WO2011071154A1 - シリコン膜およびリチウム二次電池 - Google Patents
シリコン膜およびリチウム二次電池 Download PDFInfo
- Publication number
- WO2011071154A1 WO2011071154A1 PCT/JP2010/072255 JP2010072255W WO2011071154A1 WO 2011071154 A1 WO2011071154 A1 WO 2011071154A1 JP 2010072255 W JP2010072255 W JP 2010072255W WO 2011071154 A1 WO2011071154 A1 WO 2011071154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon film
- substrate
- columnar
- deposition source
- film according
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 202
- 239000010703 silicon Substances 0.000 title claims abstract description 184
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 177
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 61
- 239000000758 substrate Substances 0.000 claims abstract description 79
- 230000008021 deposition Effects 0.000 claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 claims abstract description 47
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- 238000000151 deposition Methods 0.000 claims description 51
- 238000007740 vapor deposition Methods 0.000 claims description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 24
- 238000000429 assembly Methods 0.000 claims description 14
- 230000000712 assembly Effects 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 239000010408 film Substances 0.000 description 144
- 239000011889 copper foil Substances 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000007600 charging Methods 0.000 description 8
- 238000007599 discharging Methods 0.000 description 7
- 150000003376 silicon Chemical class 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 230000002040 relaxant effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910008310 Si—Ge Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005511 kinetic theory Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
Definitions
- the present invention relates to a silicon film and a lithium secondary battery. Specifically, the present invention relates to a lithium secondary battery using a silicon film obtained by vapor deposition and an electrode having the silicon film as a negative electrode.
- Lithium secondary batteries are used as a power source for mobile devices such as personal computers and mobile phones. In recent years, not only for these mobile devices, but also for reducing the environmental burden of CO 2 such as electric vehicles and hybrid vehicles. Application has also been attempted as a power source for automobiles.
- a silicon (Si) material has been studied as a material constituting a negative electrode capable of inserting and extracting lithium ions.
- a carbon electrode is mainly used as the negative electrode, but the theoretical discharge capacity of the Si negative electrode is as large as about 4200 mAh / g, which can be more than 10 times the theoretical discharge capacity of the carbon negative electrode.
- Patent Document 1 an electrode in which a silicon raw material is put into thermal plasma and a silicon film made of a silicon nanowire network is arranged on a substrate is used as a negative electrode of a lithium secondary battery.
- the space between the wires in the silicon film acts as a space for relaxing expansion during charging of the lithium secondary battery, that is, storage of lithium ions, thereby reducing the expansion / contraction rate of the Si negative electrode.
- an electrode formed by etching a silicon substrate to form a silicon columnar structure is used as a negative electrode of a lithium secondary battery.
- the gap between the silicon columnar structures acts as a space for relaxing the expansion.
- Patent Document 3 a flat film of silicon is used in advance as a negative electrode of a lithium secondary battery, and charging / discharging of the secondary battery is repeated to form a break, that is, a gap in the flat film. In this case, the cut acts as a space for relaxing the expansion.
- Patent Document 1 when nanowire-shaped silicon is used, the film thickness can be increased, which is effective in reducing the expansion / contraction rate during charge / discharge. Since the gap between the wires occupies most of the silicon film, the density of the Si material in the electrode is low, and it is difficult to increase the capacity of the secondary battery. Moreover, since this silicon nanowire grows at random, it becomes difficult to control the air gap.
- Patent Document 2 when an electrode formed by etching a silicon substrate to form a silicon columnar structure is used as a negative electrode, since silicon is also a substrate, a lithium secondary battery is obtained. It ’s hard to wind. As a result, there are structural limitations such as difficulty in obtaining a large-capacity secondary battery.
- Patent Document 3 it is difficult to control the air gap with high accuracy and to obtain a large capacity secondary battery because the silicon flat film is cut by charging and discharging the secondary battery.
- An object of the present invention is to provide a silicon film capable of providing an electrode suitable for a large capacity lithium secondary battery and a simple manufacturing method thereof.
- the present invention provides the following inventions.
- a silicon film having a columnar assembly which is an assembly of columnar structures made of Si or Si compounds.
- ⁇ 2> The silicon film according to ⁇ 1>, wherein side surfaces of the columnar structures are in contact with each other to form a columnar aggregate.
- ⁇ 3> The silicon film according to ⁇ 1> or ⁇ 2>, wherein the columnar structure is grown in a film thickness direction of the silicon film.
- ⁇ 4> The silicon film according to any one of ⁇ 1> to ⁇ 3>, wherein the columnar structure has an aspect ratio of 20 or more.
- ⁇ 5> The silicon film according to any one of ⁇ 1> to ⁇ 4>, wherein the silicon film has a plurality of columnar assemblies.
- ⁇ 6> The silicon film according to any one of ⁇ 1> to ⁇ 5>, wherein the columnar structure has a diameter of 1 to 100 nm and a film thickness of 0.2 to 100 ⁇ m.
- ⁇ 7> The silicon film according to any one of ⁇ 1> to ⁇ 6>, wherein there is a gap of 0.3 to 10 nm in a direction parallel to the columnar assemblies between the columnar assemblies.
- ⁇ 11> The silicon film according to ⁇ 10>, wherein the particle has a diameter of 1 to 1000 nm.
- ⁇ 12> The silicon film according to ⁇ 10> or ⁇ 11>, which includes a plurality of columnar aggregates.
- ⁇ 13> The silicon film according to any one of ⁇ 1> to ⁇ 12>, which is formed in contact with a substrate.
- ⁇ 14> The silicon according to ⁇ 13>, wherein the material of the substrate contains one or more elements selected from the group consisting of copper, nickel, iron, cobalt, chromium, manganese, molybdenum, niobium, tungsten, titanium, and tantalum. film.
- a silicon film manufacturing method in which a silicon film is deposited on a substrate using a deposition source made of Si or a Si compound, wherein the temperature of the deposition source is 1700 K or higher and the substrate temperature is lower than the temperature of the deposition source.
- a method for producing a silicon film wherein the difference between the temperature of the vapor deposition source and the substrate temperature is 700K or more.
- ⁇ 17> The method for producing a silicon film according to ⁇ 15> or ⁇ 16>, wherein an average free path ( ⁇ ) of Si atoms is smaller than a deposition source-substrate distance (D).
- ⁇ 18> The method for producing a silicon film according to any one of ⁇ 15> to ⁇ 17>, wherein an average free path ( ⁇ ) of Si atoms is 1/10 or less of a deposition source-substrate distance (D) .
- ⁇ 19> The method for producing a silicon film according to any one of ⁇ 15> to ⁇ 18>, wherein the film forming speed is from 0.1 ⁇ m / min to 200 ⁇ m / min.
- the substrate material includes one or more selected from the group consisting of copper, nickel, iron, cobalt, chromium, manganese, molybdenum, niobium, tungsten, titanium, and tantalum.
- the manufacturing method of the silicon film in any one.
- a silicon film deposition apparatus for depositing a silicon film on a substrate using a deposition source composed of Si or a Si compound, A means for heating the vapor deposition source so that the temperature of the vapor deposition source is 1700 K or higher, and a means for cooling the substrate so that the substrate temperature is lower than the temperature of the vapor deposition source, and the temperature of the vapor deposition source and the substrate temperature A silicon film deposition apparatus in which these temperatures can be set so that the difference between them is 700K or more.
- a minimum diameter (P) of the substrate viewed from the vertical direction of the substrate can be set larger than a deposition source-substrate distance (D).
- ⁇ 23> The above-mentioned ⁇ 21> or ⁇ 22>, provided with a carrier gas supply means and capable of vapor deposition under a condition that the mean free path ( ⁇ ) of Si atoms is smaller than the deposition source-substrate distance (D).
- ⁇ 24> The silicon film deposition apparatus according to any one of ⁇ 21> to ⁇ 23>, wherein the film forming speed can be set to 0.1 ⁇ m / min to 200 ⁇ m / min.
- ⁇ 26> The electrode according to ⁇ 25>, wherein the silicon film is formed in contact with the metal substrate.
- the present invention it is possible to provide a silicon film that can provide an electrode suitable for a large-capacity lithium secondary battery and a simple manufacturing method thereof.
- the silicon film of the present invention includes a gap between columnar structures, a gap between columnar aggregates that are aggregates of columnar structures, and / or secondary columnar aggregates that are aggregates of columnar aggregates. Due to the gap between them, the expansion and contraction of the silicon film during charging and discharging of the lithium secondary battery can be alleviated. Therefore, the silicon film of the present invention can suppress the deterioration of the silicon film as the negative electrode during repeated charging and discharging of the lithium secondary battery. That is, according to the silicon film of the present invention, a lithium secondary battery having good cycle characteristics can be provided.
- Such a silicon film of the present invention can be applied not only to a lithium secondary battery but also to electrodes of other electrochemical storage devices such as a lithium ion capacitor.
- a silicon film having a practically useful thickness can be produced in a short time, and since a vapor deposition method that does not necessarily require high vacuum is used, The manufacturing cost of the device is also low. Furthermore, according to the method for producing a silicon film of the present invention, the generation of by-products during film formation is also suppressed, so the environmental load is small. Therefore, the industrial value of the method for producing a silicon film of the present invention is extremely high.
- the present invention provides a silicon film having a columnar aggregate which is an aggregate of columnar structures made of Si or Si compounds.
- the columnar structure is made of Si or a Si compound.
- the aspect ratio of the columnar structure is preferably 2 or more, 5 or more, 10 or more, 20 or more, 50 or more, or 100 or more. The upper limit of the aspect ratio is usually about 5000.
- the side surfaces of the columnar structures are aggregated in contact with each other.
- the silicon film of the present invention preferably has a plurality of columnar assemblies.
- the columnar structure has a diameter of 10 to 100 nm or 1 to 100 nm and a film thickness of 0.2 to 100 ⁇ m in order to further increase the capacity of the obtained lithium secondary battery.
- the columnar structure has a diameter of 15 nm or more, 20 nm or more, or 30 nm or more, and may be 90 nm or less, 80 nm or less, or 70 nm or less.
- cracks having a width of 0.01 to 3 ⁇ m in the direction parallel to the columnar aggregates are present between the secondary columnar aggregates that are aggregates of the columnar aggregates, and the interval between the cracks is 1 to 100 ⁇ m. Is preferable in order to further improve the cycle characteristics of the obtained lithium secondary battery.
- the diameter or width of the columnar aggregate is preferably 10 to 100 ⁇ m.
- the columnar structure in the present invention is preferably polycrystalline or amorphous.
- the present invention provides a silicon film having a columnar aggregate which is an aggregate of columnar structures made of Si or Si compounds, and the columnar structure has a structure in which particles are connected in a columnar shape.
- the silicon film of the present invention preferably has a plurality of columnar assemblies.
- the particles constituting the columnar structure preferably have a diameter of 10 to 1000 nm or 1 to 1000 nm in order to increase the capacity of the obtained lithium secondary battery.
- the particle may have a diameter of 15 nm or more, 20 nm or more, or 30 nm or more, and may be 100 nm or less, 90 nm or less, 80 nm or less, or 70 nm or less.
- the silicon film of the present invention is preferably formed in contact with the substrate.
- the material of the substrate include metals, and among these, one or more elements selected from the group consisting of copper, nickel, iron, cobalt, chromium, manganese, molybdenum, niobium, tungsten, titanium, and tantalum are included. It is preferably one or more, more preferably one or more selected from the group consisting of copper, nickel and iron, and even more preferably copper.
- Stainless steel is also a preferred material.
- the substrate is preferably thin, preferably a metal foil, more preferably a copper foil.
- a copper foil whose surface is roughened is preferable.
- Examples of such copper foil include electrolytic copper foil.
- an electrolytic copper foil is prepared by immersing a metal drum in an electrolytic solution in which copper ions are dissolved, and flowing current while rotating the copper drum, thereby depositing copper on the surface of the drum and peeling it off. It is the obtained copper foil.
- One side or both sides of the electrolytic copper foil may be further subjected to roughening treatment or surface treatment.
- the copper foil which precipitated copper on the surface of the rolled copper foil by the electrolytic method, and roughened the surface may be sufficient.
- the columnar structure is made of Si or a Si compound.
- the Si compound include a Si—Ge alloy.
- the Si or Si compound in the present invention may be doped with impurities.
- impurities include elements such as nitrogen, phosphorus, aluminum, arsenic, boron, gallium, indium, and oxygen.
- the silicon film manufacturing method of the present invention is a silicon film manufacturing method in which a silicon film is deposited on a substrate using a deposition source made of Si or a Si compound, and the temperature of the deposition source is 1700 K or more. The temperature is lower than the temperature of the vapor deposition source, and the difference between the temperature of the vapor deposition source and the substrate temperature is 700K or more. According to this method, a high vacuum is not necessarily required, and a silicon film can be manufactured at normal pressure. By the silicon film manufacturing method of the present invention, the diffusion of Si atoms in the parallel direction of the substrate is suppressed, and the silicon film of the present invention can be manufactured.
- the temperature of the vapor deposition source is preferably 1800K or higher.
- the silicon film obtained by the method for producing a silicon film of the present invention has the same effect as the silicon film of the present invention.
- the upper limit of the temperature of the vapor deposition source is usually about 2300K.
- the distance (D) between the evaporation source and the substrate is smaller than the minimum diameter (P) of the substrate viewed from the vertical direction of the substrate.
- the film growth rate that is, the film formation rate can be further increased.
- a silicon film having a columnar structure can be obtained even when the vapor deposition source and the substrate are arranged in parallel and Si atoms fly from various directions. .
- the mean free path ( ⁇ ) of Si atoms represented by the following formula is preferably smaller than the deposition source-substrate distance (D).
- D deposition source-substrate distance
- the resulting silicon film has columnar structures of particles, particularly 10 to 1000 nm. It has a structure in which particles with a diameter are connected in a columnar shape.
- the film forming speed is preferably 0.1 ⁇ m / min to 200 ⁇ m / min. Further, even if the deposition time is 0.1 to 10 minutes, a silicon film having a thickness useful for practical use can be produced.
- the substrate is the same as that described above, and the description thereof is omitted here.
- the silicon film deposition apparatus of the present invention is a silicon film deposition apparatus for depositing a silicon film on a substrate using a deposition source made of Si or a Si compound so that the temperature of the deposition source is 1700K or higher.
- the temperature can be set. With this apparatus, the silicon film of the present invention can be manufactured.
- the minimum diameter (P) of the substrate viewed from the vertical direction of the substrate can be set larger than the distance (D) between the deposition source and the substrate.
- a carrier gas supply means is provided so that vapor deposition can be performed under the condition that the mean free path ( ⁇ ) of Si atoms is smaller than the deposition source-substrate distance (D).
- Argon is mentioned as carrier gas.
- the film forming speed can be set to 0.1 ⁇ m / min to 200 ⁇ m / min.
- the vapor deposition time can be set to 0.1 to 10 minutes.
- Electrode with silicon film can be suitably used as an electrode in an electrochemical storage device such as a lithium secondary battery.
- the electrode having the silicon film of the present invention can be used very suitably as a negative electrode in a lithium secondary battery.
- the substrate can also function as a current collector in the electrode.
- Lithium secondary battery As a representative example of the lithium secondary battery in the present invention, a copper foil is used as a substrate, and an electrode having a silicon film formed on the copper foil is used as a negative electrode of the lithium secondary battery. The case of manufacturing will be described.
- an electrode group obtained by laminating or laminating or winding a separator, the above-described negative electrode, separator and positive electrode is housed in a battery case such as a battery can, and then impregnated with an electrolytic solution. Can be manufactured.
- the shape of the electrode group for example, a shape in which the cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, a rectangle with rounded corners, etc. Can be mentioned.
- examples of the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.
- the positive electrode only needs to be able to dope / dedope lithium ions at a higher potential than the negative electrode, and may be manufactured by a known method.
- the positive electrode is manufactured by supporting a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder on a positive electrode current collector.
- a carbon material or the like can be used as the conductive material, and a thermoplastic resin can be used as the binder.
- An example of the positive electrode current collector is Al.
- ⁇ Lithium secondary battery-separator> As the separator, known separators may be used. For example, a porous film made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a film having a form such as a nonwoven fabric or a woven fabric can be used. .
- the electrolyte usually contains an electrolyte and an organic solvent, and uses an electrolyte made of a lithium salt such as LiPF 6 and this is used as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate. What is obtained by dissolving in an organic solvent such as (EMC) may be used as the electrolytic solution.
- PC propylene carbonate
- EC ethylene carbonate
- DMC dimethyl carbonate
- EMC organic solvent
- Example 1 Manufacture of silicon film
- An 80 ⁇ 6 mm tungsten board was placed in the chamber, and a silicon piece (purity 99.99% or more) treated with HF using a 5 to 10% HF solution was placed on the tungsten board. It was. Since the silicon pieces are melted by heating and spread on the board, the size of the vapor deposition source is 80 ⁇ 6 mm.
- Stainless steel foil (SUS304, size 30 mm ⁇ ) was placed on the upper side of the tungsten board, and this was used as a substrate (current collector). The stainless steel foil was made to face the silicon plate in parallel. At this time, the distance between the deposition source and the substrate was set to 25 mm, which was shorter than the minimum substrate diameter of 30 mm. The stainless steel foil was fixed in close contact with the surface of a cooling block that can be cooled with a water-cooled tube.
- a vacuum was applied to 10 ⁇ 5 Pa with a turbo pump, and then 10 sccm of argon gas was introduced, and the pressure in the furnace was set to 13.3 Pa (0.1 Torr).
- Boltzmann constant k 1.38 ⁇ 10 ⁇ 23 J / K
- temperature T 300 K
- pressure p 13.3 Pa
- collision cross-sectional area ⁇ ⁇ d 2 . Therefore, when the collision diameter d between Si and Ar is 0.35 nm, the mean free path ⁇ is calculated as 0.57 mm.
- FIG. 1 shows a cross-sectional SEM photograph and FIG. 2 shows a surface SEM photograph of the obtained silicon film.
- FIG. 1 shows that the film of the present invention has a columnar structure (1).
- a columnar structure (1) is shown. 1 and 2, the columnar structure (1) grows in the film thickness direction, has an aspect ratio of 5 or more, and a portion of 20 or more can also be confirmed.
- the silicon film formed on the substrate was cut to 1 ⁇ 1 cm to obtain a negative electrode AE1.
- the negative electrode AE1 was dried in a vacuum oven at 120 ° C. for 6 hours. After drying, it is transferred into a glove box substituted with argon gas and immersed in an electrolytic solution (1M LiPF 6 / EC + EMC (weight ratio of EC and EMC 3: 7)).
- a lithium secondary battery TC1 is assembled by disposing the silicon deposition surface of the battery facing the separator.
- FIGS. show that when the silicon film of the present invention is used as a negative electrode of a lithium secondary battery, the secondary battery characteristics such as cycle characteristics are excellent.
- Example 2 Manufacture of silicon film
- a silicon film having a film thickness of 0.8 ⁇ m was obtained in the same manner as in Example 1 except for the silicon filling amount.
- a lithium secondary battery TC2 was produced in the same manner as in Example 1 except that this silicon film was used, and charge / discharge tests were performed by repeating charge / discharge.
- FIG. 5 shows that when the silicon film of the present invention is used as a negative electrode of a lithium secondary battery, the secondary battery characteristics such as cycle characteristics are excellent.
- Example 3 Manufacture of silicon film
- a film thickness of 0.4 ⁇ m was obtained in the same manner as in Example 1 except that the pressure in the chamber during vapor deposition was 133 Pa (1 Torr, and the mean free path ⁇ of Si atoms was calculated to be 0.057 mm).
- a silicon film was obtained.
- a lithium secondary battery TC3 was produced in the same manner as in Example 1 except that this silicon film was used, and charge / discharge tests were performed by repeating charge / discharge.
- FIG. 6 shows that when the silicon film of the present invention is used as a negative electrode of a lithium secondary battery, the secondary battery characteristics such as cycle characteristics are excellent.
- Example 4 Manufacture of silicon film
- a silicon film having a thickness of 2.0 ⁇ m was obtained in the same manner as in Example 3 except for the silicon filling amount.
- a lithium secondary battery TC4 was produced in the same manner as in Example 3 except that this silicon film was used, and charge / discharge tests were performed by repeating charge / discharge.
- Example 5 Manufacture of silicon film
- the film thickness was reduced to 0,72 in the same manner as in Example 1 except that the pressure in the chamber during vapor deposition was set to 732 Pa (5.5 Torr, and the mean free path ⁇ of Si atoms was calculated to be 0.010 mm).
- a silicon film of 25 ⁇ m was obtained.
- a lithium secondary battery TC5 was produced in the same manner as in Example 1 except that this silicon film was used, and charge / discharge tests were performed by repeating charge / discharge.
- FIGS. show that when the silicon film of the present invention is used as a negative electrode of a lithium secondary battery, the secondary battery characteristics such as cycle characteristics are excellent.
- Example 6 Manufacture of silicon film
- a silicon film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the filling amount of silicon and the Cu foil was used as the substrate.
- a lithium secondary battery TC6 was produced in the same manner as in Example 1 except that this silicon film was used, and charge / discharge tests were performed by repeating charge / discharge.
- Example 7 Manufacture of silicon film
- a silicon film having a thickness of 3.7 ⁇ m was formed in the same manner as in Example 6 except for the silicon filling amount, and this was annealed at 600 ° C. for 10 minutes in an atmospheric pressure argon gas atmosphere to obtain a silicon thin film.
- FIG. 9 shows a low-magnification surface SEM photograph and FIG. 10 shows a high-magnification surface SEM photograph of the obtained silicon film.
- FIG. 9 shows that cracks (11) following the irregularities on the surface of the Cu foil are formed at intervals of 1 to 3 ⁇ m between the columnar aggregates (10), which are aggregates of columnar structures.
- FIG. 10 shows that the silicon film is formed of a columnar structure (1) having a diameter of 30 to 200 nm.
- FIG. 10 also shows that the width of the crack (11) between the columnar assemblies (10), which is an assembly of the columnar structures (1), is about 30 nm.
- a lithium secondary battery TC7 was produced in the same manner as in Example 1 except that this silicon film was used, and charge / discharge tests were performed by repeating charge / discharge.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
〈1〉SiまたはSi化合物からなる柱状構造体の集合体である柱状集合体を有する、シリコン膜。
〈2〉柱状構造体の側面同士が接触して柱状集合体を構成している、前記〈1〉記載のシリコン膜。
〈3〉柱状構造体がシリコン膜の膜厚方向に成長している、前記〈1〉または〈2〉記載のシリコン膜。
〈4〉柱状構造体のアスペクト比20以上である、前記〈1〉~〈3〉のいずれかに記載のシリコン膜。
〈5〉柱状集合体を複数有する、前記〈1〉~〈4〉のいずれか記載のシリコン膜。
〈6〉柱状構造体の直径が1~100nmであって、膜厚が0.2~100μmである、前記〈1〉~〈5〉のいずれかに記載のシリコン膜。
〈7〉柱状集合体同士の間に、柱状集合体に平行方向の0.3~10nmの空隙を有する、前記〈1〉~〈6〉のいずれかに記載のシリコン膜。
〈8〉柱状集合体の集合体である二次柱状集合体の間に、二次柱状集合体に平行方向の幅0.01~3μmの亀裂を有し、該亀裂の間隔が1~100μmである、前記〈1〉~〈7〉のいずれかに記載のシリコン膜。
〈9〉柱状構造体が多結晶もしくは非晶質である、前記〈1〉~〈8〉のいずれかに記載のシリコン膜。
〈10〉SiまたはSi化合物からなる柱状構造体の集合体である柱状集合体を有し、該柱状構造体が、粒子が柱状に連なった構造である、シリコン膜。
〈11〉粒子の直径が1~1000nmである、前記〈10〉記載のシリコン膜。
〈12〉柱状集合体を複数有する、前記〈10〉又は〈11〉記載のシリコン膜。
〈13〉基板に接して形成されている、前記〈1〉~〈12〉のいずれかに記載のシリコン膜。
〈14〉基板の材質が、銅、ニッケル、鉄、コバルト、クロム、マンガン、モリブデン、ニオブ、タングステン、チタンおよびタンタルからなる群より選ばれる1種以上の元素を含む、前記〈13〉記載のシリコン膜。
〈15〉SiまたはSi化合物からなる蒸着源を用いてシリコン膜を基板に蒸着するシリコン膜の製造方法であって、蒸着源の温度が1700K以上であり、基板温度が蒸着源の温度よりも低く、且つ蒸着源の温度と基板温度との差が700K以上である、シリコン膜の製造方法。
〈16〉蒸着源-基板間距離(D)が、基板の垂直方向からみた基板の最小径(P)よりも小さい、前記〈15〉記載のシリコン膜の製造方法。
〈17〉Si原子の平均自由行程(λ)が、蒸着源-基板間距離(D)よりも小さい、前記〈15〉または〈16〉記載のシリコン膜の製造方法。
〈18〉Si原子の平均自由行程(λ)が、蒸着源-基板間距離(D)の1/10以下である、前記〈15〉~〈17〉のいずれかに記載のシリコン膜の製造方法。
〈19〉製膜速度が0.1μm/分~200μm/分である、前記〈15〉~〈18〉のいずれかに記載のシリコン膜の製造方法。
〈20〉基板の材質が、銅、ニッケル、鉄、コバルト、クロム、マンガン、モリブデン、ニオブ、タングステン、チタンおよびタンタルからなる群より選ばれる1種以上を含む、前記〈15〉~〈19〉のいずれかに記載のシリコン膜の製造方法。
〈21〉SiまたはSi化合物からなる蒸着源を用いて基板にシリコン膜を蒸着するためのシリコン膜蒸着装置であって、
蒸着源の温度が1700K以上になるように蒸着源を加熱する手段、及び
基材温度が蒸着源の温度よりも低くなるように基板を冷却する手段
を備え、且つ蒸着源の温度と基板温度との差が700K以上となるようにこれらの温度を設定可能である、シリコン膜蒸着装置。
〈22〉基板の垂直方向からみた基板の最小径(P)を、蒸着源-基板間距離(D)よりも大きく設定可能である、前記〈21〉記載のシリコン膜蒸着装置。
〈23〉キャリアガスの供給手段を備え、Si原子の平均自由行程(λ)が、蒸着源-基板間距離(D)よりも小さくなる条件で蒸着可能である、前記〈21〉または〈22〉記載のシリコン膜蒸着装置。
〈24〉製膜速度を0.1μm/分~200μm/分に設定可能である、前記〈21〉~〈23〉のいずれかに記載のシリコン膜の蒸着装置。
〈25〉前記〈1〉~〈14〉のいずれかに記載のシリコン膜を有する電極。
〈26〉シリコン膜が金属基板に接して形成されている、前記〈25〉記載の電極。
〈27〉前記〈25〉又は〈26〉記載の電極を、負極として有するリチウム二次電池。
本発明は、SiまたはSi化合物からなる柱状構造体の集合体である柱状集合体を有することを特徴とするシリコン膜を提供する。本発明のシリコン膜において、柱状構造体は、SiまたはSi化合物からなる。柱状構造体のアスペクト比は、2以上、5以上、10以上、20以上、50以上、又は100以上であることが好ましい。また、アスペクト比の上限は、通常、5000程度である。本発明において、柱状集合体では、柱状構造体の側面同士が接触して集合している。本発明のシリコン膜は好ましくは、柱状集合体を複数有する。
また、本発明のシリコン膜の製造方法は、SiまたはSi化合物からなる蒸着源を用いてシリコン膜を基板に蒸着するシリコン膜の製造方法であって、蒸着源の温度が1700K以上であり、基板温度が蒸着源の温度よりも低く、且つ蒸着源の温度と基板温度との差が700K以上である。この方法によれば、高真空を必ずしも必須とせず、常圧におけるシリコン膜の製造も可能である。本発明のシリコン膜の製造方法により、基板の平行方向へのSi原子の拡散が抑制され、本発明のシリコン膜を製造することができる。蒸着速度を速くする観点では、蒸着源の温度を、1800K以上とすることが好ましい。本発明のシリコン膜の製造方法により得られるシリコン膜は、本発明のシリコン膜と同じ効果を有する。蒸着源の温度の上限は、通常、2300K程度である。
λ=kT/(21/2σp)
(式中、
k=1.38×10-23(J/K)(ボルツマン定数)
T=温度(K)
p=圧力(Pa)
σ=πd2(衝突断面積)(SiとArの場合の衝突直径dは0.35nm))。
また、本発明のシリコン膜蒸着装置は、SiまたはSi化合物からなる蒸着源を用いて基板にシリコン膜を蒸着するためのシリコン膜蒸着装置であって、蒸着源の温度が1700K以上になるように蒸着源を加熱する手段、及び基材温度が蒸着源の温度よりも低くなるように基板を冷却する手段を備え、且つ蒸着源の温度と基板温度との差が700K以上となるようにこれらの温度を設定可能である。この装置により、本発明のシリコン膜を製造することができる。
本発明のシリコン膜を有する電極は、リチウム二次電池などの電気化学蓄電デバイスにおける電極として好適に使用できる。特に、本発明のシリコン膜を有する電極は、リチウム二次電池における負極として、極めて好適に使用できる。なお、本発明において、基板は、電極における集電体としての機能を果たすこともできる。
次に、本発明におけるリチウム二次電池の代表例として、基板として銅箔を用い、この銅箔上にシリコン膜を形成させた電極をリチウム二次電池の負極として用いて、リチウム二次電池を製造する場合を説明する。
前記正極は、負極よりも高い電位でリチウムイオンのドープ・脱ドープが可能であればよく、公知の方法で製造すればよい。具体的には、正極は、正極活物質、導電材およびバインダーを含む正極合剤を正極集電体に担持させて製造する。前記導電材としては炭素材料などを用いることができ、前記バインダーとしては、熱可塑性樹脂を用いることができる。また、前記正極集電体としては、Alを挙げることができる。
前記セパレータとしても、公知のものを使用すればよく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂などの材質からなる多孔質膜、不織布、織布などの形態を有する膜を用いることができる。
また、前記電解液としても、公知のものを使用すればよい。電解液は、通常、電解質および有機溶媒を含有し、LiPF6などのリチウム塩からなる電解質を用いて、これをプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)などの有機溶媒に溶解させて得られるものを電解液として用いればよい。
(シリコン膜の製造)
チャンバー内に、80×6mmのタングステンボードを設置し、この上に、5~10%のHF溶液を用いてHF処理したシリコン片(純度99.99%以上)を載置し、これを蒸着源とした。シリコン片は、加熱することにより融解してボード上に広がるため、蒸着源のサイズは、80×6mmとなる。
得られたシリコン膜について、断面SEM写真を図1に、表面SEM写真を図2に示す。図1では、本発明の膜が、柱状構造体(1)を有することが示されている。図2では、柱状構造体(1)が示されている。図1及び2によれば、柱状構造体(1)は、膜厚方向に成長しており、かつアスペクト比5以上であり、20以上の部分も確認できる。
基板上に形成されたシリコン膜を1×1cmに切断し負極AE1を得た。負極AE1を120℃中、6時間真空オーブン中で乾燥した。乾燥後、アルゴンガス置換されたグローブボックス内に移送し、電解液(1M LiPF6/EC+EMC(ECおよびEMCの重量比3:7))に浸漬させる。
リチウム二次電池TC1の定格容量を理論容量4200mAh/gとして、0.1C、8時間、0Vの定電流/定電圧充電(この場合の充電は、電極AE1にLiがドープされる方向)、0.1C、カットオフ電圧2Vの定電流放電(この場合の放電は、電極AE1からLiが脱ドープされる方向)の条件で充放電を繰り返して、充放電試験を行った。
(シリコン膜の製造)
シリコンの充填量以外は実施例1と同様にして、膜厚0.8μmのシリコン膜を得た。
このシリコン膜を用いた以外は、実施例1と同様にして、リチウム二次電池TC2を作製し、充放電を繰り返して、充放電試験を行った。
(シリコン膜の製造)
蒸着時のチャンバー内の圧力を133Pa(1Torr、このときのSi原子の平均自由行程λは0.057mmと計算される。)とする以外は実施例1と同様にして、膜厚0.4μmのシリコン膜を得た。
このシリコン膜を用いた以外は、実施例1と同様にして、リチウム二次電池TC3を作製し、充放電を繰り返して、充放電試験を行った。
(シリコン膜の製造)
シリコンの充填量以外は実施例3と同様にして、膜厚2.0μmのシリコン膜を得た。
このシリコン膜を用いた以外は実施例3と同様にして、リチウム二次電池TC4を作製し、充放電を繰り返して、充放電試験を行った。
(シリコン膜の製造)
蒸着時のチャンバー内の圧力を732Pa(5.5Torr、このときのSi原子の平均自由行程λは0.010mmと計算される。)とする以外は実施例1と同様にして、膜厚0.25μmのシリコン膜を得た。
このシリコン膜を用いた以外は実施例1と同様にして、リチウム二次電池TC5を作製し、充放電を繰り返して、充放電試験を行った。
(シリコン膜の製造)
シリコンの充填量と、基板としてCu箔を用いた以外は、実施例1と同様にして、膜厚2.5μmのシリコン膜を得た。
このシリコン膜を用いた以外は実施例1と同様にして、リチウム二次電池TC6を作製し、充放電を繰り返して、充放電試験を行った。
(シリコン膜の製造)
シリコンの充填量以外は実施例6と同様にして、シリコンを3.7μm成膜し、これを常圧のアルゴンガス雰囲気下で600℃、10分アニール処理を行い、シリコン薄膜を得た。
得られたシリコン膜について、低倍率の表面SEM写真を図9に、高倍率の表面SEM写真を図10に示す。図9では、Cu箔表面の凹凸に倣った亀裂(11)が、柱状構造体の集合体である柱状集合体(10)同士の間に、間隔1~3μmで形成されていることが示されている。図10では、シリコン膜が直径30~200nmの柱状構造体(1)で形成されていることが示されている。また、図10では、柱状構造体(1)の集合体である柱状集合体(10)の間にある亀裂(11)の幅が、30nm程度であることが示されている。
このシリコン膜を用いた以外は実施例1と同様にして、リチウム二次電池TC7を作製し、充放電を繰り返して、充放電試験を行った。
10 柱状集合体
11 柱状集合体間の亀裂
Claims (27)
- SiまたはSi化合物からなる柱状構造体の集合体である柱状集合体を有する、シリコン膜。
- 柱状構造体の側面同士が接触して柱状集合体を構成している、請求項1記載のシリコン膜。
- 柱状構造体がシリコン膜の膜厚方向に成長している、請求項1または2記載のシリコン膜。
- 柱状構造体のアスペクト比20以上である、請求項1~3のいずれかに記載のシリコン膜。
- 柱状集合体を複数有する、請求項1~4のいずれか記載のシリコン膜。
- 柱状構造体の直径が10~100nmであって、膜厚が0.2~100μmである、請求項1~5のいずれかに記載のシリコン膜。
- 柱状構造体同士の間に、柱状構造体に平行方向の0.3~10nmの空隙を有する、請求項1~6のいずれかに記載のシリコン膜。
- 柱状集合体同士の集合体である二次柱状集合体の間に、柱状集合体に平行方向の幅0.01~3μmの亀裂を有し、該亀裂の間隔が1~100μmである、請求項1~7のいずれかに記載のシリコン膜。
- 柱状構造体が多結晶もしくは非晶質である、請求項1~8のいずれかに記載のシリコン膜。
- SiまたはSi化合物からなる柱状構造体の集合体である柱状集合体を有し、該柱状構造体が、粒子が柱状に連なった構造である、シリコン膜。
- 粒子の直径が10~1000nmである、請求項10記載のシリコン膜。
- 柱状集合体を複数有する、請求項10又は11記載のシリコン膜。
- 基板に接して形成されている、請求項1~12のいずれかに記載のシリコン膜。
- 基板の材質が、銅、ニッケル、鉄、コバルト、クロム、マンガン、モリブデン、ニオブ、タングステン、チタンおよびタンタルからなる群より選ばれる1種以上の元素を含む、請求項13記載のシリコン膜。
- SiまたはSi化合物からなる蒸着源を用いてシリコン膜を基板に蒸着するシリコン膜の製造方法であって、蒸着源の温度が1700K以上であり、基板温度が蒸着源の温度よりも低く、且つ蒸着源の温度と基板温度との差が700K以上である、シリコン膜の製造方法。
- 蒸着源-基板間距離(D)が、基板の垂直方向からみた基板の最小径(P)よりも小さい、請求項15記載のシリコン膜の製造方法。
- Si原子の平均自由行程(λ)が、蒸着源-基板間距離(D)よりも小さい、請求項15または16記載のシリコン膜の製造方法。
- Si原子の平均自由行程(λ)が、蒸着源-基板間距離(D)の1/10以下である、請求項15~17のいずれかに記載のシリコン膜の製造方法。
- 製膜速度が0.1μm/分~200μm/分である、請求項15~18のいずれかに記載のシリコン膜の製造方法。
- 基板の材質が、銅、ニッケル、鉄、コバルト、クロム、マンガン、モリブデン、ニオブ、タングステン、チタンおよびタンタルからなる群より選ばれる1種以上を含む、請求項15~19のいずれかに記載のシリコン膜の製造方法。
- SiまたはSi化合物からなる蒸着源を用いて基板にシリコン膜を蒸着するためのシリコン膜蒸着装置であって、
蒸着源の温度が1700K以上になるように蒸着源を加熱する手段、及び
基材温度が蒸着源の温度よりも低くなるように基板を冷却する手段
を備え、且つ蒸着源の温度と基板温度との差が700K以上となるようにこれらの温度を設定可能である、シリコン膜蒸着装置。 - 基板の垂直方向からみた基板の最小径(P)を、蒸着源-基板間距離(D)よりも大きく設定可能である、請求項21記載のシリコン膜蒸着装置。
- キャリアガスの供給手段を備え、Si原子の平均自由行程(λ)が、蒸着源-基板間距離(D)よりも小さくなる条件で蒸着可能である、請求項21または22記載のシリコン膜蒸着装置。
- 製膜速度を0.1μm/分~200μm/分に設定可能である、請求項21~23のいずれかに記載のシリコン膜の蒸着装置。
- 請求項1~14のいずれかに記載のシリコン膜を有する電極。
- シリコン膜が金属基板に接して形成されている、請求項25記載の電極。
- 請求項25又は26記載の電極を、負極として有するリチウム二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/514,893 US20120244441A1 (en) | 2009-12-10 | 2010-12-10 | Silicon film and lithium secondary battery |
CN201080056160.8A CN102652183B (zh) | 2009-12-10 | 2010-12-10 | 硅膜和锂二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009280187A JP5473576B2 (ja) | 2009-12-10 | 2009-12-10 | シリコン膜およびリチウム二次電池 |
JP2009-280187 | 2009-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011071154A1 true WO2011071154A1 (ja) | 2011-06-16 |
Family
ID=44145697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072255 WO2011071154A1 (ja) | 2009-12-10 | 2010-12-10 | シリコン膜およびリチウム二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120244441A1 (ja) |
JP (1) | JP5473576B2 (ja) |
CN (1) | CN102652183B (ja) |
WO (1) | WO2011071154A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012169625A1 (ja) * | 2011-06-08 | 2012-12-13 | 国立大学法人 東京大学 | Siと金属Mとを含む膜の製造方法 |
CN103094532A (zh) * | 2011-11-01 | 2013-05-08 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及其制造方法 |
JP2017054782A (ja) * | 2015-09-11 | 2017-03-16 | 株式会社東芝 | 非水電解質電池用電極、それを備えた非水電解質電池および電池パック |
WO2023281910A1 (ja) * | 2021-07-07 | 2023-01-12 | パナソニックIpマネジメント株式会社 | 電池およびその製造方法 |
WO2023281911A1 (ja) * | 2021-07-07 | 2023-01-12 | パナソニックIpマネジメント株式会社 | 電池およびその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10319535B2 (en) * | 2013-09-27 | 2019-06-11 | Intel Corporation | High voltage high power energy storage devices, systems, and associated methods |
JP6367652B2 (ja) * | 2014-08-27 | 2018-08-01 | 国立研究開発法人物質・材料研究機構 | シリコン(Si)系ナノ構造材料及びその製造方法 |
JP7064709B2 (ja) * | 2018-02-28 | 2022-05-11 | Tdk株式会社 | リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
KR20230062840A (ko) * | 2020-09-08 | 2023-05-09 | 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 | 복합 나노아키텍처 유닛, 다층 복합재, 및 복합 나노아키텍처 유닛의 제조 방법 |
CN117378057A (zh) * | 2021-05-17 | 2024-01-09 | 松下知识产权经营株式会社 | 电池以及电池的制造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001031720A1 (en) * | 1999-10-22 | 2001-05-03 | Sanyo Electric Co., Ltd. | Electrode for lithium cell and lithium secondary cell |
JP2002270511A (ja) * | 2001-03-09 | 2002-09-20 | Canon Inc | 多結晶Si薄膜の堆積法、多結晶Si薄膜及び光起電力素子並びにターゲット |
JP2005194552A (ja) * | 2004-01-05 | 2005-07-21 | Eiko Engineering Co Ltd | ハイブリッドebセルとそれを使用した成膜材料蒸発方法 |
JP2008111161A (ja) * | 2006-10-31 | 2008-05-15 | Matsushita Electric Ind Co Ltd | 蒸着装置 |
JP2008117785A (ja) * | 2005-08-02 | 2008-05-22 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極およびその製造方法 |
JP2008163375A (ja) * | 2006-12-27 | 2008-07-17 | Ricoh Co Ltd | 蒸着膜とこれを用いた光路偏向素子、空間光変調素子、及び投射型画像表示装置 |
JP2008192594A (ja) * | 2007-01-11 | 2008-08-21 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池 |
JP2008274409A (ja) * | 2007-03-30 | 2008-11-13 | Fujifilm Corp | 防曇膜の形成方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3554512A (en) * | 1969-03-24 | 1971-01-12 | George H Elliott | Crucible for holding molten semiconductor materials |
JPS56137614A (en) * | 1980-03-31 | 1981-10-27 | Futaba Corp | Manufacture of amorphous silicon coat |
US4305801A (en) * | 1980-04-16 | 1981-12-15 | The United States Of America As Represented By The United States Department Of Energy | Line-of-sight deposition method |
US4702965A (en) * | 1983-05-23 | 1987-10-27 | Richard J. Birch | Low vacuum silicon thin film solar cell and method of production |
KR0126457B1 (ko) * | 1992-01-08 | 1997-12-26 | 기타오카 다카시 | 집적회로, 그 제조방법 및 그 박막형성장치 |
JP3169151B2 (ja) * | 1992-10-26 | 2001-05-21 | 三菱電機株式会社 | 薄膜形成装置 |
EP1282161B1 (en) * | 2000-05-08 | 2011-07-20 | Denki Kagaku Kogyo Kabushiki Kaisha | LOW RELATIVE PERMITTIVITY SIOx FILM, PRODUCTION METHOD, SEMICONDUCTOR DEVICE COMPRISING THE FILM |
JP4104476B2 (ja) * | 2003-03-25 | 2008-06-18 | 三洋電機株式会社 | リチウム二次電池の使用方法及びリチウム二次電池 |
JP4493926B2 (ja) * | 2003-04-25 | 2010-06-30 | 株式会社半導体エネルギー研究所 | 製造装置 |
US8080334B2 (en) * | 2005-08-02 | 2011-12-20 | Panasonic Corporation | Lithium secondary battery |
JP5036161B2 (ja) * | 2005-10-14 | 2012-09-26 | パナソニック株式会社 | リチウムイオン二次電池用負極活物質、その製造方法、およびそれを用いたリチウムイオン二次電池 |
US8318359B2 (en) * | 2005-11-07 | 2012-11-27 | Panasonic Corporation | Electrode for lithium secondary battery, lithium secondary battery and method for producing the same |
KR20080074157A (ko) * | 2005-12-02 | 2008-08-12 | 마쯔시다덴기산교 가부시키가이샤 | 음극 활물질, 이것을 이용한 음극 및 리튬이온 이차전지 |
JP5043338B2 (ja) * | 2006-01-19 | 2012-10-10 | パナソニック株式会社 | リチウム二次電池 |
CN101356669B (zh) * | 2006-10-19 | 2011-04-06 | 松下电器产业株式会社 | 非水电解质二次电池和非水电解质二次电池用负极的制造方法 |
JP2008171802A (ja) * | 2006-12-13 | 2008-07-24 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池 |
US20080171263A1 (en) * | 2007-01-11 | 2008-07-17 | Masaya Ugaji | Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same |
-
2009
- 2009-12-10 JP JP2009280187A patent/JP5473576B2/ja active Active
-
2010
- 2010-12-10 CN CN201080056160.8A patent/CN102652183B/zh active Active
- 2010-12-10 WO PCT/JP2010/072255 patent/WO2011071154A1/ja active Application Filing
- 2010-12-10 US US13/514,893 patent/US20120244441A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001031720A1 (en) * | 1999-10-22 | 2001-05-03 | Sanyo Electric Co., Ltd. | Electrode for lithium cell and lithium secondary cell |
JP2002270511A (ja) * | 2001-03-09 | 2002-09-20 | Canon Inc | 多結晶Si薄膜の堆積法、多結晶Si薄膜及び光起電力素子並びにターゲット |
JP2005194552A (ja) * | 2004-01-05 | 2005-07-21 | Eiko Engineering Co Ltd | ハイブリッドebセルとそれを使用した成膜材料蒸発方法 |
JP2008117785A (ja) * | 2005-08-02 | 2008-05-22 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極およびその製造方法 |
JP2008111161A (ja) * | 2006-10-31 | 2008-05-15 | Matsushita Electric Ind Co Ltd | 蒸着装置 |
JP2008163375A (ja) * | 2006-12-27 | 2008-07-17 | Ricoh Co Ltd | 蒸着膜とこれを用いた光路偏向素子、空間光変調素子、及び投射型画像表示装置 |
JP2008192594A (ja) * | 2007-01-11 | 2008-08-21 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池 |
JP2008274409A (ja) * | 2007-03-30 | 2008-11-13 | Fujifilm Corp | 防曇膜の形成方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012169625A1 (ja) * | 2011-06-08 | 2012-12-13 | 国立大学法人 東京大学 | Siと金属Mとを含む膜の製造方法 |
CN103094532A (zh) * | 2011-11-01 | 2013-05-08 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及其制造方法 |
EP2590248A3 (en) * | 2011-11-01 | 2014-01-01 | Shin-Etsu Chemical Co., Ltd. | Negative electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same |
US9543578B2 (en) | 2011-11-01 | 2017-01-10 | Shin-Etsu Chemical Co., Ltd. | Negative electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same |
JP2017054782A (ja) * | 2015-09-11 | 2017-03-16 | 株式会社東芝 | 非水電解質電池用電極、それを備えた非水電解質電池および電池パック |
US10693128B2 (en) | 2015-09-11 | 2020-06-23 | Kabushiki Kaisha Toshiba | Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack |
WO2023281910A1 (ja) * | 2021-07-07 | 2023-01-12 | パナソニックIpマネジメント株式会社 | 電池およびその製造方法 |
WO2023281911A1 (ja) * | 2021-07-07 | 2023-01-12 | パナソニックIpマネジメント株式会社 | 電池およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5473576B2 (ja) | 2014-04-16 |
US20120244441A1 (en) | 2012-09-27 |
CN102652183B (zh) | 2015-08-19 |
CN102652183A (zh) | 2012-08-29 |
JP2011122200A (ja) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5473576B2 (ja) | シリコン膜およびリチウム二次電池 | |
JP7052035B2 (ja) | リチウム金属アノードのための、カルコゲナイドを用いたエクスシトゥ固体電解質界面修飾 | |
US20220328814A1 (en) | Silicon composition material for use as battery anode | |
JP6163294B2 (ja) | リチウム二次電池 | |
EP3579310B1 (en) | Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same | |
KR102124052B1 (ko) | 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬 전지 | |
US8334073B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof | |
EP2765636B1 (en) | Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same | |
JP2020502761A (ja) | リチウム金属負極、その製造方法およびこれを含むリチウム二次電池 | |
WO2018024184A1 (zh) | 锗/石墨烯/二氧化钛纳米纤维复合材料制备方法及电池 | |
JP2010140901A (ja) | リチウム二次電池用アノード活物質、その製造方法及びそれを備えたリチウム二次電池 | |
KR20120010211A (ko) | 다공성 실리콘계 화합물 또는 다공성 실리콘, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질 및 리튬 이차 전지 | |
US20210028438A1 (en) | Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same | |
JP2008047458A (ja) | 蓄電デバイス用電極及びそれを用いた蓄電デバイス | |
KR101213477B1 (ko) | 고용량 음극 물질이 코팅된 수퍼 도전성 나노 입자를 포함하는 음극 활물질 및 이를 포함하는 리튬 전지 | |
JP5343516B2 (ja) | リチウム2次電池用負極、リチウム2次電池及びリチウム2次電池用負極の製造方法 | |
KR20150050167A (ko) | 다공성 실리콘계 음극 활물질, 이의 제조 방법 | |
KR101323328B1 (ko) | 다공성 컬럼형 실리콘 비대칭하이브리드 리튬이차전지 | |
KR101813302B1 (ko) | 음극 활물질 및 이의 제조 방법 | |
JP2005135856A (ja) | リチウム二次電池用電極及びその製造方法、並びにリチウム二次電池 | |
JP2008243828A (ja) | 負極および二次電池の製造方法 | |
KR100860341B1 (ko) | 비수전해질 이차 전지와 그 음극 | |
KR20200076076A (ko) | 마그네슘 보호층을 포함하는 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR101284025B1 (ko) | 리튬이차전지용 음극소재 및 이의 제조방법 | |
JP2007188877A (ja) | 電極及びその製造方法、並びに非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080056160.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10836073 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13514893 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10836073 Country of ref document: EP Kind code of ref document: A1 |