Nothing Special   »   [go: up one dir, main page]

WO2011069052A2 - Process for producing a t-butyl phenol from a c4 raffinate stream - Google Patents

Process for producing a t-butyl phenol from a c4 raffinate stream Download PDF

Info

Publication number
WO2011069052A2
WO2011069052A2 PCT/US2010/058866 US2010058866W WO2011069052A2 WO 2011069052 A2 WO2011069052 A2 WO 2011069052A2 US 2010058866 W US2010058866 W US 2010058866W WO 2011069052 A2 WO2011069052 A2 WO 2011069052A2
Authority
WO
WIPO (PCT)
Prior art keywords
tert
phenol
butyl
isobutylene
butene
Prior art date
Application number
PCT/US2010/058866
Other languages
French (fr)
Other versions
WO2011069052A3 (en
Inventor
Roger J. D'souza
Scott D. Smith
Kirthivasan Nagarajan
Original Assignee
Si Group, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Si Group, Inc. filed Critical Si Group, Inc.
Priority to RU2012127805A priority Critical patent/RU2606130C2/en
Priority to SG2012038782A priority patent/SG181078A1/en
Priority to KR1020127014496A priority patent/KR101822607B1/en
Priority to JP2012542218A priority patent/JP5851415B2/en
Priority to EP10788470A priority patent/EP2521706A2/en
Priority to CN201080054733.3A priority patent/CN102906059B/en
Priority to BR112012013419A priority patent/BR112012013419C8/en
Priority to US13/513,666 priority patent/US8937201B2/en
Publication of WO2011069052A2 publication Critical patent/WO2011069052A2/en
Publication of WO2011069052A3 publication Critical patent/WO2011069052A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/88Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/06Alkylated phenols

Definitions

  • This invention relates to processes for producing various t-butyl phenols from an isobutylene-containing C 4 raffinate stream.
  • tert-butyl phenols from isobutylene typically involves a "pure" isobutylene, while the isobutylene from the raffinate stream contains varying amounts of butenes and butanes in addition to other alkanes and alkenes ranging from C 2 to C5.
  • the butenes, particularly the 1-butene and the 2-butene competitively react with the phenol to produce undesirable sec-butyl phenols in addition to the desirable tert-butyl phenols.
  • Separating the sec-butyl phenols from the tert-butyl-phenols is costly and adversely affects the yield the desired products.
  • This invention relates to a process for producing a tert-butyl phenol, such as 2,6-di- tert-butyl phenol or ortho-tert-butyl phenol that involves reacting an isobutylene-containing C 4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal, such as aluminum, or a Group Illb metal oxide, such as aluminum oxide.
  • the reaction should be run at a reaction temperature ranging from about 50° C to about 150° C, where the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1.
  • the invention also relates to a process for producing ortho-tert-butyl phenol that involves reacting an isobutylene-containing C 4 raffinate stream with a phenol in the presence of an aluminum oxide catalyst.
  • the reaction temperature ranges from about 150° C to about 200° C
  • the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 1.5:1.
  • the invention also relates to a process for producing 2,6-di-tert-butyl phenol that involves reacting an isobutylene-containing C 4 raffinate stream with ortho-tert-butyl phenol in the presence of aluminum or aluminum trisphenoxide.
  • the reaction temperature ranging from about 0° C to about 30° C
  • the molar ratio of isobutylene to ortho-tert-butyl phenol ranges from about 0.5:1 to about 2.0:1.
  • the invention also relates to a process for producing a tert-butyl phenol, such as 2,6- di-tert-butyl phenol or ortho-tert-butyl phenol, that involves reacting a phenol with a C 4 raffinate stream containing (a) isobutylene, and (b) 1-butene and/or 2-butene.
  • the reaction is run under reaction conditions that selectively react the isobutylene with the phenol to produce the tert-butyl phenol without substantially reacting the 1-butene or 2-butene with the phenol.
  • the invention also relates to a process for producing a tert-butyl phenol directly from an isobutylene-containing C 4 raffinate stream without forming an alkyl-tert-butyl ether as an intermediate.
  • the isobutylene-containing C 4 raffinate stream is directly reacted with a phenol to produce the tert-butyl phenol.
  • the reaction proceeds without the intermediate step of forming an alkyl-tert-butyl ether.
  • the invention also relates to an alcohol-free process for producing a tert-butyl phenol directly from an isobutylene-containing C 4 raffinate stream.
  • the method involves directly reacting the isobutylene-containing C 4 raffinate stream with a phenol to produce the tert-butyl phenol.
  • the reaction process avoids the intermediate step of introducing an alcohol, such as methanol or amyl alcohol, into the C 4 raffinate stream.
  • the invention also relates to a composition
  • a composition comprising one or more tert-butyl phenols containing less than 0.5% by weight of sec-butyl phenols.
  • the composition is prepared by directly reacting a phenol with a C 4 raffinate stream containing (a) isobutylene and (b) 1-butene and/or 2-butene.
  • Tert-butyl phenols are useful as starting materials for producing plasticizers, resins, spices, polymerization inhibitors, antioxidants, molecular weight regulators, and various other chemical products. Additionally, certain tert-butyl phenols are useful as fragrance or flavor compounds and may be used in a wide variety of household, personal care, and industrial items, such as perfumes, cleansers, or detergents, to impart a pleasing odor to the item.
  • One embodiment of the invention relates to a process for producing a tert-butyl phenol, comprising reacting an isobutylene-containing C 4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Illb metal oxide at a reaction temperature ranging from about 50° C to about 150° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1.
  • This embodiment includes, for instance, a process for producing a tert-butyl phenol, comprising reacting an isobutylene-containing C 4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Illb metal oxide at a reaction temperature ranging from about 50° C to about 150° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 2.5:1.
  • This embodiment also includes, for instance, a process for producing a tert-butyl phenol, comprising reacting an isobutylene-containing C 4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Illb metal oxide at a reaction temperature ranging from about 50° C to about 125° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1.
  • the desired tert-butyl phenol is typically a 2,6-di-tert-butyl phenol or ortho-tert-butyl phenol.
  • other tert-butyl phenols such as 2,4,6-tri-tert-butyl phenol are also useful products.
  • other tert-butyl phenols that are not directly produced from the initial reaction can be prepared by transalkylating the 2,6-di-tert-butyl phenol or ortho-tert-butyl phenol through means known in the art. See, for example, U.S. Patent No. 5,399,786, herein
  • 2,6- di-tert-butyl phenol and/or ortho-tert-butyl phenol can be transalkylated under well- known conditions to form compounds such as para-tert-butyl phenol, 2,4-di-tert-butyl phenol, or other butyl phenols known in the art.
  • Reacting a phenol or substituted phenol with the isobutylene in the C 4 raffinate stream produces the tert-butyl phenol, a reaction well understood in the art.
  • Preferably at least about 80% of the available phenol or substituted phenol reacts with the isobutylene in forming the desired tert-butyl phenol.
  • phenol is the preferred reactant, various other substituted phenols may be used to produce other desired tert-butyl phenols, provided that the substituent in the substituted phenol does not otherwise interfere with the favored reaction.
  • a sufficient amount of isobutylene needs to be present in the C 4 raffinate stream in order to react with the phenol or substituted phenol.
  • a typical isobutylene-containing C 4 raffinate stream contains anywhere from 35-95% isobutylene.
  • C 4 raffinate streams may contain at least 75% isobutylene.
  • reaction conditions specifically the reaction temperature and the molar ratio of isobutylene to phenol (or substituted phenol) enable the selective reaction of isobutylene and phenol to produce a tert-butyl phenol that is substantially free of impurities and produced at high yields.
  • Reaction temperatures range from about 50° C to about 150° C, for instance from about 70° C to about 130° C, from about 50° C to about 125° C, from about 70° C to about 125° C, or from 90° C to 121° C.
  • the use of controlled reaction temperature heat-up and cool-down ramps can be used, as they provide a good balance of reaction thermodynamics and kinetics to achieve a high level of selectivity and conversion in a relatively short amount of reaction time.
  • Isothermal reactions run at higher reaction temperatures may also be used, but typically give poorer selectivity. Likewise, isothermal reactions run at lower reaction temperatures may be used, but require significantly longer reaction times. Pressures typically range from 0 to 500 psig.
  • the reaction may be run in a batch mode, continuous mode, stirred-tank reactor, continuous stirred-tank reactor, fixed-bed reactor, fluidized-bed reactor, or other means known in the art.
  • the molar ratio of isobutylene to phenol ranges can change. If the desired product is ortho-tert-butyl phenol, the ratio of isobutylene to phenol typically ranges from about 0.5:1 to about 1.5:1; if the desired product is 2,6-di-tert-butyl phenol, the ratio of isobutylene to phenol typically ranges from about 1.8:1 to about 2.8:1; and if the desired product is co-product of ortho-tert-butyl phenol and 2,6-di-tert-butyl phenol, the ratio of isobutylene to phenol typically ranges from about 1.3:1 to about 1.8:1. However, various other molar ranges with the molar range of 0.5:1-3:1, for instance 0.5:1-2.5:1 may be used for each desired product.
  • Any Group Illb metal or Group Illb metal oxide may be used as a catalyst in the reaction.
  • a suitable Group Illb metal is aluminum and a suitable Group Illb metal oxide is an aluminum oxide.
  • the Group Illb metal and Group Illb metal oxide may be used separately or together.
  • Gamma-alumina may be used as the aluminum oxide catalyst.
  • the gamma-alumina may be in the form of a powder, an extrudate, or other solid form.
  • the C 4 raffinate stream may also contain impurities, such as isobutane, n-butane, 1- butene, and 2-butene.
  • impurities such as isobutane, n-butane, 1- butene, and 2-butene.
  • most naturally occurring C 4 raffinate streams produced from naphtha streams contain hydrocarbon impurities ranging from Q to C 5 . Butenes react with phenol to form undesirable sec-butyl phenols, among other products.
  • isobutylene can be obtained from the C 4 raffinate stream, but it is an expensive process.
  • the more common approach, in conventional systems, is to introduce an alcohol, such as methanol or amyl alcohol, into the C 4 raffinate stream to form alkyl-tert-butyl ethers as intermediate products.
  • the alkyl-tert-butyl ethers, for instance methyl- tert-butyl ether or methyl-tert-amyl ether can then be reacted to form the desired mono-alkyl- phenols or di-alkyl-phenols.
  • this process also adds additional steps, additional expenses, and creates various unwanted byproducts.
  • an embodiment of the invention relates to an alcohol-free process for producing a tert-butyl phenol directly from an isobutylene- containing C 4 raffinate stream, the method comprising directly reacting the isobutylene- containing C 4 raffinate stream with a phenol to produce the tert-butyl phenol, wherein the reaction process avoids an intermediate step of introducing an alcohol into the C 4 raffinate stream.
  • Another embodiment of the invention relates to a process for producing a tert-butyl phenol directly from an isobutylene-containing C 4 raffinate stream without forming an alkyl-tert- butyl ether as an intermediate, the method comprising directly reacting the isobutylene- containing C 4 raffinate stream with a phenol to produce the tert-butyl phenol, wherein the reaction proceeds without an intermediate step of forming an alkyl-tert-butyl ether.
  • the reaction is able to proceed in a manner where less than 3% of the 1-butene and 2-butene present in the C 4 raffinate stream react with the phenol or substituted phenol. In other embodiments, less than 2% of the 1-butene and 2-butene react with the phenol or substituted phenol; or less than 1% of the 1-butene and 2-butene react with the phenol or substituted phenol.
  • an embodiment of the invention relates to a process for producing a tert-butyl phenol, comprising reacting a phenol with a C 4 raffinate stream containing (a) isobutylene, and (b) 1-butene and/or 2-butene under reaction conditions that selectively react the isobutylene with the phenol to produce the tert-butyl phenol without substantially reacting the 1- butene or 2-butene with the phenol.
  • Ortho-tert-butyl phenol is one of the desired tert-butyl phenols produced by the above-described reaction conditions.
  • An embodiment of the invention is thus directed towards a process for producing ortho-tert-butyl phenol, comprising reacting an isobutylene-containing C 4 raffinate stream with a phenol in the presence of an aluminum oxide catalyst.
  • the reaction temperature preferably ranges from about 150° C to about 200° C, such as from about 160° C to about 180° C; and the molar ratio of isobutylene to phenol preferably ranges from about 0.5:1 to about 1.5:1, such as from about 0.9:1 to about 1.1:1.
  • the aluminum oxide catalyst can be a gamma-alumina that is in a solid form, such as a powder or an extrudate.
  • 2,6-di-tert-butyl phenol is another tert-butyl phenol that can be produced by the above-described reaction conditions.
  • An embodiment of the invention is thus directed towards a process for producing 2,6-di-tert-butyl phenol, comprising reacting an isobutylene-containing C 4 raffinate stream with ortho-tert-butyl phenol in the presence of aluminum or aluminum trisphenoxide.
  • the reaction temperatures preferably range from about 0° C to about 30° C, for instance from about 10° C to about 20° C; and the molar ratio of isobutylene to ortho-tert-butyl phenol preferably ranges from about 0.5:1 to about 2.0:1, such as from about 0.8:1 to about 1.2:1.
  • the reaction typically takes place under pressure ranging from 0 to 50 psig.
  • Aluminum trisphenoxide may be added directly into the reaction or it may be formed during the reaction.
  • the aluminum trisphenoxide may be formed by the reaction of a trialkyl aluminum with ortho-tert-butyl phenol, or by the reaction of aluminum metal with ortho-t-butyl phenol, which is typically the most economic means of forming aluminum trisphenoxide.
  • a separate embodiment of this invention relates to a composition
  • a composition comprising one or more tert-butyl phenols containing less than 0.5% by weight of sec -butyl phenols, wherein the composition is prepared by directly reacting a phenol with a C 4 raffinate stream containing (a) isobutylene and (b) 1-butene and/or 2-butene.
  • Sec -butyl phenols are the undesirable product that forms when the butenes in the C 4 raffinate stream react with phenol.
  • Limiting the amount of sec- butyl phenols is one way of enabling the desired tert-butyl phenols to be substantially pure, requiring fewer or no purification steps.
  • the tert-butyl phenol composition contains less than 0.5% by weight of sec-butyl phenols; for instance, less than 0.1% by weight of sec-butyl phenols, or less than 0.05% by weight of sec- butyl phenols.
  • the 2,6- di-tert-butyl phenol (“2,6-DTBP") yield in the crude product at the end of 5 hours was 76%.
  • a synthetic raffinate stream prepared by mixing pure isobutylene and pure isobutane was used for the following experiments.
  • an experiment similar to example 1 was conducted, except using a synthetic raffinate stream containing 90% isobutylene and 10% isobutane.
  • the reaction temperature was set at 118°C for 2.5 hours and then lowered to 70°C.
  • the 2,6-DTBP yield of the crude product at the end of 5 hours was 77%.
  • the isobutylene to phenol mole ratio in this experiment was 2.23:1.
  • Example 4 [0039] This example was run in accordance with example 2, but using a synthetic raffinate stream containing 80% isobutylene and 20% isobutane gave a 2,6-DTBP yield of 76% at the end of 5 hours. Isobutylene to phenol mole ratio in this experiment was 2.02.
  • a synthetic raffinate stream containing 79% isobutylene, 1% 1-butene, and 20% isobutane was added to 127g of pre-dried phenol that had 0.3% dissolved Al.
  • the reaction temperature was maintained at 130°C for the entire duration of the reaction.
  • the raffinate was added at the rate of 4g/minute for 35 minutes.
  • the reaction was held at 130°C for 40 minutes followed by a vent step to relieve pressure and unreacted raffinate. More raffinate was added for additional 35 minutes at the rate of 4g/minute.
  • the isobutylene to phenol mole ratio based on the amount of isobutylene added to the reactor was 2.83:1.
  • the yield of 2,6-DTBP in the crude product at the end of 5 hours was 58.36%.
  • the amount of 2-sec-6-tert-butylphenol was 0.07%, representing the reaction of 3.9% of the 1-butene in the initial raffinate.
  • Example 11 This example was run in accordance with example 10, except that the reactor temperature was maintained at 5°C. The yield of 2,6-DTBP in the crude product at the end of 4 hours was 80%. The maximum pressure attained during the reaction was 12 psig.
  • the amount of 1-butene in the feed that reacted to form 2-sec-butylphenol and 2-sec- butyl-4-tert-butylphenol was 44.5%.
  • the amount of the two sec-butylphenol impurities (2-sec- butylphenol and 2-sec-butyl-4-tert-butylphenol) were 0.44 area percent and 0.15%, respectively.
  • This example illustrates the use of a crude 2,6-di-tert-butylphenol made from a raffinate, in a transalkylation reaction to produce 2,4-di-tert-butylphenol.
  • High purity 2,4-di-tert- butylphenol can be further made by fractional distillation by procedures known to one skilled in the art.
  • a synthetic raffinate containing 78.3% isobutylene, 21% isobutane, 0.54% 1-butene was used for the butylation of phenol using DR-2030 as the catalyst. Temperature of the reaction was set at 80°C. 204g of the synthetic raffinate was added over a period of 3 hours. Progress of the reaction was monitored by analyzing periodic samples by GC. At the end of 5 hours the area percent yield of 2,4-DTBP was 73.8%. The amount of 2-sec-butyl-4-tert- butylphenol was 0.49% and the amount of 2-tert-butyl-4-sec-butylphenol was 0.03%. The amount of 1-butene in the feed that reacted to form 2s4t and 2t4s was 30%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

This invention relates to processes for producing various t-butyl phenols, such as 2,6-di-tert-butyl phenol and ortho-tert-butyl phenol, by selectively reacting phenol or a substituted phenol with an isobutylene-containing C4 raffinate stream. The 2,6-di-tert-butyl phenol and ortho-tert-butyl phenol can be transalkylated to form other tert-butyl phenols, such as para-tert-butyl phenol, 2,4-di-tert-butyl phenol.

Description

Process for Producing a t-Butyl Phenol from a C4 Raffinate Stream
Cross Reference to Related Applications
[0001] This application claims priority under 35 U.S.C. § 119 to U.S. provisional application serial no. 61/266,828, filed December 4, 2009, which is incorporated herein by reference.
Field of Invention
[0002] This invention relates to processes for producing various t-butyl phenols from an isobutylene-containing C4 raffinate stream.
Background
[0003] In refining crude petroleum, various naphtha streams are produced in additional to the gasoline pool. The naphtha streams, which contain valuable compounds such as ethylene and propylene, are then often times introduced into a naphtha cracker to produce products such as polyethylene and polypropylene. The naphtha cracker, in turn, produces various streams, including a C4 raffinate stream that contains isobutene, butadiene, isobutylene, and other C4 molecules, many of which are also very useful. For instance, butadiene can be polymerized and used in various rubbers, and isobutylene is useful as a starting material for many industrial compounds, including tert-butyl-phenols.
[0004] However, to produce tert-butyl phenols from isobutylene typically involves a "pure" isobutylene, while the isobutylene from the raffinate stream contains varying amounts of butenes and butanes in addition to other alkanes and alkenes ranging from C2 to C5. When reacting the C4 raffinate stream with phenol, the butenes, particularly the 1-butene and the 2-butene, competitively react with the phenol to produce undesirable sec-butyl phenols in addition to the desirable tert-butyl phenols. Separating the sec-butyl phenols from the tert-butyl-phenols is costly and adversely affects the yield the desired products.
[0005] Conventional processes for producing tert-butyl phenols from an isobutylene- containing C4 raffinate stream typically involve introducing methanol, or another alcohol, into the C4 stream to react create an alkyl-tert-butyl ether intermediate that is further decomposed to make high-purity isobutylene, which can then be reacted with phenol to produce the tert-butyl phenols. The additional step of adding methanol significantly increases the costs of producing tert-butyl phenols, and creates another undesirable byproduct. Besides the additional expense, the additional byproducts are unattractive for environmental reasons. Various other methods of producing tert-butyl phenols are disclosed in U.S. Patent No. 4,166,191, but these processes, like the conventional methods, utilize extra steps and expensive materials.
[0006] What is needed in the art is a method of producing a tert-butyl phenol by selectively reacting a phenol with an isobutylene-containing C4 raffinate stream so that the isobutylene reacts with the phenol while none, or very few, of the butenes present in the C4 raffinate stream are reacted with the phenol. This invention answers that need.
Summary of the Invention
[0007] This invention relates to a process for producing a tert-butyl phenol, such as 2,6-di- tert-butyl phenol or ortho-tert-butyl phenol that involves reacting an isobutylene-containing C4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal, such as aluminum, or a Group Illb metal oxide, such as aluminum oxide. The reaction should be run at a reaction temperature ranging from about 50° C to about 150° C, where the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1.
[0008] The invention also relates to a process for producing ortho-tert-butyl phenol that involves reacting an isobutylene-containing C4 raffinate stream with a phenol in the presence of an aluminum oxide catalyst. In this process, the reaction temperature ranges from about 150° C to about 200° C, and the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 1.5:1.
[0009] The invention also relates to a process for producing 2,6-di-tert-butyl phenol that involves reacting an isobutylene-containing C4 raffinate stream with ortho-tert-butyl phenol in the presence of aluminum or aluminum trisphenoxide. In this process, the reaction temperature ranging from about 0° C to about 30° C, and the molar ratio of isobutylene to ortho-tert-butyl phenol ranges from about 0.5:1 to about 2.0:1.
[0010] The invention also relates to a process for producing a tert-butyl phenol, such as 2,6- di-tert-butyl phenol or ortho-tert-butyl phenol, that involves reacting a phenol with a C4 raffinate stream containing (a) isobutylene, and (b) 1-butene and/or 2-butene. The reaction is run under reaction conditions that selectively react the isobutylene with the phenol to produce the tert-butyl phenol without substantially reacting the 1-butene or 2-butene with the phenol. [0011] The invention also relates to a process for producing a tert-butyl phenol directly from an isobutylene-containing C4 raffinate stream without forming an alkyl-tert-butyl ether as an intermediate. In the process, the isobutylene-containing C4 raffinate stream is directly reacted with a phenol to produce the tert-butyl phenol. The reaction proceeds without the intermediate step of forming an alkyl-tert-butyl ether.
[0012] The invention also relates to an alcohol-free process for producing a tert-butyl phenol directly from an isobutylene-containing C4 raffinate stream. The method involves directly reacting the isobutylene-containing C4 raffinate stream with a phenol to produce the tert-butyl phenol. The reaction process avoids the intermediate step of introducing an alcohol, such as methanol or amyl alcohol, into the C4 raffinate stream.
[0013] The invention also relates to a composition comprising one or more tert-butyl phenols containing less than 0.5% by weight of sec-butyl phenols. The composition is prepared by directly reacting a phenol with a C4 raffinate stream containing (a) isobutylene and (b) 1-butene and/or 2-butene.
Detailed Description
[0014] Tert-butyl phenols are useful as starting materials for producing plasticizers, resins, spices, polymerization inhibitors, antioxidants, molecular weight regulators, and various other chemical products. Additionally, certain tert-butyl phenols are useful as fragrance or flavor compounds and may be used in a wide variety of household, personal care, and industrial items, such as perfumes, cleansers, or detergents, to impart a pleasing odor to the item.
[0015] One embodiment of the invention relates to a process for producing a tert-butyl phenol, comprising reacting an isobutylene-containing C4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Illb metal oxide at a reaction temperature ranging from about 50° C to about 150° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1. This embodiment includes, for instance, a process for producing a tert-butyl phenol, comprising reacting an isobutylene-containing C4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Illb metal oxide at a reaction temperature ranging from about 50° C to about 150° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 2.5:1. This embodiment also includes, for instance, a process for producing a tert-butyl phenol, comprising reacting an isobutylene-containing C4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Illb metal oxide at a reaction temperature ranging from about 50° C to about 125° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1.
[0016] The desired tert-butyl phenol is typically a 2,6-di-tert-butyl phenol or ortho-tert-butyl phenol. However, other tert-butyl phenols, such as 2,4,6-tri-tert-butyl phenol are also useful products. Additionally, other tert-butyl phenols that are not directly produced from the initial reaction can be prepared by transalkylating the 2,6-di-tert-butyl phenol or ortho-tert-butyl phenol through means known in the art. See, for example, U.S. Patent No. 5,399,786, herein
incorporated by reference in its entirety, which discloses various transalkylation reactions. 2,6- di-tert-butyl phenol and/or ortho-tert-butyl phenol, for instance, can be transalkylated under well- known conditions to form compounds such as para-tert-butyl phenol, 2,4-di-tert-butyl phenol, or other butyl phenols known in the art.
[0017] Reacting a phenol or substituted phenol with the isobutylene in the C4 raffinate stream produces the tert-butyl phenol, a reaction well understood in the art. Preferably at least about 80% of the available phenol or substituted phenol reacts with the isobutylene in forming the desired tert-butyl phenol. While phenol is the preferred reactant, various other substituted phenols may be used to produce other desired tert-butyl phenols, provided that the substituent in the substituted phenol does not otherwise interfere with the favored reaction.
[0018] A sufficient amount of isobutylene needs to be present in the C4 raffinate stream in order to react with the phenol or substituted phenol. A typical isobutylene-containing C4 raffinate stream contains anywhere from 35-95% isobutylene. For instance, C4 raffinate streams may contain at least 75% isobutylene. Generally, the higher the percentage of isobutylene in the C4 raffinate stream, the more preferable; but smaller amounts of isobutylene, even below 35% are acceptable and sufficient to run the reaction.
[0019] The reaction conditions, specifically the reaction temperature and the molar ratio of isobutylene to phenol (or substituted phenol) enable the selective reaction of isobutylene and phenol to produce a tert-butyl phenol that is substantially free of impurities and produced at high yields. Reaction temperatures range from about 50° C to about 150° C, for instance from about 70° C to about 130° C, from about 50° C to about 125° C, from about 70° C to about 125° C, or from 90° C to 121° C. The use of controlled reaction temperature heat-up and cool-down ramps can be used, as they provide a good balance of reaction thermodynamics and kinetics to achieve a high level of selectivity and conversion in a relatively short amount of reaction time.
Isothermal reactions run at higher reaction temperatures may also be used, but typically give poorer selectivity. Likewise, isothermal reactions run at lower reaction temperatures may be used, but require significantly longer reaction times. Pressures typically range from 0 to 500 psig. The reaction may be run in a batch mode, continuous mode, stirred-tank reactor, continuous stirred-tank reactor, fixed-bed reactor, fluidized-bed reactor, or other means known in the art.
[0020] Depending on the desired tert-butyl phenol, the molar ratio of isobutylene to phenol ranges can change. If the desired product is ortho-tert-butyl phenol, the ratio of isobutylene to phenol typically ranges from about 0.5:1 to about 1.5:1; if the desired product is 2,6-di-tert-butyl phenol, the ratio of isobutylene to phenol typically ranges from about 1.8:1 to about 2.8:1; and if the desired product is co-product of ortho-tert-butyl phenol and 2,6-di-tert-butyl phenol, the ratio of isobutylene to phenol typically ranges from about 1.3:1 to about 1.8:1. However, various other molar ranges with the molar range of 0.5:1-3:1, for instance 0.5:1-2.5:1 may be used for each desired product.
[0021] Any Group Illb metal or Group Illb metal oxide may be used as a catalyst in the reaction. A suitable Group Illb metal is aluminum and a suitable Group Illb metal oxide is an aluminum oxide. The Group Illb metal and Group Illb metal oxide may be used separately or together. Gamma-alumina may be used as the aluminum oxide catalyst. The gamma-alumina may be in the form of a powder, an extrudate, or other solid form.
[0022] The C4 raffinate stream may also contain impurities, such as isobutane, n-butane, 1- butene, and 2-butene. In fact, most naturally occurring C4 raffinate streams produced from naphtha streams contain hydrocarbon impurities ranging from Q to C5. Butenes react with phenol to form undesirable sec-butyl phenols, among other products. While the impurities in the C4 raffinate stream are not desirable, the cost savings of being able to react a phenol directly with a C4 raffinate stream containing impurities— without having to conduct the additional step of either removing the impurities and forming a "pure" isobutylene or introducing another step to form an intermediate— can be significant.
[0023] Pure, or substantially pure, isobutylene can be obtained from the C4 raffinate stream, but it is an expensive process. The more common approach, in conventional systems, is to introduce an alcohol, such as methanol or amyl alcohol, into the C4 raffinate stream to form alkyl-tert-butyl ethers as intermediate products. The alkyl-tert-butyl ethers, for instance methyl- tert-butyl ether or methyl-tert-amyl ether, can then be reacted to form the desired mono-alkyl- phenols or di-alkyl-phenols. However, this process also adds additional steps, additional expenses, and creates various unwanted byproducts.
[0024] These additional steps can be avoided. Accordingly, an embodiment of the invention relates to an alcohol-free process for producing a tert-butyl phenol directly from an isobutylene- containing C4 raffinate stream, the method comprising directly reacting the isobutylene- containing C4 raffinate stream with a phenol to produce the tert-butyl phenol, wherein the reaction process avoids an intermediate step of introducing an alcohol into the C4 raffinate stream. Another embodiment of the invention relates to a process for producing a tert-butyl phenol directly from an isobutylene-containing C4 raffinate stream without forming an alkyl-tert- butyl ether as an intermediate, the method comprising directly reacting the isobutylene- containing C4 raffinate stream with a phenol to produce the tert-butyl phenol, wherein the reaction proceeds without an intermediate step of forming an alkyl-tert-butyl ether.
[0025] When forming tert-butyl phenols, it is desirable for the phenol or substituted phenol to react with the isobutylene, but not react with the butenes. The reaction conditions noted above enable this type of selective reaction. Thus, the reaction is able to proceed in a manner where less than 3% of the 1-butene and 2-butene present in the C4 raffinate stream react with the phenol or substituted phenol. In other embodiments, less than 2% of the 1-butene and 2-butene react with the phenol or substituted phenol; or less than 1% of the 1-butene and 2-butene react with the phenol or substituted phenol.
[0026] In this regard, an embodiment of the invention relates to a process for producing a tert-butyl phenol, comprising reacting a phenol with a C4 raffinate stream containing (a) isobutylene, and (b) 1-butene and/or 2-butene under reaction conditions that selectively react the isobutylene with the phenol to produce the tert-butyl phenol without substantially reacting the 1- butene or 2-butene with the phenol.
[0027] Ortho-tert-butyl phenol is one of the desired tert-butyl phenols produced by the above-described reaction conditions. An embodiment of the invention is thus directed towards a process for producing ortho-tert-butyl phenol, comprising reacting an isobutylene-containing C4 raffinate stream with a phenol in the presence of an aluminum oxide catalyst. When producing ortho-tert-butyl phenol, the reaction temperature preferably ranges from about 150° C to about 200° C, such as from about 160° C to about 180° C; and the molar ratio of isobutylene to phenol preferably ranges from about 0.5:1 to about 1.5:1, such as from about 0.9:1 to about 1.1:1. The aluminum oxide catalyst can be a gamma-alumina that is in a solid form, such as a powder or an extrudate.
[0028] 2,6-di-tert-butyl phenol is another tert-butyl phenol that can be produced by the above-described reaction conditions. An embodiment of the invention is thus directed towards a process for producing 2,6-di-tert-butyl phenol, comprising reacting an isobutylene-containing C4 raffinate stream with ortho-tert-butyl phenol in the presence of aluminum or aluminum trisphenoxide. When producing 2,6-di-tert-butyl phenol, the reaction temperatures preferably range from about 0° C to about 30° C, for instance from about 10° C to about 20° C; and the molar ratio of isobutylene to ortho-tert-butyl phenol preferably ranges from about 0.5:1 to about 2.0:1, such as from about 0.8:1 to about 1.2:1. The reaction typically takes place under pressure ranging from 0 to 50 psig.
[0029] Aluminum trisphenoxide may be added directly into the reaction or it may be formed during the reaction. For instance, the aluminum trisphenoxide may be formed by the reaction of a trialkyl aluminum with ortho-tert-butyl phenol, or by the reaction of aluminum metal with ortho-t-butyl phenol, which is typically the most economic means of forming aluminum trisphenoxide.
[0030] A separate embodiment of this invention relates to a composition comprising one or more tert-butyl phenols containing less than 0.5% by weight of sec -butyl phenols, wherein the composition is prepared by directly reacting a phenol with a C4 raffinate stream containing (a) isobutylene and (b) 1-butene and/or 2-butene. Sec -butyl phenols are the undesirable product that forms when the butenes in the C4 raffinate stream react with phenol. Limiting the amount of sec- butyl phenols is one way of enabling the desired tert-butyl phenols to be substantially pure, requiring fewer or no purification steps. High purity tert-butyl phenols can be economically purified by distillation or melt crystallization. However, when higher amounts of sec- butylphenol contaminants are present with the tert-butyl phenols, it becomes difficult to purify from the desired tert-butyl phenols, even using expensive processes like solvent crystallization. Thus, the tert-butyl phenol composition contains less than 0.5% by weight of sec-butyl phenols; for instance, less than 0.1% by weight of sec-butyl phenols, or less than 0.05% by weight of sec- butyl phenols.
[0031] The following examples are intended to illustrate the invention. These examples should not be used to limit the scope of the invention, which is defined by the claims.
Examples
[0032] Example 1
[0033] 112.3g of phenol that was pre-dried followed by dissolving 0.3% Al was charged to an autoclave. A raffinate-3 stream was charged into the reactor at a temperature of 118°C at a rate of 3g/minute for 60 minutes. The isobutylene content in the raffinate-3 stream was 87% with 12% isobutane and 0.5% n-butane. The butene content in the raffinate-3 stream was 0.3%. The temperature was lowered to 70°C at the rate of l°C/minute after 3 hours. The temperature was held at 70°C for the remainder of the reaction. The total reaction time was 5 hours. The 2,6- di-tert-butyl phenol ("2,6-DTBP") yield in the crude product at the end of 5 hours was 76%. The final crude product had a 2,6-DTBP yield of 76%. The isobutylene to phenol mole ratio in this experiment was 2.06:1.
[0034] Example 2
[0035] A synthetic raffinate stream prepared by mixing pure isobutylene and pure isobutane was used for the following experiments. In this example, an experiment similar to example 1 was conducted, except using a synthetic raffinate stream containing 90% isobutylene and 10% isobutane. The reaction temperature was set at 118°C for 2.5 hours and then lowered to 70°C. The 2,6-DTBP yield of the crude product at the end of 5 hours was 77%. The isobutylene to phenol mole ratio in this experiment was 2.23:1.
[0036] Example 3
[0037] This example was run in accordance with example 2, but using a synthetic raffinate stream containing 85% isobutylene and 15% isobutene. This gave a 2,6-DTBP yield of 77% at the end of 5 hours. The isobutylene to phenol mole ratio in this experiment was 2.11:1.
[0038] Example 4 [0039] This example was run in accordance with example 2, but using a synthetic raffinate stream containing 80% isobutylene and 20% isobutane gave a 2,6-DTBP yield of 76% at the end of 5 hours. Isobutylene to phenol mole ratio in this experiment was 2.02.
[0040] Example 5
[0041] 129 grams of dry phenol was reacted with a synthetic raffinate stream containing 78.5% isobutylene, 1.1% 1-butene, and 20.4% isobutane using 0.3% Al catalyst. The initial reaction temperature was 90°C. The synthetic raffinate was charged into the reactor at the rate of 4g/minute for the first thirty two minutes. Temperature was raised to 121°C at the rate of l.l°C/minute after 20 minutes of raffinate addition. The temperature was held steady at 121°C for 65 minutes before cooling the reaction to 90°C at the rate of l°C/minute. The raffinate containing isobutylene was then added at the start of the cool down period at the rate of
4g/minute for 20 minutes. The temperature was held at 90°C for the remainder of the reaction. The total reaction time was 5 hours. The mole ratio of isobutylene to phenol in this example was 2.25:1. The final crude product had a 2,6-DTBP yield of 83.2%. The amount of 2-sec-6-tert- butylphenol was 0.03%, representing the reaction of 0.94% of the 1-butene in the initial raffinate.
[0042] Example 6 (comparative example)
[0043] A synthetic raffinate stream containing 79% isobutylene, 1% 1-butene, and 20% isobutane was added to 127g of pre-dried phenol that had 0.3% dissolved Al. The reaction temperature was maintained at 130°C for the entire duration of the reaction. The raffinate was added at the rate of 4g/minute for 35 minutes. The reaction was held at 130°C for 40 minutes followed by a vent step to relieve pressure and unreacted raffinate. More raffinate was added for additional 35 minutes at the rate of 4g/minute. The isobutylene to phenol mole ratio based on the amount of isobutylene added to the reactor was 2.83:1. The yield of 2,6-DTBP in the crude product at the end of 5 hours was 58.36%. The amount of 2-sec-6-tert-butylphenol was 0.07%, representing the reaction of 3.9% of the 1-butene in the initial raffinate.
[0044] Example 7 (comparative example)
[0045] This example was run in accordance with example 6, except as noted below. The temperature was changed from 130°C to 150°C. lOlg of phenol was used instead of 127g to accommodate for the higher pressure that would be generated due to the higher temperature. Raffinate was added at the rate of 3g/minute for 45 minutes. After holding the reaction for half hour at 150°C and venting the reactor once, additional raffinate was added for 20 minutes at the rate of 3g/minute. The final mole ratio of isobutylene to phenol based on the amount of isobutylene added to the reactor was 2.6:1. The yield of 2,6-DTBP in the crude product at the end of 5 hours was 61%. The amount of 2-sec-6-tert-butylphenol was 0.06%, representing the reaction of 3.9% of the 1-butene in the initial raffinate.
[0046] Example 8 (comparative example)
[0047] This example was run in accordance with example 7, except the temperature was changed from 150°C to 170°C. The yield of 2,6-DTBP in the crude product at the end of 5 hours was 27%. The amount of 2-sec-6-tert-butylphenol was 0.20%, representing the reaction of 19.6% of the 1-butene in the initial raffinate.
[0048] Example 9
[0049] 150g of OTBP that was pre-dried followed by dissolving 5.6g of triethylaluminum was charged in a jacketed glass pressure reactor that was connected to a cooling bath. The bath temperature was set at 20°C. Synthetic raffinate containing 79% isobutylene, 19.5% isobutene, and 1.5% 1-butene was charged lg/minute for 70 minutes. The temperature during isobutylene addition (during the first hour of the reaction) was 35°C due to exotherm associated with the reaction. The reaction temperature after the first hour through the end of the reaction was 20°C. The yield of 2,6-DTBP in the crude product at the end of 4 hours was 89%. The mole ratio of isobutylene to OTBP was 1:1. The maximum pressure attained during the reaction was 25 psig.
[0050] Example 10
[0051] This example was run in accordance with example 9, except that the raffinate was charged at the rate of 0.33g/minute and the reactor temperature was maintained at 10°C. The yield of 2,6-DTBP in the crude product at the end of 4 hours was 93%. The maximum pressure attained during the reaction was 15 psig.
[0052] Example 11 [0053] This example was run in accordance with example 10, except that the reactor temperature was maintained at 5°C. The yield of 2,6-DTBP in the crude product at the end of 4 hours was 80%. The maximum pressure attained during the reaction was 12 psig.
[0054] Example 12
[0055] 105g of phenol and 5.3g of aluminum oxide catalyst that was calcined in air at a temperature of 450°C was charged in an autoclave and heated to 150°C. A raffinate stream containing 80% isobutylene, 18.7% isobutane and 1.4% 1-butene was then charged over a period of 3.5 hours. The amount of raffinate charged was 75g with a isobutylene to phenol mole ratio of 0.95:1. The yield of OTBP at the end of 7 hours was 49%. The amount of 1-butene in the feed that reacted to form 2-sec-butylphenol was 1.3%.
[0056] Example 13 (comparative example)
[0057] 105g of phenol and 5.0g of aluminum oxide catalyst that was calcined in air at a temperature of 450°C was charged in an autoclave and heated to 220°C. A raffinate stream containing 82.4% isobutylene, 1.3% 1-butene, and 16.3% isobutane was then charged over a period of 3 hours. The amount of raffinate charged was 70g with an isobutylene to phenol mole ratio of 1.13:1. The yield of OTBP at the end of 6 hours was 50.41%, down from 52% at the 5- hour mark. The amount of 1-butene in the feed that reacted to form 2-sec-butylphenol and 2-sec- butyl-4-tert-butylphenol was 44.5%. The amount of the two sec-butylphenol impurities (2-sec- butylphenol and 2-sec-butyl-4-tert-butylphenol) were 0.44 area percent and 0.15%, respectively.
[0058] Example 14
[0059] 106 grams of crude 2,6-di-tert-butylphenol containing 75.4% 2,6-di-tert-butylphenol and 0.43% 2-sec-6-tert-di-butylphenol was transalkylated with phenol using 5 grams of Dowex® 2030 ion exchange resin (DR-2030; a styrenic plastic bead functionalized with sulfonic acid groups) at 75 °C for 5 hours to produce 75.4% 2,4-di-tert-butylphenol containing 0.3% 2-sec-4- tert-di-butylphenol and no measurable amounts of 2-sec-6-tert-di-butylphenol.
[0060] This example illustrates the use of a crude 2,6-di-tert-butylphenol made from a raffinate, in a transalkylation reaction to produce 2,4-di-tert-butylphenol. High purity 2,4-di-tert- butylphenol can be further made by fractional distillation by procedures known to one skilled in the art.
[0061] Example 15 (comparative)
[0062] A synthetic raffinate containing 78.3% isobutylene, 21% isobutane, 0.54% 1-butene was used for the butylation of phenol using DR-2030 as the catalyst. Temperature of the reaction was set at 80°C. 204g of the synthetic raffinate was added over a period of 3 hours. Progress of the reaction was monitored by analyzing periodic samples by GC. At the end of 5 hours the area percent yield of 2,4-DTBP was 73.8%. The amount of 2-sec-butyl-4-tert- butylphenol was 0.49% and the amount of 2-tert-butyl-4-sec-butylphenol was 0.03%. The amount of 1-butene in the feed that reacted to form 2s4t and 2t4s was 30%.

Claims

We claim:
1. A process for producing a tert-butyl phenol, comprising reacting an isobutylene- containing C4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Illb metal or a Group Mb metal oxide at a reaction temperature ranging from about 50° C to about 150° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 2.5:1.
2. A process for producing a tert-butyl phenol, comprising reacting an isobutylene- containing C4 raffinate stream with a phenol or a substituted phenol in the presence of a Group Mb metal or a Group Mb metal oxide at a reaction temperature ranging from about 50° C to about 125° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 3:1.
3. The process of claims 1 or 2, wherein the tert-butyl phenol is a 2,6-di-tert-butyl phenol, ortho-tert-butyl phenol, or combination thereof.
4. The process of claim 3, further comprising the step of transalkylating the 2,6-di-tert-butyl phenol and/or ortho-tert-butyl phenol to form a compound selected from the group consisting of para-tert-butyl phenol, 2,4-di-tert-butyl phenol, and a combination thereof.
5. The process of claims 1 or 2, wherein the reaction temperatures ranges from about 70° C to about 125° C.
6. The process of claim 5, wherein the reaction temperatures ranges from 90° C to 121° C.
7. The process of claims 1 or 2, wherein the reaction takes place under pressure ranging from 0 to 500 psig.
8. The process of claims 1 or 2, wherein the isobutylene-containing C4 raffinate stream contains 35-95% isobutylene.
9. The process of claims 1 or 2, wherein the isobutylene-containing C4 raffinate stream contains at least 75% isobutylene
10. The process of claims 1 or 2, wherein the Group Illb metal is aluminum and the Group Illb metal oxide is an aluminum oxide.
11. The process of claim 10, wherein the isobutylene-containing C4 raffinate stream contains 1-butene and 2-butene, and wherein less than 3% of the 1-butene and 2-butene present in the C4 raffinate stream react with the phenol or substituted phenol.
12. The process of claim 11, wherein less than 1% of the 1-butene and 2-butene present in the C4 raffinate stream react with the phenol or substituted phenol.
13. The process of claims 1 or 2, wherein the tert-butyl phenol composition contains less than 0.5% by weight of sec-butyl phenols.
14. The process of claim 13, wherein the tert-butyl phenol composition contains less than 0.1% by weight of sec-butyl phenols.
15. The process of claims 14, wherein the tert-butyl phenol composition contains less than 0.05% by weight of sec-butyl phenols.
16. The process of claims 1 or 2, wherein the reaction is run in a batch mode, continuous mode, stirred-tank reactor, continuous stirred-tank reactor, fixed-bed reactor, or fluidized bed reactor.
17. A process for producing ortho-tert-butyl phenol, comprising reacting an isobutylene- containing C4 raffinate stream with a phenol in the presence of an aluminum oxide catalyst at a reaction temperature ranging from about 150° C to about 200° C, wherein the molar ratio of isobutylene to phenol ranges from about 0.5:1 to about 1.5:1.
18. The process of claim 17, wherein the reaction temperatures ranges from about 160° C to about 180° C.
19. The process of claim 17, wherein the reaction takes place under pressure ranging from 0 to 500 psig.
20. The process of claim 17, wherein mole ratio of isobutylene to phenol ranges from 0.9:1 to 1.1:1.
21. The process of claim 17, wherein the aluminum oxide catalyst is gamma-alumina in a solid form.
22. The process of claim 21, wherein the solid form is a powder or extrudate.
23. The process of claim 17, wherein the isobutylene-containing C4 raffinate stream comprises 1-butene and 2-butene, and wherein less than 3% of the 1-butene and 2-butene present in the C4 raffinate stream react with the phenol or substituted phenol.
24. The process of claim 23, wherein less than 1% of the 1-butene and 2-butene present in the C4 raffinate stream react with the phenol or substituted phenol.
25. The process of claims 17, wherein the tert-butyl phenol composition contains less than 0.5% by weight of sec-butyl phenols.
26. The process of claim 25, wherein the tert-butyl phenol composition contains less than 0.1% by weight of sec-butyl phenols.
27. The process of claims 26, wherein the tert-butyl phenol composition contains less than 0.05% by weight of sec-butyl phenols.
28. A process for producing 2,6-di-tert-butyl phenol, comprising reacting an isobutylene- containing C4 raffinate stream with ortho-tert-butyl phenol in the presence of aluminum or aluminum trisphenoxide at a reaction temperature ranging from about 0° C to about 30° C and at a molar ratio of isobutylene to ortho-tert-butyl phenol ranging from about 0.5:1 to about 1.5:1.
29. The process of claim 28, wherein the molar ratio of isobutylene to ortho-tert-butyl phenol ranges from about 0.8:1 to about 1.2:1
30. The process of claim 28, wherein the reaction temperatures ranges from about 10° C to about 20° C.
31. The process of claim 28, wherein the reaction takes place under pressure ranging from 0 to 50 psig.
32. The process of claim 28, wherein the isobutylene-containing C4 raffinate stream comprises 1-butene and 2-butene, and wherein less than 3% of the 1-butene and 2-butene present in the C4 raffinate stream react with the ortho-tert-butyl phenol.
33. The process of claim 32, wherein less than 1% of the 1-butene and 2-butene present in the C4 raffinate stream react with the ortho-tert-butyl phenol.
34. The process of claim 28, wherein the tert-butyl phenol composition contains less than 0.5% by weight of sec-butyl phenols.
35. The process of claim 34, wherein the tert-butyl phenol composition contains less than 0.1% by weight of sec-butyl phenols.
36. The process of claims 35, wherein the tert-butyl phenol composition contains less than 0.05% by weight of sec-butyl phenols.
37. The process of claim 28, wherein the aluminum trisphenoxide is formed by the reaction of a trialkyl aluminum with ortho-tert-butyl phenol.
38. The process of claim 28, further comprising the step of transalkylating the 2,6-di-tert- butyl phenol to form a compound selected from the group consisting of para-tert-butyl phenol, 2,4-di-tert-butyl phenol, and a combination thereof.
39. A process for producing a tert-butyl phenol, comprising reacting a phenol with a C4 raffinate stream containing (a) isobutylene, and (b) 1-butene and/or 2-butene under reaction conditions that selectively react the isobutylene with the phenol to produce the tert-butyl phenol without substantially reacting the 1-butene or 2-butene with the phenol.
40. The process of claim 39, wherein the tert-butyl phenol is a 2,6-di-tert-butyl phenol, ortho- tert-butyl phenol, or a combination thereof.
41. The process of claim 39, wherein less than 2% of the 1-butene and 2-butene present in the C4 raffinate stream is reacted with the phenol.
42. The process of claim 41, wherein less than 1% of the 1-butene and 2-butene present in the C4 raffinate stream is reacted with the phenol.
43. The process of claim 39, wherein at least about 80% of the available phenol reacts with the isobutylene.
44. The process of claim 39, wherein the tert-butyl phenol composition contains less than 0.5% by weight of sec-butyl phenols.
45. The process of claim 44, wherein the tert-butyl phenol composition contains less than 0.1% by weight of sec-butyl phenols.
46. The process of claim 45, wherein the tert-butyl phenol composition contains less than 0.05% by weight of sec-butyl phenols.
47. A process for producing a tert-butyl phenol directly from an isobutylene-containing C4 raffinate stream without forming an alkyl-tert-butyl ether as an intermediate, the method comprising directly reacting the isobutylene-containing C4 raffinate stream with a phenol to produce the tert-butyl phenol, wherein the reaction proceeds without an intermediate step of forming an alkyl-tert-butyl ether.
48. The process of claim 47, wherein the tert-butyl phenol is a 2,6-di-tert-butyl phenol, ortho- tert-butyl phenol, or a combination thereof.
49. The process of claim 47, wherein the alkyl-tert-butyl ether is methyl-tert-butyl ether or methyl-tert-amyl ether.
50. An alcohol-free process for producing a tert-butyl phenol directly from an isobutylene- containing C4 raffinate stream, the method comprising directly reacting the isobutylene- containing C4 raffinate stream with a phenol to produce the tert-butyl phenol, wherein the reaction process avoids an intermediate step of introducing an alcohol into the C4 raffinate stream.
51. The process of claim 50, wherein the tert-butyl phenol is a 2,6-di-tert-butyl phenol, ortho- tert-butyl phenol, or a combination thereof.
52. The process of claim 50, wherein the alcohol is methanol or amyl alcohol.
53. A composition comprising one or more tert-butyl phenols containing less than 0.05% by weight of sec-butyl phenols, wherein the composition is prepared by directly reacting a phenol with a C4 raffinate stream containing (a) isobutylene and (b) 1-butene and/or 2-butene.
54. The composition of claim 53, wherein the tert-butyl phenol composition contains less than 0.1% by weight of sec-butyl phenols.
55. The composition of claim 54, wherein the tert-butyl phenol composition contains less than 0.05% by weight of sec-butyl phenols.
PCT/US2010/058866 2009-12-04 2010-12-03 Process for producing a t-butyl phenol from a c4 raffinate stream WO2011069052A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2012127805A RU2606130C2 (en) 2009-12-04 2010-12-03 Method of producing tert-butylphenol from c4-raffinate stream
SG2012038782A SG181078A1 (en) 2009-12-04 2010-12-03 Process for producing a t-butyl phenol from a c4 raffinate stream
KR1020127014496A KR101822607B1 (en) 2009-12-04 2010-12-03 Process for Producing a t-Butyl Phenol from a C4 Raffinate Stream
JP2012542218A JP5851415B2 (en) 2009-12-04 2010-12-03 Method for producing t-butylphenol from C4 raffinate stream
EP10788470A EP2521706A2 (en) 2009-12-04 2010-12-03 Process for producing a t-butyl phenol from a c4 raffinate stream
CN201080054733.3A CN102906059B (en) 2009-12-04 2010-12-03 For by C 4raffinate stream produces the method for tert-butyl phenol
BR112012013419A BR112012013419C8 (en) 2009-12-04 2010-12-03 process for the production of one-t-butyl phenol from a c4 raffinate stream.
US13/513,666 US8937201B2 (en) 2009-12-04 2010-12-03 Process for producing a t-butyl phenol from a C4 raffinate stream

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26682809P 2009-12-04 2009-12-04
US61/266,828 2009-12-04

Publications (2)

Publication Number Publication Date
WO2011069052A2 true WO2011069052A2 (en) 2011-06-09
WO2011069052A3 WO2011069052A3 (en) 2011-11-17

Family

ID=43607992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/058866 WO2011069052A2 (en) 2009-12-04 2010-12-03 Process for producing a t-butyl phenol from a c4 raffinate stream

Country Status (14)

Country Link
US (1) US8937201B2 (en)
EP (2) EP2657217B1 (en)
JP (2) JP5851415B2 (en)
KR (1) KR101822607B1 (en)
CN (1) CN102906059B (en)
BR (1) BR112012013419C8 (en)
ES (1) ES2647102T3 (en)
PL (1) PL2657217T3 (en)
PT (1) PT2657217T (en)
RU (1) RU2606130C2 (en)
SA (1) SA110310888B1 (en)
SG (1) SG181078A1 (en)
TW (2) TWI624450B (en)
WO (1) WO2011069052A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057881A1 (en) 2013-10-17 2015-04-23 Si Group, Inc. Modified alkylphenol-aldehyde resins stabilized by a salicylic acid
WO2015057879A1 (en) 2013-10-17 2015-04-23 Si Group, Inc. In-situ alkylphenol-aldehyde resins
US9434668B1 (en) 2015-04-09 2016-09-06 Council Of Scientific And Industrial Research Process for the production of tertiary butyl phenols
WO2017042181A1 (en) 2015-09-11 2017-03-16 Basf Se Process for the alkylation of phenols
CN106975517A (en) * 2017-05-16 2017-07-25 同济大学 A kind of green high-efficient synthesizes the heterogeneous catalyst of 2,4 DI-tert-butylphenol compounds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170057895A1 (en) * 2013-12-20 2017-03-02 Exxonmobil Chemical Patents Inc. Phenol Composition
CN113636916B (en) * 2021-09-17 2023-08-29 陕西万汇能聚科技有限公司 Method for synthesizing 2,4, 6-tri-tert-butylphenol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166191A (en) 1976-09-20 1979-08-28 Hitachi Chemical Company, Ltd. Process for producing highly pure p-tertiary-butyl phenol
US5399786A (en) 1992-07-22 1995-03-21 Rhodia S/A Preparation process of tert-butylphenols

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353282A (en) * 1941-10-15 1944-07-11 Bakelite Corp Preparation of substituted phenols
US2430190A (en) * 1943-08-30 1947-11-04 Universal Oil Prod Co Alkylation of phenols
GB655124A (en) 1948-06-16 1951-07-11 Standard Oil Dev Co Improvements in or relating to the preparation of poly-tert-butyl phenol or cresols
US3670030A (en) * 1970-02-20 1972-06-13 Universal Oil Prod Co Alkylation of phenolic compound
US3751509A (en) * 1972-07-17 1973-08-07 A Liakumovich Process for isolating isobutylene from butane-butylene fraction
SU783297A1 (en) * 1976-08-11 1980-11-30 Стерлитамакский опытно-промышленный нефтехимический завод Method of preparing 2,6-di-tert-butylphenol
DE2745589C3 (en) * 1977-10-11 1980-03-27 Chemische Werke Huels Ag, 4370 Marl Process for the preparation of p-alkylphenols
JPS6052688B2 (en) 1977-11-18 1985-11-20 三井化学株式会社 Method for alkylating phenol
US4260833A (en) * 1979-11-30 1981-04-07 Uop Inc. Preparation of alkylphenols
JPS6052732B2 (en) 1980-12-05 1985-11-21 三井化学株式会社 Method for producing 2,6-di-t-butylphenol
JPS5852234A (en) * 1981-09-21 1983-03-28 Yotsukaichi Gosei Kk Preparation of para-tertiary-butylphenol
JPS61200934A (en) * 1985-03-02 1986-09-05 Maruzen Sekiyu Kagaku Kk Production of tert-butylphenol compound
US4631349A (en) * 1985-06-25 1986-12-23 Ethyl Corporation Heterogeneous catalyst process
JPH07108870B2 (en) * 1986-12-23 1995-11-22 三井石油化学工業株式会社 Method for producing 2,4-di-t-butylphenol
US4731492A (en) * 1987-03-04 1988-03-15 Ethyl Corporation Phenol alkylation process
DE3941472C1 (en) * 1989-12-15 1991-02-21 Huels Ag, 4370 Marl, De
CS276820B6 (en) * 1990-05-28 1992-08-12 Slovenska Technicke Univerzita Alkylating and/or arylalkylating process of phenol and/or its derivatives
DE4139056A1 (en) * 1991-11-28 1993-06-03 Huels Chemische Werke Ag PROCESS FOR PREPARING ORTHO-SUBSTITUTED ALKYLPHENOLES AND CATALYST HEREFUER
JPH05294865A (en) * 1992-04-15 1993-11-09 Dainippon Ink & Chem Inc Production of 2,4-di@(3754/24)t-butyl)phenol
KR20010073114A (en) * 1998-09-03 2001-07-31 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 Purification of alkylated phenols by melt crystallization
RU2164509C1 (en) * 1999-08-06 2001-03-27 ООО "Синтезхим Бис" Method for production of 2,6-di-tert-butylphenol
JP2002241334A (en) * 2001-02-15 2002-08-28 Sumitomo Chem Co Ltd Method of producing tertiary butylphenols
CN1844071A (en) * 2006-03-24 2006-10-11 北京极易化工有限公司 Phenol ortho alkylation method with high-conversion and high-selectivity
CN1935763A (en) * 2006-10-20 2007-03-28 上海金海雅宝精细化工有限公司 Method for preparing 2,4-di-tert.-butyl phenol alkylating solution
CN101092331A (en) * 2007-07-06 2007-12-26 宁波金海雅宝化工有限公司 Method for synthesizing alkyl phenol by fixed bed

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166191A (en) 1976-09-20 1979-08-28 Hitachi Chemical Company, Ltd. Process for producing highly pure p-tertiary-butyl phenol
US5399786A (en) 1992-07-22 1995-03-21 Rhodia S/A Preparation process of tert-butylphenols

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2521706A2

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10647806B2 (en) 2013-10-17 2020-05-12 Si Group, Inc. In-situ alkylphenol-aldehyde resins
US11155667B2 (en) 2013-10-17 2021-10-26 Si Group, Inc. In-situ alkylphenol-aldehyde resins
US12012487B2 (en) 2013-10-17 2024-06-18 Si Group, Inc. In-situ alkylphenol-aldehyde resins
CN111825818B (en) * 2013-10-17 2023-11-21 Si集团有限公司 In situ alkylphenol-aldehyde resins
US9932436B2 (en) 2013-10-17 2018-04-03 Si Group, Inc. Modified alkylphenol-aldehyde resins stabilized by a salicylic acid
WO2015057879A1 (en) 2013-10-17 2015-04-23 Si Group, Inc. In-situ alkylphenol-aldehyde resins
US9944744B2 (en) 2013-10-17 2018-04-17 Si Group, Inc. In-situ alkylphenol-aldehyde resins
CN111825818A (en) * 2013-10-17 2020-10-27 Si集团有限公司 In situ alkylphenol-aldehyde resins
WO2015057881A1 (en) 2013-10-17 2015-04-23 Si Group, Inc. Modified alkylphenol-aldehyde resins stabilized by a salicylic acid
US9434668B1 (en) 2015-04-09 2016-09-06 Council Of Scientific And Industrial Research Process for the production of tertiary butyl phenols
US10196334B2 (en) 2015-09-11 2019-02-05 Basf Se Process for the alkylation of phenols
JP2018526425A (en) * 2015-09-11 2018-09-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for alkylating phenol
WO2017042181A1 (en) 2015-09-11 2017-03-16 Basf Se Process for the alkylation of phenols
CN106975517A (en) * 2017-05-16 2017-07-25 同济大学 A kind of green high-efficient synthesizes the heterogeneous catalyst of 2,4 DI-tert-butylphenol compounds

Also Published As

Publication number Publication date
CN102906059A (en) 2013-01-30
TWI624450B (en) 2018-05-21
EP2657217A2 (en) 2013-10-30
US20130150629A1 (en) 2013-06-13
JP2015221838A (en) 2015-12-10
BR112012013419B1 (en) 2018-10-09
BR112012013419A2 (en) 2017-03-21
RU2606130C2 (en) 2017-01-10
EP2657217A3 (en) 2014-04-02
BR112012013419B8 (en) 2019-08-20
US8937201B2 (en) 2015-01-20
SA110310888B1 (en) 2014-06-18
SG181078A1 (en) 2012-07-30
EP2657217B1 (en) 2017-09-06
TW201136882A (en) 2011-11-01
PT2657217T (en) 2017-11-02
JP5851415B2 (en) 2016-02-03
JP2013512925A (en) 2013-04-18
BR112012013419C8 (en) 2019-09-03
PL2657217T3 (en) 2018-01-31
CN102906059B (en) 2015-09-23
KR20120125234A (en) 2012-11-14
TW201700445A (en) 2017-01-01
WO2011069052A3 (en) 2011-11-17
KR101822607B1 (en) 2018-01-26
RU2012127805A (en) 2014-01-10
ES2647102T3 (en) 2017-12-19
TWI570102B (en) 2017-02-11
EP2521706A2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US8937201B2 (en) Process for producing a t-butyl phenol from a C4 raffinate stream
CA2730424C (en) Process for preparing isobutene by cleaving mtbe-containing mixtures
AU2002217114B2 (en) Process for preparing oxirane compounds
KR101430297B1 (en) Production of propylene from butane
PL206182B1 (en) Method for the production of isobutene from commercial methyl tert-butyl ether
US8877667B2 (en) Process for regenerating a catalyst
KR102626980B1 (en) Method for synthesizing acrylic acid oligomers
KR20100127153A (en) Method of producing dimethyl trans-1,4-cyclohexanedicarboxylate and high purity dimethyl trans-1,4-cyclohexanedicarboxylate
JP2014513049A (en) Method for producing high-purity isobutene using glycol ether
US6111148A (en) Process for producing tertiary butyl alcohol
US5075493A (en) Process for preparing α, β-unsaturated carboxylic acid ester
JPH07285899A (en) Production of gamma,delta-unsaturated alcohol
US4569725A (en) Separation of a C4 -hydrocarbon mixture essentially containing n-butenes and butanes
WO2012017447A2 (en) Method for selective hydration of aroma olefins to alcohols in continuous solid catalyst column reactor
KR102674956B1 (en) Manufacturing method of pentyl alcohol
JPH07116086B2 (en) tert. Method for producing butylphenols
EP3606900A1 (en) Systems and methods of producing methyl tertiary butyl ether and propylene
US10023507B2 (en) Decomposition of ethers
WO2004000766A1 (en) Process for preparing styrene
JP2006321738A (en) Method for producing 2-alkylphenol
EP0665205A1 (en) Reactive separation process
JPH07215897A (en) Method for simultaneously producing cyclohexanol, cyclohexene and phenols
WO2002079135A1 (en) Manufacture of cyclic aliphatic acids and esters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054733.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012542218

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127014496

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010788470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5792/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012127805

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013419

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 13513666

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112012013419

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120604