Nothing Special   »   [go: up one dir, main page]

WO2011102467A1 - Method for producing crystalline metal oxide structure - Google Patents

Method for producing crystalline metal oxide structure Download PDF

Info

Publication number
WO2011102467A1
WO2011102467A1 PCT/JP2011/053518 JP2011053518W WO2011102467A1 WO 2011102467 A1 WO2011102467 A1 WO 2011102467A1 JP 2011053518 W JP2011053518 W JP 2011053518W WO 2011102467 A1 WO2011102467 A1 WO 2011102467A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
crystalline metal
titania
nanoparticles
oxide
Prior art date
Application number
PCT/JP2011/053518
Other languages
French (fr)
Japanese (ja)
Inventor
達也 大久保
敦 下嶋
彩絵 菅原
軍政 王
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2012500661A priority Critical patent/JP5555925B2/en
Publication of WO2011102467A1 publication Critical patent/WO2011102467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the present invention relates to a method for producing a structure (hereinafter referred to as a crystalline metal oxide structure) composed of particles composed of a crystalline metal oxide (hereinafter referred to as crystalline metal oxide particles).
  • a structure hereinafter referred to as a crystalline metal oxide structure
  • crystalline metal oxide particles For example, it is suitable for manufacturing a crystalline metal oxide structure made of titania (titanium dioxide).
  • titania has excellent properties such as UV absorption and adsorption, and is used in various fields such as pigments, paints, cosmetics, UV blocking materials, catalysts, catalyst carriers, and various electronic materials. ing.
  • a method for producing titania sol or the like in which such fine particles of titania (hereinafter referred to as titania nanoparticles) are dispersed in a solution has been considered (for example, see Patent Document 1).
  • the present invention has been made in consideration of the above points, and the crystalline metal oxide particles can be arranged and controlled to further expand the field of use of the crystalline metal oxide particles. It aims at proposing the manufacturing method of a structure.
  • claim 1 of the present invention adjusts the pH of a solution containing crystalline metal oxide particles to a predetermined pH and dissolves a one-dimensional structure-forming substance having a one-dimensional structure-forming ability.
  • a crystalline step in which the crystalline metal oxide particles are connected in a one-dimensional array by heating the reaction solution for a predetermined heating time at a predetermined heating temperature.
  • a generation step of generating an oxide structure in order to solve this problem, claim 1 of the present invention adjusts the pH of a solution containing crystalline metal oxide particles to a predetermined pH and dissolves a one-dimensional structure-forming substance having a one-dimensional structure-forming ability.
  • the crystalline metal oxide particles are arranged one-dimensionally by adjusting the pH in the dissolving step and the heating temperature and the heating time in the generating step. Then, the adjacent crystalline metal oxide particles are connected with a predetermined strength.
  • the third aspect of the present invention is characterized in that, in the dissolving step, the crystalline metal oxide particles are titania nanoparticles, and the one-dimensional structure forming substance is a block copolymer.
  • the crystalline metal oxide particles are nanoparticles having conductivity, and the one-dimensional structure forming substance is a block copolymer. It is.
  • claim 5 of the present invention is characterized in that the nanoparticles include tin oxide.
  • the arrangement of the crystalline metal oxide particles can be controlled, and thus the field of use of the crystalline metal oxide particles is further enhanced than before. Can expand.
  • Crystalline metal oxide structure Titania nanoparticles (crystalline metal oxide particles)
  • FIG. 1 is an SEM (Scanning Electron Microscope) image obtained by photographing a crystalline metal oxide structure 1 according to the present invention with a scanning microscope. As shown in FIG. 1, each crystalline metal oxide structure 1 has a plurality of titania nanoparticles 2 arranged in a line in a straight line or a curved line and arranged in a ball chain shape (hereinafter referred to as a one-dimensional arrangement). ) And adjacent titania nanoparticles 2 are connected with a predetermined strength.
  • SEM Scnning Electron Microscope
  • Such a crystalline metal oxide structure 1 is connected to titania nanoparticles 2 according to the pH change in the solution during the production process described later, the heating temperature during the production process, the heating time, and the content of the one-dimensional structure forming substance.
  • the number and state of the one-dimensional array can change.
  • the titania nanoparticle 2 is made of titania, and has a configuration in which the particle diameter is controlled to a nano size having a spherical shape and a particle size of about 5 to 8 nm.
  • the titania nanoparticle 2 forms a crystalline metal oxide structure 1 with several to several tens as one unit, and has such a hardness that it cannot be dispersed even when an external force such as ultrasonic waves is applied. Are connected to each other.
  • the routine proceeds from the start routine RT1 to the next step SP1, for example, preparing an aqueous solution 5 in which 130 to 220 g of 2-propanol is contained in 11.7 to 15.2 ml of water, and 9.6 to 12 g of the aqueous solution 5 is prepared. Titanium isopropoxide (Ti (iOPr) 4) is added and dissolved by vigorous stirring at room temperature to produce a hydrolyzed hydrolysis solution 6, and the process proceeds to the next step SP2.
  • Ti i isopropoxide
  • step SP2 the hydrolyzed solution 6 of step SP1 is filtered to obtain a precipitate 7.
  • step SP3 the precipitate 7 is washed several times to remove the washed precipitate from which excess 2-propanol has been removed. And move to the next step SP4.
  • step SP4 the washing precipitate 11 is redispersed in a predetermined amount of water 10 to produce a washing precipitate-containing solution 12, and the process proceeds to the next step SP5.
  • step SP5 a predetermined amount of nitric acid (HNO 3 ) is added to the washing precipitate-containing solution 12 to produce a mixed solution in which the H + / Ti4 + ratio is adjusted to 0.5 to 1.0, and then the mixed solution is stirred at room temperature for a predetermined time. Then, the colloidal titania sol 14 is generated by peptization (peptization), and the above-described titania nanoparticle generation processing procedure is completed (step SP6). In the titania sol 14 thus produced, spherical titania nanoparticles 2 having a nano size are dispersed in a solution, and titania crystals are stably present.
  • HNO 3 nitric acid
  • a cellophane tube 22 in which titania sol 14 is sealed is introduced into a beaker 21 in which distilled water 20 is placed.
  • a magnetic stirrer (not shown) is used to rotate the stirrer 23 in the beaker 21 by using magnetic force, dialyzed by stirring the distilled water 20, and the titania sol 14 in the cellophane tube 22 is adjusted to pH 1-4. adjust.
  • the titania sol 14 when the titania sol 14 has a pH of less than 1, the density of positive charges (hydrogen ions) on the surface of the titania nanoparticles 2 becomes very high, and because of the repulsive interaction between the titania nanoparticles 2, after the heat treatment described later. In this case, the titania nanoparticles 2 are not in a one-dimensional array.
  • the titania sol 14 when the titania sol 14 has a pH exceeding 4, when the density of the positive charges on the surface of the titania nanoparticles 2 decreases and the pH of the titania sol becomes close to the isoelectric point of the titania nanoparticles 2, the titania nanoparticles 2 after the heat treatment described later.
  • a plurality of titania nanoparticles 2 are densely packed and solidified without being one-dimensionally arranged.
  • the titania sol preferably has a pH of 1 to 4, preferably 3.5 to 4.
  • a reaction solution is generated by dissolving the block copolymer in the titania sol by heat treatment.
  • the block copolymer is dissolved in the titania sol while stirring for a heating time of 1 to 30 days to produce a reaction solution.
  • the heating time is set to pH 3.5 to 4 if the length is increased, the number of titania nanoparticles 2 connected gradually increases.
  • the heating time is less than 30 days so as not to form an aggregate.
  • x is preferably 0.1 to 1.0.
  • the block copolymer is a molecule obtained by chemically bonding polymers having different properties.
  • examples of the block copolymer include a triblock copolymer represented by R 1 O— (R 2 O) s — (R 3 O) t — (R 4 O) u —R 5 , R 1 O— (R A diblock copolymer represented by 2 O) s- (R 4 O) u -R 5 can be applied.
  • R 1 and R 5 represent H or a lower alkylene group having 1 to 6 carbon atoms
  • R 2 , R 3 and R 4 represent a lower alkylene group having 2 to 6 carbon atoms
  • s, t And u represents a number from 2 to 200.
  • Such block copolymers are sold, for example, as Pluronic series from BASF.
  • a block copolymer in which the hydrophilic block is polyethylene oxide (hereinafter referred to as PEO) and the hydrophobic block is polystyrene (hereinafter referred to as PS) or polyisoprene (hereinafter referred to as PI) is applied.
  • PEO polyethylene oxide
  • PS polystyrene
  • PI polyisoprene
  • triblock copolymer composed of PEO-PS (or PI) -PEO and a diblock block copolymer composed of PEO-PS (or PI)
  • the polymerization degree of the PEO block is represented by 2 to 200.
  • the degree of polymerization of the PS (or PI) block is represented by 2-50.
  • a crystalline metal oxide structure 1 in which several to several tens of titania nanoparticles 2 are connected in a one-dimensional array can be generated (step SP14).
  • the titania sol 14 in which the spherical titania nanoparticles 2 are dispersed is adjusted to a predetermined pH, and a predetermined amount of a block copolymer is added to the titania sol, and predetermined heating is performed. Heat at a predetermined heating temperature over time.
  • the crystalline metal oxide structure 1 in which the dispersed titania nanoparticles 2 are one-dimensionally arranged and connected with such a hardness that the adjacent titania nanoparticles 2 cannot be dispersed even when an external force is applied is obtained as a reaction solution. Can be generated inside.
  • the crystalline metal oxide structure 1 can be used for various applications as compared with the conventional case, and the field of use of the titania nanoparticles 2 can be further expanded than before. Can provide.
  • the titania nanoparticles 2 are one-dimensionally arranged in a single chain shape and remain in this state.
  • the titania nanoparticles 2 can be linked.
  • the crystalline metal oxide structure 1 by increasing the heating temperature during the heat treatment in the generation process, a plurality of titania nanoparticles 2 in a one-dimensional array state can be aggregated, and thus the density of the titania nanoparticles 2 is increased. It is possible to form a crystalline metal oxide structure (shown in “Example (5-4) Heating temperature” described later), which is an aggregate having a high density.
  • the density of the titania nanoparticles 2 can be controlled by controlling the one-dimensional arrangement state of the titania nanoparticles 2, thereby easily controlling the dielectric constant and the refractive index. Further, it is possible to control characteristics such as a photocatalytic action and an ultraviolet shielding action.
  • titania nanoparticles 2 were generated according to the flowchart shown in FIG. Here, after forming an aqueous solution in which 130 g of 2-propanol was dissolved in 14 ml of water, 12 g of titanium isopropoxide (Ti (iOPr) 4) was added to this aqueous solution and dissolved by vigorous stirring at room temperature. A hydrolyzed hydrolysis solution was produced.
  • this aqueous solution was filtered to obtain a precipitate, and the obtained precipitate was washed with water many times to produce a washed precipitate in which excess 2-propanol was removed from the precipitate. Then, a washing precipitate-containing solution in which the washing precipitate is re-dispersed in 183 ml of water is generated, and the washing precipitate-containing solution is adjusted so that the H + / Ti4 + ratio of the washing precipitate-containing solution is 0.5. Nitric acid (HNO 3 ) was added to form a mixed solution.
  • this mixed solution was stirred at room temperature for 3 days and peptized (peptized) to produce a colloidal titania sol.
  • the titania sol thus obtained had a translucent ride blue color, and spherical titania nanoparticles 2 having a nano size were dispersed in the solution.
  • a crystalline metal oxide structure 1 was produced using this titania sol. Specifically, a cellophane tube filled with titania sol is put into a beaker containing distilled water, and the stirrer in the beaker is rotated by a magnetic stirrer, and the titania sol is dialyzed by stirring the distilled water. Was adjusted to pH 4.
  • F127 Pluronic F127
  • MW indicates the molecular weight
  • HLB Hydrophilic-Lipophilic Balance
  • CMC critical micelle concentration
  • the titania sol was continuously stirred for 7 days with the heating temperature maintained at 60 ° C., and F127 was completely dissolved in the titania sol to produce a reaction solution.
  • FIG. 6 is a flowchart showing a verification procedure of the crystalline metal oxide structure 1, the process proceeds from start step RT 3 to step SP 15, where the reaction solution is diluted to about 1/10 with distilled water, and the structure in the reaction solution is obtained. Thus, it was made easier to determine the arrangement form of the titania nanoparticles 2 during the dip coating described later.
  • step SP16 in order to verify the structure in the reaction solution, the structure in the reaction solution was attached to the Si substrate by dip coating.
  • step SP17 the Si substrate having the structure in the reaction solution attached to the surface is subjected to UV ozone treatment (ultraviolet wavelength 172 nm, pressure 50 Pa, irradiation time 30 min) to remove organic components, and then step SP18.
  • UV ozone treatment ultraviolet ozone treatment (ultraviolet wavelength 172 nm, pressure 50 Pa, irradiation time 30 min) to remove organic components, and then step SP18.
  • the surface of this Si substrate was photographed with a scanning microscope to obtain an SEM image, and the verification procedure for the crystalline metal oxide structure 1 was completed (step SP19).
  • FIG. 1 The SEM image obtained at this time is shown in FIG. As shown in FIG. 1, it was confirmed that a crystalline metal oxide structure 1 in which several to several tens of titania nanoparticles 2 are connected in a one-dimensional array is generated.
  • the XRD pattern of the crystalline metal oxide structure 1 was measured using an X-ray diffraction (XRD (X-ray diffraction)) apparatus. Further, the crystalline metal oxide structure 1 was fired at about 300 ° C., and the XRD pattern was measured in the same manner for the fired crystalline metal oxide structure 1. As a result, XRD patterns as shown in FIG. 7 were obtained. From this XRD pattern, it was confirmed that the crystalline metal oxide structures 1 before and after firing were both made of anatase crystal-type titania.
  • XRD X-ray diffraction
  • step SP15 After diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17).
  • Each Si substrate to which the structure in the reaction solution was adhered in this manner was photographed with a scanning microscope (step SP18), and SEM images as shown in FIGS. 8A to 8C were obtained.
  • FIG. 8D is the same SEM image as FIG. 1 and uses the titania sol whose pH is adjusted to 4 in step SP11. As described above, a plurality of titania nanoparticles 2 are primary in a single chain shape. The crystalline metal oxide structure 1 connected in the original arrayed state is generated.
  • the titania nanoparticles 2 in a one-dimensional array state may be aggregated, but a plurality of titania nanoparticles 2 are primary in a single chain shape. It was confirmed that the crystalline metal oxide structure 1 connected in the original arrayed state can be generated.
  • x of TiO 2 : F127 1: x indicating the addition amount of F127 is adjusted to 0.1, 0.3, 0.5, 0.7, or 1.0, and the heat treatment in step SP13 is performed.
  • the conditions were left unchanged, and the reaction temperature was 60 ° C., the heating time was 7 days, and five types of reaction solutions in which F127 was completely dissolved in titania sol were produced.
  • step SP15 After diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was attached in this manner was photographed with a scanning microscope (step SP18), and the SEM image obtained thereby was verified.
  • titania nanoparticles 2 are one-dimensionally arrayed using any reaction solution in which x is adjusted to 0.1, 0.3, 0.5, 0.7, or 1.0. It was confirmed that the crystalline metal oxide structure 1 connected in a state can be generated.
  • step SP15 After diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was attached in this manner was photographed with a scanning microscope (step SP18), and the SEM image obtained thereby was verified.
  • FIG. 10A shows an SEM image when using a reaction solution with a heating time of 1 day (24 hours)
  • FIG. 10B shows an SEM image when using a reaction solution with a heating time of 2 days
  • FIG. Shows an SEM image when using a reaction solution with a heating time of 7 days
  • FIG. 10D shows an SEM image when using a reaction solution with a heating time of 14 days.
  • the crystalline metal oxide structure 1 in which the titania nanoparticles 2 are connected in a one-dimensional array in one chain can be generated.
  • the heating temperature is set to 60 ° C.
  • the pH is set to 4, whereby the crystalline metal oxide structure 1 is generated.
  • step SP13 Heating temperature
  • the pH in step SP11 was 3.38
  • the heating time in step SP13 was set to 3 days, and six types of reaction solutions with heating temperatures of 80 ° C., 100 ° C., 120 ° C., 150 ° C., 175 ° C. or 190 ° C. were produced.
  • step SP15 After diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was attached in this manner was photographed with a scanning microscope (step SP18), and the SEM image obtained thereby was verified.
  • FIG. 11A shows an SEM image when using a reaction solution with a heating temperature of 80 ° C.
  • FIG. 11B shows an SEM image when using a reaction solution with a heating temperature of 100 ° C.
  • FIG. 11C shows the heating temperature.
  • FIG. 11D shows an SEM image when using a reaction solution with a heating temperature of 150 ° C.
  • FIG. 11E shows a reaction solution with a heating temperature of 175 ° C.
  • FIG. 11F shows an SEM image when a reaction solution having a heating temperature of 190 ° C. is used.
  • the heating temperature is preferably 80 to 150 ° C.
  • step SP11 4
  • step SP13 when heat-processing with respect to these 5 types of reaction solutions, it verified about how the pH of each reaction solution would change when heating time was lengthened.
  • connection degree of titania nanoparticles in crystalline metal oxide structure Next, the connection strength of the obtained crystalline metal oxide structure 1 was verified. From the TEM image of the crystalline metal oxide structure 1, a clean crystal lattice was observed between the titania nanoparticles 2 and the titania nanoparticles 2. It was also confirmed that the one-dimensional arrangement state of the titania nanoparticles 2 was not broken even when an external force such as ultrasonic irradiation was applied to the crystalline metal oxide structure 1.
  • the present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the titania nanoparticles 2 made of titania are used as the crystalline metal oxide particles, and the plurality of titania nanoparticles 2 are connected in a one-dimensional array in a single chain shape.
  • the present invention is not limited to this.
  • conductive crystalline nanoparticles may be used for the crystalline metal oxide particles of the present invention.
  • conductive crystalline metal oxides include tin oxide, indium oxide, alumina, zirconia, ceria, magnesia, calcia, strontium oxide, barium oxide, scandium oxide, yttria, hafnia, vanadium oxide, niobium, and tantalum oxide.
  • the present invention is not limited thereto, and the dispersed titania nanoparticle 2 can be obtained.
  • the titania nanoparticles 2 may be generated by various generation processes.
  • the pH of the titania sol is adjusted by dialysis in step SP11 shown in FIG. 4 is described, but the present invention is not limited to this, and hydrochloric acid, nitric acid, sulfuric acid,
  • the pH of the titania sol may be adjusted using various other pH adjusting agents such as acetic acid.
  • a colloidal tin oxide sol was prepared in which spherical tin oxide nanoparticles having a particle size of about 5 nm were dispersed in a solution.
  • This tin oxide sol is a tin oxide sol manufactured by Taki Chemical, and has a pH of 9.9 and tin oxide (SnO 2 ) contained in the solution at a rate of 1 Wt%.
  • F127 Pulonic F127
  • SnO 2 1: 1 (W: W) based on the amount of tin oxide (SnO 2 ) in the tin oxide sol.
  • hydrochloric acid HCl
  • F127 hydrochloric acid
  • step SP15 in FIG. 6 After diluting each reaction solution to about 1/10 with distilled water (step SP15 in FIG. 6), the structures in each reaction solution are formed on the Si substrate by dip coating (the pulling speed at the time of dip coating is 10 mm / min). Each was adhered (step SP16 in FIG. 6), and UV ozone treatment was performed to remove organic components (step SP17 in FIG. 6). Each of the Si substrates to which the structures in the reaction solution were attached in this manner was photographed with a scanning microscope (step SP18 in FIG. 6), and SEM images as shown in FIGS. 13A to 13C were obtained.
  • the crystalline metal in which the tin oxide nanoparticles 12 are connected in a one-dimensional array in a single chain shape is adjusted to 8.0 and 9.0. It was confirmed that the oxide structure 11 can be generated. Furthermore, when the pH of the tin oxide sol is adjusted to 8.0 and 9.0, the crystalline metal oxide structure 11 may be dispersed as compared with the case where the pH of the tin oxide sol is adjusted to 7.0. It could be confirmed.
  • FIGS. 14A and 14B are obtained. Also from the TEM images shown in FIGS. 14A and 14B, it was confirmed that the crystalline metal oxide structure 11 was joined to the tin oxide nanoparticles 12 and the tin oxide nanoparticles 12.
  • FIG. 14C is an electron diffraction image of the tin oxide nanoparticles 12 in the crystalline metal oxide structure 11 prepared by adjusting the pH to 8.0. From FIG. 14C, the tin oxide nanoparticles 12 have a crystalline property. It was confirmed that it had.
  • crystalline tin oxide nanoparticles 12 made of tin oxide are used as the crystalline metal oxide particles, a plurality of tin oxide nanoparticles 12 are arranged in a line in a linear or curved line in a ball chain shape. It was confirmed that the linked crystalline metal oxide structure 11 can be generated.
  • the tin oxide nanoparticles made of tin oxide are used as the crystalline metal oxide particles
  • the tin oxide nanoparticles arranged in a linear or curved line in a line in a ball chain shape have a particle size of 5 It may be nano size of about 10 nm.
  • the tin oxide sol used in the manufacturing process described above may contain tin oxide in a ratio of 0.5 to 3 wt%, and the ball chain structure can be formed in a shorter time by increasing the concentration of tin oxide. be able to.
  • the pH adjusted by adding a pH adjuster (hydrochloric acid) to the tin oxide sol to which F127 has been added is preferably 7.0 to 9.0. That is, when the pH is less than 7.0, the one-dimensionally arranged tin oxide nanoparticles 12 tend to aggregate, and when the pH is higher than 9.0, a short ball chain structure is formed. Therefore, the pH is preferably 7.0 to 9.0.
  • the heating temperature at the time of heat treatment when the tin oxide sol is allowed to stand in the production process is monodispersed particles when the temperature is lower than 40 ° C, and tin oxide nanoparticles 12 tend to aggregate when the temperature is higher than 80 ° C. 40 to 80 ° C. is preferable.
  • the heating time at the time of heat treatment when the tin oxide sol is left to stand in the production process when it is less than 1 day, it becomes a short ball chain, and when it is longer than 30 days, the tin oxide nanoparticles 12 tend to aggregate. 1 to 30 days is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Proposed is method for producing a crystalline metal oxide structure wherein crystalline metal oxide particles are arrayed in a controlled manner so that the application range of the crystalline metal oxide particles can be considerably broadened compared with the prior art. The pH value of a titania sol (14), wherein spherical titania nanoparticles (2) are dispersed, is adjusted to a preset pH level and a definite amount of a block copolymer is added to the titania sol. Then, the titania sol is heated at a preset heating temperature for a preset heating time. Thus, a crystalline metal oxide structure (1), wherein the titania nanoparticles (2), having been dispersed, are one-dimensionally arrayed and adjacent titania nanoparticles (2) are bonded together at such a strength as not to be dispersed even an external force is applied thereto, can be formed in the reaction solution. By arraying the titania nanoparticles (2), having been dispersed, in a controlled manner as described above, it becomes possible to employ these nanoparticles for various purposes compared with the conventional art. Thus, a crystalline metal oxide structure (1), whereby the application range of the titania nanoparticles (2) can be considerably broadened compared with the prior art, can be provided.

Description

結晶性金属酸化物構造体の製造方法Method for producing crystalline metal oxide structure
 本発明は、結晶性の金属酸化物でなる粒子(以下、これを結晶性金属酸化物粒子と呼ぶ)からなる構造体(以下、これを結晶性金属酸化物構造体と呼ぶ)の製造方法に関し、例えばチタニア(二酸化チタン)からなる結晶性金属酸化物構造体の製造に適用して好適なものである。 The present invention relates to a method for producing a structure (hereinafter referred to as a crystalline metal oxide structure) composed of particles composed of a crystalline metal oxide (hereinafter referred to as crystalline metal oxide particles). For example, it is suitable for manufacturing a crystalline metal oxide structure made of titania (titanium dioxide).
 一般的にチタニアは、紫外線吸収性や吸着性等について優れた特性を有することから、顔料や塗料、化粧料、紫外線遮断材、触媒、触媒担体、各種のエレクトロニクス材料等、様々な分野に利用されている。そして、近年では、このようなチタニアからなる微小な粒子(以下、これをチタニアナノ粒子と呼ぶ)を溶液中に分散させたチタニアゾル等の製造方法について考えられている(例えば、特許文献1参照)。 In general, titania has excellent properties such as UV absorption and adsorption, and is used in various fields such as pigments, paints, cosmetics, UV blocking materials, catalysts, catalyst carriers, and various electronic materials. ing. In recent years, a method for producing titania sol or the like in which such fine particles of titania (hereinafter referred to as titania nanoparticles) are dispersed in a solution has been considered (for example, see Patent Document 1).
特開昭64-3020号公報JP-A 64-3020
 しかしながら、このようなチタニアナノ粒子等の結晶性金属酸化物粒子を配列制御させるための手法は未だ確立されていないのが現状である。 However, at present, a method for controlling the arrangement of such crystalline metal oxide particles such as titania nanoparticles has not yet been established.
 そこで、本発明は以上の点を考慮してなされたもので、結晶性金属酸化物粒子を配列制御させ、結晶性金属酸化物粒子の利用分野を従来よりも一段と拡大し得る結晶性金属酸化物構造体の製造方法を提案することを目的とする。 Therefore, the present invention has been made in consideration of the above points, and the crystalline metal oxide particles can be arranged and controlled to further expand the field of use of the crystalline metal oxide particles. It aims at proposing the manufacturing method of a structure.
 かかる課題を解決するため本発明の請求項1は、結晶性金属酸化物粒子を含有した溶液のpHを所定のpHに調整し、一次元構造体形成能を有する一次元構造体形成物質を溶解させて反応溶液を生成する溶解ステップと、所定の加熱温度で、前記反応溶液を所定の加熱時間に渡って加熱して前記結晶性金属酸化物粒子が一次元配列した状態で連結した結晶性金属酸化物構造体を生成する生成ステップとを備えることを特徴とするものである。 In order to solve this problem, claim 1 of the present invention adjusts the pH of a solution containing crystalline metal oxide particles to a predetermined pH and dissolves a one-dimensional structure-forming substance having a one-dimensional structure-forming ability. A crystalline step in which the crystalline metal oxide particles are connected in a one-dimensional array by heating the reaction solution for a predetermined heating time at a predetermined heating temperature. And a generation step of generating an oxide structure.
 また、本発明の請求項2は、前記溶解ステップにおける前記pHと、前記生成ステップにおける前記加熱温度及び前記加熱時間とを調整することにより、前記結晶性金属酸化物粒子を一次元配列させた状態で、隣接する前記結晶性金属酸化物粒子を所定の強度で連結させることを特徴とするものである。 Further, according to claim 2 of the present invention, the crystalline metal oxide particles are arranged one-dimensionally by adjusting the pH in the dissolving step and the heating temperature and the heating time in the generating step. Then, the adjacent crystalline metal oxide particles are connected with a predetermined strength.
 また、本発明の請求項3は、前記溶解ステップは、前記結晶性金属酸化物粒子がチタニアナノ粒子であり、前記一次元構造体形成物質がブロックコポリマーであることを特徴とするものである。 The third aspect of the present invention is characterized in that, in the dissolving step, the crystalline metal oxide particles are titania nanoparticles, and the one-dimensional structure forming substance is a block copolymer.
 また、本発明の請求項4は、前記溶解ステップは、前記結晶性金属酸化物粒子が導電性を有するナノ粒子であり、前記一次元構造体形成物質がブロックコポリマーであることを特徴とするものである。 According to a fourth aspect of the present invention, in the dissolution step, the crystalline metal oxide particles are nanoparticles having conductivity, and the one-dimensional structure forming substance is a block copolymer. It is.
 また、本発明の請求項5は、前記ナノ粒子が酸化スズを含むことを特徴とするものである。 Further, claim 5 of the present invention is characterized in that the nanoparticles include tin oxide.
 本発明の請求項1の結晶性金属酸化物構造体の製造方法によれば、結晶性金属酸化物粒子を配列制御させることができ、かくして結晶性金属酸化物粒子の利用分野を従来よりも一段と拡大し得る。 According to the method for producing a crystalline metal oxide structure of claim 1 of the present invention, the arrangement of the crystalline metal oxide particles can be controlled, and thus the field of use of the crystalline metal oxide particles is further enhanced than before. Can expand.
本発明による結晶性金属酸化物構造体の全体構成を示すSEM像である。It is a SEM image which shows the whole structure of the crystalline metal oxide structure by this invention. チタニアナノ粒子生成処理手順を示すフローチャートである。It is a flowchart which shows a titania nanoparticle production | generation process procedure. 結晶性金属酸化物構造体生成処理手順を示すフローチャートである。It is a flowchart which shows a crystalline metal oxide structure production | generation process procedure. 透析の説明に供する概略図である。It is the schematic where it uses for description of dialysis. F127の化学式を示す概略図である。It is the schematic which shows the chemical formula of F127. 結晶性金属酸化物構造体の検証手順を示すフローチャートである。It is a flowchart which shows the verification procedure of a crystalline metal oxide structure. 焼成前後の結晶性金属酸化物構造体のXRDパターンを示すグラフである。It is a graph which shows the XRD pattern of the crystalline metal oxide structure before and behind baking. pHを1.6、3.38、3.58又は4.0に調整したチタニアゾルをそれぞれ用いたときのSEM像である。It is a SEM image when titania sol which adjusted pH to 1.6, 3.38, 3.58, or 4.0 is used, respectively. F127の添加量を0.1、0.3、0.5、0.7又は1.0に調整したときのSEM像である。It is a SEM image when the addition amount of F127 is adjusted to 0.1, 0.3, 0.5, 0.7, or 1.0. 加熱時間を1日、2日、7日又は14日としたときのSEM像である。It is a SEM image when heating time is 1st, 2nd, 7th, or 14th. 加熱温度を80℃、100℃、120℃、150℃、175℃又は190℃としたときのSEM像である。It is a SEM image when heating temperature is 80 degreeC, 100 degreeC, 120 degreeC, 150 degreeC, 175 degreeC, or 190 degreeC. 加熱時間とpHとの関係を示すグラフである。It is a graph which shows the relationship between heating time and pH. pHを7.0、8.0又は9.0に調整した酸化スズゾル内における結晶性金属酸化物構造体の構成を示すSEM像である。It is a SEM image which shows the structure of the crystalline metal oxide structure in the tin oxide sol which adjusted pH to 7.0, 8.0, or 9.0. pHを8.0に調整した酸化スズゾル内における結晶性金属酸化物構造体の構成を示すTEM像と、電子線回折像である。They are the TEM image which shows the structure of the crystalline metal oxide structure in the tin oxide sol which adjusted pH to 8.0, and an electron beam diffraction image.
 1 結晶性金属酸化物構造体
 2 チタニアナノ粒子(結晶性金属酸化物粒子)
1 Crystalline metal oxide structure 2 Titania nanoparticles (crystalline metal oxide particles)
 以下図面に基づいて本発明の実施の形態を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (1)結晶性金属酸化物構造体の全体構成
 図1は本発明による結晶性金属酸化物構造体1を走査型顕微鏡により撮影したSEM(Scanning Electron Microscope)像である。図1に示すように、各結晶性金属酸化物構造体1は、それぞれ複数のチタニアナノ粒子2が直線状又は曲線状に一列に並んでボールチェーン状に配列(以下、これを一次元配列と呼ぶ)され、かつ隣接するチタニアナノ粒子2が所定の強度で連結されている。
(1) Overall Configuration of Crystalline Metal Oxide Structure FIG. 1 is an SEM (Scanning Electron Microscope) image obtained by photographing a crystalline metal oxide structure 1 according to the present invention with a scanning microscope. As shown in FIG. 1, each crystalline metal oxide structure 1 has a plurality of titania nanoparticles 2 arranged in a line in a straight line or a curved line and arranged in a ball chain shape (hereinafter referred to as a one-dimensional arrangement). ) And adjacent titania nanoparticles 2 are connected with a predetermined strength.
 このような結晶性金属酸化物構造体1は、後述する生成過程における溶液中のpH変化や、生成過程中の加熱温度、加熱時間、一次元構造体形成物質の含有量によりチタニアナノ粒子2の連結個数や一次元配列の状態が変化し得る。 Such a crystalline metal oxide structure 1 is connected to titania nanoparticles 2 according to the pH change in the solution during the production process described later, the heating temperature during the production process, the heating time, and the content of the one-dimensional structure forming substance. The number and state of the one-dimensional array can change.
 この実施の形態の場合、チタニアナノ粒子2は、チタニアからなり、球状でその粒子径が約5~8nm程度のナノサイズにまで粒径制御された構成を有する。そして、チタニアナノ粒子2は、数個から数十個を1つの単位として結晶性金属酸化物構造体1を形成し、例えば超音波等の外力が加えられても分散し得ない程度の堅さで互いに連結されている。 In the case of this embodiment, the titania nanoparticle 2 is made of titania, and has a configuration in which the particle diameter is controlled to a nano size having a spherical shape and a particle size of about 5 to 8 nm. The titania nanoparticle 2 forms a crystalline metal oxide structure 1 with several to several tens as one unit, and has such a hardness that it cannot be dispersed even when an external force such as ultrasonic waves is applied. Are connected to each other.
 (2)結晶性金属酸化物構造体の製造方法
 このような本発明による結晶性金属酸化物構造体1は、先ず始めに粒子状のチタニアナノ粒子2を生成しておき、後述する結晶性金属酸化物構造体生成処理手順に従って、複数個のチタニア3を一次元配列の状態で連結させることにより生成され得る。ここでは、先ず始めにチタニアナノ粒子2を生成するチタニアナノ粒子生成処理について説明した後、当該チタニア3を用いて結晶性金属酸化物構造体1を生成する結晶性金属酸化物構造体生成処理について順に説明する。
(2) Method for Producing Crystalline Metal Oxide Structure In such a crystalline metal oxide structure 1 according to the present invention, first, particulate titania nanoparticles 2 are first generated, and the crystalline metal oxidation described later is performed. It can be generated by connecting a plurality of titanias 3 in a one-dimensional array in accordance with a physical structure generation processing procedure. Here, after first describing the titania nanoparticle generation process for generating the titania nanoparticles 2, the crystalline metal oxide structure generation process for generating the crystalline metal oxide structure 1 using the titania 3 will be described in order. To do.
 (2-1)チタニアナノ粒子生成処理手順
 ここで、チタニアナノ粒子2の典型的な生成手順について、図2に示すフローチャートを用いて以下説明する。図2に示すように、開始ルーチンRT1から次のステップSP1に移り、例えば11.7~15.2mlの水に130~220gの2-プロパノールを含有させた水溶液5を用意し、当該水溶液5に9.6~12gのチタンイソプロポキシド(Ti(iOPr)4)を加えて室温で激しく攪拌して溶解させ、加水分解した加水分解溶液6を生成し、次のステップSP2に移る。
(2-1) Titania Nanoparticle Generation Processing Procedure Here, a typical generation procedure of the titania nanoparticle 2 will be described below using the flowchart shown in FIG. As shown in FIG. 2, the routine proceeds from the start routine RT1 to the next step SP1, for example, preparing an aqueous solution 5 in which 130 to 220 g of 2-propanol is contained in 11.7 to 15.2 ml of water, and 9.6 to 12 g of the aqueous solution 5 is prepared. Titanium isopropoxide (Ti (iOPr) 4) is added and dissolved by vigorous stirring at room temperature to produce a hydrolyzed hydrolysis solution 6, and the process proceeds to the next step SP2.
 ステップSP2において、ステップSP1の加水分解溶液6を濾過して沈殿物7を得、次のステップSP3において、沈殿物7を数回洗浄することにより、余分な2-プロパノールを取り除いた洗浄沈殿物を生成し、次のステップSP4へ移る。ステップSP4において、所定量の水10に洗浄沈殿物11を再分散させて洗浄沈殿物含有溶液12を生成し、次のステップSP5に移る。 In step SP2, the hydrolyzed solution 6 of step SP1 is filtered to obtain a precipitate 7. In the next step SP3, the precipitate 7 is washed several times to remove the washed precipitate from which excess 2-propanol has been removed. And move to the next step SP4. In step SP4, the washing precipitate 11 is redispersed in a predetermined amount of water 10 to produce a washing precipitate-containing solution 12, and the process proceeds to the next step SP5.
 ステップSP5において、洗浄沈殿物含有溶液12に所定量の硝酸(HNO)を加えて、H+/Ti4+比を0.5~1.0に調整した混合溶液を生成した後、この混合溶液を室温で所定時間攪拌してペプチゼーション(解膠)することによりコロイド状のチタニアゾル14を生成し、上述したチタニアナノ粒子生成処理手順を終了する(ステップSP6)。このようにして生成されたチタニアゾル14には、ナノサイズからなる球状のチタニアナノ粒子2が溶液中に分散しており、チタニア結晶が安定して存在している。 In step SP5, a predetermined amount of nitric acid (HNO 3 ) is added to the washing precipitate-containing solution 12 to produce a mixed solution in which the H + / Ti4 + ratio is adjusted to 0.5 to 1.0, and then the mixed solution is stirred at room temperature for a predetermined time. Then, the colloidal titania sol 14 is generated by peptization (peptization), and the above-described titania nanoparticle generation processing procedure is completed (step SP6). In the titania sol 14 thus produced, spherical titania nanoparticles 2 having a nano size are dispersed in a solution, and titania crystals are stably present.
 (2-2)結晶性金属酸化物構造体生成処理手順
 次に、上述したチタニアナノ粒子生成処理手順に従って生成したチタニアナノ粒子2を用いて、当該チタニアナノ粒子2が一次元配列した状態で連結した結晶性金属酸化物構造体1を生成する結晶性金属酸化物構造体生成処理手順について、図3に示すフローチャートを用いて以下説明する。先ず初めに、開始ルーチンRT2から次のステップSP11に移り、上述したチタニアナノ粒子生成処理手順により得たコロイド状のチタニアゾル(チタニアナノ粒子2を含有した溶液)14を、透析によりpH1~4にpH調整する。
(2-2) Crystalline Metal Oxide Structure Generation Processing Procedure Next, using the titania nanoparticles 2 generated according to the above-described titania nanoparticle generation processing procedure, the crystallinity in which the titania nanoparticles 2 are connected in a one-dimensional array. A crystalline metal oxide structure generation processing procedure for generating the metal oxide structure 1 will be described below with reference to the flowchart shown in FIG. First, the routine proceeds from the start routine RT2 to the next step SP11, where the colloidal titania sol (solution containing the titania nanoparticles 2) 14 obtained by the above-described titania nanoparticle generation processing procedure is adjusted to pH 1 to 4 by dialysis. .
 この場合、図4に示すように、例えば蒸留水20を入れたビーカ21内に、チタニアゾル14を封入したセロハンチューブ22を投入する。次いで、マグネチックスターラー(図示せず)により磁力を利用してビーカ21内の攪拌子23を回転させ、蒸留水20を攪拌することにより透析し、セロハンチューブ22内のチタニアゾル14をpH1~4に調整する。 In this case, as shown in FIG. 4, for example, a cellophane tube 22 in which titania sol 14 is sealed is introduced into a beaker 21 in which distilled water 20 is placed. Next, a magnetic stirrer (not shown) is used to rotate the stirrer 23 in the beaker 21 by using magnetic force, dialyzed by stirring the distilled water 20, and the titania sol 14 in the cellophane tube 22 is adjusted to pH 1-4. adjust.
 ここで、チタニアゾル14は、pHが1未満のとき、チタニアナノ粒子2表面の正電荷の密度(水素イオン)が非常に高くなり、チタニアナノ粒子2間の斥力的な相互作用のため、後述する熱処理後において当該チタニアナノ粒子2が一次元配列の状態とはならない。一方、チタニアゾル14は、pHが4を超えるとき、チタニアナノ粒子2表面の正電荷の密度が下がり、当該チタニアゾルのpHがチタニアナノ粒子2の等電点に近くなると、後述する熱処理後において、チタニアナノ粒子2が一次元配列せずに複数のチタニアナノ粒子2が密集して固まった凝集体となる。従って、チタニアゾルのpHは1~4、好ましくは3.5~4であることが好ましい。 Here, when the titania sol 14 has a pH of less than 1, the density of positive charges (hydrogen ions) on the surface of the titania nanoparticles 2 becomes very high, and because of the repulsive interaction between the titania nanoparticles 2, after the heat treatment described later. In this case, the titania nanoparticles 2 are not in a one-dimensional array. On the other hand, when the titania sol 14 has a pH exceeding 4, when the density of the positive charges on the surface of the titania nanoparticles 2 decreases and the pH of the titania sol becomes close to the isoelectric point of the titania nanoparticles 2, the titania nanoparticles 2 after the heat treatment described later. However, a plurality of titania nanoparticles 2 are densely packed and solidified without being one-dimensionally arranged. Accordingly, the titania sol preferably has a pH of 1 to 4, preferably 3.5 to 4.
 次いで、ステップSP12において、pH調整したチタニアゾルに所定量のブロックコポリマーを添加した後、ステップSP13において、熱処理によってチタニアゾルにブロックコポリマーを溶解させることにより反応溶液を生成する。この際、例えば25~190℃の加熱温度に維持した状態で、1~30日間の加熱時間撹拌しながらチタニアゾルにブロックコポリマーを溶解させてゆき、反応溶液を生成する。また、加熱時間は、pH3.5~4としたとき、長くすると、チタニアナノ粒子2が連結する個数が次第に多くなるものの、長くし過ぎると、一次元配列した複数のチタニアナノ粒子2同士が連結して凝集し、凝集体となり得る。従って、加熱時間は、凝集体とならない、30日未満であることが好ましい。 Next, after adding a predetermined amount of block copolymer to the pH-adjusted titania sol in step SP12, in step SP13, a reaction solution is generated by dissolving the block copolymer in the titania sol by heat treatment. At this time, for example, while maintaining the heating temperature at 25 to 190 ° C., the block copolymer is dissolved in the titania sol while stirring for a heating time of 1 to 30 days to produce a reaction solution. In addition, when the heating time is set to pH 3.5 to 4, if the length is increased, the number of titania nanoparticles 2 connected gradually increases. However, if the heating time is too long, a plurality of titania nanoparticles 2 arranged one-dimensionally are connected to each other. Aggregates and can become aggregates. Therefore, it is preferable that the heating time is less than 30 days so as not to form an aggregate.
 ブロックコポリマーの添加量は、チタニアゾル14中のチタニアの量を基準とし、チタニア(TiO):ブロックコポリマー=1:x(w:w(質量比))とした場合、xは0.1~1.0であることが好ましい。すなわち、xが0.1未満のときには、チタニアナノ粒子2表面へのF127の吸着量が少なく、チタニアナノ粒子2が一次元配列せずに単分散した状態となり、一方、xが1.0を超えるときには、チタニアナノ粒子2表面へのF127の吸着量が多くなり、一次元配列したチタニアナノ粒子2が凝集して凝集体となることから、xは0.1~1.0であることが好ましい。 The addition amount of the block copolymer is based on the amount of titania in the titania sol 14, and when titania (TiO 2 ): block copolymer = 1: x (w: w (mass ratio)), x is 0.1 to 1 0.0 is preferred. That is, when x is less than 0.1, the amount of F127 adsorbed on the surface of the titania nanoparticles 2 is small, and the titania nanoparticles 2 are monodispersed without being one-dimensionally arranged, whereas when x exceeds 1.0 Since the amount of F127 adsorbed on the surface of the titania nanoparticle 2 increases and the one-dimensionally arranged titania nanoparticle 2 aggregates to form an aggregate, x is preferably 0.1 to 1.0.
 ここで、ブロックコポリマーとは、相異なる性質を持つポリマーを化学結合させた分子である。具体的にブロックコポリマーとしては、RO-(RO)-(RO)-(RO)-Rで表されるトリブロックコポリマーや、RO-(RO)-(RO)-Rで表されるジブロックコポリマーを適用できる。この場合、R及びRは、H、又は炭素数1~6の低級アルキレン基を表し、R、R及びRは、炭素数2~6の低級アルキレン基を表し、s、t及びuは2~200の数を表す。なお、このようなブロックコポリマーは、例えば、BASF社からPluronicシリーズとして販売されている。 Here, the block copolymer is a molecule obtained by chemically bonding polymers having different properties. Specifically, examples of the block copolymer include a triblock copolymer represented by R 1 O— (R 2 O) s — (R 3 O) t — (R 4 O) u —R 5 , R 1 O— (R A diblock copolymer represented by 2 O) s- (R 4 O) u -R 5 can be applied. In this case, R 1 and R 5 represent H or a lower alkylene group having 1 to 6 carbon atoms, R 2 , R 3 and R 4 represent a lower alkylene group having 2 to 6 carbon atoms, s, t And u represents a number from 2 to 200. Such block copolymers are sold, for example, as Pluronic series from BASF.
 また、他のブロックコポリマーとしては、親水ブロックをポリエチレンオキシド(以下、PEOと呼ぶ)とし、疎水ブロックをポリスチレン(以下、PSと呼ぶ)又はポリイソプレン(以下、PIと呼ぶ)としたブロックコポリマーを適用でき、この場合、PEO-PS(又はPI)-PEOからなるトリブロックコポリマーと、PEO-PS(又はPI)からなるジブロックブロックコポリマーとがあり、PEOブロックの重合度は2~200で表され、PS(又はPI)ブロックの重合度は2~50で表される。 In addition, as another block copolymer, a block copolymer in which the hydrophilic block is polyethylene oxide (hereinafter referred to as PEO) and the hydrophobic block is polystyrene (hereinafter referred to as PS) or polyisoprene (hereinafter referred to as PI) is applied. In this case, there are a triblock copolymer composed of PEO-PS (or PI) -PEO and a diblock block copolymer composed of PEO-PS (or PI), and the polymerization degree of the PEO block is represented by 2 to 200. The degree of polymerization of the PS (or PI) block is represented by 2-50.
 そして、このようにして生成した反応溶液中には、数個から数十個のチタニアナノ粒子2が一次元配列した状態で連結した結晶性金属酸化物構造体1が生成され得る(ステップSP14)。 Then, in the reaction solution generated in this manner, a crystalline metal oxide structure 1 in which several to several tens of titania nanoparticles 2 are connected in a one-dimensional array can be generated (step SP14).
 (3)動作及び効果
 以上の構成において、球状のチタニアナノ粒子2が分散しているチタニアゾル14のpHを所定のpHに調整すると供に、このチタニアゾル中にブロックコポリマーを所定量添加し、所定の加熱時間に亘って所定の加熱温度で加熱する。これにより、分散していたチタニアナノ粒子2が一次元配列し、かつ隣接するチタニアナノ粒子2が外力を加えても分散し得ない程度の堅さで連結した結晶性金属酸化物構造体1を反応溶液中に生成できる。かくして、分散しているチタニアナノ粒子2を配列制御することで、従来よりも各種用途に利用できるようになり、チタニアナノ粒子2の利用分野を従来よりも一段と拡大し得る結晶性金属酸化物構造体1を提供できる。
(3) Operation and effect In the above configuration, the titania sol 14 in which the spherical titania nanoparticles 2 are dispersed is adjusted to a predetermined pH, and a predetermined amount of a block copolymer is added to the titania sol, and predetermined heating is performed. Heat at a predetermined heating temperature over time. As a result, the crystalline metal oxide structure 1 in which the dispersed titania nanoparticles 2 are one-dimensionally arranged and connected with such a hardness that the adjacent titania nanoparticles 2 cannot be dispersed even when an external force is applied is obtained as a reaction solution. Can be generated inside. Thus, by controlling the arrangement of the dispersed titania nanoparticles 2, the crystalline metal oxide structure 1 can be used for various applications as compared with the conventional case, and the field of use of the titania nanoparticles 2 can be further expanded than before. Can provide.
 また、この結晶性金属酸化物構造体1では、生成過程において、チタニアゾル14のpHを1~4に調整することにより、チタニアナノ粒子2を1本の鎖状に一次元配列させ、この状態のままチタニアナノ粒子2を連結させることができる。さらに、結晶性金属酸化物構造体1では、生成過程において、熱処理の際の加熱温度を上げることにより、複数の一次元配列状態のチタニアナノ粒子2を凝集させることができ、かくしてチタニアナノ粒子2の密度が高い凝集体たる結晶性金属酸化物構造体(後述の実施例「(5-4)加熱温度」で示す)を形成することができる。 Further, in this crystalline metal oxide structure 1, by adjusting the pH of the titania sol 14 to 1 to 4 in the production process, the titania nanoparticles 2 are one-dimensionally arranged in a single chain shape and remain in this state. The titania nanoparticles 2 can be linked. Further, in the crystalline metal oxide structure 1, by increasing the heating temperature during the heat treatment in the generation process, a plurality of titania nanoparticles 2 in a one-dimensional array state can be aggregated, and thus the density of the titania nanoparticles 2 is increased. It is possible to form a crystalline metal oxide structure (shown in “Example (5-4) Heating temperature” described later), which is an aggregate having a high density.
 また、結晶性金属酸化物構造体1では、チタニアナノ粒子2の一次元配列状態を制御することにより、当該チタニアナノ粒子2の密度を制御し、これにより誘電率や屈折率を容易に制御することができ、さらに光触媒作用や紫外線遮蔽作用等の特性についても制御することができる。 In the crystalline metal oxide structure 1, the density of the titania nanoparticles 2 can be controlled by controlling the one-dimensional arrangement state of the titania nanoparticles 2, thereby easily controlling the dielectric constant and the refractive index. Further, it is possible to control characteristics such as a photocatalytic action and an ultraviolet shielding action.
 (4)結晶性金属酸化物構造体の製造
 次に、上述した結晶性金属酸化物構造体1が生成できることについて検証を行った。先ず初めに、図2に示したフローチャートに従ってチタニアナノ粒子2を生成した。ここでは、14mlの水に130gの2-プロパノールを溶解させた水溶液を生成した後、この水溶液に12gのチタンイソプロポキシド(Ti(iOPr)4)を加えて室温で激しく攪拌して溶解させ、加水分解した加水分解溶液を生成した。
(4) Manufacture of crystalline metal oxide structure Next, it verified that the crystalline metal oxide structure 1 mentioned above could be produced | generated. First, titania nanoparticles 2 were generated according to the flowchart shown in FIG. Here, after forming an aqueous solution in which 130 g of 2-propanol was dissolved in 14 ml of water, 12 g of titanium isopropoxide (Ti (iOPr) 4) was added to this aqueous solution and dissolved by vigorous stirring at room temperature. A hydrolyzed hydrolysis solution was produced.
 次いで、この水溶液を濾過して沈殿物を得、得られた沈殿物を水で何度も洗浄して、当該沈殿物から余分な2-プロパノールを取り除いた洗浄沈殿物を生成した。そして、183mlの水に洗浄沈殿物を再分散させた洗浄沈殿物含有溶液を生成し、この洗浄沈殿物含有溶液のH+/Ti4+比が0.5となるように、当該洗浄沈殿物含有溶液に硝酸(HNO)を加え、混合溶液を生成した。 Subsequently, this aqueous solution was filtered to obtain a precipitate, and the obtained precipitate was washed with water many times to produce a washed precipitate in which excess 2-propanol was removed from the precipitate. Then, a washing precipitate-containing solution in which the washing precipitate is re-dispersed in 183 ml of water is generated, and the washing precipitate-containing solution is adjusted so that the H + / Ti4 + ratio of the washing precipitate-containing solution is 0.5. Nitric acid (HNO 3 ) was added to form a mixed solution.
 次いで、この混合溶液を室温で3日間攪拌してペプチゼーション(解膠)することによりコロイド状のチタニアゾルを生成した。このようにして得られたチタニアゾルは、半透明なライドブルー色からなり、ナノサイズからなる球状のチタニアナノ粒子2が溶液中に分散していた。 Next, this mixed solution was stirred at room temperature for 3 days and peptized (peptized) to produce a colloidal titania sol. The titania sol thus obtained had a translucent ride blue color, and spherical titania nanoparticles 2 having a nano size were dispersed in the solution.
 次に、図3に示したフローチャートに従って、このチタニアゾルを用いて結晶性金属酸化物構造体1を生成した。具体的には、蒸留水を入れたビーカに、チタニアゾルを封入したセロハンチューブを投入し、マグネチックスターラーによりビーカ内の攪拌子を回転させて、蒸留水を攪拌して透析することにより、当該チタニアゾルをpH4に調整した。 Next, according to the flowchart shown in FIG. 3, a crystalline metal oxide structure 1 was produced using this titania sol. Specifically, a cellophane tube filled with titania sol is put into a beaker containing distilled water, and the stirrer in the beaker is rotated by a magnetic stirrer, and the titania sol is dialyzed by stirring the distilled water. Was adjusted to pH 4.
 次いで、ブロックコポリマーとして、図5に示すようなF127(プルロニック(Pluronic)F127)をチタニアゾルに添加した。因みに、図5において、MWは分子量を示し、HLB(Hydrophilic-Lipophilic Balance:親水疎水比)は界面活性剤の特性を示し、CMC(critical micelle concentration)は臨界ミセル濃度を示す。また、F127の添加量は、チタニアゾル中のチタニア(TiO)の量を基準とし、F127:TiO=0.1:1(W:W)とした。次いで、熱処理として、加熱温度を60℃に維持した状態で、加熱時間として7日間、チタニアゾルを撹拌し続け、F127をチタニアゾルに完全に溶解させて反応溶液を生成した。 Next, F127 (Pluronic F127) as shown in FIG. 5 was added to the titania sol as a block copolymer. In FIG. 5, MW indicates the molecular weight, HLB (Hydrophilic-Lipophilic Balance) indicates the property of the surfactant, and CMC (critical micelle concentration) indicates the critical micelle concentration. The amount of F127 added was set to F127: TiO 2 = 0.1: 1 (W: W) based on the amount of titania (TiO 2 ) in the titania sol. Next, as a heat treatment, the titania sol was continuously stirred for 7 days with the heating temperature maintained at 60 ° C., and F127 was completely dissolved in the titania sol to produce a reaction solution.
 次に、このようにして生成した反応溶液中の構造体について確認した。図6は、結晶性金属酸化物構造体1の検証手順を示すフローチャートであり、開始ステップRT3からステップSP15に移り、蒸留水により反応溶液を約1/10に希釈し、反応溶液中の構造体の密度を減少させ、後述するディップコーティングの際に、チタニアナノ粒子2の配列形態を判断し易くした。 Next, the structure in the reaction solution thus produced was confirmed. FIG. 6 is a flowchart showing a verification procedure of the crystalline metal oxide structure 1, the process proceeds from start step RT 3 to step SP 15, where the reaction solution is diluted to about 1/10 with distilled water, and the structure in the reaction solution is obtained. Thus, it was made easier to determine the arrangement form of the titania nanoparticles 2 during the dip coating described later.
 次いで、ステップSP16において、この反応溶液中の構造体を検証するために、ディップコーティングによって反応溶液中の構造体をSi基板に付着させた。次いで、ステップSP17において、反応溶液中の構造体を表面に付着させたSi基板に対してUVオゾン処理(紫外線波長172nm、圧力50Pa、照射時間30min)を行って有機成分を除去した後、ステップSP18において、このSi基板の表面を走査型顕微鏡により撮影してSEM像を得、結晶性金属酸化物構造体1の検証手順を終了した(ステップSP19)。 Next, in step SP16, in order to verify the structure in the reaction solution, the structure in the reaction solution was attached to the Si substrate by dip coating. Next, in step SP17, the Si substrate having the structure in the reaction solution attached to the surface is subjected to UV ozone treatment (ultraviolet wavelength 172 nm, pressure 50 Pa, irradiation time 30 min) to remove organic components, and then step SP18. The surface of this Si substrate was photographed with a scanning microscope to obtain an SEM image, and the verification procedure for the crystalline metal oxide structure 1 was completed (step SP19).
 このとき得られたSEM像を図1に示す。図1に示すように、数個から数十個のチタニアナノ粒子2が一次元配列した状態で連結した結晶性金属酸化物構造体1が生成されていることが確認できた。 The SEM image obtained at this time is shown in FIG. As shown in FIG. 1, it was confirmed that a crystalline metal oxide structure 1 in which several to several tens of titania nanoparticles 2 are connected in a one-dimensional array is generated.
 また、X線回折(XRD(X-ray diffraction))装置を用いて結晶性金属酸化物構造体1についてXRDパターンを測定した。さらに、この結晶性金属酸化物構造体1を約300℃で焼成し、焼成後の結晶性金属酸化物構造体1について同様にXRDパターンを測定した。その結果、図7に示すようなXRDパターンがそれぞれ得られた。このXRDパターンから、焼成前及び焼成後の各結晶性金属酸化物構造体1については、ともにアナターゼ結晶型結晶のチタニアでなることが確認できた。 Further, the XRD pattern of the crystalline metal oxide structure 1 was measured using an X-ray diffraction (XRD (X-ray diffraction)) apparatus. Further, the crystalline metal oxide structure 1 was fired at about 300 ° C., and the XRD pattern was measured in the same manner for the fired crystalline metal oxide structure 1. As a result, XRD patterns as shown in FIG. 7 were obtained. From this XRD pattern, it was confirmed that the crystalline metal oxide structures 1 before and after firing were both made of anatase crystal-type titania.
 (5)各種パラメータの依存性について
 (5-1)チタニアゾルのpH
 次に、図3に示した結晶性金属酸化物構造体生成処理において、ステップSP11におけるpHの値を変更した。ここでは、pHを1.6と、3.38と、3.58とにそれぞれ調整した3種類のチタニアゾルを生成した。なお、ステップSP12におけるF127の添加量と、ステップSP13における熱処理の条件は変更せずにそのままとし、それぞれF127:TiO=0.1:1(W:W)、加熱温度を60℃、加熱時間を7日間とし、F127をチタニアゾルに完全に溶解させて反応溶液を生成した。
(5) Dependence of various parameters (5-1) pH of titania sol
Next, in the crystalline metal oxide structure generation process shown in FIG. 3, the pH value in step SP11 was changed. Here, three types of titania sols with pH adjusted to 1.6, 3.38, and 3.58 were generated. It should be noted that the amount of F127 added in step SP12 and the heat treatment conditions in step SP13 remain unchanged, F127: TiO 2 = 0.1: 1 (W: W), the heating temperature is 60 ° C., the heating time, respectively. For 7 days, and F127 was completely dissolved in titania sol to form a reaction solution.
 そして、蒸留水により各反応溶液を約1/10に希釈した後(ステップSP15)、ディップコーティングによって各反応溶液中の構造体をSi基板にそれぞれ付着させて(ステップSP16)、UVオゾン処理を行った(ステップSP17)。このようにして反応溶液中の構造体を付着させた各Si基板を、走査型顕微鏡により撮影したところ(ステップSP18)、図8A~Cに示すようなSEM像が得られた。なお、図8Dは、図1と同じSEM像であり、ステップSP11においてpHを4に調整したチタニアゾルを用いたもので、上述したように、複数個のチタニアナノ粒子2が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体1が生成されている。 Then, after diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was adhered in this manner was photographed with a scanning microscope (step SP18), and SEM images as shown in FIGS. 8A to 8C were obtained. FIG. 8D is the same SEM image as FIG. 1 and uses the titania sol whose pH is adjusted to 4 in step SP11. As described above, a plurality of titania nanoparticles 2 are primary in a single chain shape. The crystalline metal oxide structure 1 connected in the original arrayed state is generated.
 図8Aに示すように、pHを1.6に調整した場合でも、一次元配列状態のチタニアナノ粒子2が凝集している箇所もあるものの、複数個のチタニアナノ粒子2が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体1が生成できることが確認できた。 As shown in FIG. 8A, even when the pH is adjusted to 1.6, the titania nanoparticles 2 in a one-dimensional array state may be aggregated, but a plurality of titania nanoparticles 2 are primary in a single chain shape. It was confirmed that the crystalline metal oxide structure 1 connected in the original arrayed state can be generated.
 また、図8B及びCに示すように、pHを3.38及び3.58に調整した場合でも、チタニアナノ粒子2が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体1が生成できることが確認できた。また、チタニアゾルのpHを3.38及び3.58に調整した場合には、チタニアゾルのpHを1.6に調整した場合に比べて、結晶性金属酸化物構造体1が分散することが確認できた。 Further, as shown in FIGS. 8B and 8C, even when the pH is adjusted to 3.38 and 3.58, the crystalline metal oxide in which the titania nanoparticles 2 are connected in a one-dimensionally arranged state in one chain shape. It was confirmed that the structure 1 can be generated. Further, when the pH of the titania sol is adjusted to 3.38 and 3.58, it can be confirmed that the crystalline metal oxide structure 1 is dispersed as compared with the case where the pH of the titania sol is adjusted to 1.6. It was.
 (5-2)F127の添加量
 次に、図3に示した結晶性金属酸化物構造体生成処理において、ステップSP12において、pH4のチタニアゾルへブロックコポリマーを添加する添加量を変えたとき、結晶性金属酸化物構造体が生成できるか否かについて検証した。ここでは、ブロックコポリマーとして、図5に示すようなF127を用いた。また、このF127のチタニアゾルへの添加量は、チタニアゾル中のチタニア(TiO)の量を基準とし、TiO:F127=1:x(W:W)とし、xの値を変更した。
(5-2) Addition amount of F127 Next, in the crystalline metal oxide structure generation process shown in FIG. 3, when the addition amount of the block copolymer added to the titania sol having a pH of 4 is changed in step SP12, the crystalline property It was verified whether or not a metal oxide structure could be generated. Here, F127 as shown in FIG. 5 was used as the block copolymer. The amount of F127 added to the titania sol was TiO 2 : F127 = 1: x (W: W) based on the amount of titania (TiO 2 ) in the titania sol, and the value of x was changed.
 具体的にはF127の添加量を示すTiO:F127=1:xのxを、0.1、0.3、0.5、0.7又は1.0に調整し、ステップSP13における熱処理の条件は変更せずにそのままとし、それぞれ加熱温度を60℃、加熱時間を7日間として、F127をチタニアゾルに完全に溶解させた5種類の反応溶液を生成した。 Specifically, x of TiO 2 : F127 = 1: x indicating the addition amount of F127 is adjusted to 0.1, 0.3, 0.5, 0.7, or 1.0, and the heat treatment in step SP13 is performed. The conditions were left unchanged, and the reaction temperature was 60 ° C., the heating time was 7 days, and five types of reaction solutions in which F127 was completely dissolved in titania sol were produced.
 そして、蒸留水により各反応溶液を約1/10に希釈した後(ステップSP15)、ディップコーティングによって各反応溶液中の構造体をSi基板にそれぞれ付着させて(ステップSP16)、UVオゾン処理を行った(ステップSP17)。このようにして反応溶液中の構造体を付着させた各Si基板を走査型顕微鏡により撮影し(ステップSP18)、これにより得られたSEM像の検証を行った。 Then, after diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was attached in this manner was photographed with a scanning microscope (step SP18), and the SEM image obtained thereby was verified.
 図9A~Eに示すように、xを0.1、0.3、0.5、0.7又は1.0に調整したいずれの反応溶液を用いても、チタニアナノ粒子2が一次元配列した状態で連結した結晶性金属酸化物構造体1を生成できることが確認できた。 As shown in FIGS. 9A to 9E, titania nanoparticles 2 are one-dimensionally arrayed using any reaction solution in which x is adjusted to 0.1, 0.3, 0.5, 0.7, or 1.0. It was confirmed that the crystalline metal oxide structure 1 connected in a state can be generated.
 (5-3)加熱時間
 次に、図3に示した結晶性金属酸化物構造体生成処理において、ステップSP13における加熱時間を変えたとき、どのような結晶性金属酸化物構造体1が生成されるかについて検証した。ここでは、ステップSP11におけるpHを4.0とし、ステップSP12におけるF127の添加量をTiO:F127=1:0.7とした。また、この条件においてステップSP13おける加熱温度を60℃として、加熱時間を1日、2日、7日又は14日にした4種類の反応溶液を生成した。
(5-3) Heating time Next, in the crystalline metal oxide structure generation process shown in FIG. 3, when the heating time in step SP13 is changed, what crystalline metal oxide structure 1 is generated. We verified whether Here, the pH in step SP11 was 4.0, and the amount of F127 added in step SP12 was TiO 2 : F127 = 1: 0.7. Under these conditions, four types of reaction solutions were generated with the heating temperature in step SP13 being 60 ° C. and the heating time being 1, 2, 7, or 14 days.
 そして、蒸留水により各反応溶液を約1/10に希釈した後(ステップSP15)、ディップコーティングによって各反応溶液中の構造体をSi基板にそれぞれ付着させて(ステップSP16)、UVオゾン処理を行った(ステップSP17)。このようにして反応溶液中の構造体を付着させた各Si基板を走査型顕微鏡により撮影し(ステップSP18)、これにより得られたSEM像の検証を行った。 Then, after diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was attached in this manner was photographed with a scanning microscope (step SP18), and the SEM image obtained thereby was verified.
 図10Aは加熱時間を1日(24時間)にした反応溶液を用いたときのSEM像を示し、図10Bは加熱時間を2日にした反応溶液を用いたときのSEM像を示し、図10Cは加熱時間を7日にした反応溶液を用いたときのSEM像を示し、図10Dは加熱時間を14日にした反応溶液を用いたときのSEM像を示す。 10A shows an SEM image when using a reaction solution with a heating time of 1 day (24 hours), FIG. 10B shows an SEM image when using a reaction solution with a heating time of 2 days, and FIG. Shows an SEM image when using a reaction solution with a heating time of 7 days, and FIG. 10D shows an SEM image when using a reaction solution with a heating time of 14 days.
 図10A~Dから、いずれもチタニアナノ粒子2が1本の鎖状に一次元配列した状態で連結した結晶性金属酸化物構造体1を生成できることが確認できた。特に、加熱時間を1日と短くした場合でも、F127の添加量をx=0.7とし、加熱温度を60℃とし、pHを4とすることで、結晶性金属酸化物構造体1が生成されることが確認できた。 10A to 10D, it was confirmed that the crystalline metal oxide structure 1 in which the titania nanoparticles 2 are connected in a one-dimensional array in one chain can be generated. In particular, even when the heating time is shortened to one day, the addition amount of F127 is set to x = 0.7, the heating temperature is set to 60 ° C., and the pH is set to 4, whereby the crystalline metal oxide structure 1 is generated. It was confirmed that
 (5-4)加熱温度
 次に、図3に示した結晶性金属酸化物構造体生成処理において、ステップSP13における加熱温度を変えたとき、どのような結晶性金属酸化物構造体1が生成されるかについて検証した。ここでは、ステップSP11におけるpHを3.38とし、ステップSP12におけるF127の添加量をTiO:F127=1:0.1とした。また、この条件においてステップSP13おける加熱時間を3日として、加熱温度を80℃、100℃、120℃、150℃、175℃又は190℃にした6種類の反応溶液を生成した。
(5-4) Heating temperature Next, in the crystalline metal oxide structure generation process shown in FIG. 3, when the heating temperature in step SP13 is changed, what kind of crystalline metal oxide structure 1 is generated. We verified whether Here, the pH in step SP11 was 3.38, and the amount of F127 added in step SP12 was TiO 2 : F127 = 1: 0.1. Under these conditions, the heating time in step SP13 was set to 3 days, and six types of reaction solutions with heating temperatures of 80 ° C., 100 ° C., 120 ° C., 150 ° C., 175 ° C. or 190 ° C. were produced.
 そして、蒸留水により各反応溶液を約1/10に希釈した後(ステップSP15)、ディップコーティングによって各反応溶液中の構造体をSi基板にそれぞれ付着させて(ステップSP16)、UVオゾン処理を行った(ステップSP17)。このようにして反応溶液中の構造体を付着させた各Si基板を走査型顕微鏡により撮影し(ステップSP18)、これにより得られたSEM像の検証を行った。 Then, after diluting each reaction solution to about 1/10 with distilled water (step SP15), the structure in each reaction solution is adhered to the Si substrate by dip coating (step SP16), and UV ozone treatment is performed. (Step SP17). Each Si substrate to which the structure in the reaction solution was attached in this manner was photographed with a scanning microscope (step SP18), and the SEM image obtained thereby was verified.
 図11Aは加熱温度を80℃にした反応溶液を用いたときのSEM像を示し、図11Bは加熱温度を100℃にした反応溶液を用いたときのSEM像を示し、図11Cは加熱温度を120℃にした反応溶液を用いたときのSEM像を示し、図11Dは加熱温度を150℃にした反応溶液を用いたときのSEM像を示し、図11Eは加熱温度を175℃にした反応溶液を用いたときのSEM像を示し、図11Fは加熱温度を190℃にした反応溶液を用いたときのSEM像を示す。 FIG. 11A shows an SEM image when using a reaction solution with a heating temperature of 80 ° C., FIG. 11B shows an SEM image when using a reaction solution with a heating temperature of 100 ° C., and FIG. 11C shows the heating temperature. FIG. 11D shows an SEM image when using a reaction solution with a heating temperature of 150 ° C., and FIG. 11E shows a reaction solution with a heating temperature of 175 ° C. FIG. 11F shows an SEM image when a reaction solution having a heating temperature of 190 ° C. is used.
 図11A~Cから、加熱温度を80~120℃に変えても、チタニアナノ粒子2が1本の鎖状に一次元配列した状態で連結した結晶性金属酸化物構造体1を生成できることが確認できた。また、図11Dから、加熱温度を150℃に変えても、一次元配列状態のチタニアナノ粒子2同士が凝集して結合した凝集体ができるものの、結晶性金属酸化物構造体1も一部生成できていることが確認できた。 11A to 11C, it can be confirmed that even when the heating temperature is changed to 80 to 120 ° C., the crystalline metal oxide structure 1 in which the titania nanoparticles 2 are connected in a one-dimensional array in a single chain can be generated. It was. Further, from FIG. 11D, even when the heating temperature is changed to 150 ° C., an aggregate in which the titania nanoparticles 2 in a one-dimensional array state are aggregated and bonded can be formed, but part of the crystalline metal oxide structure 1 can also be generated. It was confirmed that
 但し、図11E及びFから、加熱温度を175~190℃に変えると、一次元配列状態のチタニアナノ粒子2同士が凝集して結合した凝集体が生成された。このように、加熱温度を高くしてゆくに従って、一次元配列状態のチタニアナノ粒子2同士が凝集した凝集体が生成され易くなることが確認できた。従って、チタニアナノ粒子2が1本の鎖状に一次元配列した状態で連結した結晶性金属酸化物構造体1を製造する場合には、加熱温度を80~150℃とすることが好ましい。 However, from FIGS. 11E and 11F, when the heating temperature was changed to 175 to 190 ° C., aggregates were formed in which the titania nanoparticles 2 in a one-dimensional array were aggregated and bonded. Thus, it has been confirmed that as the heating temperature is increased, an aggregate in which the titania nanoparticles 2 in a one-dimensional array are aggregated is easily generated. Therefore, when manufacturing the crystalline metal oxide structure 1 in which the titania nanoparticles 2 are connected in a one-dimensional array in a single chain, the heating temperature is preferably 80 to 150 ° C.
 (5-5)加熱時間とpHとの関係
 次に、ステップSP11におけるpHを4として、ステップSP12において、TiO:F127=1:xのxを、0.1、0.3、0.5、0.7又は1.0に調整したF127の添加量が異なる5種類の反応溶液を用意した。そして、ステップSP13において、これら5種類の反応溶液に対し熱処理を行う際に、加熱時間を長くしていったときに、各反応溶液のpHがどのように変化するか否かについて検証した。
(5-5) Relationship between heating time and pH Next, assuming that the pH in step SP11 is 4, in step SP12, x of TiO 2 : F127 = 1: x is set to 0.1, 0.3, 0.5 Five kinds of reaction solutions having different F127 addition amounts adjusted to 0.7 or 1.0 were prepared. And in step SP13, when heat-processing with respect to these 5 types of reaction solutions, it verified about how the pH of each reaction solution would change when heating time was lengthened.
 その結果、図12に示すような結果が得られた。図12に示す結果から、加熱時間が長くなるに従って、反応溶液のpHが低くなってゆくことが確認できた。従って、透析の段階でpHの調整を行っても、熱処理を行うことでpHが変化することを確認し、上述したpHの範囲の数値については、あくまで透析時におけるpHの範囲であることを確認した。 As a result, a result as shown in FIG. 12 was obtained. From the results shown in FIG. 12, it was confirmed that the pH of the reaction solution was lowered as the heating time was increased. Therefore, even if the pH is adjusted at the stage of dialysis, it is confirmed that the pH changes due to the heat treatment, and the above numerical value of the pH range is confirmed to be the pH range at the time of dialysis. did.
 (6)結晶性金属酸化物構造体におけるチタニアナノ粒子の連結度合いについて
 次に得られた結晶性金属酸化物構造体1の連結強度について検証した。結晶性金属酸化物構造体1のTEM画像から、チタニアナノ粒子2とチタニアナノ粒子2との間にきれいな結晶格子が見られた。また、結晶性金属酸化物構造体1に対して超音波照射等による外力を与えても、チタニアナノ粒子2の一次元配列状態が壊れないことが確認できた。
(6) About connection degree of titania nanoparticles in crystalline metal oxide structure Next, the connection strength of the obtained crystalline metal oxide structure 1 was verified. From the TEM image of the crystalline metal oxide structure 1, a clean crystal lattice was observed between the titania nanoparticles 2 and the titania nanoparticles 2. It was also confirmed that the one-dimensional arrangement state of the titania nanoparticles 2 was not broken even when an external force such as ultrasonic irradiation was applied to the crystalline metal oxide structure 1.
 (7)他の実施の形態
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上述した実施の形態においては、結晶性金属酸化物粒子として、チタニアからなるチタニアナノ粒子2を用い、複数のチタニアナノ粒子2が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体1を生成した場合について述べたが、本発明はこれに限らず、例えばアルミナ、アルミノシリケート、ゼオライト、ジルコニア、安定ジルコニア、セリア、マグネシア、カルシア、酸化ストロンチウム、酸化バリウム、酸化スカンジウム、イットリア、ハフニア、酸化バナジウム、ニオビア、酸化タンタル、クロミア、酸化モリブデン、酸化タングステン、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅、酸化銀、酸化亜鉛、酸化ガリウム、酸化インジウム、酸化ゲルマニウム、酸化スズ、ITO(酸化インジウムスズ)、酸化鉛、酸化アンチモン、酸化ビスマス、酸化ネオジウム、酸化ランタン、酸化サマリウム、酸化ジスプロシウム、酸化イッテルビウム、酸化ユウロピウム等からなるこの他種々の結晶性金属酸化物粒子を用い、複数の結晶性金属酸化物粒子が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体を生成してもよい。
(7) Other Embodiments The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, in the embodiment described above, the titania nanoparticles 2 made of titania are used as the crystalline metal oxide particles, and the plurality of titania nanoparticles 2 are connected in a one-dimensional array in a single chain shape. However, the present invention is not limited to this. For example, alumina, aluminosilicate, zeolite, zirconia, stable zirconia, ceria, magnesia, calcia, strontium oxide, barium oxide, oxide Scandium, yttria, hafnia, vanadium oxide, niobium, tantalum oxide, chromia, molybdenum oxide, tungsten oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, silver oxide, zinc oxide, gallium oxide, indium oxide, oxide Germanium, tin oxide, ITO (oxide oxide In addition to various crystalline metal oxide particles made of various types of crystalline metal oxides, such as tin oxide, lead oxide, antimony oxide, bismuth oxide, neodymium oxide, lanthanum oxide, samarium oxide, dysprosium oxide, ytterbium oxide, europium oxide, etc. A crystalline metal oxide structure in which oxide particles are connected in a one-dimensional array in a single chain may be generated.
 さらに、本発明の結晶性金属酸化物粒子は導電性を有したナノ粒子を用いてもよい。導電性を有した結晶性金属酸化物は、例えば酸化スズや、酸化インジウム、アルミナ、ジルコニア、セリア、マグネシア、カルシア、酸化ストロンチウム、酸化バリウム、酸化スカンジウム、イットリア、ハフニア、酸化バナジウム、ニオビア、酸化タンタル、クロミア、酸化モリブデン、酸化タングステン、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅、酸化銀、酸化亜鉛、酸化ガリウム、酸化ゲルマニウム、酸化スズ、酸化鉛、酸化アンチモン、酸化ビスマス、酸化ネオジウム、酸化ランタン、酸化サマリウム、酸化ジスプロシウム、酸化イッテルビウム、酸化ユウロピウム、酸化レニウム等からなり、それらが複合酸化物になったもの、あるいは無機元素をドープしたもの(例えば、GZO(ガリウムドープ酸化亜鉛)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)が挙げられる。)、あるいは不定比金属酸化物になったもの等により導電性を発現させてもよく、特に酸化スズや、ITOやFTO(フッ素ドープ酸化スズ)やATO(アンチモンドープ酸化スズ)等の酸化スズを含んだものが好ましい。 Furthermore, conductive crystalline nanoparticles may be used for the crystalline metal oxide particles of the present invention. Examples of conductive crystalline metal oxides include tin oxide, indium oxide, alumina, zirconia, ceria, magnesia, calcia, strontium oxide, barium oxide, scandium oxide, yttria, hafnia, vanadium oxide, niobium, and tantalum oxide. , Chromia, molybdenum oxide, tungsten oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, silver oxide, zinc oxide, gallium oxide, germanium oxide, tin oxide, lead oxide, antimony oxide, bismuth oxide, neodymium oxide , Lanthanum oxide, samarium oxide, dysprosium oxide, ytterbium oxide, europium oxide, rhenium oxide, etc., which are mixed oxides, or doped with inorganic elements (for example, GZO (gallium-doped zinc oxide), I ZO (Indium Doped Zinc Oxide), AZO (Aluminum Doped Zinc Oxide), etc.) or non-stoichiometric metal oxides may be used to develop conductivity, especially tin oxide, ITO or FTO Those containing tin oxide such as (fluorine-doped tin oxide) and ATO (antimony-doped tin oxide) are preferred.
 さらに、上述した実施の形態においては、図2のフローチャートに示すチタニアナノ粒子生成処理に従ってチタニアナノ粒子2を生成した場合について述べたが、本発明はこれに限らず、分散したチタニアナノ粒子2が得られれば、この他種々の生成処理によりチタニアナノ粒子2を生成してもよい。 Furthermore, in the above-described embodiment, the case where the titania nanoparticle 2 is generated according to the titania nanoparticle generation process shown in the flowchart of FIG. 2 has been described. However, the present invention is not limited thereto, and the dispersed titania nanoparticle 2 can be obtained. In addition, the titania nanoparticles 2 may be generated by various generation processes.
 さらに、上述した実施の形態においては、図4に示すステップSP11において、透析によりチタニアゾルのpHを調整するようにした場合について述べたが、本発明はこれに限らず、塩酸や、硝酸、硫酸、酢酸等この他種々のpH調整剤を用いてチタニアゾルのpHを調整するようにしてもよい。 Further, in the above-described embodiment, the case where the pH of the titania sol is adjusted by dialysis in step SP11 shown in FIG. 4 is described, but the present invention is not limited to this, and hydrochloric acid, nitric acid, sulfuric acid, The pH of the titania sol may be adjusted using various other pH adjusting agents such as acetic acid.
 (7-1)結晶性金属酸化物粒子として酸化スズナノ粒子を適用した場合について
 次に、結晶性金属酸化物粒子として、酸化スズからなる酸化スズナノ粒子を用いた場合でも、当該酸化スズナノ粒子が直線状又は曲線状に一列に並んでボールチェーン状に配列され、かつ隣接する酸化スズナノ粒子が所定の強度で連結されている結晶性金属酸化物構造体を生成できるかについて検証を行った。
(7-1) Case where tin oxide nanoparticles are applied as crystalline metal oxide particles Next, even when tin oxide nanoparticles made of tin oxide are used as crystalline metal oxide particles, the tin oxide nanoparticles are linear. It was verified whether or not a crystalline metal oxide structure in which adjacent tin oxide nanoparticles are connected with a predetermined strength can be generated in a linear or curved line in a line.
 ここでは、粒径が~5nm程度のナノサイズからなる球状の酸化スズナノ粒子が溶液中に分散したコロイド状の酸化スズゾルを用意した。この酸化スズゾルは、多木化学製の酸化スズゾルであり、pHが9.9、酸化スズ(SnO)が溶液中に1Wt%の割合で含まれている。 Here, a colloidal tin oxide sol was prepared in which spherical tin oxide nanoparticles having a particle size of about 5 nm were dispersed in a solution. This tin oxide sol is a tin oxide sol manufactured by Taki Chemical, and has a pH of 9.9 and tin oxide (SnO 2 ) contained in the solution at a rate of 1 Wt%.
 次にこの酸化スズゾルから結晶性金属酸化物構造体を生成した。具体的には、先ず初めに、ブロックコポリマーとして、図5に示したF127(プルロニック(Pluronic)F127)を酸化スズゾルに添加した。F127の添加量は、酸化スズゾル中の酸化スズ(SnO)の量を基準とし、F127:SnO=1:1(W:W)とした。 Next, a crystalline metal oxide structure was produced from this tin oxide sol. Specifically, first, as a block copolymer, F127 (Pluronic F127) shown in FIG. 5 was added to the tin oxide sol. The amount of F127 added was F127: SnO 2 = 1: 1 (W: W) based on the amount of tin oxide (SnO 2 ) in the tin oxide sol.
 次いで、F127を添加した酸化スズゾルに対し、pH調整剤として塩酸(HCl)を添加して所定のpHに調整した。ここでは、pHを7.0、8.0、9.0にそれぞれ調整したpHが異なる3種類の酸化スズゾルを生成した。 Next, hydrochloric acid (HCl) was added as a pH adjusting agent to the tin oxide sol to which F127 was added to adjust to a predetermined pH. Here, three types of tin oxide sols having different pH values, which were adjusted to 7.0, 8.0, and 9.0, were generated.
 次いで、熱処理として、加熱温度を60℃に維持した状態で、加熱時間として5日間、酸化スズゾルを加熱静置させて反応溶液を生成した。すなわち、F127の添加量と、熱処理の条件については変更せずにそのままとし、それぞれF127:SnO=1:1(W:W)、加熱温度を60℃、加熱時間を5日間とし、pHのみを変えた3種類の反応溶液を生成した。 Next, as a heat treatment, a tin oxide sol was heated and allowed to stand for 5 days while maintaining the heating temperature at 60 ° C. to produce a reaction solution. That is, the addition amount of F127 and the heat treatment conditions are not changed, F127: SnO 2 = 1: 1 (W: W), the heating temperature is 60 ° C., the heating time is 5 days, and only the pH is set. Three types of reaction solutions with different values were produced.
 そして、蒸留水により各反応溶液を約1/10に希釈した後(図6のステップSP15)、ディップコーティング(ディップコート時の引上げ速度10mm/min)によって各反応溶液中の構造体をSi基板にそれぞれ付着させて(図6のステップSP16)、UVオゾン処理を行って有機成分を除去した(図6のステップSP17)。このようにして反応溶液中の構造体を付着させた各Si基板を、走査型顕微鏡により撮影したところ(図6のステップSP18)、図13A~Cに示すようなSEM像が得られた。 Then, after diluting each reaction solution to about 1/10 with distilled water (step SP15 in FIG. 6), the structures in each reaction solution are formed on the Si substrate by dip coating (the pulling speed at the time of dip coating is 10 mm / min). Each was adhered (step SP16 in FIG. 6), and UV ozone treatment was performed to remove organic components (step SP17 in FIG. 6). Each of the Si substrates to which the structures in the reaction solution were attached in this manner was photographed with a scanning microscope (step SP18 in FIG. 6), and SEM images as shown in FIGS. 13A to 13C were obtained.
 図13Aに示すように、pHを7.0に調整した場合には、一次元配列状態の酸化スズナノ粒子12が凝集している箇所もあるが、複数個の酸化スズナノ粒子12が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体11を生成できることが確認できた。 As shown in FIG. 13A, when the pH is adjusted to 7.0, there are some places where the tin oxide nanoparticles 12 in a one-dimensional arrangement state are aggregated, but a plurality of tin oxide nanoparticles 12 are in one chain. It was confirmed that the crystalline metal oxide structure 11 connected in a one-dimensionally arranged state can be generated.
 また、図13B及びCに示すように、pHを8.0及び9.0に調整した場合でも、酸化スズナノ粒子12が1本の鎖状に一次元配列された状態のまま連結した結晶性金属酸化物構造体11を生成できることが確認できた。さらに、酸化スズゾルのpHを8.0及び9.0に調整した場合には、酸化スズゾルのpHを7.0に調整した場合に比べて、結晶性金属酸化物構造体11が分散することが確認できた。 Further, as shown in FIGS. 13B and 13C, even when the pH is adjusted to 8.0 and 9.0, the crystalline metal in which the tin oxide nanoparticles 12 are connected in a one-dimensional array in a single chain shape. It was confirmed that the oxide structure 11 can be generated. Furthermore, when the pH of the tin oxide sol is adjusted to 8.0 and 9.0, the crystalline metal oxide structure 11 may be dispersed as compared with the case where the pH of the tin oxide sol is adjusted to 7.0. It could be confirmed.
 次に、pHを8.0に調整して作製した結晶性金属酸化物構造体11について、TEM画像を撮像したところ、図14A及びBに示すような結果が得られた。図14A及びBに示すTEM画像からも、この結晶性金属酸化物構造体11は、酸化スズナノ粒子12と酸化スズナノ粒子12とが接合していることが確認できた。また、図14Cは、pHを8.0に調整して作製した結晶性金属酸化物構造体11における酸化スズナノ粒子12の電子線回折像であり、この図14Cから酸化スズナノ粒子12が結晶性を有していることが確認できた。 Next, when a TEM image was taken with respect to the crystalline metal oxide structure 11 produced by adjusting the pH to 8.0, results as shown in FIGS. 14A and 14B were obtained. Also from the TEM images shown in FIGS. 14A and 14B, it was confirmed that the crystalline metal oxide structure 11 was joined to the tin oxide nanoparticles 12 and the tin oxide nanoparticles 12. FIG. 14C is an electron diffraction image of the tin oxide nanoparticles 12 in the crystalline metal oxide structure 11 prepared by adjusting the pH to 8.0. From FIG. 14C, the tin oxide nanoparticles 12 have a crystalline property. It was confirmed that it had.
 このように、結晶性金属酸化物粒子として、酸化スズからなる結晶性の酸化スズナノ粒子12を用いた場合でも、複数の酸化スズナノ粒子12が直線状又は曲線状に一列に並んでボールチェーン状に連結した結晶性金属酸化物構造体11を生成できることが確認できた。 Thus, even when crystalline tin oxide nanoparticles 12 made of tin oxide are used as the crystalline metal oxide particles, a plurality of tin oxide nanoparticles 12 are arranged in a line in a linear or curved line in a ball chain shape. It was confirmed that the linked crystalline metal oxide structure 11 can be generated.
 ここで、結晶性金属酸化物粒子として、酸化スズからなる酸化スズナノ粒子を用いた場合には、直線状又は曲線状に一列に並んでボールチェーン状に配列された酸化スズナノ粒子が、粒径5~10nm程度のナノサイズであってもよい。 Here, when the tin oxide nanoparticles made of tin oxide are used as the crystalline metal oxide particles, the tin oxide nanoparticles arranged in a linear or curved line in a line in a ball chain shape have a particle size of 5 It may be nano size of about 10 nm.
 また、上述した製造過程において用いる酸化スズゾルは、酸化スズが溶液中に0.5~3wt%の割合で含まれてもよく、酸化スズの濃度を高くすることでより短時間でボールチェーン構造を作製することができる。 In addition, the tin oxide sol used in the manufacturing process described above may contain tin oxide in a ratio of 0.5 to 3 wt%, and the ball chain structure can be formed in a shorter time by increasing the concentration of tin oxide. be able to.
 また、結晶性金属酸化物構造体の製造過程で酸化スズゾルに添加するブロックコポリマーの添加量は、酸化スズゾル中の酸化スズの量を基準とし、酸化スズ:ブロックコポリマー=1:x(w:w(質量比))とした場合、xは0.1~4.0であることが好ましい。すなわち、xが0.1未満のときには、酸化スズナノ粒子12表面へのF127の吸着量が少なく、酸化スズナノ粒子12が一次元配列せずに単分散した状態となり、一方、xが4.0を超えるときには、酸化スズナノ粒子12表面へのF127の吸着量が多くなり、一次元配列した酸化スズナノ粒子12が凝集して凝集体となることから、xは0.1~4.0であることが好ましい。 The amount of the block copolymer added to the tin oxide sol in the process of manufacturing the crystalline metal oxide structure is based on the amount of tin oxide in the tin oxide sol, and tin oxide: block copolymer = 1: x (w: w (Mass ratio)), x is preferably 0.1 to 4.0. That is, when x is less than 0.1, the amount of F127 adsorbed on the surface of the tin oxide nanoparticles 12 is small, and the tin oxide nanoparticles 12 are in a monodispersed state without being one-dimensionally arranged. Since the amount of F127 adsorbed on the surface of the tin nanoparticles 12 increases and the one-dimensionally arranged tin oxide nanoparticles 12 aggregate to form aggregates, x is preferably 0.1 to 4.0.
 また、F127を添加した酸化スズゾルに対し、pH調整剤(塩酸)を添加して調整するpHとしては、7.0~9.0が好ましい。すなわち、pHが7.0未満のとき、一次元配列した酸化スズナノ粒子12が凝集し易くなり、pHが9.0より高いとき短いボールチェーン構造となることから、pHは7.0~9.0であることが好ましい。 The pH adjusted by adding a pH adjuster (hydrochloric acid) to the tin oxide sol to which F127 has been added is preferably 7.0 to 9.0. That is, when the pH is less than 7.0, the one-dimensionally arranged tin oxide nanoparticles 12 tend to aggregate, and when the pH is higher than 9.0, a short ball chain structure is formed. Therefore, the pH is preferably 7.0 to 9.0.
 また、製造過程において酸化スズゾルを加熱静置する際の熱処理時の加熱温度としては、40℃未満のときには、単分散粒子となり、80℃より高いときには、酸化スズナノ粒子12が凝集し易くなることから、40~80℃であることが好ましい。 In addition, the heating temperature at the time of heat treatment when the tin oxide sol is allowed to stand in the production process is monodispersed particles when the temperature is lower than 40 ° C, and tin oxide nanoparticles 12 tend to aggregate when the temperature is higher than 80 ° C. 40 to 80 ° C. is preferable.
 さらに、製造過程において酸化スズゾルを加熱静置する際の熱処理時の加熱時間としては、1日未満のときには、短いボールチェーンとなり、30日より長いときには、酸化スズナノ粒子12が凝集し易くなることから、1~30日であることが好ましい。
 
Furthermore, as the heating time at the time of heat treatment when the tin oxide sol is left to stand in the production process, when it is less than 1 day, it becomes a short ball chain, and when it is longer than 30 days, the tin oxide nanoparticles 12 tend to aggregate. 1 to 30 days is preferable.

Claims (5)

  1.  結晶性金属酸化物粒子を含有した溶液のpHを所定のpHに調整し、一次元構造体形成能を有する一次元構造体形成物質を溶解させて反応溶液を生成する溶解ステップと、
     所定の加熱温度で、前記反応溶液を所定の加熱時間に渡って加熱して前記結晶性金属酸化物粒子が一次元配列した状態で連結した結晶性金属酸化物構造体を生成する生成ステップと
     を備えることを特徴とする結晶性金属酸化物構造体の製造方法。
    A dissolution step of adjusting the pH of the solution containing the crystalline metal oxide particles to a predetermined pH and dissolving a one-dimensional structure-forming substance having a one-dimensional structure-forming ability to generate a reaction solution;
    Generating a crystalline metal oxide structure in which the crystalline metal oxide particles are connected in a one-dimensional array by heating the reaction solution for a predetermined heating time at a predetermined heating temperature; and A method for producing a crystalline metal oxide structure, comprising:
  2.  前記溶解ステップにおける前記pHと、前記生成ステップにおける前記加熱温度及び前記加熱時間とを調整することにより、前記結晶性金属酸化物粒子を一次元配列させた状態で、隣接する前記結晶性金属酸化物粒子を所定の強度で連結させる
     ことを特徴とする請求項1記載の結晶性金属酸化物構造体の製造方法。
    By adjusting the pH in the dissolving step, the heating temperature and the heating time in the generating step, the crystalline metal oxides adjacent to each other in a state where the crystalline metal oxide particles are arranged one-dimensionally The method for producing a crystalline metal oxide structure according to claim 1, wherein the particles are connected with a predetermined strength.
  3.  前記溶解ステップは、前記結晶性金属酸化物粒子がチタニアナノ粒子であり、前記一次元構造体形成物質がブロックコポリマーである
     ことを特徴とする請求項1又は2記載の結晶性金属酸化物構造体の製造方法。
    3. The crystalline metal oxide structure according to claim 1, wherein the crystalline metal oxide particles are titania nanoparticles, and the one-dimensional structure forming substance is a block copolymer. Production method.
  4.  前記溶解ステップは、前記結晶性金属酸化物粒子が導電性を有するナノ粒子であり、前記一次元構造体形成物質がブロックコポリマーである
     ことを特徴とする請求項1又は2記載の結晶性金属酸化物構造体の製造方法。
    3. The crystalline metal oxide according to claim 1, wherein in the dissolving step, the crystalline metal oxide particles are nanoparticles having conductivity, and the one-dimensional structure-forming substance is a block copolymer. A method for manufacturing a structure.
  5.  前記ナノ粒子が酸化スズを含むことを特徴とする請求項4に記載の結晶性金属酸化物構造体の製造方法。 The method for producing a crystalline metal oxide structure according to claim 4, wherein the nanoparticles include tin oxide.
PCT/JP2011/053518 2010-02-19 2011-02-18 Method for producing crystalline metal oxide structure WO2011102467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500661A JP5555925B2 (en) 2010-02-19 2011-02-18 Method for producing crystalline metal oxide structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-035194 2010-02-19
JP2010035194 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102467A1 true WO2011102467A1 (en) 2011-08-25

Family

ID=44483052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053518 WO2011102467A1 (en) 2010-02-19 2011-02-18 Method for producing crystalline metal oxide structure

Country Status (2)

Country Link
JP (1) JP5555925B2 (en)
WO (1) WO2011102467A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101971A (en) * 2011-11-11 2013-05-15 新疆大学 Green biomimetic preparation method of titanium dioxide nano material
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014088A1 (en) * 1992-12-16 1994-06-23 The Center For Innovative Technology Polymer-ceramic composite thin film that blocks ultraviolet and transmits visible light
JP2002179949A (en) * 2000-12-11 2002-06-26 Hitachi Chem Co Ltd Liquid for forming titania film, method of forming titania film, titania film and member made by using titania film
JP2003277062A (en) * 2002-03-26 2003-10-02 Japan Science & Technology Corp Method for manufacturing micro-mesoporous metal oxide with fine pore controlled by novel template removing method
JP2003531083A (en) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Block polymer treatment method for mesostructured inorganic oxide material
JP2004155608A (en) * 2002-11-05 2004-06-03 Hitachi Chem Co Ltd Titanium oxide film, liquid and process for forming the same and photocatalytic member
EP1947141A1 (en) * 2007-01-18 2008-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stabilised suspensions of anorganic particles
JP2009040622A (en) * 2007-08-07 2009-02-26 Kyoto Univ Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell
JP2009203120A (en) * 2008-02-28 2009-09-10 Kawamura Inst Of Chem Res Titania nanostructural composite coating type structure and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054421A (en) * 2004-07-13 2006-02-23 Toray Ind Inc Semiconductor film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014088A1 (en) * 1992-12-16 1994-06-23 The Center For Innovative Technology Polymer-ceramic composite thin film that blocks ultraviolet and transmits visible light
JP2003531083A (en) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Block polymer treatment method for mesostructured inorganic oxide material
JP2002179949A (en) * 2000-12-11 2002-06-26 Hitachi Chem Co Ltd Liquid for forming titania film, method of forming titania film, titania film and member made by using titania film
JP2003277062A (en) * 2002-03-26 2003-10-02 Japan Science & Technology Corp Method for manufacturing micro-mesoporous metal oxide with fine pore controlled by novel template removing method
JP2004155608A (en) * 2002-11-05 2004-06-03 Hitachi Chem Co Ltd Titanium oxide film, liquid and process for forming the same and photocatalytic member
EP1947141A1 (en) * 2007-01-18 2008-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stabilised suspensions of anorganic particles
JP2009040622A (en) * 2007-08-07 2009-02-26 Kyoto Univ Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell
JP2009203120A (en) * 2008-02-28 2009-09-10 Kawamura Inst Of Chem Res Titania nanostructural composite coating type structure and its manufacturing method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AYAE SUGAWARA ET AL.: "One-Dimensional Self- Assembly of Monodispersed Silica Nanospheres In Liquid Phase", DAI 58 KAI SYMPOSIUM ON MACROMOLECULES YOKOSHU, vol. 58, no. 2, 1 September 2009 (2009-09-01), pages 4621 - 4622 *
CHI-CHUN HSIEH ET AL.: "Fabrication of PE017-OPV3 templated titania nano-hollow rods and their aggregating microspheres", MACROMOLECULES, vol. 39, no. 8, 18 April 2006 (2006-04-18), pages 3043 - 3047 *
REUY-AN DOONG ET AL.: "Microstructural and photocatalytic properties of sol-gel-derived vanadium-doped mesoporous titanium dioxide nanoparticles", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 355, 1 November 2009 (2009-11-01), pages 2302 - 2308 *
TORSTEN BREZESINSKI ET AL.: "Templated nanocrystal-based porous Ti02 films for next- generation electrochemical capacitors", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 5, 21 January 2009 (2009-01-21), pages 1802 - 1809 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101971A (en) * 2011-11-11 2013-05-15 新疆大学 Green biomimetic preparation method of titanium dioxide nano material
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups
JPWO2014104312A1 (en) * 2012-12-28 2017-01-19 日揮触媒化成株式会社 Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group

Also Published As

Publication number Publication date
JP5555925B2 (en) 2014-07-23
JPWO2011102467A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
KR100727579B1 (en) Titania sol, preparing method thereof and composition for coating comprising thereof
Mahshid et al. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution
Phillips et al. Nanocrystalline Precursors for the Co‐Assembly of Crack‐Free Metal Oxide Inverse Opals
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP4698981B2 (en) Fibrous titanium oxide particles, method for producing the same, and uses of the particles
JP5673895B1 (en) Core-shell type nanoparticles and method for producing the same
Kalyani et al. Hydrothermal synthesis of SrTiO3: Role of interfaces
JP4739120B2 (en) Conductive titanium oxide and method for producing the same
JP4997569B2 (en) Nanocrystal integrated TiO2 and manufacturing method thereof
JP2009519890A5 (en)
CN107555987A (en) A kind of submicron order barium carbonate powder Nanoparticle preparation method
CN105439198B (en) A kind of preparation method of high ethano/water dispersible nano-titanium dioxide powder
JP5555925B2 (en) Method for producing crystalline metal oxide structure
Ye et al. Microemulsion-assisted hydrothermal preparation and infrared radiation property of TiO2 nanomaterials with tunable morphologies and crystal form
JP2014201451A (en) Titania nanoparticle, dispersion liquid thereof, and titania paste using the titania nanoparticle
JP3137623B1 (en) Dispersed gel and solution of titanium oxide fine particles and methods for producing them
KR101752170B1 (en) Dispersion sol of rutile titanium dioxide and method for preparing the same
Tang Crack-free TiO2 thin films with selfassembling nano-particles fabricated through in-situ sol–gel processing in reverse micelles
JP4973050B2 (en) Manufacturing method of crystalline oxide film of composite oxide
JP2015048292A (en) Method for producing metal oxide nanoparticle
JP3642490B1 (en) Method for producing titania solution
JP5315704B2 (en) Fine particle-filled mesoporous body and method for producing the same
Singh Recent Trends in Sol-Gel-Based Nanoceramics
Yu et al. Titania opal and inverse opal structures via templating polyelectrolyte multilayer coated polystyrene spheres
WO2014118372A1 (en) An aqueous dispersion comprising tio2 particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500661

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744753

Country of ref document: EP

Kind code of ref document: A1