of the carbon fiber precursor is formed to less than 20% due to the process characteristics, it is possible to improve the moisture content by additionally adding a low concentration of an emulsion after the final drying.
  • the water content of the precursor fiber for carbon fiber is 20 to 50%, it is possible to increase the elongation and shrinkage in the subsequent flame and carbonization process.
  • the precursor fiber for carbon fibers is obtained, followed by a flameproofing process, and stretching may be performed in parallel during the flameproofing process.
  • the carbon fiber precursor manufactured under the same conditions has a water content of 4%.
  • the total elongation of the carbon fiber finally obtained is -10 to 5%, which is small.
  • the stretching may be performed in a subsequent carbonization process after the flameproofing process, and the elongation at this time is further smaller at about -3 to 3% based on the previous stage fiber.
  • common carbon fiber precursors set carbonization conditions that focus on process stabilization through shrinkage rather than in the direction of enhancing mechanical properties through stretching.
  • the moisture content is controlled to 20 to 50% as a precursor fiber for carbon fibers, it is possible to further stretch under high temperature and high orientation conditions before water is completely removed while acting as a plasticizer in the flameproofing process.
  • the present invention is applied to a high water content as a carbon fiber precursor.
  • the water content of the carbon fiber precursor is 20 to 50%. If the water content is too high, the carbon fiber precursor is different in oxidation degree between the surface portion and the inner surface portion of the carbon fiber precursor fiber in the flameproofing and carbonization process, resulting in a sheath-core effect or a hollow inside. Can be generated. These conditions can also cause peroxidation to substantially reduce the strength of the carbon fiber or can be a detrimental factor in the process. Therefore, it may be desirable that the moisture content not exceed a maximum of 50%.
  • the precursor fiber for carbon fiber having a high water content it may be accompanied by a conventional flameproofing treatment, but in this case, a high temperature heat treatment immediately enters the supply portion of the carbon fiber precursor and 200 to 300 ° C.
  • a high temperature heat treatment immediately enters the supply portion of the carbon fiber precursor and 200 to 300 ° C.
  • the carbon fiber precursor shrinks rapidly due to the rapid heat treatment during the oxidative heat treatment process, it is difficult to achieve process stability due to cutting of the weak part in the bundle of carbon fiber precursors or uneven phenomenon of the oxidative heat treatment tension. This results in a condition in which a portion of the carbon fiber precursor is congested and burned.
  • the temperature range of 200 ⁇ 240 °C is a section where the maximum chemical shrinkage of the carbon fiber precursor is expressed, it is necessary to pay particular attention to the process stabilization.
  • the temperature of the flameproofing process is preferably set higher than the temperature of the preliminary flameproofing process
  • the preliminary flameproofing treatment is carried out with a high water content carbon fiber precursor fiber of 20 to 50% in air at a temperature of 180 to 220 °C, elongation of up to 5%, considering the shrinkage -10 ⁇ -0.1% or 0.1 ⁇ It is a method of preliminary flameproofing while extending to 5%. That is, since the carbon fiber precursor is a section that can mitigate the shock due to shrinkage before entering the flame resistant furnace, process stabilization and improvement of process properties are simultaneously achieved.
  • the temperature condition during preliminary flameproofing treatment is selected in consideration of the elongation property using the shrinkage rate of the carbon fiber and the plasticity of water, and if the temperature is lower than 180 ° C., only the level of single-stage drying and densification of the carbon fiber precursor If higher than 220 ° C., the carbon fiber precursor immediately enters the oxidation stabilization process, and there may be a problem in that the elongation of the water rapidly decreases due to the rapid volatilization of moisture.
  • the carbon fiber precursor may be too hardened and partly cut off, which may cause a problem of providing a cause of ignition during the flameproofing process. It is preferable not to exceed 5%, and it is preferable that it is 0.1 to 5% elongation from a viewpoint of improving strength.
  • the pre-salted treated carbon fiber precursor fiber prepared by the above-described method is subjected to flame-resistant treatment while stretching in air at a temperature of 200 to 300 ° C.
  • the elongation may be -5 to 5% (compared to the prefinished flameproof carbon fiber precursor fiber), and the upper limit of such elongation is preliminarily flameproofed using a high content carbon fiber precursor fiber.
  • elongation can be performed in order to secure high strength without undergoing flameproofing under shrinkage conditions, and thus the elongation can be increased as compared with normal flameproofing.
  • the elongation during the flameproofing is preferably 0 to 5% (compared to the precursor fiber for the preliminary flameproofed carbon fiber).
  • the stretching ratio is performed at 0.1% or more than zero.
  • precarbonization treatment is carried out in an inert atmosphere at a temperature of 300 to 800 ° C. while stretching according to the purpose, and carbonization is performed while stretching in an inert atmosphere at a maximum temperature of 1,000 to 3,000 ° C. according to the intended use.
  • precarbonization treatment is carried out in an inert atmosphere at a temperature of 300 to 800 ° C. while stretching according to the purpose, and carbonization is performed while stretching in an inert atmosphere at a maximum temperature of 1,000 to 3,000 ° C. according to the intended use.
  • the preliminary carbonization treatment and the carbonization treatment are carried out in an inert atmosphere.
  • the gas used in the inert atmosphere include nitrogen, argon, xenon, and the like, and nitrogen is preferably used from an economic point of view.
  • the maximum temperature in the carbonization treatment can be 1,000 to 3,000 ° C depending on the desired mechanical properties of the carbon fiber.
  • the maximum temperature of the carbonization treatment is also preferably 1,700 to 2,300 ° C.
  • the elongation when the carbonization treatment is performed after oxidation stabilization, the elongation may be -10.0 to 5.0%, preferably -5.0 to 5.0%, and preferably 3.1 to 5.0%.
  • the elongation at the time of carbonization treatment can be increased because ultimately the preliminary flameproofing and flameproofing process is applied by applying the precursor fiber for carbon fiber of high water content.
  • Carbon fibers obtained through preliminary flameproofing, flameproofing, and carbonization treatment from the precursor fiber for carbon fiber having a high water content as described above are stretched so that the elongation is -10 to 10% compared to the precursor fiber for carbon fiber. It may be preferable in terms of improving properties and process stability, and more preferably 5.1 to 10.0%.
  • the carbon fiber obtained can be electrolytically treated for its surface modification.
  • acidic solutions such as sulfuric acid, nitric acid and hydrochloric acid, alkalis such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, ammonium carbonate and ammonium bicarbonate or salts thereof can be used as the aqueous solution.
  • alkalis such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, ammonium carbonate and ammonium bicarbonate or salts thereof
  • the amount of electricity required for the electrolytic treatment can be appropriately selected according to the degree of carbonization of the carbon fibers to be applied.
  • the adhesiveness with the carbon fiber matrix can be optimized, and brittle fracture of the composite material due to the adhesion is too strong, and the tensile strength in the fiber direction decreases.
  • the problem that the tensile strength in the fiber direction is high but the adhesiveness with the resin is poor and the strength property in the non-fiber direction is not solved is solved.
  • the balanced strength characteristics are expressed.
  • the sizing treatment may be carried out to impart the focusing properties to the carbon fibers.
  • the sizing agent which is compatible with matrix resin etc. can be suitably selected according to the kind of resin to be used.
  • the carbon fiber obtained by the present invention is obtained by various molding methods such as autoclave molding as a prepreg, resin transfer molding as a preform as a woven fabric, and molding by filament winding, such as aircraft members, pressure vessel members, automobile members, fishing rods, and the like. It can be used suitably as a sports member, such as a golf shaft.
  • a copolymer of 95 mol% acrylonitrile, 3 mol% methacrylic acid and 2 mol% itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent, and ammonia was added thereto in the same amount with itaconic acid.
  • the mixture was neutralized to prepare a polyacrylonitrile-based copolymer in the form of ammonium salt to obtain a spinning stock solution containing 22% by weight of the copolymer component.
  • the spinning stock solution was discharged through spinnerets (using a temperature of 45 ° C., a diameter of 0.08 mm and two holes of 6,000 holes), and introduced into a coagulation bath consisting of an aqueous solution of 40% dimethyl sulfoxide controlled at 45 ° C.
  • the dead thread was prepared.
  • This intermediate stretched yarn was dried using a heating roller, and then stretched in pressurized steam to obtain a polyacrylonitrile-based fiber bundle having a winding draw ratio of 10 times, a short fiber fineness of 1.5 dtex, and a filament number of 12,000. This is called precursor fiber for carbon fiber.
  • the moisture content can be simply calculated by converting the discharge amount from the spinneret into the total fineness and the winding speed after winding up the carbon fiber precursor, and using GC-MASS (Varian 4000 GC-MS) to analyze the following method. It is possible.
  • Each obtained polyacrylonitrile-based fiber bundle was preliminarily flameproofed (stretched) at 200 ° C. for 6 minutes in an air atmosphere without substantially twisting at a rate of 4 m / min, and a temperature of 220 to 270 ° C. It was flameproofed (stretched) for 80 minutes in a four-stage hot air oven having a distribution.
  • the carbon was preliminarily carbonized in an inert atmosphere of 400 to 700 ° C. to remove off-gas, followed by carbonization at 1,350 ° C. (stretching) to improve strength.
  • Example 1 the stretching during the preliminary flameproofing treatment, the flameproofing treatment and the carbonization treatment varied the elongation as shown in Table 1 below.
  • the elongation of each process will be understood as an elongation based on the fiber process speed difference between the front and rear stages of each process.
  • Carbon fiber was prepared using the precursor fiber for carbon fiber having the same moisture content as in Example 1, but the elongation was changed to 1.5% in the flameproofing treatment.
  • Carbon fiber was prepared using the precursor fiber for carbon fiber having the same moisture content as in Example 1, but the elongation was changed to -2.5% in the flameproofing treatment, and the elongation was changed to 0.5% in the carbonization process. .
  • Carbon fiber is prepared using the precursor fiber for carbon fiber having the same moisture content as in Example 1, except that it is flameproofed for 80 minutes at 220 to 270 ° C. in an air atmosphere without undergoing a preliminary flameproofing process (elongation 1.5%). Entrainment).
  • pre-carbonization was carried out in an inert atmosphere of 400 to 700 ° C, followed by finally carbonization at 1,350 ° C (extension at 1.5% elongation).
  • a copolymer of 95 mol% acrylonitrile, 3 mol% methacrylic acid and 2 mol% itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent, and ammonia was added thereto in the same amount with itaconic acid.
  • the mixture was neutralized to prepare a polyacrylonitrile-based copolymer in the form of ammonium salt to obtain a spinning stock solution containing 22% by weight of the copolymer component.
  • the spinning stock solution was discharged through spinnerets (using two spinnerets having a temperature of 45 ° C., a diameter of 0.08 mm and a hole of 6,000 holes), and introduced into a coagulation bath consisting of an aqueous solution of 40% dimethyl sulfoxide controlled at 45 ° C.
  • the dead thread was prepared.
  • This extension yarn was subjected to dry densification treatment using a heating roller at 150 ° C to extend in pressurized steam to obtain a polyacrylonitrile-based fiber bundle having an extension ratio of 10 times before weaving, 1.5 dtex of short fiber fineness, and 12,000 filaments. This was heat-treated in a hot air dryer at 135 ° C. to obtain a precursor fiber for carbon fiber.
  • the obtained polyacrylonitrile-based fiber bundle was flameproofed for 80 minutes in a four-stage hot wind oven at 220 to 270 ° C. in an air atmosphere without substantially imparting twist at a rate of 4 m / min (stretched at an elongation of 2.5%). It was.
  • pre-carbonization was carried out in an inert atmosphere of 400-700 ° C., followed by finally carbonization at 1,350 ° C. (extension at -1.5% elongation).
  • Example 1 Water content of precursor fiber for carbon fiber (%) Drawing ratio by process (%) Final carbon fiber elongation (%) compared to precursor fiber for carbon fiber Preliminary flameproofing Flameproofing carbonization
  • Example 1 25 2.5 2.0 1.5 6.1
  • Example 2 30 1.0 1.0 0.5 2.5
  • Example 3 35 -1.5 -1.0 -0.5 -3.0
  • Example 4 40 2.0 2.5 3.5 8.2
  • Example 5 25 1.5 2 1.5 5.1
  • Example 6 25 -2.5 2 0.5 -0.05 Reference Example 1 25 - 1.5 1.5 3.0
  • Comparative Example 1 4.5 - 2.5 -1.5 1.0 (Note) The elongation in each process is based on the previous stage fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명의 탄소섬유의 제조방법은 폴리아크릴로니트릴계 중합체 용액을 제조하는 공정; 폴리아크릴로니트릴계 중합체를 포함하는 방사 용액을 방사하여 함수율이 20 ~ 50%인 탄소섬유용 전구체 섬유를 제조하는 공정; 탄소섬유용 전구체 섬유를 180℃ 내지 220℃ 온도의 공기 중에서 -10~-0.1% 또는 0.1~5%의 비율로 연신하면서 예비 내염화 섬유로 전환시키는 공정; 예비 내염화 섬유로 전환된 탄소섬유용 전구체 섬유를 200 내지 300℃의 온도의 공기 중에서, -5 ~ 5%의 연신율로 연신하면서 내염화 섬유로 전환시키는 공정; 및 불활성 분위기하에서 가열하여 탄소화하는 공정을 포함한다.

Description

탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유
본 발명은 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유에 관한 것이다.
탄소섬유는 다른 섬유에 비하여 높은 비강도 및 비탄성률을 갖기 때문에, 복합 재료용 보강 섬유로서, 종래부터의 스포츠 용도나 항공·우주 용도에 더하여, 자동차나 토목·건축, 압력용기 및 풍차 블레이드 등의 일반 산업 용도에도 폭 넓게 전개되고 있어, 추가적인 생산성의 향상이나 생산 안정화의 요청이 높다.
탄소섬유 중에서 가장 널리 이용되어 있는 폴리아크릴로니트릴(이하, PAN이라 약기하는 경우가 있음)계 탄소섬유는 그의 전구체가 되는 PAN계 중합체를 포함하는 방사 용액을 습식 방사, 건식 방사 또는 건습식 방사하여 탄소섬유용 전구체 섬유를 얻은 후, 이것을 산화성 분위기하에서 가열하여 내염화 섬유로 전환시키고, 불활성 분위기하에서 가열하여 탄소화함으로써 공업적으로 제조되고 있다.
이러한 탄소섬유는 계속적으로 그 적용용도가 넓혀지고 있으며 또한 고성능을 요구하고 있는 실정이다.
이러한 고성능의 탄소섬유를 제조하기 위하여 다양한 방법의 연구가 활발히 진행되고 있으나, 종래의 탄소섬유를 제조하기 위한 전구체 섬유는 그 함수율이 약 4%이하 수준이어서 내염화 공정에서 물성 향상을 위한 추가 연신을 부여하기 곤란하여 최종적으로 제조되어지는 탄소섬유의 강도를 향상시키는데에 한계가 있어왔다.
본 발명은 내염화 공정 및 탄화공정에서 자유롭게 추가 연신 또는 수축을 부여하여 기계적 물성을 향상시킴으로서, 고성능의 탄소섬유를 제공할 수 있는 탄소섬유의 제조방법 및 이를 위한 탄소섬유용 전구체 섬유를 제공하고자 한다.
본 발명의 탄소섬유의 제조방법은 폴리아크릴로니트릴계 중합체 용액을 제조하는 공정; 폴리아크릴로니트릴계 중합체를 포함하는 방사 용액을 방사하여 함수율이 20 ~ 50%인 탄소섬유용 전구체 섬유를 제조하는 공정; 탄소섬유용 전구체 섬유를 180℃ 내지 220℃ 온도의 공기 중에서 -10~-0.1% 또는 0.1~5%의 비율로 연신하면서 예비 내염화 섬유로 전환시키는 공정; 예비 내염화 섬유로 전환된 탄소섬유용 전구체 섬유를 200 내지 300℃의 온도의 공기 중에서, -5.0 ~ 5.0%의 연신율로 연신하면서 내염화 섬유로 전환시키는 공정; 및 불활성 분위기하에서 가열하여 탄소화하는 공정을 포함한다.
여기에서, 탄소섬유용 전구체 섬유를 제조하는 공정은 폴리아크릴로니트릴계 중합체를 포함하는 방사 용액을 방사하여 응고욕 속으로 토출하여 사조(방사된 멀티필라멘트의 집속체)를 응고시킨 뒤 수세, 연장, 유제부여 및 건조치밀화 공정을 포함할 수 있다.
또, 예비 내염화 섬유로 전환시키는 공정은 탄소섬유가 고강력 특성을 특별히 향상시키려는 경우 연신율을 0.1~5.0% 되도록 수행하는 것이 바람직하다.
그리고, 예비 내염화처리 섬유를 내염화 섬유로 전환시키는 공정은 연신율이 0~5% 되도록 수행될 수 있다.
본 발명에서 내염화처리된 섬유를 탄소화하는 공정은 300 내지 800℃의 온도의 불활성 분위기 중에서 예비 탄화 처리하고, 1,000 내지 3,000℃의 온도의 불활성 분위기 중에서 연신하면서 탄화 처리할 수 있다.
여기에서, 예비 탄화처리된 섬유를 탄화 처리시 연신은 연신율이 -5.0~5.0% 되도록 수행될 수 있다. 이때, 더욱 바람직한 연신율은 3.1~5.0%이다.
본 발명의 탄소섬유의 제조방법에 있어서 탄소섬유용 전구체 섬유의 전체 연신은 탄소섬유용 전구체 섬유 대비 총 연신율이 -10.0 내지 10.0% 되도록 수행될 수 있다. 이때, 더욱 바람직한 연신율은 5.1~10.0%이다.
본 발명의 탄소섬유용 전구체섬유는 폴리아크릴로니트릴계 섬유로서 함수율이 20.0 ~ 50.0%인 것이다.
본 발명의 탄소섬유의 제조방법에 따르면 고함수율의 탄소섬유용 전구체 섬유를 적용함으로써 내염화 단계 이전에 예비적인 내염화 단계를 수행할 수 있고 또한 연신비율의 개선이 가능함에 따라 궁극적으로 탄소섬유의 기계적 성질을 향상시킬 수 있게 되었고, 그 결과 고성능의 탄소섬유를 제공할 수 있다.
이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.
본 발명의 탄소섬유용 전구체 섬유는 폴리아크릴로니트릴계 중합체(PAN계 중합체라 약칭하는 경우도 있음)를 포함하는 폴리머로 이루어지는 것으로, 여기서 폴리아크릴로니트릴계 중합체는 아크릴로니트릴을 주성분으로 하는 중합체를 의미한다. 구체적으로는 아크릴로니트릴을 전체 단량체 중 85몰% 이상으로 포함하는 중합체를 의미한다.
폴리아크릴로니트릴계 중합체는 아크릴로니트릴(AN이라 약기하는 경우도 있음)을 주성분으로 하는 단량체를 포함하는 용액에 중합개시제를 도입하여 용액 중합하여 얻어질 수 있다. 용액 중합법 이외에도 현탁 중합법 또는 유화 중합법 등을 적용할 수 있음은 물론이다.
단량체 중에는 아크릴로니트릴 이외에 아크릴로니트릴과 공중합 가능한 단량체를 포함할 수 있는데, 이는 내염화를 촉진하는 역할을 할 수 있으며, 그 일예로는 아크릴산, 메타크릴산 또는 이타콘산 등을 들 수 있다.
중합을 거친 후 통상은 중합종결제를 이용하여 중화하는 공정을 수반하는데, 이는 얻어지는 폴리아크릴로니트릴계 중합체를 포함하는 방사 원액을 방사할 때 응고욕에서 급속히 응고하는 것을 방지하는 역할을 한다.
통상 중합종결제로는 암모니아를 사용할 수 있으나, 이에 한정이 있는 것은 아니다.
아크릴로니트릴을 주성분으로 하는 단량체로부터 중합체를 얻은 다음, 상술한 중합종결제를 이용하여 중화함으로써, 암모늄 이온과의 염 형태인 폴리아크릴로니트릴계 중합체를 포함하는 용액을 제조한다.
한편 중합에 사용되는 중합개시제는 구체적으로 한정되는 것은 아니며, 유용성 아조계 화합물, 수용성 아조계 화합물 및 과산화물 등이 바람직하고, 안전면에서의 취급성 및 공업적으로 효율적으로 중합을 행한다는 관점에서 또한 분해시에 중합을 저해하는 산소 발생의 우려가 없는 아조계 화합물이 바람직하게 이용되고, 용액 중합으로 중합하는 경우에는 용해성 측면에서 유용성 아조 화합물이 바람직하게 이용된다. 중합 개시제의 구체예로서는, 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴), 2,2'-아조비스(2,4'-디메틸발레로니트릴), 및 2,2'-아조비스이소부티로니트릴 등을 들 수 있다.
중합 온도는 중합 개시제의 종류와 양에 따라서도 바람직한 범위는 변화하지만, 바람직하게는 30℃ 이상 90℃ 이하일 수 있다.
얻어지는 폴리아크릴로니트릴계 중합체를 포함하는 용액은 고형분 함량이 10 내지 25중량%인 것이, 이를 탄소섬유용 전구체 섬유 제조를 위한 방사 원액으로 적용시에 방사 중 용매제거가 용이하고 탄소섬유로 제조시 내염화 공정시 생기는 타르나 불순물 생성을 방지할 수 있고 필라멘트의 균일한 밀도를 유지할 수 있는 측면에서 유리할 수 있다.
이와 같이 얻어지는 폴리아크릴로니트릴계 중합체를 포함하는 용액은 탄소섬유용 전구체 섬유 제조 공정의 방사 원액으로 사용할 수 있는데, 이러한 방사 원액을 방사하여 탄소섬유용 전구체 섬유를 얻을 수 있다. 방사 원액은 폴리아크릴로니트릴계 공중합체와 함께 용매로서 유기계 또는 무기계의 용매를 포함할 수 있다. 유기 용매의 일예로는 디메틸설폭사이드, 디메틸 포름아마이드, 디메틸 아세트아마이드 등을 들 수 있다.
방사 방법은 건식 방사법, 습식 방사법 또는 건습식 방사법을 들 수 있다.
이 중 건식 방사법은 방사 원액을 구금 구멍으로부터 고온의 기체 분위기 중에 토출하여 용매를 증발시켜 농축, 고화시키는 방법으로서, 이는 권취 속도가 용매의 증발 속도가 되기 때문에, 권취 속도가 고속화됨에 따라 폐쇄형 방사챔버가 아주 길어지게 되는 등의 결점이 있을 수 있다.
또, 습식 방사법은 방사 용액을 구금 구멍으로부터 응고욕 중에서 토출시키는 방법인데, 방사 용액이 구금구멍으로부터 토출된 직후부터 3배 이상의 높은 스웰링이 발생하면서 응고가 진행되기 때문에, 권취 속도가 상승되어도 방사 드래프트는 크게 높아지지 않지만, 실질적인 드래프트율이 급상승하게 됨에 따라 구금 면에서 실 끊김이 발생할 수 있다는 문제가 있어, 권취 속도를 높게 설정하는 데에는 한계가 있을 수 있다.
또한, 건습식 방사법은 방사 용액이 일단 공기 중(에어 갭)에 토출되고 나서 표면결정화가 진행된 이후 응고욕 중에 유도되기 때문에, 실질적인 방사 드래프트율은 에어 갭 내에 있는 원액류에서 흡수되어 고속 방사가 가능할 수 있다.
이외에도 용융 방사법 및 그 밖에 공지의 방법을 이용할 수 있다.
바람직하기로는 습식 방사법 또는 건습식 방사법에 의하여 상술한 방사 원액을 구금으로부터 방출하고, 이를 응고욕에 도입하여 섬유를 응고하도록 하는 방법을 들 수 있다.
응고 속도나 연신 방법은 목적으로 하는 내화섬유 또는 탄소섬유의 목적에 따라 적절히 설정할 수 있다.
응고욕에는 디메틸설폭사이드, 디메틸포름아마이드, 디메틸 아세트아마이드 등의 용매 이외에 소위 응고 촉진 성분을 포함시킬 수 있다. 응고 촉진 성분으로는 폴리아크릴로니트릴계 중합체를 용해하지 않고 방사 원액에 이용하는 용매와 사용성이 있는 것이 바람직할 수 있는데, 그 일예로는 물을 들 수 있다.
응고욕의 온도 및 응고 촉진 성분의 양은 목적으로 하는 내화섬유 또는 탄소섬유의 목적에 따라 적절히 설정할 수 있다.
방사된 중합체를 응고욕 속으로 토출하여 사조를 응고시킨 뒤, 수세, 연장, 유제 부여(오일링) 및 건조 치밀화 등을 거쳐 탄소섬유용 전구체 섬유를 얻을 수 있다. 이때 사조를 응고시킨 뒤 수세하지 않고 직접 연신욕 중에서 연신해도 좋고, 용매를 수세 제거한 후에 별도 연신 욕중에서 연신해도 좋다. 또한 유제 부여후 강력한 탄소섬유 전구체를 제조하기 위해 낮은 배율로 다단 연신을 수행하거나 고온 스팀으로 고배율 연신을 할 수도 있다.
사조에 유제를 부여하는 것은 단섬유끼리의 유착을 방지하기 위한 것으로, 일예로 실리콘 등으로 되는 유제를 부여하는 것이 바람직하다. 이러한 실리콘 유제는 변성 실리콘인 것이 바람직하고, 내열성이 높은 망상의 변성 실리콘을 함유하는 것이 바람직할 수 있다.
이와 같이 하여 얻어진 탄소섬유용 전구체 섬유의 단섬유 섬도는 0.01 내지 3.0 dtex인 것이 바람직하고, 보다 바람직하게는 0.05 내지 1.8 dtex이고, 더욱 바람직하게는 0.8 내지 1.5 dtex이다. 단섬유 섬도가 너무 작으면, 롤러나 가이드와의 접촉에 의한 실 끊김 발생 등에 의해, 제사 공정 및 탄소섬유의 소성 공정의 공정 안정성이 저하될 수 있다. 한편, 단섬유 섬도가 너무 크면, 내염화 후의 각 단섬유에서의 단면 내외층간 구조차가 커져, 계속되는 탄화 공정에서의 공정성 저하나, 얻어지는 탄소섬유의 인장 강도 및 인장 탄성률이 저하될 수 있다. 즉, 상기의 범위를 벗어나면 소성 효율이 급격히 저하될 수 있다. 본 발명에서의 단섬유 섬도(dtex)란, 단섬유 10,000 m당의 중량(g)이다.
본 발명의 탄소섬유용 전구체 섬유의 결정 배향도는 85% 이상인 것이 바람직하고, 보다 바람직하게는 90% 이상이다. 결정 배향도가 85%를 하회하면, 얻어지는 전구체 섬유의 강도가 낮아질 수 있다.
특히 본 발명의 탄소섬유용 전구체 섬유는 함수율이 20 ~ 50%가 되도록 제어된 것이 바람직하다. 탄소섬유용 전구체 섬유의 함수율의 제어는 방사된 중합체를 응고욕 속으로 토출하여 사조를 응고시킨 뒤, 수세, 연장, 유제 부여 및 건조 치밀화(건조 열처리)하는 어느 단계를 통해 수행되어도 무방하다. 좋기로는 최종 결정 배향도 85% 이상인 조건에 도달한 이후 건조 열처리 공정 단계에서 열처리 온도를 제어하거나, 탄소섬유 전구체의 탄화공정시 공정 통과성을 개선하기 위한 유제 부여시 급유 농도 및 량을 제어하여 수분율을 제어하여 탄소섬유용 전구체 섬유의 함수율을 제어하는 것이다.
일반적으로 탄소섬유 전구체의 경우 내부 수분율을 공정 수분율 수준인 4% 전후로 유지하는 것이 일반적이다. 이는 최종 연신 후 건조처리 공정에서 건조 치밀화를 통한 탄소섬유 전구체의 강도 및 신도를 개선하기 위해 적용하는 것이 일반적이다.
하지만 본 발명에서는 탄소섬유 전구체의 물성보다는 탄화 공정에서 신장 이완 특성에 따라 탄소섬유의 기계적 물성 개선이 더 효과적임에 근거를 두고 있다. 따라서 탄소섬유 전구체를 제조할 때 최종 열처리 공정에서 열처리 온도를 100 ~ 180 ℃로 열처리하되 열처리 속도를 빠르게 하거나 원적외선 히터 등을 사용하여 탄소섬유용 전구체 섬유의 표면만 살짝 열처리하는 방법을 채택할 수 있다. 공정 특성상 탄소섬유 전구체의 수분율이 20% 미만으로 형성될 경우에는 최종 건조 이후 저농도의 유제를 추가로 부여하여 수분율을 개선할 수 있다.
탄소섬유용 전구체 섬유의 함수율이 20 ~ 50%는 되도록 제어하는 경우 후속되는 내염화 및 탄소화 공정에서의 연신성 및 수축성을 증가시킬 수 있다. 그리고, 특히 탄소섬유의 기계적 물성을 개선시켜 강도를 크게 향상시킬 목적이라면 연신성을 향상시키는 것이 바람직하다.
통상적으로는 탄소섬유용 전구체 섬유를 얻은 다음 내염화 공정을 수행하며 내염화 공정시에 연신을 병행할 수 있다. 탄소섬유 전구체의 기본물성과 균일성에 따라 차이는 나지만 동일 조건으로 제조한 탄소섬유 전구체의 경우 수분율이 4% 수준인 통상적인 경우 최종 얻어지는 탄소섬유의 전체 연신율은 최대 -10 ~ 5% 정도로서 연신율이 작다. 또한 내염화 공정 이후로 후속되는 탄소화 공정에서도 연신을 수행할 수 있는데 이때의 연신율은 전단계 섬유를 기준으로 최대 -3 ~ 3 % 정도로 더욱 연신율이 작다. 결과적으로 일반적인 탄소섬유 전구체는 신장을 통해 기계적 특성을 강화하는 방향이 아닌 수축을 통해 공정안정화에 중점을 두는 탄화조건을 설정한다.
그러나 탄소섬유용 전구체 섬유로서 함수율이 20 ~ 50%로 제어된 것을 적용하는 경우에는 내염화 공정에 있어서 수분이 가소제 역할을 하면서 완전히 제거되기 전에 고온 고배향 조건으로 추가적인 연신을 가능케 할 수 있다.
내염화 및 탄화공정에서의 연신비를 증가시키는 것은 궁극적으로는 탄소섬유의 기계적 특성의 향상을 가져올 수 있다.
이에 본 발명의 일 구현예에서는 탄소섬유 전구체로서 고함수율인 것을 적용한다. 좋기로는 탄소섬유 전구체의 함수율이 20 내지 50% 인 것이다. 함수율이 지나치게 높은 경우라면 탄소섬유 전구체가 내염화 및 탄화공정에서 탄소섬유용 전구체 섬유의 표면부와 내면부간에 산화 정도가 차이가 나서 시스-코어 이펙트(Sheath-Core Effect)가 발생하거나 내부에 중공이 생성될 수 있다. 또한 이러한 조건은 과산화를 유발하여 실질적으로 탄소섬유의 강도를 저하시킬 수 있거나 공정에서 불량 요인이 되지도 한다. 따라서 함수율은 최대 50%를 넘지 않도록 하는 것이 바람직할 수 있다.
구체적으로, 염 형태인 폴리아크릴로니트릴계 중합체를 포함하여 이루어지는 고함수율의 탄소섬유용 전구체 섬유를 이용하여 탄소섬유를 제조하는 공정을 살핀다.
고함수율의 탄소섬유용 전구체 섬유를 이용하여 탄소섬유를 제조하는 데 있어서 바로 통상의 내염화 처리를 수반할 수 있으나, 이러할 경우 고온의 열처리가 바로 들어가면서 탄소섬유 전구체의 공급부분과 200 ~ 300℃의 산화열처리 공정간에서 급격한 열처리로 인해 탄소섬유 전구체가 급격하게 수축하면서 탄소섬유 전구체 다발 내에서 약사부분의 절사가 이루어지거나 산화열처리 장력의 불균일 현상이 발생하기도 하여 공정 안정성을 도모하기가 어려우며 급격한 열처리로 인해 탄소섬유 전구체 일부분이 폭주하여 연소할 수 있는 조건이 된다. 특히 200 ~ 240 ℃의 온도구간은 탄소섬유 전구체의 화학적 수축력이 최대로 발현되는 구간이므로 특히 공정 안정화에 유의할 필요가 있다. 이러한 문제점을 감안하여 본 발명에서와 같이 예비 내염화 처리를 도입하는 것이 바람직할 수 있다. 그리고, 예비내염화 공정을 수행할 경우 내염화 공정의 온도는 예비 내염화 공정의 온도보다 높게 설정하여 수행하는 것이 바람직하다.
여기서 예비 내염화 처리는 20 ~ 50%의 고함수율의 탄소섬유용 전구체 섬유를 180 내지 220℃의 온도의 공기 중에서, 연신율이 최대 5%, 수축까지를 고려할 때 -10~-0.1% 또는 0.1~5% 되도록 연신하면서 예비 내염화 처리하는 방법이다. 즉, 탄소섬유 전구체가 내염화로에 진입하기 전 수축으로 인한 쇼크를 완화할 수 있는 구간이므로 공정 안정화와 공정 물성의 개선효과가 동시에 이루어진다.
본 발명에서 예비 내염화 처리시 온도 조건은 탄소섬유의 수축율과 수분의 가소성을 활용한 연신성을 고려하여 선정된 것으로, 만일 그 온도가 180℃ 보다 낮으면 단수 건조 및 탄소섬유 전구체 치밀화 수준에 불과하며, 220℃ 보다 높으면 탄소섬유 전구체가 바로 산화 안정화 공정에 돌입하는 것도 동일하며 수분의 휘발이 빨라 연신성이 급격히 저하되는 문제가 있을 수 있다.
또한 예비 내염화 처리시에 연신율이 5%(탄소섬유용 전구체 섬유 대비)를 초과하는 경우 탄소섬유 전구체가 너무 경화되어 일부가 절사되어 내염화 공정 중 발화 원인을 제공하는 문제가 생길 수 있으므로 최대 연신율은 5%를 넘지 않도록 하는 것이 바람직하며, 강도를 향상시키는 측면에서는 0.1~5% 연신율인 것이 바람직하다.
그 다음으로, 상기한 방법에 의해 제조된 예비 내염화처리된 탄소섬유용 전구체 섬유를 200 내지 300℃의 온도의 공기 중에서, 연신하면서 내염화 처리한다.
이때의 연신율은 -5 ~ 5%(예비 내염화처리된 탄소섬유용 전구체 섬유 대비)가 될 수 있는데, 이와 같은 연신율의 상한치는 고함수율의 탄소섬유용 전구체 섬유를 이용하여 예비 내염화 처리를 거침으로써 수축 조건으로 내염화를 거치지 않고 고강력성을 확보하기 위해 신장 연신이 가능해진 것으로 통상의 내염화 처리에 비하여 연신율을 높일 수 있다.
강력이 우수한 탄소섬유를 제조하기 위해서는 좋기로는 내염화 처리시 연신율은 0 ~ 5%(예비 내염화처리된 탄소섬유용 전구체 섬유 대비)인 것이다. 여기서도, 연신비율을 0보다 0.1%이상으로 연신을 수행하는 것이 더욱 바람직하다.
그 다음, 300 내지 800℃의 온도의 불활성 분위기 중에서, 목적에 따라 연신을 부여하면서 예비 탄화 처리하고, 목적으로 하는 용도에 따라 1,000 내지 3,000℃의 최고 온도의 불활성 분위기 중에서, 연신하면서 탄화 처리하여 탄소섬유를 제조한다.
예비 탄화 처리나 탄화 처리는 불활성 분위기 중에서 행해지며, 불활성 분위기에 이용되는 가스로서는 질소, 아르곤 및 크세논 등을 예시할 수 있고, 경제적인 측면에서는 질소가 바람직하게 이용된다. 또한, 탄화 처리에서의 최고 온도는 원하는 탄소섬유의 역학 물성에 따라 1,000 내지 3,000℃로 할 수 있지만, 일반적으로 탄화 처리의 최고 온도가 높을수록, 얻어지는 탄소섬유의 인장 탄성률이 높아지지만, 인장 강도는 1,300~1,500℃ 부근에서 극대가 되기 때문에, 인장 강도와 인장 탄성률을 둘 다 높인다는 목적에서는, 탄화 처리의 최고 온도는 1,200 내지 1,700℃인 것이 바람직하고, 보다 바람직하게는 1,300 내지 1,500℃이다.
또한, 항공기 용도를 고려했을 경우에는 경량화가 중요하며, 인장 탄성률을 높이는 측면에서, 탄화 처리의 최고온도는 1,700 내지 2,300℃인 것도 또한 바람직하다. 탄화 처리의 최고 온도는 그의 최고 온도가 높을수록 인장 탄성률은 높아지지만, 흑연화가 진행되어, 탄소망면의 성장, 적층에 의해 탄소망면이 좌굴되기 쉽고, 그 결과, 압축 강도의 저하가 생길 수 있기 때문에, 양자의 균형을 감안하여 탄화 공정에서의 온도를 설정한다.
한편 산화 안정화 이후 탄화 처리시 연신율은 -10.0 ~ 5.0% 일 수 있으며, 좋기로는 -5.0 ~ 5.0%일 수 있고, 이중에서 바람직하게는 3.1~5.0%이 것이 좋다. 탄화 처리시의 연신율을 증가시킬 수 있는 것도 궁극적으로는 고함수율의 탄소섬유용 전구체 섬유를 적용하여 예비 내염화 및 내염화 공정을 거쳤기 때문이다.
상술한 것과 같은 고함수율의 탄소섬유용 전구체 섬유로부터 예비 내염화, 내염화, 탄화처리를 거쳐 얻어지는 탄소섬유는 탄소섬유용 전구체 섬유 대비하여 연신율이 -10 내지 10% 되도록 연신되는 것이 탄소섬유의 기계적 성질의 향상 측면 및 공정안정성 측면에서 바람직할 수 있고, 이 중에서 특히 5.1~10.0%인 것이 더욱 바람직하다.
얻어진 탄소섬유는 그의 표면 개질을 위해 전해 처리할 수 있다. 전해 처리에 이용되는 전해액에는 황산, 질산 및 염산 등의 산성 용액이나, 수산화나트륨, 수산화칼륨, 테트라에틸암모늄 히드록시드, 탄산암모늄 및 중탄산암모늄과 같은 알칼리 또는 이들의 염을 수용액으로서 사용할 수 있다. 여기서, 전해 처리에 요하는 전기량은, 적용하는 탄소섬유의 탄화도에 따라 적절히 선택할 수 있다.
전해 처리에 의해, 얻어지는 섬유 강화 복합 재료에 있어서 탄소섬유 매트릭스와의 접착성을 적정화할 수 있어, 접착이 너무 강함에 따른 복합 재료의 브리틀한 파괴나, 섬유 방향의 인장 강도가 저하되는 문제나, 섬유방향에서의 인장 강도는 높지만 수지와의 접착성이 떨어져, 비섬유 방향에서의 강도 특성이 발현되지 않는다는 문제가 해소되어, 얻어지는 섬유 강화 복합 재료에 있어서, 섬유 방향과 비섬유 방향의 양 방향으로 균형이 잡힌 강도 특성이 발현되게 된다.
전해 처리 후, 탄소섬유에 집속성을 부여하기 위해 사이징 처리를 실시할 수도 있다. 사이징제로는, 사용하는 수지의 종류에 따라 매트릭스 수지 등과의 상용성이 좋은 사이징제를 적절히 선택할 수 있다.
본 발명에 의해 얻어지는 탄소섬유는 프리프레그로서 오토클레이브 성형, 직물 등의 프리폼으로서 레진 트랜스퍼 몰딩으로 성형, 및 필라멘트 와인딩으로 성형하는 등 다양한 성형법에 의해, 항공기 부재, 압력 용기 부재, 자동차 부재, 낚싯대 및 골프 샤프트 등의 스포츠 부재로서 바람직하게 이용될 수 있다.
이하, 본 발명의 실시예로 더욱 상세히 설명하나, 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.
<실시예 1 내지 4>
아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 되는 공중합체를 디메틸 설폭사이드를 용매로 하는 용액 중합법에 의하여 중합하고, 여기에 암모니아를 이타콘산과 동량으로 첨가하여 중화하여, 암모늄 염 형태의 폴리아크릴로니트릴계 공중합체를 제조하여 공중합체 성분의 함유율이 22중량%인 방사 원액을 얻었다.
이 방사 원액을 방사구금(온도 45℃, 직경 0.08mm, 구멍수 6,000의 구금을 2개 사용)을 통해 토출하고, 45℃로 제어되는 40% 디메틸설폭사이드의 수용액으로 되는 응고욕에 도입하여 응고사를 제조하였다.
응고사를 수세한 뒤, 열수 중에서 5배 연장하고, 망상의 변성 실리콘계 실리콘 유제를 부여하여 중간 연신사를 얻었다.
이 중간 연신사를 가열 롤러를 이용하여 건조 처리 후, 가압 스팀 중에서 연신하여 권취 전체 연신 배율이 10배, 단섬유 섬도 1.5dtex, 필라멘트수 12,000의 폴리아크릴로니트릴계 섬유 다발을 얻었다. 이를 탄소섬유용 전구체 섬유라 한다.
이때 가압 스팀 연신구간을 통과한 후 건조 열처리 공정에서 열처리 온도를 80 ~ 120℃로 제어함으로써 다음 표 1과 같이 함수율을 달리하는 탄소섬유용 전구체 섬유를 얻었다. 이때 함수율은 간단하게 방사구금에서의 토출량과 탄소섬유 전구체 권취 후 전체 섬도와 권취속도로 환산하여 그 비율로서 구할 수도 있으며, GC-MASS(Varian 4000 GC-MS)를 이용하여 다음과 같은 방법으로 분석 가능하다.
GC-MASS 분석방법
Instrument : Varian 4000 GC-MS
Stationary Phase : VF-5ms (30m x 0.25mm x 0.25um)
Mobile Phase : He, 1.0ml/min
Temperature Programming : From 80℃, 2min to 280℃, 8min (@ 20C/min)
Injection : 0.4ul, Split=20:1, 250℃
Detection : EI mode (28~500m/z scan)
얻어진 각각의 폴리아크릴로니트릴계 섬유 다발을 4m/min의 속도로 실질적으로 꼬임을 부여하지 않고 공기 분위기 속에서 200℃에서 6분 동안 예비 내염화 처리(연신 수반)하고, 220 ~ 270℃의 온도 분포를 가지는 4단 열풍오븐에서 80분 동안 내염화 처리(연신 수반)하였다.
다음 400~700℃의 불활성 분위기 속에서 예비 탄화시켜 오프가스(Odd-gas)를 제거한 수, 뒤이어 최종적으로 1,350℃로 탄화처리(연신 수반)하여 강도를 향상시켰다.
실시예 1 내지 4에 있어서, 상기 예비 내염화 처리, 내염화 처리 및 탄화처리 시 연신은 다음 표 1과 같이 연신율을 달리하였다. 이때 각 공정별 연신율은 각공정의 전후단계의 섬유 공정속도차를 기준으로 하는 연신율로 이해될 것이다.
<실시예 5>
상기 실시예 1과 동일한 함수율을 갖는 탄소섬유용 전구체 섬유를 이용하여 탄소섬유를 제조하되, 내염화 처리에 있어서 연신율을 1.5%로 달리하였다.
<실시예 6>
상기 실시예 1과 동일한 함수율을 갖는 탄소섬유용 전구체 섬유를 이용하여 탄소섬유를 제조하되, 내염화 처리에 있어서 연신율을 -2.5 %로 달리하고, 또한 탄소화 공정에 있어서 연신율을 0.5%로 달리하였다.
<참고예 1>
상기 실시예 1과 동일한 함수율을 갖는 탄소섬유용 전구체 섬유를 이용하여 탄소섬유를 제조하되, 다만 예비 내염화 공정을 거치지 않고 공기 분위기 속에서 220 내지 270℃에서 80분 동안 내염화 처리(연신율 1.5%로 연신 수반)하였다.
다음 400~700℃의 불활성 분위기 속에서 예비 탄화하고, 뒤이어 최종적으로 1,350℃로 탄화처리(연신율 1.5%로 연신 수반)하였다.
이 경우 산화 안정화 공정과 탄화 공정에서 탄소섬유 전구체 중 일부분이 절사되어 공정성 측면에서 안정적이지 못하였다. 특히 일부 절사된 부분은 전반적으로 탄소섬유의 강도를 저하시키는 요인이 되고 공정상 랩(Wrap)으로 남아 절사의 요인이 되고 있다는 점에서 불리하였다.
<비교예 1>
아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 되는 공중합체를 디메틸 설폭사이드를 용매로 하는 용액 중합법에 의하여 중합하고, 여기에 암모니아를 이타콘산과 동량으로 첨가하여 중화하여, 암모늄 염 형태의 폴리아크릴로니트릴계 공중합체를 제조하여 공중합체 성분의 함유율이 22중량%인 방사 원액을 얻었다.
이 방사 원액을 방사구금(온도 45℃, 직경0.08mm, 구멍수 6,000의 구금을 2개 사용)을 통해 토출하고, 45℃로 제어되는 40% 디메틸설폭사이드의 수용액으로 되는 응고욕에 도입하여 응고사를 제조하였다.
응고사를 수세한 뒤, 온수 중에서 4배 연장하고, 망상의 변성 실리콘계 실리콘 유제를 부여하여 연장사를 얻었다.
이 연장사를 150℃의 가열 롤러를 이용하여 건조 치밀화 처리를 행하여 가압 스팀 중에서 연장하여 제사 전 연장 배율이 10배, 단섬유 섬도 1.5dtex, 필라멘트수 12,000의 폴리아크릴로니트릴계 섬유 다발을 얻었다. 이를 135℃의 열풍 건조기에서 열처리하여 탄소섬유용 전구체 섬유를 구하였다.
얻어진 탄소섬유용 전구체 섬유의 함수율을 상기 실시예와 같은 방법으로 측정한 결과 4.5 %이었다.
얻어진 폴리아크릴로니트릴계 섬유 다발을 4m/min의 속도로 실질적으로 꼬임을 부여하지 않고 공기 분위기 속에서 220 내지 270℃인 4단 열풍 오븐에서 80분 동안 내염화 처리(연신율 2.5 %로 연신 수반)하였다.
다음 400~700℃의 불활성 분위기 속에서 예비 탄화하고, 뒤이어 최종적으로 1,350℃로 탄화처리(연신율 -1.5%로 연신 수반)하였다.
표 1
탄소섬유용 전구체 섬유의 함수율(%) 공정별 연신비율(%) 탄소섬유용 전구체 섬유 대비최종 탄소섬유 연신율(%)
예비내염화 내염화 탄화
실시예 1 25 2.5 2.0 1.5 6.1
실시예 2 30 1.0 1.0 0.5 2.5
실시예 3 35 -1.5 -1.0 -0.5 -3.0
실시예 4 40 2.0 2.5 3.5 8.2
실시예 5 25 1.5 2 1.5 5.1
실시예 6 25 -2.5 2 0.5 -0.05
참고예 1 25 - 1.5 1.5 3.0
비교예 1 4.5 - 2.5 -1.5 1.0
(주) 각 공정별 연신율에 있어서 연신율은 각각 전 단계 섬유를 기준으로 한 것임.
상기 실시예 1 내지 6, 참고예 1 및 비교예 1에 따라 얻어지는 탄소섬유에 대하여 강도를 다음과 같은 방법으로 평가하여 그 결과를 다음 표 2에 나타내었다.
(1) 탄소섬유 강도 평가방법
탄소섬유의 물성측정은 일본특허공개 2003-161681를 참조하여 스트렌드 평가설비를 제작한 후 에폭시 수지를 함침하여 탄소섬유 다발을 곧게 펼친 후 JIS R7601에 준하여 평가하였으며 평점간 거리는 100mm, 측정 Speed는 60mm/min이었으며 평가횟수는 10회이다.
표 2
스트렌드 강도 (단위 MPa)
실시예 1 4,600
실시예 2 4,410
실시예 3 3,500
실시예 4 4,730
실시예 5 4,480
실시예 6 3,960
참고예 1 4,070
비교예 1 2,900

Claims (10)

  1. 폴리아크릴로니트릴계 중합체 용액을 제조하는 공정;
    폴리아크릴로니트릴계 중합체를 포함하는 방사 용액을 방사하여 함수율이 20 ~ 50%인 탄소섬유용 전구체 섬유를 제조하는 공정;
    탄소섬유용 전구체 섬유를 180 ~ 220℃ 온도의 공기 중에서 -10~-0.1% 또는 0.1~5% 연신율로 연신하면서 예비 내염화 섬유로 전환시키는 공정;
    예비 내염화 섬유로 전환된 탄소섬유용 전구체 섬유를 200 내지 300℃의 온도의 공기 중에서, -5 ~ 5 %의 연신율로 연신하면서 내염화 섬유로 전환시키는 공정; 및
    불활성 분위기하에서 가열하여 탄소화하는 공정을 포함하는 탄소섬유의 제조방법.
  2. 제 1 항에 있어서, 탄소섬유용 전구체 섬유를 제조하는 공정은 폴리아크릴로니트릴계 중합체를 포함하는 방사 용액을 방사하여 응고욕 속으로 토출하여 사조를 응고시킨 뒤 수세, 연신, 유제부여 및 건조 치밀화 공정을 포함하는 탄소섬유의 제조방법.
  3. 제 1 항에 있어서, 예비 내염화 섬유로 전환시키는 공정의 연신율이 0.1~5% 되도록 수행되는 탄소섬유의 제조방법.
  4. 제 1 항에 있어서, 내염화 섬유로 전환시키는 공정은 연신율이 0~5% 되도록 수행되는 탄소섬유의 제조방법.
  5. 제 1 항에 있어서, 산화안정화 후 탄소화하는 공정은 300 내지 800℃의 온도의 불활성 분위기 중에서 예비 탄화 처리하고, 1,000 내지 3,000℃의 온도의 불활성 분위기 중에서 연신하면서 탄화 처리하는 것인 탄소섬유의 제조방법.
  6. 제 5 항에 있어서, 탄화 처리시 연신은 연신율이 -5.0 ~ 5.0% 되도록 수행되는 것인 탄소섬유의 제조방법.
  7. 제 6 항에 있어서, 탄화 처리시 연신은 연신율이 3.1 ~ 5.0% 되도록 수행되는 것인 탄소섬유의 제조방법.
  8. 제 1 항에 있어서, 탄소섬유용 전구체 섬유 제조 이후로의 연신은 탄소섬유용 전구체 섬유 대비 총 연신율이 -10.0 내지 10.0% 되도록 수행되는 탄소섬유의 제조방법.
  9. 제 1 항에 있어서, 탄소섬유용 전구체 섬유 제조 이후로의 연신은 탄소섬유용 전구체 섬유 대비 총 연신율이 5.1 내지 10.0% 되도록 수행되는 탄소섬유의 제조방법.
  10. 폴리아크릴로니트릴계 섬유이고, 함수율이 20.0 ~ 50.0%인 탄소섬유 제조용 탄소 섬유 전구체 섬유.
PCT/KR2011/002236 2010-03-31 2011-03-31 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유 WO2011122881A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800179177A CN102822400A (zh) 2010-03-31 2011-03-31 制备碳纤维的方法和用于碳纤维的母体纤维
JP2013502483A JP5722991B2 (ja) 2010-03-31 2011-03-31 炭素繊維の製造方法及び炭素繊維用前駆体繊維
EP11763053.3A EP2554725B1 (en) 2010-03-31 2011-03-31 Method for preparing carbon fiber and precursor fiber for carbon fiber
US13/638,706 US9187847B2 (en) 2010-03-31 2011-03-31 Method for preparing carbon fiber and precursor fiber for carbon fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100029598 2010-03-31
KR10-2010-0029598 2010-03-31
KR1020110029486A KR101467620B1 (ko) 2010-03-31 2011-03-31 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유
KR10-2011-0029486 2011-03-31

Publications (2)

Publication Number Publication Date
WO2011122881A2 true WO2011122881A2 (ko) 2011-10-06
WO2011122881A3 WO2011122881A3 (ko) 2012-03-08

Family

ID=45026905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002236 WO2011122881A2 (ko) 2010-03-31 2011-03-31 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유

Country Status (7)

Country Link
US (1) US9187847B2 (ko)
EP (1) EP2554725B1 (ko)
JP (1) JP5722991B2 (ko)
KR (1) KR101467620B1 (ko)
CN (1) CN102822400A (ko)
PT (1) PT2554725E (ko)
WO (1) WO2011122881A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030270A (zh) * 2020-09-08 2020-12-04 北京北美红杉科技发展有限公司 一种制备耐火碳纤维的工艺

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013206984A1 (de) * 2013-04-18 2014-10-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen von Kohlefasern
CN103399490B (zh) * 2013-08-01 2016-05-18 东华大学 一种基于免疫记忆学习控制的碳纤维原丝湿法凝固浴温度控制工艺
KR101592714B1 (ko) * 2014-06-26 2016-02-11 오씨아이 주식회사 피치계 탄소 단섬유의 제조장치 및 상기 단섬유의 제조방법
JP6295890B2 (ja) * 2014-08-27 2018-03-20 三菱ケミカル株式会社 炭素繊維束
EP3511450A4 (en) * 2016-09-12 2020-05-06 Toray Industries, Inc. COAGULATED YARN AND PRODUCTION METHOD THEREFOR, CARBON FIBER PRECURSOR FIBER AND METHOD FOR PRODUCING A CARBON FIBER
NL2017560B1 (en) 2016-09-30 2018-04-10 Ihc Iqip Uk Ltd Pile guide comprising a base frame and a guide member
KR101922638B1 (ko) * 2017-05-10 2018-11-27 재단법인 한국탄소융합기술원 탄소 섬유 제조용 쿼드-중합체 전구체, 및 이의 제조 방법 및 사용 방법
JP7103806B2 (ja) 2018-03-02 2022-07-20 三菱鉛筆株式会社 熱変色性筆記具
CN110685041B (zh) * 2018-07-06 2022-07-12 中国石油化工股份有限公司 聚丙烯腈基碳纤维的制备方法
JP2021147729A (ja) * 2020-03-19 2021-09-27 帝人株式会社 炭素繊維前駆体繊維の製造方法
KR102426346B1 (ko) * 2020-11-30 2022-07-29 한국생산기술연구원 폴리아크릴로니트릴계 전구체 섬유 및 그의 제조방법
WO2023023640A1 (en) * 2021-08-20 2023-02-23 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
CN115852743B (zh) * 2022-11-30 2024-07-05 武汉纺织大学 一种高压缩性和阻燃碳纤维吸油毡及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161681A (ja) 2001-11-28 2003-06-06 Toray Ind Inc 補強繊維ストランドの引張試験方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516249B2 (ko) * 1972-12-28 1976-02-26
JPS6052206B2 (ja) * 1978-03-27 1985-11-18 三菱レイヨン株式会社 アクリル系炭素繊維の製造方法
JPS59116423A (ja) * 1982-12-22 1984-07-05 Toray Ind Inc 耐炎化繊維もしくは炭素繊維の製造法
JP2589192B2 (ja) * 1989-12-27 1997-03-12 東邦レーヨン株式会社 アクリル系繊維の湿式紡糸法及び収納法
DE4002302A1 (de) 1990-01-26 1991-08-01 Bayer Ag Trockenspinnverfahren von dmac-loesungen mit heissluft bei hohen spinnschachtleistungen
JP2589219B2 (ja) * 1990-12-22 1997-03-12 東邦レーヨン株式会社 炭素繊維製造用プレカ−サ−及びその製造法、並びにそのプレカ−サ−から炭素繊維を製造する方法
JP2004060069A (ja) * 2002-07-25 2004-02-26 Toho Tenax Co Ltd ポリアクリロニトリル系炭素繊維、及びその製造方法
JP2004060126A (ja) * 2002-07-31 2004-02-26 Toho Tenax Co Ltd 炭素繊維及びその製造方法
JP2004156161A (ja) * 2002-11-05 2004-06-03 Toho Tenax Co Ltd ポリアクリロニトリル系炭素繊維及びその製造方法
JP2004232155A (ja) * 2003-01-31 2004-08-19 Toho Tenax Co Ltd 軽量化ポリアクリロニトリル系炭素繊維及びその製造方法
US7941903B2 (en) 2004-02-13 2011-05-17 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
JP2005314830A (ja) * 2004-04-28 2005-11-10 Toho Tenax Co Ltd ポリアクリロニトリル系炭素繊維及びその製造方法
ES2400516T3 (es) * 2005-08-09 2013-04-10 Toray Industries, Inc. Fibra resistente a la llama, fibra de carbono y procedimientos para la producción de los dos tipos de fibras
JP2007154371A (ja) * 2005-12-07 2007-06-21 Toho Tenax Co Ltd 酸化繊維及び炭素繊維の製造方法
JP4838595B2 (ja) * 2006-02-08 2011-12-14 三菱レイヨン株式会社 炭素繊維束の製造方法
EP2080775B1 (en) 2006-10-18 2015-07-29 Toray Industries, Inc. Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
JP2008163537A (ja) * 2006-12-04 2008-07-17 Toho Tenax Co Ltd 炭素繊維の製造方法
JP4942502B2 (ja) * 2007-02-01 2012-05-30 三菱レイヨン株式会社 耐炎化繊維束の製造方法
JP5072668B2 (ja) * 2008-03-14 2012-11-14 東邦テナックス株式会社 前駆体繊維、並びに、前駆体繊維、耐炎化繊維及び炭素繊維の製造方法
CN101560701B (zh) * 2009-05-13 2010-12-08 北京化工大学 一种高强度炭纤维的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161681A (ja) 2001-11-28 2003-06-06 Toray Ind Inc 補強繊維ストランドの引張試験方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554725A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030270A (zh) * 2020-09-08 2020-12-04 北京北美红杉科技发展有限公司 一种制备耐火碳纤维的工艺

Also Published As

Publication number Publication date
EP2554725B1 (en) 2015-09-09
WO2011122881A3 (ko) 2012-03-08
JP2013524028A (ja) 2013-06-17
PT2554725E (pt) 2015-11-02
KR20110110048A (ko) 2011-10-06
CN102822400A (zh) 2012-12-12
JP5722991B2 (ja) 2015-05-27
US20130113130A1 (en) 2013-05-09
EP2554725A4 (en) 2013-11-27
KR101467620B1 (ko) 2014-12-04
US9187847B2 (en) 2015-11-17
EP2554725A2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2011122881A2 (ko) 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유
JP2018145541A (ja) 炭素繊維束及びその製造方法
JP6119168B2 (ja) 耐炎化繊維束の製造方法、及び、炭素繊維束の製造方法
KR20130078788A (ko) 탄소섬유용 복합 전구체 멀티 필라멘트 및 탄소섬유의 제조방법
WO2011074918A2 (ko) 폴리아크릴로니트릴계 중합체 용액,그 제조방법,탄소섬유 전구체 섬유,탄소섬유 전구체 섬유의 제조방법 및 탄소섬유의 제조방법
KR20120077050A (ko) 탄소섬유용 아크릴 프리커서 섬유의 제조방법 및 이를 이용하여 제조된 탄소섬유
WO2021045462A1 (ko) 탄소섬유의 제조방법 및 이를 이용하여 제조된 탄소섬유
KR101909892B1 (ko) 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법 및 탄소섬유의 제조방법
KR101957061B1 (ko) 고강도 탄소섬유의 제조방법
JP2007186802A (ja) 耐炎化繊維および炭素繊維の製造方法
KR101617891B1 (ko) 탄소섬유의 제조방법
KR20110078306A (ko) 폴리아크릴로니트릴계 탄소섬유용 전구체 섬유의 제조 방법 및 그 전구체 섬유로부터 얻어지는 탄소섬유
JP3964011B2 (ja) 炭素繊維用アクリロニトリル系前駆体繊維およびその製造方法
JP2004060069A (ja) ポリアクリロニトリル系炭素繊維、及びその製造方法
JP5811529B2 (ja) 炭素繊維束の製造方法
JP2015183166A (ja) アクリロニトリル系共重合体およびポリアクリロニトリル系炭素繊維前駆体繊維、炭素繊維の製造方法
JP2004060126A (ja) 炭素繊維及びその製造方法
WO2022030854A1 (ko) 폴리아크릴로니트릴계 내염화 섬유, 탄소섬유 및 그의 제조방법
KR102531748B1 (ko) 폴리이미드계 탄소섬유와 흑연섬유 및 그 제조방법
KR102686769B1 (ko) 폴리이미드계 전구체 섬유, 이를 이용하여 제조되는 탄소섬유와 흑연섬유 및 그 제조방법
CN112030270A (zh) 一种制备耐火碳纤维的工艺
JPH055224A (ja) 均一性に優れた炭素繊維の製造方法
KR20120111473A (ko) 탄소섬유용 전구체 섬유 및 이의 제조방법
JP2005113305A (ja) 耐炎化繊維、炭素繊維およびそれらの製造方法
KR20120007183A (ko) 보풀발생이 억제되는 탄소섬유의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017917.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763053

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2219/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2013502483

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011763053

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13638706

Country of ref document: US