Nothing Special   »   [go: up one dir, main page]

WO2011152093A1 - 放射線画像撮影装置 - Google Patents

放射線画像撮影装置 Download PDF

Info

Publication number
WO2011152093A1
WO2011152093A1 PCT/JP2011/054690 JP2011054690W WO2011152093A1 WO 2011152093 A1 WO2011152093 A1 WO 2011152093A1 JP 2011054690 W JP2011054690 W JP 2011054690W WO 2011152093 A1 WO2011152093 A1 WO 2011152093A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
voltage
radiation
scanning
scanning line
Prior art date
Application number
PCT/JP2011/054690
Other languages
English (en)
French (fr)
Inventor
英明 田島
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to US13/701,713 priority Critical patent/US8785876B2/en
Priority to CN201180027430.7A priority patent/CN102934423B/zh
Priority to JP2012518274A priority patent/JP5704170B2/ja
Priority to EP11789505.2A priority patent/EP2579577A4/en
Publication of WO2011152093A1 publication Critical patent/WO2011152093A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers

Definitions

  • the present invention relates to a radiographic image capturing apparatus, and more particularly, to a radiographic image capturing apparatus capable of detecting the start of radiation irradiation by the apparatus itself.
  • a so-called direct type radiographic imaging device that generates electric charges by a detection element in accordance with the dose of irradiated radiation such as X-rays and converts it into an electrical signal, or other radiation such as visible light with a scintillator or the like.
  • Various types of so-called indirect radiographic imaging devices have been developed that convert charges into electromagnetic signals after they have been converted into electromagnetic waves of a wavelength, and then generated by photoelectric conversion elements such as photodiodes in accordance with the energy of the converted and irradiated electromagnetic waves. Yes.
  • the detection element in the direct type radiographic imaging apparatus and the photoelectric conversion element in the indirect type radiographic imaging apparatus are collectively referred to as a radiation detection element.
  • This type of radiographic imaging device is known as an FPD (Flat Panel Detector) and has been conventionally formed integrally with a support base (or a bucky apparatus) (see, for example, Patent Document 1).
  • FPD Full Panel Detector
  • a portable radiographic imaging device in which an element or the like is housed in a housing has been developed and put into practical use (see, for example, Patent Documents 2 and 3).
  • the radiation detection elements 7 are usually arranged in a two-dimensional form (matrix) on the detection unit P, and each radiation detection element 7 is arranged.
  • switch means each formed of a thin film transistor (Thin Film Transistor, hereinafter referred to as TFT) 8. Then, before the radiation image is taken, that is, before the radiation image taking device is irradiated with radiation from the radiation generating device, excessive charge remaining in each radiation detecting element 7 is released while appropriately controlling the on / off of the TFT 8. In many cases, the reset process is performed.
  • TFT Thin Film Transistor
  • each radiation detection element 7 After the reset processing of each radiation detection element 7 is completed, radiation is generated in a state where all the TFTs 8 are turned off by applying an off voltage to the TFTs 8 through the scanning lines 6 from the gate drivers 15b of the scanning driving means 15.
  • a charge corresponding to the radiation dose is generated in each radiation detection element 7 and accumulated in each radiation detection element 7.
  • each radiation detection element is sequentially switched while switching each line L1 to Lx of the scanning line 5 to which an on-voltage for signal readout is applied from the gate driver 15b of the scanning drive means 15.
  • it is configured to read out the electric charge accumulated therein from 7 and read it out as image data by performing charge-voltage conversion in the reading circuit 17.
  • Patent Documents 4 and 5 while the radiation image capturing apparatus is being irradiated with radiation, the lines L1 to Lx of the scanning line 5 to which the ON voltage is applied from the gate driver 15b of the scanning driving unit 15 are sequentially switched. A radiographic imaging apparatus and a method for reading out image data are described in which image data readout processing from the radiation detection element 7 is repeated.
  • an on-voltage is sequentially applied to each of the lines L1 to Lx of the scanning line 5 to read out image data among all the radiation detection elements 7 arranged on the detection unit P.
  • the period for reading out each image data from each radiation detection element 7 is one frame, the charges generated in the radiation detection element 7 due to the irradiation of radiation are divided and read out by the reading process of each frame.
  • the image data read for each frame from the frame where radiation irradiation is started to the next frame after the radiation irradiation is completed is added for each radiation detection element 7, and each radiation detection element is added.
  • the image data for every 7 is reconstructed.
  • the on-voltage is sequentially applied from the gate driver 15b to each scanning line 5 in order from the uppermost scanning line 5 in the figure, while the image data of each frame is changed.
  • the ON voltage is sequentially applied to the scanning line 5 of the portion ⁇ T indicated by hatching in FIG.
  • FIG. 76 does not indicate that radiation is applied only to the portion ⁇ T indicated by hatching, and the radiation is applied over the entire area of the detection unit P.
  • the image data for each frame for two or three times including this frame is added to each radiation.
  • the image data for each detection element 7 is reconstructed, as shown in FIGS. 77A and 77B, shades appear in the radiation image p generated based on the reconstructed image data.
  • the signal line 6 is extended.
  • each reconstructed image data d is viewed along the current direction (the vertical arrow direction in FIG. 77A), as shown in FIG. 77B, an on-voltage is sequentially applied while radiation is irradiated.
  • the image data d of the image region ⁇ T corresponding to the scanning line 5 (that is, the hatched portion ⁇ T in FIG. 76) is larger than the image data d of the upper image region A and the lower image region B.
  • the portion of the image region ⁇ T in the radiation image p becomes slightly black (that is, darker) than the image region A and the image region B.
  • the radiation irradiated to the radiation image capturing apparatus 1 is irradiated to each TFT 8 or the irradiated radiation is irradiated.
  • the amount of charge q leaked from the radiation detection element 7 through each TFT 8 increases.
  • the amount of each charge q leaked from the other radiation detection elements 7 connected to the same signal line 6 in the image data di read out as the image data of the radiation detection elements 7i shown in FIG. Increases as you increase. Therefore, it is considered that the image data d in the image area ⁇ T is larger than the image data d in the image areas A and B.
  • Patent Document 6 it is possible to detect that the radiation has been irradiated by the radiation image capturing apparatus itself.
  • the imaging apparatus described in Patent Document 6 is configured to perform image data read processing before radiation irradiation starts on the radiographic imaging apparatus, and the read image data rapidly increases and exceeds a threshold value. At this point, it is detected that radiation has been applied.
  • Patent Document 7 detection efficiency at the time of reading out image data from a plurality of rows of CCD elements among CCD (Charge-Coupled Device) elements, which are radiation detection elements, and detecting that radiation has been irradiated. It has been proposed to increase.
  • CCD Charge-Coupled Device
  • JP-A-9-73144 JP 2006-058124 A Japanese Patent Laid-Open No. 6-342099 JP-A-9-140691 JP 7-72252 A Japanese Translation of National Publication No. 07-506993 JP-A-9-107503
  • the image data read out at the time when the on-voltage is applied to a certain scanning line 5 and the radiation irradiation is detected means that the on-voltage is applied at that time. It means that a part of the electric charge generated by the radiation irradiation flows out from each radiation detection element 7 connected to the scanning line 5.
  • image data read from each radiation detection element 7 connected to the scanning line 5 among the image data of each radiation detection element 7 read in the readout process after the radiation irradiation is completed. May be configured to be invalidated and destroyed as unreliable.
  • the lesioned portion captured on the radiographic image is not usually small enough to fit in a line defect for one scanning line, or It is not thin. Therefore, as described above, the image data of each radiation detection element 7 connected to the scanning line 5 to which the ON voltage was applied when the radiation irradiation was detected was discarded as a line defect, Even if it is configured to interpolate with image data, there is no problem in actual operation.
  • Patent Document 6 when the invention described in Patent Document 6 is applied to detect that radiation has been emitted when the value of the read image data rapidly increases and exceeds the threshold, at least radiation.
  • an on-voltage to the plurality of scanning lines 5 at the same time to increase the detection efficiency of radiation irradiation. Is hard to say.
  • the present invention has been made in view of the above-described problems, and provides a radiographic imaging apparatus capable of improving the detection efficiency when detecting the start of radiation irradiation by the apparatus itself. With the goal. Further, when detecting the irradiation of radiation while sequentially applying an on-voltage to each scanning line and performing image data reading processing, it is possible to prevent a line defect from appearing continuously on a plurality of adjacent scanning lines, or An object of the present invention is to provide a radiographic imaging apparatus capable of reducing the number of scanning lines in which line defects occur.
  • the radiographic imaging device of the present invention includes: A plurality of scanning lines and a plurality of signal lines arranged so as to intersect with each other; a plurality of radiation detecting elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines; A detector comprising: Scanning drive means for sequentially applying an on-voltage to each of the scanning lines during a reading process of reading image data from the radiation detection element; When an on-voltage is applied to each scanning line and applied through the scanning line, charges accumulated in the radiation detection element are discharged to the signal line, and an off-voltage is applied through the scanning line.
  • And switch means for accumulating charges in the radiation detection element,
  • a read circuit that converts the electric charge emitted from the radiation detection element to the signal line and reads the image data
  • Control means for controlling at least the scanning drive means and the readout circuit to perform a readout process of the data from the radiation detection element;
  • the control means includes Prior to radiographic image capturing, an on-voltage is sequentially applied from the scanning driving means to the scanning lines to read out the image data from the radiation detection element, and when the read-out image data exceeds a threshold value.
  • the time from when the scanning drive means applies an on-voltage to the scanning line until the applied voltage is switched to the off-voltage, or from the scanning drive means A period from when an on-voltage is applied to a certain scanning line to when an on-voltage is applied to the next scanning line is longer than the time or the period when the image data is read after the radiation irradiation is completed. It controls so that it may become.
  • the on-voltage is sequentially applied to each scanning line from before the radiation image capturing to perform the image data reading process, and the radiation image is based on the read image data value. It is detected that radiation irradiation has started on the imaging apparatus. Therefore, it is possible to detect the start of radiation irradiation with the radiographic imaging device itself.
  • control is performed so that the on-time at the time of image data readout processing before radiographic image capturing is longer than the on-time at the time of image data readout processing as a main image after radiographic image capturing.
  • the image data determined as the line defect is used, for example, surrounding image data. Even if repair is performed in this manner, for example, it is accurately avoided that information on the lesioned part of the patient imaged in the line defect part is lost. And since the information of a lesioned part will also appear in the radiographic image produced
  • FIG. 2 is a cross-sectional view taken along line XX in FIG. It is a top view which shows the structure of the board
  • FIG. 5 is a cross-sectional view taken along line YY in FIG. It is a side view explaining the board
  • 6 is a timing chart showing charge reset switches, pulse signals, and TFT on / off timings in image data read processing. It is a graph showing the change of the voltage value etc. in a correlated double sampling circuit. It is a graph explaining that the value of the image data read by the reading process of the image data before radiographic image acquisition becomes large when radiation irradiation is started. It is a timing chart which shows the timing of application of ON voltage to each scanning line in the reading process of image data before and after radiographic image capturing in a model configuration. 6 is a timing chart showing the timing of application of an on voltage to each scanning line in the configuration 1 in which the on time in the readout process before radiographic image capturing is extended.
  • FIG. 10 is a timing chart illustrating an example of a case where readout processing is performed by simultaneously applying an ON voltage to a plurality of scanning lines in readout processing of image data before radiographic image capturing. It is a figure showing the example of the irradiation position with respect to the scintillator and detection part of the radiation by which the irradiation field was narrowed down, and each signal line. It is a graph which shows the example of the maximum value of the image data read from read-out IC when very weak radiation is irradiated to a radiographic imaging apparatus. It is a graph which expands and shows the difference of the maximum value extracted from the inside which subtracted the moving average from the image data read from read-out IC.
  • each readout IC in which a plurality of signal lines are connected and a plurality of readout circuits are formed. It is the figure which looked at the scintillator and the detection part from the radiation incident surface side of an apparatus, and is a figure explaining the position on the detection part in which the electromagnetic waves irradiated from the scintillator can enter, and the position which does not enter. It is a block diagram showing the equivalent circuit about 1 pixel which comprises a detection part at the time of comprising so that the capacity
  • FIG. 6 is a graph plotting image data read out in a readout process before radiographic image capturing in the case of Configuration 1; 10 is a timing chart showing the timing of application of an on-voltage to each scanning line in the configuration 8 in which the gate period in the readout process before radiographic image capturing is extended. It is a timing chart which shows the timing of the application of the ON voltage to each scanning line in the configuration 9 configured to not apply the ON voltage to adjacent scanning lines.
  • FIG. 28 is a timing chart for explaining an example of a case in which the time when radiation irradiation is actually started and the time when radiation irradiation start is detected deviate from each other in the case of FIG. 27. It is a figure explaining the state which the scanning line which produces a line defect appears in the state mutually separated. It is a top view which shows the structure of the board
  • FIG. 32 is a timing chart for explaining an example in the case of FIG. 30 and FIG.
  • 10 is a timing chart showing charge reset switches, pulse signals, and TFT on / off timings in leak data read processing. It is a figure explaining that each electric charge leaked from each radiation detection element via each TFT is read as leak data. It is a graph which shows that leak data reduce when irradiation of radiation is completed. Explanation will be given on the case where the on-voltage is sequentially applied from the scanning line to which the on-voltage is to be applied next to the scanning line that has detected the start of radiation irradiation in the configuration 1, and the image data read processing after radiographic imaging is performed. It is a timing chart to do.
  • FIG. 14 is a timing chart showing the case of FIG. 13 in a simplified manner and explaining that the effective accumulation time becomes a different time interval for each scanning line.
  • FIG. 37 is a timing chart showing the case of FIG. 36 in a simplified manner and explaining that the effective accumulation time becomes a different time interval for each scanning line. It is a timing chart when reading the offset correction value by repeating the same processing sequence as the processing sequence for reading image data after the image data reading processing.
  • 6 is a timing chart when an offset correction value reading process is performed immediately after image data reading process or after a predetermined time has elapsed. It is a graph showing the table or relational expression showing the relationship between the effective accumulation time of TFT and the offset correction value used as a reference. It is a figure explaining the offset image created by assigning an offset correction value for each radiation detection element. It is a figure explaining a group of offset images created for each scanning line.
  • FIG. 37 is a timing chart showing the timing of applying an on-voltage to each scanning line when the configuration of FIG. 36 is applied to the model configuration of FIG. 6 is a timing chart for explaining that the off voltage is applied for the same period as the period during which the off voltage is applied to all the scanning lines in the charge accumulation mode during the image data reading process for each frame. It is a timing chart showing the on / off timing of the TFT, and a graph showing that the offset due to the lag per unit time and the offset due to the lag, which is an integral value thereof, increase with time. It is a graph explaining the offset part by the lag for each scanning line at the time of performing each process shown in FIG.
  • 10 is a timing chart in image data read processing before radiographic image capturing, charge accumulation mode, and image data read processing after radiographic image capturing in the fourth embodiment. It is a figure explaining the gate driver comprised by arranging gate IC in parallel and an unconnected terminal. 6 is a timing chart for explaining that a period ⁇ in which image data is not read out from any radiation detection element occurs in the conventional method of reading out image data. It is a figure showing the structure of the scanning drive part concerning 5th Embodiment, the wiring with respect to a gate driver, etc. FIG. 6 is a timing chart for explaining that reading processing of image data d for each frame is performed continuously in time by Method 1. 10 is a timing chart for explaining the timing of applying an ON voltage to each scanning line and each non-connected terminal in Method 2.
  • FIG. 54 is a diagram illustrating a configuration of a modified example of the scanning drive unit illustrated in FIG. It is a top view which shows the structure of the board
  • FIG. 59 is a diagram for explaining that each scanning line and each signal line in each region of the detection unit are connected to different gate drivers and different readout ICs in the case of FIG. 59.
  • FIG. 10 is a timing chart for explaining the timing of applying an on voltage to each scanning line, the on / off operation of a charge reset switch, and the like in image data readout processing and leak data readout processing in Method 5.
  • FIG. 6 is a diagram for explaining that image data d includes data resulting from dark charges emitted from a radiation detection element and leak data corresponding to each charge leaked from each radiation detection element via each TFT. 6 is a timing chart showing charge reset switches, pulse signals, and on / off timings of TFTs when configured to repeatedly perform leak data reading processing before radiographic imaging.
  • 6 is a timing chart showing charge reset switches, pulse signals, and on / off timings of TFTs in a case where leakage data reading processing and radiation detection element reset processing are alternately performed before radiographic imaging.
  • 6 is a timing chart showing charge reset switches, pulse signals, and on / off timings of TFTs when configured to alternately perform leak data read processing and image data read processing before radiographic image capturing.
  • 6 is a timing chart for explaining the timing of applying an ON voltage to each scanning line and each non-connected terminal when the leak data reading process and each radiation detection element reset process are alternately performed. It is a graph showing the time transition of the leak data read when performing the read process of leak data and the reset process of each radiation detection element alternately.
  • FIG. 69B is an image diagram for explaining that the charge leaked through the TFT after the state of FIG. 69B increases.
  • 6 is a timing chart illustrating timings at which an on-voltage is applied to each scanning line when leak data reading processing is repeated in the charge accumulation mode. It is a figure showing the case where the radiation which narrowed the irradiation field was irradiated to the radiographic imaging device.
  • 6 is a timing chart illustrating timings at which a voltage applied to each scanning line is switched between an on voltage and an off voltage in a normal image data read process. 6 is a timing chart illustrating that image data read processing is repeatedly performed for each frame. It is a figure explaining the read-out process of the data from each radiation detection element for every frame. It is a figure showing that radiation was irradiated and irradiation was completed while an ON voltage was sequentially applied to a scanning line of a portion of ⁇ T. It is a figure showing the radiographic image produced
  • the radiographic imaging device is a so-called indirect radiographic imaging device that includes a scintillator or the like and converts the irradiated radiation into electromagnetic waves of other wavelengths such as visible light to obtain an electrical signal.
  • the present invention can also be applied to a direct radiographic imaging apparatus.
  • the radiographic image capturing apparatus that is, a so-called dedicated machine
  • a radiographic image capturing apparatus that is, a so-called dedicated machine
  • FIG. 1 is an external perspective view of the radiographic image capturing apparatus according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along line XX of FIG.
  • the radiation image capturing apparatus 1 according to the present embodiment is configured by housing a scintillator 3, a substrate 4, and the like in a housing 2.
  • the housing 2 is formed of a material such as a carbon plate or plastic that transmits at least the radiation incident surface R. 1 and 2 show a case in which the housing 2 is a so-called lunch box type formed by a front plate 2A and a back plate 2B. However, the housing 2 is integrally formed in a rectangular tube shape. It is also possible to use a so-called monocoque type.
  • the side surface portion of the housing 2 can be opened and closed for replacement of a power switch 36, an indicator 37 composed of LEDs or the like, and a battery 41 (see FIG. 7 described later).
  • the lid member 38 and the like are disposed.
  • an antenna which is a communication means for transmitting and receiving information such as image data d, which will be described later, to and from an external device such as an image processing computer is provided on the side surface of the lid member 38.
  • the device 39 is embedded.
  • the installation position of the antenna device 39 is not limited to the side surface portion of the lid member 38, and the antenna device 39 can be installed at an arbitrary position of the radiographic image capturing apparatus 1.
  • the number of antenna devices 39 to be installed is not limited to one, and a plurality of antenna devices 39 may be provided.
  • a base 31 is disposed inside the housing 2 via a lead thin plate (not shown) on the lower side of the substrate 4, and an electronic component 32 and the like are disposed on the base 31.
  • the PCB substrate 33, the buffer member 34, and the like are attached.
  • a glass substrate 35 for protecting the substrate 4 and the radiation incident surface R of the scintillator 3 is disposed.
  • the scintillator 3 is arranged so as to face a detection unit P described later of the substrate 4.
  • the scintillator 3 is, for example, a phosphor whose main component is converted into an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when it receives radiation, and that is output.
  • the substrate 4 is formed of a glass substrate. As shown in FIG. 3, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. In each small region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4, radiation detection elements 7 are respectively provided.
  • the region is a detection unit P.
  • a photodiode is used as the radiation detection element 7, but other than this, for example, a phototransistor or the like can also be used.
  • Each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 serving as a switch means, as shown in the enlarged views of FIGS.
  • the drain electrode 8 d of the TFT 8 is connected to the signal line 6.
  • the TFT 8 is turned on when an on-voltage is applied to the connected scanning line 5 by the scanning driving means 15 described later and applied to the gate electrode 8g via the scanning line 5, and the radiation detection element The electric charge accumulated in 7 is emitted to the signal line 6.
  • the TFT 8 is turned off when an off voltage is applied to the connected scanning line 5 and applied to the gate electrode 8 g via the scanning line 5, and the charge from the radiation detection element 7 to the signal line 6 is turned off. Is stopped, and the charge is held and accumulated in the radiation detection element 7.
  • FIG. 5 is a sectional view taken along line YY in FIG.
  • a gate electrode 8g of a TFT 8 made of Al, Cr or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a).
  • An upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiN x ) or the like is connected to the first electrode 74 of the radiation detection element 7 via a semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like.
  • the formed source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.
  • the source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiN x ) or the like, and the first passivation layer 83 covers both electrodes 8s and 8d from above.
  • ohmic contact layers 84a and 84b formed in an n-type by doping hydrogenated amorphous silicon with a group VI element are stacked between the semiconductor layer 82 and the source electrode 8s and the drain electrode 8d, respectively.
  • the TFT 8 is formed as described above.
  • an auxiliary electrode 72 is formed by laminating Al, Cr, or the like on the insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4.
  • a first electrode 74 made of Al, Cr, Mo or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween.
  • the first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83.
  • the auxiliary electrode 72 is not necessarily provided.
  • a p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below.
  • the radiation irradiated with respect to the radiographic imaging apparatus 1 injects from the radiation entrance surface R of the housing
  • the electromagnetic wave reaches the i layer 76 of the radiation detection element 7, and electron-hole pairs are generated in the i layer 76.
  • the radiation detection element 7 converts the electromagnetic waves irradiated from the scintillator 3 into electric charges (electron hole pairs).
  • a second electrode 78 made of a transparent electrode such as ITO is laminated and formed so that the irradiated electromagnetic wave reaches the i layer 76 and the like.
  • the radiation detection element 7 is formed as described above. The order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed. Further, in the present embodiment, a case where a so-called pin-type radiation detection element formed by sequentially stacking the p layer 77, the i layer 76, and the n layer 75 as described above is used as the radiation detection element 7. However, it is not limited to this.
  • a bias line 9 for applying a bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78.
  • the second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are A second passivation layer 79 made of silicon nitride (SiN x ) or the like is covered from above.
  • one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other. Further, each bias line 9 is bound to the connection 10 at a position outside the detection portion P of the substrate 4.
  • each scanning line 5, each signal line 6, and connection 10 of the bias line 9 are input / output terminals (also referred to as pads) provided near the edge of the substrate 4. 11 is connected.
  • each input / output terminal 11 has an anisotropic COF (Chip On Film) 12 in which a chip such as a gate IC 12 a constituting a gate driver 15 b of the scanning drive means 15 described later is incorporated on a film. They are connected via an anisotropic conductive adhesive material 13 such as a conductive conductive adhesive film (Anisotropic Conductive Film) or an anisotropic conductive paste (Anisotropic Conductive Paste).
  • the COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 described above on the back surface 4b side.
  • substrate 4 part of the radiographic imaging apparatus 1 is formed.
  • illustration of the electronic component 32 and the like is omitted.
  • FIG. 7 is a block diagram illustrating an equivalent circuit of the radiographic imaging apparatus 1 according to the present embodiment
  • FIG. 8 is a block diagram illustrating an equivalent circuit for one pixel constituting the detection unit P.
  • each radiation detection element 7 of the detection unit P of the substrate 4 has the bias line 9 connected to the second electrode 78, and each bias line 9 is bound to the connection 10 to the bias power supply 14. It is connected.
  • the bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9.
  • the bias power supply 14 is connected to a control means 22 described later, and the control means 22 controls the bias voltage applied to each radiation detection element 7 from the bias power supply 14.
  • the bias line 9 is connected via the second electrode 78 to the p-layer 77 side (see FIG. 5) of the radiation detection element 7.
  • the bias power supply 14 supplies a voltage equal to or lower than a voltage applied to the second electrode 78 of the radiation detection element 7 via the bias line 9 as a bias voltage on the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage). Is applied.
  • the first electrode 74 of each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 (indicated as S in FIGS. 7 and 8), and the gate electrode 8g of each TFT 8 (FIGS. 7 and 8). Are respectively connected to the lines L1 to Lx of the scanning line 5 extending from a gate driver 15b of the scanning driving means 15 described later. Further, the drain electrode 8 d (denoted as D in FIGS. 7 and 8) of each TFT 8 is connected to each signal line 6.
  • the scan driver 15 includes a power supply circuit 15a for supplying an on voltage and an off voltage to the gate driver 15b via the wiring 15c, and a voltage to be applied to each line L1 to Lx of the scan line 5 between the on voltage and the off voltage.
  • a gate driver 15b that switches between the on state and the off state of each TFT 8 is provided.
  • the scanning drive unit 15 sequentially applies an ON voltage to each of the lines L1 to Lx of the scanning line 5 in accordance with an instruction from the control unit 22 described later, The state in which the off voltage is applied to all the lines L1 to Lx is maintained.
  • each signal line 6 is connected to each readout circuit 17 formed in each readout IC 16.
  • the readout IC 16 is provided with one readout circuit 17 for each signal line 6.
  • the readout circuit 17 includes an amplification circuit 18 and a correlated double sampling circuit 19.
  • An analog multiplexer 21 and an A / D converter 20 are further provided in the reading IC 16. 7 and 8, the correlated double sampling circuit 19 is represented as CDS. In FIG. 8, the analog multiplexer 21 is omitted.
  • the amplifier circuit 18 is configured by a charge amplifier circuit, and is configured by connecting a capacitor 18b and a charge reset switch 18c in parallel to the operational amplifier 18a and the operational amplifier 18a, respectively.
  • a power supply unit 18 d for supplying power to the amplifier circuit 18 is connected to the amplifier circuit 18.
  • a switch 18e that opens and closes in conjunction with the charge reset switch 18c is provided between the operational amplifier 18a and the correlated double sampling circuit 19.
  • the signal line 6 is connected to the inverting input terminal on the input side of the operational amplifier 18 a of the amplifier circuit 18, and the reference potential V 0 is applied to the non-inverting input terminal on the input side of the amplifier circuit 18.
  • the reference potential V 0 is set to an appropriate value, and in this embodiment, for example, 0 [V] is applied.
  • the charge reset switch 18c of the amplifier circuit 18 is connected to the control means 22, and is controlled to be turned on / off by the control means 22, so that the charge reset switch 18c is turned on.
  • the switch 18e is turned off in conjunction with it, and when the charge reset switch 18c is turned off, the switch 18e is turned on in conjunction with it.
  • the TFTs 8 that are turned on are turned on in the state where the charge reset switch 18 c is turned off (and the switch 18 e is turned on).
  • the charge accumulated from each radiation detection element 7 is released to the signal line 6 through the signal line 6, and the charge flows through the signal line 6 and flows into the capacitor 18 b of the amplifier circuit 18 and is accumulated.
  • a voltage value corresponding to the amount of charge accumulated in the capacitor 18b is output from the output side of the operational amplifier 18a. In this way, the amplifier circuit 18 outputs a voltage value according to the amount of charge output from each radiation detection element 7 and converts the charge voltage.
  • the amplifier circuit 18 may be configured to output a current in accordance with the charge output from the radiation detection element 7.
  • the charge reset switch 18c is turned on, and when the switch 18e is turned off, the input side and the output side of the amplifier circuit 18 are short-circuited.
  • the charge accumulated in 18b is discharged.
  • the discharged electric charge passes through the operational amplifier 18a from the output terminal side of the operational amplifier 18a, goes out from the non-inverting input terminal and is grounded, or flows out to the power supply unit 18d, whereby the amplifier circuit 18 is reset. ing.
  • a correlated double sampling circuit (CDS) 19 is connected to the output side of the amplifier circuit 18.
  • the correlated double sampling circuit 19 has a sample and hold function.
  • the sample and hold function in the correlated double sampling circuit 19 is turned on / off by a pulse signal transmitted from the control means 22. To be controlled.
  • the charge reset switch 18c of the amplifier circuit 18 of each reading circuit 17 is controlled to be turned off.
  • the so-called kTC noise is generated at the moment when the charge reset switch 18c is turned off, and the charge caused by the kTC noise accumulates in the capacitor 18b of the amplifier circuit 18.
  • the voltage value output from the amplifier circuit 18 starts from the above-described reference potential V 0 at the moment when the charge reset switch 18c is turned off (indicated as “18coff” in FIG. 10). It changes by the amount of electric charge caused by kTC noise and changes to a voltage value Vin.
  • the control means 22 transmits the first pulse signal Sp1 to the correlated double sampling circuit 19, and at that time (shown as “CDS hold” (left side in FIG. 10)).
  • the voltage value Vin output from the amplifier circuit 18 is held.
  • an on-voltage is applied to one scanning line 5 (for example, line Ln of the scanning line 5) from the gate driver 15 b of the scanning driving unit 15, and the gate electrode 8 g is applied to the scanning line 5.
  • the TFTs 8 connected to each other are turned on (refer to FIG. 9; indicated as “TFTon” in FIG. 10)
  • the charges accumulated from the radiation detecting elements 7 connected to these TFTs 8 are applied to the signal lines 6.
  • the voltage value output from the amplifier circuit 18 increases according to the amount of charge stored in the capacitor 18b.
  • the control means 22 switches the on-voltage applied to the scanning line 5 from the gate driver 15b to the off-voltage and turns the gate electrode 8g on the scanning line 5 as shown in FIG. Is turned off (indicated as “TFToff” in FIG. 10), and at this stage, the second pulse signal Sp2 is transmitted to each correlated double sampling circuit 19, and at that time, the amplifier circuit 18 The output voltage value Vfi is held (displayed as “CDS hold” (right side) in FIG. 10).
  • each correlated double sampling circuit 19 When each correlated double sampling circuit 19 holds the voltage value Vfi by the second pulse signal Sp2, it calculates the difference Vfi ⁇ Vin of the voltage value, and uses the calculated difference Vfi ⁇ Vin as the analog value image data d on the downstream side. To output.
  • the image data d of each radiation detection element 7 output from the correlated double sampling circuit 19 is transmitted to the analog multiplexer 21 and sequentially transmitted from the analog multiplexer 21 to the A / D converter 20. Then, the A / D converter 20 sequentially converts the image data d into digital values, outputs them to the storage means 40, and sequentially stores them.
  • the control means 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), etc. It is configured. It may be configured by a dedicated control circuit. And the control means 22 controls operation
  • DRAM Dynamic RAM
  • the above-described antenna device 39 is connected to the control unit 22, and each member such as the detection unit P, the scanning drive unit 15, the readout circuit 17, the storage unit 40, the bias power supply 14, and the like.
  • a battery 41 for supplying electric power is connected.
  • a connection terminal 42 for charging the battery 41 by supplying power to the battery 41 from a charging device (not shown) is attached to the battery 41.
  • control unit 22 controls the bias power supply 14 to set or vary the bias voltage applied from the bias power supply 14 to each radiation detection element 7. It is designed to control the operation.
  • the read processing of the image data d is performed before the radiographic imaging performed by irradiating the radiographic imaging device 1 with radiation, and the radiation imaging to the radiographic imaging device 1 is performed. After the process is completed, a reading process of image data d as a so-called main image is performed.
  • image data d read out as a main image after radiation irradiation is completed is referred to as image data D so that it can be easily distinguished from image data d read out before radiographic image capturing.
  • image data D image data d read out as a main image after radiation irradiation is completed
  • the readout process after the radiation irradiation is completed is referred to as a readout process after radiographic image capturing so that it can be easily distinguished from the readout process before radiographic image capturing. Accordingly, the image data d is read out by the respective reading processes before the radiographic image is taken and the image data D is read out after the radiographic image is taken.
  • model configuration Here, before describing each configuration in the present embodiment, the configuration to be compared with each configuration in the present embodiment will be described. Hereinafter, this configuration is abbreviated as a model configuration.
  • the on-voltage is sequentially applied to the lines L1 to Lx of the scanning line 5 from the gate driver 15b of the scanning drive unit 15 before the radiographic image is captured, as shown in FIG. Processing is performed. Then, the value of the read image data d is monitored. For example, as shown in FIG. 11, the value of the read image data d increases and exceeds a preset threshold value dth (in FIG. 11, At time t1), it is configured to detect that radiation irradiation to the radiation imaging apparatus has started.
  • the on-voltage is applied to the line Ln of the scanning line 5 and the image data d read from each radiation detection element 7 connected to the line Ln of the scanning line 5
  • the application of the ON voltage to each of the lines L1 to Lx of the scanning line 5 is stopped from the scanning driving means 15, and each of the scanning lines 5 is stopped.
  • the voltage applied to the lines L1 to Lx is switched to the off voltage.
  • a transition is made to a charge accumulation mode in which charges generated in each radiation detection element 7 due to radiation irradiation are accumulated in each radiation detection element 7.
  • scanning is performed both in the reading process of image data d before radiographic image capturing and in the reading process of image data D after radiographic image capturing.
  • Read-out processing is performed by sequentially applying an ON voltage from the driving unit 15 to each of the lines L1 to Lx of the scanning line 5.
  • the on-voltage is applied from the scanning drive unit 15 to the lines L1 to Lx of the scanning line 5 to turn on the TFTs 8, and then the applied voltage is applied.
  • the time until the TFT 8 is turned off by switching to the off voltage that is, the time during which the TFT 8 is turned on in FIG. 9 (the time from “TFTon” to “TFToff” in FIG. 10; hereinafter referred to as the on time) .
  • the transmission interval of the pulse signals Sp1 and Sp2 transmitted to the correlated double sampling circuit 19 shown in FIG. 9 and the timing of the on / off operation of the charge reset switch 18c of the amplifier circuit 18 are also determined.
  • the same transmission interval and timing are used for the reading process of the image data d before imaging and the reading process of the image data D after radiographic imaging.
  • the image data d read by the reading process before radiographic image capturing is data used to detect the start of radiation irradiation, and therefore, the value of the image data d is seen, that is, exceeds the threshold value dth. What is necessary is just to be able to detect whether or not radiation irradiation has started. For this reason, the reading process of the image data d does not necessarily have to be performed under the same conditions as the image data D read out as the main image after radiographic image capturing.
  • the reading process of the image data d before the radiographic image capturing is performed in the same manner as the on-time of the TFT 8 and the transmission timing of the pulse signals Sp1 and Sp2 (see FIG. 9) in the read processing of the image data D after the radiographic image capturing. There is no need to do this at the transmission timing.
  • the on time of the TFT 8 in the reading process of the image data d before radiographic image capture is lengthened, the radiation irradiation is started, and the TFT 8 is turned on in the image data d read out during the radiation irradiation. Even during the time, electric charges continue to be generated in each radiation detection element 7 due to radiation irradiation. Therefore, the value of the image data d increases as the on time of the TFT 8 becomes longer.
  • the amount of charge q leaked from the other radiation detection elements 7 connected to the signal line 6 via the TFT 8 also increases.
  • the amount of each charge q that leaks from the other radiation detection element 7 and flows into the capacitor 18b of the amplifier circuit 18 increases as the on-time of the TFT 8 increases. Therefore, also in this respect, the value of the image data d increases as the on time of the TFT 8 becomes longer.
  • the on-time of the TFT 8 at the time of the reading process of the image data d before the radiographic image capturing is made longer than the on-time at the time of the reading process of the image data D after the radiographic image capturing.
  • the reading process is performed by simultaneously applying the on-voltage from the scanning driving unit 15 to a plurality of scanning lines 5 not adjacent on the detection unit P. By doing so, it is possible to increase the value of the image data d itself read out in one reading process of the image data d and improve the detection efficiency.
  • each scanning line 5 is connected to the respective terminals of the gate ICs 12a constituting the gate driver 15b of the scanning driving means 15, for example, as shown in FIG.
  • the scanning voltage 5 is simultaneously applied to each scanning line 5 connected to the first terminal of the gate IC 12a to simultaneously read the image data d.
  • the scanning line 5 is connected to the second terminal of each gate IC 12a. It is possible to perform a reading process by simultaneously applying an ON voltage to each scanning line 5.
  • the gate driver 15b of the scanning drive unit 15 is configured by eight gate ICs 12a
  • the value of the image data d itself read out by one reading process of the image data d. Is 8 times larger. Therefore, the detection efficiency can be improved by increasing the value of the image data d itself that is read out in one reading process of the image data d.
  • each scanning line can shorten the time required for the reading process for one frame. Therefore, it is possible to further reduce extra charges such as dark charges accumulated in each radiation detection element 7 connected to 5.
  • the threshold value dth is set in advance, the image data d is read out as described above, and the read image data d exceeds the set threshold value dth. At this point (see time t1 in the figure), it can be configured to detect that radiation irradiation has started.
  • control unit 22 applies the on-voltage to the lines L1 to Lx of the scanning line 5 from the scanning driving unit 15 as shown in FIG. Are sequentially applied to repeatedly read out the image data d and detect that radiation irradiation has started when the value of the read image data d exceeds the threshold value dth. it can.
  • the image data d is output from each readout circuit 17 each time an on-voltage is sequentially applied to each of the lines L1 to Lx of the scanning line 5. Since one detection circuit 17 is provided for each signal line 6 provided in the detection unit P from several thousand to several tens of thousands, several thousands to several tens of times can be performed in one reading process of the image data d. Ten thousand pieces of image data d are output from each readout circuit 17.
  • the threshold value dth is exceeded for several thousand to several tens of thousands of individual image data d, the burden of the judgment processing becomes very large. Therefore, for example, the maximum value dmax is extracted from each of the image data d read for each reading process of the image data d, and it is determined whether or not the maximum value dmax of the image data d exceeds the threshold value dth. It is possible to configure.
  • the radiation is irradiated.
  • the image data d does not increase in the portion that has not been processed, but the image data d increases in the portion that has been irradiated with radiation, so the maximum value dmax of the image data d increases. Therefore, it is possible to accurately detect the start of radiation irradiation by determining whether or not the maximum value dmax of the image data d exceeds the threshold value dth.
  • the radiation detection elements 7 there is a radiation detection element 7 from which image data d having an abnormally large value is read. Further, depending on the performance of each readout circuit 17, there are cases where noise generated in the readout circuit 17 is large. In such a case, although the radiation image capturing apparatus 1 is not irradiated with radiation, the image data d having an abnormally large value or the image data d on which noise is superimposed exceeds the threshold value dth, and the radiation There is a possibility that it may be erroneously detected that the irradiation is started.
  • the radiation detection element 7 from which the abnormal image data d is read has information on such an abnormal radiation detection element 7 in advance, and the abnormal radiation detection element 7 is stored.
  • the image data d read out from can be configured not to be subject to the above-described determination of the start of radiation irradiation.
  • a statistical value such as an average value or a total value of the image data d is calculated for each readout IC 16 provided with a predetermined number of readout circuits 17, and the maximum value is selected from the average value and the total value. It is also possible to extract the value and compare the maximum value with the threshold value dth.
  • an abnormally large value of the image data d is an image of another normal value. In other words, it is diluted with the data d and the total value is calculated, so that the calculated average value and total value do not become so large. Therefore, if the threshold value dth is set to an appropriate value, it is possible to prevent erroneous detection of radiation irradiation even if image data d having an abnormally large value is read.
  • noises generated in the respective readout circuits 17 cancel each other when calculating the average value and the total value of the image data d. Therefore, it is possible to reduce the influence of noise generated in each readout circuit 17 on the image data d.
  • the maximum value dmax is extracted from the image data d read by the reading process before radiographic image capturing, or the maximum value is extracted from the average value or the total value of the image data d, and the maximum value is extracted.
  • the threshold value dth are detected so that the start of radiation irradiation is detected, thereby improving the detection efficiency when detecting that the radiation imaging apparatus 1 has started the irradiation of radiation. It becomes possible.
  • the maximum value of the individual image data d is extracted, the average value or the total value of the image data d for each readout IC 16 is calculated, the maximum value is extracted from them, and compared with the threshold value dth.
  • the average value and the total value of all the image data d read by each reading circuit 17 at the time of one reading process of the image data d are calculated, and the average value and the total value are calculated.
  • the threshold value dth can be compared. If comprised in this way, the process which extracts a maximum value will become unnecessary.
  • the difference between the average value and the total value of the image data d and the like is only whether or not the process of dividing the total value by the total number of the image data d and the like is performed, and the image data d and the like are added. In the sense, it is the same process. Therefore, hereinafter, when only the average value or only the total value is described, the total value can be used instead of the average value, or the average value can be used instead of the total value.
  • the statistical value of the image data d for each readout IC 16 in addition to the average value and the total value of the image data d as described above, for example, the median value or mode value of the image data d for each readout IC 16; Alternatively, various values such as a weighted average value, a root mean square value, and a square root of the mean square can be used. In the following description, the case where the average value is mainly used as the statistical value will be described. However, each statistical value other than the average value may be used instead of the average value.
  • the radiation image capturing apparatus 1 when the radiation image capturing apparatus 1 is irradiated with a normal dose of radiation, the image data d read in the reading process is relatively more than the image data d read in the stage where the radiation is not irradiated. Since it clearly increases, it is easy to detect the start of radiation irradiation. However, the radiation image capturing apparatus 1 is irradiated with radiation with a very low dose rate (ie, dose per unit time), for example, as in the case of shull imaging with a stethoscope. In some cases, the increase in the image data d may not be clear.
  • a very low dose rate ie, dose per unit time
  • the ratio between the image data d and noise superimposed thereon that is, the S / N ratio of the image data d is an important problem. It becomes.
  • Various noises are superimposed on the image data d.
  • main noise for example, noise generated in the voltage of the bias power supply 14 (see FIG. 7) or noise derived from the power supply circuit 15a of the scan driving means 15 is used. Can be mentioned.
  • the bias power supply 14 is connected to each radiation detection element 7 via the connection 10 and each bias line 9, and a bias voltage Vbias on which noise generated by the bias power supply 14 is superimposed is applied to each radiation detection element 7.
  • Each radiation detection element 7 is in a state in which an i layer 76 (see FIG. 5) or the like is interposed between the first electrode 74 and the second electrode 78 and has a kind of capacitor-like structure. have.
  • the charge noise caused by the fluctuation of the bias voltage Vbias is superimposed on the charge Q accumulated in the radiation detection element 7. Since the bias power supply 14 is connected to all the radiation detection elements 7 via the bias line 9 or the like, the noise of the bias voltage Vbias is transmitted to all the radiation detection elements 7 at the same time and is caused by the noise of the bias voltage Vbias. Charge noise is simultaneously superimposed on all the radiation detection elements 7.
  • the on-voltage supplied from the power supply circuit 15a (see FIG. 7) of the scanning drive means 15 is applied to the scanning line 5 through the gate driver 15b and applied to the gate electrode 8g of each TFT 8.
  • the noise of the on-voltage generated in one power supply circuit 15 a is transmitted to the scanning line 5 to which the on-voltage is applied, and instantaneously to each TFT 8 connected thereto via the scanning line 5. Communicated.
  • the noise generated in the on-voltage in the power supply circuit 15a is simultaneously transmitted to all the TFTs 8 connected to the scanning line 5 to which the on-voltage is applied, and is read out when the image data d is read out. It is superimposed on the image data d.
  • noise of the bias voltage Vbias and noise generated in the power supply circuit 15a of the scanning drive unit 15 are simultaneously superimposed on all the radiation detection elements 7. Therefore, the image data d read out at the same timing, that is, each of the lines connected to the line L of the scanning line 5 when the on-voltage is applied to a certain line L of the scanning line 5 and the reading process is performed.
  • the same noise component is superimposed on the image data d read from the radiation detection element 7. Further, every time the scanning line 5 to which the ON voltage is applied is switched, the noise component superimposed on each image data d is increased or decreased in the same manner.
  • each radiation detection provided at a position on the detection unit P corresponding to the radiation field F, that is, a position where an electromagnetic wave obtained by converting the irradiated radiation by the scintillator 3 can enter.
  • the radiation image capturing apparatus 1 when the radiation image capturing apparatus 1 is irradiated with radiation, an electric charge is generated internally by irradiation of the radiation, and the value of the read image data d increases.
  • the radiation image capturing device Even if radiation is irradiated to 1, the electromagnetic wave converted by the scintillator 3 is not incident on the radiation detection element 7, so that the value of the image data d does not increase.
  • noise generated in the bias power supply 14 and the power supply circuit 15a of the scanning drive means 15 is caused by the noise detection element 7 and the TFT 8 at any position. Are transmitted simultaneously via. Therefore, the same noise is superimposed on the image data d read from each radiation detection element 7.
  • each radiation at a position on the detection unit P where the electromagnetic wave emitted from the scintillator 3 can be incident by the control unit 22 that is, a position on the detection unit P corresponding to the radiation field F of radiation.
  • the electromagnetic wave emitted from the scintillator 3 does not enter the position on the detection unit P (that is, the position other than the position on the detection unit P corresponding to the radiation field F).
  • the difference ⁇ d obtained by subtracting the image data d read from each radiation detection element 7 provided is calculated, and radiation irradiation starts when the calculated difference ⁇ d exceeds the threshold value ⁇ dth set for the difference ⁇ d. It can be configured to detect that it has been done.
  • the irradiation field F is narrowed so that the radiation is irradiated not on the entire area of the scintillator 3 or the detection unit P of the radiographic imaging apparatus 1 but on a part of the scintillator 3 or the detection unit P. It is premised on irradiation.
  • the radiation field F of the radiation applied to the radiation image capturing apparatus 1 is normally set to the most suitable position on the radiation incident surface R for convenience of capturing for each capturing. Therefore, the irradiation field F may be set near the center of the radiation incident surface R as shown in FIG. 15, but may be set at a position corresponding to the periphery of the scintillator 3 or the detection unit P. For this reason, the radiation detection element 7 to which the electromagnetic wave from the scintillator 3 does not enter cannot be specified in advance.
  • the control means 22 extracts the maximum value dmax and the minimum value dmin from each image data d read for each readout circuit 17.
  • an on-voltage is applied to one scanning line 5 in one reading process, and the maximum is selected from all the image data d read from all the radiation detection elements 7 connected to the scanning line 5.
  • the value dmax and the minimum value dmin are extracted.
  • a difference ⁇ d obtained by subtracting the minimum value dmin from the extracted maximum value dmax is calculated, and it is detected that radiation irradiation has started when the calculated difference ⁇ d exceeds a threshold value ⁇ dth set for the difference ⁇ d. It can be configured to do so.
  • each image data d read out for each readout circuit 17 is usually superimposed with an offset amount due to the readout characteristics of each readout circuit 17. For this reason, when image data d for the same charge Q is read by each readout circuit 17, each image data d has a different value for each offset.
  • the image data d extracted by each of the past read processes for a predetermined number of times, for example, 5 times or 10 times, including the read process immediately before the read process.
  • the moving average is subtracted from the image data d read out in the current readout process, and the subtracted value is obtained in the readout circuit 17 in the current readout process. It is assumed that the read image data d.
  • the maximum value dmax and the minimum value dmin are extracted from each image data d calculated by subtracting the moving average from each image data d read for each readout circuit 17, respectively.
  • a difference ⁇ d obtained by subtracting the minimum value dmin from the maximum value dmax is calculated. Then, it can be configured to detect that radiation irradiation has started when the calculated difference ⁇ d exceeds a threshold value ⁇ dth set for the difference ⁇ d.
  • the image data d calculated by subtracting the moving average from the image data d read by each readout circuit 17 is Since the offset amount for each readout circuit 17 is canceled out and the value output from any readout circuit 17 becomes a value close to 0, the difference ⁇ d obtained by subtracting the minimum value dmin from the maximum value dmax becomes a value close to 0. Obviously, the difference ⁇ d obtained by subtracting the minimum value dmin from the maximum value dmax becomes a value close to 0. Become.
  • each radiation detection arranged at the position on the detection unit P corresponding to the radiation irradiation field F is performed.
  • the value of the image data d read out by radiation irradiation increases, but in each radiation detection element 7 arranged at a position other than the position on the detection unit P corresponding to the radiation field F, the image The value of data d does not increase.
  • FIG. 16 is a graph showing the maximum value dmax of image data d read from a certain readout IC 16 when the radiation image capturing apparatus 1 is irradiated with very weak radiation.
  • the image data d is increased or decreased due to noise generated in the power supply circuit 15a.
  • radiation irradiation is started at time t1, but the rise in the image data d due to radiation irradiation is buried in noise, and the start of radiation irradiation cannot be detected.
  • the maximum value dmax and the minimum value dmin are extracted from the image data d calculated by subtracting the moving average from the image data d, and the difference ⁇ d obtained by subtracting the minimum value dmin from the maximum value dmax is obtained.
  • the calculated difference ⁇ d is reliably increased at time t1 and exceeds the threshold value ⁇ dth, and it can be detected that radiation irradiation has started at that time.
  • the difference ⁇ d shown in FIG. 17 is the difference ⁇ d when the radiation imaging apparatus 1 is irradiated with radiation having an extremely low dose rate, as described above, and such a difference ⁇ d.
  • the result as shown in FIG. 17 is obtained. Therefore, it goes without saying that when the radiation image capturing apparatus 1 is irradiated with a normal radiation having a higher dose rate, the difference ⁇ d increases more clearly.
  • the irradiation field F is not narrowed and the entire radiation incident surface R (see FIG. 1 and the like) of the radiographic imaging apparatus 1 is covered. In some cases, radiation is emitted. In such a case, the start of radiation irradiation cannot be detected by the processing method of [Configuration 4-1].
  • the actual radiographic imaging apparatus 1 can be configured by combining the above [Configuration 1] to [Configuration 3] and [Configuration 4-1]. Further, the configuration described in the above [Configuration 1] to [Configuration 3] is used in combination with the configuration described in [Configuration 4-1], and the start of radiation irradiation is detected simultaneously in both configurations. Of course, it is possible to configure so that the start of radiation irradiation is detected when the start of radiation irradiation is detected in any one of these configurations.
  • the read IC 16 is formed with a predetermined number of read circuits 17 such as 128 or 256, as shown in FIG.
  • 128 readout circuits 17 are formed in one readout IC 16 and 1024 signal lines 6 are wired, at least 8 readout ICs 16 are provided.
  • each radiation detection element 7 connected via each signal line 6 is located at a position other than the position on the detection unit P corresponding to the radiation field F, that is, the detection unit P where the electromagnetic wave from the scintillator 3 is not incident. It is considered that there is a readout IC 16 that becomes each radiation detection element 7 provided in the upper position.
  • the radiation field F since the radiation field F is narrowed, the radiation reaches all the radiation detection elements 7 connected to a certain readout IC 16 even though the radiation imaging apparatus 1 is irradiated with radiation. It is considered that there is a reading IC 16 that does not (in this embodiment, electromagnetic waves converted from radiation by the scintillator 3 do not enter).
  • the maximum value and the minimum value are extracted from each image data d calculated by subtracting the moving average from each image data d read for each readout circuit 17.
  • an average value for each read IC 16 of each image data d calculated by subtracting a moving average from each image data d read for each read circuit 17 is calculated, and each read IC 16 The maximum value and the minimum value can be extracted from the average value for each.
  • the signal line 6 and the corresponding readout circuit 17 are thousands to tens of thousands.
  • a moving average is calculated for each of the signal lines 6 and the readout circuits 17. The moving average must be subtracted from each image data d read out every time, and processing may take time.
  • each read circuit 17 is formed in the read IC 16 by a predetermined number such as 128 or 256, for each read circuit 17 as described above. For example, instead of subtracting the moving average from each of the image data d read out, 128 image data d output from each readout circuit 17 for one readout IC 16 in one readout process, for example. The average value for each IC 16 can be calculated first.
  • the average number of image data d for each read IC 16 for each read process is eight, which is equal to the number of read ICs 16 in the above example.
  • a moving average is calculated for each of the average values of the image data d for each of these eight readout ICs 16, the moving average is subtracted from each average value, and each average value obtained by subtracting the moving average is compared. A maximum value and a minimum value are extracted from them, a difference ⁇ d obtained by subtracting the minimum value from the maximum value is calculated, and it is detected that radiation irradiation has started when the calculated difference ⁇ d exceeds a threshold value ⁇ dth. It can be configured as follows.
  • each readout circuit 17 can read out the data in a single readout process. It is not necessary to calculate the moving average for 1024 pieces of image data d, and it is sufficient to calculate the moving average for the average value of the image data d for each of the eight readout ICs 16.
  • the electric noise generated for each of a number of readout circuits 17 in the readout IC 16 calculates the average value of the image data d. Since they cancel each other out, there is an advantage that it is possible to reduce the influence of the electrical noise generated in each readout circuit 17 on the image data d and its moving average.
  • the scintillator 3 may be originally formed smaller than the detection portion P provided on the substrate 4 as schematically shown in FIG. In FIG. 19, it is assumed that the scanning line 5 is wired in the left-right direction in the drawing, and the signal line 6 is extended in the vertical direction in the drawing.
  • each radiation detection element 7 provided in the position under the scintillator 3 on the detection part P ie, the position in which the electromagnetic wave which the irradiated radiation converted by the scintillator 3 can inject is in.
  • the image data d rises.
  • each radiation detection provided at a position on the detection unit P other than just below the scintillator 3, that is, a position on the detection unit P where the electromagnetic wave from the scintillator 3 does not enter see a position C indicated by hatching in the drawing.
  • the electromagnetic wave does not enter the radiation detection element 7, so that the image data d does not rise.
  • the image read out from each radiation detection element 7 at the position on the detection unit P where the electromagnetic wave emitted from the scintillator 3 can enter (that is, the position immediately below the scintillator 3) is used by the control means 22.
  • a difference obtained by subtracting the image data d read from each radiation detection element 7 provided at a position on the detection part P where the electromagnetic wave irradiated from the scintillator 3 is not incident (that is, a position other than immediately below the scintillator 3) from the data d.
  • ⁇ d is calculated. In the same manner as described above, it can be configured to detect that radiation irradiation has started when the calculated difference ⁇ d exceeds the threshold value ⁇ dth.
  • each radiation provided at a position on the detection unit P where the electromagnetic wave irradiated from the scintillator 3 is not incident that is, a position other than immediately below the scintillator 3.
  • the image data d read from the detection element 7 for example, one image data d out of the image data d read from each radiation detection element 7 at the position C is selected and used. It is also possible to calculate the average value of the image data d and use it as the latter image data d.
  • the radiographic imaging device 1 when configured as shown in FIG. 19, it is configured to calculate the difference ⁇ d by performing each process as described above, so that at least the image data d is obtained. It is possible to remove noise components derived from the superimposed bias power supply 14 and the like, and to improve the S / N ratio of the image data d.
  • it is configured to always perform the process of setting the value obtained by subtracting the moving average from the image data d read by each reading circuit 17 as the image data d, or the dose rate of the irradiated radiation. It is determined as appropriate whether or not it is configured to be performed only when the value is very low.
  • the capacitance of the capacitor 18b of the amplifier circuit 18 configured by the charge amplifier circuit described above can be varied, and radiation In the reading process of the image data d before image capturing, the capacitance cf of the capacitor 18b of the amplifier circuit 18 is varied so as to be smaller than the capacity in the reading process of the image data D after capturing the radiation image. It is also possible to configure.
  • the amplifying circuit 18 outputs a voltage value corresponding to the charge Q emitted from the radiation detecting element 7 and accumulated in the flowing-in capacitor 18b, but is varied so that the capacitance cf of the capacitor 18b is reduced.
  • V Q / cf
  • the noise component originally superimposed on the charge Q emitted from the radiation detection element 7, that is, the noise component derived from the bias power source 14 as described above, is a voltage value V output from the amplifier circuit 18.
  • the noise component does not contribute to the improvement of the S / N ratio, but at least the noise component generated in the readout circuit 17 including the amplifier circuit 18 is large even if the voltage value V increases. Don't be.
  • the capacitance cf of the capacitor 18b is too low, the capacitor 18b is likely to be saturated with the electric charge Q emitted from each radiation detection element 7. However, if the capacitor 18b is saturated, the capacitor 18b in the readout circuit 17 including the capacitor 18b is used. It may adversely affect reading from the next time. For this reason, the capacitance cf of the capacitor 18b is adjusted to be lowered to an appropriate value. In addition, when the image data D is read out after radiographic imaging, the capacitance cf of the capacitor 18b is returned to a normal predetermined capacitance.
  • the capacitance of the capacitor 18b of the amplifier circuit 18 can be varied.
  • the capacitors C1 to C4 are connected in parallel. Connect to. Then, the switches Sw1 to Sw3 are connected in series to the capacitors C2 to C4, respectively. Note that a switch may be connected to the capacitor C1 in series.
  • the capacitance cf of the capacitor 18b is the total value of the capacitance of the capacitor C1 and the capacitances of the capacitors C2 to C4 connected in series to the switches that are turned on among the switches Sw1 to Sw3. .
  • the capacitor 18b uses each radiation as described above. Contrary to the above case, from the viewpoint of emphasizing the prevention of adverse effects caused by saturation with the charge Q emitted from the detection element 7, in the process of reading the image data d before radiographic image capturing, contrary to the above case.
  • the capacitance cf of the capacitor 18b can be varied so as to be larger than the capacitance at the time of reading processing of the image data D after radiographic imaging.
  • the capacitance cf of the capacitor 18b is returned to a normal predetermined capacitance.
  • the TFT 8 has an off voltage applied to its gate electrode 8 g, and therefore the semiconductor layer 82 of the TFT 8 on the gate electrode 8 g side ( The lower side in FIG. 21 is in a state where the electron density is small.
  • the charge q leaks in the TFT 8 in the off state when holes flow in a region where the electron density on the gate electrode 8g side of the semiconductor layer 82 is small.
  • the leakage current since a reverse bias voltage is applied to the second electrode 78 (not shown in FIG. 21) of the radiation detection element 7 connected to the source electrode 8s, the leakage current is relatively In particular, it flows from the drain electrode 8d side having a high potential through the region on the gate electrode 8g side of the semiconductor layer 82 to the source electrode 8s side having a relatively low potential.
  • the scintillator 3 is provided on the upper side in the drawing.
  • the electron-hole pairs are generated mainly on the scintillator 3 side (the upper side in FIG. 21) of the semiconductor layer 82 of the TFT 8.
  • the electron density is relatively high on the scintillator 3 side of the semiconductor layer 82, the probability that the generated holes recombine with the electrons increases. Therefore, as described above, when electromagnetic waves are irradiated from the scintillator 3 by irradiation of radiation, electron-hole pairs are generated in the semiconductor layer 82 of the TFT 8, and the amount of leakage current flowing in the TFT 8 in the off state increases. However, since some of the holes that are carriers are recombined with electrons, the rate of increase in leakage current is reduced.
  • a wiring 85 is disposed on the side, and at least during the readout process repeatedly performed before radiographic image capturing, the wiring 85 is negative. It is possible to configure so as to apply the following voltage.
  • the wiring 85 is formed of a conductive material that transmits electromagnetic waves irradiated from the scintillator 3 such as ITO.
  • the wiring 85 is parallel to each scanning line 5. The same number is provided. At least at the time of readout processing repeatedly performed before radiographic image capturing, for example, a negative voltage that is the same as the off-voltage applied to each scanning line 5 from the scanning drive unit 15 is applied.
  • the negative voltage applied to each wiring 85 is not necessarily a negative voltage having the same value as the off voltage. As described above, a region having a low electron density is formed on the scintillator 3 side of the semiconductor layer 82 of the TFT 8. It is set to a voltage that can be accurately formed. Further, it is possible to apply a turn-off voltage to each wiring 85 from the power supply circuit 15a of the scanning drive means 15, and it is also possible to apply a negative voltage from another power supply circuit. Is possible.
  • the measure for increasing the amount of the charge q leaked from the other radiation detection elements 7 uses the image data d read in the readout process before radiographic imaging for the detection of the start of radiation irradiation.
  • the image data D is read out as the main image in the reading process after radiographic imaging, the charge q component leaked from the other radiation detection elements 7 superimposed on the read image data D is Less is better.
  • the wiring 85 and the bias line 9 are formed on the upper surface (that is, the surface on the scintillator 3 side not shown) of the first planarizing layer 80 a formed by being laminated above the radiation detection element 7 and the TFT 8.
  • the form of forming the wiring 85 is not limited to this form, and the electron density is low on the scintillator 3 side of the semiconductor layer 82 of the TFT 8. If the region can be formed, the wiring 85 can be arranged at an appropriate position.
  • the resistance value of the resistor of the bias power supply 14 When the resistance value of the resistor of the bias power supply 14 is increased, it functions as a so-called low-pass filter, and particularly high frequency noise can be reduced. Therefore, for example, in the process of reading the image data d before radiographic image capturing, it is possible to vary the resistance value so that the resistance value of the resistor in the bias power supply 14 is increased.
  • the resistance value of the resistor in the bias power source 14 is returned to the original normal resistance value at least when the image data D is read out after radiographic imaging.
  • the radiation detection element 7 that has performed the reading process while the radiation image capturing apparatus 1 is being irradiated with the radiation receives radiation from the radiation detection element 7.
  • Part of the charge generated by irradiation that is, image data D to be read out as the main image flows out and is read out as image data d.
  • each scanning line 5 to which the radiation detection element 7 is connected is regarded as a line defect.
  • radiation irradiation to the radiographic imaging apparatus is actually performed by applying a turn-on voltage to the line Ln of the scanning line 5 and performing a reading process.
  • the detection efficiency is low even though it has already been started, radiation irradiation starts when, for example, a read process is performed by applying an ON voltage to the line Ln + 2 of the scanning line 5 It is assumed that it has been detected.
  • the lines Ln to Ln + 2 of the scanning line 5 become line defects.
  • the line defect continues to a plurality of adjacent lines Ln to Ln + 2 of the scanning line 5, as shown in FIG. Appears.
  • these continuous line defects are repaired by, for example, interpolating with the image data D of each radiation detecting element 7 connected to the line Ln-1 or the line Ln + 3 of the scanning line 5, for example, As described above, there is a possibility that the information on the lesioned part of the patient imaged on each scanning line 5 that is regarded as a line defect may be lost due to the restoration such as interpolation.
  • the on-time of the TFT 8 at the time of the reading process of the image data d before the radiographic image capturing is set to the reading time of the image data D after the radiographic image capturing. If it is configured to be longer than the ON time, the detection efficiency when detecting the start of radiation irradiation is improved.
  • the on-voltage is applied to the line Ln of the scanning line 5 as shown in FIG.
  • the value of the read image data d rapidly increases and exceeds the threshold value dth, it is possible to detect that radiation irradiation has started at this time t1. Therefore, in this case, only the line Ln of the scanning line 5 becomes a line defect, as shown in FIG.
  • the value of the image data d read in the reading process immediately after the start of the actual radiation irradiation to the radiographic imaging apparatus increases, and the possibility of exceeding the threshold dth increases. Therefore, it is possible to prevent a line defect from appearing continuously in a plurality of adjacent scanning lines 5, or to reduce the number of scanning lines 5 in which a line defect occurs.
  • the gate period is returned to the original normal gate period at least when the image data D is read out after radiographic imaging.
  • the detection efficiency of the radiographic imaging apparatus 1 is improved, for example, so that line defects are prevented from appearing continuously in a plurality of adjacent scanning lines 5 or the number of scanning lines 5 that cause line defects is reduced.
  • the radiation generator (not shown) that irradiates the radiation imaging apparatus 1
  • the rise of the radiation dose to be irradiated is slow, and the radiation imaging apparatus 1 emits radiation.
  • the image data d read by the readout process before capturing the radiation image is For example, it increases as shown in FIG. 11, and the point in time when the radiation irradiation is actually started and the point in time when the radiation imaging apparatus 1 detects that the radiation irradiation is started deviate. For this reason, even if the detection efficiency on the radiographic imaging apparatus 1 side is improved, the line defect may appear in a plurality of adjacent scanning lines 5 continuously.
  • an ON voltage is sequentially applied to the lines L2, L130,... Of the scanning line 5 connected to the second terminal of each gate IC 12a, and then connected to the third terminal of each gate IC 12a.
  • the ON voltage is sequentially applied to all the lines L1 to Lx of the scanning line 5 while shifting the terminal of each gate IC 12a to which the ON voltage is applied one by one, and the image data d from each radiation detecting element 7 is applied. It is also possible to perform a read process.
  • the on-voltage may be sequentially applied to each of the lines L 1 to Lx of the scanning line 5 at any timing.
  • the rise of the dose of the radiation irradiated from a radiation generator as mentioned above was slow, and as shown in FIG. 28, on-voltage was applied when radiation irradiation was actually started.
  • the line Ln of the scanning line 5 and the line Ln + 2 of the scanning line 5 to which the on-voltage is applied next cannot be detected, and the on-voltage is applied to the line Ln + 4 of the next scanning line 5
  • the scanning line 5 in which the line defect occurs is the line Ln, Ln + 2, Ln + 4 of the scanning line 5 as shown in FIG.
  • the scanning lines 5 in which line defects are generated appear in a state of being separated from each other (that is, in a state of appearing in a flying manner).
  • the lines Ln-1, Ln + 1, Ln + 3, and Ln + 5 of the scanning line 5 around the line defect are line Ln, Ln + 2, Ln + of the scanning line 5 as shown in FIG. Since the on-voltage is applied at a timing prior to the timing at which the on-voltage is applied to 4 and the off-voltage is surely applied at the time when radiation irradiation is started, the charge from each radiation detection element 7 is charged. Will not leak.
  • the ratio is one for 128 scanning lines 5. The line defect appears.
  • the detection unit P is divided into a plurality of regions.
  • each signal line 6 is divided in the extending direction on the detection unit P, and the detection unit P is divided into two regions Pa and Pb. ing.
  • each scanning line 5 is divided in the extending direction, and the detection unit P is divided into two regions Pc and Pd. It is divided.
  • illustration is omitted, for example, on the detection unit P, each scanning line 5 and each signal line are both divided in the extending direction so that the detection unit P is divided into, for example, four regions. It is also possible to configure.
  • each scanning line 5 of each region Pa, Pb is connected to each gate driver 15b via each input / output terminal 11.
  • the gate driver 15b can be configured to apply an ON voltage to the scanning lines 5 in the regions Pa and Pb at independent timings.
  • the on-voltage is applied from the gate driver 15b corresponding to one area Pa to each scanning line 5 in the area Pa in the reading process of the image data d before radiographic image capturing.
  • the readout processing is performed by sequentially applying the on-voltage to each scanning line 5 so as not to coincide with the timing for applying the on-voltage from the gate driver 15b corresponding to the other area Pb to each scanning line 5 in the other area Pb.
  • the detection unit P is divided into two areas Pa and Pb as shown in FIG. 31, and the lines L1 and L1 are respectively applied to the lines L of the scanning line 5 from the gate driver 15b corresponding to the area Pa.
  • the ON voltage is sequentially applied in the order of L2, L3,..., And the ON voltage is sequentially applied to each line L of the scanning line 5 from the gate driver 15b corresponding to the region Pb in the order of the lines Lx, Lx-1, Lx-2,.
  • the on-voltage is applied in the order of the lines L1, L2,..., Lx-1, Lx of the scanning line 5 as in the case of the above model configuration, for example, the on-voltage is applied to the line L1 of the scanning line 5. If the start of radiation irradiation is not detected at the timing of applying, it is determined whether or not the radiation irradiation has been started until the readout process performed by applying the ON voltage to the line L2 of the next scanning line 5. I can't. This is the same even when an on-voltage is applied as shown in FIG.
  • the timing for applying the ON voltage from the gate drivers 15b corresponding to the regions Pa and Pb to the scanning lines 5 of the regions Pa and Pb should not be the same.
  • control means 22 is based on the image data d read out in the image data d reading process that is repeatedly performed before radiographic imaging, that is, the image data d exceeds the threshold value dth. Each process after determining and detecting the start of radiation irradiation will be described.
  • the charge accumulation mode for example, after waiting for a predetermined time set in advance longer than the irradiation time of radiation, it is possible to shift to a process of reading image data D after radiographic imaging. is there.
  • the end of radiation irradiation can be detected by configuring as follows.
  • the charge q slightly leaks from each radiation detection element 7 via the TFT 8.
  • the radiation image capturing apparatus 1 is irradiated with radiation, the radiation is converted into electromagnetic waves by the scintillator 3, and this electromagnetic wave is irradiated to each TFT 8, the leaked charge q increases. Then, when radiation irradiation to the radiation image capturing apparatus 1 is completed, the leaked charge q returns to the original small value.
  • each readout circuit 17 is operated as shown in FIG. 33 in a state where an off voltage is applied to all the lines L1 to Lx of the scanning line 5. That is, as in the case of the image data d reading process, the charge reset switch 18c (see FIG. 8) of the amplifier circuit 18 of the reading circuit 17 is turned off and the charge is stored in the capacitor 18b. 22, the pulse signals Sp1 and Sp2 are transmitted to the correlated double sampling circuit 19 to perform sampling, but the on / off operation of each TFT 8 is not performed during that time.
  • each readout circuit 17 When each readout circuit 17 is operated in this way, as shown in FIG. 34, each charge q leaked from each radiation detection element 7 through each TFT 8 turned off is accumulated in the capacitor 18b of the amplifier circuit 18. Is done. Therefore, a voltage value corresponding to the accumulated charge, that is, the total value of the charge q leaked from each radiation detection element 7 is output from the amplifier circuit 18, and the correlation double sampling circuit 19, not shown in FIG. It is sampled and data is output.
  • leak data Dleak in the sense of data based on the charge q leaked from each radiation detection element 7.
  • the voltage applied to all the lines L1 to Lx of the scanning line 5 is switched to the off voltage. Then, the read operation by each read circuit 17 is continued, and the leak data Dleak is read.
  • the radiation imaging apparatus 1 is irradiated with radiation, and the charge q leaked from each radiation detection element 7 via the TFT 8 is increasing. Therefore, as shown in FIG. 35, the value of the leaked data Dleak to be read is large.
  • control means 22 is configured to monitor the value of the leak data Dleak and determine that the radiation irradiation has ended when the value of the leak data Dleak becomes equal to or less than a preset threshold value Dleak_th. Is possible.
  • the radiation image capturing apparatus 1 itself is configured to detect the end of radiation irradiation, the image data D reading process can be started immediately after the end of radiation irradiation is detected. Thus, it is possible to quickly perform the processing after the reading processing of the image data D.
  • a preview image is created before full-scale image processing is performed on the image data D by an external computer or the like to generate a diagnostic radiographic image.
  • Display, and a radiographer or the like looks at the preview image and confirms whether or not the subject is photographed on the radiation image and whether or not the subject is photographed at an appropriate position on the radiation image. Often done.
  • the reading process of the image data D can be started immediately after the radiation irradiation is completed, so that the preview image can be displayed promptly, and the radiologist can quickly.
  • the readout operation by the readout circuit 17 is stopped and the system waits for a predetermined time as in the case of normal radiographic imaging. For example, there is an advantage that it is not necessary to read out the leak data Dleak in the charge accumulation mode, and the power consumption of the radiation image capturing apparatus 1 can be suppressed. Further, since the off voltage is applied to all the lines L1 to Lx of the scanning line 5 and the differential of each readout circuit 17 is stopped, there is an advantage that the control configuration is simplified.
  • FIG. 35 shows a case where the leak data reading process is continued to read out the leak data Dleak even after the end of radiation irradiation is detected at time t2, but this is only due to radiation exposure.
  • This is an experimental example for showing how the data Dleak changes. Actually, when the end of radiation irradiation is detected at time t2, the leakage data reading process is stopped and the reading process of the image data D is immediately performed. Is started.
  • the scanning drive unit 15 and the reading circuit 17 are operated as shown in FIGS. 9 and 10, and the read image data d is sequentially stored in the storage unit 40 (see FIG. 7 and the like). Saved.
  • FIG. 13 shows the case where the readout process is performed by sequentially applying the on-voltage in order from the first line L1 of the scanning line 5 in the readout process of the image data D.
  • the line Ln of the scanning line 5 next to the scanning line 5 (in the case of FIG. 36, the line Ln of the scanning line 5) that has detected the start of radiation irradiation in the reading process of the image data d before the radiographic image capturing.
  • the ON voltage sequentially from the scanning line 5 to which the ON voltage is to be applied (in the case of FIG. 36, the line Ln + 1 of the scanning line 5).
  • This configuration has an advantage that the reading process of the image data d before the radiographic image capturing and the reading process of the image data D after the radiographic image capturing can be performed in the same processing sequence. In addition, there are other advantageous effects, which will be described in the fourth embodiment.
  • the on-voltage is sequentially applied to each scanning line 5 from before radiographic image capturing to perform the read processing of the image data d, and the read image data d Based on this value, it is detected that the radiation imaging apparatus 1 has started irradiation with radiation. Therefore, it is possible to detect the start of radiation irradiation by the radiographic imaging device 1 itself.
  • the on-time in the reading process of the image data d before the radiographic image capturing is set longer than the on-time in the reading process of the image data D as the main image after the radiographic image capturing.
  • the number of scanning lines 5 that cause a line defect is reduced to one, or the number of scanning lines 5 that cause a line defect is accurately reduced. Even if the data D is used for restoration, it is possible to accurately avoid, for example, the loss of information on the lesion of the patient that has been imaged in the line defect portion. Then, since the information on the lesion part appears in the radiographic image generated based on the image data D, the generated radiographic image can be accurately used for medical diagnosis and the like.
  • the radiation imaging apparatus 1 starts irradiation with radiation when the image data d read by applying the on-voltage to a line Ln with the scanning line 5 exceeds the threshold value dth.
  • the irradiation of radiation is actually started from the external radiation generation apparatus (not shown) to the radiographic imaging apparatus 1, and the read image data d
  • the radiographic imaging device 1 cannot recognize that radiation irradiation has actually started.
  • the radiation image capturing apparatus 1 itself cannot detect when radiation irradiation has actually started. Then, during the period from when radiation irradiation is actually started to when it is detected that radiation irradiation has started, an ON voltage is applied to the number of scanning lines 5 and image data d is read out. That is, the radiographic imaging device 1 itself cannot grasp which scanning line 5 should be a line defect.
  • the number of scanning lines 5 to be line defects can be set in advance.
  • the number of scanning lines 5 to be a line defect is set to 1 in advance, and it is detected that radiation irradiation has started. Even if only the scanning line 5 to which the on-voltage is applied at the time is configured as a line defect, no problem actually occurs.
  • the scanning line 5 to be a line defect can be determined in accordance with the imaging conditions.
  • the image processing is performed by an external apparatus such as an image processing computer (or the radiographic image capturing apparatus 1 when the radiographic image capturing apparatus 1 performs image processing).
  • an external apparatus such as an image processing computer (or the radiographic image capturing apparatus 1 when the radiographic image capturing apparatus 1 performs image processing).
  • the number of scanning lines 5 including the line Ln of the scanning line 5 where the radiation image capturing apparatus 1 has detected the start of radiation irradiation is regarded as a line defect. It can also be configured to determine what to do.
  • the transition of the value of the image data d sequentially read from each radiation detection element 7 connected to each line L1 to Lx of the scanning line (for example, see FIG. 11 and FIG. 25, etc.), and it is possible to determine the scanning line 5 to be a line defect by determining the time point when radiation irradiation is actually started from the radiation generator. is there.
  • the image data d that changes as shown in FIG. the three scanning lines 5 including the scanning line 5 that has detected the start of radiation irradiation at time t1 are regarded as line defects. Further, when the image data d that transitions as shown in FIG. 25 is analyzed, only the scanning line 5 that has detected the start of radiation irradiation at the time t1 is regarded as a line defect.
  • the image data that is the main image read out in the readout process after radiographic imaging It is also possible to analyze D and determine the number of scanning lines 5 to be line defects.
  • each line Ln-2 to Ln of the scanning line 5 should be a line defect. It turns out that it is.
  • the scanning line 5 to be a line defect is, for example, only the scanning line 5 to which the on-voltage is applied when it is detected that radiation irradiation is started, or depending on the imaging conditions. Or by analyzing the image data d and the image data D.
  • the image data D of the line defect portion can be invalidated as having low reliability, and can be discarded.
  • line defects are generated in one or two scanning lines 5 and appear in the state shown in FIGS. 79 and 80.
  • an on-voltage is applied to each scanning line 5 as shown in FIG. 27, for example, in the reading process of the image data d before radiographic image capturing, as shown in FIG. It will appear.
  • the image data D of the line defect portion is discarded as described above, for example, the image data D discarded by the technique such as linear interpolation using the surrounding image data D is used. Can be configured to repair.
  • the image data D of 7 is restored.
  • the line defects of the scanning line 5 of the line Ln are lines Ln-1 and Ln + 1 of the scanning line 5
  • the line defect of the line Ln + 2 of the scanning line 5 is, for example, the line Ln of the scanning line 5.
  • the line defects of the line Ln + 4 of the +1, Ln + 3 and the scanning line 5 can be repaired by using, for example, the lines Ln + 3 and Ln + 5 of the scanning line 5, respectively.
  • the image data d is read out by the reading process before radiographic imaging, so that the image data D that is the main image is restored using the image data d. It is also possible to configure. In this case, the image data D read from each radiation detection element 7 connected to the scanning line 5 determined as a line defect is not discarded.
  • the offset due to the dark charge is superimposed on both the image data D and the image data d, these values are subtracted and added together.
  • the offset superimposed on the image data D is also called an offset correction value O, and will be described in detail in a second embodiment to be described later.
  • true image data D * data included in the image data D, which is caused only by the charges generated in each radiation detection element 7 due to radiation irradiation, that is, data not including dark charge.
  • the true image data D * is obtained for each radiation detection element 7.
  • D * DO (1) It is calculated by performing the operation.
  • the image data d read out by the readout process repeatedly performed before radiographic image capturing is performed.
  • the image data d read out before the start of radiation irradiation does not include the charge generated by the radiation irradiation, and is data that originates only from the dark charge. Can be used.
  • an offset correction value o for the image data d an image read from the start of radiation irradiation until the start of radiation irradiation is detected in the readout process before radiographic image capturing.
  • the offset correction value o for the image data d can also be configured in advance through experiments or the like.
  • the above-described radiation irradiation is included in the image data d read from the start of radiation irradiation until the start of radiation irradiation is detected. Is connected to the signal line 6 to which the radiation detection element 7 is connected by irradiation of radiation in addition to data resulting from only the charge generated in each radiation detection element 7 and data resulting from dark charge. The increase in the charge q leaked from the other radiation detection elements 7 is also included.
  • the true image data d * is calculated by subtracting the offset correction value o from the image data d according to the above equation (2), the true image data d * is a part of the true image data D * described above. It is not a value of itself, but is a value obtained by adding an increase due to the irradiation of the charge q leaked from the other radiation detection element 7 described above.
  • the configuration in which the true image data D * and the true image data d * are simply added ignores the increase due to the radiation of the charge q leaking from the other radiation detection element 7. In the first place, however, the number of line defects generated in this embodiment can be suppressed to a very small number, so that the true image data D * can be restored relatively well also by this method. .
  • the coefficient can be a coefficient whose value changes according to the dose per unit time of the radiation irradiated to the radiation image capturing apparatus 1, that is, the dose rate, for example. Also, the coefficient can be set to a constant value and is set as appropriate. With this configuration, it is possible to more accurately restore the true image data D * of each radiation detection element 7 by eliminating the influence of the phenomenon that occurs while the radiation is being applied.
  • the process is until the reading process of the image data d before radiographic imaging, the transition to the charge accumulation mode after detection of the start of radiation irradiation, and the readout process of the image data D after radiographic imaging.
  • Each process has been described.
  • the offset correction value O is also referred to as a dark read value, and is the charge generated and accumulated in each radiation detection element 7 by irradiation of radiation while the TFT 8 is in the OFF state after shifting to the charge accumulation mode.
  • dark charges and the like generated by thermal excitation by the heat (temperature) of the radiation detection element 7 itself correspond to data accumulated in each radiation detection element 7 and correspond to an offset of the image data D.
  • the offset correction value O that is, how much offset is included in the image data D cannot be determined by just looking at the value of the image data D, a separate process for obtaining the offset correction value O Is required. Therefore, usually, before or after radiographic imaging, the radiographic imaging apparatus 1 is not irradiated with radiation, and the radiographic imaging apparatus 1 is left in a state where each TFT 8 is turned off, and then the image data D is read out.
  • the offset correction value O is acquired for each radiation detection element 7 by reading out dark charges and the like accumulated from each radiation detection element 7 in the same manner as described above.
  • the offset correction value O is subtracted from each image data D as shown in the above equation (1), and only the charges generated by the radiation irradiation are obtained.
  • the true image data D * derived from is calculated, and a radiation image is generated based on the true image data D * .
  • the true image data D * obtained by subtracting the offset correction value O from each image data D is not a normal value, and is generated based on it.
  • the radiographic image becomes abnormal or the image quality deteriorates.
  • the process of reading the offset correction value O from each radiation detection element 7 is performed in the same manner as the reading process of the image data D shown in FIG. 9 and FIG. This is called offset correction value reading processing.
  • the offset correction value O corresponds to the charge (dark charge) generated and accumulated in the radiation detection element 7 while each TFT 8 is in the OFF state as described above, but more accurately.
  • the radiation is Corresponding to the electric charge generated and accumulated in the radiation detection element 7 until the on-voltage applied to the line Ln of the scanning line 5 is switched to the off-voltage in the reading process of the image data D after the image is taken. It is.
  • the on-voltage applied to the line Ln with the scanning line 5 is switched to the off-voltage in the reading process of the image data d before radiographic imaging as described above.
  • the time interval until the on voltage applied to the line Ln of the scanning line 5 is switched to the off voltage in the reading process of the image data D after radiographic imaging is referred to as an effective accumulation time.
  • the effective accumulation time depends on the processing sequence in the reading process of the image data d before the radiographic image capturing and the processing sequence in the reading process of the image data D after the radiographic image capturing. In some cases, the same time interval is used, and the time interval is different.
  • the same on-time and the same gate in the readout process of the image data d before radiographic imaging as in the readout process of the image data D after radiographic imaging are applied to each line L1 to Lx of the scanning line 5 at a period.
  • at least the lines L1 to Ln + 2 of the scanning line 5 have the same effective accumulation time, and each line Ln + 3 to Lx of the scanning line 5 is the same.
  • the effective accumulation time has a different length, but the effective accumulation times are the same for the lines Ln + 3 to Lx of the scanning line 5.
  • the on-time is longer than in the case of the readout process of the image data D after radiographic imaging, or in FIG.
  • the gate period is longer than that in the case of the reading process of the image data D after radiographic imaging, the effective accumulation times in the lines L1 to Lx of the scanning line 5 are different time intervals.
  • FIG. 38 which is a simplified view of FIG. 13
  • the effective accumulation times T1 to T4 of the TFT 8 in the lines L1 to L4 of the scanning line 5 are different for each scanning line 5. It becomes a time interval.
  • FIG. 36 which shows a case where the reading order in the image data D after radiographic imaging is changed in FIG. 13, as shown in FIG. 39 which is a simplified view of FIG.
  • the effective accumulation times T1 to T4 of the TFT 8 in L4 are different time intervals for each scanning line 5.
  • the offset correction value O does not necessarily increase linearly (that is, proportionally) to the effective accumulation time of the TFT 8. This is considered to be because the generation rate of dark charges generated in each radiation detection element 7 when the radiation imaging apparatus 1 is left without irradiation with radiation as described above is non-linear with respect to time changes. .
  • the offset correction value O is the same value if the effective storage time of the TFT 8 is the same.
  • the process for obtaining the offset correction value O can be configured as in the following configuration examples.
  • the offset correction value O does not increase in a form proportional to the effective accumulation time of the TFT 8, but becomes the same value if the effective accumulation time of the TFT 8 is the same. Therefore, for example, as described below, the effective accumulation time of the TFT 8 for each line L of the scanning line 5 is configured to be the same effective accumulation time in the reading process of the image data D and the offset correction value reading process. be able to.
  • an on-voltage is sequentially applied to each of the lines L1 to L4 of the scanning line 5 to read out image data d before radiographic imaging and image data D after radiographic imaging.
  • the case where the reading process is performed will be described, but the case of other configurations will be described in the same manner.
  • each line L1 of the scanning line 5 is composed of each of the lines L1 to L4
  • the following description is based on each line L1 of the scanning line 5 as shown in FIG. Needless to say, it can be generalized when several to tens of thousands of Lx are provided.
  • the shift to the charge accumulation mode, and the readout process of the image data D after radiographic imaging is switched between the on voltage and the off voltage, and the reading circuit 17 sequentially performs the reading operation.
  • the image data d can be read, transferred to the charge accumulation mode (but not irradiated with radiation), and offset correction value reading can be performed.
  • the same processing sequence as the processing sequence until the image data D is read (that is, the reading processing of the image data d, the transition to the charge accumulation mode, and the reading processing of the image data D) is performed on the image data D.
  • the offset correction value O is read repeatedly after the reading process.
  • the control unit 22 is the first embodiment.
  • the image data d as described in the above is not monitored.
  • a reset process of each radiation detection element 7 may be performed. When the reset processing of each radiation detection element 7 is performed, the on-time and the gate period are the same as those in the reading process of the image data d.
  • the offset correction value O is read out in the same processing sequence as that when reading out the image data D. Therefore, as described above, the TFT 8 for each line L1 to L4 of the scanning line. Even when the effective storage times T1 to T4 are different from each other, when viewed for each of the scanning lines L1 to L4, the effective storage time of the TFT 8 when reading the image data D and the offset thereafter The effective accumulation time of the TFT 8 when reading the correction value O is the same time interval.
  • the read image data D And the offset correction value O read in the offset correction value reading process are the same value.
  • the offset correction value O read from the detection element 7 becomes the same value.
  • the offset correction value O read in the offset correction value read process is subtracted from each read image data D, so that only the charges generated by the radiation irradiation are obtained. It is possible to accurately calculate the derived true image data D * for each radiation detection element 7. A radiographic image can be accurately generated based on the true image data D * .
  • the reset process in this case does not need to be performed with the same on-time and gate cycle as in the case of the image data d read-out process.
  • the reset process can be configured to be repeated at a high speed with a short on-time or gate period. It is.
  • the second image data d read process or the reset process of each radiation detection element 7 performed with the same on-time and gate period as the image data d read process.
  • an offset correction value reading process is performed.
  • the processing sequence immediately before the offset correction value reading processing may be the same processing sequence as the processing sequence until the image data D is read, and appropriate processing such as reset processing of each radiation detection element 7 is performed in the meantime. It can be configured as follows.
  • control unit 22 sequentially stores the image data D read from each radiation detection element 7 in the reading process of the image data D in the storage unit 40 (see FIG. 7 and the like), and In the case where another shooting is not performed subsequently, the same processing sequence is automatically repeated to perform an offset correction value reading process, and the read offset correction value O is sequentially stored in the storage unit 40.
  • each image data D and each offset correction value O are sequentially read from the storage means 40 at an appropriate timing, and the image data is subjected to image processing via the antenna device 39 (see FIGS. 1 and 7, etc.). Configured to transmit to an external computer or the like. It is also possible for the control means 22 to perform a subtraction process for subtracting the offset correction value O from each image data D by itself.
  • the time interval from the reading process of the image data d before the radiographic image capturing to the reading process of the image data D after the radiographic image capturing (that is, the TFT 8)
  • the offset correction value reading process is performed so that the effective accumulation times T1 to T4) and the time interval (effective accumulation time) from the reading process of the image data D to the offset correction value reading process are the same.
  • the reset processing of each radiation detection element 7 is once performed, and then from the reset processing of each radiation detection element 7 to the offset correction value readout processing.
  • the offset correction value readout process is performed so that the time interval is the same as the time interval from the readout process of the image data d before radiographic imaging to the readout process of the image data D after radiographic imaging. It is also possible to do.
  • the effective accumulation times T1 to T4 of the TFT 8 until the process of reading the image data D and the effective accumulation times T1 to T4 of the TFT 8 until the offset correction value reading process are the same time interval.
  • the offset included in the image data D and the offset correction value O read by the offset correction value reading process have the same value.
  • the true image data D * derived only from the charges generated by the radiation irradiation is obtained for each radiation. It is possible to calculate accurately for each detection element 7. A radiographic image can be accurately generated based on the true image data D * .
  • the scanning driving unit 15 is in the same timing as the reading process of the image data D without being irradiated with radiation. It is also possible to perform an offset correction value reading process by sequentially applying an ON voltage to each of the lines L1 to L4 of the scanning line 5. In this case, it is also possible to perform a reset process of each radiation detection element 7 once after the reading process of the image data D is completed, and then perform an offset correction value reading process.
  • the time interval from the reading process of the image data D to the offset correction value reading process (that is, the effective accumulation time of the TFT 8) is the same time interval Ta for all the lines L1 to L4 of the scanning line 5. Therefore, in this case, the effective accumulation time T1 to T4 of the TFT 8 for each line L1 to L4 of the scanning line 5 from the reading process of the image data d before radiographic image capturing to the read process of the image data D after radiographic image capturing
  • the time interval Ta from the reading process of the image data D to the offset correction value reading process is not the same time interval.
  • the table and the relational expression are stored in advance in an external computer or the like that performs image processing based on the image data D and the offset correction value O transmitted from the radiation image capturing apparatus 1.
  • the experiment is performed in a state where the temperature of each functional unit, the substrate 4 and the like is stabilized by energizing each functional unit including the readout circuit 17 of the radiographic imaging device 1 for a long time, for example. .
  • an offset amount included in the image data D read from each radiation detection element 7 connected to the line L1 of the scanning line 5 in the reading process of the image data D (hereinafter referred to as an offset amount O1).
  • the computer or the like first reads the offset correction value O1 * (see FIG. 43) as a reference corresponding to the effective accumulation time T1 with reference to the above table or according to the above relational expression. Or calculate.
  • the set reference offset correction value O1 * cannot be used as the offset O1 as it is.
  • the offset correction value Oa * serving as a reference in the effective accumulation time Ta is obtained, and the ratio between the offset correction value O1 * serving as the reference and the offset amount O1 is the reference.
  • Is equal to the ratio of the offset correction value Oa * and the offset correction value O read in the offset correction value reading process, that is, O1 * : O1 Oa * : O (3)
  • the offset O1 is calculated from the read offset correction value O according to the following equation (4) derived from the equation (3).
  • O1 O ⁇ O1 * / Oa * (4)
  • the same processing is performed for the lines L2 to L4 of the scanning line 5, and the image read from each radiation detection element 7 connected to the lines L2 to L4 of the scanning line 5 by the reading process of the image data D is performed.
  • the offset included in the data D that is, offsets O2 to O4
  • the offset is derived only from the charges generated by the radiation irradiation. It is possible to accurately calculate the true image data D * for each radiation detection element 7.
  • each of the configurations A to C described above a case has been described in which the processing for acquiring the offset correction value O including the offset correction value reading processing is performed only once after the reading processing of the image data D.
  • the process for obtaining the offset correction value O is configured to be performed a plurality of times. Each offset correction value O obtained in each process is averaged for each radiation detection element 7, and the average value is calculated for each radiation detection element 7.
  • Each offset correction value O can also be used.
  • the offset correction value O for each radiation detection element 7 is provided in advance, and the offset correction value O is determined with reference to them. It is also possible to configure as described above.
  • the effective accumulation time of the TFT 8 of each scanning line 5 depends on the position of the scanning line 5 to which the on-voltage is applied when it is detected that radiation irradiation is started. We must consider that changes.
  • the image data d read by applying an ON voltage to the line L2 of the scanning line 5 is read. Based on this, when it is detected that radiation irradiation has started, the effective storage time T2 of the TFTs 8 of the lines L1 to L4 of the scanning line 5 is the shortest, and the effective storage time T3 is the shortest. become longer.
  • each line L1 to L1 of the scanning line 5 is detected.
  • the effective accumulation time T1 to T4 of the TFT 8 of L4 has the shortest effective accumulation time T3 and the longest effective accumulation time T4.
  • an ON voltage is applied to the effective accumulation times T1 to Tx of the TFTs 8 in the lines L1 to Lx of the scanning line 5 when it is detected that radiation irradiation is started.
  • the scanning line 5 changes depending on which scanning line 5 it is.
  • the effective accumulation times T1 to Tx change, for example, as shown in FIG. 43, the offset correction value O of each radiation detection element 7 also changes.
  • each offset correction value O (m, n) when the irradiation start is detected when the on-voltage is applied to is acquired a plurality of times, for example, each radiation of the offset correction value O (m, n).
  • the average value for each detection element is preferably configured to be the offset correction value O (m, n) of the radiation detection element (m, n).
  • offset images po are created for all the scanning lines 5 while changing the scanning lines 5 to which the on-voltage was applied when the start of radiation irradiation was detected. Then, as shown in FIG. 45, a group of offset images po created for each scanning line 5 is stored in advance in the storage means 40 (see FIG. 7 and the like).
  • control unit 22 starts irradiating the radiographic imaging apparatus 1 with radiation as described above based on the value of the image data d read out in the readout process before radiographic imaging.
  • the line Ln of the scanning line 5 to which the on-voltage is applied at the time when it is detected is detected, and the line number (n in this case) is stored.
  • each offset correction value O (m, n) assigned to each radiation detection element (m, n) is determined from the offset image po, and each offset correction value O (m, n) is calculated.
  • the offset correction values O (m, n) for the radiation detection elements (m, n) can be determined respectively.
  • the offset correction value O can change depending on the temperature of the substrate 4 (see FIG. 3 and the like) of the radiographic imaging apparatus 1.
  • the radiographic image capturing apparatus 1 is a so-called dedicated type radiographic image capturing apparatus formed integrally with a support base (not shown) or the like, for example, power is always supplied to the radiographic image capturing apparatus 1. It can be configured so that it can always be photographed. In that case, since the temperature of the substrate 4 of the radiographic image capturing apparatus 1 is maintained at a substantially constant temperature, when the offset image po is created in advance under the same temperature condition, as described above.
  • the offset correction value O (m, n) assigned to the offset image po can be used as it is as the offset correction value O (m, n) for each radiation detection element (m, n).
  • the portable radiographic imaging apparatus 1 as shown in the first embodiment, if power is always supplied from the battery 41 (see FIG. 7), the power consumption of the battery 41 becomes severe. As a result, the camera is constantly forced to be charged, resulting in a decrease in shooting efficiency.
  • a radiographic imaging apparatus 1 with a built-in battery it is possible to switch to a power saving mode (also referred to as a sleep mode) in which power is supplied only to a necessary functional unit in cases other than radiographic imaging. It is often configured as such. In order to suppress power consumption as much as possible, the power saving mode is often used until just before radiographic imaging.
  • a power saving mode also referred to as a sleep mode
  • the offset correction value O assigned to the offset image po may not be used as it is.
  • the offset correction value O assigned to the offset image po can be corrected accordingly.
  • the average value (or total value) of the image data d read from the radiation detection elements 7 connected to the signal line 6 at the position C1 is the same.
  • each image data d read from each radiation detection element 7 connected to the signal line 6 is also calculated at the time of actual radiographic image capturing.
  • each offset correction value O (m, n) for each radiation detection element (m, n) for example, an average value of each image data calculated at the time of actual radiographic image capturing is used to create an offset image po.
  • An offset correction value of each radiation detection element 7 in the current radiographic image capturing is obtained by multiplying each calculated offset correction value O (m, n) by a ratio calculated by dividing the average value of each image data at the time. O (m, n) can be calculated and determined.
  • each offset correction value O (m, n) obtained by calculating the ratio calculated as described above for example, an offset image is obtained from an average value of each image data calculated at the time of actual radiographic image capturing. The difference calculated by subtracting the average value of each image data at the time of creation of po is added to each calculated offset correction value O (m, n), and each radiation detection element 7 in the current radiographic image capturing is added.
  • the offset correction value O (m, n) may be calculated and determined.
  • each offset correction value O (m, n) assigned to each radiation detection element (m, n) in the offset image po is obtained from the information of the image data d at the time of creating the offset image po, It is possible to make corrections based on the information of the image data d read out at the time of imaging this time and to determine the offset correction values O (m, n) for the respective radiation detection elements (m, n). Become.
  • each radiation detection element 7 is configured such that a light shielding plate (not shown) is interposed between each radiation detection element 7 connected to one or a plurality of signal lines 6 and the scintillator 3. Can be brought into a state in which no charge is generated by irradiation of radiation even when the radiation imaging apparatus 1 is irradiated with radiation.
  • each offset correction value O (m) assigned to each radiation detection element (m, n) in the offset image po in the same manner as described above. , N) may be modified.
  • the reading process of the image data d is repeatedly performed before the radiographic imaging, and before the irradiation of the radiographic imaging apparatus 1 is started.
  • the read image data d is data resulting from dark charges.
  • the offset correction value O (m, n) assigned to each radiation detection element (m, n) in the offset image po is corrected using the image data d resulting from the dark charge. It is also possible to do.
  • the reading process of the image data d before the radiographic image capturing is repeatedly performed, for example, all the radiation detection elements 7 on the detection unit P or the predetermined range.
  • the average value (or total value) of the image data d read from each of the radiation detection elements 7 is calculated as information of the image data d.
  • the radiation detection elements 7 in the same range as when the offset image po is created by the reading process of the image data d before the radiation irradiation to the radiographic imaging device 1 is started.
  • the average value of each image data d read out from is calculated.
  • the ratio and difference between the average values are calculated, and the offset correction value O (m, n) of each radiation detection element 7 in the current radiographic image capturing is calculated and determined.
  • each offset correction value O (m, n) assigned to each radiation detection element (m, n) in the offset image po is used as information on the image data d at the time of creating the offset image po.
  • the correction is made based on the information of the image data d read out at the time of the current photographing, and each offset correction value O (m, n) is determined for each radiation detection element (m, n).
  • the image data D which is the main image, is transmitted to an external computer or the like to perform diagnostic radiation. Processing for generating an image or creating and displaying a preview image can be performed more quickly.
  • offset correction for each radiation detection element 7 is performed without performing the offset correction value reading process after radiographic imaging or without providing the offset image po in advance as described above.
  • the value O can be obtained.
  • each scanning line 5 is scanned with the same on-time and the same gate period as in the reading process of the image data D after radiographic imaging. Since the on-voltage is applied to the lines L1 to Lx, as described in [Premise 2] of the second embodiment, at least the lines L1 to Ln + 2 of the scanning line 5 have the same effective accumulation time, The lines Ln + 3 to Lx of the scanning line 5 have different effective storage times, but the lines Ln + 3 to Lx of the scanning line 5 have the same effective storage time.
  • an on-voltage is sequentially applied to each of the lines L1 to Lx of the scanning line 5, and the final line Lx of the scanning line 5 is applied.
  • the description has been made on the assumption that the on-voltage is immediately applied to the first line L1 of the scanning line 5 at the next timing after the on-voltage is applied, and the readout process for each frame is repeated.
  • the effective accumulation time of the TFT 8 is the same for all the lines L1 to Lx of the scanning line 5, but is shorter than the effective accumulation time of the TFT 8 in the case shown in FIG. 46 by the charge accumulation mode. ing.
  • the first line L1 of the scanning line 5 is immediately at the next timing when the ON voltage is applied to the final line Lx of the scanning line 5.
  • the off voltage is applied to all the lines L1 to Lx of the scanning line 5 in the charge accumulation mode.
  • the off-voltage is applied to all the lines L1 to Lx of the scanning line 5 for the same period as the application period, and then the reading process of the image data d of the next frame is started, so that the image data d for each frame is started. 46 is repeatedly performed, the effective accumulation time of the TFT 8 in the reading process of the image data d before radiographic imaging is shown in FIG. And the effective accumulation time of TFT8 during radiographic imaging can be the same time.
  • the image data d resulting from the dark charge is read out as the image data d read out in the frame before the start of radiation irradiation.
  • This image data d can be used as the offset correction value O for each radiation detection element 7.
  • the image data d for several frames before the start of radiation irradiation that is, the offset correction value O is acquired, for example, an average value of the plurality of offset correction values O is calculated, and the calculated offset is calculated.
  • the average value of the correction values O may be used as the offset correction value O for each radiation detection element 7.
  • the above-described processing has been described on the assumption that the control unit 22 of the radiographic image capturing apparatus 1 performs the above processing.
  • the image data D and the image data d from the radiographic image capturing apparatus 1 are necessary. It is also possible to transmit such data to an external radiographic image processing apparatus (not shown) that performs image processing on the image data D, and to perform the processing by the radiographic image processing apparatus.
  • the information of the group of offset images po regarding the radiographic imaging device 1 is used as the radiographic image. It is configured to be stored in advance in storage means (not shown) of the processing apparatus.
  • the scanning line 5 to which the on-voltage is applied when it is detected that radiation irradiation to the radiographic imaging apparatus 1 is started.
  • Necessary information such as information on the line Ln (that is, information such as the line number n of the scanning line 5) is appropriately transmitted from the radiographic image capturing apparatus 1 to the radiographic image processing apparatus.
  • the image data D is read from each radiation detection element 7 and then offset as described above.
  • the correction value O is read out, not only the offset due to the dark charge generated by the thermal excitation by the heat (temperature) of the radiation detecting element 7 itself as described above but also a so-called lag other than that. It has been found that the offset may be read out.
  • the offset due to dark charges or the like is relatively easily removed by repeating the reset process of each radiation detection element 7, for example, but the offset due to the lag repeats the reset process of each radiation detection element 7. There is a feature that even if it goes, it does not disappear easily.
  • the offset due to the dark charge or the like decreases to a value close to 0 relatively quickly when the reset processing of each radiation detection element 7 is repeated.
  • the offset due to the lag cannot be easily removed even if the reset process of each radiation detection element 7 is repeated, and the offset after the radiation imaging apparatus 1 is left in a state where no radiation is irradiated even if the reset process is repeated.
  • an offset correction value O having a larger value than that in the case of only the offset due to dark charge or the like is read.
  • the reason why the offset due to the lag cannot be easily removed even if the reset processing of each radiation detection element is repeated is that some of the electrons and holes generated in the radiation detection element 7 due to irradiation of strong radiation are a kind of This is considered to be because the state of shifting to the metastable energy level (metastable state) and losing mobility in the radiation detection element 7 is maintained for a relatively long time. Therefore, for example, even if the reset process of each radiation detection element 7 is repeated after radiographic imaging, the offset due to the lag cannot be easily removed.
  • the offset due to the lag is superimposed on the offset due to dark charge etc. It is considered to be read as an offset correction value O.
  • Olag the offset due to the lag
  • the offset Olag due to this lag occurs not only when strong radiation is irradiated, but also when a normal dose of radiation including weak radiation is irradiated. However, when radiation that is not so strong is irradiated, the ratio of the offset Olag due to the lag included in the offset correction value O is often small enough to be ignored.
  • the radiation detection element 7 such as a photodiode used in the radiographic image capturing apparatus 1 that the offset amount Olag due to the lag increases to a level that cannot be ignored when the radiation is irradiated. Therefore, how much dose of radiation is used in the method of the fourth embodiment described below is appropriately determined for each radiographic imaging apparatus 1. It is also possible to always perform the reading process of the image data D and the offset correction value reading process by the method of the fourth embodiment.
  • the ON voltage is sequentially applied to each line Ln of the scanning line 5 as shown in FIG.
  • the offset Olag due to the lag occurs immediately after the voltage applied to each line Ln of the scanning line 5 is switched from the on voltage to the off voltage.
  • the offset Olag due to the lag generated per unit time is expressed as ⁇ Olag
  • the offset ⁇ Olag due to the lag per unit time is the voltage applied to each line Ln of the scanning line 5 as shown in FIG. Is largest at the time when the on-voltage is switched to the off-voltage, and then gradually decreases. Therefore, the offset amount Olag due to the lag, which can be expressed as an integral value per unit time of the offset amount ⁇ Olag per unit time, becomes a value that increases temporally as shown in FIG.
  • the finally obtained image data for each radiation detection element 7 should have the same value.
  • the abnormality of the radiation detection element 7 and the offset for each readout circuit 17 are not considered.
  • the true image data D * derived from the charges generated in each radiation detection element 7 due to radiation irradiation have the same value.
  • the effective accumulation time T1 to T4 of the TFT 8 is different for each line L1 to L4 of the scan line 5, so that the scan line 5
  • the values of offsets Olag (1) to Olag (4) due to the lag for each of the lines L1 to L4 are different from each other.
  • D * in the above equation (7) is the same value, but Olag is different for each of the lines L1 to L4 of the scanning line 5. Therefore, the value D-O calculated by subtracting the offset correction value O from the image data D also becomes a different value for each of the lines L1 to L4 of the scanning line 5.
  • the entire radiographic image should have the same brightness (luminance) because the radiographic image capturing apparatus 1 is imaged with uniform irradiation with strong radiation. Nevertheless, the brightness of the radiation image is slightly different in each region of the image.
  • each of the lines L1 to L4 (scanning) of the scanning line 5 in the reading process of the image data D after radiographic imaging is performed.
  • the timing at which the ON voltage is sequentially applied is varied, and the TFT 8 is effective for all the lines L1 to L4 of the scanning line 5.
  • the accumulation times T1 to T4 can be varied so as to be the same time interval Tc.
  • the processing sequence until the image data D is read, and the offset correction value O after the reading processing of the image data D are read.
  • the processing sequence is the same processing sequence, or as in [Configuration B]
  • the offset correction value reading process is performed so that the effective accumulation times T1 to T4 of the TFT 8 until the correction value reading process are the same, the effective accumulation times T1 to T4 of the TFT 8 before and after the reading process of the image data D are all the same.
  • the time interval Tc is reached.
  • the entire radiographic image has the same brightness when the radiographic imaging device 1 is imaged by irradiating strong radiation uniformly. . In this way, it is possible to prevent a step in the brightness on the radiation image as described above.
  • the time interval Ta (see FIG. 42) from the reading process of the image data D to the offset correction value reading process is the same as the time interval Tc.
  • the interval By setting the interval, it is possible to achieve the same effect as described above.
  • the effective accumulation times T1 to T4 of the TFT 8 before and after the reading process of the image data D are all the same time interval Tc, the dark charges are reduced according to the above formula (4) based on the above table and the relational expression. There is no need to calculate the offset Od (O1 in the equation).
  • the offset Olag due to this lag becomes a problem when strong radiation is irradiated, and often does not cause a problem when weak radiation or a normal dose of radiation is irradiated.
  • the timing of applying the on voltage and the off voltage to each of the lines L1 to Lx of the scanning line 5 in the reading process of the image data d after the radiographic image capturing is performed. Also, it is possible to switch between a mode (in the case of the second embodiment) that is performed at a normal timing and a mode (in the case of the fourth embodiment) in which the timing is varied (in the case of the fourth embodiment). Is possible.
  • the radiographic imaging is performed.
  • the time required for each process in the apparatus 1 is slightly longer than that at the normal timing.
  • the image data d is read out at the normal timing.
  • the unconnected terminal h there may be a so-called unconnected terminal h in which the scanning line 5 is not connected to the gate driver 15b of the scanning drive unit 15 or the plurality of gate ICs 12a constituting the gate driver 15b.
  • the terminals to which the on-voltage is applied are sequentially switched in order to sequentially apply the on-voltage to each of the lines L1 to Lx of the scanning line 5 from the gate driver 15b, the unconnected terminal h is eventually obtained. The on-voltage is applied to.
  • one frame refers to image data from each radiation detection element 7 by sequentially applying an ON voltage to all the scanning lines 5 on the detection unit P (see FIGS. 3 and 7). This is a period for reading d.
  • the off-voltage is normally applied to all the lines L1 to Lx of the scanning line 5 for a predetermined time set longer than the radiation irradiation time. Although useful charges generated in each radiation detection element 7 by the irradiation are accumulated, as described above, if the detection of the start of radiation irradiation is delayed, the off-voltage is applied to all the lines L1 to Lx of the scanning line 5 accordingly. The state in which is applied continues for a long time.
  • the radiographic image capturing apparatus 1 does not generate a period ⁇ during which the image data d or the like is not read in the read processing of the image data d before radiographic image capturing, or can shorten the period ⁇ as much as possible. It is desirable that radiation irradiation can be accurately detected.
  • each functional unit of the radiation image capturing apparatus 1 is the same as those in the above embodiments.
  • the gate driver 15b of the scanning drive unit 15 or the gate IC 12a constituting the same has the unconnected terminal h to which the scanning line 5 is not connected. ing.
  • FIG. 53 is a diagram illustrating the configuration of the scan driving unit 15 according to the present embodiment, the wiring for the gate driver 15b, and the like.
  • the gate driver 15b of the scanning drive unit 15 is configured by arranging a plurality of the gate ICs 12a described above in parallel, and an on-voltage is supplied to each gate IC 12a from the power supply circuit 15a.
  • the on-voltage is supplied via the wiring Lon to be supplied.
  • Each gate IC 12a is supplied with an off-voltage from the power supply circuit 15a via another wiring (not shown).
  • the wiring Lon and the wiring for supplying the off-voltage are used for the wiring 15c ( (See FIG. 7).
  • wiring Lse1 and wiring Lse2 are connected to both ends of each gate IC 12a, and the wirings Lse1 and Lse2 are connected to the control means 22, respectively. Yes.
  • a wiring Lsh from the control means 22 is connected to each gate IC 12a.
  • each gate IC 12a When a seed signal is input from the wiring Lse1 of each gate IC 12a, the terminal at the upper end in the figure of each gate IC 12a becomes active, and an on-voltage is supplied from the power supply circuit 15a via the wiring Lon as described above. Then, an on-voltage is applied to the scanning line 5 connected to the terminal at the upper end that is in an active state.
  • an active terminal When a shift signal is input via the wiring Lsh, a terminal that is in an active state (hereinafter referred to as an active terminal) moves to a terminal on the lower side in the figure in this case.
  • the ON voltage is supplied from the power supply circuit 15a via the wiring Lon, the ON voltage is applied to the active terminal, and if the scanning line 5 is connected to the terminal, the scanning line 5 The on-voltage is applied to.
  • each gate IC 12a inputs the seed signal to the gate IC 12a via the wiring Lse1, and sequentially inputs the shift signal via the wiring Lsh, thereby moving the active terminals one by one. It can be done. Further, each time each terminal becomes active, an ON voltage is supplied from the power supply circuit 15a via the wiring Lon, so that the ON voltage is sequentially applied to each terminal, and each scanning line 5 connected to each terminal. The ON voltage can be applied sequentially.
  • each gate IC 12a when a seed signal is input to each gate IC 12a from the wiring Lse1 side as described above, the seed signal is transmitted from the wiring Lse2 at the next timing when the terminal at the lower end of each gate IC 12a is activated. Is output.
  • a seed signal is input from the wiring Lse1 to the uppermost gate IC 12a in FIG. 53, and a shift signal is input one after another via the wiring Lsh to shift the active terminal, and each scanning line 5 is turned on.
  • the seed signal is input to the second gate IC 12a via the wiring Lse1 at the same timing as the timing at which the seed signal is output via the wiring Lse2.
  • a shift signal is successively input to the second gate IC 12a via the wiring Lsh to shift the active terminal, and an ON voltage is sequentially applied to each scanning line 5, and then a seed signal is transmitted via the wiring Lse2.
  • a seed signal is input to the third gate IC 12a via the wiring Lse1 at the same timing as the output timing.
  • a seed signal is input from the wiring Lse2 to the lower gate IC 12a in FIG. 53, and a shift signal is input one after another via the wiring Lsh to shift the active terminal upward, thereby causing each scanning line 5
  • the seed signal is input to the upper gate IC 12a in the drawing via the wiring Lse2 at the same timing as the timing at which the seed signal is output via the wiring Lse1.
  • the ON voltage can be sequentially applied to the lines L1 to Lx of the scanning line 5 in order from the line Lx toward the line L1.
  • the wiring Lse2 of a certain gate IC 12a and the wiring Lse1 of the adjacent gate IC 12a are connected to each other, and the seed signal output from the wiring Lse2 or the wiring Lse1 of one gate IC 12a is transmitted to the next gate IC 12a.
  • it may be configured to automatically input via the wiring Lse2.
  • the radiographic image capturing apparatus 1 itself uses the radiographic image capturing apparatus 1 based on the image data d read out before the radiographic image capturing in the same manner as the above-described embodiments. It is detected that the irradiation of radiation has started.
  • the radiation image capturing apparatus 1 is actually irradiated with radiation, and at the same time, the radiation irradiation start cannot be detected. There may be a problem that the radiation start cannot be detected in real time because it is delayed from the start time.
  • the amount of dark charge accumulated in each radiation detection element 7 increases as the detection of the start of radiation irradiation is delayed in this way, and the S / N ratio of the image data D as the read main image is deteriorated. Such a problem may occur.
  • Method 1 When there is a non-connected terminal h (see FIG. 53) that is not connected to any scanning line 5 in the gate IC 12a constituting the gate driver 15b, at least in the reading process of the image data d before radiographic imaging.
  • the turn-on voltage is sequentially applied from the gate driver 15b to each scanning line 5, the turn-on voltage is not applied to the unconnected terminal h of the gate IC 12a, and is always turned on to any terminal to which the scanning line 5 is connected.
  • the scanning drive unit 15 is configured to sequentially apply the ON voltage from the gate driver 15b to each of the lines L1 to Lx of the scanning line 5 by applying a voltage.
  • the gate driver 15b shown in FIG. 53 when the seed signal is input from the wiring Lse1 to the gate IC 12a and the shift signal is input from the wiring Lsh one after another, the active terminal Are shifted one by one, and an on-voltage is supplied from the power supply circuit 15a via the wiring Lon at each timing, so that the lines L1 to Lx of the scanning line 5 to which the on-voltage is applied are sequentially switched. An ON voltage is sequentially applied to the lines L1 to Lx.
  • the gate IC 12a (the lowest in FIG. 53) is applied at the next timing.
  • the seed signal is output from the side gate IC 12a) via the wiring Lse2.
  • the seed signal in the gate IC 12a is forcibly removed from the gate IC 12a by grounding.
  • a shift signal is sequentially input to the gate IC 12a (that is, the uppermost gate IC 12a in FIG. 53), thereby applying the ON voltage.
  • the line 5 can be sequentially shifted downward in the drawing.
  • the gate driver 15b scans the gate IC 12a so that no on-voltage is applied to the unconnected terminal h of the gate IC 12a, and the on-voltage is always applied to any terminal to which the scanning line 5 is connected. It is possible to configure so that the ON voltage is sequentially applied to each of the lines L1 to Lx of the line 5.
  • the radiographic imaging apparatus 1 can be configured not to generate a period ⁇ in which the on-voltage is not applied to any of the lines L1 to Lx of the scanning line 5 and the image data d is not read out, and the radiation irradiation start is performed as described above. It is possible to accurately prevent the occurrence of problems such as delayed detection and accurately detect radiation irradiation by the radiographic imaging apparatus 1 itself.
  • the scanning lines 5 (that is, the respective terminals of the gate ICs 12a) for applying the ON voltage to the lines L1 to Lx of the scanning line 5 in order from the last line Lx of the scanning line 5 toward the line L1 are shifted upward.
  • the turn-on voltage is sequentially applied to the lines Lx to L1 of the scanning line 5 in the same manner.
  • the seed signal is input to the lowermost gate IC 12a in FIG. 53 at the next timing when the on-voltage is applied to the line L1 of the scanning line 5 and the terminal to which the line is connected, and the scanning line
  • the ON voltage is applied to the terminal to which the final line Lx of 5 is connected. Then, by sequentially shifting the terminals to which the ON voltage is applied, the ON voltage can be sequentially applied to each of the lines Lx to L1 of the scanning line 5 without generating the period ⁇ as described above. it can.
  • the scanning line 5 to which the ON voltage is applied as described above may be sequentially shifted from the last line Lx of the scanning line 5 to the upper scanning line 5.
  • the description will be made in the same manner as when the scanning line 5 to which the ON voltage is applied is sequentially shifted from the first line L1 of the scanning line 5 to the lower scanning line 5.
  • the seed signal once input is output from the wiring Lse2 while being shifted for each terminal, or grounded in the gate IC 12a, etc. In some cases, it may not be forcibly removed from the inside.
  • the on-voltage is applied to the terminal to which the scanning line 5 is connected at the timing when the on-voltage is applied to the unconnected terminals h1, h2,.
  • the ON voltage is sequentially applied to each terminal of each gate IC 12a in such a manner that the ON voltage is sequentially applied at the same time interval as the time interval to be performed.
  • the on-voltage is applied to the non-connected terminal h of the gate IC 12a between the frames, and the image data d is not read from any of the radiation detection elements 7.
  • the period ⁇ has become a long time.
  • the time interval at which the on-voltage is applied to the terminal to which the scanning line 5 is connected is connected. Since the on-voltage is sequentially applied at short time intervals, the on-voltage is applied to the non-connected terminal h of the gate IC 12a between frames, and the image data d is received from any radiation detection element 7.
  • the period ⁇ that is not read can be shortened compared to the conventional case shown in FIG.
  • the delay is negligible, so the increase in dark charge accumulated in the radiation detection element is not large, and In addition, the S / N ratio of the image data D as the read main image is hardly deteriorated.
  • the above-described method 2 it is possible to effectively prevent the deterioration of the image data D as the main image to be read and maintain a good S / N ratio of the image data D. .
  • the gate IC 12a when the gate IC 12a is configured so that the active terminal can be shifted without applying the on-voltage to the active terminal, the non-connected terminal h is in an active state. Can be configured to shift only the active state without applying the on-voltage, and to apply the on-voltage when the terminal to which the scanning line 5 is connected becomes active. .
  • the time for which the unconnected terminal h is in an active state (expressed as the time during which the on-voltage is applied in FIG. 55) is active for the terminal to which the scanning line 5 is connected.
  • the time for which the unconnected terminal h is in an active state is active for the terminal to which the scanning line 5 is connected.
  • the time during which the non-connected terminal h is in the active state is shortened as much as possible to change the active terminal.
  • Method 3 In the above-described methods 1 and 2, it is assumed that only one seed signal can be input to the gate driver 15b including the plurality of gate ICs 12a. However, when two or more seed signals can be input at different timings, The period ⁇ can be prevented from being generated as follows.
  • the seed signal is input from the wiring Lse1 and the shift signal is input from the wiring Lsh one after another.
  • the on voltage is sequentially applied to each of the lines L1 to Lx of the scanning line 5.
  • the seed signal is input from the wiring Lse1 to the uppermost gate IC 12a in FIG. 53 at the same timing as the timing of inputting the shift signal for making the non-connected terminal h1 active.
  • the non-connected terminal h1 becomes active, and at the same time, the terminal on the uppermost side of the uppermost gate IC 12a in FIG. 53, to which the first line L1 of the scanning line 5 is connected. Become active.
  • the two terminals of the gate driver 15b (that is, the respective terminals of two different gate ICs 12a constituting the gate driver 15b) are simultaneously active.
  • the on-voltage is supplied from the power supply circuit 15a of the scanning drive means 15 to the gate driver 15b, the on-voltage is applied to the non-connected terminal h1 and at the same time the uppermost gate in FIG.
  • the on-voltage is also applied to the uppermost terminal of the IC 12a, and the on-voltage is applied to the first line L1 of the scanning line 5.
  • each active terminal is shifted and scanning is performed with the unconnected terminal h until the last terminal of the unconnected terminal h becomes active.
  • the two terminals that is, the terminal to which the line 5 is connected are simultaneously activated, and the on-voltage is continuously applied to the unconnected terminal h and the line L with the scanning line 5 at the same time.
  • any line L1 to Lx of the scanning line 5 is inserted between the frames as shown in FIG.
  • FIG. 57 the reading process of the image data d of the next frame is started and the reading process of the image data d of the next frame is started.
  • Data d is read continuously in time.
  • the radiographic imaging apparatus 1 can be configured not to generate a period ⁇ in which the on-voltage is not applied to any of the lines L1 to Lx of the scanning line 5 and the image data d is not read out, and the radiation irradiation start is performed as described above. It is possible to accurately prevent the occurrence of problems such as delayed detection and accurately detect radiation irradiation by the radiographic imaging apparatus 1 itself.
  • the on-voltage when the on-voltage is applied to the terminal to which the scanning line 5 is connected and the on-voltage is applied to the scanning line 5, at the same time, the on-voltage is also applied to the unconnected terminal h.
  • the on-voltage When applied, useless power is consumed, or the application state of the on-voltage applied to the scanning line 5 may be adversely affected.
  • the power supply circuit 15a that supplies the ON voltage to each gate IC 12a to which the scanning line 5 is connected to each terminal is disconnected. And a second power supply circuit 15a * for supplying an ON voltage to the gate IC 12a having the terminal h.
  • an on-voltage is applied from the second power supply circuit 15a * to the gate IC 12a. It is possible to configure so that the ON voltage is not supplied from the second power supply circuit 15a * to the gate IC 12a at a timing when the non-connected terminal h is activated.
  • the detection unit P is divided into a plurality of regions.
  • each signal line 6 is divided in the middle of the extending direction on the detection unit P, and the detection unit P is divided into two regions Pa and Pb. ing.
  • each scanning line 5 is divided in the middle of the extending direction on the detection unit P, and the detection unit P is divided into two regions Pc and Pd. It is divided. Although illustration is omitted, for example, on the detection unit P, each scanning line 5 and each signal line are both divided in the extending direction so that the detection unit P is divided into, for example, four regions. It is also possible to configure.
  • each scanning line 5 of each region Pa, Pb of the detection unit P is connected to a separate gate driver 15ba, 15bb, respectively, as shown in FIG.
  • the signal lines 6 of the areas Pa and Pb of the detection unit P are also connected to separate readout ICs 16a and 16b, respectively.
  • each of the gate drivers 15ba and 15bb includes a plurality of gate ICs 12a arranged in parallel. As shown in FIG. 61, the terminal drivers ha and hb are provided at the end portions, respectively. Shall.
  • each scanning line 5 and each signal line 6 or both are divided on the detection unit P in the middle of each extending direction. Is divided into a plurality of regions, and a gate driver 15b is provided for each region, and each gate driver 15b has a non-connected terminal h, at least image data before radiographic imaging
  • the d reading process is configured to apply an ON voltage to each line L of the scanning line 5 as follows.
  • the turn-on voltage is sequentially applied from the gate drivers 15ba and 15bb to the scanning lines 5, the turn-on voltage is applied to the unconnected terminal h in one gate driver 15b (for example, the gate driver 15ba).
  • the gate driver 15b for example, the gate driver 15bb
  • an ON voltage is applied to a terminal to which the scanning line 5 is connected, and an ON voltage is applied to any one of the scanning lines 5 at each timing.
  • the ON voltage is sequentially applied from the gate drivers 15ba and 15bb to the lines L of the scanning line 5.
  • the reading of the image data d is performed by shifting the scanning line 5 to which the ON voltage is applied from the boundary B side of the regions Pa and Pb toward the reading ICs 16a and 16b.
  • the timing of starting the shift of the scanning line 5 to which the ON voltage is applied that is, the shift of the terminal to be activated from the boundary B portion is shifted between the region Pa and the region Pb.
  • the reading process in the area Pa is started first and the reading process in the area Pb is started later, at the timing when the non-connected terminal h is in the active state in the area Pa, At the timing when the terminal to which the scanning line 5 is connected is activated, and the non-connected terminal h is activated in the area Pb with a delay, the next frame is already read out in the area Pa.
  • the terminal to which the scanning line 5 is shifted and connected is in an active state.
  • Image data d is read out by shifting the scanning line 5 to which the ON voltage is applied toward the h side. That is, both the regions Pa and Pb are configured to shift the active terminals from the upper side to the lower side in the drawing.
  • the unconnected terminal h is active in one gate driver 15b. Even if the on-voltage is not applied to any scanning line 5 connected to the gate driver 15b, the scanning line 5 is always connected to the other gate driver 15b. One of the terminals is in an active state, and the on-voltage is applied to the scanning line 5.
  • Method 5 In the methods 1 to 4, the image data d is read using only the terminal to which the scanning line 5 is connected (method 1), or the period ⁇ in which the non-connected terminal h is active is set. Shortening (method 2), or, at the same time that the non-connected terminal h is in an active state, the terminal to which the scanning line 5 is connected is activated at the same time and the on-voltage is applied (method 3, 4) The case has been described in which the configuration is made such that the period ⁇ during which the image data d is not read out is not generated or the period ⁇ is shortened as much as possible.
  • the reason for configuring in this way is that, as described above, the image data d read out in the readout process before radiographic image capturing is the image data before that when the radiation image capturing apparatus 1 starts irradiation. This is because the start of radiation irradiation to the radiographic imaging apparatus 1 is accurately detected based on the read image data d by utilizing the fact that the value is much larger than d.
  • any of the lines L1 to Lx of the scanning line 5 is activated. Also during the period ⁇ during which no on-voltage is applied and the image data d is not read, the leak data Dleak is read instead of the image data d, and the radiographic imaging device is based on the read leak data Dleak. 1 can be configured to detect the start of radiation irradiation.
  • Method 5 a configuration for detecting the start of radiation irradiation on the radiation image capturing apparatus 1 based on the image data d and the leak data Dleak will be described.
  • each readout circuit 17 is operated as shown in FIG. That is, as in the case of the image data d reading process, the charge reset switch 18c (see FIG. 8) of the amplifier circuit 18 of the reading circuit 17 is turned off and the charge is stored in the capacitor 18b. 22, the pulse signals Sp1 and Sp2 are transmitted to the correlated double sampling circuit 19 to perform sampling, but the on / off operation of each TFT 8 is not performed during that time.
  • each readout circuit 17 When each readout circuit 17 is operated in this way, as shown in FIG. 34 described above, each charge q leaked from each radiation detection element 7 through each TFT 8 which is turned off becomes a capacitor of the amplification circuit 18. 18b. Therefore, a voltage value corresponding to the accumulated charge, that is, the total value of the charge q leaked from each radiation detection element 7 is output from the amplifier circuit 18, and the correlation double sampling circuit 19, not shown in FIG. The leaked data Dleak is read after being sampled.
  • the charge q leaked from each radiation detection element 7i via each TFT 8 is small, and the total value thereof is also a small value.
  • the leak data Dleak is also a small value, when radiation irradiation to the radiation image capturing apparatus 1 is started, the charge q leaked from each radiation detection element 7 via each TFT 8 increases, and the total value thereof is growing. For this reason, the value of the leaked data Dleak to be read increases as in the case of the above-described increase in value in the case of the image data d.
  • the leak data Dleak is periodically read during the period ⁇ , and the read leak data Dleak greatly increases, for example, exceeds a preset threshold value. In this case, it is possible to determine that the radiation imaging apparatus 1 has started irradiation of radiation at that time and detect the start of radiation irradiation.
  • the value of the image data d is monitored as described above when the reading process of the image data d is performed before radiographic imaging, and the unconnected terminal h During the period ⁇ in which the active state is active (that is, the period ⁇ during which the off voltage is applied to all the lines L1 to Lx of the scanning line 5), the leakage data Dleak shown in FIG. 33 is read out. It is possible to monitor the value of the leaked data Dleak, and to detect the start of radiation irradiation on the radiographic imaging apparatus 1 when either the image data d or the leaked data Dleak rises significantly.
  • leak data Dleak corresponding to the total value of charges q leaked from the other radiation detection elements 7 shown in FIG.
  • the value of the leak data Dleak to be read is usually smaller than the value of the image data d.
  • the threshold value used for determining whether or not the radiation image capturing apparatus 1 has been irradiated with radiation the threshold value dth (see FIG. 11) for the image data d and the threshold value for the leak data Dleak are set to different values. It is preferable. It is also possible to use the same threshold value as the threshold value for both, and the threshold value for the image data d and leak data Dleak is set to an appropriate value.
  • Method 6 In the method 5 described above, in the reading process of the image data d before radiographic imaging, the leakage data Dleak is read only during the period ⁇ in which the unconnected terminal h is active and the image data d is not read. A case has been described in which image data d is read during other periods (see FIG. 62 and the like).
  • the scanning drive means 15 applies an off voltage to all the lines L1 to Lx of the scanning line 5 to turn off the TFTs 8 and turn on the respective readout circuits 17 shown in FIG. As shown in FIG. 64, the control is repeated, that is, the on / off control of the charge reset switch 18c of the amplifier circuit 18 of the readout circuit 17 and the transmission of the pulse signals Sp1 and Sp2 to the correlated double sampling circuit 19 are repeated. It is also possible to configure the leak data Dleak to be read continuously.
  • each scan line 5 to which the ON voltage is applied is sequentially shifted between the leak data Dleak read process and the next leak data Dleak read process. It is preferable that the radiation detection element 7 is reset.
  • the image data d can be read out between the leak data Dleak.
  • the reading process of the leak data Dleak is performed during the reading process of the leak data Dleak will be described, but a case where the reading process of the image data d is performed during the reading process of the leak data Dleak will be described. Is explained in the same way.
  • the reset process of each radiation detection element 7 is performed as described above.
  • the terminals of the gate driver 15b to which the ON voltage is sequentially applied are sequentially shifted.
  • each line L1 to Lx of the scanning line 5 from the gate driver 15b through the terminal is sequentially applied to the discharge lines to release charges remaining in the radiation detection elements 7 connected to the scanning lines 5 to perform reset processing.
  • the on-voltage is sequentially applied from the gate driver 15b to the unconnected terminal h. Since no on-voltage is applied to the scanning line 5, the reset processing of each radiation detection element 7 is not performed during this period.
  • FIG. 67 the case where the on-voltage is actually applied to the non-connected terminals h1, h2,... Of the gate IC 12a is shown, but it is not always necessary to apply the on-voltage to the non-connected terminal h. Therefore, as described above, it is possible to configure these non-connected terminals h so as not to apply the on-voltage and only to shift the active state.
  • the charge q leaked from each radiation detection element 7i via each TFT 8 is small before the radiation image capturing apparatus 1 is irradiated with radiation, as in the case described in the method 5 described above.
  • the leak data Dleak read in each reading process of the leak data Dleak is also a small value.
  • the charge q leaked from each radiation detection element 7 via each TFT 8 increases, and the total value thereof increases. As in the case of, the value of leaked data Dleak to be read increases.
  • a threshold value is provided for the leak data Dleak, and when the read leak data Dleak greatly increases and exceeds the threshold value, it is determined that radiation irradiation to the radiographic imaging apparatus 1 has started, It is possible to configure to detect the start of radiation irradiation.
  • the leak data Dleak read out in each read process of the leak data Dleak is read out after the on-voltage is applied to the scanning line 5 and the reset process of each radiation detection element 7 is performed. From the leak data Dleak read in (refer to the data indicated by ⁇ in the figure), the non-connected terminal h is in an active state, and the reset processing of each radiation detection element 7 is not performed. It was found that the leak data Dleak (refer to the data indicated by ⁇ in the figure) read by the state reading process has a smaller value.
  • FIG. 68B shows the temporal transition of the leak data Dleak read in each read process of the leak data Dleak in that case.
  • the value of the leak data Dleak to be read out is the leak data Dleak of the portion indicated by ⁇ in FIG. 68A, that is, the read process performed after the reset process of each radiation detection element 7
  • the value is smaller than the value of the leak data Dleak read in step (b).
  • each radiation detection element 7 is more than the leak data Dleak (refer to the data indicated by ⁇ in FIG. 68A) read out in the readout process performed after the reset process of each radiation detection element 7.
  • the reason why the leak data Dleak (see the part indicated by ⁇ in FIG. 68A and FIG. 68B) read in the read process in the state where the reset process is not performed is smaller is considered as follows. It has been.
  • the leak data Dleak (refer to the data indicated by ⁇ in FIG. 68A) read out in the read-out process performed after the reset process of each radiation detection element 7 is more effective for each radiation detection element 7. It is considered that the phenomenon that the value becomes larger than the leak data Dleak (refer to the data indicated by ⁇ in FIG. 68A) read by the read process in a state where the reset process is not performed appears.
  • FIGS. 68A and 68B before the start of the leak data Dleak reading process, that is, before the counting of the elapsed time t in each figure is started (that is, the elapsed time t on the horizontal axis is before 0), The case where the reset process of the detection element 7 is repeatedly performed is shown.
  • the value of the leak data Dleak read when the elapsed time t is close to 0 is large, it can be estimated that the value of the leak data Dleak is large by the above mechanism. .
  • This phenomenon occurs not only when the reset processing of each radiation detection element 7 is performed before the reading process of the leak data Dleak but also when the reading process of the image data d is performed (see FIG. 66). It has been confirmed.
  • the leakage data Dleak readout process and the reset process of each radiation detection element 7 are alternately repeated before radiographic imaging (see FIG. 67).
  • the reset processing is performed by sequentially shifting the terminals (including the unconnected terminal h) of the gate driver 15b sequentially applied or sequentially activated, the leak data Dleak As described above, the value of the leak data Dleak read in each of the reading processes changes.
  • the threshold value for detecting the start of radiation irradiation is applied to the terminal to which the scanning line 5 is connected from the gate driver 15b, and the on-voltage is sequentially applied to the lines L1 to Lx of the scanning line 5.
  • control means 22 scans from the gate driver 15b at the timing of sequentially applying the ON voltage to the non-connected terminals h of the gate driver 15b (or the timing at which the non-connected terminals h are sequentially activated).
  • the threshold values are switched and used properly according to the timing at which the radiation detection elements 7 are reset by sequentially applying ON voltages to the lines L1 to Lx of the line 5.
  • this method 6 is configured such that the readout process of the leak data Dleak and the reset process of each radiation detection element 7 (or the readout process of the image data d; the same applies hereinafter) are alternately performed before radiographic image capturing.
  • the leak data Dleak can be applied without applying the on-voltage to the non-connected terminal h of the gate driver 15b or making it active as shown in FIG.
  • the reset process of each radiation detection element 7 performed during the readout process it is possible to perform the reset process by sequentially applying the ON voltage only to the terminal to which the scanning line 5 of the gate driver 15b is connected. It is.
  • the method 3 and the method 4 described above are applied to the method 6, and the terminal to which the scanning line 5 is simultaneously connected is activated at the timing when the unconnected terminal h is in the active state. It is also possible to apply an on-voltage, and even with such a configuration, it is only necessary to set one of the above threshold values. It becomes unnecessary.
  • the readout operation is repeatedly performed by the readout circuit 17 so that the leakage data Dleak is repeatedly read, and the read leakage data Dleak is monitored. If it continues, it will become possible to detect that irradiation of the radiation was complete
  • each line L5 of the scanning line 5 is detected when the leak data Dleak becomes a value equal to or smaller than the threshold value and it is detected that the irradiation of radiation is completed (see “A” in the figure). If the sequential application of the on-voltages to Lx and L1 to L4 is resumed and the reading process of the image data D as the main image is started, the radiation irradiation ends as shown in FIG. As described above, it is possible to start the reading process of the image data D immediately after detecting the image data, and to quickly perform the process after the reading process of the image data D. .
  • FIG. 70 shows a case where method 1 is applied to method 6.
  • the radiographic image capturing apparatus 1 As described above, according to the radiographic image capturing apparatus 1 according to the present embodiment, it is possible to achieve the same effects as those of the above-described embodiments and an interface with the radiation generation apparatus cannot be obtained.
  • the image data d is read out, and based on the read image data d or when the above method 5 is used. Based on the image data d and leak data Dleak, the radiation image capturing apparatus 1 itself can accurately detect that the radiation image capturing apparatus 1 has been irradiated with radiation.
  • the non-connected terminal h is in an active state.
  • the period ⁇ in which the image data d is not read out is not generated (the above methods 1, 3, 4), the period ⁇ is very short (the above method 2), or the leak data Dleak is generated during the period ⁇ .
  • the period ⁇ becomes longer and the detection of the start of radiation irradiation is delayed, and the dark charge accumulated in the radiation detection element 7 is correspondingly increased. It becomes possible to accurately prevent the amount from increasing and the S / N ratio of the image data D as the read main image from deteriorating.
  • the gate driver 15b of the scanning drive unit 15 is configured by arranging a plurality of gate ICs 12a as shown in FIG. 53 is described.
  • the gate driver 15b and the gate IC 12a are other types. Even in the case of the configuration described above, the above problem may occur as long as there is a non-connected terminal h to which the scanning line 5 is not connected. Therefore, the present invention can be applied even when the gate driver 15b and the gate IC 12a have other configurations.
  • the radiographic image capturing apparatus 1 is a so-called dedicated type radiographic image capturing apparatus formed integrally with a support stand or the like (not shown), as described above, without taking an interface with the radiation generating apparatus.
  • the present invention can also be applied to a case where the radiation image capturing apparatus is configured to uniquely detect radiation irradiation.
  • the detection unit P of the radiographic imaging apparatus 1 (FIG. 3).
  • the number of leak data Dleak read out in one read process of the leak data Dleak is several thousand. From tens to tens of thousands.
  • the process becomes heavy. Therefore, for example, it is possible to extract the maximum value from the leak data Dleak read for each reading process, and to determine whether or not the maximum value of the leak data Dleak exceeds a threshold value. is there.
  • each read circuit 17 (see FIG. 7 and the like) is usually different for each read circuit 17, and the total value of charges q leaked from each radiation detection element 7 to the signal line 6 (see FIG. 34). ) Is the same for each signal line 6, there is a read circuit 17 that always reads leak data Dleak having a larger value than the other read circuits 17, and leak data that is always smaller than the other read circuits 17. There is also a read circuit 17 for reading Dleak.
  • the radiation image photographing apparatus 1 is irradiated with radiation with the irradiation field F being narrowed down, and leak data Dleak always having a larger value than the other readout circuits 17.
  • the signal line 6a connected to the readout circuit 17 for reading out exists outside the irradiation field F.
  • leak data Dleak read by the read circuit 17 connected to the signal line 6 existing in the irradiation field F (refer to the data indicated by ⁇ in the figure). Even if the laser beam rises due to the irradiation of radiation, it exceeds the leak data Dleak read from the readout circuit 17 connected to the signal line 6a existing outside the irradiation field F (refer to the data indicated by ⁇ in the figure). There may be no case.
  • the extracted leak data Dleak Is the leak data Dleak indicated by ⁇ in the figure, the maximum value of the extracted leak data Dleak does not fluctuate even with irradiation of radiation, and eventually does not exceed the threshold value, so that irradiation of radiation is detected. I can't do that.
  • a moving average for each read circuit 17 of the leak data Dleak read for each read process is calculated. That is, every time the leak data Dleak is read, the average value (movement) of the leak data Dleak for each read circuit 17 read in each past read process for a predetermined number of times including the read process immediately before the read process. Average) Dleak_ave is calculated.
  • a difference ⁇ Dleak between the leak data Dleak read in the current reading process and the calculated moving average average value Dleak_ave is calculated, and the reading circuit 17 in which the difference ⁇ Dleak exceeds a preset threshold for the difference ⁇ Dleak. If there exists, it can be comprised so that it may detect that the radiation imaging device 1 was irradiated with the radiation at the time.
  • the radiographic imaging apparatus 128 or 256 readout circuits 17 are formed in the readout IC 16, and a plurality of readout ICs 16 are provided.
  • the total value of the leak data Dleak read by each read circuit 17 is calculated for each read IC 16.
  • the average value of the leak data Dleak may be calculated for each read IC 16.
  • the moving average of the total value of each leak data Dleak is calculated for each read IC 16, the total value for each read IC 16 of the leak data Dleak read in the current read process, and the calculated total value If there is a read IC 16 whose difference exceeds a preset threshold for the difference, it is detected that the radiation imaging apparatus 1 has been irradiated with radiation at that time. Can be configured to.
  • the maximum value is extracted from the above differences for each reading IC 16 calculated for each reading process of the leak data Dleak, and it is determined whether or not the maximum value exceeds the threshold value. It is also possible to configure. In this case, since the above difference is the same value for each reading IC 16, the problem as shown in FIG. 72 does not occur.
  • the total value (or average value) of the leak data Dleak increases without being affected by the read efficiency of each read circuit 17 and the above difference (or the difference) It is possible to accurately detect whether or not the maximum value) exceeds the threshold value, and to accurately detect the start of radiation irradiation on the radiation image capturing apparatus 1, and to calculate the moving average for each readout circuit 17.
  • the processing is lightened because the calculation processing is reduced for each readout IC 16.
  • the leak data Dleak read-out process and the radiation detection elements 7 before the radiographic imaging are taken as in the method 6 shown in FIG.
  • the non-connected terminal h is in an active state and the reset process of each radiation detection element 7 is not performed
  • the value of the leak data Dleak read by the read process becomes small (refer to the data indicated by ⁇ in the figure). Therefore, the moving average value calculated during that time becomes small.
  • the read leak data Dleak (or the total value or average value for each read IC 16 of the read leak data Dleak) and the moving average (or total value or average value) of the leak data Dleak until the previous read processing.
  • the difference (or the maximum value, the same shall apply hereinafter) with the moving average of.
  • method 1 is applied to the above method so that an on-voltage is not applied to an unconnected terminal h of the gate driver 15b or an active state is not set.
  • Method 3 or Method 4 is applied so that the terminal to which the scanning line 5 is connected is activated at the same time when the unconnected terminal h is in the active state, and the on-voltage is applied. It is also possible to configure.
  • two or more thresholds for the above difference are set in advance, and the moving average is in a state where the unconnected terminal h is active.
  • the on-voltage is applied to each of the lines L1 to Lx of the scanning line 5 or is calculated based on the leak data Dleak read in the reading process when the reset process of each radiation detection element 7 is not performed.
  • the threshold value is switched and used in accordance with whether it is calculated based on the leak data Dleak read out in the read-out process performed after the reset process of each radiation detection element 7 that has been applied. It is possible.
  • said difference may exceed a threshold value when radiation is irradiated to the radiographic imaging apparatus 1 by switching a threshold value, and the difference exceeded the threshold value. Accordingly, it is possible to accurately detect radiation irradiation to the radiographic image capturing apparatus 1.
  • It may be used in the field of radiographic imaging (especially in the medical field).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 装置自体で放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能な放射線画像撮影装置を提供する。 放射線画像撮影装置1は、放射線検出素子7から画像データd、Dを読み出す読み出し処理の際に各走査線5にオン電圧を順次印加する走査駆動手段15を備え、制御手段22は、放射線画像撮影前から、走査駆動手段15から各走査線5にオン電圧を順次印加して放射線検出素子7からの画像データdの読み出し処理を行い、読み出した画像データdが閾値dthを越えた時点で放射線の照射が開始されたことを検出するとともに、放射線画像撮影前の画像データdの読み出し処理の際に走査駆動手段15から走査線5にオン電圧を印加してから印加する電圧をオフ電圧に切り替えるまでのオン時間等を、放射線照射終了後の画像データDの読み出し処理の際のオン時間等よりも長くなるように制御する。

Description

放射線画像撮影装置
 本発明は、放射線画像撮影装置に係り、特に、装置自体で放射線の照射開始等を検出可能な放射線画像撮影装置に関する。
 照射されたX線等の放射線の線量に応じて検出素子で電荷を発生させて電気信号に変換するいわゆる直接型の放射線画像撮影装置や、照射された放射線をシンチレータ等で可視光等の他の波長の電磁波に変換した後、変換され照射された電磁波のエネルギーに応じてフォトダイオード等の光電変換素子で電荷を発生させて電気信号に変換するいわゆる間接型の放射線画像撮影装置が種々開発されている。なお、本発明では、直接型の放射線画像撮影装置における検出素子や、間接型の放射線画像撮影装置における光電変換素子を、あわせて放射線検出素子という。
 このタイプの放射線画像撮影装置はFPD(Flat Panel Detector)として知られており、従来は支持台(或いはブッキー装置)と一体的に形成されていたが(例えば特許文献1参照)、近年、放射線検出素子等をハウジングに収納した可搬型の放射線画像撮影装置が開発され、実用化されている(例えば特許文献2、3参照)。
 このような放射線画像撮影装置では、例えば後述する図3や図7に示すように、通常、放射線検出素子7が検出部P上に二次元状(マトリクス状)に配列され、各放射線検出素子7にそれぞれ薄膜トランジスタ(Thin Film Transistor。以下、TFTという。)8で形成されたスイッチ手段が設けられている。そして、放射線画像撮影前、すなわち放射線画像撮影装置に放射線発生装置から放射線が照射される前に、TFT8のオン/オフを適宜制御しながら、各放射線検出素子7内に残存する余分な電荷を放出されるリセット処理が行われるように構成される場合が多い。
 そして、各放射線検出素子7のリセット処理が終了した後、走査駆動手段15のゲートドライバ15bから各走査線6を介してTFT8にオフ電圧を印加して全TFT8をオフ状態とした状態で放射線発生装置から放射線画像撮影装置に放射線を照射すると、放射線の線量に応じた電荷が各放射線検出素子7内で発生して、各放射線検出素子7内に蓄積される。
 そして、放射線画像撮影後、図73に示すように、走査駆動手段15のゲートドライバ15bから信号読み出し用のオン電圧を印加する走査線5の各ラインL1~Lxを順次切り替えながら、各放射線検出素子7から、その内部に蓄積された電荷を読み出して、読み出し回路17で電荷電圧変換する等して画像データとして読み出すように構成される場合が多い。
 しかし、このように構成する場合、放射線画像撮影装置と、放射線画像撮影装置に放射線を照射する放射線発生装置との間のインターフェースを的確に構築し、放射線が照射される段階で、放射線画像撮影装置側が各放射線検出素子7内に電荷を蓄積できる状態になっていることが必要となるが、装置間のインターフェースの構築は必ずしも容易ではない。そして、放射線画像撮影装置側が各放射線検出素子7のリセット処理を行っている最中に放射線が照射されてしまうと、放射線の照射により発生した電荷が各放射線検出素子7から流出してしまい、照射された放射線の電荷すなわち画像データへの変換効率が低下してしまう等の問題があった。
 そこで、近年、放射線画像撮影装置自体で放射線が照射されたことを検出する技術が種々開発されている。そして、それらの技術の一環として、例えば特許文献4や特許文献5に記載された技術を利用して、放射線画像撮影装置自体で放射線の照射を検出することが考えられている。
 特許文献4、5では、放射線画像撮影装置に放射線が照射されている最中に、走査駆動手段15のゲートドライバ15bからオン電圧を印加する走査線5の各ラインL1~Lxを順次切り替えながら、放射線検出素子7からの画像データの読み出し処理を繰り返して行う放射線画像撮影装置や画像データの読み出し方法が記載されている。
 この場合、図74に示すように、走査線5の各ラインL1~Lxにオン電圧を順次印加して、検出部P上に配列された全ての放射線検出素子7のうち画像データを読み出す対象の各放射線検出素子7から各画像データを読み出す期間を1フレームとするとき、放射線の照射により放射線検出素子7内で発生した電荷は各フレームの読み出し処理で分割して読み出される。
 そのため、放射線の照射が開始されたフレームから放射線の照射が終了したフレームの次のフレームまでの各フレームごとに読み出された画像データを各放射線検出素子7ごとに加算して、各放射線検出素子7ごとの画像データが再構築される。
 しかし、本発明者らの研究では、特許文献4、5に記載の発明のように、放射線の照射を検出した後も各フレームごとの画像データの読み出し処理を続行するように構成した場合、以下のような問題が生じ得ることが分かっている。
 すなわち、この場合、図75に示すように、ゲートドライバ15bから、図中の一番上側の走査線5から順に各走査線5へのオン電圧を順次印加しながら、各フレームごとの画像データの読み出し処理を行う場合、いま、例えば、図76に斜線を付して示す部分ΔTの走査線5にオン電圧が順次印加される間に放射線が照射されて照射が終了したとする。なお、図76は、斜線を付して示す部分ΔTにのみ放射線が照射されたことを表すものではなく、放射線は検出部Pの全域にわたって照射される。
 そして、その後も画像データの読み出し処理を続行して画像データの読み出し処理を行った後、上記のように、このフレームを含む2回分或いは3回分の各フレームごとの画像データを加算して各放射線検出素子7ごとの画像データを再構築すると、図77A、図77Bに示すように、再構築された画像データに基づいて生成した放射線画像p中に濃淡が現れる。
 すなわち、例えば、放射線画像撮影装置の検出部Pの全域に同じ線量の放射線を一様に照射した場合に再構築した各画像データdに基づいて生成された放射線画像pにおいて、信号線6の延在方向(図77A中では縦方向の矢印方向)に沿って、再構築された各画像データdを見た場合、図77Bに示すように、放射線が照射される間にオン電圧が順次印加された走査線5(すなわち図76の斜線部分ΔT)に対応する画像領域δTの画像データdが、その上側の画像領域Aや下側の画像領域Bの画像データdに比べて大きな値になる。
 そのため、放射線画像p中の画像領域δTの部分が、画像領域Aや画像領域Bに比べてやや黒くなる(すなわち暗くなる)。このように、放射線画像撮影装置に対して放射線を一様に照射したにもかかわらず、放射線画像p中に濃淡が現れるという問題が生じることが分かっている。
 これは、放射線画像撮影装置の検出部Pの全域に同じ線量の放射線を一様に照射した場合だけでなく、実際に被写体を介して放射線画像撮影装置に放射線を照射して放射線画像を行った場合でも、同様に生成された放射線画像に濃淡が現れる。
 画像領域δTの画像データdが画像領域A、Bの画像データdよりも大きくなる理由は、以下のように考えられている。
 すなわち、図78に示すように、走査線5のあるラインLiにオン電圧が印加されて放射線検出素子7iから画像データdiが読み出される場合、同時に、オフ電圧が印加された走査線5の他のラインLに接続されている放射線検出素子7からもTFT8を介して僅かずつ電荷qがリークする。そのため、当該放射線検出素子7iの画像データとして読み出される画像データdiは、実際には、当該放射線検出素子7iから読み出された電荷Qと他の放射線検出素子7からTFT8を介してリークした電荷qとの合計値に相当する画像データである。
 また、放射線画像撮影装置1に放射線が照射されている最中に読み出し処理が行われる場合、放射線画像撮影装置1に照射された放射線が各TFT8にも放射線が照射され、或いは照射された放射線がシンチレータで電磁波に変換され、この電磁波が各TFT8に照射されることにより、各TFT8を介して放射線検出素子7からリークする電荷qの量が増加する。
 そのため、この場合は、図78に示した放射線検出素子7iの画像データとして読み出される画像データdiが、同じ信号線6に接続されている他の放射線検出素子7からリークした各電荷qの量が増加する分だけ大きくなる。そのため、画像領域δTの画像データdが画像領域A、Bの画像データdよりも大きくなると考えられている。
 しかし、上記のように、生成された放射線画像に濃淡が現れると、放射線画像が見づらいものになる。そして、例えば、放射線画像を医療における診断用等に用いるような場合には、放射線画像上で病変部と濃淡とが重なると、病変部を見落としたり、見誤ったりする可能性が生じる。また、図77Bに示したように、画像領域A、Bの画像データdよりも大きくなった画像データδTの画像データdを修正することは必ずしも容易ではない。
 そこで、特許文献4、5に記載された発明を応用して、放射線画像撮影装置に対する放射線の照射が開始される前から画像データの読み出し処理を行うように構成し、特許文献4、5に記載の発明のように放射線画像撮影装置に放射線が照射されている最中も画像データdの読み出し処理を続行するのではなく、放射線の照射が開始された時点で、画像データdの読み出し処理を停止するように構成することが考えられる。
 このように構成すると、放射線画像撮影装置に放射線の照射が開始された時点で走査駆動手段15のゲートドライバ15bからオン電圧が印加された走査線5に接続されている各放射線検出素子7からは、それ以前にオン電圧が印加された走査線5に接続されている各放射線検出素子7から読み出される画像データdよりも著しく大きな値の画像データdが読み出される。
 そこで、この現象を利用して、例えば特許文献6に記載されているように、放射線が照射されたことを放射線画像撮影装置自体で検出することが可能となる。特許文献6に記載の撮像装置では、放射線画像撮影装置に対する放射線の照射が開始される前から画像データの読み出し処理を行うように構成し、読み出された画像データが急増して閾値を越えた時点で、放射線が照射されたことを検出するようになっている。
 また、例えば特許文献7では、放射線検出素子であるCCD(Charge Coupled Device)素子のうち、複数の行のCCD素子から同時に画像データを読み出して、放射線が照射されたことを検出する際の検出効率を高めることが提案されている。
 そして、読み出された画像データが急増して閾値を越えて放射線が照射されたことを検出した時点で、走査駆動手段15のゲートドライバ15bからの各走査線5へのオン電圧の印加を停止して、放射線の照射中は画像データの読み出し処理を行わないように構成することができる。
特開平9-73144号公報 特開2006-058124号公報 特開平6-342099号公報 特開平9-140691号公報 特開平7-72252号公報 特表平07-506993号公報 特開平9-107503号公報
 ところで、このように構成した場合、ある走査線5にオン電圧を印加した時点で読み出される画像データが大きくなって放射線の照射が検出されるということは、その時点でオン電圧が印加されていた当該走査線5に接続されている各放射線検出素子7からは、放射線の照射により発生した電荷の一部が流出してしまっていることを意味する。
 そこで、例えば、放射線の照射終了後の読み出し処理で読み出された各放射線検出素子7の画像データのうち、上記の走査線5に接続されている各放射線検出素子7から読み出された画像データは信頼がおけないものとして無効とし、破棄するように構成される場合がある。
 この場合、図79に示すように、例えば走査線5のラインLn上の画像データが破棄されると、いわゆる線欠陥が生じる。そのため、例えば、走査線5の当該ラインLnに隣接する走査線5のラインLn-1、Ln+1に接続されている各放射線検出素子7から読み出された各画像データに基づいて線形補間等の手法を用いて、破棄した画像データを補間するように構成される。
 例えば、上記のように、放射線画像を医療における診断用等に用いるような場合、放射線画像上に撮影される病変部は、通常、走査線1本分の線欠陥に収まるほど小さくはなく、或いは細くはない。そのため、上記のように、放射線の照射を検出した時点でオン電圧が印加されていた当該走査線5に接続されている各放射線検出素子7の画像データを破棄して線欠陥として、その周囲の画像データで補間するように構成しても、実際の運用上、問題は生じない。
 しかしながら、上記のように特許文献7に記載されている技術を応用して、複数の隣接する走査線5に同時にオン電圧を印加して放射線照射の検出効率を高めるように構成すると、例えば図80に示すように、線欠陥が走査線5の隣接する複数のラインL(図80の場合はラインLnとラインLn+1)に連続して現れるようになる。
 そして、これらの連続する線欠陥に対して、例えば図80の例ではそれらに隣接する走査線5のラインLn-1、Ln+2の画像データで補間すると、破棄された各画像データ中に病変部が撮影されていたとしても、それらが破棄され、周囲の画像データで補間されることにより、病変部の情報が失われてしまう虞れがある。
 病変部が非常に小さい初期の病変であるような場合は、特にこの問題が生じ易い。また、連続して線欠陥となる走査線5の数が多いほど、すなわち同時にオン電圧を印加する隣接する走査線5の本数が多いほど、病変部の情報が画像データ中からより多く失われてしまう。
 従って、特許文献6に記載された発明を応用して、読み出された画像データの値が急増して閾値を越えた時点で放射線が照射されたことを検出するように構成する場合、少なくとも放射線画像を医療における診断用等に用いるような場合には、上記のように、複数の走査線5に同時にオン電圧を印加して放射線照射の検出効率を高めるように構成することは適切な方法とは言い難い。
 そして、放射線照射の検出効率を高めるためには、上記の特許文献7に記載された手法とは別の手法が開発される必要がある。
 本発明は、上記の問題点を鑑みてなされたものであり、装置自体で放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能な放射線画像撮影装置を提供することを目的とする。また、各走査線にオン電圧を順次印加して画像データの読み出し処理を行いながら放射線の照射を検出する際に、線欠陥が隣接する複数の走査線に連続して現れることを防止し、或いは線欠陥が生じる走査線の本数を低減することが可能な放射線画像撮影装置を提供することを目的とする。
 前記の問題を解決するために、本発明の放射線画像撮影装置は、
 互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子とを備える検出部と、
 前記放射線検出素子から画像データを読み出す読み出し処理の際に、前記各走査線にオン電圧を順次印加する走査駆動手段と、
 前記各走査線に接続され、前記走査線を介してオン電圧が印加されると前記放射線検出素子に蓄積された電荷を前記信号線に放出させ、前記走査線を介してオフ電圧が印加されると前記放射線検出素子内に電荷を蓄積させるスイッチ手段と、
 前記画像データの読み出し処理の際には、前記放射線検出素子から前記信号線に放出された前記電荷を前記画像データに変換して読み出す読み出し回路と、
 少なくとも前記走査駆動手段および前記読み出し回路を制御して前記放射線検出素子からの前記データの読み出し処理を行わせる制御手段と、
を備え、
 前記制御手段は、
 放射線画像撮影前に、前記走査駆動手段から前記各走査線にオン電圧を順次印加して前記放射線検出素子からの前記画像データの読み出し処理を行い、読み出した前記画像データが閾値を越えた時点で放射線の照射が開始されたことを検出し、
 放射線の照射が開始されたことを検出すると、前記走査駆動手段から全ての前記走査線にオフ電圧を印加し、前記各スイッチ手段をオフ状態として電荷蓄積モードに移行し、
 放射線の照射が終了した後、前記走査駆動手段から前記各走査線にオン電圧を順次印加させ、前記読み出し回路に順次読み出し動作を行わせて、前記各放射線検出素子からの前記画像データの読み出し処理を行わせるとともに、
 放射線画像撮影前の前記画像データの読み出し処理の際に、前記走査駆動手段から前記走査線にオン電圧を印加してから印加する電圧をオフ電圧に切り替えるまでの時間、または、前記走査駆動手段からある前記走査線にオン電圧を印加してから次の前記走査線にオン電圧を印加するまでの周期を、前記放射線照射終了後の画像データの読み出し処理の際の前記時間または前記周期よりも長くなるように制御することを特徴とする。
 本発明のような方式の放射線画像撮影装置によれば、放射線画像撮影前から各走査線にオン電圧を順次印加して画像データの読み出し処理を行い、読み出した画像データの値に基づいて放射線画像撮影装置に対して放射線の照射が開始されたことを検出する。そのため、放射線画像撮影装置自体で放射線の照射開始を検出することが可能となる。
 そして、その際に、放射線画像撮影前の画像データの読み出し処理の際のオン時間を、放射線画像撮影後の本画像としての画像データの読み出し処理の際のオン時間よりも長くするように制御する等の構成を採用することによって、放射線の照射が開始されたことを検出する際の検出効率を的確に向上させることが可能となる。
 そして、このように放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能となるため、実際に放射線画像撮影装置に対する放射線の照射が開始された時点で放射線の照射が開始されたことを検出することが可能となるため、線欠陥が1本の走査線のみに生じるようになり、線欠陥が隣接する複数の走査線に連続して現れることを的確に防止することが可能となる。
 また、仮に実際の放射線の照射開始時点で放射線の照射が開始されたことが検出できない場合であっても、上記のように検出効率が向上されているため、その直後の読み出し処理で読み出された画像データに基づいて放射線の照射が開始されたことが的確に検出される。そのため、線欠陥が生じる走査線の本数を的確に低減することが可能となる。
 そして、このように、線欠陥となる走査線を1本のみとし、或いは線欠陥が生じる走査線の本数が的確に低減されるため、線欠陥とされた画像データを例えば周囲の画像データを用いて修復したとしても、例えば線欠陥の部分に撮影されていた患者の病変部の情報が失われてしまうことが的確に回避される。そして、上記の画像データに基づいて生成される放射線画像中にも病変部の情報が現れるようになるため、生成された放射線画像を医療における診断用等に的確に用いることが可能となる。
各実施形態に係る放射線画像撮影装置を示す斜視図である。 図1におけるX-X線に沿う断面図である。 放射線画像撮影装置の基板の構成を示す平面図である。 図3の基板上の小領域に形成された放射線検出素子とTFT等の構成を示す拡大図である。 図4におけるY-Y線に沿う断面図である。 COFやPCB基板等が取り付けられた基板を説明する側面図である。 放射線画像撮影装置の等価回路を表すブロック図である。 検出部を構成する1画素分についての等価回路を表すブロック図である。 画像データの読み出し処理における電荷リセット用スイッチ、パルス信号、TFTのオン/オフのタイミングを表すタイミングチャートである。 相関二重サンプリング回路における電圧値の変化等を表すグラフである。 放射線の照射が開始されると放射線画像撮影前の画像データの読み出し処理で読み出される画像データの値が大きくなることを説明するグラフである。 モデル構成での放射線画像撮影前や後の画像データの読み出し処理等における各走査線へのオン電圧の印加のタイミングを示すタイミングチャートである。 放射線画像撮影前の読み出し処理におけるオン時間を長くした構成1における各走査線へのオン電圧の印加のタイミングを示すタイミングチャートである。 放射線画像撮影前の画像データの読み出し処理で複数の走査線に同時にオン電圧を印加して読み出し処理を行う場合の例を示すタイミングチャートである。 照射野が絞られた放射線のシンチレータや検出部に対する照射位置の例および各信号線を表す図である。 放射線画像撮影装置に非常に弱い放射線を照射した場合に読み出しICから読み出される画像データの最大値の例を示すグラフである。 読み出しICから読み出される画像データから移動平均を減算した中から抽出された最大値と最小値との差分を拡大して示すグラフである。 複数の信号線が接続され、複数の読み出し回路が形成された各読み出しICを示すブロック図である。 シンチレータや検出部を装置の放射線入射面側から見た図であり、シンチレータから照射された電磁波が入射し得る検出部上の位置と入射しない位置とを説明する図である。 増幅回路のコンデンサの容量を可変できるように構成した場合の検出部を構成する1画素分についての等価回路を表すブロック図である。 TFT内を流れるリーク電流が半導体層内の電子の密度が小さいゲート電極側の領域を通って流れることを説明する模式図である。 TFTのシンチレータ側に配置された配線を説明する断面図である。 TFTのシンチレータ側に配置された配線を説明する平面図である。 線欠陥が隣接する複数の走査線に連続して現れる状態を説明する図である。 構成1の場合に放射線画像撮影前の読み出し処理で読み出される画像データをプロットしたグラフである。 放射線画像撮影前の読み出し処理におけるゲート周期を長くした構成8における各走査線へのオン電圧の印加のタイミングを示すタイミングチャートである。 隣接する走査線に続けてオン電圧を印加しないように構成した構成9における各走査線へのオン電圧の印加のタイミングを示すタイミングチャートである。 図27の場合において実際に放射線の照射が開始された時点と放射線の照射開始を検出した時点がずれる場合の例を説明するタイミングチャートである。 線欠陥が生じる走査線が互いに離間した状態で現れる状態を説明する図である。 各信号線が延在方向の途中で分断されている放射線画像撮影装置の基板の構成を示す平面図である。 各走査線が延在方向の途中で分断されている放射線画像撮影装置の基板の構成を示す平面図である。 図30や図31の場合に一方の領域と他方の領域とで各走査線にオン電圧を印加するタイミングが同時にならないように構成した場合の例を説明するタイミングチャートである。 リークデータの読み出し処理における電荷リセット用スイッチ、パルス信号、TFTのオン/オフのタイミングを表すタイミングチャートである。 各TFTを介して各放射線検出素子からリークした各電荷がリークデータとして読み出されることを説明する図である。 放射線の照射が終了するとリークデータが減少することを示すグラフである。 構成1で放射線の照射が開始されたことを検出した走査線の次にオン電圧を印加すべき走査線からオン電圧を順次印加して放射線画像撮影後の画像データの読み出し処理を行う場合を説明するタイミングチャートである。 放射線画像撮影後の読み出し処理で読み出された画像データを各走査線ごとにプロットしたグラフである。 図13の場合を簡略化して示したタイミングチャートであり、実効蓄積時間が各走査線ごとに異なる時間間隔になることを説明するタイミングチャートである。 図36の場合を簡略化して示したタイミングチャートであり、実効蓄積時間が各走査線ごとに異なる時間間隔になることを説明するタイミングチャートである。 画像データを読み出す際の処理シーケンスと同じ処理シーケンスを画像データの読み出し処理後に繰り返してオフセット補正値を読み出す場合のタイミングチャートである。 放射線画像撮影前のTFTの実効蓄積時間と画像データの読み出し処理からオフセット補正値読み出し処理までのTFTの実効蓄積時間が同じになるようにオフセット補正値読み出し処理を行う場合のタイミングチャートである。 画像データの読み出し処理の直後や所定時間経過後にオフセット補正値読み出し処理を行う場合のタイミングチャートである。 TFTの実効蓄積時間と基準となるオフセット補正値との関係を表すテーブルまたは関係式を表すグラフである。 放射線検出素子ごとにオフセット補正値が割り当てられて作成されたオフセット画像を説明する図である。 各走査線ごとに作成された一群のオフセット画像を説明する図である。 図12のモデル構成に図36の構成を適用した場合の各走査線へのオン電圧の印加のタイミングを示すタイミングチャートである。 各フレームごとに画像データの読み出し処理の間に電荷蓄積モードで全走査線にオフ電圧を印加する期間と同じ期間だけオフ電圧を印加することを説明するタイミングチャートである。 TFTのオン/オフのタイミングを表すタイミングチャート、および単位時間あたりのラグによるオフセット分とその積分値であるラグによるオフセット分が時間的に増加することを示すグラフである。 図40等に示した各処理を行った場合の各走査線ごとのラグによるオフセット分を説明するグラフである。 第4の実施形態における放射線画像撮影前の画像データの読み出し処理、電荷蓄積モード、および放射線画像撮影後の画像データの読み出し処理におけるタイミングチャートである。 ゲートICが並設されて構成されたゲートドライバおよび非接続の端子を説明する図である。 従来の画像データの読み出し処理の仕方ではいずれの放射線検出素子からも画像データが読み出されない期間τが生じることを説明するタイミングチャートである。 第5の実施形態に係る走査駆動手段の構成およびゲートドライバに対する配線等を表す図である。 手法1によりフレームごとの画像データdの読み出し処理が時間的に連続して行われるようになることを説明するタイミングチャートである。 手法2において各走査線および各非接続の端子にオン電圧を印加するタイミングを説明するタイミングチャートである。 従来の仕方で各走査線および各非接続の端子にオン電圧を印加するタイミングを説明するタイミングチャートである。 手法3において各走査線および各非接続の端子にオン電圧を印加するタイミングを説明するタイミングチャートである。 図53に示した走査駆動手段の変形例の構成等を表す図である。 各信号線が延在方向の途中で分断されている放射線画像撮影装置の基板の構成を示す平面図である。 各走査線が延在方向の途中で分断されている放射線画像撮影装置の基板の構成を示す平面図である。 図59の場合に検出部の各領域の各走査線や各信号線が別々のゲートドライバや別々の読み出しICに接続されていることを説明する図である。 手法5における画像データの読み出し処理とリークデータの読み出し処理において各走査線にオン電圧を印加するタイミングや電荷リセット用スイッチのオン/オフ動作等を説明するタイミングチャートである。 画像データdには放射線検出素子から放出される暗電荷に起因するデータと各TFTを介して各放射線検出素子からリークした各電荷に相当するリークデータとが含まれることを説明する図である。 放射線画像撮影前にリークデータの読み出し処理を繰り返し行うように構成した場合の電荷リセット用スイッチ、パルス信号、TFTのオン/オフのタイミングを表すタイミングチャートである。 放射線画像撮影前にリークデータの読み出し処理と各放射線検出素子のリセット処理を交互に行うように構成した場合の電荷リセット用スイッチ、パルス信号、TFTのオン/オフのタイミングを表すタイミングチャートである。 放射線画像撮影前にリークデータの読み出し処理と画像データの読み出し処理を交互に行うように構成した場合の電荷リセット用スイッチ、パルス信号、TFTのオン/オフのタイミングを表すタイミングチャートである。 リークデータの読み出し処理と各放射線検出素子のリセット処理を交互に行うように構成した場合に各走査線および各非接続の端子にオン電圧を印加するタイミングを説明するタイミングチャートである。 リークデータの読み出し処理と各放射線検出素子のリセット処理を交互に行う場合に読み出されるリークデータの時間的推移を表すグラフである。 リークデータの読み出し処理のみを繰り返し行う場合に読み出されるリークデータの時間的推移を表すグラフである。 直前にリセット処理を行わないとリークする電荷量が小さいことを説明するイメージ図である。 リセット処理では放出される電荷の一部がトラップ準位にトラップされることを説明するイメージ図である。 図69Bの状態の後TFTを介してリークする電荷が増加することを説明するイメージ図である。 電荷蓄積モードでリークデータの読み出し処理を繰り返す場合に各走査線にオン電圧を印加するタイミングを説明するタイミングチャートである。 放射線画像撮影装置に照射野が絞られた放射線が照射された場合を表す図である。 各読み出し回路で読み出されるリークデータの時間的推移の例を表すグラフである。 通常の画像データの読み出し処理において各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替えるタイミングを示すタイミングチャートである。 各フレームごとに画像データの読み出し処理を繰り返し行うことを説明するタイミングチャートである。 各フレームごとの各放射線検出素子からのデータの読み出し処理を説明する図である。 ΔTの部分の走査線にオン電圧が順次印加される間に放射線が照射されて照射が終了したことを表す図である。 再構築された画像データに基づいて生成された放射線画像を表す図である。 画像領域δTの画像データが画像領域A、Bの画像データより大きくなることを表すグラフである。 放射線検出素子から読み出された電荷と他の放射線検出素子からリークした電荷との合計値が画像データとして読み出されることを説明する図である。 ある走査線上の画像データが破棄されて生じる線欠陥を表す図である。 線欠陥が隣接する複数の走査線に連続して現れる状態を説明する図である。
 以下、本発明に係る放射線画像撮影装置の実施の形態について、図面を参照して説明する。
 なお、以下では、放射線画像撮影装置が、シンチレータ等を備え、照射された放射線を可視光等の他の波長の電磁波に変換して電気信号を得るいわゆる間接型の放射線画像撮影装置である場合について説明するが、本発明は、直接型の放射線画像撮影装置に対しても適用することが可能である。また、放射線画像撮影装置が可搬型である場合について説明するが、支持台等と一体的に形成された放射線画像撮影装置(すなわちいわゆる専用機)に対しても適用される。
[第1の実施の形態]
 図1は、本実施形態に係る放射線画像撮影装置の外観斜視図であり、図2は、図1のX-X線に沿う断面図である。本実施形態に係る放射線画像撮影装置1は、図1や図2に示すように、筐体2内にシンチレータ3や基板4等が収納されて構成されている。
 筐体2は、少なくとも放射線入射面Rが放射線を透過するカーボン板やプラスチック等の材料で形成されている。なお、図1や図2では、筐体2がフロント板2Aとバック板2Bとで形成された、いわゆる弁当箱型である場合が示されているが、筐体2を一体的に角筒状に形成した、いわゆるモノコック型とすることも可能である。
 また、図1に示すように、筐体2の側面部分には、電源スイッチ36や、LED等で構成されたインジケータ37、バッテリ41(後述する図7参照)の交換等のために開閉可能とされた蓋部材38等が配置されている。また、本実施形態では、蓋部材38の側面部には、後述する画像データd等の情報を画像処理用のコンピュータ等の外部装置との間で無線方式で送受信するための通信手段であるアンテナ装置39が埋め込まれている。
 なお、アンテナ装置39の設置位置は蓋部材38の側面部に限らず、放射線画像撮影装置1の任意の位置にアンテナ装置39を設置することが可能である。また、設置するアンテナ装置39は1個に限らず、複数設けることも可能である。さらに、画像データd等を外部装置との間でケーブル等の有線方式で送受信するように構成することも可能であり、その場合は、ケーブル等を差し込むなどして接続するための接続端子等が放射線画像撮影装置1の側面部等に設けられる。
 図2に示すように、筐体2の内部には、基板4の下方側に図示しない鉛の薄板等を介して基台31が配置され、基台31には、電子部品32等が配設されたPCB基板33や緩衝部材34等が取り付けられている。なお、本実施形態では、基板4やシンチレータ3の放射線入射面Rには、それらを保護するためのガラス基板35が配設されている。
 シンチレータ3は、基板4の後述する検出部Pに対向する状態で配置されるようになっている。シンチレータ3は、例えば、蛍光体を主成分とし、放射線の入射を受けると300~800nmの波長の電磁波、すなわち可視光を中心とした電磁波に変換して出力するものが用いられる。
 基板4は、本実施形態では、ガラス基板で構成されており、図3に示すように、基板4のシンチレータ3に対向する側の面4a上には、複数の走査線5と複数の信号線6とが互いに交差するように配設されている。基板4の面4a上の複数の走査線5と複数の信号線6により区画された各小領域rには、放射線検出素子7がそれぞれ設けられている。
 このように、走査線5と信号線6で区画された各小領域rに二次元状に配列された複数の放射線検出素子7が設けられた領域r全体、すなわち図3に一点鎖線で示される領域が検出部Pとされている。
 本実施形態では、放射線検出素子7としてフォトダイオードが用いられているが、この他にも例えばフォトトランジスタ等を用いることも可能である。各放射線検出素子7は、図3や図4の拡大図に示すように、スイッチ手段であるTFT8のソース電極8sに接続されている。また、TFT8のドレイン電極8dは信号線6に接続されている。
 そして、TFT8は、後述する走査駆動手段15により、接続された走査線5にオン電圧が印加され、走査線5を介してゲート電極8gにオン電圧が印加されるとオン状態となり、放射線検出素子7内に蓄積されている電荷を信号線6に放出させるようになっている。また、TFT8は、接続された走査線5にオフ電圧が印加され、走査線5を介してゲート電極8gにオフ電圧が印加されるとオフ状態となり、放射線検出素子7から信号線6への電荷の放出を停止して、電荷を放射線検出素子7内に保持して蓄積させるようになっている。
 ここで、本実施形態における放射線検出素子7やTFT8の構造について、図5に示す断面図を用いて簡単に説明する。図5は、図4におけるY-Y線に沿う断面図である。
 基板4の面4a上に、AlやCr等からなるTFT8のゲート電極8gが走査線5と一体的に積層されて形成されており、ゲート電極8g上および面4a上に積層された窒化シリコン(SiN)等からなるゲート絶縁層81上のゲート電極8gの上方部分に、水素化アモルファスシリコン(a-Si)等からなる半導体層82を介して、放射線検出素子7の第1電極74と接続されたソース電極8sと、信号線6と一体的に形成されるドレイン電極8dとが積層されて形成されている。
 ソース電極8sとドレイン電極8dとは、窒化シリコン(SiN)等からなる第1パッシベーション層83によって分割されており、さらに第1パッシベーション層83は両電極8s、8dを上側から被覆している。また、半導体層82とソース電極8sやドレイン電極8dとの間には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたオーミックコンタクト層84a、84bがそれぞれ積層されている。以上のようにしてTFT8が形成されている。
 また、放射線検出素子7の部分では、基板4の面4a上に前記ゲート絶縁層81と一体的に形成される絶縁層71の上にAlやCr等が積層されて補助電極72が形成されており、補助電極72上に前記第1パッシベーション層83と一体的に形成される絶縁層73を挟んでAlやCr、Mo等からなる第1電極74が積層されている。第1電極74は、第1パッシベーション層83に形成されたホールHを介してTFT8のソース電極8sに接続されている。なお、補助電極72は必ずしも設けられなくてもよい。
 第1電極74の上には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたn層75、水素化アモルファスシリコンで形成された変換層であるi層76、水素化アモルファスシリコンにIII族元素をドープしてp型に形成されたp層77が下方から順に積層されて形成されている。
 そして、放射線画像撮影時に、放射線画像撮影装置1に対して照射された放射線が筐体2の放射線入射面Rから入射し、シンチレータ3で可視光等の電磁波に変換され、変換された電磁波が図中上方から照射されると、電磁波が放射線検出素子7のi層76に到達して、i層76内で電子正孔対が発生する。放射線検出素子7は、このようにして、シンチレータ3から照射された電磁波を電荷(電子正孔対)に変換するようになっている。
 また、p層77の上には、ITO等の透明電極とされた第2電極78が積層されて形成されており、照射された電磁波がi層76等に到達するように構成されている。本実施形態では、以上のようにして放射線検出素子7が形成されている。なお、p層77、i層76、n層75の積層の順番は上下逆であってもよい。また、本実施形態では、放射線検出素子7として、上記のようにp層77、i層76、n層75の順に積層されて形成されたいわゆるpin型の放射線検出素子を用いる場合が説明されているが、これに限定されない。
 放射線検出素子7の第2電極78の上面には、第2電極78を介して放射線検出素子7にバイアス電圧を印加するバイアス線9が接続されている。なお、放射線検出素子7の第2電極78やバイアス線9、TFT8側に延出された第1電極74、TFT8の第1パッシベーション層83等、すなわち放射線検出素子7とTFT8の上面部分は、その上方側から窒化シリコン(SiN)等からなる第2パッシベーション層79で被覆されている。
 図3や図4に示すように、本実施形態では、それぞれ列状に配置された複数の放射線検出素子7に1本のバイアス線9が接続されており、各バイアス線9はそれぞれ信号線6に平行に配設されている。また、各バイアス線9は、基板4の検出部Pの外側の位置で結線10に結束されている。
 本実施形態では、図3に示すように、各走査線5や各信号線6、バイアス線9の結線10は、それぞれ基板4の端縁部付近に設けられた入出力端子(パッドともいう)11に接続されている。各入出力端子11には、図6に示すように、後述する走査駆動手段15のゲートドライバ15bを構成するゲートIC12a等のチップがフィルム上に組み込まれたCOF(Chip On Film)12が異方性導電接着フィルム(Anisotropic Conductive Film)や異方性導電ペースト(Anisotropic Conductive Paste)等の異方性導電性接着材料13を介して接続されている。
 また、COF12は、基板4の裏面4b側に引き回され、裏面4b側で前述したPCB基板33に接続されるようになっている。このようにして、放射線画像撮影装置1の基板4部分が形成されている。なお、図6では、電子部品32等の図示が省略されている。
 ここで、放射線画像撮影装置1の回路構成について説明する。図7は本実施形態に係る放射線画像撮影装置1の等価回路を表すブロック図であり、図8は検出部Pを構成する1画素分についての等価回路を表すブロック図である。
 前述したように、基板4の検出部Pの各放射線検出素子7は、その第2電極78にそれぞれバイアス線9が接続されており、各バイアス線9は結線10に結束されてバイアス電源14に接続されている。バイアス電源14は、結線10および各バイアス線9を介して各放射線検出素子7の第2電極78にそれぞれバイアス電圧を印加するようになっている。また、バイアス電源14は、後述する制御手段22に接続されており、制御手段22により、バイアス電源14から各放射線検出素子7に印加するバイアス電圧が制御されるようになっている。
 図7や図8に示すように、本実施形態では、放射線検出素子7のp層77側(図5参照)に第2電極78を介してバイアス線9が接続されていることからも分かるように、バイアス電源14からは、放射線検出素子7の第2電極78にバイアス線9を介してバイアス電圧として放射線検出素子7の第1電極74側にかかる電圧以下の電圧(すなわちいわゆる逆バイアス電圧)が印加されるようになっている。
 各放射線検出素子7の第1電極74はTFT8のソース電極8s(図7、図8中ではSと表記されている。)に接続されており、各TFT8のゲート電極8g(図7、図8中ではGと表記されている。)は、後述する走査駆動手段15のゲートドライバ15bから延びる走査線5の各ラインL1~Lxにそれぞれ接続されている。また、各TFT8のドレイン電極8d(図7、図8中ではDと表記されている。)は各信号線6にそれぞれ接続されている。
 走査駆動手段15は、配線15cを介してゲートドライバ15bにオン電圧とオフ電圧を供給する電源回路15aと、走査線5の各ラインL1~Lxに印加する電圧をオン電圧とオフ電圧の間で切り替えて各TFT8のオン状態とオフ状態とを切り替えるゲートドライバ15bとを備えている。
 本実施形態では、後述するように、走査駆動手段15は、後述する制御手段22からの指示に従って、走査線5の各ラインL1~Lxにオン電圧を順次印加したり、或いは、走査線5の全てのラインL1~Lxにオフ電圧を印加した状態を維持したりするようになっている。
 また、各放射線検出素子7からの画像データd等を読み出す際に、走査駆動手段15のゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加するタイミング等については後で説明する。
 図7や図8に示すように、各信号線6は、各読み出しIC16内に形成された各読み出し回路17にそれぞれ接続されている。なお、本実施形態では、読み出しIC16に、1本の信号線6につき1個ずつ読み出し回路17が設けられている。
 読み出し回路17は、増幅回路18と相関二重サンプリング回路19等で構成されている。読み出しIC16内には、さらに、アナログマルチプレクサ21と、A/D変換器20とが設けられている。なお、図7や図8中では、相関二重サンプリング回路19はCDSと表記されている。また、図8中では、アナログマルチプレクサ21は省略されている。
 本実施形態では、増幅回路18はチャージアンプ回路で構成されており、オペアンプ18aと、オペアンプ18aにそれぞれ並列にコンデンサ18bおよび電荷リセット用スイッチ18cが接続されて構成されている。また、増幅回路18には、増幅回路18に電力を供給するための電源供給部18dが接続されている。また、オペアンプ18aと相関二重サンプリング回路19との間には、電荷リセット用スイッチ18cと連動して開閉するスイッチ18eが設けられている。
 増幅回路18のオペアンプ18aの入力側の反転入力端子には信号線6が接続されており、増幅回路18の入力側の非反転入力端子には基準電位Vが印加されるようになっている。なお、基準電位Vは適宜の値に設定され、本実施形態では、例えば0[V]が印加されるようになっている。
 また、増幅回路18の電荷リセット用スイッチ18cは、制御手段22に接続されており、制御手段22によりオン/オフが制御されるようになっており、電荷リセット用スイッチ18cがオン状態とされるとスイッチ18eがそれと連動してオフ状態となり、電荷リセット用スイッチ18cがオフ状態とされるとスイッチ18eがそれと連動してオン状態となるようになっている。
 増幅回路18では、画像データdの読み出し処理の際に、図9に示すように、電荷リセット用スイッチ18cがオフ状態(およびスイッチ18eがオン状態)の状態で、オン状態とされた各TFT8を介して各放射線検出素子7から蓄積されていた電荷が信号線6に放出され、電荷が信号線6を流れて、増幅回路18のコンデンサ18bに流入して蓄積される。
 なお、その際、当該放射線検出素子7からの電荷だけでなく、同じ信号線6に接続されている他の放射線検出素子7からTFT8を介してリークする電荷もコンデンサ18bに流入することは、図78で示した通りである。また、図9では、電荷リセット用スイッチ18cのオン/オフしか記載されておらず、スイッチ18e(図8参照)のオン/オフについては記載されていないが、前述したように、スイッチ18eは電荷リセット用スイッチ18cのオン/オフと連動してオフ/オン動作する。また、以下の説明においても、電荷リセット用スイッチ18cの動作等のみについて述べる場合があるが、その場合も同様である。
 そして、増幅回路18では、コンデンサ18bに蓄積された電荷量に応じた電圧値がオペアンプ18aの出力側から出力されるようになっている。増幅回路18は、このようにして、各放射線検出素子7から出力された電荷量に応じて電圧値を出力して電荷電圧変換するようになっている。
 なお、増幅回路18を、放射線検出素子7から出力された電荷に応じて電流を出力するように構成することも可能である。また、増幅回路18をリセットする際には、電荷リセット用スイッチ18cがオン状態とされ、それに連動してスイッチ18eがオフ状態となると、増幅回路18の入力側と出力側とが短絡されてコンデンサ18bに蓄積された電荷が放電される。そして、放電された電荷がオペアンプ18aの出力端子側からオペアンプ18a内を通り、非反転入力端子から出てアースされたり、電源供給部18dに流れ出すことで、増幅回路18がリセットされるようになっている。
 増幅回路18の出力側には、相関二重サンプリング回路(CDS)19が接続されている。相関二重サンプリング回路19は、本実施形態では、サンプルホールド機能を有しており、この相関二重サンプリング回路19におけるサンプルホールド機能は、制御手段22から送信されるパルス信号によりそのオン/オフが制御されるようになっている。
 すなわち、例えば画像データdの読み出し処理の際には、図9に示すように、まず、各読み出し回路17の増幅回路18の電荷リセット用スイッチ18cを制御してオフ状態とされる。その際、電荷リセット用スイッチ18cをオフ状態にした瞬間に、いわゆるkTCノイズが発生し、増幅回路18のコンデンサ18bにkTCノイズに起因する電荷が溜まる。
 そのため、図10に示すように、増幅回路18から出力される電圧値が、電荷リセット用スイッチ18cをオフ状態にした瞬間(図10では「18coff」と表示)に、前述した基準電位VからkTCノイズに起因する電荷の分だけ変化して電圧値Vinに変わる。制御手段22は、この段階で、図9に示すように、相関二重サンプリング回路19に1回目のパルス信号Sp1を送信して、その時点(図10では「CDS保持」(左側)と表示)で増幅回路18から出力されている電圧値Vinを保持させる。
 続いて、図9に示したように、走査駆動手段15のゲートドライバ15bから1本の走査線5(例えば走査線5のラインLn)にオン電圧を印加してその走査線5にゲート電極8gが接続されているTFT8をオン状態とすると(図9参照。図10では「TFTon」と表示)、これらのTFT8が接続されている各放射線検出素子7から蓄積された電荷が各信号線6を介して増幅回路18のコンデンサ18bに流れ込んで蓄積され、図10に示すように、コンデンサ18bに蓄積された電荷量に応じて増幅回路18から出力される電圧値が上昇する。
 そして、制御手段22は、所定時間が経過した後、図9に示すように、ゲートドライバ15bから当該走査線5に印加しているオン電圧をオフ電圧に切り替えてその走査線5にゲート電極8gが接続されているTFT8をオフ状態とし(図10では「TFToff」と表示)、この段階で各相関二重サンプリング回路19に2回目のパルス信号Sp2を送信して、その時点で増幅回路18から出力されている電圧値Vfiを保持させる(図10では「CDS保持」(右側)と表示)。
 各相関二重サンプリング回路19は、2回目のパルス信号Sp2で電圧値Vfiを保持すると、電圧値の差分Vfi-Vinを算出し、算出した差分Vfi-Vinをアナログ値の画像データdとして下流側に出力するようになっている。
 相関二重サンプリング回路19から出力された各放射線検出素子7の画像データdは、アナログマルチプレクサ21に送信され、アナログマルチプレクサ21から順次A/D変換器20に送信される。そして、A/D変換器20で順次デジタル値の画像データdに変換されて記憶手段40に出力されて順次保存されるようになっている。
 制御手段22は、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入出力インターフェース等がバスに接続されたコンピュータや、FPGA(Field Programmable Gate Array)等により構成されている。専用の制御回路で構成されていてもよい。そして、制御手段22は、放射線画像撮影装置1の各部材の動作等を制御するようになっている。また、図7等に示すように、制御手段22には、DRAM(Dynamic RAM)等で構成される記憶手段40が接続されている。
 また、本実施形態では、制御手段22には、前述したアンテナ装置39が接続されており、さらに、検出部Pや走査駆動手段15、読み出し回路17、記憶手段40、バイアス電源14等の各部材に電力を供給するためのバッテリ41が接続されている。また、バッテリ41には、図示しない充電装置からバッテリ41に電力を供給してバッテリ41を充電する際の接続端子42が取り付けられている。
 前述したように、制御手段22は、バイアス電源14を制御してバイアス電源14から各放射線検出素子7に印加するバイアス電圧を設定したり可変させたりするなど、放射線画像撮影装置1の各機能部の動作を制御するようになっている。
 以下、本実施形態における各構成等について説明するとともに、本実施形態に係る放射線画像撮影装置1の作用について説明する。
 なお、本発明では、放射線画像撮影装置1に放射線が照射されて行われる放射線画像撮影の前から画像データdの読み出し処理を行うようになっており、また、放射線画像撮影装置1に対する放射線の照射が終了した後に、いわゆる本画像としての画像データdの読み出し処理が行われる。
 以下では、放射線の照射が終了した後の本画像として読み出される画像データdを、放射線画像撮影前に読み出される画像データdと区別し易いように、画像データDという。また、放射線の照射が終了した後の読み出し処理を、放射線画像撮影前の読み出し処理と区別し易いように、放射線画像撮影後の読み出し処理という。従って、放射線画像撮影前には画像データdが、放射線画像撮影後には画像データDがそれぞれの読み出し処理で読み出される。
[モデルとなる構成]
 ここで、本実施形態における各構成等について説明する前に、本実施形態の各構成と対比される対象となる構成について説明する。なお、以下では、この構成をモデル構成と略称する。
 このモデル構成では、放射線画像撮影前から、図73に示したように、走査駆動手段15のゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加して画像データdの読み出し処理が行われる。そして、読み出される画像データdの値が監視され、例えば図11に示すように、読み出された画像データdの値が増加して、予め設定された閾値dthを越えた時点(図11中では時刻t1)で、放射線画像撮影装置に対する放射線の照射が開始されたことを検出するように構成される。
 そして、図12に示すように、例えば、走査線5のラインLnにオン電圧が印加されて走査線5の当該ラインLnに接続されている各放射線検出素子7から読み出された画像データdに基づいて放射線の照射が開始されたことが検出された場合には、その時点で、走査駆動手段15から走査線5の各ラインL1~Lxに対するオン電圧の印加を停止し、走査線5の各ラインL1~Lxに印加する電圧をオフ電圧に切り替える。そして、放射線の照射により各放射線検出素子7内で発生する電荷を各放射線検出素子7内に蓄積させる電荷蓄積モードに移行する。
 そして、放射線画像撮影装置に対する放射線の照射が終了すると、放射線画像撮影後の画像データDの読み出し処理が行われ、走査駆動手段15から走査線5の各ラインL1~Lxにオン電圧が順次印加されて、各放射線検出素子7から画像データDが読み出される。
 このモデル構成においては、放射線画像撮影前の画像データdの読み出し処理においても、また、放射線画像撮影後の画像データDの読み出し処理においても、図12に示したように、いずれの場合も、走査駆動手段15から走査線5の各ラインL1~Lxにオン電圧を順次印加して読み出し処理が行われる。
 その際、放射線画像撮影前の画像データdの読み出し処理において、走査駆動手段15から走査線5の各ラインL1~Lxにオン電圧を印加して各TFT8をオン状態とした後、印加する電圧をオフ電圧に切り替えて各TFT8をオフ状態とするまでの時間、すなわち、図9においてTFT8がオン状態とされている時間(図10では「TFTon」から「TFToff」までの時間。以下、オン時間という。)が、放射線画像撮影後の本画像としての画像データDの読み出し処理の場合と同じオン時間とされる。
 また、この場合、図9に示した相関二重サンプリング回路19に送信されるパルス信号Sp1、Sp2の送信間隔や、増幅回路18の電荷リセット用スイッチ18cのオン/オフ動作のタイミングも、放射線画像撮影前の画像データdの読み出し処理の場合と、放射線画像撮影後の画像データDの読み出し処理の場合とで同じ送信間隔やタイミングとされる。
 しかし、このモデル構成のような構成では、放射線の照射が開始されたことを検出する際の検出効率が必ずしも高くならないことは、前述した特許文献6に記載の発明について述べた場合と同様であり、検出効率を高めるための構成が必要となる。
[放射線の照射開始の検出効率の改善等について]
 以下、放射線の照射が開始されたことを検出する際の検出効率を向上させるための本実施形態に係る各構成等について説明する。
[構成1]
 上記のモデル構成で検出効率が必ずしも高くならない理由の1つとして、放射線画像撮影前の画像データdの読み出し処理におけるTFT8のオン時間が短いことが挙げられる。そこで、例えば図13に示すように、放射線画像撮影前の画像データdの読み出し処理の際のTFT8のオン時間を、放射線画像撮影後の画像データDの読み出し処理の際のオン時間よりも長くなるように構成することが可能である。
 放射線画像撮影前の読み出し処理で読み出される画像データdは、前述したように、放射線の照射開始を検出するために用いられるデータであるため、画像データdの値を見て、すなわち閾値dthを越えたか否かを判断して、放射線の照射が開始されたことを検出することができるものであればよい。そのため、画像データdの読み出し処理は、放射線画像撮影後に本画像として読み出される画像データDと必ずしも同じ条件で行われる必要はない。
 つまり、放射線画像撮影前の画像データdの読み出し処理を、放射線画像撮影後の画像データDの読み出し処理におけるTFT8のオン時間やパルス信号Sp1、Sp2の送信タイミング(図9参照)と同じオン時間や送信タイミングで行う必要はない。
 また、放射線画像撮影装置1に対する放射線の照射が終了し、放射線の照射により各放射線検出素子7内で発生した電荷が各放射線検出素子7内に蓄積された状態で行われる放射線画像撮影後の画像データDの読み出し処理では、図10に示したように、TFT8のオン時間(図10では「TFTon」から「TFToff」までの時間)を長くしても、増幅回路18から出力される電圧値Vfiはさほど大きくならない。そのため、TFT8のオン時間が十分に長ければ、TFT8のオン時間を長くしても読み出される画像データDの値はほとんど変わらない。
 それに対して、放射線画像撮影前の画像データdの読み出し処理におけるTFT8のオン時間を長くすると、放射線の照射が開始され、放射線が照射されている最中に読み出される画像データdでは、TFT8のオン時間中にも各放射線検出素子7内で放射線の照射により電荷が発生し続けている。そのため、TFT8のオン時間が長くなればなるほど、画像データdの値が増加する。
 また、図78を用いて説明したように、放射線が照射されると、上記のように、その最中に画像データdを読み出している放射線検出素子7(図78では放射線検出素子7i)と同じ信号線6に接続されている他の放射線検出素子7からTFT8を介してリークする電荷qの量も増加する。そして、他の放射線検出素子7からリークして増幅回路18のコンデンサ18bに流れ込む各電荷qの量は、TFT8のオン時間が長ければ長いほど多くなる。そのため、この点においても、TFT8のオン時間が長くなればなるほど、画像データdの値が増加する。
 そのため、この構成1のように、放射線画像撮影前の画像データdの読み出し処理の際のTFT8のオン時間を放射線画像撮影後の画像データDの読み出し処理の際のオン時間よりも長くなるように構成することで、1回の画像データdの読み出し処理で読み出される画像データd自体の大きさがモデル構成の場合よりも大きくなり、放射線画像撮影装置1に対する放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能となる。
 なお、上記のように、放射線の照射が開始されたことを検出する際の検出効率が向上することで、線欠陥が生じる走査線5の本数を低減することが可能となるが、この点については、後で説明する。
[構成2]
 また、上記のように、1回の画像データdの読み出し処理で読み出される画像データd自体の値を大きくして検出効率を向上させるという観点から言えば、前述した特許文献7に記載された手法も、画像データd自体の値を大きくするための処理であった。
 しかし、特許文献7に記載されている技術を応用して、複数の隣接する走査線5に同時にオン電圧を印加して放射線照射の検出効率を高めることになるが、このように構成すると、図80に示したように、線欠陥が走査線5の隣接する複数のラインLに連続して現れてしまう。
 そこで、放射線画像撮影前の画像データdの読み出し処理の際に、走査駆動手段15から、検出部P上で隣接しない複数の走査線5に同時にオン電圧を印加して読み出し処理を行うように構成することで、1回の画像データdの読み出し処理で読み出される画像データd自体の値を大きくして検出効率を向上させることが可能となる。
 具体的には、例えば、走査駆動手段15のゲートドライバ15bを構成する各ゲートIC12aの各端子にそれぞれ128本の走査線5が接続されているような場合、例えば図14に示すように、各ゲートIC12aの1番目の端子に接続されている各走査線5に同時にオン電圧を印加して画像データdの読み出し処理を同時に行い、次のタイミングでは、各ゲートIC12aの2番目の端子に接続されている各走査線5に同時にオン電圧を印加して読み出し処理を行うように構成することができる。
 このように構成すれば、例えば走査駆動手段15のゲートドライバ15bが8個の各ゲートIC12aで構成されている場合には、1回の画像データdの読み出し処理で読み出される画像データd自体の値が8倍の大きさになる。そのため、1回の画像データdの読み出し処理で読み出される画像データd自体の値を大きくして検出効率を向上させることが可能となる。
 また、検出部P上で隣接しない複数の走査線5に同時にオン電圧を印加して読み出し処理を行うように構成することで、線欠陥となる走査線5が複数生じるようになるとしても、線欠陥が走査線5の隣接する複数のラインLに連続して現れることは的確に抑制される。さらに、走査線5の複数のラインLに同時にオン電圧を印加して画像データdの読み出し処理を同時に行うように構成することで、1フレーム分の読み出し処理に要する時間が短くな、各走査線5に接続されている各放射線検出素子7内に蓄積される暗電荷等の余分な電荷をより少なくすることが可能となる。
 なお、[構成1]で説明したように放射線画像撮影前の画像データdの読み出し処理の際のTFT8のオン時間を長くする場合も、同様に走査線5の複数のラインLに同時にオン電圧を印加して画像データdの読み出し処理を行うように構成することが可能である。
[構成3]
 上記のモデル構成では、放射線画像撮影前に繰り返し行われる画像データdの読み出し処理により読み出された画像データdを時系列的にプロットすると、図11に示すように、放射線画像撮影装置1に放射線が照射されると、画像データdの値が大きくなる。
 そして、この場合、図11に示したように、閾値dthを予め設定しておき、上記のようにして画像データdの読み出し処理を行って、読み出した画像データdが設定された閾値dthを越えた時点(図中の時刻t1参照)で、放射線の照射が開始されたことを検出するように構成することができる。
 そこで、本実施形態においても、制御手段22は、放射線画像撮影前から、走査駆動手段15から走査線5の各ラインL1~Lxに対して、例えば図12或いは図13に示したようにオン電圧を順次印加して画像データdの読み出し処理を繰り返し行わせ、読み出された画像データdの値が閾値dthを越えた時点で放射線の照射が開始されたことを検出するように構成することができる。
 なお、図7等に示したように、画像データdは、走査線5の各ラインL1~Lxにオン電圧が順次印加されるごとに各読み出し回路17からそれぞれ出力される。そして、読み出し回路17は、検出部Pに数千本から数万本設けられた信号線6ごとに1つずつ設けられているため、1回の画像データdの読み出し処理で、数千~数万個の画像データdが各読み出し回路17から出力される。
 そして、数千~数万個の個々の画像データdについて閾値dthを越えたか否かの判断を行うように構成すると、判断処理の負担が非常に大きなものとなる。そこで、例えば、画像データdの読み出し処理ごとに読み出されるこれらの各画像データdの中から最大値dmaxを抽出し、その画像データdの最大値dmaxが閾値dthを越えたか否かを判断するように構成することが可能である。
 このように構成すれば、例えば、放射線が放射線画像撮影装置1の検出部Pの狭い範囲にのみ照射されたような場合(すなわち照射野が絞られて照射された場合)には、放射線が照射されなかった部分では画像データdが上昇しないが、放射線が照射された部分で画像データdが上昇するため、画像データdの最大値dmaxが上昇する。そのため、画像データdの最大値dmaxが閾値dthを越えたか否かを判断することで、放射線の照射の開始を的確に検出することが可能となる。
 しかし、放射線検出素子7の中には異常に大きな値の画像データdが読み出される放射線検出素子7がある。また、各読み出し回路17の性能にもよるが、読み出し回路17で発生するノイズが大きい場合もある。このような場合には、放射線画像撮影装置1に放射線が照射されていないにもかかわらず、異常に大きな値の画像データdやノイズが重畳された画像データdが閾値dthを越えてしまい、放射線の照射が開始されたと誤検出してしまう虞れがある場合がある。
 そのため、そのような場合には、例えば、異常な画像データdが読み出される放射線検出素子7については、予めそのような異常な放射線検出素子7の情報を有しておき、異常な放射線検出素子7から読み出された画像データdについては、上記の放射線の照射開始の判断の対象としないように構成することが可能である。
 また、例えば、異常な放射線検出素子7が接続されている走査線5にオン電圧を印加する際に、当該走査線5に印加するオン電圧の電圧値を低くして、異常な放射線検出素子7から異常に大きな値の画像データdが読み出されないように構成することも可能である。
 さらに、例えば、所定個の読み出し回路17が設けられた各読み出しIC16ごとに画像データdの平均値或いは合計値等の統計値を算出するように構成し、その平均値や合計値の中から最大値を抽出して、その最大値と閾値dthとを比較するように構成することも可能である。
 このように構成すれば、読み出しIC16内には、通常、128個や256個等の多数の読み出し回路17が形成されているため、異常に大きな値の画像データdが他の正常な値の画像データdと平均化されたり合計値が算出される中でいわば希釈され、算出された平均値や合計値はさほど異常に大きな値にならない。そのため、閾値dthを適切な値に設定しておけば、仮に異常に大きな値の画像データdが読み出されても、放射線の照射を誤検出することを防止することが可能となる。
 また、上記のように画像データdの平均値や合計値を算出するように構成すると、各読み出し回路17でそれぞれ発生するノイズが、画像データdの平均値や合計値を算出する際に互いに相殺されるため、各読み出し回路17で発生するノイズの画像データdに対する影響を低減させることが可能となる。
 このように、放射線画像撮影前の読み出し処理で読み出される画像データdの中から最大値dmaxを抽出したり、画像データdの平均値や合計値の中から最大値を抽出して、その最大値と閾値dthとを比較して放射線の照射が開始されたことを検出するように構成することで、放射線画像撮影装置1に対する放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能となる。
 また、上記のように個々の画像データdの最大値を抽出したり、読み出しIC16ごとの画像データdの平均値や合計値を算出し、その中から最大値を抽出して閾値dthと比較するように構成する代わりに、1回の画像データdの読み出し処理の際に各読み出し回路17で読み出された全ての画像データdの平均値や合計値を算出して、その平均値や合計値と閾値dthとを比較するように構成することも可能である。このように構成すれば、最大値を抽出する処理が不要になる。
 なお、画像データd等の平均値と合計値との違いは、合計値を画像データd等の総数で除算する処理を行うか行わないかのみの違いであり、画像データd等を加算するという意味では同じ処理である。従って、以下、平均値のみ或いは合計値のみについて説明する場合も、平均値の代わりに合計値を用いたり、合計値の代わりに平均値を用いるように適宜構成することが可能である。
 また、各読み出しIC16ごとに画像データdの統計値として、上記のように画像データdの平均値や合計値のほかに、例えば、各読み出しIC16ごとの画像データdの中央値や最頻値、或いは重み付け平均値、二乗平均値、二乗平均の平方根等の種々の値を用いることが可能である。そして、以下では、統計値として、主に平均値を用いる場合について説明するが、平均値の代わりに、上記の平均値以外の各統計値を用いるように構成することも可能である。
[構成4]
 一方、放射線画像撮影装置1に通常の線量の放射線が照射された場合には、読み出し処理で読み出される画像データdは、放射線が照射されていない段階で読み出された画像データdよりも比較的明確に増加するため、放射線の照射開始を検出し易いが、例えば聴器のシュラー撮影等のように、放射線画像撮影装置1に非常に低い線量率(すなわち単位時間あたりの線量)の放射線が照射される場合には、画像データdの増加が明確でない場合もある。
 そこで、この構成4では、そのように放射線画像撮影装置1に非常に低い線量率の放射線が照射された場合でも検出効率を向上させて、放射線の照射開始を的確に検出するための構成について説明する。
 このように放射線画像撮影装置1に非常に低い線量率の放射線が照射される場合には、画像データdとそれに重畳されるノイズとの比、すなわち画像データdのS/N比が重要な問題となる。画像データdには、種々のノイズが重畳されるが、主なノイズとしては、例えばバイアス電源14(図7参照)の電圧に生じるノイズや、走査駆動手段15の電源回路15aに由来するノイズを挙げることができる。
 バイアス電源14は、結線10や各バイアス線9を介して各放射線検出素子7に接続されており、バイアス電源14で発生したノイズが重畳されたバイアス電圧Vbiasが、各放射線検出素子7に印加される。
 各放射線検出素子7は第1電極74と第2電極78との間にi層76(図5参照)等が介在する状態であり、一種のコンデンサ状の構造になっているため、寄生容量Cを有している。そして、各放射線検出素子7には基本的にQ=C・(V-Vbias)で表される電荷Qが蓄積されており、この電荷Qがバイアス電圧Vbiasのノイズでゆらぐ。
 すなわち、放射線検出素子7内に蓄積されている電荷Qにバイアス電圧Vbiasのゆらぎに起因する電荷ノイズが重畳される。バイアス電源14は、バイアス線9等を介して全ての放射線検出素子7に接続されているため、バイアス電圧Vbiasのノイズは、全ての放射線検出素子7に同時に伝わり、バイアス電圧Vbiasのノイズに起因する電荷ノイズが、全ての放射線検出素子7に同時に重畳される。
 そのため、走査線5のあるラインLにオン電圧が印加され、走査線5の当該ラインLに接続されている各放射線検出素子7から読み出される画像データdに、バイアス電圧Vbiasのノイズに起因する同じノイズが重畳される。
 また、走査駆動手段15の電源回路15a(図7参照)から供給されたオン電圧がゲートドライバ15bを介して走査線5に印加されて、各TFT8のゲート電極8gに印加される。その際、1個の電源回路15aで発生したオン電圧のノイズが、オン電圧が印加されている走査線5に伝達され、当該走査線5を介して、それに接続されている各TFT8に瞬時に伝達される。
 そのため、電源回路15aでオン電圧に発生したノイズが、オン電圧が印加されている走査線5に接続されている全てのTFT8に同時に伝達されて、画像データdの読み出し処理の際に、読み出される画像データdに重畳される。
 このように、走査線5のあるラインLにオン電圧が印加されて画像データdの読み出し処理が行われた場合、走査線5の当該ラインLに接続されている各放射線検出素子7から読み出される画像データdには、バイアス電圧Vbiasのノイズや電源回路15aのノイズに起因する同じノイズが同時に重畳される。
 以上のように、バイアス電圧Vbiasのノイズや走査駆動手段15の電源回路15aで発生したノイズが全ての放射線検出素子7に同時に重畳される。そのため、同じタイミングで読み出された画像データd、すなわち、走査線5のあるラインLにオン電圧が印加されて読み出し処理が行われた場合に走査線5の当該ラインLに接続されている各放射線検出素子7から読み出された画像データdには、同じノイズ成分が重畳される。また、オン電圧が印加される走査線5が切り替えられるごとに、各画像データdに重畳されるノイズ成分は同じように増減する。
 そこで、この特性を利用して、例えば、下記のように構成することで、画像データdのS/N比を改善して検出効率を向上させることが可能となる。なお、以下では、各画像データdの読み出しIC16ごとの平均値daveを用いる場合について説明するが、平均値daveの代わりに、個々の画像データdや、各画像データdの読み出しIC16ごとの合計値等の統計値を用いてもよいことは前述した通りである。
[構成4-1]
 前述したように、放射線画像撮影装置1に放射線を照射する際、放射線画像撮影装置1の放射線入射面R(図1、図2参照)側から見た場合、放射線画像撮影装置1のシンチレータ3や検出部Pの全域ではなく、図15に示すようにシンチレータ3や検出部Pの一部に照射野Fが絞られて放射線が照射される場合がある。特に、放射線画像撮影装置1に低い線量率の放射線を照射する場合には、放射線の照射野Fが絞られて照射される場合が多い。
 なお、図15では、走査線5は図中の左右方向に、また、信号線6は図中の上下方向にそれぞれ延在するように配線されているものとする。
 放射線がこのように照射される場合、放射線の照射野Fに対応する検出部P上の位置、すなわち照射された放射線がシンチレータ3で変換された電磁波が入射し得る位置に設けられた各放射線検出素子7では、放射線画像撮影装置1に放射線が照射されると、放射線の照射により内部で電荷が発生し、読み出される画像データdの値が大きくなる。
 しかし、放射線の照射野Fに対応する検出部P上の位置以外の位置、すなわちシンチレータ3からの電磁波が入射しない検出部P上の位置に設けられた各放射線検出素子7では、放射線画像撮影装置1に放射線が照射されても、当該放射線検出素子7には、シンチレータ3で変換された電磁波が入射しないため、画像データdの値は大きくならない。
 そして、前述したように、いずれの位置の放射線検出素子7やTFT8にも、バイアス電源14や走査駆動手段15の電源回路15aで発生したノイズがバイアス線9や走査線5の各ラインL1~Lxを介して同時に伝達される。そのため、各放射線検出素子7から読み出される画像データdに同じノイズが重畳される。
 そこで、これを利用して、制御手段22で、シンチレータ3から照射された電磁波が入射し得る検出部P上の位置(すなわち放射線の照射野Fに対応する検出部P上の位置)の各放射線検出素子7から読み出された画像データdから、シンチレータ3から照射された電磁波が入射しない検出部P上の位置(すなわち放射線の照射野Fに対応する検出部P上の位置以外の位置)に設けられた各放射線検出素子7から読み出された画像データdを差し引いた差分Δdを算出し、算出した差分Δdが、当該差分Δdについて設定された閾値Δdthを越えた時点で放射線の照射が開始されたことを検出するように構成することが可能である。
 なお、この場合、上記のように、放射線を、放射線画像撮影装置1のシンチレータ3や検出部Pの全域ではなく、シンチレータ3や検出部Pの一部に照射するように、照射野Fを絞って照射することが前提となる。
 しかし、この場合、放射線画像撮影装置1に照射される放射線の照射野Fは、通常、撮影ごとに、撮影の都合上、最も適した放射線入射面R上の位置に設定される。そのため、照射野Fが、図15に示すように放射線入射面Rの中央付近に設定される場合もあるが、シンチレータ3や検出部Pの周縁部付近に対応する位置に設定される場合もあるため、予めシンチレータ3からの電磁波が入射しない放射線検出素子7を特定しておくことができない。
 そこで、例えば、制御手段22で、各読み出し回路17ごとに読み出された各画像データdの中から最大値dmaxと最小値dminを抽出する。すなわち、1回の読み出し処理で1本の走査線5にオン電圧が印加されて当該走査線5に接続されている全ての放射線検出素子7からそれぞれ読み出された全画像データdの中から最大値dmaxと最小値dminを抽出する。そして、抽出した最大値dmaxから最小値dminを差し引いた差分Δdを算出し、算出した差分Δdが、当該差分Δdについて設定された閾値Δdthを越えた時点で放射線の照射が開始されたことを検出するように構成することが可能である。
 また、この場合も、各読み出し回路17ごとに読み出された各画像データdには、通常、各読み出し回路17の読み出し特性に起因するオフセット分がそれぞれ重畳される。そのため、同じ電荷Qに対する画像データdが各読み出し回路17で読み出されると、各画像データdは各オフセット分だけ異なる値になる。
 そのため、例えば、画像データdの読み出し処理を行うごとに、当該読み出し処理の直前の読み出し処理を含む、例えば5回や10回等の所定回数分の過去の各読み出し処理で抽出された画像データdの移動平均を、各読み出し回路17ごとに算出し、今回の読み出し処理で読み出された画像データdからこの移動平均を減算して、この減算した値を今回の読み出し処理で当該読み出し回路17で読み出された画像データdとする。
 そして、上記のように、各読み出し回路17ごとに読み出された各画像データdからそれぞれ移動平均を減算して算出された各画像データdの中から最大値dmaxと最小値dminを抽出し、最大値dmaxから最小値dminを差し引いた差分Δdを算出する。そして、算出した差分Δdが、当該差分Δdについて設定された閾値Δdthを越えた時点で放射線の照射が開始されたことを検出するように構成することが可能である。
 このように構成すれば、放射線画像撮影装置1に放射線が照射される前には、各読み出し回路17で読み出された画像データdから移動平均を減算して算出された画像データdは、各読み出し回路17ごとのオフセット分が相殺されて、いずれの読み出し回路17から出力された値もほぼ0に近い値になるため、最大値dmaxから最小値dminを差し引いた差分Δdは0に近い値になる。
 しかし、例えば図15に示したように放射線画像撮影装置1に放射線が照射された場合、前述したように、放射線の照射野Fに対応する検出部P上の位置に配置されている各放射線検出素子7では、放射線の照射により読み出される画像データdの値が上昇するが、放射線の照射野Fに対応する検出部P上の位置以外の位置に配置されている各放射線検出素子7では、画像データdの値は上昇しない。
 そのため、実際に放射線の照射が開始されてから放射線の照射が開始されたことが検出されるまでの間は、各読み出し回路17で読み出された画像データdから移動平均を減算して算出された画像データdの最大値dmaxから最小値dminを差し引いた差分Δdは、0とは有意に異なる正の値になる。そのため、この差分Δdに対して閾値Δdthを適切な値に設定しておくことで、少なくとも放射線の照射の開始を的確に検出することが可能となる。
 例えば、図16は、放射線画像撮影装置1に非常に弱い放射線を照射した場合に、ある読み出しIC16から読み出される画像データdの最大値dmaxを示すグラフであり、バイアス電源14や走査駆動手段15の電源回路15aで発生したノイズで画像データdが増減している。そして、実際には、時刻t1で放射線の照射が開始されているが、放射線の照射による画像データdの上昇分がノイズに埋もれてしまい、放射線の照射開始を検出することができない。
 しかし、上記のように、画像データdから移動平均を減算して算出された画像データdの中から最大値dmaxと最小値dminを抽出し、最大値dmaxから最小値dminを差し引いた差分Δdを算出すると、図17に拡大して示すように、算出した差分Δdは、時刻t1で確実に上昇して閾値Δdthを越え、その時点で放射線の照射が開始されたことを検出することができる。
 このように、差分Δdを算出するように構成することで、画像データdに重畳されているバイアス電源14や電源回路15aに由来するノイズ成分を除去することが可能となり、画像データdのS/N比を改善させて放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能となる。
 そして、閾値Δdthを適切な値に設定して、算出した差分Δdに基づいて放射線の照射が開始されたことを検出するように構成することで、放射線の照射開始を的確に検出することが可能となる。
 なお、前述したように、図17に示した差分Δdは、前述したように、極端に低い線量率の放射線が放射線画像撮影装置1に照射された場合の差分Δdであり、そのような差分Δdに対しても図17に示したような結果が得られる。そのため、通常の、より高い線量率の放射線が放射線画像撮影装置1に照射された場合には、より鮮明に差分Δdが上昇することは言うまでもない。
 また、放射線画像撮影装置1に照射される放射線の線量率が高い場合も低い場合も、照射野Fが絞られずに放射線画像撮影装置1の放射線入射面R(図1等参照)の全域に対して放射線が照射される場合もある。このような場合には、この[構成4-1]の処理の仕方では放射線の照射の開始を検出することができない。
 しかし、その一方で、[構成4-1]の処理の仕方を採用すれば、例えば上記の[構成1]~[構成3]の説明で示した構成では必ずしも的確に放射線の照射の開始や終了を検出できないような微弱な線量率の放射線が照射された場合でも、図17に示したように、的確に放射線の照射の開始や終了を検出することが可能となる。
 そこで、実際の放射線画像撮影装置1では、上記の[構成1]~[構成3]とこの[構成4-1]とを組み合わせた構成とすることが可能である。また、上記の[構成1]~[構成3]の説明で示した構成と上記の[構成4-1]に示した構成とを併用し、両方の構成で同時に放射線の照射の開始が検出された場合は勿論、それらの構成のうち、いずれかの構成で放射線の照射の開始が検出された時点で、放射線の照射の開始を検出するように構成することが可能である。
 ところで、前述したように、読み出しIC16には、図18に示すように、それぞれ各読み出し回路17が例えば128個や256個等の所定個数ずつ形成されている。そして、例えば、1個の読み出しIC16に読み出し回路17が128個形成されており、信号線6が1024本配線されている場合には、読み出しIC16が少なくとも8個設けられる。
 そして、上記のように、放射線が放射線画像撮影装置1に対して照射野F(図15参照)が絞られた状態で照射される場合、例えば8個の読み出しIC16の中には、読み出しIC16に各信号線6を介して接続されている各放射線検出素子7が、上記の放射線の照射野Fに対応する検出部P上の位置以外の位置、すなわちシンチレータ3からの電磁波が入射しない検出部P上の位置に設けられた各放射線検出素子7となるような読み出しIC16が存在すると考えられる。
 すなわち、放射線の照射野Fが絞られたことにより、放射線画像撮影装置1には放射線が照射されているにもかかわらず、ある読み出しIC16に接続されている全ての放射線検出素子7に放射線が到達しないような(本実施形態ではシンチレータ3で放射線から変換された電磁波が入射しないような)読み出しIC16が存在すると考えられる。
 そのため、上記のように、各読み出し回路17ごとに読み出された各画像データdからそれぞれ移動平均を減算して算出された各画像データdの中から最大値と最小値を抽出するように構成する代わりに、例えば、各読み出し回路17ごとに読み出された各画像データdからそれぞれ移動平均を減算して算出された各画像データdの各読み出しIC16ごとの平均値を算出し、各読み出しIC16ごとの平均値の中から最大値と最小値を抽出するように構成することも可能である。
 このように構成すれば、上記の例では、読み出しIC16は8個であるから各読み出しIC16ごとの平均値の数も8個になり、最大値や最小値の抽出処理を容易に行うことが可能となる。
 一方、実際の放射線画像撮影装置1では、信号線6やそれに対応する読み出し回路17は数千から数万あり、上記のいずれの場合も、その全てについてそれぞれ移動平均を算出し、各読み出し回路17ごとに読み出された各画像データdからそれぞれ移動平均を減算しなければならず、処理に時間がかかる可能性がある。
 そして、このように上記の各処理に時間がかかる場合には、画像データdの各読み出し処理ごとに放射線の照射が開始されたか否かの判断等を遅れ、後述するように、線欠陥が隣接する複数の走査線5に連続して現れるといった問題等が生じる可能性がある。
 そこで、図18に示したように、読み出しIC16に、それぞれ各読み出し回路17が例えば128個や256個等の所定個数ずつ形成されていることを利用して、上記のように各読み出し回路17ごとに読み出された各画像データdからそれぞれ移動平均を減算する代わりに、例えば、1回の読み出し処理で、1個の読み出しIC16について各読み出し回路17から出力される128個の画像データdの読み出しIC16ごとの平均値を先に算出するように構成することが可能である。
 このように構成すれば、1回の読み出し処理ごとの読み出しIC16ごとの各画像データdの平均値の個数は、上記の例の場合、読み出しIC16の個数に等しい8個になる。
 そして、これらの8個の読み出しIC16ごとの画像データdの平均値について、それぞれ移動平均を算出し、各平均値から移動平均をそれぞれ減算し、移動平均が減算された各平均値を比較してそれらの中から最大値と最小値を抽出し、最大値から最小値を差し引いた差分Δdを算出し、算出した差分Δdが閾値Δdthを越えた時点で放射線の照射が開始されたことを検出するように構成することが可能である。
 このように構成すれば、上記のように、検出効率を向上させて放射線の照射の開始や終了を的確に検出することが可能となるとともに、1回の読み出し処理で各読み出し回路17で読み出される1024個の画像データdについて移動平均を算出する必要はなく、8個の読み出しIC16ごとの画像データdの平均値に対して移動平均を算出すればよくなる。
 そのため、移動平均の算出や、画像データdの平均値からの移動平均の減算、最大値および最小値の抽出、差分Δdの算出、差分Δdと閾値Δdthとの比較の一連の各処理を速やかに行うことが可能となり、画像データdの読み出し処理ごとに行われる放射線の照射が開始されたか否かの判断等を、速やかに行うことが可能となる。
 また、このように読み出しIC16ごとに各画像データdの平均値を算出するように構成すれば、読み出しIC16内の多数の読み出し回路17ごとに発生する電気ノイズが画像データdの平均値を算出する際に互いに相殺されるため、各読み出し回路17で発生する電気ノイズの画像データdやその移動平均に対する影響を低減させることが可能となるといった利点もある。
[構成4-2]
 一方、放射線画像撮影装置1によっては、図19に模式的に示すように、もともとシンチレータ3が基板4上に設けられた検出部Pより小さく形成される場合がある。なお、図19においても、走査線5は図中の左右方向に、また、信号線6は図中の上下方向にそれぞれ延在するように配線されているものとする。
 そして、このように構成されている場合、検出部P上のシンチレータ3直下の位置、すなわち照射された放射線がシンチレータ3で変換された電磁波が入射し得る位置に設けられた各放射線検出素子7では、放射線画像撮影装置1に放射線が照射されると、画像データdが上昇する。
 しかし、検出部P上のシンチレータ3直下以外の位置、すなわちシンチレータ3からの電磁波が入射しない検出部P上の位置(図中に斜線を付して示す位置C参照)に設けられた各放射線検出素子7では、放射線画像撮影装置1に放射線が照射されても、電磁波が当該放射線検出素子7には入射しないため、画像データdは上昇しない。
 そして、前述したように、いずれの位置の放射線検出素子7に接続されているTFT8においても、バイアス電源14や電源回路15aで発生したノイズがバイアス線9や走査線5を介して各放射線検出素子7や各TFT8に同時に伝達される。そのため、バイアス電源14等で発生したノイズが、読み出される各画像データdに重畳される。
 そこで、これを利用して、制御手段22で、シンチレータ3から照射された電磁波が入射し得る検出部P上の位置(すなわちシンチレータ3直下の位置)の各放射線検出素子7から読み出された画像データdから、シンチレータ3から照射された電磁波が入射しない検出部P上の位置(すなわちシンチレータ3直下以外の位置)に設けられた各放射線検出素子7から読み出された画像データdを差し引いた差分Δdを算出する。そして、上記と同様に、算出した差分Δdが閾値Δdthを越えた時点で放射線の照射が開始されたことを検出するように構成することが可能である。
 なお、上記のように構成して差分Δdを算出する場合、後者の、シンチレータ3から照射された電磁波が入射しない検出部P上の位置(すなわちシンチレータ3直下以外の位置)に設けられた各放射線検出素子7から読み出された画像データdとして、例えば、上記の位置Cの各放射線検出素子7から読み出された画像データdのうちの1つの画像データdを選択して用いるように構成することも可能であり、それらの画像データdの平均値を算出して後者の画像データdとして用いるように構成することも可能である。
 このように、放射線画像撮影装置1が図19に示したように構成されている場合に、上記のように各処理を行って差分Δdを算出するように構成することで、少なくとも画像データdに重畳されているバイアス電源14等に由来するノイズ成分を除去することが可能となり、画像データdのS/N比を改善することが可能となる。
 そして、閾値Δdthを適切な値に設定して、算出した差分Δdに基づいて放射線の照射が開始されたことを検出するように構成することで、放射線の照射開始を的確に検出することが可能となる。
 なお、この[構成4-2]の場合も、各読み出し回路17ごとに読み出された各画像データdには、各読み出し回路17の読み出し特性に起因するオフセット分がそれぞれ重畳される。そのため、上記の[構成4-1]の場合と同様に、読み出し処理を行うごとに、当該読み出し処理の直前の読み出し処理を含む所定回数分の過去の各読み出し処理で読み出された、位置Cの各放射線検出素子7から読み出された画像データdの移動平均を、各読み出し回路17ごとに算出したり、今回の読み出し処理で読み出された画像データdからこの移動平均を減算して、この減算した値を今回の読み出し処理で当該読み出し回路17で読み出された画像データdとする等の処理が行われることが好ましい。
 また、この場合、各読み出し回路17で読み出された画像データdから移動平均を減算した値を画像データdとする処理を、常時行うように構成するか、或いは、照射される放射線の線量率が非常に低い場合にのみ行うように構成するかは適宜決められる。
[構成5]
 また、画像データdのS/N比を改善して検出効率を向上させる構成として、前述したチャージアンプ回路で構成された増幅回路18のコンデンサ18bの容量を可変できるように構成しておき、放射線画像撮影前の画像データdの読み出し処理の際には、増幅回路18のコンデンサ18bの容量cfが、放射線画像撮影後の画像データDの読み出し処理の際の容量よりも小さくなるように可変するように構成することも可能である。
 前述したように、増幅回路18は、放射線検出素子7から放出されて流れ込みコンデンサ18bに蓄積された電荷Qに応じた電圧値を出力するが、コンデンサ18bの容量cfが小さくなるように可変させることで、V=Q/cfの関係に従って、コンデンサ18bに同じ電荷量Qが蓄積された場合でも、増幅回路18から出力される電圧値Vを大きくすることができる。
 その際、放射線検出素子7から放出された電荷Qに元々重畳されているノイズ成分、すなわち例えば上記のようなバイアス電源14等に由来するノイズ成分については、増幅回路18から出力される電圧値Vが大きくなることでノイズ成分も大きくなり、S/N比の改善に寄与しないが、少なくとも増幅回路18を含む読み出し回路17で発生するノイズ成分については電圧値Vが大きくなってもノイズ成分は大きくならない。
 従って、この場合は、少なくとも増幅回路18を含む読み出し回路17で発生するノイズ成分についてS/N比を改善することが可能となり、S/N比を改善して放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能となる。
 なお、コンデンサ18bの容量cfをあまり下げすぎると、コンデンサ18bが各放射線検出素子7から放出された電荷Qで飽和し易くなるが、コンデンサ18bが飽和すると、当該コンデンサ18bを備える読み出し回路17での次回以降の読み出しに悪影響を及ぼす場合がある。そのため、コンデンサ18bの容量cfは適切な値に低下されるように調整される。また、放射線画像撮影後に行われる画像データDの読み出し処理の際には、コンデンサ18bの容量cfは、通常の所定の容量に戻される。
 また、読み出し回路17の増幅回路18を、例えば、図20に示すように構成することで、増幅回路18のコンデンサ18bの容量を可変できるように構成することが可能となる。
 具体的には、チャージアンプ回路で構成された増幅回路18のオペアンプ18aに並列に接続するコンデンサを、図8に示したように1つのコンデンサ18bとする代わりに、各コンデンサC1~C4をそれぞれ並列に接続する。そして、各コンデンサC2~C4にスイッチSw1~Sw3をそれぞれ直列に接続するように構成する。なお、コンデンサC1にもスイッチを直列に接続するように構成することも可能である。
 そして、スイッチSw1~Sw3のオン/オフを切り替えることで、増幅回路18のコンデンサ18bの容量を可変できるように構成することが可能となる。なお、この場合、コンデンサ18bの容量cfは、コンデンサC1の容量と、スイッチSw1~Sw3のうちオン状態とされたスイッチに直列に接続されているコンデンサC2~C4の各容量との合計値になる。
 なお、増幅回路18のコンデンサ18bの容量cfを下げなくても十分にS/N比が良好な状態で画像データdを読み出すことができるような場合には、前述したようにコンデンサ18bが各放射線検出素子7から放出された電荷Qで飽和することによる悪影響が生じることを防止することを重視する観点から、上記の場合とは逆に、放射線画像撮影前の画像データdの読み出し処理の際に、コンデンサ18bの容量cfを、放射線画像撮影後の画像データDの読み出し処理の際の容量よりも大きくなるように可変させるように構成することも可能である。
 この場合も、放射線画像撮影後の画像データDの読み出し処理の際には、画像データDを正確に読み出すことが必要となるため、コンデンサ18bの容量cfは、通常の所定の容量に戻される。
[構成6]
 また、図78に示したように、走査線5のあるラインLiにオン電圧が印加されて放射線検出素子7iから画像データdiが読み出される場合、画像データdiは、実際には、当該放射線検出素子7iから放出された電荷Qと、同じ信号線6に接続されている他の放射線検出素子7からTFT8を介してリークした電荷qとの合計値に相当するデータとなる。
 そのため、これらの他の放射線検出素子7からリークする電荷qを多くすることで、画像データdをより大きくして、画像データdのS/N比を改善することが可能である。
 図5に示したTFT8の断面構造を模式的に表した図21に示すように、TFT8は、そのゲート電極8gにオフ電圧が印加されているため、TFT8の半導体層82のゲート電極8g側(図21中では下側)が電子の密度が小さい状態になっている。
 そして、この半導体層82のゲート電極8g側の電子密度が小さい領域を正孔が流れることによって、オフ状態のTFT8内を電荷qがリークすると考えられている。なお、この場合、本実施形態では、ソース電極8sに接続されている放射線検出素子7の第2電極78(図21では図示省略)に逆バイアス電圧が印加されているため、リーク電流は、相対的に電位が高いドレイン電極8d側から、半導体層82のゲート電極8g側の領域を通って、相対的に電位が低いソース電極8s側に流れる。
 一方、放射線画像撮影装置1に放射線が照射されて、シンチレータ3(図21中では図示省略)で放射線から変換された電磁波が照射されると、シンチレータ3は図中では上側に設けられているため、電子正孔対は、主にTFT8の半導体層82のシンチレータ3側(図21中では上側)で発生する。
 そして、上記のように、半導体層82のシンチレータ3側では電子密度が比較的高くなっているため、発生した正孔が電子と再結合する確率が高くなる。そのため、前述したように、放射線の照射によりシンチレータ3から電磁波が照射されることで、TFT8の半導体層82内で電子正孔対が発生し、オフ状態のTFT8内を流れるリーク電流の量が増加するが、キャリアである正孔の一部は電子と再結合してしまうため、リーク電流の増加率を低減させてしまう。
 そこで、TFT8の半導体層82のシンチレータ3側でも電子密度が低い領域を形成すれば、キャリアである正孔が、半導体層82のゲート電極8g側の領域と、半導体層82のシンチレータ3側の領域の2つのチャネルを流れるようになり、放射線検出素子7からリークする電荷qの量をより大きくすることが可能となる。そして、リークする電荷qの量を大きくすることで、画像データdのS/N比を改善して検出効率を向上させることが可能となる。
 TFT8の半導体層82のシンチレータ3側にも電子密度が低い領域を形成するためには、例えば、図22や図23に示すように、各TFT8のシンチレータ3(図22や図23では図示が省略されており、図22中の放射線検出素子7やTFT8の上側に設けられている。)側に配線85を配置し、少なくとも放射線画像撮影前に繰り返し行われる読み出し処理の際に、配線85に負の電圧を印加するように構成することが可能である。
 具体的には、配線85は、ITO等の、シンチレータ3から照射される電磁波を透過する導電性材料で形成され、例えば、図23に示すように、各走査線5に平行に、走査線5と同数設けられる。そして、少なくとも放射線画像撮影前に繰り返し行われる読み出し処理の際には、例えば、走査駆動手段15から各走査線5に印加されるオフ電圧と同じ負の電圧が印加されるように構成される。
 なお、各配線85に印加する負の電圧は、必ずしもオフ電圧と同じ値の負の電圧である必要はなく、上記のように、TFT8の半導体層82のシンチレータ3側に電子密度が低い領域を的確に形成することができる電圧に設定される。また、各配線85に、走査駆動手段15の電源回路15aからオフ電圧を印加するように構成することも可能であり、また、他の電源回路から負の電圧を印加するように構成することも可能である。
 また、上記のように、他の放射線検出素子7からリークする電荷qの量を増加させる措置は、放射線画像撮影前の読み出し処理で読み出される画像データdを、放射線の照射開始の検出用に用いるための措置であり、放射線画像撮影後の読み出し処理で、本画像として画像データDを読み出す際には、読み出される画像データDに重畳される他の放射線検出素子7からリークした電荷qの成分は少ない方が良い。
 そのため、少なくとも放射線画像撮影装置1に対する放射線の照射後に行われる画像データdの読み出し処理の際には、各放射線検出素子7からの画像データDの読み出しに悪影響を与えないようにするために、各配線85への負の電圧の印加は停止され(すなわちフローティング状態とされ)、または0[V]等の所定の電圧が印加される。
 さらに、図22では、配線85やバイアス線9を、放射線検出素子7やTFT8の上方に積層して形成した第1平坦化層80aの上面(すなわち図示しないシンチレータ3側の面)上に形成し、その上方にさらに第2平坦化層80bを形成する場合が示されているが、配線85を形成する形態はこの形態に限定されず、TFT8の半導体層82のシンチレータ3側に電子密度が低い領域を形成することができるものであれば、配線85を適宜の位置に配置することが可能である。
[構成7]
 また、本発明者らの研究では、例えば、バイアス電源14が、その内部に設けられている図示しない抵抗器の抵抗値を可変させることができるように構成されている場合には、抵抗器の抵抗値が大きくなるように可変させると、バイアス電源14由来のノイズが低減されることが分かっている。
 バイアス電源14の抵抗器の抵抗値を大きくすると、それがいわゆるローパスフィルタのように機能して、特に高い周波数のノイズを低減することができる。そこで、例えば、放射線画像撮影前の画像データdの読み出し処理の際には、バイアス電源14内の抵抗器の抵抗値が大きくなるように抵抗値を可変させるように構成することが可能である。
 そして、このように構成すれば、画像データdに重畳されるノイズのうち、少なくともバイアス電源14に由来するノイズの高周波数成分のノイズを除去することが可能となり、その分だけ画像データdのS/N比が改善される。そのため、画像データdのS/N比を改善して検出効率を向上させることが可能となる。
 なお、この場合も、バイアス電源14内の抵抗器の抵抗値は、少なくとも放射線画像撮影後の画像データDの読み出し処理の際には、元の通常の抵抗値に戻される。
 なお、上記の構成1~構成7を適宜組み合わせて構成することも可能である。
[線欠陥が隣接する複数の走査線に連続して現れることの防止等について]
 前述したように、放射線画像撮影前の画像データdの読み出し処理の際に、放射線画像撮影装置1に放射線が照射されている最中に読み出し処理が行われた放射線検出素子7からは、放射線の照射により発生した電荷(すなわち本画像として読み出されるべき画像データD)の一部が流出して、画像データdとして読み出される。
 そのため、そのような各放射線検出素子7について、放射線画像撮影後の読み出し処理で読み出された画像データDは、本来読み出されるべきデータの一部が既に放射線画像撮影前の読み出し処理で画像データdとして読み出されて失われてしまっているものであるため、信頼がおけないものとして無効とし、破棄するように構成される場合がある。この場合、当該放射線検出素子7が接続されている各走査線5が線欠陥とされる。
 上記のモデル構成の場合について、図12に示したように、例えば、放射線画像撮影装置に対する放射線の照射が、実際には、走査線5のラインLnにオン電圧が印加されて読み出し処理が行われた時点では既に開始されているにもかかわらず、検出効率が低いため、例えば、走査線5のラインLn+2にオン電圧を印加して読み出し処理が行われた時点で、放射線の照射が開始されたことが検出されたものとする。
 すると、走査線5のラインLn~Ln+2が線欠陥となるが、この場合、図24に示すように、線欠陥が走査線5の隣接する複数のラインLn~Ln+2に連続して現れるようになる。そして、これらの連続する線欠陥に対して、例えば走査線5のラインLn-1やラインLn+3に接続されている各放射線検出素子7の画像データDで補間する等して修復すると、前述したように、線欠陥とされた各走査線5の部分に撮影されていた患者の病変部の情報が補間等の修復により失われてしまう虞れがある。
 それに対して、例えば、上記の[構成1]で説明したように、放射線画像撮影前の画像データdの読み出し処理の際のTFT8のオン時間を、放射線画像撮影後の画像データDの読み出し処理の際のオン時間よりも長くなるように構成すると、放射線の照射が開始されたことを検出する際の検出効率が向上する。
 そのため、図25に示すように、放射線画像撮影装置に対する実際の放射線の照射が開始された時点t1、すなわち図13に示したように走査線5のラインLnにオン電圧が印加されて読み出し処理が行われた時点t1で、読み出される画像データdの値が急増し、閾値dthを越えるため、この時点t1で放射線の照射が開始されたことを検出することが可能となる。そのため、この場合は、図79に示したように、走査線5のラインLnのみが線欠陥となる。
 このように、放射線の照射が開始されたことを検出する際の検出効率を向上させることで、放射線画像撮影装置に対する実際の放射線の照射が開始された時点で行われていた読み出し処理で読み出された画像データdが、予め設定された閾値dthを越えるようになる。そのため、線欠陥が隣接する複数の走査線5に連続して現れることを防止することが可能となる。
 また、仮に実際の放射線の照射開始時点で放射線の照射が開始されたことが検出できなくても、検出効率が向上されているため、その直後の読み出し処理で読み出された画像データdに基づいて放射線の照射が開始されたことが的確に検出される。そのため、線欠陥が生じる走査線5の本数を的確に低減することが可能となる。
 また、[構成1]のように構成した場合のみならず、上記の[構成2]~[構成7]のように構成した場合やそれらの構成を組み合わせた構成においても、同様に、線欠陥が隣接する複数の走査線5に連続して現れることを防止し、或いは線欠陥が生じる走査線5の本数を的確に低減することが可能となる。
 また、以下に述べる各構成を採用することによっても、線欠陥が隣接する複数の走査線5に連続して現れることを防止、或いは線欠陥が生じる走査線5の本数を的確に低減することが可能となる。
[構成8]
 図12に示したモデル構成をベースにして説明すると、上記の[構成1]~[構成7]の場合も同様であるが、例えば、図26に示すように、放射線画像撮影前の画像データdの読み出し処理の際に、走査駆動手段15から、ある走査線5にオン電圧を印加した後、次の走査線5にオン電圧を印加するまでの周期(以下、略してゲート周期という。)を、放射線照射終了後の画像データFの読み出し処理の際のゲート周期よりも長くなるように構成することが可能である。
 このように構成すれば、放射線画像撮影前の画像データdの読み出し処理において、放射線画像撮影装置1に放射線が照射された場合、ゲート周期の間に、放射線の照射により各放射線検出素子7内で発生し蓄積される電荷の量が、例えば図12に示したモデル構成の場合よりも多くなる。
 そのため、放射線画像撮影装置に対する実際の放射線の照射が開始された時点やその直後の読み出し処理で読み出される画像データdの値が大きくなり、閾値dthを越える可能性が高まる。そのため、線欠陥が隣接する複数の走査線5に連続して現れることを防止し、或いは線欠陥が生じる走査線5の本数を低減することが可能となる。
 なお、この場合、ゲート周期は、少なくとも放射線画像撮影後の画像データDの読み出し処理の際には、元の通常のゲート周期に戻される。
[構成9]
 上記では、放射線画像撮影装置1の検出効率を向上させる等して、線欠陥が隣接する複数の走査線5に連続して現れることを防止したり線欠陥を生じる走査線5の本数を低減する場合について説明した。しかし、一方で、放射線画像撮影装置1に放射線を照射する図示しない放射線発生装置側で、放射線の照射開始時に、照射する放射線の線量の立ち上がりが遅く、放射線画像撮影装置1に照射される放射線の線量が、いわば緩慢に増加するような放射線発生装置がある。
 このような放射線発生装置から放射線画像撮影装置1に放射線を照射する場合、放射線画像撮影装置1側の検出効率が向上されていても、放射線画像撮影前の読み出し処理で読み出される画像データdは、例えば図11に示したように増加し、実際に放射線の照射が開始された時点と、放射線画像撮影装置1で放射線の照射が開始されたことを検出した時点とがずれてしまう。そのため、放射線画像撮影装置1側の検出効率が向上されていても、線欠陥が隣接する複数の走査線5に連続して現れる状態になってしまう場合がある。
 このような場合には、例えば、放射線画像撮影前の画像データdの読み出し処理では、走査駆動手段15のゲートドライバ15bから、走査線5のあるラインLnにオン電圧を印加したタイミングの次のタイミングでは、走査線5のラインLnに検出部P上で隣接する走査線5のラインLn-1やラインLn+1以外の走査線5にオン電圧を印加するようにして、走査線5の各ラインL1~Lxにオン電圧を順次印加して放射線検出素子7からの画像データdの読み出し処理を行うように構成することが可能である。
 具体的には、例えば、図27に示すように、走査駆動手段15から走査線5の奇数番目のラインL1、L3、L5、L7、…にオン電圧を順次印加させた後、続いて、走査線5の偶数番目のラインL2、L4、L6、L8、…にオン電圧を順次印加させるように構成することが可能である。
 また、図示を省略するが、走査駆動手段15のゲートドライバ15bを構成するゲートIC12a(図6参照)に、走査線5が例えば128本ずつ接続されている場合、例えば、1番目のゲートIC12aの1番目の端子に接続されている走査線5のラインL1にオン電圧を印加した次のタイミングで、2番目のゲートIC12aの1番目の端子に接続されている走査線5のラインL129にオン電圧を印加し、その後、順次、各ゲートIC12aの1番目の端子にそれぞれ接続されている走査線5のラインL257、L385、…にオン電圧を印加する。
 続いて、各ゲートIC12aの2番目の端子にそれぞれ接続されている走査線5のラインL2、L130、…にオン電圧を順次印加し、続いて、各ゲートIC12aの3番目の端子にそれぞれ接続されている走査線5のラインL3、L131、…にオン電圧を順次印加する。この動作を、オン電圧を印加する各ゲートIC12aの端子を1つずつずらしながら、走査線5の全てのラインL1~Lxにオン電圧を順次印加して、各放射線検出素子7からの画像データdの読み出し処理を行うように構成することも可能である。
 このように、走査線5のあるラインLnにオン電圧を印加したタイミングの次のタイミングでは、走査線5のラインLnに検出部P上で隣接する走査線5のラインLn-1やラインLn+1にオン電圧を印加するように構成されていなければ、どのようなタイミングで走査線5の各ラインL1~Lxにオン電圧を順次印加するように構成することも可能である。
 このように構成すれば、上記のように放射線発生装置から照射する放射線の線量の立ち上がりが遅く、図28に示すように、実際に放射線の照射が開始された時点でオン電圧が印加されていた走査線5のラインLnやその次にオン電圧が印加された走査線5のラインLn+2で放射線の照射開始を検出できず、その次の走査線5のラインLn+4にオン電圧が印加された時点で初めて放射線の照射が開始されたことを検出したとしても、線欠陥が生じる走査線5は、図29に示すように、走査線5のラインLn、Ln+2、Ln+4のようになり、線欠陥が生じる走査線5が互いに離間した状態で現れるようになる(すなわちいわば飛び飛びに現れる状態になる)。
 そのため、線欠陥が隣接する複数の走査線5に連続して現れることを的確に防止することが可能となる。
 また、線欠陥の周囲の走査線5のラインLn-1、Ln+1、Ln+3、Ln+5は、図28に示したように、走査線5のラインLn、Ln+2、Ln+4にオン電圧が印加されるタイミングよりも前のタイミングでオン電圧が印加されており、放射線の照射が開始された時点では確実にオフ電圧が印加されているため、各放射線検出素子7から電荷が流出することがない。
 そのため、線欠陥の周囲の走査線5のラインLn-1、Ln+1、Ln+3、Ln+5に接続されている各放射線検出素子7からは、放射線画像撮影後の画像データDの読み出し処理で、電荷が欠損することなく読み出されるため、それらの各放射線検出素子7から読み出された画像データDは確実に正常な値となる。
 そのため、無効として破棄して線欠陥とした走査線5の各ラインLn、Ln+2、Ln+4に接続されている各放射線検出素子7の画像データDを、これらの正常な値の画像データDを用いて、適切に修復することが可能となる。
 なお、上記のように、ゲートドライバ15bを構成する各ゲートIC12aごとに1本ずつ走査線5にオン電圧を順次印加するように構成する場合には、128本の走査線5に1本の割合で線欠陥が現れる状態になる。
[放射線の照射開始の検出時期を早めるための構成等について]
 なお、放射線画像撮影装置の中には、例えば図30や図31に示すように、検出部Pが、複数の領域に分割されて構成されているものもある。
 例えば、図30に示した放射線画像撮影装置1aでは、検出部P上で、各信号線6がその延在方向の途中で分断されており、検出部Pが2つの領域Pa、Pbに分割されている。また、例えば、図31に示した放射線画像撮影装置1bでは、検出部P上で、各走査線5がその延在方向の途中で分断されており、検出部Pが2つの領域Pc、Pdに分割されている。なお、図示を省略するが、例えば、検出部P上で、各走査線5と各信号線をともにそれらの延在方向の途中で分断させて、検出部Pを例えば4つの領域に分割するように構成することも可能である。
 以下、図30の場合を例に挙げて説明すると、このように構成されている場合には、各領域Pa、Pbの各走査線5は各入出力端子11を介してそれぞれ別々のゲートドライバ15bに接続されており、各ゲートドライバ15bから各領域Pa、Pbの各走査線5にそれぞれ独立のタイミングでオン電圧を印加させるように構成することができるように構成されている場合がある。
 そこで、このような場合、放射線画像撮影前の画像データdの読み出し処理の際に、1つの領域Paに対応するゲートドライバ15bから、当該領域Paの各走査線5にオン電圧を印加するタイミングが、他の領域Pbに対応するゲートドライバ15bから当該他の領域Pbの各走査線5にオン電圧を印加するタイミングと同時にならないようにして、各走査線5にオン電圧を順次印加して読み出し処理を行うように構成することが可能である。
 具体的には、例えば検出部Pが図31に示すように2つの領域Pa、Pbに分割されており、領域Paに対応するゲートドライバ15bから走査線5の各ラインLに対してラインL1、L2、L3、…の順にオン電圧を順次印加し、領域Pbに対応するゲートドライバ15bからは走査線5の各ラインLに対してラインLx、Lx-1、Lx-2、…の順にオン電圧を順次印加して読み出し処理を行うように構成されているものとする。
 そのような場合、例えば図32に示すように、放射線画像撮影前の画像データdの読み出し処理の際に、領域Paに対応するゲートドライバ15bから走査線5の各ラインL1、L2、L3、…にオン電圧を印加するタイミングが、他の領域Pbに対応するゲートドライバ15bから走査線5の各ラインLx、Lx-1、Lx-2、…にオン電圧を印加するタイミングと同時にならないようにオン電圧を印加して、読み出し処理を行うように構成することが可能である。
 上記のモデル構成のような場合のように、走査線5の各ラインL1、L2、…、Lx-1、Lxの順にオン電圧を印加する場合には、例えば走査線5のラインL1にオン電圧を印加したタイミングで放射線の照射開始が検出されなかった場合、次の走査線5のラインL2にオン電圧を印加して行われる読み出し処理まで、放射線の照射が開始されたか否かの判断を行うことができない。これは、図27に示したようにオン電圧を印加する場合等でも同様である。
 しかし、図32に示したように構成すると、例えば領域Paの走査線5のラインL1にオン電圧を印加したタイミングで放射線の照射開始が検出されなかった場合、同じ領域Paの走査線5のラインL2にオン電圧を印加して行われる読み出し処理まで待つことなく、領域Pbの走査線5のラインLxにオン電圧を印加して行われる読み出し処理で放射線の照射が開始されたか否かの判断を行うことが可能となる。
 このように、検出部Pの各領域Pa、Pbで、各領域Pa、Pbに対応する各ゲートドライバ15bから各領域Pa、Pbの各走査線5にオン電圧を印加するタイミングが同時にならないようにして各走査線5にオン電圧を順次印加して読み出し処理を行うように構成することで、放射線の照射が開始されたことの検出時期を早めることが可能となり、放射線画像撮影装置1に対する放射線の照射が開始されると、迅速にそれを検出することが可能となる。
[放射線の照射開始の検出後の処理について]
 次に、上記のようにして、制御手段22が、放射線画像撮影前に繰り返し行われる画像データdの読み出し処理で読み出された画像データdに基づいて、すなわち画像データdが閾値dthを越えたと判断して、放射線の照射が開始されたことを検出した後の各処理について説明する。
 なお、以下では、放射線画像撮影前の処理として、[構成1](図13参照)で説明したように走査線5の各ラインL1~Lxにオン電圧を順次印加する場合について説明するが、上記の各構成や各処理を行うことが可能であることは言うまでもない。
[電荷蓄積モードへの移行および電荷蓄積モードにおける処理]
 制御手段22は、上記のようにして放射線の照射が開始されたことを検出すると、図13に示したように、放射線画像撮影前の画像データdの読み出し動作を停止させて、走査駆動手段15から走査線5の全てのラインL1~Lxにオフ電圧を印加して、各TFT8をオフ状態とした状態を維持して電荷蓄積モードに移行する。図13に示したように、例えば走査線5のラインLnにオン電圧を印加して読み出された画像データdに基づいて放射線の照射開始を検出した場合には、その時点で電荷蓄積モードに移行する。
 そして、電荷蓄積モードにおいては、例えば、予め放射線の照射時間より長い時間に設定された所定時間待機した後、放射線画像撮影後の画像データDの読み出し処理に移行するように構成することが可能である。
 また、例えば、以下のように構成することにより、放射線の照射の終了を検出することも可能である。
 図78を用いて説明したように、各放射線検出素子7からは、TFT8を介して僅かずつ電荷qがリークする。そして、放射線画像撮影装置1に放射線が照射され、その放射線がシンチレータ3で電磁波に変換され、この電磁波が各TFT8に照射されると、このリークする電荷qが増加する。そして、放射線画像撮影装置1に対する放射線の照射が終了すると、リークする電荷qは元の小さい値に戻る。
 これを利用して、放射線画像撮影装置1に対する放射線の照射が終了したことを検出することができる。
 具体的には、電荷蓄積モードで、走査線5の全てのラインL1~Lxにオフ電圧を印加した状態で、図33に示すように、各読み出し回路17を動作させる。すなわち、画像データdの読み出し処理の場合と同様に、読み出し回路17の増幅回路18の電荷リセット用スイッチ18c(図8参照)をオフ状態として、コンデンサ18bに電荷が蓄積される状態として、制御手段22から相関二重サンプリング回路19にパルス信号Sp1、Sp2を送信してサンプリングを行わせるが、その間、各TFT8のオン/オフ動作は行わない。
 このように各読み出し回路17を動作させると、図34に示すように、オフ状態とされた各TFT8を介して各放射線検出素子7からリークした各電荷qが、増幅回路18のコンデンサ18bに蓄積される。そのため、増幅回路18からはこの蓄積された電荷、すなわち各放射線検出素子7からリークした電荷qの合計値に相当する電圧値が出力され、図34では図示を省略した相関二重サンプリング回路19でサンプリングされて、データが出力される。
 以下、このデータを、各放射線検出素子7からリークした電荷qに基づくデータという意味で、リークデータDleakという。
 上記のように、放射線画像撮影前の画像データdの読み出し処理で放射線の照射が開始されたことが検出され、走査線5の全てのラインL1~Lxに印加する電圧をオフ電圧に切り替えた後、各読み出し回路17による読み出し動作を続行させて、このリークデータDleakの読み出し処理を行わせる。
 すると、リークデータDleakの読み出し処理が開始された時点では、放射線画像撮影装置1に放射線が照射されており、各放射線検出素子7からTFT8を介してリークする電荷qが増加している状態であるため、図35に示すように、読み出されるリークデータDleakの値は大きい状態である。
 そして、リークデータDleakの読み出し処理を続けると、放射線画像撮影装置1に対する放射線の照射が終了した時点(図中の時刻t2参照)で、各放射線検出素子7からTFT8を介してリークする電荷qが低下して元の小さな値に戻るため、図35に示すように、読み出されるリークデータDleakの値が減少する。
 そこで、例えば、制御手段22は、このリークデータDleakの値を監視し、リークデータDleakの値が予め設定された閾値Dleak_th以下になった時点で、放射線の照射が終了したと判断するように構成することが可能である。
 このように、放射線画像撮影装置1自体で放射線の照射が終了したことを検出するように構成すれば、放射線の照射の終了を検出した後、すぐに画像データDの読み出し処理を開始することが可能となり、画像データDの読み出し処理以降の処理を迅速に行うことが可能となる。
 特に、放射線画像撮影装置1を用いた放射線画像撮影では、外部のコンピュータ等で画像データDに対して本格的な画像処理を行って診断用放射線画像を生成する前に、プレビュー画像を作成して表示し、放射線技師等がそのプレビュー画像を見て、被写体が放射線画像上に撮影されているか否かや被写体が放射線画像上の適切な位置に撮影されているか否か等を確認するように構成される場合が多い。
 その場合には、再撮影の要否を迅速に判定し、再撮影が必要であれば速やかに再撮影を行うようにすることで被写体となる被験者にかかる負担を軽減することが可能となるが、上記のように、放射線の照射の終了後、速やかに画像データDの読み出し処理を開始することが可能となることで、プレビュー画像を速やかに表示することが可能となり、放射線技師等が迅速に再撮影の要否を判定することが可能となるといった利点がある。
 また、図13に示したように、放射線の照射開始後の電荷蓄積モードにおいて、通常の放射線画像撮影の場合と同様に、読み出し回路17による読み出し動作を停止させて所定時間待機するように構成すれば、電荷蓄積モードでリークデータDleakの読み出し処理を行わずに済み、放射線画像撮影装置1の電力消費を抑制することが可能となるといった利点がある。また、走査線5の全てのラインL1~Lxにオフ電圧を印加し、各読み出し回路17の差動を停止させるだけなので、制御構成が簡単になるといった利点もある。
 なお、図35では、時刻t2で放射線の照射の終了を検出した後もリークデータ読み出し処理を引き続き行ってリークデータDleakを読み出す場合が示されているが、これはあくまで放射線の照射に伴ってリークデータDleakがどのように変化するかを示すための実験例であり、実際には、時刻t2で放射線の照射の終了を検出すると、リークデータ読み出し処理を停止し、すぐに画像データDの読み出し処理が開始される。
[画像データDの読み出し処理について]
 図13に示した場合には所定時間が経過した時点で、また、図33等に示したように電荷蓄積モードでリークデータDleakの読み出し処理を行う場合には放射線の照射の終了を検出した時点で、制御手段22は、図13に示したように、続いて、走査駆動手段15から走査線5の各ラインL1~Lxにオン電圧を順次印加させ、読み出し回路17に順次読み出し動作を行わせて、各放射線検出素子7からそれぞれ画像データDを読み出す画像データDの読み出し処理を行わせる。
 画像データdの読み出し処理では、図9や図10に示したように走査駆動手段15や読み出し回路17等を作動させ、読み出された画像データdが記憶手段40(図7等参照)に順次保存される。
 なお、図13では、画像データDの読み出し処理において、走査線5の最初のラインL1から順番にオン電圧を順次印加して読み出し処理を行う場合を示したが、例えば図36に示すように、画像データDの読み出し処理では、放射線画像撮影前の画像データdの読み出し処理において放射線の照射が開始されたことを検出した走査線5(図36の場合は走査線5のラインLn)の次にオン電圧を印加すべき走査線5(図36の場合は走査線5のラインLn+1)からオン電圧を順次印加するように構成することも可能である。
 このように構成すると、放射線画像撮影前の画像データdの読み出し処理と、放射線画像撮影後の画像データDの読み出し処理を、同じ処理のシーケンスで行うことが可能となるといった利点がある。また、他の点でも優れた効果があるが、その点については第4の実施形態で説明する。
 以上のように、本実施形態に係る放射線画像撮影装置1によれば、放射線画像撮影前から各走査線5にオン電圧を順次印加して画像データdの読み出し処理を行い、読み出した画像データdの値に基づいて放射線画像撮影装置1に対して放射線の照射が開始されたことを検出する。そのため、放射線画像撮影装置1自体で放射線の照射開始を検出することが可能となる。
 そして、その際に、放射線画像撮影前の画像データdの読み出し処理の際のオン時間を、放射線画像撮影後の本画像としての画像データDの読み出し処理の際のオン時間よりも長くするように制御する等の構成を採用することによって、放射線の照射が開始されたことを検出する際の検出効率を的確に向上させることが可能となる。
 そして、このように放射線の照射が開始されたことを検出する際の検出効率を向上させることが可能となるため、実際に放射線画像撮影装置1に対する放射線の照射が開始された時点で放射線の照射が開始されたことを検出することが可能となるため、線欠陥が1本の走査線5のみに生じるようになり、線欠陥が隣接する複数の走査線5に連続して現れることを的確に防止することが可能となる。
 また、仮に実際の放射線の照射開始時点で放射線の照射が開始されたことが検出できない場合であっても、上記のように検出効率が向上されているため、その直後の読み出し処理で読み出された画像データdに基づいて放射線の照射が開始されたことが的確に検出される。そのため、線欠陥が生じる走査線5の本数を的確に低減することが可能となる。
 そして、このように、線欠陥となる走査線5を1本のみとし、或いは線欠陥が生じる走査線5の本数が的確に低減されるため、線欠陥とされた画像データDを例えば周囲の画像データDを用いて修復したとしても、例えば線欠陥の部分に撮影されていた患者の病変部の情報が失われてしまうことが的確に回避される。そして、上記の画像データDに基づいて生成される放射線画像中にも病変部の情報が現れるようになるため、生成された放射線画像を医療における診断用等に的確に用いることが可能となる。
[画像データDの修復処理について]
 ここで、放射線画像撮影後の読み出し処理で本画像として読み出された画像データDに対する修復処理について説明する。
 その際、放射線画像撮影装置1は、上記のように、走査線5のあるラインLnにオン電圧が印加されて読み出された画像データdが閾値dthを越えた時点で放射線の照射が開始されたことを検出するものであり、例えば図11に示したように、図示しない外部の放射線発生装置から放射線画像撮影装置1に対して実際に放射線の照射が開始されて、読み出される画像データdの値が上昇しても、画像データdの値が閾値dthを越えない限りは、放射線画像撮影装置1は、実際に放射線の照射が開始されていることを認識することができない。
 そのため、放射線画像撮影装置1自体では、実際に放射線の照射がいつ開始されたかを検出することができない点に注意する必要がある。そして、実際に放射線の照射が開始されてから放射線の照射が開始されたことを検出するまでの間に、何本の走査線5にオン電圧が印加されて画像データdの読み出し処理が行われたか、すなわちどの走査線5を線欠陥とすべきかを、放射線画像撮影装置1自体が把握することはできない。
 そこで、例えば、線欠陥とすべき走査線5の本数を予め設定しておくように構成することが可能である。本実施形態では、上記のように、検出効率が向上されているため、線欠陥とすべき走査線5の本数を予め1本と設定しておき、放射線の照射が開始されたことを検出した時点でオン電圧が印加されていた走査線5のみを線欠陥とするように構成しても、実際上、何ら問題を生じない。
 また、より厳密に画像処理を行う場合には、例えば、放射線画像撮影装置1に放射線を照射した放射線発生装置から照射される放射線の線量の立ち上がりの情報(すなわちどの程度速やかに立ち上がるかついての情報)や、放射線画像撮影装置1で走査線5のあるラインLにオン電圧を印加してから次の走査線5のラインLにオン電圧を印加するまでの時間間隔すなわち前述したゲート周期等を考慮して、それらの撮影条件に応じて、線欠陥とすべき走査線5を決定するように構成することが可能である。
 さらに、例えば、放射線画像撮影が終了した後、画像処理用のコンピュータ等の外部装置等で(或いは放射線画像撮影装置1で画像処理を行う場合は放射線画像撮影装置1で)画像処理を行い、得られた画像データd等に基づいて放射線画像を生成する際に、放射線画像撮影装置1が放射線の照射の開始を検出した走査線5のラインLnを含む何ライン分の走査線5を線欠陥とするかを割り出すように構成することも可能である。
 この場合、例えば、放射線画像撮影前の画像データdの読み出し処理で、走査線の各ラインL1~Lxに接続されている各放射線検出素子7から順次読み出された画像データdの値の推移(例えば図11や図25等参照)を解析し、放射線発生装置から実際に放射線の照射が開始された時点を割り出して、線欠陥とすべき走査線5を決定するように構成することも可能である。
 具体的には、前述したように、放射線画像撮影装置1に対する放射線の照射が開始されると読み出される画像データdの値が増加するため、例えば図11に示したように推移する画像データdを解析すると、時刻t1で放射線の照射開始を検出した走査線5を含む3本の走査線5が線欠陥とされる。また、図25に示したように推移する画像データdを解析すると、時刻t1で放射線の照射開始を検出した走査線5のみが線欠陥とされることになる。
 また、このように放射線画像撮影前の読み出し処理で読み出された画像データdを解析する代わりに、或いはそれと併用して、放射線画像撮影後の読み出し処理で読み出された本画像である画像データDを解析して、線欠陥とすべき走査線5の本数を決定するように構成することも可能である。
 例えば、放射線画像撮影後の読み出し処理で読み出された画像データD(正確には画像データDから後述するオフセット補正値Oを減算した値)を走査線の各ラインL1~Lxごとにプロットした場合の画像データDの推移が、例えば図37に示すように推移している場合、この画像データDの値の推移を解析すると、走査線5の各ラインLn-2~Lnを線欠陥とすべきであることが分かる。
 このようにして、まず、線欠陥とすべき走査線5を、例えば放射線の照射が開始されたことを検出した時点でオン電圧が印加されていた走査線5のみとしたり、撮影条件に応じて決定したり、或いは画像データdや画像データDを解析して決定する。
 次に、上記のようにして決定した線欠陥とされた走査線5に接続されている各放射線検出素子7から読み出された画像データDに対して修復処理を行うが、その際、前述したように、線欠陥の部分の画像データDを信頼性が低いものとして無効とし、破棄するように構成することが可能である。
 本実施形態では、上記のように、線欠陥が1、2本の走査線5に生じるようになり、図79や図80に示したような状態で現れる。また、放射線画像撮影前の画像データdの読み出し処理で例えば図27等に示したように各走査線5にオン電圧を印加した場合には図29に示したように、線欠陥がいわば飛び飛びに現れる状態になる。
 そこで、上記のように、線欠陥の部分の画像データDを破棄するように構成する場合には、例えば、それらの周囲の画像データDを用いて線形補間等の手法によって破棄した画像データDを修復するように構成することができる。
 すなわち、図79の場合には例えば走査線5のラインLn-1、Ln+1、図80の場合には例えば走査線5のラインLn-1、Ln+2に接続されている各放射線検出素子7の画像データDを用いてそれぞれ修復する。また、図29の場合の走査線5のラインLnの線欠陥は例えば走査線5のラインLn-1、Ln+1、走査線5のラインLn+2の線欠陥は例えば走査線5のラインLn+1、Ln+3、走査線5のラインLn+4の線欠陥は例えば走査線5のラインLn+3、Ln+5を用いてそれぞれ修復するように構成することができる。
 一方、本実施形態では、上記のように、放射線画像撮影前の読み出し処理で画像データdが読み出されているため、この画像データdを用いて本画像である画像データDを修復するように構成することも可能である。なお、この場合は、線欠陥とされた走査線5に接続されている各放射線検出素子7から読み出された画像データDは破棄されない。
 そして、それらの各放射線検出素子7については、本来、放射線画像撮影後の読み出し処理で本画像として読み出される画像データDの一部が、放射線画像撮影前に画像データdとして読み出されたと見なすことができる。そのため、画像データDを修復する方法として、画像データDと画像データdを単に加算して修復することが考えられる。
 なお、この場合、画像データDにも画像データdにもそれぞれ暗電荷に起因するオフセット分が重畳されているため、それらの値を差し引いて両者が加算される。画像データDに重畳されるオフセット分はオフセット補正値Oとも呼ばれ、後述する第2の実施形態で詳しく説明する。
 そして、画像データD中に含まれている、放射線の照射により各放射線検出素子7内で発生した電荷のみに起因するデータ、すなわち暗電荷分を含まないデータを真の画像データDというとすると、真の画像データDは、各放射線検出素子7ごとに、
  D=D-O  …(1)
の演算を行うことにより算出される。
 また、画像データdに重畳されているオフセット分として上記のオフセット補正値Oを用いることは困難であるが、上記のように、放射線画像撮影前に繰り返し行われる読み出し処理で読み出される画像データdのうち、放射線の照射が開始される以前に読み出された画像データdは、放射線の照射により発生した電荷分を含まず、暗電荷のみに起因するデータであるため、画像データdに対するオフセット分として用いることができる。
 これを画像データdに対するオフセット補正値oと呼ぶこととすると、放射線画像撮影前の読み出し処理で、放射線の照射が開始されてから放射線の照射開始が検出されるまでの間に読み出された画像データd中に含まれている、放射線の照射により各放射線検出素子7内で発生した電荷のみに起因するデータ、すなわち暗電荷分を含まないデータを真の画像データdは、各放射線検出素子7ごとに、
  d=d-o  …(2)
の演算を行うことにより算出される。なお、画像データdに対するオフセット補正値oを実験等により予め有しておくように構成することも可能である。
 そして、線欠陥とされた走査線5に接続されている各放射線検出素子7について、上記の真の画像データDと真の画像データdとを加算することによって、当該各放射線検出素子7から本来読み出されるべき真の画像データDを修復することが可能となる。
 しかし、前述した図78を用いて説明したように、放射線の照射が開始されてから放射線の照射開始が検出されるまでの間に読み出された画像データd中には、上記の放射線の照射により各放射線検出素子7内で発生した電荷のみに起因するデータや、暗電荷に起因するデータのほかに、放射線の照射により当該放射線検出素子7が接続されている信号線6に接続されている他の放射線検出素子7からリークする電荷qの増加分も含まれている。
 そのため、上記(2)式に従って、画像データdからオフセット補正値oを減算して真の画像データdを算出すると、真の画像データdは、前述した真の画像データDの一部そのものの値にはならず、それに、上記の他の放射線検出素子7からリークする電荷qの放射線の照射による増加分が加算された値になる。
 上記のように、真の画像データDと真の画像データdとを単純に加算する構成は、上記の他の放射線検出素子7からリークする電荷qの放射線の照射による増加分を無視するものであるが、そもそも本実施形態では発生する線欠陥の本数を非常に少なく本数に抑制することができるため、この方法によっても、真の画像データDを比較的良好に修復することができる。
 また、これらの他の放射線検出素子7からリークする電荷qの放射線の照射による増加分を修正して加算するように構成することも可能であり、その場合、例えば、上記(2)式に従って算出した真の画像データdに乗ずる係数を予め設定しておき、その係数を乗算した真の画像データdを真の画像データDに加算するように構成することが可能である。
 そして、この場合、上記の係数は、例えば、放射線画像撮影装置1に照射された放射線の単位時間あたりの線量すなわち線量率等に応じて値が変わる係数等とすることが可能である。また、係数を一定値とすることも可能であり、適宜設定される。このように構成すれば、上記の放射線が照射されている間に生じる現象の影響を排除して、各放射線検出素子7の真の画像データDをより的確に修復することが可能となる。
[第2の実施の形態]
 上記の第1の実施形態では、放射線画像撮影前の画像データdの読み出し処理や、放射線の照射開始の検出後の電荷蓄積モードへの移行、放射線画像撮影後の画像データDの読み出し処理までの各処理について説明した。
 第2の実施形態では、放射線画像撮影後の画像データDの読み出し処理後に行われる、オフセット補正値Oを取得するための処理について説明する。
 オフセット補正値Oはダーク読取値とも呼ばれ、電荷蓄積モードに移行して各TFT8がオフ状態とされていた間に、放射線の照射により各放射線検出素子7内で発生して蓄積される電荷とは別に、放射線検出素子7自体の熱(温度)による熱励起等によって発生した暗電荷等が各放射線検出素子7内に蓄積されたデータに相当し、画像データDのオフセット分に相当する。
 オフセット補正値Oの値、すなわち画像データD中にどの程度のオフセット分が含まれているかは、画像データDの値を見ただけでは分からないため、別途、オフセット補正値Oを得るための処理が必要となる。そのため、通常、放射線画像撮影の前または後に、放射線画像撮影装置1に放射線を照射せずに、各TFT8をオフ状態とした状態で放射線画像撮影装置1を放置した後、画像データDの読み出し処理と同様にして各放射線検出素子7から蓄積された暗電荷等を読み出すことで、各放射線検出素子7ごとにオフセット補正値Oが取得される。
 そして、外部のコンピュータ等で行われる放射線画像の生成処理で、上記の(1)式に示したように各画像データDからそれぞれオフセット補正値Oを減算して、放射線の照射により発生した電荷のみに由来する真の画像データDが算出され、この真の画像データDに基づいて放射線画像が生成される。
 従って、このオフセット補正値Oを的確に取得することができないと、各画像データDからオフセット補正値Oを減算して得られる真の画像データDが正常な値ではなくなり、それに基づいて生成される放射線画像が異常なものとなったり、画質が劣化したものとなってしまう。
 そこで、本実施形態では、放射線画像撮影装置1でオフセット補正値Oを的確に取得するための処理について説明する。
 なお、本実施形態では、オフセット補正値Oを放射線画像撮影後に取得する場合について説明する。また、上記のように、各放射線検出素子7からオフセット補正値Oを読み出す処理は、図9や図10に示した画像データDの読み出し処理と同様にして行われるが、以下、それと区別して、オフセット補正値読み出し処理という。
 ここで、オフセット補正値Oを取得する際の前提となる事項について説明する。
[前提1]
 オフセット補正値Oは、上記のように、各TFT8がオフ状態とされていた間に放射線検出素子7内で発生して蓄積された電荷(暗電荷)に相当するものであるが、より正確に言えば、本実施形態や第1の実施形態では、放射線画像撮影前の画像データdの読み出し処理の際に、走査線5のあるラインLnに印加したオン電圧をオフ電圧に切り替えた後、放射線画像撮影後の画像データDの読み出し処理で走査線5の当該ラインLnに印加したオン電圧をオフ電圧に切り替えるまでの間に、放射線検出素子7内で発生して蓄積された電荷に相当するものである。
 なお、以下では、上記のように、放射線画像撮影前の画像データdの読み出し処理の際に走査線5のあるラインLnに印加したオン電圧をオフ電圧に切り替えてから。放射線画像撮影後の画像データDの読み出し処理で走査線5の当該ラインLnに印加したオン電圧をオフ電圧に切り替えるまでの間の時間間隔を、実効蓄積時間という。
[前提2]
 この実効蓄積時間は、放射線画像撮影前の画像データdの読み出し処理における処理のシーケンスと、放射線画像撮影後の画像データDの読み出し処理における処理のシーケンスとによって、走査線5の各ラインL1~Lxで同じ時間間隔になる場合もあり、異なる時間間隔になる。
 すなわち、例えば、図12に示したモデル構成の場合のように、放射線画像撮影前の画像データdの読み出し処理で、放射線画像撮影後の画像データDの読み出し処理の場合と同じオン時間や同じゲート周期で走査線5の各ラインL1~Lxにオン電圧を印加すると、少なくとも走査線5のラインL1~Ln+2同士では実効蓄積時間が同じになり、走査線5の各ラインLn+3~Lxでは別の長さの実効蓄積時間になるが、走査線5の各ラインLn+3~Lx同士では実効蓄積時間が同じになる。
 一方、例えば、図13に示したように放射線画像撮影前の画像データdの読み出し処理で、放射線画像撮影後の画像データDの読み出し処理の場合よりも長いオン時間としたり、或いは、図26に示したように放射線画像撮影後の画像データDの読み出し処理の場合よりも長いゲート周期にしたりする場合には、走査線5の各ラインL1~Lxにおける実効蓄積時間は異なる時間間隔になる。
 すなわち、例えば図13の場合には、同図を簡略化した図38に示すように、走査線5の各ラインL1~L4におけるTFT8の実効蓄積時間T1~T4が、各走査線5ごとに異なる時間間隔になる。
 また、図13において放射線画像撮影後の画像データDにおける読み出し順を替えた場合を示した図36の場合でも、同図を簡略化した図39に示すように、走査線5の各ラインL1~L4におけるTFT8の実効蓄積時間T1~T4が、各走査線5ごとに異なる時間間隔になる。
[前提3]
 本発明者らが行った実験では、オフセット補正値Oは、TFT8の実効蓄積時間には必ずしも線形に(すなわち比例して)増加するものではないことが分かっている。これは、上記のように放射線を照射しない状態で放射線画像撮影装置1を放置した場合に各放射線検出素子7内で発生する暗電荷の発生速度が時間変化に対して非線形であるためと考えられる。なお、オフセット補正値Oは、TFT8の実効蓄積時間が同じであれば、同じ値になる。
 以上の各事項を前提として、オフセット補正値Oを取得するための処理を、以下の各構成例のようにして構成することが可能である。
[オフセット補正値Oを取得するための処理]
[構成A]
 上記の前提3で述べたように、オフセット補正値Oは、TFT8の実効蓄積時間に比例する形では増加しないが、TFT8の実効蓄積時間が同じであれば同じ値になる。そこで、例えば、以下のようにして、走査線5の各ラインLごとのTFT8の実効蓄積時間を、画像データDの読み出し処理とオフセット補正値読み出し処理とで同じ実効蓄積時間になるように構成することができる。
 なお、以下では、図39に示したように走査線5の各ラインL1~L4にオン電圧を順次印加して、放射線画像撮影前の画像データdの読み出し処理と放射線画像撮影後の画像データDの読み出し処理とを行う場合について説明するが、他の構成の場合についても同様に説明される。
 また、以下では、走査線5が各ラインL1~L4で構成されている場合について説明するが、以下の説明が、図7等に示したように、検出部Pに走査線5の各ラインL1~Lxが数千本から数万本設けられた場合に一般化できることは改めて説明するまでもない。
 例えば、図39に示したように放射線画像撮影前の画像データdの読み出し処理、電荷蓄積モードへの移行、および放射線画像撮影後の画像データDの読み出し処理を行った後、図40に示すように、それらの各処理と同じタイミングで走査駆動手段15から走査線5の各ラインL1~L4に印加する電圧をオン電圧とオフ電圧との間で切り替え、読み出し回路17に順次読み出し動作を行わせて、画像データdの読み出し処理、電荷蓄積モードへの移行(ただし放射線は照射されない。)、およびオフセット補正値読み出し処理を行うように構成することが可能である。
 つまり、簡単に言えば、画像データDを読み出すまでの処理シーケンス(すなわち画像データdの読み出し処理、電荷蓄積モードへの移行、および画像データDの読み出し処理)と同じ処理シーケンスを、画像データDの読み出し処理後に繰り返して、オフセット補正値Oを読み出す。
 しかし、この場合、画像データDの読み出し処理後の画像データdの読み出し処理では、放射線画像撮影装置1に対する放射線の照射開始等を検出する必要はないため、制御手段22は、第1の実施形態で説明したような画像データdの監視は行わない。また、画像データDの読み出し処理後の画像データdの読み出し処理の代わりに、各放射線検出素子7のリセット処理を行うように構成してもよい。そして、各放射線検出素子7のリセット処理を行うように構成する場合、上記のオン時間やゲート周期は、画像データdの読み出し処理の場合と同じ時間や周期とされる。
 図40に示したように構成すれば、画像データDを読み出す際の処理シーケンスと同じ処理シーケンスでオフセット補正値Oが読み出されるため、上記のように、走査線の各ラインL1~L4ごとのTFT8の実効蓄積時間T1~T4同士が互いに異なる場合であっても、走査線の各ラインL1~L4ごとに見た場合には、画像データDを読み出す際のTFT8の実効蓄積時間と、その後のオフセット補正値Oを読み出す際のTFT8の実効蓄積時間とが同じ時間間隔になる。
 そのため、オフセット補正値O自体は走査線5の各ラインL1~L4ごとにそれぞれ異なる値になるとしても、走査線の各ラインL1~L4ごとに見た場合には、読み出された画像データDに含まれるオフセット分と、オフセット補正値読み出し処理で読み出されたオフセット補正値Oとが同じ値になる。
 そして、各放射線検出素子7ごとに見た場合も、画像データDの読み出し処理で放射線検出素子7から読み出された画像データDに含まれるオフセット分と、その後のオフセット補正値読み出し処理で当該放射線検出素子7から読み出されたオフセット補正値Oとが同じ値になる。
 従って、放射線画像の生成処理の際に、読み出された各画像データDから、オフセット補正値読み出し処理で読み出されたオフセット補正値Oを減算することで、放射線の照射により発生した電荷のみに由来する真の画像データDを各放射線検出素子7ごとに的確に算出することが可能となる。そして、この真の画像データDに基づいて放射線画像を的確に生成することが可能となる。
 なお、放射線画像撮影後の画像データDの読み出し処理を終了した後、上記のように、画像データDを読み出すまでの処理シーケンスと同じ処理シーケンスを繰り返す前に、すなわち、図40における2回目の画像データdの読み出し処理(或いは各放射線検出素子7のリセット処理)の前に、所定回数の各放射線検出素子7のリセット処理を行うように構成することも可能である。
 この場合のリセット処理は、画像データdの読み出し処理の場合と同じオン時間やゲート周期で行われる必要はなく、例えば短いオン時間やゲート周期でリセット処理を高速に繰り返すように構成することも可能である。そして、この場合、リセット処理を所定回数行った後、2回目の画像データdの読み出し処理、或いは画像データdの読み出し処理の場合と同じオン時間やゲート周期で行う各放射線検出素子7のリセット処理を行って電荷蓄積モードを経た後、オフセット補正値読み出し処理が行われる。
 すなわち、オフセット補正値読み出し処理の直前の処理シーケンスが、画像データDを読み出すまでの処理シーケンスと同じ処理シーケンスであればよく、その間に、各放射線検出素子7のリセット処理等の適宜の処理を行うように構成することが可能である。
 上記のように構成する場合、制御手段22は、画像データDの読み出し処理で各放射線検出素子7から読み出された画像データDを記憶手段40(図7等参照)に順次保存させた後、続けて他の撮影を行わない場合には、自動的に同じ処理シーケンスを繰り返してオフセット補正値読み出し処理を行い、読み出されたオフセット補正値Oを記憶手段40に順次保存させる。
 そして、適宜のタイミングで各画像データDと各オフセット補正値Oとを記憶手段40から順次読み出して、それらの画像データをアンテナ装置39(図1、図7等参照)等を介して画像処理を行う外部のコンピュータ等に送信するように構成される。また、制御手段22が自ら各画像データDからオフセット補正値Oを減算する減算処理を行うように構成することも可能である。
[構成B]
 また、例えば、図41に概略的に示すように、画像データDの読み出し処理が終了した後、放射線が照射されない状態で、走査線5の各ラインL1~L4ごとに、画像データDの読み出し処理で走査線5に印加したオン電圧をオフ電圧に切り替えてからオフセット補正値読み出し処理で走査線5に印加したオン電圧をオフ電圧に切り替えるまでのTFT8の実効蓄積時間が、図39に示したTFT8の実効蓄積時間T1~T4とそれぞれ同じになるようなタイミングでオフセット補正値読み出し処理を行うように構成することが可能である。
 すなわち、簡単に言えば、走査線5の各ラインL1~L4ごとに、放射線画像撮影前の画像データdの読み出し処理から放射線画像撮影後の画像データDの読み出し処理までの時間間隔(すなわちTFT8の実効蓄積時間T1~T4)と、画像データDの読み出し処理からオフセット補正値読み出し処理までの時間間隔(実効蓄積時間)が同じになるように、それぞれオフセット補正値読み出し処理を行う。
 また、図示を省略するが、画像データDの読み出し処理が終了した後で、一旦各放射線検出素子7のリセット処理を行った後、この各放射線検出素子7のリセット処理からオフセット補正値読み出し処理までの時間間隔が、放射線画像撮影前の画像データdの読み出し処理から放射線画像撮影後の画像データDの読み出し処理までの時間間隔と同じになるように、それぞれオフセット補正値読み出し処理を行うように構成することも可能である。
 このように構成すれば、画像データDの読み出す処理までのTFT8の実効蓄積時間T1~T4と、オフセット補正値読み出し処理までのTFT8の実効蓄積時間T1~T4とが同じ時間間隔になるため、上記と同様に、各放射線検出素子7ごとに、画像データDに含まれるオフセット分と、オフセット補正値読み出し処理で読み出されたオフセット補正値Oとが同じ値になる。
 そのため、放射線画像の生成処理の際に、読み出された各画像データDからオフセット補正値Oを減算することで、放射線の照射により発生した電荷のみに由来する真の画像データDを各放射線検出素子7ごとに的確に算出することが可能となる。そして、この真の画像データDに基づいて放射線画像を的確に生成することが可能となる。
[構成C]
 一方、図42に示すように、画像データDの読み出し処理を終了した後、すぐに、或いは所定時間経過後に、放射線が照射されない状態で、画像データDの読み出し処理と同じタイミングで走査駆動手段15から走査線5の各ラインL1~L4にオン電圧を順次印加させてオフセット補正値読み出し処理を行うように構成することも可能である。なお、この場合も、画像データDの読み出し処理が終了した後で一旦各放射線検出素子7のリセット処理を行い、その後、オフセット補正値読み出し処理を行うように構成することも可能である。
 この場合、画像データDの読み出し処理からオフセット補正値読み出し処理までの時間間隔(すなわちTFT8の実効蓄積時間)が、走査線5の全てのラインL1~L4で同じ時間間隔Taになる。そのため、この場合、放射線画像撮影前の画像データdの読み出し処理から放射線画像撮影後の画像データDの読み出し処理までの走査線5の各ラインL1~L4ごとのTFT8の実効蓄積時間T1~T4と、画像データDの読み出し処理からオフセット補正値読み出し処理までの時間間隔Taとは同じ時間間隔にならない。
 そのため、走査線の各ラインL1~L4ごとに見た場合、読み出された画像データDに含まれるオフセット分と、オフセット補正値読み出し処理で読み出されたオフセット補正値Oとが同じ値にならず、画像データDからオフセット補正値Oを減算しても、真の画像データDを的確に算出することができない。すなわち、本来の真の画像データDとは異なる値になってしまう。
 そこで、この構成Cの場合には、例えば、予め図43に示すようなTFT8の実効蓄積時間Tと基準となるオフセット補正値Oとの関係を表すテーブルや関係式を実験的に求めておき、そのテーブルや関係式を、放射線画像撮影装置1から送信されてきた画像データDやオフセット補正値Oに基づいて画像処理を行う外部のコンピュータ等に予め保持させておく。なお、この場合、実験は、例えば、放射線画像撮影装置1の読み出し回路17を含む各機能部に長時間通電する等して、各機能部や基板4等の温度等が安定した状態で行われる。
 そして、例えば、画像データDの読み出し処理で走査線5のラインL1に接続されている各放射線検出素子7から読み出された画像データDに含まれるオフセット分(以下、オフセット分O1と表す。)を算出する場合には、コンピュータ等は、まず、上記のテーブルを参照し、或いは上記の関係式に従って、実効蓄積時間T1に対応する基準となるオフセット補正値O1(図43参照)を読み出し、或いは算出する。
 しかし、図43に示したテーブルや関係式を求める際の読み出し回路17の温度等の撮影条件と、実際に放射線画像撮影が行われた撮影条件とが異なるため、このように読み出され或いは算出された基準となるオフセット補正値O1を、そのまま上記のオフセット分O1として用いることができない。
 そのため、例えば、上記のテーブルや関係式に基づいて、実効蓄積時間Taにおける基準となるオフセット補正値Oaを求め、基準となるオフセット補正値O1と上記のオフセット分O1との比が、基準となるオフセット補正値Oaとオフセット補正値読み出し処理で読み出されたオフセット補正値Oとの比に等しい、すなわち、
  O1:O1=Oa:O  …(3)
が成り立つことを利用して、上記(3)式から導出される下記(4)式に従って、読み出されたオフセット補正値Oから上記のオフセット分O1を算出する。
  O1=O×O1/Oa  …(4)
 そして、各画像データDから、上記(4)式に従って算出したオフセット分O1を減算することで、放射線の照射により発生した電荷のみに由来する真の画像データDを各放射線検出素子7ごとに的確に算出することが可能となる。
 また、走査線5のラインL2~L4についても同様にして処理を行い、画像データDの読み出し処理で走査線5のラインL2~L4に接続されている各放射線検出素子7から読み出された画像データDに含まれるオフセット分(すなわちオフセット分O2~O4)を算出し、各画像データDから、算出したオフセット分O2~O4をそれぞれ減算することで、放射線の照射により発生した電荷のみに由来する真の画像データDを各放射線検出素子7ごとに的確に算出することが可能となる。
 そして、上記のように構成することで、構成Cの場合においても、算出した真の画像データDに基づいて放射線画像を的確に生成することが可能となる。
 なお、上記の各構成A~Cでは、画像データDの読み出し処理後に、オフセット補正値読み出し処理を含むオフセット補正値Oを取得するための処理をそれぞれ1回だけ行う場合について説明したが、例えば、オフセット補正値Oを取得するための処理を複数回行うように構成し、各処理で得られた各オフセット補正値Oを、放射線検出素子7ごとに平均し、その平均値を各放射線検出素子7ごとのオフセット補正値Oとして用いるように構成することも可能である。
[第3の実施の形態]
 上記の第2の実施形態では、オフセット補正値Oを取得するために、主に放射線画像撮影後の画像データDの読み出し処理の後に、オフセット補正値読み出し処理を行う場合について説明した。
 一方、上記のように放射線画像撮影ごとにオフセット補正値Oを取得する代わりに、予め各放射線検出素子7ごとのオフセット補正値Oを備えておき、それらを参照してオフセット補正値Oを決定するように構成することも可能である。
 このように構成する場合、上記のように、放射線の照射が開始されたことが検出された時点でオン電圧が印加されていた走査線5の位置によって、各走査線5のTFT8の実効蓄積時間が変わってくることを考慮しなければならない。
 すなわち、例えば簡略化された図39に示したように、放射線画像撮影前の画像データdの読み出し処理で、例えば走査線5のラインL2にオン電圧が印加されて読み出された画像データdに基づいて放射線の照射が開始されたことが検出された場合、走査線5の各ラインL1~L4のTFT8の実効蓄積時間T1~T4は、実効蓄積時間T2が最も短く、実効蓄積時間T3が最も長くなる。
 しかし、仮に走査線5のラインL3にオン電圧が印加されて読み出された画像データdに基づいて放射線の照射が開始されたことが検出された場合には、走査線5の各ラインL1~L4のTFT8の実効蓄積時間T1~T4は、実効蓄積時間T3が最も短く、実効蓄積時間T4が最も長くなる。
 このことを一般化して分かるように、走査線5の各ラインL1~LxにおけるTFT8の実効蓄積時間T1~Txは、放射線の照射が開始されたことが検出された時点でオン電圧が印加されていた走査線5がどの走査線5であるかによって変わる。そして、実効蓄積時間T1~Txが変われば、例えば図43に示したように、各放射線検出素子7のオフセット補正値Oの値も変わる。
 そのため、上記のように、予め各放射線検出素子7ごとのオフセット補正値Oを備えておくように構成する場合には、例えば図44に示すように、予め実験的に、ある走査線5にオン電圧が印加された際に放射線の照射の開始が検出された場合のオフセット補正値O(m,n)を取得して、それらを各放射線検出素子(m,n)にそれぞれ割り当ててオフセット画像poを作成する。
 この場合、各オフセット補正値O(m,n)を取得する処理を1回だけ行うと、取得された各オフセット補正値O(m,n)にはノイズが含まれるため、同一の走査線5にオン電圧が印加された際に放射線の照射開始が検出された場合のオフセット補正値O(m,n)を複数回取得して、例えばそれらのオフセット補正値O(m,n)の各放射線検出素子ごとの平均値を当該放射線検出素子(m,n)のオフセット補正値O(m,n)とするように構成することが好ましい。
 そして、この処理を、放射線の照射開始が検出された際にオン電圧が印加されていた走査線5を替えながら、全ての走査線5についてそれぞれオフセット画像poを作成する。そして、図45に示すように、各走査線5ごとに作成された一群のオフセット画像poを予め記憶手段40(図7等参照)に保存する等して有しておく。
 そして、実際の放射線画像撮影の際に、制御手段22は、放射線画像撮影前の読み出し処理で読み出した画像データdの値に基づいて上記のようにして放射線画像撮影装置1に対する放射線の照射が開始されたことを検出した時点でオン電圧が印加されていた走査線5のラインLnを検出し、そのライン番号(この場合はn)を記憶しておく。
 そして、放射線画像撮影後の各処理で、オフセット補正値Oが必要となった段階で、そのライン番号nに対応する走査線5(すなわち走査線5のラインLn)に対応するオフセット画像poを参照して、当該オフセット画像poで各放射線検出素子(m,n)にそれぞれ割り当てられている各オフセット補正値O(m,n)を割り出して、それらの各オフセット補正値O(m,n)を、各放射線検出素子(m,n)についての各オフセット補正値O(m,n)としてそれぞれ決定するように構成することが可能である。
 ここで、上記のように構成する場合には、オフセット補正値Oが放射線画像撮影装置1の基板4(図3等参照)の温度等によって変化し得る点に注意が必要となる。
 例えば、放射線画像撮影装置1が、図示しない支持台等と一体的に形成された、いわゆる専用機型の放射線画像撮影装置である場合には、例えば放射線画像撮影装置1に常時電力を供給するように構成して、常時撮影可能な状態としておくことができる。その場合、放射線画像撮影装置1の基板4の温度はほぼ一定の温度となる状態が維持されるため、予めオフセット画像poを作成する際に、同じ温度条件の下で作成すれば、上記のようにオフセット画像poに割り当てられたオフセット補正値O(m,n)をそのまま各放射線検出素子(m,n)ごとのオフセット補正値O(m,n)として用いることができる。
 しかし、第1の実施形態で示したような可搬型の放射線画像撮影装置1の場合、バッテリ41(図7参照)から常時電力を供給するように構成すると、バッテリ41の電力の消耗が激しくなり、絶えず充電を強いられる状況になり、撮影効率の低下を招く。
 そのため、このようなバッテリ内蔵型の放射線画像撮影装置1の場合、放射線画像撮影以外の場合には必要な機能部にのみ電力を供給する省電力モード(スリープモードともいう。)に切り替えることができるように構成されている場合が多い。そして、電力の消費を極力抑制するために、放射線画像撮影の直前まで省電力モードとされる場合も少なくない。
 しかし、バッテリ内蔵型の放射線画像撮影装置1がこのように運用されると、実際の放射線画像撮影の際の基板4の温度が、オフセット画像poの作成時における基板4の温度と同じにならず、そのため、オフセット画像poに割り当てられたオフセット補正値Oをそのまま使うことができない場合がある。
 そこで、例えば、放射線画像撮影装置1が図19に示したようにシンチレータ3が基板4上に設けられた検出部Pより小さく形成されている場合には、検出部P上のシンチレータ3直下以外の位置C、すなわちシンチレータ3からの電磁波が入射しない検出部P上の位置Cのうち、同図中のC1の位置の信号線6に接続されている各放射線検出素子7から読み出される画像データdに基づいて、オフセット画像poに割り当てられたオフセット補正値Oを修正して用いるように構成することができる。
 図19中のC1の位置の信号線6に接続されている各放射線検出素子7には、シンチレータ3からの電磁波が入射しないため、放射線画像撮影装置1に放射線が照射されても、これらの放射線検出素子7では放射線の照射による電荷の発生がない状態となっている。そして、これらの放射線検出素子7からは、常時、暗電荷に起因する画像データdが読み出される。そのため、これらの各放射線検出素子7から読み出される画像データdを用いて、放射線画像撮影装置1の基板4の温度が現時点でどの程度の温度になっているかが分かる。
 しかし、放射線画像撮影装置1の基板4の現時点での温度を、これらの各放射線検出素子7から読み出された画像データdに基づいて割り出す必要はなく、暗電荷に起因する画像データdの大きさが、今回の撮影時と、オフセット画像poの作成時とでどの程度変化しているかが分かればよい。そして、それに応じてオフセット画像poに割り当てられたオフセット補正値Oを修正することができる。
 そこで、この場合、例えば、オフセット画像poの作成時に、C1の位置の信号線6に接続されている各放射線検出素子7から読み出された各画像データdの平均値(または合計値。以下同じ)を画像データdの情報として算出しておき、一群のオフセット画像poとともに保存しておく。
 また、実際の放射線画像撮影の際にも、当該信号線6に接続されている各放射線検出素子7から読み出された各画像データdの平均値を算出する。
 そして、上記のように、実際の放射線画像撮影の際に、放射線の照射が開始されたことを検出した時点でオン電圧が印加されていた走査線5に対応するオフセット画像poを参照して、各放射線検出素子(m,n)ごとの各オフセット補正値O(m,n)を割り出した後、例えば、実際の放射線画像撮影の際に算出した各画像データの平均値をオフセット画像poの作成時の各画像データの平均値に除算して算出した割合を、割り出した各オフセット補正値O(m,n)にそれぞれ乗算して、今回の放射線画像撮影における各放射線検出素子7のオフセット補正値O(m,n)を算出して決定するように構成することができる。
 また、上記のようにして算出した割合を割り出した各オフセット補正値O(m,n)に乗算する代わりに、例えば、実際の放射線画像撮影の際に算出した各画像データの平均値からオフセット画像poの作成時の各画像データの平均値を減算して算出した差分を、割り出した各オフセット補正値O(m,n)にそれぞれ加算して、今回の放射線画像撮影における各放射線検出素子7のオフセット補正値O(m,n)を算出して決定するように構成することも可能である。
 このようにして、オフセット画像poで各放射線検出素子(m,n)にそれぞれ割り当てられている各オフセット補正値O(m,n)を、オフセット画像poの作成時の画像データdの情報と、今回の撮影時に読み出された画像データdの情報とに基づいて修正して、各放射線検出素子(m,n)についての各オフセット補正値O(m,n)としてそれぞれ決定することが可能となる。
 また、放射線画像撮影装置1が、図19に示したようにシンチレータ3が基板4上に設けられた検出部Pより小さく形成されていないような場合には、例えば、検出部P上の信号線6のうちの1本或いは複数の信号線6に接続されている各放射線検出素子7とシンチレータ3との間に図示しない遮光板を介在させるように構成する等して、当該各放射線検出素子7を、放射線画像撮影装置1に放射線が照射されても放射線の照射による電荷の発生がない状態とすることができる。
 そして、このような状態とされた各放射線検出素子7を用いて、上記と同様にして、オフセット画像poで各放射線検出素子(m,n)にそれぞれ割り当てられている各オフセット補正値O(m,n)を修正するように構成することが可能もある。
 一方、上記の各実施形態で示したように、本発明では、放射線画像撮影前から画像データdの読み出し処理が繰り返し行われており、放射線画像撮影装置1に対する放射線の照射が開始される前に読み出された画像データdは、暗電荷に起因するデータである。
 そこで、この暗電荷に起因する画像データdを用いて、オフセット画像poで各放射線検出素子(m,n)にそれぞれ割り当てられている各オフセット補正値O(m,n)を修正するように構成することが可能もある。
 すなわち、この場合には、例えば、オフセット画像poの作成時に、放射線画像撮影前の画像データdの読み出し処理を繰り返し行わせて、例えば、検出部P上の全ての各放射線検出素子7或いは所定範囲の各放射線検出素子7から読み出された各画像データdの平均値(または合計値。以下同じ)を画像データdの情報として算出しておく。
 そして、実際の放射線画像撮影の際にも、放射線画像撮影装置1に対する放射線の照射が開始される前の画像データdの読み出し処理で、オフセット画像poの作成時と同じ範囲の各放射線検出素子7から読み出された各画像データdの平均値を算出する。そして、上記と同様に、それらの平均値同士の割合や差分を算出して、今回の放射線画像撮影における各放射線検出素子7のオフセット補正値O(m,n)を算出して決定するように構成することができる。
 上記のようにして、オフセット画像poで各放射線検出素子(m,n)にそれぞれ割り当てられている各オフセット補正値O(m,n)を、オフセット画像poの作成時の画像データdの情報と、今回の撮影時に読み出された画像データdの情報とに基づいて修正して、各放射線検出素子(m,n)についての各オフセット補正値O(m,n)としてそれぞれ決定するように構成することで、放射線画像撮影の前や後にオフセット補正値読み出し処理を行う必要がなくなる。
 そのため、オフセット補正値読み出し処理を行わない分だけ電力の消費を抑制することが可能となるとともに、前述したように、本画像である画像データD等を外部のコンピュータ等に送信して診断用放射線画像を生成したり、プレビュー画像を作成して表示したりする処理を、より迅速に行うことが可能となる。
 ところで、以下のように構成すれば、放射線画像撮影後にオフセット補正値読み出し処理を行うことなく、或いは、上記のように予めオフセット画像poを備えておくことなく、各放射線検出素子7ごとのオフセット補正値Oを取得することができる。
 図12に示したモデル構成の場合、放射線画像撮影前の画像データdの読み出し処理では、放射線画像撮影後の画像データDの読み出し処理の場合と同じオン時間や同じゲート周期で走査線5の各ラインL1~Lxにオン電圧が印加されるため、第2の実施形態の[前提2]で述べたように、少なくとも走査線5のラインL1~Ln+2同士では実効蓄積時間が同じになり、走査線5の各ラインLn+3~Lxでは別の長さの実効蓄積時間になるが、走査線5の各ラインLn+3~Lx同士では実効蓄積時間が同じになる。
 そして、このモデル構成に、図36で示した、画像データDの読み出し処理で、放射線画像撮影前の画像データdの読み出し処理において放射線の照射が開始されたことを検出した走査線5のラインLnの次にオン電圧を印加すべき走査線5のラインLn+1からオン電圧を順次印加して画像データDの読み出し処理を行う構成を適用すると、図46に示すように、走査線5の各ラインL1~Lxにオン電圧が印加される状態になる。そして、このように構成すれば、走査線5の全てのラインL1~Lxで、TFT8の実効蓄積時間が同じになる。
 一方、これまで放射線画像撮影前の画像データdの読み出し処理では、図74に示したように、走査線5の各ラインL1~Lxにオン電圧を順次印加し、走査線5の最終ラインLxにオン電圧を印加した次のタイミングですぐに走査線5の最初のラインL1にオン電圧を印加するようにして、各フレームごとの読み出し処理を繰り返すことを前提に説明した。
 そして、この場合も、TFT8の実効蓄積時間は走査線5の全てのラインL1~Lxで同じになるが、図46に示した場合のTFT8の実効蓄積時間よりも電荷蓄積モードの分だけ短くなっている。
 そこで、放射線画像撮影前の画像データdの読み出し処理において、図74に示したように、走査線5の最終ラインLxにオン電圧を印加した次のタイミングですぐに走査線5の最初のラインL1にオン電圧を印加する代わりに、例えば図47に示すように、1フレーム分の画像データdの読み出し処理が終了した後、電荷蓄積モードにおいて走査線5の全てのラインL1~Lxにオフ電圧を印加する期間と同じ期間だけ走査線5の全てのラインL1~Lxにオフ電圧を印加し、その後、次のフレームの画像データdの読み出し処理を開始するようにして、各フレームごとの画像データdの読み出し処理を繰り返して行うように構成すれば、放射線画像撮影前の画像データdの読み出し処理におけるTFT8の実効蓄積時間と、図46に示した放射線画像撮影時のTFT8の実効蓄積時間とを同じ時間とすることができる。
 そして、このようにして行われる放射線画像撮影前の読み出し処理で、放射線の照射が開始される前のフレームで読み出された画像データdとして、暗電荷に起因する画像データdが読み出されるため、この画像データdを各放射線検出素子7ごとのオフセット補正値Oとして用いることが可能となる。
 この場合、放射線の照射が開始される前の数フレーム分の画像データdすなわちオフセット補正値Oを取得しておき、例えば、それらの複数のオフセット補正値Oの平均値を算出し、算出したオフセット補正値Oの平均値を各放射線検出素子7ごとのオフセット補正値Oとして用いるように構成することも可能である。
 このように構成すれば、放射線画像撮影後にオフセット補正値読み出し処理を行う必要がなく、また、上記のように予めオフセット画像poを備えておく必要もなくなる。また、放射線画像撮影前の画像データdの読み出し処理を、各フレームごとに電荷蓄積モードにおける上記の期間だけおいて行うようにすればよいため、オフセット補正値Oを取得するための処理構成が非常に簡便になる。
 なお、本実施形態では、上記の各処理を、放射線画像撮影装置1の制御手段22が行うことを前提に説明したが、例えば、放射線画像撮影装置1から画像データDや画像データd等の必要なデータを、画像データDに対する画像処理を行う外部の図示しない放射線画像処理装置に送信して、放射線画像処理装置で行うように構成することも可能である。
 この場合、オフセット画像poを用いて各放射線検出素子7のオフセット補正値Oを算出、修正するように構成する場合には、当該放射線画像撮影装置1に関する一群のオフセット画像poの情報を、放射線画像処理装置の図示しない記憶手段に予め保存しておくように構成される。
 また、画像処理の対象となる画像データDが取得された放射線画像撮影において、放射線画像撮影装置1に対する放射線の照射が開始されたことを検出した時点でオン電圧が印加されていた走査線5のラインLnの情報(すなわち当該走査線5のライン番号n等の情報)等の必要な情報が、放射線画像撮影装置1から放射線画像処理装置に適宜送信される。
[第4の実施の形態]
 上記の第2の実施形態では、各TFT8をオフ状態としている間に各放射線検出素子7内で発生し蓄積される、放射線検出素子7自体の熱(温度)による熱励起等によって発生した暗電荷等に起因するオフセット補正値Oを取得する場合の種々の構成について説明した。
 ところで、本発明者らの研究によれば、放射線画像撮影装置1に強い放射線が照射された場合、各放射線検出素子7からの画像データDの読み出し処理を行った後、上記のようにしてオフセット補正値Oを読み出すと、前述したような放射線検出素子7自体の熱(温度)による熱励起等によって発生した暗電荷等に起因するオフセット分だけでなく、それとは別のいわゆるラグ(lag)によるオフセット分が読み出される場合があることが分かっている。
 そして、暗電荷等に起因するオフセット分は、例えば各放射線検出素子7のリセット処理を繰り返すことによって比較的容易に除去されるが、ラグによるオフセット分は、各放射線検出素子7のリセット処理を繰り返し行っても容易には消えないという特徴がある。
 すなわち、暗電荷等に起因するオフセット分は、各放射線検出素子7のリセット処理を繰り返すと、比較的速やかに0に近い値まで低下する。しかし、ラグによるオフセット分は、各放射線検出素子7のリセット処理を繰り返してもなかなか除去できず、リセット処理を繰り返し行っても、放射線を照射しない状態で放射線画像撮影装置1を放置した後でオフセット補正値読み出し処理を行うと、暗電荷等に起因するオフセット分のみの場合よりも大きい値のオフセット補正値Oが読み出される。
 このように、各放射線検出素子のリセット処理を繰り返してもラグによるオフセット分が容易に除去できない理由は、強い放射線の照射により放射線検出素子7内で発生した電子や正孔の一部が、一種の準安定なエネルギーレベル(metastable state)に遷移して、放射線検出素子7内での移動性を失った状態が比較的長時間保たれるためと考えられている。そのため、放射線画像撮影後に例えば各放射線検出素子7のリセット処理を繰り返してもラグによるオフセット分がなかなか除去できない。
 そして、この準安定なエネルギー状態の電子や正孔は、熱エネルギーによって、ある確率で、この準安定なエネルギーよりも高いと考えられるエネルギーレベルの伝導帯に遷移して移動性が復活する。このように、移動性が復活した電子や正孔がいわばじわじわと現れるため、放射線画像撮影後のオフセット補正値読み出し処理で、暗電荷等に起因するオフセット分にラグによるオフセット分が重畳されて、オフセット補正値Oとして読み出されると考えられている。なお、以下、このラグによるオフセット分をOlagと表す。
 なお、このラグによるオフセット分Olagは、強い放射線が照射された場合ばかりでなく、弱い放射線を含む通常の線量の放射線が照射された場合にも生じる。しかし、さほど強くない放射線が照射された場合には、オフセット補正値Oに含まれるラグによるオフセット分Olagの割合が無視できる程度に小さい場合が多い。
 どの程度の線量の放射線が照射された場合にラグによるオフセット分Olagが無視できない程度に大きくなるかは、放射線画像撮影装置1に用いられるフォトダイオード等の放射線検出素子7の性能等によって決まる。そのため、以下で説明する第4の実施形態の手法を、どの程度の線量の放射線が照射された際に用いるかは、放射線画像撮影装置1ごとに適宜決められる。また、常時、第4の実施形態の手法で画像データDの読み出し処理やオフセット補正値読み出し処理を行うように構成することも可能である。
 一方、本発明者らの研究では、放射線画像撮影装置1に放射線が照射された後の画像データDの読み出し処理で、図48に示すように、走査線5の各ラインLnにオン電圧が順次印加されて画像データdが読み出された場合、走査線5の各ラインLnに印加された電圧がオン電圧からオフ電圧に切り替えられた直後からラグによるオフセット分Olagが発生する。
 そして、単位時間あたりに発生するラグによるオフセット分OlagをΔOlagと表すと、この単位時間あたりのラグによるオフセット分ΔOlagは、図48に示すように、走査線5の各ラインLnに印加された電圧がオン電圧からオフ電圧に切り替えられた時点で最も大きく、その後、徐々に減衰していくことが分かっている。そのため、単位時間あたりのオフセット分ΔOlagの時間当たりの積分値として表すことができるラグによるオフセット分Olagは、時間的に図48に示すように増加する値になる。
 そして、ラグによるオフセット分Olagがこのように時間的に増加するため、以下のような問題が生じる。
 前述したように、放射線画像撮影後の画像データDの読み出し処理で読み出される画像データDには、放射線の照射により各放射線検出素子7内で発生した電荷に由来する真の画像データDと、暗電荷等に起因するオフセット分(以下、Odと表す。)とが含まれる。従って、
  D=D+Od  …(5)
の関係が成り立つ。
 また、オフセット補正値読み出し処理で読み出されるオフセット補正値Oには、暗電荷等に起因するオフセット分Odと、ラグによるオフセット分Olagとが含まれる。従って、
  O=Od+Olag  …(6)
の関係が成り立つ。
 そのため、通常の画像処理の仕方に従って、画像データDからオフセット補正値Oを減算すると、暗電荷等に起因するオフセット分Odは相殺されるが、ラグによるオフセット分Olagは相殺されず、
  D-O=(D+Od)-(Od+Olag)
 ∴D-O=D-Olag  …(7)
となる。
 いま、例えば、放射線画像撮影装置1に強い放射線を一様に、すなわち放射線入射面R(図1等参照)の前面に同じ線量の強い放射線を照射した場合を考える。この場合、最終的に得られる各放射線検出素子7ごとの画像データは、同じ値になるはずである。なお、この場合、放射線検出素子7の異常や、読み出し回路17ごとのオフセット分等は考慮しない。
 この場合、放射線の照射により各放射線検出素子7内で発生した電荷に由来する真の画像データDは同じ値になる。しかし、例えば図40に示したように各処理を行うと、走査線5の各ラインL1~L4ごとにTFT8の実効蓄積時間T1~T4が異なるため、図49に示すように、走査線5の各ラインL1~L4ごとのラグによるオフセット分Olag(1)~Olag (4)の値が、互いに異なる値になる。
 そのため、上記のように画像データDからオフセット補正値Oを減算する処理を行うと、上記(7)式中のDは同じ値だが、Olagが走査線5の各ラインL1~L4ごとに異なる値になるため、画像データDからオフセット補正値Oを減算して算出された値D-Oも走査線5の各ラインL1~L4ごとに異なる値になってしまう。
 そのため、算出した値D-Oに基づいて放射線画像を生成すると、放射線画像撮影装置1に強い放射線を一様に照射して撮影を行ったため放射線画像の全域が同じ明るさ(輝度)になるはずであるにもかかわらず、放射線画像の明るさが画像の各領域で僅かずつ異なる状態になってしまう。
 そこで、本実施形態では、これを防止するための1つの方法として、例えば、図50に示すように、放射線画像撮影後の画像データDの読み出し処理において走査線5の各ラインL1~L4(走査線5の各ラインL1~Lxの場合も同様であることは前述した通りである。)にオン電圧を順次印加するタイミングを可変させて、走査線5の全てのラインL1~L4でTFT8の実効蓄積時間T1~T4が同じ時間間隔Tcになるように可変させるように構成することが可能である。
 このように構成すれば、上記の第2の実施形態の[構成A]のように、画像データDを読み出すまでの処理シーケンスと、画像データDの読み出し処理後、オフセット補正値Oを読み出すまでの処理シーケンスとを同じ処理シーケンスにする場合や、[構成B]のように、走査線5の各ラインL1~L4ごとに、画像データDの読み出し処理までのTFT8の実効蓄積時間T1~T4とオフセット補正値読み出し処理までのTFT8の実効蓄積時間T1~T4が同じになるようにオフセット補正値読み出し処理を行う場合には、画像データDの読み出し処理前後のTFT8の実効蓄積時間T1~T4が全て同じ時間間隔Tcになる。
 そのため、上記の例のように、放射線画像撮影装置1に強い放射線を一様に照射した場合には、図48や図49からも分かるように、ラグによるオフセット分Olag(1)~Olag(4)が全て同じ値になる。そして、放射線の照射により各放射線検出素子7内で発生した電荷に由来する真の画像データDは同じ値になるから、上記(7)式に従って算出される値D-Oが、走査線5の全てのラインL1~L4で同じ値になる。
 そのため、算出した値D-Oに基づいて放射線画像を生成すると、放射線画像撮影装置1に強い放射線を一様に照射して撮影を行った場合には、放射線画像の全域が同じ明るさになる。このようにして、上記のような放射線画像上の明るさに段差が生じることを防止することができる。
 なお、上記の第2の実施形態の[構成C]の場合も、画像データDの読み出し処理からオフセット補正値読み出し処理までの時間間隔Ta(図42参照)を、上記の時間間隔Tcと同じ時間間隔とすることで、上記と同様の効果を奏することが可能となる。また、その場合、画像データDの読み出し処理前後のTFT8の実効蓄積時間T1~T4は、全て同じ時間間隔Tcになるため、上記のテーブルや関係式に基づき、上記(4)式に従って暗電荷に起因するオフセット分Od(式中ではO1)を算出する必要もなくなる。
 また、前述したように、このラグによるオフセット分Olagは、強い放射線が照射された場合に問題となり、弱い放射線や通常の線量の放射線が照射された場合には問題にならない場合も多い。
 そこで、例えば、放射線画像撮影装置1に照射される線量に応じて、放射線画像撮影後の画像データdの読み出し処理で走査線5の各ラインL1~Lxにオン電圧およびオフ電圧を印加するタイミングを、通常のタイミングで行わせるモード(第2の実施形態の場合)と、タイミングを可変させて行わせるモード(第4の実施形態の場合)との間で切り替えることができるように構成することも可能である。
 このように構成すれば、本実施形態のように放射線画像撮影後の画像データDの読み出し処理で走査線5の各ラインL1~Lxにオン電圧を順次印加するタイミングを可変させると、放射線画像撮影装置1での各処理に要する時間が、通常のタイミングの場合に比べて若干長くなるが、弱い放射線や通常の線量の放射線が照射された場合には、通常のタイミングで画像データdの読み出し処理を行うことで、このような処理に要する時間が長くなることを防止することが可能となる。
[第5の実施の形態]
 ところで、上記のように、放射線画像撮影前に各放射線検出素子7から画像データdを読み出す読み出し処理においては、通常、ゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加させて、オン電圧を印加する走査線5をシフトさせながら、オン状態とするTFT8を順次切り替えて各放射線検出素子7から画像データdを次々と読み出していく。
 その際、図51に示すように、走査駆動手段15のゲートドライバ15bやそれを構成する複数のゲートIC12aに、走査線5が接続されていない、いわゆる非接続の端子hが存在する場合がある。そして、このような状態で、ゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加するためにオン電圧を印加する端子を順次切り替えていくと、やがて、非接続の端子hにオン電圧が印加される状態になる。
 しかし、非接続の端子hには走査線5が接続されていないため、図52に示すように、非接続の端子hにオン電圧が印加されている間(図中のτ参照)は、走査線5のいずれのラインL1~Lxにもオン電圧が印加されず、いずれの放射線検出素子7からも画像データdが読み出されない状態になる。なお、図52で、1フレームとは、前述したように、検出部P(図3や図7参照)上の全ての走査線5にオン電圧を順次印加して各放射線検出素子7から画像データdを読み出す期間をいう。
 このように、画像データdの読み出し処理のフレーム間に、ゲートドライバ15bやゲートIC12aの非接続の端子hにオン電圧が印加されている期間τ、すなわちいずれの放射線検出素子7からも画像データが読み出されない期間τが存在する場合、その間に、放射線画像撮影装置1に放射線が照射されてしまうと、この期間τの経過後のフレームで読み出し処理が開始された時点で初めて放射線画像撮影装置1に対する放射線の照射が検出されるようになる。
 つまり、この期間τ後のフレームの読み出し処理が開始されないと、放射線の照射を検出することができず、放射線の照射が開始されたことの検出が、実際に放射線の照射が開始された時点よりも遅れてしまうという問題がある。
 放射線の照射開始が検出されると、通常、放射線の照射時間より長い時間に設定された所定時間だけ走査線5の全てのラインL1~Lxにオフ電圧を印加した状態を維持して、放射線の照射により各放射線検出素子7内で発生した有用な電荷を蓄積させるが、上記のように、放射線の照射開始の検出が遅れると、その分だけ、走査線5の全ラインL1~Lxにオフ電圧を印加する状態が長く続く。
 そのため、放射線検出素子7自体の熱による熱励起等により発生する、いわゆる暗電荷が各放射線検出素子7内により多く蓄積されるようになり、読み出される本画像としての画像データDのS/N比が悪化するといった問題が生じ得る。そして、読み出される本画像としての画像データDのS/N比が悪化すると、画像データDに基づいて生成される放射線画像pの画質が劣化するといった問題があった。
 そこで、放射線画像撮影装置1は、放射線画像撮影前の画像データdの読み出し処理等において、画像データd等が読み出されない期間τを生じさせず、或いはこの期間τを極力短くすることが可能で、放射線の照射を的確に検出することが可能であることが望ましい。
 本実施形態では、上記の問題を解決し得る放射線画像撮影装置1について説明する。以下、本実施形態に係る放射線画像撮影装置について、図面を参照して説明する。
 本実施形態では、放射線画像撮影装置1の各機能部における基本的な構成や動作等については上記の各実施形態の場合と同様である。しかし、本実施形態では、図53に示すように、走査駆動手段15のゲートドライバ15b或いはそれを構成するゲートIC12aには、前述した走査線5が接続されていない非接続の端子hが存在している。
 ここで、本実施形態における走査駆動手段15のゲートドライバ15bの構成や駆動のさせ方について説明する。図53は、本実施形態に係る走査駆動手段15の構成およびゲートドライバ15bに対する配線等を表す図である。
 前述したように、本実施形態では、走査駆動手段15のゲートドライバ15bは、複数の前述したゲートIC12aが並設されて構成されており、各ゲートIC12aには、電源回路15aからオン電圧を供給する配線Lonを介してオン電圧が供給されるようになっている。また、各ゲートIC12aには、電源回路15aから図示しない別の配線を介してオフ電圧が供給されるようになっており、この配線Lonとオフ電圧を供給する配線とで、前述した配線15c(図7参照)が構成されている。
 また、図53に示すように、本実施形態では、各ゲートIC12aの両端部には、それぞれ配線Lse1と配線Lse2とが接続されており、各配線Lse1、Lse2はそれぞれ制御手段22に接続されている。そして、各ゲートIC12aには、制御手段22からの配線Lshがそれぞれ接続されている。
 そして、各ゲートIC12aの配線Lse1からシード信号が入力されると、各ゲートIC12aの図中上端の端子がアクティブな状態となり、上記のように電源回路15aから配線Lonを介してオン電圧が供給されると、アクティブな状態になっている当該上端の端子に接続されている走査線5にオン電圧が印加される。
 そして、配線Lshを介してシフト信号が入力されると、アクティブな状態となる端子(以下、アクティブな端子という。)が、この場合は図中の1つ下側の端子に移動する。そして、その状態で電源回路15aから配線Lonを介してオン電圧が供給されると、アクティブな当該端子にオン電圧が印加され、当該端子に走査線5が接続されていれば、その走査線5にオン電圧が印加されるようになる。
 このようにして、各ゲートIC12aは、配線Lse1を介してゲートIC12aにシード信号を入力し、配線Lshを介してシフト信号を次々と入力することで、アクティブな端子を1つずつ移動させることができるようになっている。また、各端子がアクティブな状態となるごとに配線Lonを介して電源回路15aからオン電圧を供給することで、各端子にオン電圧を順次印加し、各端子に接続されている各走査線5にオン電圧を順次印加することができるようになっている。
 そして、本実施形態では、上記のように配線Lse1側から各ゲートIC12aにシード信号を入力すると、各ゲートIC12aの図中下端の端子がアクティブな状態とされた次のタイミングで配線Lse2からシード信号が出力されるようになっている。
 そのため、例えば、図53中の最も上側のゲートIC12aに配線Lse1からシード信号を入力し、配線Lshを介してシフト信号を次々と入力してアクティブな端子をシフトさせて、各走査線5にオン電圧を順次印加した後、配線Lse2を介してシード信号が出力されるタイミングと同じタイミングで、2番目のゲートIC12aに配線Lse1を介してシード信号を入力する。
 そして、配線Lshを介して2番目のゲートIC12aにシフト信号を次々と入力してアクティブな端子をシフトさせて、各走査線5にオン電圧を順次印加した後、配線Lse2を介してシード信号が出力されるタイミングと同じタイミングで、3番目のゲートIC12aに配線Lse1を介してシード信号を入力する。このような制御を繰り返すことで、各ゲートIC12aの各端子に接続されている走査線5の各ラインL1~Lxにオン電圧を順次印加することができるようになっている。
 また、本実施形態では、上記とは逆に、配線Lse2側から各ゲートIC12aにシード信号を入力して、配線Lshを介してシフト信号を次々と入力すると、今度は、各ゲートIC12aの図中下側の端子から順にアクティブな端子が上側にシフトしていくようになっている。
 そのため、例えば、図53中の下側のゲートIC12aに配線Lse2からシード信号を入力し、配線Lshを介してシフト信号を次々と入力してアクティブな端子を上側にシフトさせて、各走査線5にオン電圧を順次印加した後、配線Lse1を介してシード信号が出力されるタイミングと同じタイミングで、その図中上側のゲートIC12aに配線Lse2を介してシード信号を入力する。
 この制御を繰り返すことで、走査線5の各ラインL1~Lxに、ラインLxから順にラインL1に向けてオン電圧を順次印加するように構成することもできるようになっている。
 なお、あるゲートIC12aの配線Lse2とそれに隣接するゲートIC12aの配線Lse1とを互いに接続しておき、1つのゲートIC12aの配線Lse2或いは配線Lse1から出力されたシード信号を、次のゲートIC12aに配線Lse1或いは配線Lse2を介して自動的に入力するように構成することも可能である。
 本実施形態では、上記のような構成の下で、上記の各実施形態と同様にして、放射線画像撮影前に読み出した画像データdに基づいて、放射線画像撮影装置1自体で放射線画像撮影装置1に対する放射線の照射が開始されたことを検出するようになっている。
 ところで、図53に示したように、ゲートドライバ15bを構成する各ゲートIC12aの1つ(或いは複数)に、走査線5が接続されていない、いわゆる非接続の端子hが存在する場合に、上記のようにアクティブな端子を図53中の上側或いは下側に1つずつシフトさせながら各走査線5にオン電圧を順次印加するように構成すると、前述したような問題が生じる(図52参照)。
 すなわち、非接続の端子にオン電圧が印加されている間(図中のτ参照)は、走査線5のいずれのラインL1~Lxにもオン電圧が印加されず、いずれの放射線検出素子7からも画像データdが読み出されないため、画像データdが読み出されない期間τ(図52参照)が生じる。
 そのため、上記のように、放射線画像撮影装置1に対して実際に放射線が照射されると同時に放射線の照射開始を検出することができず、放射線の照射開始の検出が、実際に放射線の照射が開始された時点から遅れてしまい、リアタイムに放射線の照射開始を検出することができなくなるといった問題が生じ得る。
 また、このように放射線の照射開始の検出が遅れる分、各放射線検出素子7内に蓄積される暗電荷の量が多くなり、読み出される本画像としての画像データDのS/N比が悪化するといった問題が生じ得る。
 そこで、本実施形態では、以下の各手法のいずれかを採用することにより、このような問題が生じることを防止して、少なくとも放射線画像撮影装置1に対する放射線の照射が開始されたことを的確に検出するようになっている。
[手法1]
 ゲートドライバ15bを構成するゲートIC12aに、いずれの走査線5とも接続されていない非接続の端子h(図53参照)が存在する場合には、少なくとも放射線画像撮影前の画像データdの読み出し処理においてゲートドライバ15bから各走査線5にオン電圧を順次印加する際に、ゲートIC12aの非接続の端子hにはオン電圧を印加せず、常に走査線5が接続されているいずれかの端子にオン電圧を印加するようにして、ゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加するように走査駆動手段15を構成する。
 すなわち、例えば、図53に示したゲートドライバ15bにおいて、前述したように、各ゲートIC12aに配線Lse1からシード信号を入力し、配線Lshからシフト信号を次々と入力すると、アクティブな端子が図中上側から1つずつシフトし、各タイミングで配線Lonを介して電源回路15aからオン電圧を供給することで、オン電圧が印加される走査線5のラインL1~Lxが順次切り替わり、走査線5の各ラインL1~Lxにオン電圧が順次印加される。
 そして、走査線5の最終ラインLxが接続されている端子がアクティブな状態とされて当該ラインLxにオン電圧が印加されると、その次のタイミングでは、当該ゲートIC12a(図53中の最も下側のゲートIC12a)から配線Lse2を介してシード信号を出力させる。或いは、当該ゲートIC12a内のシード信号をアースする等して当該ゲートIC12a内から強制的に除去する。
 そして、それと同じタイミングで、図53中の最も上側のゲートIC12aに配線Lse1を介してシード信号を入力する。このように構成すれば、走査線5の最終ラインLxにオン電圧が印加された次のタイミングで、走査線5の最初のラインL1にオン電圧を印加するように構成することが可能となる。
 そして、走査線5の最初のラインL1にオン電圧を印加した後、当該ゲートIC12a(すなわち図53中の最も上側のゲートIC12a)にシフト信号を順次入力することで、オン電圧が印加される走査線5を図中下側に順次シフトさせることが可能となる。このようにして、ゲートIC12aの非接続の端子hにはオン電圧を印加せず、常に走査線5が接続されているいずれかの端子にオン電圧を印加するようにして、ゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加するように構成することが可能となる。
 このように構成すれば、放射線画像撮影前の画像データdの読み出し処理において、図52に示したように各フレーム間に走査線5のいずれのラインL1~Lxにもオン電圧が印加されない期間τが生じず、図54に示すように、あるフレームの画像データdの読み出し処理が終了すると続けて次のフレームの画像データdの読み出し処理が開始され、画像データdが時間的に連続して読み出されるようになる。
 そのため、走査線5のいずれのラインL1~Lxにもオン電圧が印加されず画像データdが読み出されない期間τを生じさせないように構成することが可能となり、上記のように放射線の照射開始の検出が遅れる等の問題が発生することを的確に防止して、放射線画像撮影装置1自体で放射線の照射を的確に検出することが可能となる。
 なお、走査線5の各ラインL1~Lxに、走査線5の最終ラインLxから順にラインL1に向けてオン電圧を印加する走査線5(すなわち各ゲートIC12aの各端子)を上側にシフトさせていくようにして、走査線5の各ラインLx~L1にオン電圧を順次印加するように構成される場合も同様である。
 この場合は、走査線5のラインL1およびそれが接続されている端子にオン電圧を印加した次のタイミングで、図53中の最も下側のゲートIC12aにシード信号を入力し、かつ、走査線5の最終ラインLxが接続されている端子にオン電圧を印加するように構成する。そして、オン電圧を印加する端子を順次シフトさせることで、上記と同様に、期間τを生じさせずに、走査線5の各ラインLx~L1にオン電圧を順次印加するように構成することができる。
 また、以下の各手法においても、上記のようにオン電圧を印加する走査線5を、走査線5の最終ラインLxから順次上側の走査線5にシフトさせる場合もあり、そのような場合についての説明を省略するが、オン電圧を印加する走査線5を、走査線5の最初のラインL1から順次下側の走査線5にシフトさせる場合と同様に説明される。
[手法2]
 一方、ゲートIC12aによっては、上記のように、一旦入力されたシード信号を、各端子ごとにシフトさせている途中で、配線Lse2から出力させたり、ゲートIC12a内でアースする等して当該ゲートIC12a内から強制的に除去することができないように構成されている場合もある。
 そこで、このような場合には、例えば、図55に示すように、各ゲートIC12aの各端子にオン電圧を印加する際に、ゲートIC12aの非接続の端子h1、h2、…(図53参照)にオン電圧を印加するタイミングでは、走査線5が接続されている端子にオン電圧を印加する時間間隔よりも短い時間間隔でオン電圧を順次印加するようにして、ゲートドライバ15bを構成する各ゲートIC12aの各端子にオン電圧を順次印加するように構成することが可能である。
 従来の通常の仕方においては、図56に示すように、ゲートIC12aの非接続の端子h1、h2、…にオン電圧を印加するタイミングでは、走査線5が接続されている端子にオン電圧を印加する時間間隔と同じ時間間隔でオン電圧を順次印加するようにして、各ゲートIC12aの各端子にオン電圧を順次印加していた。
 そのため、放射線画像撮影前の画像データdの読み出し処理において、フレーム間に、ゲートIC12aの非接続の端子hにオン電圧が印加されていていずれの放射線検出素子7からも画像データdが読み出されない期間τが長い時間になった。
 それに対し、図55に示したように、ゲートIC12aの非接続の端子h1、h2、…にオン電圧を印加するタイミングで、走査線5が接続されている端子にオン電圧を印加する時間間隔よりも短い時間間隔でオン電圧を順次印加するように構成することで、フレーム間の、ゲートIC12aの非接続の端子hにオン電圧が印加されていていずれの放射線検出素子7からも画像データdが読み出されない期間τを、図56に示した従来の場合よりも短縮することが可能となる。
 そのため、走査線5のいずれのラインL1~Lxにもオン電圧が印加されず画像データdが読み出されない期間τを短縮して、上記のように、放射線の照射開始の検出が遅れたとしても、その遅れを極力短くすることが可能となるとともに、事実上、1フレーム分の画像データdの読み出し処理を終えた後、ほとんど間をおかずに次のフレームの画像データdの読み出し処理を開始することが可能となるため、仮に放射線の照射が期間τ中に開始されたとしても、その後速やかに放射線の照射を的確に検出することが可能となる。
 また、そのため、放射線の照射開始の検出が実際の放射線の照射開始よりも遅れるとしても、その遅れはごく僅かになるため、放射線検出素子内に蓄積される暗電荷の増加量も大きくなく、実際上、読み出される本画像としての画像データDのS/N比はほとんど悪化しない。このように、上記の手法2を採用すれば、事実上、読み出される本画像としての画像データDの悪化を防止して、画像データDのS/N比を良好に維持することが可能となる。
 なお、図55では、ゲートIC12aの非接続の端子h1、h2、…に実際にオン電圧を印加する場合を示したが、上記のように、ゲートIC12aにシフト信号を入力するとアクティブな状態となる端子がシフトしていくが、その際、必ずしも非接続の端子hにオン電圧を印加する必要はない。
 そのため、ゲートIC12aが、アクティブな端子にオン電圧を印加しなくてもアクティブな端子をシフトさせることができるように構成されている場合には、非接続の端子hがアクティブな状態である場合にはオン電圧を印加せずにアクティブな状態のシフトだけを行い、走査線5が接続されている端子がアクティブな状態になった場合にはオン電圧を印加するように構成することが可能である。
 このように構成すれば、非接続の端子hにオン電圧を印加するために電力が無駄に消費されてしまうことを防止することが可能となる。なお、下記の手法3から手法6においても同様に、アクティブな非接続の端子hにはオン電圧を印加しないように構成することが可能である。
 また、図55では、非接続の端子hをアクティブな状態とする時間(図55ではオン電圧が印加されている時間として表現されている。)が、走査線5が接続されている端子をアクティブな状態とする時間と同じ時間になるように設定されている場合が示されているが、上記のように、非接続の端子hについては、アクティブな状態を端子間で単にシフトさせるだけでよいため、上記のように設定する必要はない。
 そこで、例えば、ゲートIC12aに入力するシフト信号を可能な限り短い時間間隔で入力する等して、非接続の端子hがアクティブな状態になっている時間を可能な限り短くしてアクティブな端子を速やかにシフトさせることで、非接続の端子hにオン電圧が印加されていていずれの放射線検出素子7からも画像データdが読み出されない期間τをさらに短縮することが可能となり、上記の効果をより的確に発揮させることが可能となる。
[手法3]
 上記の手法1、2では、複数のゲートIC12aで構成されるゲートドライバ15bに対して1つのシード信号のみを入力できることを前提としているが、シード信号を異なるタイミングで2つ以上入力できる場合には、以下のようにして、上記期間τを生じさせないように構成することができる。
 具体的には、例えば、上記のように、図53に示した最も上側のゲートIC12aから順に、配線Lse1からシード信号を入力して配線Lshからシフト信号を次々と入力するようにして、アクティブな端子を図中上側から順に1つずつシフトさせてオン電圧を印加することで、走査線5の各ラインL1~Lxにオン電圧を順次印加していく。
 そして、図53中の最も下側のゲートIC12aで、走査線5の最終ラインLxにオン電圧が印加された後、次のタイミングで配線Lshを介してシフト信号を入力すると、当該ゲートIC12aの、走査線5の最終ラインLxが接続されている端子の次の非接続の端子h1がアクティブな状態となる。
 そこで、非接続の端子h1をアクティブな状態とするためのシフト信号を入力するタイミングと同じタイミングで、図53中の最も上側のゲートIC12aに配線Lse1からシード信号を入力する。このように制御すると、非接続の端子h1がアクティブな状態となるのと同時に、図53中の最も上側のゲートIC12aの最も上側の、走査線5の最初のラインL1が接続されている端子がアクティブな状態となる。
 すなわち、この時点では、ゲートドライバ15bの2つの端子(すなわちゲートドライバ15bを構成する異なる2つのゲートIC12aの各端子)が同時にアクティブな状態となる。
 そして、この状態で、走査駆動手段15の電源回路15aからゲートドライバ15bにオン電圧が供給されると、非接続の端子h1にオン電圧が印加されると同時に、図53中の最も上側のゲートIC12aの最も上側の端子にもオン電圧が印加されて走査線5の最初のラインL1にオン電圧が印加される。
 そして、続いて、配線Lshを介してシフト信号が入力されると、上記のアクティブな状態とされた端子が2つとも同時に図中下側にシフトし、今度は、非接続の端子h2と、走査線5の2番目のラインL2が接続されている端子とが同時にアクティブな状態となる。そして、電源回路15aからオン電圧が供給されると、非接続の端子h2にオン電圧が印加されると同時に、図53中の最も上側のゲートIC12aの上から2番目の端子にもオン電圧が印加されて走査線5の2番目のラインL2にオン電圧が印加される。
 以降、このような制御を繰り返すことで、アクティブな状態とされる各端子をそれぞれシフトさせて、非接続の端子hの最後の端子がアクティブな状態になるまで、非接続の端子hと、走査線5が接続されている端子との2つの端子が同時にそれぞれアクティブな状態になり、非接続の端子hと走査線5のあるラインLに同時にオン電圧が印加される状態が続く。
 そのため、図57に示すように、走査線5の各ラインL1~Lxについて見た場合、走査線5の最終ラインLxにオン電圧が印加された次のタイミングでは、走査線5の最初のラインL1にオン電圧が印加されて次のフレームの画像データdの読み出し処理が再開されるようになる。
 このように、以上の手法3を採用することで、放射線画像撮影前の画像データdの読み出し処理において、図52に示したように各フレーム間に走査線5のいずれのラインL1~Lxにもオン電圧が印加されない期間τが生じることなく、図57に示したように、あるフレームの画像データdの読み出し処理が終了すると、続けて次のフレームの画像データdの読み出し処理が開始され、画像データdが時間的に連続して読み出されるようになる。
 そのため、走査線5のいずれのラインL1~Lxにもオン電圧が印加されず画像データdが読み出されない期間τを生じさせないように構成することが可能となり、上記のように放射線の照射開始の検出が遅れる等の問題が発生することを的確に防止して、放射線画像撮影装置1自体で放射線の照射を的確に検出することが可能となる。
 なお、この場合、上記のように、走査線5が接続されている端子にオン電圧を印加して当該走査線5にオン電圧を印加すると、それと同時に、非接続の端子hにもオン電圧が印加されて、無駄な電力が消費されたり、或いは、走査線5に印加されているオン電圧の印加状況に何らかの悪影響を及ぼす場合がある。
 そのような場合には、例えば図58に示す走査駆動手段15のように、各端子に走査線5が接続されている各ゲートIC12aにオン電圧を供給する電源回路15aとは別に、非接続の端子hを有するゲートIC12aにオン電圧を供給する第2の電源回路15aを備えるように構成する。
 そして、非接続の端子hを有するゲートIC12aの各端子のうち、走査線5が接続されている端子がアクティブな状態とされるタイミングでは第2の電源回路15aから当該ゲートIC12aにオン電圧を供給し、非接続の端子hがアクティブの状態とされるタイミングでは第2の電源回路15aから当該ゲートIC12aにはオン電圧を供給しないように構成することが可能である。
 このように構成することによって、非接続の端子hにオン電圧を供給して電力を無駄に消費したり、或いは、走査線5に印加されているオン電圧の印加状況に影響を及ぼしてしまうことを的確に防止することが可能となる。
[手法4]
 一方、放射線画像撮影装置の中には、例えば図59や図60に示すように、検出部Pが複数の領域に分割されて構成されているものもある。例えば、図59に示した放射線画像撮影装置1では、検出部P上で、各信号線6がその延在方向の途中で分断されており、検出部Pが2つの領域Pa、Pbに分割されている。
 また、例えば、図60に示した放射線画像撮影装置1では、検出部P上で、各走査線5がその延在方向の途中で分断されており、検出部Pが2つの領域Pc、Pdに分割されている。なお、図示を省略するが、例えば、検出部P上で、各走査線5と各信号線をともにそれらの延在方向の途中で分断させて、検出部Pを例えば4つの領域に分割するように構成することも可能である。
 そして、図59の場合を例に挙げると、検出部Pの各領域Pa、Pbの各走査線5は、図61に示すように、それぞれ別々のゲートドライバ15ba、15bbに接続されており、また、検出部Pの各領域Pa、Pbの各信号線6も、それぞれ別々の読み出しIC16a、16bに接続されている。
 そして、領域Paの各走査線5にはゲートドライバ15baから、また、領域Pbの各走査線5にはゲートドライバ15bbから、それぞれ独立にオン電圧を印加させることができるように構成されている場合がある。なお、図示を省略するが、ゲートドライバ15ba、15bbはそれぞれ複数のゲートIC12aが並設されて構成されており、図61に示すようにそれぞれ末端部分に非接続の端子ha、hbを備えているものとする。
 この場合、例えば、各領域Pa、Pbの境界B側から各読み出しIC16a、16b側に向けて(すなわち領域Paでは図中上側に向けて、また、領域Pbでは図中下側に向けて)、それぞれオン電圧を印加する走査線5をシフトさせるようにして、放射線画像撮影前の画像データdの読み出し処理を行うように構成すると、領域Pa、Pbで同じタイミングで非接続の端子hがアクティブな状態になる場合が生じ得る。
 このように、領域Pa、Pbで同じタイミングで非接続の端子hがアクティブな状態になってしまうと、その間、走査線5のいずれのラインL1~Lxにもオン電圧が印加されず画像データdが読み出されない期間τが生じるため、上記の問題が発生してしまう。
 そこで、手法4では、図59や図60に示したように、検出部P上で各走査線5や各信号線6、或いはその両方が各延在方向の途中で分断されていて検出部Pが複数の領域に分割されており、かつ、各領域ごとにゲートドライバ15bが設けられていて各ゲートドライバ15bに非接続の端子hがそれぞれ存在する場合には、少なくとも放射線画像撮影前の画像データdの読み出し処理では、以下のようにして、走査線5の各ラインLにオン電圧を印加するように構成される。
 すなわち、各ゲートドライバ15ba、15bbから各走査線5にオン電圧を順次印加する際に、一方のゲートドライバ15b(例えばゲートドライバ15ba)において非接続の端子hにオン電圧を印加するタイミングでは、他方のゲートドライバ15b(例えばゲートドライバ15bb)においては走査線5が接続されている端子にオン電圧を印加するようにして、各タイミングでいずれかの走査線5にオン電圧が印加されるようにして、各ゲートドライバ15ba、15bbから走査線5の各ラインLにオン電圧を順次印加する。
 具体的には、例えば、上記のように各領域Pa、Pbの境界B側から各読み出しIC16a、16b側に向けてそれぞれオン電圧を印加する走査線5をシフトさせるようにして画像データdの読み出し処理を行う場合には、オン電圧を印加する走査線5のシフト、すなわちアクティブな状態とする端子のシフトを境界B部分から開始する時期を、領域Paと領域Pbとでずらす。
 すなわち、例えば、領域Paにおける読み出し処理を先に、領域Pbにおける読み出し処理を後で開始させた場合には、領域Paで非接続の端子hがアクティブな状態となっているタイミングでは、領域Pbでは走査線5が接続されている端子がアクティブな状態となるようにし、遅れて領域Pbで非接続の端子hがアクティブな状態となっているタイミングでは、領域Paでは既に次のフレームの読み出し処理に移行していて走査線5が接続されている端子がアクティブな状態となっているように構成する。
 また、この他にも、例えば、各領域Paでは各読み出しIC16a側の非接続の端子h側から境界B側に向けてシフトさせ、領域Pbの境界B側から各読み出しIC16b側の非接続の端子h側に向けてそれぞれオン電圧を印加する走査線5をシフトさせるようにして画像データdの読み出し処理を行うように構成する。すなわち、領域Pa、Pbでともに、図中上側から下側に向けてアクティブな端子をシフトさせるように構成する。
 上記のように構成すれば、各領域Pa、Pbの各ゲートドライバ15ba、15bbから各走査線5にオン電圧を順次印加する各タイミングで、一方のゲートドライバ15bで非接続の端子hがアクティブな状態になっていて当該ゲートドライバ15bに接続されているいずれの走査線5にもオン電圧を印加していない状態になっていても、他方のゲートドライバ15bでは必ず走査線5が接続されているいずれかの端子がアクティブな状態になっていて当該走査線5にオン電圧が印加されている状態になる。
 そのため、この手法4を採用すれば、放射線画像撮影前の画像データdの読み出し処理において、走査線5のいずれのラインL1~Lxにもオン電圧が印加されない期間τが生じることがなくなり、各タイミングで、少なくとも領域Pa、Pbのいずれかの領域で画像データdの読み出し処理が行われるようになる。
 そのため、画像データdを時間的に連続して読み出すことが可能となり、上記のように放射線の照射開始の検出が遅れる等の問題が発生することを的確に防止して、放射線画像撮影装置1自体で放射線の照射を的確に検出することが可能となる。
[手法5]
 上記の手法1から手法4では、走査線5が接続されている端子のみを用いて画像データdの読み出し処理を行ったり(手法1)、非接続の端子hをアクティブな状態とする期間τを短縮したり(手法2)、或いは、非接続の端子hがアクティブな状態になっているタイミングで同時に走査線5が接続されている端子をアクティブな状態にしてオン電圧を印加する(手法3、4)ように構成することで、画像データdが読み出されない期間τを生じさせないようにし、或いは期間τを極力短縮するように構成する場合について説明した。
 このように構成する理由は、前述したように、放射線画像撮影前の読み出し処理で読み出される画像データdが、放射線画像撮影装置1に対して放射線の照射が開始された時点でそれ以前の画像データdよりも格段に大きな値になることを利用して、読み出した画像データdに基づいて放射線画像撮影装置1に対する放射線の照射開始を的確に検出するためであった。
 一方、本発明者らの研究によれば、前述した図33、図34に示したように、各走査線5にオン電圧を印加せずに全ての走査線5にオフ電圧を印加して、各TFT8をオフ状態とした状態で、各TFT8を介して各放射線検出素子7からリークする電荷qを、増幅回路18を含む各読み出し回路17で読み出して得られる前述したリークデータDleakについても、上記の画像データdと同様に、放射線画像撮影装置1に対して放射線の照射が開始された時点でそれ以前のリークデータDleakよりも格段に大きな値になることが分かっている。
 そこで、放射線画像撮影前の画像データdの読み出し処理において、少なくとも上記の期間τの間、すなわち非接続の端子hのみがアクティブな状態とされているために走査線5のいずれのラインL1~Lxにもオン電圧が印加されず、画像データdが読み出されない期間τの間は、画像データdの代わりにこのリークデータDleakを読み出して、読み出されたリークデータDleakに基づいて放射線画像撮影装置1に対する放射線の照射開始を検出するように構成することができる。
 手法5では、このように画像データdとリークデータDleakとに基づいて放射線画像撮影装置1に対する放射線の照射開始を検出する構成について説明する。
 リークデータDleakの読み出し処理についてより詳しく説明すると、ゲートドライバ15bの非接続の端子hがアクティブな状態とされている場合には、走査線5の各ラインL1~Lxにはオフ電圧が印加されている状態になる。
 この状態で、前述した図33に示したように各読み出し回路17を動作させる。すなわち、画像データdの読み出し処理の場合と同様に、読み出し回路17の増幅回路18の電荷リセット用スイッチ18c(図8参照)をオフ状態として、コンデンサ18bに電荷が蓄積される状態として、制御手段22から相関二重サンプリング回路19にパルス信号Sp1、Sp2を送信してサンプリングを行わせるが、その間、各TFT8のオン/オフ動作は行わない。
 このように各読み出し回路17を動作させると、前述した図34に示したように、オフ状態とされた各TFT8を介して各放射線検出素子7からリークした各電荷qが、増幅回路18のコンデンサ18bに蓄積される。そのため、増幅回路18からはこの蓄積された電荷、すなわち各放射線検出素子7からリークした電荷qの合計値に相当する電圧値が出力され、図34では図示を省略した相関二重サンプリング回路19でサンプリングされて、リークデータDleakが読み出される。
 このように構成すると、放射線画像撮影装置1に放射線が照射される以前では、各TFT8を介して各放射線検出素子7iからリークする電荷qは僅かであり、それらの合計値も小さい値であるため、リークデータDleakも小さい値であるが、放射線画像撮影装置1に対する放射線の照射が開始されると、各TFT8を介して各放射線検出素子7からリークする電荷qが大きくなり、それらの合計値が大きくなる。そのため、前述した画像データdの場合の値の上昇と同様に、読み出されるリークデータDleakの値が上昇する。
 そのため、例えば図62に示すように、上記の期間τの間にリークデータDleakを定期的に読み出すように構成し、読み出したリークデータDleakが大きく上昇して、例えば予め設定された閾値を越えた場合に、その時点で放射線画像撮影装置1に対する放射線の照射が開始されたと判断して、放射線の照射開始を検出するように構成することが可能となる。
 そして、図62に示した場合には、放射線画像撮影前に、画像データdの読み出し処理を行っている際には上記のように画像データdの値を監視し、また、非接続の端子hがアクティブな状態とされている期間τ(すなわち走査線5の全てのラインL1~Lxにオフ電圧が印加されている期間τ)の間は図33に示したリークデータDleakの読み出し処理で読み出されたリークデータDleakの値を監視し、画像データdやリークデータDleakのいずれかが大きく上昇した時点で放射線画像撮影装置1に対する放射線の照射開始を検出することが可能となる。
 このように、この手法5を採用することで、放射線画像撮影前の画像データdの読み出し処理において、画像データdの読み出し処理が行われている際には画像データdに基づいて、また、画像データdの読み出し処理が行われていない期間τにはリークデータDleakに基づいて、放射線画像撮影装置1に対する放射線の照射開始を的確に検出することが可能となる。
 そのため、放射線画像撮影装置1に対する放射線の照射を検出できなくなる期間τがなくなり、常時検出することが可能となるため、上記のように放射線の照射開始の検出が遅れる等の問題が発生することを的確に防止して、放射線画像撮影装置1自体で放射線の照射を的確に検出することが可能となる。
 なお、図63に示すように、放射線画像撮影前に読み出される画像データd中には、図34に示した他の放射線検出素子7からリークした電荷qの合計値に相当するリークデータDleakのほか、オン電圧が印加された走査線5(図63では走査線5のラインLi)に接続された放射線検出素子7から放出される暗電荷Qdに起因するデータが含まれる。そのため、読み出されるリークデータDleakの値は、通常、画像データdの値よりも小さな値になる。
 そのため、放射線画像撮影装置1に対して放射線が照射されたか否かの判定に用いられる閾値に関しては、画像データdに対する閾値dth(図11参照)とリークデータDleakに対する閾値とを異なる値に設定することが好ましい。なお、両者に対する閾値として同じ値の閾値を用いるように構成することも可能であり、画像データdやリークデータDleakに対する閾値の値は適宜の値に設定される。
[手法6]
 上記の手法5では、放射線画像撮影前の画像データdの読み出し処理において、非接続の端子hがアクティブな状態とされ、画像データdが読み出されない期間τの間にのみリークデータDleakの読み出し処理を行い、その他の期間には画像データdの読み出し処理を行う場合について説明した(図62等参照)。
 しかし、そもそも、放射線画像撮影前に、画像データdの読み出し処理を行う代わりに、リークデータDleakの読み出し処理を繰り返し行うように構成することも可能である。手法6では、このように画像データdの読み出し処理を行わず、リークデータDleakのみに基づいて放射線画像撮影装置1に対する放射線の照射開始を検出する構成について説明する。
 この場合、放射線画像撮影前に、走査駆動手段15から走査線5の全てのラインL1~Lxにオフ電圧を印加して各TFT8をオフ状態とした状態で図33に示した各読み出し回路17に対する制御を繰り返して、すなわち読み出し回路17の増幅回路18の電荷リセット用スイッチ18cのオン/オフ制御や相関二重サンプリング回路19に対するパルス信号Sp1、Sp2の送信等を繰り返して、図64に示すように、リークデータDleakの読み出し処理を連続的に行うように構成することも可能である。
 しかし、このように、各TFT8をオフ状態とされた状態が続くと、各放射線検出素子7内で発生した暗電荷が各放射線検出素子7内に蓄積されていき、蓄積される暗電荷の量が増え続けるため、実際には、図65に示すように、リークデータDleakの読み出し処理と次のリークデータDleakの読み出し処理との間で、オン電圧を印加する走査線5を順次シフトさせながら各放射線検出素子7のリセット処理を行うように構成することが好ましい。
 なお、各放射線検出素子7内に暗電荷が蓄積され続けることを回避する観点から、上記のようにリークデータDleakの読み出し処理の間で各放射線検出素子7のリセット処理を行うように構成する代わりに、図66に示すように、リークデータDleakの読み出し処理の間で画像データdの読み出し処理を行うように構成することも可能である。また、以下では、リークデータDleakの読み出し処理の間でリークデータDleakの読み出し処理を行う場合について説明するが、リークデータDleakの読み出し処理の間で画像データdの読み出し処理を行うように構成する場合も同様に説明される。
 そして、上記のように、リークデータDleakの読み出し処理と各放射線検出素子7のリセット処理とを交互に繰り返して行うように構成する場合、各放射線検出素子7のリセット処理においては、前述したように、オン電圧を順次印加するゲートドライバ15bの端子(非接続の端子hを含む。図53等参照)を順次シフトさせていく。
 そして、図67に示すように、ゲートドライバ15bの走査線5が接続されている端子にオン電圧を順次印加するタイミングでは、ゲートドライバ15bから当該端子を介して走査線5の各ラインL1~Lxにオン電圧を順次印加して、当該各走査線5に接続されている各放射線検出素子7内に残存する電荷を放出させてリセット処理を行う。
 また、ゲートドライバ15bの非接続の端子hにオン電圧を順次印加するタイミングでは、ゲートドライバ15bから当該非接続の端子hにオン電圧を順次印加するが、これらの非接続の端子hを介して走査線5にはオン電圧が印加されないため、この間は、各放射線検出素子7のリセット処理が行われない。
 なお、図67では、ゲートIC12aの非接続の端子h1、h2、…に実際にオン電圧を印加する場合を示したが、非接続の端子hに必ずしもオン電圧を印加する必要はない。そのため、これらの非接続の端子hについては、オン電圧を印加せず、アクティブな状態をシフトさせるだけとするように構成することが可能であることは前述した通りである。
 このように構成すると、前述した手法5で説明した場合と同様に、放射線画像撮影装置1に放射線が照射される以前では、各TFT8を介して各放射線検出素子7iからリークする電荷qは僅かであり、それらの合計値も小さい値であるため、リークデータDleakの各読み出し処理で読み出されるリークデータDleakも小さい値である。しかし、放射線画像撮影装置1に対する放射線の照射が開始されると、各TFT8を介して各放射線検出素子7からリークする電荷qが大きくなり、それらの合計値が大きくなるため、前述した画像データdの場合と同様に、読み出されるリークデータDleakの値が上昇する。
 そのため、リークデータDleakに対して閾値を設けておき、読み出されたリークデータDleakが大きく上昇して閾値を越えた時点で、放射線画像撮影装置1に対する放射線の照射が開始されたと判断して、放射線の照射開始を検出するように構成することが可能となる。
 しかし、本発明者らの研究によると、上記のように、放射線画像撮影前にリークデータDleakの読み出し処理と各放射線検出素子7のリセット処理とを交互に繰り返して行うように構成した場合、以下のような現象が現れることが分かった。
 すなわち、図68Aに示すように、リークデータDleakの各読み出し処理でそれぞれ読み出されるリークデータDleakが、走査線5にオン電圧が印加されて各放射線検出素子7のリセット処理の後に行われた読み出し処理で読み出されたリークデータDleak(図中のαで示された部分のデータ参照)よりも、非接続の端子hがアクティブの状態とされていて各放射線検出素子7のリセット処理が行われない状態の読み出し処理で読み出されたリークデータDleak(図中のβで示された部分のデータ参照)の方が、値が小さくなることが分かった。
 また、これに対する対照実験として、上記のようにリークデータDleakの読み出し処理と各放射線検出素子7のリセット処理とを交互に繰り返して行う代わりに、リークデータDleakの読み出し処理のみを繰り返して行う実験を行い、その場合にリークデータDleakの各読み出し処理で読み出されるリークデータDleakの時間的推移を図68Bに示す。
 図68Bに示すように、対象実験では、読み出されるリークデータDleakの値が、図68Aのαで示された部分のリークデータDleak、すなわち各放射線検出素子7のリセット処理の後に行われた読み出し処理で読み出されたリークデータDleakの値よりも小さくなる。また、対照実験では、図68Aのβで示された部分のリークデータDleakのように、他のリークデータDleakよりも値が小さくなる部分が現れないといった特徴が見られる。
 このように、各放射線検出素子7のリセット処理の後に行われた読み出し処理で読み出されたリークデータDleak(図68A中のαで示された部分のデータ参照)よりも、各放射線検出素子7のリセット処理が行われない状態の読み出し処理で読み出されたリークデータDleak(図68A中のβで示された部分や図68B参照)の方が値が小さくなる理由は、以下のように考えられている。
 すなわち、リークデータDleakの読み出し処理の前に各放射線検出素子7のリセット処理を行わない場合、図69Aにイメージ的に示すように、TFT8におけるエネルギ的に高い準位の伝導帯CBを通って放射線検出素子7から信号線6に電荷がリークする。なお、図69A、図69B、図69Cでは、図中左側の図示しない放射線検出素子7からTFT8に電荷が流れ込み、TFT8から図中右側の図示しない信号線6に電荷が流出する場合が示されている。また、移動する電荷量の大小が、図中の矢印の太さで表されている。
 そして、この状態で各放射線検出素子7のリセット処理が行われると、図69Bに示すように、伝導帯CBを介して放射線検出素子7から信号線6に放出される比較的大きな量の電荷のうちの一部が、この伝導帯CBよりもエネルギ的に低いバンドギャップに存在するトラップ準位TLにトラップされて、TFT8内に残留する。この場合、太い矢印は、多い量の電荷の移動を表している。
 そして、その後は、図69Cに示すように、TFT8における高準位の伝導帯CBを通って放射線検出素子7から信号線6に電荷がリークする際に、トラップ準位TLにトラップされた電荷の一部が高準位の伝導帯CBに励起してそれらとともにリークして信号線6に放出されるため、放射線検出素子7から信号線6にリークする電荷量が増加する。
 そのため、各放射線検出素子7のリセット処理の後に行われた読み出し処理で読み出されたリークデータDleak(図68A中のαで示された部分のデータ参照)の方が、各放射線検出素子7のリセット処理が行われない状態の読み出し処理で読み出されたリークデータDleak(図68A中のβで示された部分のデータ参照)よりも値が大きくなるという現象が現れると考えられている。
 図68A、図68Bでは、リークデータDleakの読み出し処理が開始される前、すなわち各図中の経過時間tのカウントが開始される前(すなわち横軸の経過時間tが0以前)に、各放射線検出素子7のリセット処理が何回も繰り返し行われた場合が示されている。そして、各図で、経過時間tが0に近い時点で読み出されたリークデータDleakの値が大きくなっていることからも、上記のメカニズムでリークデータDleakの値が大きくなると推測することができる。
 なお、この現象は、リークデータDleakの読み出し処理の前に各放射線検出素子7のリセット処理を行う場合だけでなく、画像データdの読み出し処理を行う場合(図66参照)も同様に生じることが確かめられている。
 上記のように、放射線画像撮影前にリークデータDleakの読み出し処理と各放射線検出素子7のリセット処理とを交互に繰り返して行い(図67参照)、各放射線検出素子7のリセット処理では、オン電圧を順次印加し或いは順次アクティブな状態とするゲートドライバ15bの端子(非接続の端子hを含む。)を順次シフトさせていくようにしてリセット処理を行うように構成する場合には、リークデータDleakの各読み出し処理で読み出されるリークデータDleakの値が上記のように変化する。
 そこで、このような場合には、ゲートドライバ15bの非接続の端子hにオン電圧を印加した後(或いはアクティブな状態とした後)のリークデータDleakの読み出し処理で読み出されたリークデータDleakに適用する、放射線の照射開始を検出するための閾値を、ゲートドライバ15bから走査線5が接続されている端子にオン電圧を印加して走査線5の各ラインL1~Lxにオン電圧を順次印加して各放射線検出素子7のリセット処理を行った後のリークデータDleakの読み出し処理で読み出されたリークデータDleakに適用する閾値よりも小さい値に設定することが好ましい。
 そして、この場合、制御手段22は、ゲートドライバ15bの非接続の端子hにオン電圧を順次印加するタイミング(或いは非接続の端子hを順次アクティブな状態にするタイミング)と、ゲートドライバ15bから走査線5の各ラインL1~Lxにオン電圧を順次印加して各放射線検出素子7のリセット処理を行うタイミングとで、上記の各閾値を切り替えて使い分けるように構成される。
 一方、この手法6で、放射線画像撮影前にリークデータDleakの読み出し処理と各放射線検出素子7のリセット処理(或いは画像データdの読み出し処理。以下同じ。)とを交互に繰り返して行うように構成する場合においても、前述した手法1を適用して、図67等に示したようにゲートドライバ15bの非接続の端子hにオン電圧を印加したりアクティブな状態にしたりせずに、リークデータDleakの読み出し処理の間に行う各放射線検出素子7のリセット処理では、ゲートドライバ15bの走査線5が接続されている端子のみにオン電圧を順次印加してリセット処理を行うように構成することが可能である。
 このように構成すれば、上記の閾値は1つ設定すればよくなり、上記のように複数の閾値を切り替えて使い分ける制御が不要になる。
 また、同様に、手法6に、前述した手法3や手法4を適用して、非接続の端子hがアクティブな状態になっているタイミングで同時に走査線5が接続されている端子をアクティブな状態にしてオン電圧を印加するように構成することも可能であり、このように構成しても、上記の閾値は1つ設定すればよくなり、上記のように複数の閾値を切り替えて使い分ける制御が不要になる。
 なお、上記の手法1~5の場合についても同様であるが、上記の手法6では、図70に示すように、走査線5のあるラインL(図中では走査線5の4番目のラインL4)にオン電圧を印加して各放射線検出素子7のリセット処理を行った後のリークデータDleakの読み出し処理(図中の「4」参照)で読み出されたリークデータDleakが閾値を越えた場合、その時点で放射線の照射が開始されたことが検出され、各放射線検出素子7のリセット処理が停止され、走査線5の全てのラインL1~Lxにオフ電圧が印加されて電荷蓄積モードに移行する。
 その際、図70に示すように、電荷蓄積モードに移行した後も、読み出し回路17に引き続き読み出し動作を繰り返し行わせてリークデータDleakの読み出し処理を繰り返し行わせ、読み出したリークデータDleakの監視を続行すれば放射線の照射が終了したことを検出することが可能となることは前述した通りである。
 また、図70に示すように、リークデータDleakが閾値以下の値になり、放射線の照射が終了したことが検出された時点(図中の「A」参照)で、走査線5の各ラインL5~Lx、L1~L4へのオン電圧の順次の印加を再開して本画像としての画像データDの読み出し処理を開始するように構成すれば、図70に示したように、放射線の照射の終了を検出した後、すぐに画像データDの読み出し処理を開始することが可能となり、画像データDの読み出し処理以降の処理を迅速に行うことが可能となるといった利点があることも前述した通りである。なお、図70では、手法6に手法1が適用された場合が示されている。
 以上のように、本実施形態に係る放射線画像撮影装置1によれば、前記各実施形態と同様の効果を奏することが可能となるとともに、放射線発生装置とのインターフェースがとれないような場合であっても、放射線画像撮影前すなわち放射線画像撮影装置1に放射線が照射される前から画像データdの読み出し処理を行い、読み出された画像データdに基づいて、或いは上記の手法5を用いる場合には画像データdやリークデータDleakに基づいて、放射線画像撮影装置1に対して放射線が照射されたことを放射線画像撮影装置1自体で的確に検出することが可能となる。
 また、その際、走査駆動手段15のゲートドライバ15bに、走査線5が接続されていない非接続の端子hが存在する場合であっても、非接続の端子hがアクティブな状態とされていて画像データdが読み出されない期間τを生じさせないようにしたり(上記の手法1、3、4)、期間τを非常に短くしたり(上記の手法2)、或いは期間τ中にリークデータDleakを読み出す(上記の手法5)ように構成することで、放射線画像撮影装置1に対して放射線が照射されたことを確実に検出することが可能となる。
 そのため、図52に示した従来の手法の場合のように、上記の期間τが長くなって放射線の照射開始の検出が遅れてしまい、その分、放射線検出素子7内に蓄積される暗電荷の量が多くなって、読み出される本画像としての画像データDのS/N比が悪化することを的確に防止することが可能となる。
 なお、上記の実施形態では、走査駆動手段15のゲートドライバ15bが図53に示したような複数のゲートIC12aを並設して構成される場合について説明したが、ゲートドライバ15bやゲートIC12aが他の構成をとる場合でも、走査線5が接続されていない非接続の端子hが存在する限り、上記の問題を生じ得る。従って、ゲートドライバ15bやゲートIC12aが他の構成をとる場合についても、本発明を適用することができる。
 また、放射線画像撮影装置1が図示しない支持台等と一体的に形成された、いわゆる専用機型の放射線画像撮影装置である場合でも、上記のように、放射線発生装置とのインターフェースをとらずに放射線画像撮影装置で独自に放射線の照射を検出するように構成されている場合にも、本発明を適応することができることは前述した通りである。
 ところで、前述した手法6を採用してリークデータDleakの値に基づいて放射線画像撮影装置1に対する放射線の照射開始等を検出するように構成する場合、放射線画像撮影装置1の検出部P(図3や図7等参照)には、通常、数千本から数万本の信号線6が配線されているため、1回のリークデータDleakの読み出し処理で読み出されるリークデータDleakの数は、数千個から数万個の数になる。
 そして、それらの全てのリークデータDleakについて、上記のように閾値を越えたか否かを判断する処理を各読み出し処理ごとに行うように構成すると、処理が重くなる。そこで、例えば、各読み出し処理ごとに読み出されたリークデータDleakの中から最大値を抽出し、そのリークデータDleakの最大値が閾値を越えたか否かを判断するように構成することも可能である。
 しかし、各読み出し回路17(図7等参照)のデータの読み出し効率は、通常、各読み出し回路17ごとに異なり、各放射線検出素子7から信号線6にリークする電荷qの合計値(図34参照)が信号線6ごとに同じであったとしても、他の読み出し回路17よりも常に大きな値のリークデータDleakを読み出す読み出し回路17もあれば、他の読み出し回路17よりも常に小さな値のリークデータDleakを読み出す読み出し回路17もある。
 このような状況において、例えば図71に示すように、放射線画像撮影装置1に対して照射野Fが絞られた状態で放射線が照射され、他の読み出し回路17よりも常に大きな値のリークデータDleakを読み出す読み出し回路17に接続されている信号線6aが照射野F外に存在する場合を考える。
 このような場合、図72に示すように、照射野F内に存在する信号線6に接続されている読み出し回路17で読み出されたリークデータDleak(図中のγで示されたデータ参照)が放射線の照射により上昇しても、照射野F外に存在する信号線6aに接続されている読み出し回路17から読み出されたリークデータDleak(図中のδで示されたデータ参照)を越えない場合が生じ得る。
 そして、このように、放射線の照射により上昇したリークデータDleak(γ)が、照射野F外にあり放射線の照射によっても上昇しないリークデータDleak(δ)を越えない場合、抽出されるリークデータDleakの最大値は図中δで示されたリークデータDleakであるから、抽出されたリークデータDleakの最大値は放射線の照射によっても変動せず、結局、閾値を越えないため放射線の照射を検出することができなくなる。
 そこで、このような問題を回避するために、例えば、各読み出し処理ごとに読み出されたリークデータDleakの、各読み出し回路17ごとの移動平均を算出するように構成する。すなわち、リークデータDleakの読み出し処理を行うごとに、当該読み出し処理の直前の読み出し処理を含む所定回数分の過去の各読み出し処理で読み出された読み出し回路17ごとのリークデータDleakの平均値(移動平均)Dleak_aveを算出するように構成する。
 そして、今回の読み出し処理で読み出されたリークデータDleakと、算出した移動平均の平均値Dleak_aveとの差分ΔDleakを算出し、差分ΔDleakが、差分ΔDleakについて予め設定された閾値を越えた読み出し回路17があれば、その時点で放射線画像撮影装置1に放射線が照射されたことを検出するように構成することができる。
 このように構成すれば、上記のような各読み出し回路17の読み出し効率等の影響を受けずに、リークデータDleakが上昇したか否かを的確に検出して、放射線画像撮影装置1に対する放射線の照射開始を的確に検出することが可能となる。
 しかし、この場合も、リークデータDleakの各読み出し処理ごとに数千個から数万個読み出される各リークデータDleakについて上記の処理を行うように構成すると、処理が非常に重くなる。
 そこで、例えば、図51等に示したように、放射線画像撮影装置1では、読み出しIC16内に例えば128個や256個の読み出し回路17が形成されており、読み出しIC16が複数個設けられていることを利用して、リークデータDleakの各読み出し処理ごとに、各読み出し回路17で読み出される各リークデータDleakの合計値を各読み出しIC16ごとに算出する。なお、この場合、各読み出しIC16ごとに、各リークデータDleakの平均値を算出するように構成することも可能である。
 そして、上記と同様に、各リークデータDleakの合計値の移動平均を読み出しIC16ごとに算出し、今回の読み出し処理で読み出されたリークデータDleakの読み出しIC16ごとの合計値と、算出した合計値の移動平均の平均値との差分を算出し、差分が、当該差分について予め設定された閾値を越えた読み出しIC16があれば、その時点で放射線画像撮影装置1に放射線が照射されたことを検出するように構成することができる。
 また、上記のようにして、リークデータDleakの各読み出し処理ごとに算出した読み出しIC16ごとの上記の差分の中から最大値を抽出し、その最大値が閾値を越えたか否かを判断するように構成することも可能である。この場合、上記の差分は読み出しIC16ごとに同程度の値になるため、図72に示したような問題は生じない。
 以上のように構成すれば、上記と同様に、各読み出し回路17の読み出し効率等の影響を受けずに、リークデータDleakの合計値(或いは平均値)が上昇して、上記の差分(或いはその最大値)が閾値を越えたか否かを的確に検出して、放射線画像撮影装置1に対する放射線の照射開始を的確に検出することが可能となるとともに、移動平均の算出が、読み出し回路17ごとではなく読み出しIC16ごとになり、算出処理が減るため、処理が軽くなる。
 さて、このように構成して放射線の照射開始を検出する場合においても、前述した図67に示した手法6のように、放射線画像撮影前にリークデータDleakの読み出し処理と各放射線検出素子7のリセット処理とを交互に繰り返して行う場合には、図68Aに示したように、非接続の端子hがアクティブの状態とされていて各放射線検出素子7のリセット処理が行われない場合には、読み出し処理で読み出されるリークデータDleakの値が小さくなる(図中のβで示された部分のデータ参照)。そのため、その間に算出される移動平均の値が小さくなる。
 そして、アクティブな状態とされる端子が非接続の端子hから走査線5が接続されている端子にシフトすると、図68Aに示したように、読み出されるリークデータDleakの値が上昇する。そのため、読み出されたリークデータDleak(或いは読み出されたリークデータDleakの読み出しIC16ごとの合計値や平均値)と、前回の読み出し処理までのリークデータDleakの移動平均(或いは合計値や平均値の移動平均。以下同じ。)との差分(或いはその最大値。以下同じ。)が増加する。
 そのため、放射線画像撮影装置1に放射線が照射されていないにもかかわらず、差分が閾値を越えてしまい、放射線が照射されたと誤検出してしまう虞れがある。
 そこで、この場合も、上記と同様に、上記の手法に例えば手法1を適用してゲートドライバ15bの非接続の端子hにオン電圧を印加したりアクティブな状態にしたりしないように構成したり、或いは、手法3や手法4を適用して、非接続の端子hがアクティブな状態になっているタイミングで同時に走査線5が接続されている端子をアクティブな状態にしてオン電圧を印加するように構成することも可能である。
 そして、このように構成すれば、上記のように移動平均が、非接続の端子hがアクティブの状態とされていて各放射線検出素子7のリセット処理が行われない場合に低下してしまう問題を回避することが可能となる。
 また、上記の手法に手法1や手法3、4を適用する代わりに、上記の差分に対する閾値を2種類或いは複数種類、予め設定しておき、移動平均が、非接続の端子hがアクティブの状態とされていて各放射線検出素子7のリセット処理が行われない場合の読み出し処理で読み出されたリークデータDleakに基づいて算出されたものか、走査線5の各ラインL1~Lxにオン電圧が印加されて行われた各放射線検出素子7のリセット処理の後に行われた読み出し処理で読み出されたリークデータDleakに基づいて算出されたものかに応じて、閾値を切り替えて使い分けるように構成することが可能である。
 このように構成すれば、閾値を切り替えて使い分けることで、放射線画像撮影装置1に放射線が照射された場合に上記の差分が閾値を越えるように構成することが可能となり、差分が閾値を越えたことをもって、放射線画像撮影装置1に対する放射線の照射を的確に検出することが可能となる。
 放射線画像撮影を行う分野(特に医療分野)において利用可能性がある。
1 放射線画像撮影装置
3 シンチレータ
5、L1~Lx 走査線
6 信号線
7、(m,n) 放射線検出素子
8 TFT(スイッチ手段)
14 バイアス電源
15 走査駆動手段
15a 電源回路
15b、15ba、15bb ゲートドライバ
16 読み出しIC
17 読み出し回路
18 増幅回路
18a オペアンプ
18b、C1~C4 コンデンサ
22 制御手段
85 配線
C 電磁波が入射しない検出部上の位置
cf 容量
D 画像データ
d 画像データ
dave 平均値
Dleak リークデータ
Dleak_th 閾値
dmax 最大値
dmin 最小値
dth 閾値
h 非接続の端子
O、O(m,n) オフセット補正値
P 検出部
Pa~Pd 領域
po オフセット画像
Q、q 電荷
r 領域
T1~T4 実効蓄積時間(時間間隔)
Tc 同じ時間間隔
Δd 差分
Δdth 閾値

Claims (15)

  1.  互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子とを備える検出部と、
     前記放射線検出素子から画像データを読み出す読み出し処理の際に、前記各走査線にオン電圧を順次印加する走査駆動手段と、
     前記各走査線に接続され、前記走査線を介してオン電圧が印加されると前記放射線検出素子に蓄積された電荷を前記信号線に放出させ、前記走査線を介してオフ電圧が印加されると前記放射線検出素子内に電荷を蓄積させるスイッチ手段と、
     前記画像データの読み出し処理の際には、前記放射線検出素子から前記信号線に放出された前記電荷を前記画像データに変換して読み出す読み出し回路と、
     少なくとも前記走査駆動手段および前記読み出し回路を制御して前記放射線検出素子からの前記データの読み出し処理を行わせる制御手段と、
    を備え、
     前記制御手段は、
     放射線画像撮影前に、前記走査駆動手段から前記各走査線にオン電圧を順次印加して前記放射線検出素子からの前記画像データの読み出し処理を行い、読み出した前記画像データが閾値を越えた時点で放射線の照射が開始されたことを検出し、
     放射線の照射が開始されたことを検出すると、前記走査駆動手段から全ての前記走査線にオフ電圧を印加し、前記各スイッチ手段をオフ状態として電荷蓄積モードに移行し、
     放射線の照射が終了した後、前記走査駆動手段から前記各走査線にオン電圧を順次印加させ、前記読み出し回路に順次読み出し動作を行わせて、前記各放射線検出素子からの前記画像データの読み出し処理を行わせるとともに、
     放射線画像撮影前の前記画像データの読み出し処理の際に、前記走査駆動手段から前記走査線にオン電圧を印加してから印加する電圧をオフ電圧に切り替えるまでの時間、または、前記走査駆動手段からある前記走査線にオン電圧を印加してから次の前記走査線にオン電圧を印加するまでの周期を、前記放射線照射終了後の画像データの読み出し処理の際の前記時間または前記周期よりも長くなるように制御することを特徴とする放射線画像撮影装置。
  2.  前記制御手段は、放射線画像撮影前に、前記走査駆動手段から、ある前記走査線にオン電圧を印加したタイミングの次のタイミングでは当該走査線に前記検出部上で隣接する走査線以外の走査線にオン電圧を印加するようにして、前記各走査線にオン電圧を順次印加して前記放射線検出素子からの前記画像データの読み出し処理を行うことを特徴とする請求の範囲第1項に記載の放射線画像撮影装置。
  3.  前記制御手段は、放射線画像撮影前に、前記走査駆動手段から前記各走査線にオン電圧を順次印加して前記放射線検出素子からの前記画像データの読み出し処理を行い、同一の前記読み出し処理で読み出された前記画像データの中から最大値と最小値とを抽出し、前記最大値から前記最小値を差し引いた差分を算出し、算出した前記差分が閾値を越えた時点で放射線の照射が開始されたことを検出することを特徴とする請求の範囲第1項または第2項に記載の放射線画像撮影装置。
  4.  前記制御手段は、今回の前記読み出し処理の直前の前記読み出し処理を含む所定回数分の過去の前記各読み出し処理で読み出された前記各画像データの移動平均をそれぞれ算出し、前記各画像データから前記移動平均をそれぞれ減算した値を、それぞれ前記各画像データとすることを特徴とする請求の範囲第3項に記載の放射線画像撮影装置。
  5.  所定個数の前記読み出し回路が形成された複数の読み出しICを備え、
     前記制御手段は、前記同一の読み出し処理で読み出された前記画像データの代わりに、同一の前記読み出し処理で読み出された前記各画像データの前記各読み出しICごとの平均値または合計値をそれぞれ算出し、前記各画像データの前記各読み出しICごとの平均値または合計値の中から最大値と最小値とを抽出し、または、前記各画像データの前記各読み出しICごとの平均値または合計値から前記平均値または合計値の前記移動平均をそれぞれ減算した値の中から最大値と最小値とを抽出することを特徴とする請求の範囲第3項または第4項に記載の放射線画像撮影装置。
  6.  前記制御手段は、前記放射線画像撮影前の画像データの読み出し処理の際に、前記走査駆動手段から、前記検出部上で隣接しない複数の前記走査線に同時にオン電圧を印加して前記読み出し処理を行うことを特徴とする請求の範囲第1項から第5項のいずれか一項に記載の放射線画像撮影装置。
  7.  前記複数の放射線検出素子が二次元状に配列された前記検出部上で、前記各信号線または前記各走査線或いはその両方が各延在方向の途中で分断されて、前記検出部が、複数の領域に分割されており、前記各領域ごとに前記走査駆動手段が設けられており、
     前記制御手段は、前記放射線画像撮影前の画像データの読み出し処理の際に、一の前記領域に対応する前記走査駆動手段から、当該領域の前記走査線にオン電圧を印加するタイミングが、他の前記領域に対応する前記走査駆動手段から当該他の領域の前記走査線にオン電圧を印加するタイミングと同時にならないように、オン電圧を印加して前記読み出し処理を行うことを特徴とする請求の範囲第1項から第6項のいずれか一項に記載の放射線画像撮影装置。
  8.  前記制御手段は、放射線の照射が開始されたことを検出すると、前記走査駆動手段から全ての前記走査線にオフ電圧を印加して前記各スイッチ手段をオフ状態とした状態を維持して電荷蓄積モードに移行し、前記走査駆動手段から全ての前記走査線にオフ電圧を印加した状態で前記読み出し回路に読み出し動作を行わせて、前記スイッチ手段を介して前記各放射線検出素子からリークする電荷に相当するリークデータの読み出し処理を行わせ、読み出した前記リークデータが閾値以下になった時点で放射線の照射が終了したことを検出すると、前記走査駆動手段から前記各走査線にオン電圧を順次印加させ、前記読み出し回路に順次読み出し動作を行わせて、前記各放射線検出素子からの前記画像データの読み出し処理を行わせることを特徴とする請求の範囲第1項から第7項のいずれか一項に記載の放射線画像撮影装置。
  9.  前記制御手段は、前記放射線照射終了後の画像データの読み出し処理を終了した後、放射線が照射されない状態で、前記放射線画像撮影前の画像データの読み出し処理、前記電荷蓄積モードへの移行、および前記放射線照射終了後の画像データの読み出し処理と同じタイミングで前記走査駆動手段から前記各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替えて、前記各放射線検出素子からそれぞれオフセット補正値を読み出すオフセット補正値読み出し処理を行わせることを特徴とする請求の範囲第8項に記載の放射線画像撮影装置。
  10.  前記制御手段は、前記放射線照射終了後の画像データの読み出し処理を終了した後、前記放射線画像撮影前の画像データの読み出し処理と同じタイミングで前記走査駆動手段から前記各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替える際に、画像データの読み出し処理の代わりに、前記各放射線検出素子のリセット処理を行わせることを特徴とする請求の範囲第9項に記載の放射線画像撮影装置。
  11.  前記各走査線にオン電圧を順次印加して、前記検出部上に配列された全ての前記放射線検出素子のうち前記画像データを読み出す対象の前記各放射線検出素子から前記各画像データを読み出す期間を1フレームとするとき、
     前記制御手段は、
     前記放射線画像撮影前の画像データの読み出し処理において、1フレーム分の前記画像データの読み出し処理が終了した後、前記電荷蓄積モードにおいて前記走査駆動手段から全ての前記走査線にオフ電圧を印加する期間と同じ期間だけ全ての前記走査線にオフ電圧を印加し、その後、次のフレームの前記画像データの読み出し処理を開始するようにして、各フレームごとの前記画像データの読み出し処理を行うとともに、
     放射線の照射が開始される前の前記フレームで読み出された前記画像データを、前記各放射線検出素子についての各オフセット補正値としてそれぞれ決定することを特徴とする請求の範囲第1項から第8項のいずれか一項に記載の放射線画像撮影装置。
  12.  前記走査駆動手段は、
     電源回路とゲートドライバとを備え、
     前記ゲートドライバにいずれの前記走査線とも接続されていない非接続の端子が存在する場合には、少なくとも放射線画像撮影前の前記画像データの読み出し処理において前記ゲートドライバから前記各走査線にオン電圧を順次印加する際に、前記ゲートドライバの前記非接続の端子にはオン電圧を印加せず、常に前記走査線が接続されているいずれかの端子にオン電圧を印加するようにして、前記ゲートドライバから前記各走査線にオン電圧を順次印加することを特徴とする請求の範囲第1項から第11項のいずれか一項に記載の放射線画像撮影装置。
  13.  前記走査駆動手段は、
     電源回路とゲートドライバとを備え、
     前記ゲートドライバにいずれの前記走査線とも接続されていない非接続の端子が存在する場合には、少なくとも放射線画像撮影前の前記画像データの読み出し処理において前記ゲートドライバから前記各走査線にオン電圧を順次印加する際に、前記ゲートドライバの前記非接続の端子にオン電圧を印加するタイミングでは、前記走査線が接続されている端子にオン電圧を印加する時間間隔よりも短い時間間隔でオン電圧を順次印加するようにして、前記ゲートドライバの各端子にオン電圧を順次印加することを特徴とする請求の範囲第1項から第11項のいずれか一項に記載の放射線画像撮影装置。
  14.  前記走査駆動手段は、
     電源回路とゲートドライバとを備え、
     前記ゲートドライバにいずれの前記走査線とも接続されていない非接続の端子が存在する場合には、少なくとも放射線画像撮影前の前記画像データの読み出し処理において前記ゲートドライバから前記各走査線にオン電圧を順次印加する際に、前記ゲートドライバの前記非接続の端子にオン電圧を印加するタイミングでは、前記走査線が接続されている端子に同時にオン電圧を印加して、各タイミングでいずれかの前記走査線にオン電圧が印加されるようにして、前記ゲートドライバから前記各走査線にオン電圧を順次印加することを特徴とする請求の範囲第1項から第11項のいずれか一項に記載の放射線画像撮影装置。
  15.  前記走査駆動手段は、
     電源回路とゲートドライバとを備え、
     前記検出部上で、前記各信号線または前記各走査線或いはその両方が各延在方向の途中で分断されて、前記検出部が、複数の領域に分割されており、かつ、前記各領域ごとに前記ゲートドライバが設けられており、
     前記各ゲートドライバにいずれの前記走査線とも接続されていない非接続の端子がそれぞれ存在する場合には、少なくとも放射線画像撮影前の前記画像データの読み出し処理において前記各ゲートドライバから前記各走査線にオン電圧を順次印加する際に、一方の前記ゲートドライバにおいて前記非接続の端子にオン電圧を印加するタイミングでは、他方の前記ゲートドライバにおいては前記走査線が接続されている端子にオン電圧を印加して、各タイミングでいずれかの前記走査線にオン電圧が印加されるようにして、前記各ゲートドライバから前記各走査線にオン電圧を順次印加することを特徴とする請求の範囲第1項から第11項のいずれか一項に記載の放射線画像撮影装置。
PCT/JP2011/054690 2010-06-03 2011-03-02 放射線画像撮影装置 WO2011152093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/701,713 US8785876B2 (en) 2010-06-03 2011-03-02 Radiation image capturing apparatus
CN201180027430.7A CN102934423B (zh) 2010-06-03 2011-03-02 放射线图像拍摄装置
JP2012518274A JP5704170B2 (ja) 2010-06-03 2011-03-02 放射線画像撮影装置
EP11789505.2A EP2579577A4 (en) 2010-06-03 2011-03-02 RADIOGRAPHIC IMAGING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-127667 2010-06-03
JP2010127667 2010-06-03
JP2010-199629 2010-09-07
JP2010199629 2010-09-07

Publications (1)

Publication Number Publication Date
WO2011152093A1 true WO2011152093A1 (ja) 2011-12-08

Family

ID=45066482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054690 WO2011152093A1 (ja) 2010-06-03 2011-03-02 放射線画像撮影装置

Country Status (5)

Country Link
US (1) US8785876B2 (ja)
EP (1) EP2579577A4 (ja)
JP (1) JP5704170B2 (ja)
CN (1) CN102934423B (ja)
WO (1) WO2011152093A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128727A (ja) * 2011-12-22 2013-07-04 Konica Minolta Inc 放射線画像撮影装置
JP2013141484A (ja) * 2012-01-10 2013-07-22 Konica Minolta Inc 放射線画像撮影システム
CN103222875A (zh) * 2012-01-30 2013-07-31 富士胶片株式会社 放射线照射开始确定装置和方法及捕获设备和控制装置
JP2013195415A (ja) * 2012-03-23 2013-09-30 Konica Minolta Inc 放射線画像撮影装置および放射線画像撮影システム
JP2014066689A (ja) * 2012-09-27 2014-04-17 Fujifilm Corp 放射線画像撮影装置、画素値取得方法およびプログラム
JP2014183542A (ja) * 2013-03-21 2014-09-29 Canon Inc 放射線撮像システム
JP2014216820A (ja) * 2013-04-25 2014-11-17 コニカミノルタ株式会社 放射線画像撮影システムおよび放射線画像撮影装置
EP2809064A1 (en) 2013-05-27 2014-12-03 Konica Minolta, Inc. Radiation image capturing system and apparatus
US8976930B2 (en) 2012-03-29 2015-03-10 Konica Minolta Medical & Graphic, Inc. Radiation image capturing system and console
EP2640066A3 (en) * 2012-03-16 2015-04-08 Canon Kabushiki Kaisha Radiation imaging apparatus and imaging system
JP2015201797A (ja) * 2014-04-09 2015-11-12 キヤノン株式会社 放射線撮像装置及びその制御方法
EP2952136A2 (en) 2014-06-04 2015-12-09 Konica Minolta, Inc. Radiographic apparatus
EP2977010A1 (en) 2014-07-25 2016-01-27 Konica Minolta, Inc. Radiation image capturing system for avoiding interference when using wireless signals between image capturing device, console and hospital information system
EP3000399A1 (en) 2014-09-17 2016-03-30 Konica Minolta, Inc. Radiation image capturing device
US9301725B2 (en) 2012-10-31 2016-04-05 Konica Minolta, Inc. Radiation image capturing system
JP2016192766A (ja) * 2016-05-09 2016-11-10 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
EP3123941A1 (en) 2015-07-17 2017-02-01 Konica Minolta, Inc. Radiographic image capturing device and radiographic image capturing system
JP2018007213A (ja) * 2016-07-08 2018-01-11 キヤノン株式会社 放射線撮像システム
US9980685B2 (en) 2014-04-09 2018-05-29 Canon Kabushiki Kaisha Radiation imaging apparatus and control method of the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118312A (ja) * 2010-12-01 2012-06-21 Fujifilm Corp 放射線画像検出装置およびその駆動制御方法
JP5720429B2 (ja) * 2011-06-14 2015-05-20 コニカミノルタ株式会社 放射線画像撮影装置
JP5849646B2 (ja) * 2011-10-25 2016-01-27 コニカミノルタ株式会社 放射線画像撮影システムおよび放射線画像撮影装置
JP5840503B2 (ja) * 2012-01-06 2016-01-06 株式会社東芝 2次元放射線表示装置および2次元放射線表示方法
JP2014240769A (ja) * 2013-06-11 2014-12-25 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
KR20150088533A (ko) * 2014-01-24 2015-08-03 주식회사 레이언스 방사선 화상 검출기 및 방사선 화상 검출기용 하우징
JP6494204B2 (ja) * 2014-07-17 2019-04-03 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6259382B2 (ja) * 2014-09-22 2018-01-10 富士フイルム株式会社 電子カセッテ
JP6251147B2 (ja) * 2014-09-29 2017-12-20 富士フイルム株式会社 電子カセッテおよび電子カセッテの作動方法
CN105044955B (zh) * 2015-09-02 2018-09-11 京东方科技集团股份有限公司 光电传感器及其驱动方法、阵列基板和显示装置
JP6748588B2 (ja) * 2017-02-01 2020-09-02 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
JP6890443B2 (ja) * 2017-03-22 2021-06-18 キヤノン株式会社 放射線撮影システム、放射線撮影方法、及びプログラム
CN108881906B (zh) * 2017-05-15 2021-03-19 北京大学 一种图像重构方法及装置
JP7087435B2 (ja) * 2018-02-19 2022-06-21 コニカミノルタ株式会社 放射線画像撮影装置及び放射線画像撮影システム
US20210358995A1 (en) * 2020-05-15 2021-11-18 Canon Electron Tubes & Devices Co., Ltd. Radiation detector
JP2022164433A (ja) * 2021-04-16 2022-10-27 キヤノン株式会社 放射線撮像装置および放射線撮像システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342099A (ja) 1992-12-23 1994-12-13 E I Du Pont De Nemours & Co X線像記録用電子カセットおよびx線ラジオグラム撮影方法
JPH0772252A (ja) 1993-09-01 1995-03-17 Fuji Photo Film Co Ltd 画像信号読出方法
JPH07506993A (ja) 1992-06-01 1995-08-03 ジロナ デンタール システムス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 歯科用レントゲン診断装置
JPH0973144A (ja) 1995-09-04 1997-03-18 Canon Inc 放射線検出装置
JPH09107503A (ja) 1995-07-28 1997-04-22 Eev Ltd 撮像装置
JPH09140691A (ja) 1995-11-27 1997-06-03 Toshiba Medical Eng Co Ltd X線撮像装置
JP2003126072A (ja) * 2001-10-23 2003-05-07 Canon Inc 放射線撮像装置及び放射線撮像装置の撮像方法
JP2004344249A (ja) * 2003-05-20 2004-12-09 Canon Inc 放射線撮影装置、放射線撮影方法、放射線撮影プログラム及び記録媒体
JP2006058124A (ja) 2004-08-19 2006-03-02 Canon Inc カセッテ型x線画像撮影装置
JP2009153984A (ja) * 2009-01-29 2009-07-16 Canon Inc X線撮影装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693948A (en) 1995-11-21 1997-12-02 Loral Fairchild Corporation Advanced CCD-based x-ray image sensor system
JPH11155847A (ja) 1997-11-28 1999-06-15 Canon Inc 放射線撮影装置及び駆動方法
JP3818271B2 (ja) * 2003-04-25 2006-09-06 株式会社島津製作所 放射線撮影装置
EP1642528B1 (en) * 2004-10-01 2013-02-13 Canon Kabushiki Kaisha Radiographic imaging apparatus and system, method therefor, and program
CN100471453C (zh) * 2005-06-14 2009-03-25 佳能株式会社 放射线成像装置、其控制方法和放射线成像系统
JP4965931B2 (ja) * 2005-08-17 2012-07-04 キヤノン株式会社 放射線撮像装置、放射線撮像システム、その制御方法、及び制御プログラム
JP2007151761A (ja) 2005-12-02 2007-06-21 Canon Inc 放射線撮像装置、システム及び方法、並びにプログラム
US7211803B1 (en) 2006-04-24 2007-05-01 Eastman Kodak Company Wireless X-ray detector for a digital radiography system with remote X-ray event detection
US7313224B1 (en) 2006-06-22 2007-12-25 General Electric Co. Wireless integrated automatic exposure control module
JP5217156B2 (ja) 2006-11-29 2013-06-19 コニカミノルタエムジー株式会社 放射線撮像システム
JP2010212741A (ja) 2007-07-05 2010-09-24 Konica Minolta Medical & Graphic Inc 放射線画像検出装置
JP2009219538A (ja) 2008-03-13 2009-10-01 Konica Minolta Medical & Graphic Inc 放射線画像検出装置および放射線画像撮影システム
JP5376897B2 (ja) * 2008-10-24 2013-12-25 富士フイルム株式会社 放射線画像撮影装置
EP2564779B1 (en) * 2010-04-30 2017-08-30 Konica Minolta Medical & Graphic, Inc. Radiation image photography device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506993A (ja) 1992-06-01 1995-08-03 ジロナ デンタール システムス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 歯科用レントゲン診断装置
JPH06342099A (ja) 1992-12-23 1994-12-13 E I Du Pont De Nemours & Co X線像記録用電子カセットおよびx線ラジオグラム撮影方法
JPH0772252A (ja) 1993-09-01 1995-03-17 Fuji Photo Film Co Ltd 画像信号読出方法
JPH09107503A (ja) 1995-07-28 1997-04-22 Eev Ltd 撮像装置
JPH0973144A (ja) 1995-09-04 1997-03-18 Canon Inc 放射線検出装置
JPH09140691A (ja) 1995-11-27 1997-06-03 Toshiba Medical Eng Co Ltd X線撮像装置
JP2003126072A (ja) * 2001-10-23 2003-05-07 Canon Inc 放射線撮像装置及び放射線撮像装置の撮像方法
JP2004344249A (ja) * 2003-05-20 2004-12-09 Canon Inc 放射線撮影装置、放射線撮影方法、放射線撮影プログラム及び記録媒体
JP2006058124A (ja) 2004-08-19 2006-03-02 Canon Inc カセッテ型x線画像撮影装置
JP2009153984A (ja) * 2009-01-29 2009-07-16 Canon Inc X線撮影装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128727A (ja) * 2011-12-22 2013-07-04 Konica Minolta Inc 放射線画像撮影装置
JP2013141484A (ja) * 2012-01-10 2013-07-22 Konica Minolta Inc 放射線画像撮影システム
CN103222875A (zh) * 2012-01-30 2013-07-31 富士胶片株式会社 放射线照射开始确定装置和方法及捕获设备和控制装置
JP2013157793A (ja) * 2012-01-30 2013-08-15 Fujifilm Corp 放射線照射開始判定装置、放射線画像撮影装置、放射線画像撮影制御装置、放射線照射開始判定方法、及び放射線照射開始判定プログラム
US9048154B2 (en) 2012-03-16 2015-06-02 Canon Kabushiki Kaisha Radiation imaging apparatus and imaging system
EP2640066A3 (en) * 2012-03-16 2015-04-08 Canon Kabushiki Kaisha Radiation imaging apparatus and imaging system
JP2013195415A (ja) * 2012-03-23 2013-09-30 Konica Minolta Inc 放射線画像撮影装置および放射線画像撮影システム
US8976930B2 (en) 2012-03-29 2015-03-10 Konica Minolta Medical & Graphic, Inc. Radiation image capturing system and console
JP2014066689A (ja) * 2012-09-27 2014-04-17 Fujifilm Corp 放射線画像撮影装置、画素値取得方法およびプログラム
US9301725B2 (en) 2012-10-31 2016-04-05 Konica Minolta, Inc. Radiation image capturing system
JP2014183542A (ja) * 2013-03-21 2014-09-29 Canon Inc 放射線撮像システム
JP2014216820A (ja) * 2013-04-25 2014-11-17 コニカミノルタ株式会社 放射線画像撮影システムおよび放射線画像撮影装置
US9063236B2 (en) 2013-05-27 2015-06-23 Konica Minolta, Inc. Radiation image capturing system and radiation image capturing apparatus
EP2809064A1 (en) 2013-05-27 2014-12-03 Konica Minolta, Inc. Radiation image capturing system and apparatus
JP2015201797A (ja) * 2014-04-09 2015-11-12 キヤノン株式会社 放射線撮像装置及びその制御方法
US9980685B2 (en) 2014-04-09 2018-05-29 Canon Kabushiki Kaisha Radiation imaging apparatus and control method of the same
EP2952136A2 (en) 2014-06-04 2015-12-09 Konica Minolta, Inc. Radiographic apparatus
EP2977010A1 (en) 2014-07-25 2016-01-27 Konica Minolta, Inc. Radiation image capturing system for avoiding interference when using wireless signals between image capturing device, console and hospital information system
EP3000399A1 (en) 2014-09-17 2016-03-30 Konica Minolta, Inc. Radiation image capturing device
EP3949861A1 (en) 2014-09-17 2022-02-09 Konica Minolta, Inc. Radiation image capturing system
EP3123941A1 (en) 2015-07-17 2017-02-01 Konica Minolta, Inc. Radiographic image capturing device and radiographic image capturing system
JP2016192766A (ja) * 2016-05-09 2016-11-10 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2018007213A (ja) * 2016-07-08 2018-01-11 キヤノン株式会社 放射線撮像システム

Also Published As

Publication number Publication date
JPWO2011152093A1 (ja) 2013-07-25
US8785876B2 (en) 2014-07-22
CN102934423B (zh) 2016-04-06
EP2579577A1 (en) 2013-04-10
US20130068961A1 (en) 2013-03-21
EP2579577A4 (en) 2014-03-19
JP5704170B2 (ja) 2015-04-22
CN102934423A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5704170B2 (ja) 放射線画像撮影装置
JP5737286B2 (ja) 放射線画像撮影装置
JP4965931B2 (ja) 放射線撮像装置、放射線撮像システム、その制御方法、及び制御プログラム
JP5776693B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
JP5233831B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
JP4724313B2 (ja) 撮像装置、放射線撮像装置及びそれを用いた放射線撮像システム
JP5179605B2 (ja) 放射線画像検出装置及び放射線の照射開始検出方法
JP4208482B2 (ja) 撮像装置及び同撮像装置を用いたx線診断システム
JP2011193306A (ja) 放射線画像撮影装置および放射線画像撮影システム
JP4872017B2 (ja) 撮像装置、その駆動方法、放射線撮像装置及びそれを用いた放射線撮像システム
JP5464064B2 (ja) 可搬型放射線画像撮影装置および放射線画像撮影システム
JP5028545B2 (ja) 撮像装置、放射線撮像装置及びそれを用いた放射線撮像システム
JP2013038475A (ja) 放射線画像撮影装置および放射線画像撮影システム
JP2009284181A (ja) 固体撮像装置
Heo et al. 12-inch-wafer-scale CMOS active-pixel sensor for digital mammography
JP4921581B2 (ja) 撮像装置、放射線撮像装置及びそれを用いた放射線撮像システム
JP4546560B2 (ja) 放射線撮像装置、その駆動方法及び放射線撮像システム
Heo et al. Development of a large-area CMOS-based detector for real-time x-ray imaging
JP2012085021A (ja) 放射線画像撮影装置
JP6041856B2 (ja) 放射線撮影システム、制御方法、記録媒体及びプログラム
JP5673487B2 (ja) 放射線画像撮影装置
JP6169148B2 (ja) 放射線撮像装置、放射線撮像方法、記録媒体及びプログラム
JP5721869B2 (ja) 制御装置及び制御方法、放射線撮影装置、並びにプログラム
JP5127881B2 (ja) 放射線撮像装置及びその方法、並びに記録媒体及びプログラム
JP5615396B2 (ja) 画像処理装置、放射線撮影システム、放射線撮像方法及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027430.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518274

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011789505

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701713

Country of ref document: US