WO2011055718A1 - 測位装置、及びこれを用いたセンサ情報の統合解析による見守りシステム - Google Patents
測位装置、及びこれを用いたセンサ情報の統合解析による見守りシステム Download PDFInfo
- Publication number
- WO2011055718A1 WO2011055718A1 PCT/JP2010/069478 JP2010069478W WO2011055718A1 WO 2011055718 A1 WO2011055718 A1 WO 2011055718A1 JP 2010069478 W JP2010069478 W JP 2010069478W WO 2011055718 A1 WO2011055718 A1 WO 2011055718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning
- particle
- positioning target
- value
- weight
- Prior art date
Links
- XKUQLUCBNJFXJS-KXFIGUGUSA-N C/C=C\C1CCC(CCN)CCCCC1 Chemical compound C/C=C\C1CCC(CCN)CCCCC1 XKUQLUCBNJFXJS-KXFIGUGUSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1112—Global tracking of patients, e.g. by using GPS
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present invention automatically integrates a positioning system using radio waves, infrared rays, etc., and a technology for analyzing various other sensor information, thereby automatically monitoring the state of a person, animal, object, etc. to be watched over.
- This is related to the monitoring system estimated in Sensing the monitoring target using a sensor device carried or held by a person or a sensor device attached to a person, animal, object, etc., and the position, acceleration, posture, motion state, barometric pressure, electrocardiogram, temperature,
- information such as humidity
- Patent Documents 1 and 2 prepare a large number of virtual particles called particles, approximate the probability distribution in the positioning target space as a collection of these particles, and make each particle probabilistic as time passes. , And filter the previous particles and their weights using the likelihood function based on information such as the electric field strength, propagation time, and propagation time difference of the measured signal. As a result, the probability of positioning target in the next step This is a technique for obtaining a distribution approximately. Thereby, it is known that the accuracy of positioning can be improved as compared with other methods such as a simple triangulation method, a trilateration method, and a Bayesian estimation method.
- the probabilistic transition of a large number of particles and the evaluation of the transition result using the likelihood function are calculated by using the iterative calculation method.
- the capacity of the device is consumed, and as a result, the power consumption per hour of the positioning device is also increased. For this reason, it has been difficult to perform positioning using a particle filter inside a device having limited calculation resources such as a portable information terminal device, a wireless sensor node, and a wireless tag device (RFID).
- RFID wireless tag device
- GPS or GPS pseudo satellite signals can be obtained without losing features such as high accuracy of positioning, which is an advantage of the particle filter, and robustness against external noise and signal loss.
- positioning devices, positioning systems, etc. that can receive beacon signals from “wireless beacon devices” installed in the environment and estimate the position of the “positioning target device” of the positioning target even in environments that cannot be used To do.
- FIG. 2 is a schematic functional block diagram of a positioning target device accompanied by a scalar value speed sensor.
- FIG. 3 is a schematic functional block diagram of a positioning target device with a vector value speed sensor. The figure for demonstrating vector value speed calculation.
- the figure for demonstrating the positioning system which receives a radio beacon signal in the environment side.
- the figure for demonstrating presence area estimation The schematic block diagram of a presence area estimation system.
- the figure of the table which shows a movement destination area
- the schematic block diagram of a watching system The schematic block diagram of a watching system.
- a wireless beacon device 1 is installed on the environment side.
- the wireless beacon device 1 transmits a wireless beacon signal composed of its own ID (identification information such as an identification number and / or identification name) and communication contents, preferably periodically and repeatedly.
- the wireless beacon device adds a function to periodically transmit a wireless beacon signal to the wireless LAN, Bluetooth, ZigBee, UWB, other wireless sensor network nodes, infrared transmitters, etc. using hardware or software This can be easily realized.
- a positioning target such as a person, an animal, or an object carries or mounts a positioning target device 2 for performing positioning.
- the positioning target device 2 generally receives signals from a plurality of wireless beacon devices 1 installed in the environment, compares the received signals with signal data stored in the positioning target device 2, and executes positioning. It is a device to do.
- the beacon signal transmission / reception direction is reversed, that is, the positioning target device 2 transmits a radio beacon signal and is generally received by a plurality of radio beacon devices 1.
- the positioning function can be realized without modifying the following portions of the present invention.
- the positioning object does not necessarily need to carry or mount
- the positioning target device 2 includes an antenna 21, a beacon receiver 22, a CPU 23, a memory 24, an external storage device 25, a display device / input device 26, and an external communication device 27. Consists of When the same communication method is used for the beacon signal and the external communication, the beacon receiver 22 can be used as a beacon receiver by using the receiving unit of the external communication device without mounting the beacon receiver 22 as an independent device. Is possible. Further, when infrared rays are used instead of radio waves, the antenna 21 and the beacon receiver 22 are replaced with infrared receivers.
- the display device 26 is used to display the result of watching, and can be omitted when the result is transmitted to the outside by some method such as wireless communication.
- the external communication device 16 is used to notify the result of watching to the outside, and can be omitted when the result notification to the outside is not necessary.
- the beacon receiver 22 in the positioning target device 2 receives the wireless beacon signal using the same communication method as the wireless communication of the beacon signal transmitted from the wireless beacon device 1. This can be easily realized using wireless LAN, Bluetooth, ZigBee, UWB, other wireless sensor network nodes, infrared receivers, and the like.
- the beacon receiver 22 forms a list of the received beacon signal as a set of the ID of the wireless beacon device 1 that has transmitted the received beacon and the received signal strength indication (RSSI) of the received beacon signal: (Reception beacon signal i : ID i , RSSI i )
- the data format is transferred to the CPU 23.
- ID i is an ID of the wireless beacon device expressed by an integer or a character string.
- RSSI i is an index of received signal strength expressed as an integer or a floating-point number, and is set as an index having a monotonous positive proportional relationship with the physical strength (for example, electric field strength) of the received radio beacon signal. .
- a certain time width called “step” is set.
- the time width of one step is a basic unit of time for performing positioning. In order to maintain positioning accuracy, one step needs to be long enough to receive a plurality of beacon signals. That is, it must be longer than the transmission interval of the wireless beacon signal transmitted by the wireless beacon device 1.
- the time width of one step is expressed as t S.
- beacon pattern in which IDs and RSSIs of a plurality of beacon signals are combined is used as follows.
- the number m of data appearing in the beacon pattern is an arbitrary integer of 0 or more.
- all the wireless beacon signals transferred from the beacon receiver 22 to the CPU 23 in the time width of one step are stored in the memory 24 (and / or the external storage device 25. hereinafter) in the form of the beacon pattern as described above. Same.) Store on top.
- the data actually received by the beacon receiver 22 and stored in the above format on the memory 24 by the CPU 23 is referred to as “current reception beacon pattern” or “actual reception beacon pattern” and is as follows: It is written as “BP (Receiver)”.
- the CPU 23 holds a plurality (n) of data areas on the memory 24 for expressing the position of the positioning target called particles.
- Each particle is data in the following format.
- i-th particle: p i (x i , y i , z i , weight i )
- x i , y i , and z i are Euclidean space coordinate values
- the weight i is a parameter representing the probability of the particle, and each is represented as a floating-point number or an integer.
- the initial values of x i , y i , and z i are 0, a predetermined value stored in the external storage device 25, or a value designated by the user using the input device 26.
- the initial value of the weight i is 1.
- n is set to, for example, about 100 to 10,000.
- the position of the positioning object is a weighted average of all n particles, that is, It is expressed by
- the positioning target device 3 probabilistically transitions all of the particles one step before, that is, the immediately preceding step (“probabilistic transition calculation” of particles).
- the current reception beacon pattern BP (Receiver) actually received is used for evaluation, correction, and change, and the particle in the next step, that is, the current step is calculated. From the calculated coordinate value and weight of the particle in the current step, the x, y, z coordinate position of the positioning target in the current step is calculated by the weighted average formula. The specific method will be described below.
- the stochastic transition calculation of particles is executed by calculating the transition of the coordinate value of each particle.
- i is an integer from 1 to n (n is the total number of particles)
- the movement from the coordinate value in the previous step that is, the previous step to the coordinate value in the current step is estimated probabilistically.
- a three-dimensional Gaussian random number is generated using a normal random number of average distribution N (0, ⁇ 2 ) with mean 0 and variance ⁇ 2 , and added to the three-dimensional coordinate value of each particle pi. To do.
- the CPU 23 first generates n three-dimensional Gaussian random numbers as described above.
- Known algorithms and software can be used to generate random numbers.
- the random number on the vertical z-axis may be a fixed value of 0.
- the generated n three-dimensional random numbers are sequentially added to the three-dimensional coordinate values of the 1st to n-th particles, and the resulting particles are stored in the memory 24 as the particles before filtering in the current step.
- the value of ⁇ 2 can be adjusted by experiments after the positioning target device 2 or the positioning system is manufactured, or can be specified by the user using the input device 26 after the operation.
- the positioning target device 2 receives the positioning target device 2.
- the beacon pattern estimated to be wax is stored in the external storage device 25 (and / or the memory 24. The same applies hereinafter). This data is separately measured prior to positioning, or calculated by a simulator or approximate expression, and stored in the external storage device 25 in the form of a beacon pattern.
- the beacon pattern that will be received at the x i , y i , z i coordinate values is referred to as “particle is referred to as a beacon pattern "of p i, it referred to as" BP (p i) ". If there is no data of a point that coincides with the coordinate value of the particle, the data of the point with the closest spatial distance is used, or several points are selected in order of the shortest distance and the weighted average is calculated.
- the likelihood of the particle p i ′ after the transition is calculated from the BP (p i ′) and the actual reception beacon pattern BP (Receiver) using a preset likelihood function P.
- Various functions can be used as the likelihood function P. For example, a distance function between two received beacon patterns: (However, when there is no beacon signal data corresponding to k, the RSSI average value of the k-th received beacon of p i or p j is 0), or (However, when there is no beacon signal data corresponding to k, the RSSI average value of the k-th received beacon of p i or p j is 0), etc., Etc. can be used.
- exp is a logarithmic function with e as the base.
- a> 1 and b> and these are adjustment parameters given separately.
- dist is either dist1 or dist2 or another distance function.
- the “weight i ” of the particle p i ′ (x i ′, y i ′, z i ′, weight i ) after the transition is updated from the calculated likelihood.
- Etc. can be used.
- exp and log are logarithmic and exponential functions with e as the base.
- An arrow represents an update by the CPU 23 of data on the memory 24. The CPU 23 sequentially reads out the data for all the particles stored in the memory 24, calls the likelihood function P and the arithmetic function of the weight function for each of the data, updates the values, The result is stored as updated particle data on the memory 24.
- the stochastic transition calculation for the particle p i in the previous step the calculation of the particle p i ′ after the transition, the beacon pattern BP (p i ′) of the particle p i ′ after the transition, Particle filtering by the likelihood calculation of the particle p i ′ after transition using the current (actual) reception beacon pattern BP (Receiver), new particle by updating the weight i of the particle p i ′ after transition using the likelihood
- the processing up to the calculation of p i ′′ is repeated (the particle p i ′′ becomes the previous particle p i in the next loop and the processing is repeated). Thereby, the position of the positioning target device is estimated.
- Resampling is a process of dividing and erasing particles according to the weight of particles. Particles with a large weight are divided into multiple particles in proportion to the weight, and as a result, particles with a small weight are stochastically It is a process of selecting and erasing.
- the following resampling method is further used to solve these problems.
- Step 1 The CPU 23 calculates the sum of the weights of all n particles stored in the storage means (the memory 24 and / or the external storage device 25, etc .; the same applies hereinafter), and this is calculated as n.
- the division number is calculated and this is set as u (floating point number).
- u floating point number
- Step 2 The following is executed for all particles stored in the storage means. With respect to the i-th particle, (weight i / u) +1 is calculated, and an integer c i is calculated by rounding down the decimal point. u is calculated in the above step.
- Step 2B] above 2A that is, when c i> 2 is the original data on the i-th particle storage means c i pieces replicate and multiplied their weight (1 / c i) These c i particles are added to the “list 2” on the storage means for storing the resampling particles. Similarly to list 1, list 2 is also arranged in ascending order using the particle weight as a key.
- Step 4 Select n 1 particles in descending order of the weight in the elements of list 1 and store the n 1 particles in list 2 (because n particles were originally divided, list 1 Is at least n 1 ). As a result, the length of list 2 is n. List 2 is stored in the storage means as the resampling result, and the process ends.
- the entire particle p i ′′ for which the stochastic transition has been calculated as described above represents the current position of the positioning target.
- the current position of the positioning target may be calculated by the calculation formula shown in Equation 3.
- the CPU 23 displays the calculated result on the display device 26 of the positioning target device 2 and can indicate the position of the positioning target to the user.
- the external communication device 27 sends the position of the positioning target to the server and other users. Can be informed.
- the variance ⁇ 2 which is a parameter used for generating a Gaussian random number for the above-described particle stochastic transition calculation, can be a constant term.
- the positioning accuracy can be further improved by dynamically changing this parameter according to the type of positioning object and the type of environment.
- the entire space in which positioning is performed is divided into a finite number of exclusive regions and expressed. For example, it is realistic to perform region division according to the attributes of a space such as a passage, a wall, a living room, and an elevator.
- the positioning target is also classified according to the attribute information of the target such as a person, a robot, or a cart.
- the area division is made to correspond to the attribute determined in advance in the system (stored in the storage unit in advance) or individually specified attribute (stored in the storage unit when specified from the input device) from the target space.
- Each divided system is automatically recognized by each area system through image processing or the like, or a system designer / administrator, a system user or the like individually designates and sets it from the input device.
- the range of each divided area is defined using, for example, x, y, z coordinate values in the case of three dimensions and x, y coordinate values in the case of two dimensions, and this data is stored together with each area attribute, that is, the type of area. Is remembered.
- the attributes or types of positioning targets are also stored in advance through automatic recognition by image processing or the like, or individual designation by a system designer / administrator, a system user, or the like.
- Type of positioning target KIND_TARGET (k), 2) Type of i-th region i KIND_REGION (i), 3) Kind of one region j adjacent to the i-th region i KIND_REGION (j) Is a mapping that defines a variance ⁇ 2 , which is a random parameter used in a calculation that causes a particle representing a positioning target to transition probabilistically from region i to region j.
- this mapping is stored in the external storage device 25 (may be the memory 24.
- the external storage device 25 may be the memory 24.
- three-dimensional table data areas are prepared in the external storage device 25 and three types of keys KIND_TARGET (k), KIND_REGION (i), and KIND_REGION (j) are given from the CPU 23 during the stochastic transition calculation,
- the values of RN_VAR corresponding to the three types of keys are stored so that the CPU 23 can refer to them.
- Table data may be prepared as a file, or a relational database may be prepared, and data that returns the value of RN_VAR when the above three types of keys are given may be prepared on the relational database.
- the CPU 23 When generating the aforementioned Gaussian random number, the CPU 23 refers to the three-dimensional table RN_VAR stored in the external storage device 25 and generates a random number using the reference result.
- Step 3 The CPU 23 converts the random number (d i , d i , d i ) generated using the mean 0 and the variance ⁇ 0 2 of the fixed value into the coordinate value of (x i , y i , z i ).
- Step 4 The CPU 23 calls the three-dimensional table data RN_VAR in the external storage device 25 corresponding to the above three types of information to obtain the variance ⁇ 2 . It should be noted that the calculation of the region where the points i and j exist can be easily realized by a known polygon internal point determination algorithm or the like. [Step 5] The CPU corrects the coordinate value of the point j: (x j , y j , z j ) as follows using the obtained value of the variance ⁇ 2 .
- the CPU 23 executes the above processing by reading the area for each variable secured on the memory 24 (or the external storage device 25; the same shall apply hereinafter), arithmetic operation, and storing the calculation result.
- the arrow ( ⁇ ) means storing data in a variable. If the coordinate value is expressed in polar coordinates, the coordinate value is once converted into Euclidean coordinates and then the above correction is performed, and the result of the correction is converted into polar coordinate values, or the above-mentioned
- the correction parameter value may be converted into polar coordinate representation and then added to the polar coordinate value.
- the positioning of the present invention can further improve the positioning accuracy by reflecting the type of positioning target and the type of environment as compared with the positioning accuracy in the case of using a variance of fixed values. .
- the state transition probability of the positioning target is dynamically changed using the scalar value speed of the positioning target. More specifically, for example, the above-described stochastic transition calculation Describes how to dynamically change the parameters used to generate the Gaussian random number of the hour.
- the variance ⁇ 2 when generating a Gaussian random number in the stochastic transition calculation is increased.
- the variance ⁇ 2 is set to (1 + v / k) ⁇ 2
- a three-dimensional Gaussian random number is generated by using a normal random number of the normal distribution N (0, (1 + v / k) ⁇ 2 ), and the three-dimensional coordinate value (x i , y i) of each particle pi is generated. , Z i ).
- the random number on the vertical z-axis may be a fixed value 0.
- the positioning accuracy of the present invention is the positioning when the fixed variance ⁇ 2 is used. It is possible to further improve the accuracy.
- the value of k can be adjusted by experiments after the positioning system is created, or can be specified by the user using the input device after the positioning system is operated.
- More specific methods include the following methods, for example.
- the CPU 23 [Step 1] Obtain the positioning target scalar value speed v from the scalar value speed sensor 28; [Step 2] Calculate the numerical value 1 + v / k (k is determined in advance and stored in the storage means), [Step 3]
- the parameter ⁇ 2 ( ⁇ 2 value used for generation of the Gaussian random number is adjusted by experiment after the positioning target device 2 or the positioning system is manufactured, or the user is designated by using the input device 26 after the operation,
- the random number is generated according to the normal distribution N (0, (1 + v / k) ⁇ 2 ) by multiplying the calculated numerical value 1 + v / k by (stored in the storage means).
- Known algorithms and software can be used to generate random numbers.
- a method for realizing the scalar value speed sensor 28 there is a method using a conventionally known three-axis acceleration sensor as shown in FIG. Of course, it is not limited to three axes, and a multi-axis acceleration sensor having two axes or three or more axes can be used as necessary.
- FIG. 6 A processing example (FIG. 6) in the case of using a three-axis acceleration sensor will be described.
- Step 1 First, scalar value acceleration data ⁇ 1, ⁇ 2, ⁇ 3... For each of the three axes are acquired from the three-axis acceleration sensor.
- Step 2 An average value during one step is calculated, that is, a value obtained by dividing the sum of the scalar value acceleration data acquired during one step by the number of times acquired is defined as an average value, [Step 3] Square the average value of the acceleration of each of the three axes obtained, [Step 4] Calculate the square root of the sum of all three axes (scalar value acceleration ⁇ ), [Step 5] Multiply it by the time width of one step (the time width is predetermined and stored in the storage means), and the result is the scalar value speed v. As described above, in these calculation processes by the CPU 23, it is obvious to those skilled in the art that the calculation result is temporarily stored in the storage means and called for the next calculation or other processes. It is understandable enough.
- the state transition probability of the positioning target is dynamically changed using the vector value speed of the positioning target, more specifically, the stochastic transition calculation described above. Describes how to dynamically change the parameters used to generate the Gaussian random number of the hour.
- a positioning target device 2 accompanied with a vector value speed sensor 29 together with a scalar value speed sensor 28 is used.
- the vector value speed sensor 29 a geomagnetic sensor or the like can be used.
- the CPU 23 obtains scalar value speed information from the scalar value speed sensor 28 in the same manner as described above. Let this be v.
- the CPU 23 obtains information on the traveling direction of the positioning target device 2 from the vector value speed sensor 29.
- the traveling direction of the positioning target device 3 is acquired as data in the form of a vector (d x , dy , d z ).
- the CPU 23 obtains a vector (v obtained by multiplying each component of a vector (d x , dy , d z ) representing the traveling direction of the positioning target device 2 by a numerical value k. k is calculated such that the length of x 1 , v y , v z ) is equal to the scalar value velocity v.
- Step 6 In the calculation of the stochastic transition, these random numbers are added to the three-dimensional coordinate values x i , y i , and z i of the particles.
- the above steps can be applied as they are.
- the positioning accuracy according to the present invention can be further improved over the positioning accuracy in the case of using a fixed-value random number generation parameter.
- the wireless beacon signal received by the positioning target device 2 is analyzed by the CPU 23 of the positioning target device 2, and the position of the positioning target, that is, the position of the positioning target device 2 is estimated.
- An embodiment in which a position of a positioning target is estimated using a signal can also be realized. That is, the wireless beacon device 10 that is attached to the positioning target or carried by the positioning target transmits a wireless beacon signal, and the signal is received by the plurality of antennas 31 and the receiver 32 installed on the environment side, and is transmitted via the network device 20.
- a plurality of received beacon signals are transmitted to a positioning server 30 provided separately, and the current received beacon pattern BP (Receiver) consisting of data such as ID, electric field strength, propagation time, propagation time difference of received beacon signals
- the IDs appearing in the beacon pattern relating to one positioning object are all the same, but the values of the electric field strength, propagation time, propagation time difference, etc. of the beacon signals measured by the plurality of antennas 31 and the receiver 32 are different for each antenna. Since it is different depending on the receiver, the radio beacon signal received by each antenna 31 and receiver 32 can be handled as a different radio beacon signal, and this allows comparison with a beacon pattern stored in the positioning server in advance. It becomes possible.
- the embodiment using the electric field strength at the time of reception of the radio beacon signal has been described.
- the principle of the present invention is not limited to the method using the electric field strength, and is not limited to TOA (Time of Arrival), TDOA ( It is also applicable to positioning using beacon signal propagation time and beacon signal propagation time difference, such as Time (Difference (of Arrival)).
- An index s (p) of some received signal expressed by: Is defined for all i 1) s i (p) is continuous at any p, and 2)
- Is defined for all i 1) s i (p) is continuous at any p, and 2)
- the value of the vector s (p) can be detected by the beacon receiver, it can be used as the reception beacon pattern BP described above, Positioning can be realized without changing the part.
- radio beacon signals were described as radio signals. However, they are not limited to radio waves in principle, and optical signals such as infrared rays and air vibrations such as ultrasonic waves are completely the same system and device. It is possible to perform positioning with the system.
- a pyroelectric infrared sensor is used instead of radio waves. Describes the positioning method.
- a plurality of n-element pyroelectric infrared sensors 10 are installed as wireless beacon devices on the environment side in a living room at home or a nursing facility.
- n 2, 4 (two-element type, four-element type), but not limited to these, any n-element type using two or more elements may be used.
- a sector area from the infrared sensor 10 in FIG. 10 indicates a detection direction and a range.
- the positioning object is a heat source, typically a person, an animal, or the like.
- a plurality of pyroelectric infrared sensors 10 installed in a room are connected by a network 20 such as a wired, wireless LAN, ZigBee, or Bluetooth®, and transmit observed data to a positioning server 30 installed separately on the environment side or the like. Configure to be able to.
- the pyroelectric infrared sensor 10 is installed so that it can sense the whole room. Unlike the case of radio waves, the intensity of the signal output from the pyroelectric infrared sensor 10 does not show a simple behavior that decreases as the distance increases. On the other hand, the signal intensity for each frequency band obtained by decomposing the output waveform of the pyroelectric infrared sensor 10 into frequency components is related to the distance to the object and the moving speed, and the change is known to be continuous and monotonous. . Therefore, if the output of the pyroelectric infrared sensor 10 is converted into the signal intensity for each frequency band, an indicator of the received signal that changes continuously and monotonously with the movement of the positioning object can be configured.
- FIG. 10 One embodiment of a positioning system using such a pyroelectric infrared sensor 10 is shown in FIG.
- the waveform information of the signal obtained from the pyroelectric infrared sensor 10 is transferred to the positioning server 30 via the network communication device 20 described above, and the CPU 301 in the positioning server 30 receives it.
- the CPU 301 converts the received waveform information of the pyroelectric infrared sensor 10 into a signal intensity for each frequency band using a frequency discriminator (for example, a digital bandpass filter or a fast Fourier transformer) 300 (see FIG. 10). And convert.
- the time width for performing the conversion may be the same as the step width for positioning, but is not necessarily the same.
- Such a frequency discriminator 300 can be realized by storing software of a known digital bandpass filter or fast Fourier transform in the external storage device 303, and the CPU 301 executing such software. As a result, the received intensity data for m frequency bands for each of n sensors: Is obtained.
- This signal is an n * m-dimensional vector composed of n * m signals, when signals of different frequency bands of the same sensor are interpreted as different signals. Therefore, each element of this n * m-dimensional signal vector is interpreted as signals from n * m different radio beacon devices, and this is interpreted as the above-described current (ie, actually received) received beacon pattern BP ( If used as a receiver), positioning can be performed using the positioning system shown in FIG. 11 without modifying other parts of the present invention.
- a passage detection sensor 100 that reacts when a moving body such as a person or an animal passes through a preset line segment (shown by a broken line in FIG. 12) is used.
- a preset line segment shown by a broken line in FIG. 12
- An example of the passage detection sensor 100 is an infrared sensor, which can be manufactured by adjusting a lens of a commercially available infrared sensor and installing a cover around a light receiving unit by a known method, for example. In order to limit the detection range, a shielding plate is installed as necessary.
- the sensor is not limited to the infrared sensor, and any sensor that can detect the passage of a person may be used.
- the passage detection sensor 100 is installed in a positioning target space such as a living room.
- the target space is divided into several exclusive areas and stored in advance.
- a living room will be described as an example.
- the room is divided into three areas of “living room”, “restroom”, and “bed”.
- the “corridor” which is an area outside the living room, is added to a set of areas representing the living room, and the four areas of “living room”, “restroom”, “bed” and “hallway” good.
- the positioning server 300 includes a CPU 311, a memory 312, an external storage device 313, a display device 314, and an external communication device 315.
- M passage detection sensors 100 are installed at the boundaries of the above-mentioned areas.
- An arrow extending from the passage detection sensor 100 in FIG. 12 represents a detection direction.
- the area where the user exists when the present area estimation system is activated is instructed to the system by the input device 314 by the system user or administrator when the system is activated. Specifically, it is given to the system by a method such as a user selecting a value from a menu presented by the system.
- the CPU 311 stores the initial position designated by the user using the input device 314 and the initial time when the setting is made in the area movement history list on the memory 312. In addition, every time movement of the area is detected by the system, the CPU 311 stores the movement destination information and the data of the time when the movement occurs in the area movement history list on the memory 312. It is additionally stored in the “table”. Assume that there is one user.
- a preset two-dimensional table that associates i + 1 is stored (an example is shown in FIG. 14). Vertical fields of the table is the name of a region r i the user currently exists, next to the item is the name of the passage detection sensor 100 detects the movement of people.
- the reference value determined by designating the vertical and horizontal items of the table is the name of the area estimated as the movement destination. These names are stored as character string type data.
- Void is described as a value.
- the positioning server 300 ignores this value. Does not cause a state transition. For example, in FIG. 12, when r i is a restroom R 2 , even if the sensor 1 detects some movement, it is considered that such movement is impossible and is set to Void on the table.
- the table items are as follows, for example. Current user position: Living room R 1 AND Passing sensor name: Sensor 1 ⁇ Estimated destination: Bed R 3 Current user position: restroom R 2 AND passage detection sensor name: sensor 4 ⁇ Estimated destination: Living room R 1
- the detection signal is CPU311 received through the network communication device 200, detects the name of a region r i the user currently exists longitudinal items, the movement of people pass
- the table of the external storage device 313 is searched using the name of the detection sensor 100 as a horizontal item.
- the search result of the table is set as the value of r i + 1 , and at the same time, the time when the passage detection sensor 100 detects the movement of the person is set as t i + 1, and the CPU 311 stores these values in the memory 312.
- the initial position of the target user and the transition destination area and time obtained by the above search are sequentially added to the “table for storing the movement history information of the detection target user” prepared on the external storage device 313. .
- the area where the target user exists is stored in the movement history information table prepared on the external storage device 313 as the following ordered set.
- the presence region estimation system using the above-described passage detection sensor 100 can be applied to the above-described positioning system using the stochastic transition calculation of particles, thereby realizing higher positioning accuracy.
- the value of the detection target position of the sensor 100 is substituted. Since the detection target position is normally a two-dimensional line segment as shown in FIG. 12, the positions of the particles p i ′ after the transition are dispersed with equal probability on this line segment.
- this line segment A random number k i having a uniform distribution in the interval [0, 1] is generated for each particle, and a vector value (x i) obtained by substituting the random number k i into the above equation.
- Y i , z i ) are the coordinate values (x i ', y i ', z i ', weight i ) after the transition of the particle.
- a three-axis acceleration sensor, an electrocardiogram sensor, and a temperature sensor are stored in a single housing and used in the form of 1) carried by the user or 2) worn on the user's body, and wireless communication. Describes a small, lightweight sensor unit that can send and receive sensing results to an external mobile phone or computer. Hereinafter, this sensor unit is referred to as a simple sensor unit.
- these documents also describe a method for realizing an information analysis server unit including a mobile phone, a server, and an Internet communication line that can receive and analyze information from a simple sensor unit and distribute the information to other users. It is stated.
- a system that automatically measures a cardiac potential using a cardiac potential sensor, analyzes the data to automatically calculate the pulse rate, and distributes the information to other users.
- the configuration method is also described.
- the body surface temperature is automatically measured using a temperature sensor, and the data is analyzed to automatically determine whether the user is wearing the sensor unit, and the information is sent to other users. It also describes how to configure the distribution system.
- the external wireless communication module included in the conventional simple sensor unit can be used as the beacon receiver 22 of the positioning target device 2 of FIGS. 2, 5, and 7 in the positioning system. Therefore, the software for executing the functions of the positioning system and the existing area estimation system and the related data are stored in, for example, the external storage device of the simple sensor unit, and the software is executed in the built-in MPU, thereby simplifying the functions of the positioning system. It can be realized in the sensor unit.
- an atmospheric pressure sensor for measuring atmospheric pressure and a humidity sensor for measuring humidity are added to the conventional three-axis acceleration sensor, electrocardiographic potential sensor, and temperature sensor, and the atmospheric pressure information and humidity information are also automatically obtained. It is also possible to provide a “biological sensor unit” that measures and a “user protection system” that uses an “information analysis server unit” that analyzes these sensor information in an integrated manner.
- FIG. 15 shows an example.
- the biosensor unit 1000 includes a humidity sensor 1006 and an atmospheric pressure sensor 1007 in addition to the conventional triaxial acceleration sensor 1003, electrocardiogram sensor 1004, and temperature sensor 1005.
- the results of automatic measurement by these sensors are sent via the sensor network 2000.
- information from a plurality of sensors as described below can be analyzed in an integrated manner. It is possible to realize a device or system that automatically estimates a user's state that cannot be easily estimated by only information from a single sensor and watches the user's state. This is called a “user watching system”.
- a user monitoring system in which the biological sensor unit 1000 and the information analysis server unit 3000 are integrated into one module can be configured.
- An example is shown in FIG.
- the difference from the above implementation is that the communication between the biosensor unit 1000 and the information analysis server unit 3000 is directly connected without the wireless sensor network 2000, and the built-in MPU 1002 of the biosensor unit 1000 in FIG. Is transferred to the CPU 3003 of the information analysis server unit 3000, and only the software to be executed by the built-in MPU 1002 of the biometric sensor unit 1000 is executed by the CPU 3003 of the information analysis server unit 3000, and there is no other difference. . Therefore, in the following description regarding other embodiments of the present invention, when it is not necessary to distinguish the configurations of FIG. 15 and FIG.
- the user watching system can realize several automatic estimation functions depending on what kind of sensor group is used to analyze information from what kind of sensor group.
- the software for executing each function of the above-described positioning system and presence area estimation system and related data are stored in, for example, the external storage device 3006, and the software is executed in the CPU 3003 or the built-in MPU 1002.
- a user watching system with a positioning function can be realized.
- the document also describes a system configuration method for automatically identifying a user's posture and body inclination by analyzing information of a three-axis acceleration sensor built in the sensor unit.
- this identification result is referred to as a “posture state”.
- this conventional system the following seven types of posture states can be identified.
- Posture state 1 (standing, sitting) Posture state 2 (sleeping, falling) Posture state 3 (tilt: front) Posture state 4 (inclined: back) Posture state 5 (tilt: left) Posture state 6 (tilt: right) Posture 7 (running, walking)
- posture state 7 running or walking
- a system configuration method is also described in which “steps per second” is also calculated.
- a user watching system that automatically estimates the type of exercise of the user from the change in the posture state of the user can also be realized as follows.
- FIG. 17 shows an example of the table.
- the vertical and horizontal items of the table are seven items from the posture state 1 to the posture state 7, and the table is array data of 7 ⁇ 7 items.
- the estimated motion type is stored in the array data in advance as a table reference value. Keep it.
- the vertical and horizontal items and reference values are all names, that is, character string type data. For example, it is as follows.
- the CPU 3003 always analyzes the data from the triaxial acceleration sensor 1003 and estimates the posture state at each time point.
- the specific method is described in the said literature. Then, only when there is a change in the posture state, specify the vertical and horizontal items of the table described above using the character strings of the posture state before the change and the value of the posture state after the change. Reference is made and the reference value obtained as a result is set as the exercise type. If the reference value is Void, ignore the value and do nothing. Further, when the reference value is obtained by connecting a plurality of character strings with “+”, it is estimated that the movement is two consecutive movements.
- the estimated result is stored in the external storage device 3006.
- the prepared motion state estimation results are stored in an ordered array table.
- the biosensor unit 1000 is not worn when the user's pulse rate is not detected using the result of the wearing determination based on the pulse rate and temperature described in the above document, If it is determined that the biosensor unit 1000 is not mounted according to the result of the mounting determination, the result, that is, the character string “not mounted” is transferred to the ordered array table storing the motion state estimation results. Can also be stored.
- the absolute value of acceleration obtained from the triaxial acceleration sensor 1003, that is, the value of sqrt ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) is calculated, and the absolute value of this absolute value is calculated. Only when the magnitude is larger than a separately appropriately selected threshold parameter, it can be determined that the posture has changed, and the motion type can be estimated. By this method, it is possible to reduce misjudgment due to the error of the acceleration sensor 1003 and the mixing of noise.
- internal MPU1002 or CPU3003 averages between the acceleration components alpha x of three-axis acceleration received from the sensor 1003, ⁇ y, ⁇ z suitably chosen time width t a and the average value Is used to calculate sqrt ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ), and when the value is larger than a separately defined threshold ⁇ abs , the aforementioned motion type is estimated, and the estimated result is The result of the motion state estimation prepared in the external storage device 3006 is stored in an ordered array table.
- the absolute value of acceleration obtained from the triaxial acceleration sensor 1003 that is, the value of sqrt ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) is calculated. 17 is added to determine whether the change from the posture state 1, 3, 4, 5, 6 to 2 shown in FIG. It is estimated whether it is “ fallen” or not.
- the exercise type is estimated.
- the calculated value of sqrt ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) is a threshold value ⁇ that is separately determined. If it is smaller than “ fall ”, “lie down” is assumed, and “fall down” is assumed otherwise.
- the estimated results are stored in an ordered array table that stores the motion state estimation results prepared in the external storage device 3006.
- the built-in MPU 1002 or the CPU 3003 appropriately selects the respective components ⁇ x , ⁇ y , ⁇ z of the information received from the acceleration sensor 1003 in parallel with the motion type estimation process.
- sqrt ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) is calculated using the average value during t a , and if the value is larger than the threshold ⁇ abs defined separately, Estimate However, when a change from the posture state 1, 3, 4, 5, 6 to 2 is detected, the calculated value of sqrt ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) is a threshold value ⁇ that is separately determined. If it is smaller than “ fall ”, “lie down” is assumed, and “fall down” is assumed otherwise.
- the estimated results are stored in an ordered array table that stores the motion state estimation results prepared in the external storage device 3006.
- the present invention in the positioning system or the user monitoring system with a positioning function described above, it is also possible to improve the positioning accuracy by using the pressure information. It is known that the change in atmospheric pressure and the change in altitude have the relationship shown in Table 1 below.
- CPU3003 (may be CPU23,301,311) acquires data information i.e. pressure from pressure sensor 1007 at regular intervals t pi. However, tpi is assumed to be shorter or the same as the time width of one step of positioning.
- Step 2 The CPU 3003 calculates the average value of the atmospheric pressure data in each step. That is, a value obtained by dividing the total sum of the atmospheric pressure data acquired during one step by the acquired number of times is used as an average value.
- Step 3 current step trying to perform a calculation of the positioning, i.e., the average value of the pressure at the step corresponding to after the probabilistic transition calculation of the particle, that p now even memory 3005 (Memory 24,302,312 Good) Store in the above variable.
- Step 4 the average value of the atmospheric pressure in the previous step, that is, the step corresponding to the step before performing the stochastic transition calculation of the particles, is stored in a variable p prev . This is the last time the positioning calculation has been completed for one step may be substituted for the value of p now to p prev.
- Step 5 The CPU 3003 changes the atmospheric pressure between the previous step and the current step. Calculate
- Step 5 CPU3003 is subsequently multiplied by k in Table 1 showing the relationship between the altitude and atmospheric pressure in the p delta, we calculate the numerical values by inverting the sign -k * p ⁇ (m / S ).
- K It may be calculated by This expression is an approximate expression, and it is also possible to use a highly accurate altitude estimation expression.
- Step 6 The calculated ⁇ k * p ⁇ is an estimated value of a change in vertical height from the previous step to the current step, and this is used to generate a random number in the particle transition calculation. .
- N normal random numbers of normal distribution
- three types of normal distributions Generate a normal random number of.
- Step 7 Then, in the calculation of the stochastic transition, these random numbers are added to the three-dimensional coordinate values x i , y i , and z i of the particles p i .
- the above steps can be applied as they are.
- the update of each particle can reflect the change in altitude estimated from the change in atmospheric pressure, and the accuracy of positioning can be improved.
- walking generated from information on the number of steps per second calculated based on the acceleration data from the acceleration sensor by the method described in the above document. speed is used as a scalar value velocity v described above, thereby, in the update of each particle p i, it is possible to reflect the walking speed estimated from the number of steps, a positioning system that improves the accuracy of positioning can be realized.
- the CPU 3003 (which may be the CPUs 23, 301, and 311) includes an acceleration sensor 1003 provided in the biosensor unit 1000 (of course, an acceleration sensor is provided in the positioning target device 2 as described in the above-mentioned document).
- the walking speed is calculated by estimating the number of steps per second on the basis of the acceleration data from the second step, and multiplying it by a typical step length.
- the scalar value speed is calculated by the method shown in FIG.
- the calculated scalar value velocity is converted into a power spectrum for each frequency band by fast Fourier transform. Since the maximum number of steps that a human can take per second does not exceed 10 Hz at the maximum, attention is paid only to the power spectrum of 10 Hz or less. A low pass filter that adds only 10 Hz or less may be used without using the fast Fourier transform.
- the CPU counts the number of times that the value of the extracted power spectrum of 10 Hz or less exceeds a separately defined threshold value, so that the number of steps is obtained. For example, each time the threshold value is exceeded, the value of the variable prepared on the memory may be increased by one.
- the threshold value may be determined by observing a power spectrum of 10 Hz or less for a few seconds and setting it to an intermediate value between the maximum value and the minimum value of the spectrum, and this is stored in advance in the storage means.
- the walking speed is calculated by reading a numerical value representing a typical stride for each user attribute stored in advance in the external storage device 3006 (which may be the external storage device 25, 303, 313), and multiplying this by the number of steps. And get walking speed. Then, this numerical value is stored in the variable v on the memory 3005 (may be the memory 24, 302, or 312), and if the value of v is used as the scalar value speed, the other is the probability of the particle using the scalar value speed described above.
- This method that is, the method of calculating the walking speed by first calculating the number of steps using information from the acceleration sensor and multiplying it by the step length is particularly effective when using an acceleration sensor with low accuracy. This is because even if the scalar value speed is calculated directly from a low-accuracy acceleration sensor, the reliability of the estimated scalar value speed itself is low, whereas the calculation result of the number of steps described in the present invention is more The number of steps can be estimated with high accuracy. Therefore, the walking speed calculated by multiplying it by a standard stride may be more accurate than the scalar value speed calculated directly from the low accuracy acceleration sensor.
- the present invention it is possible to realize a system in which erroneous estimation is reduced by using information on the type of motion in the presence area estimation system described above.
- the presence area estimation system described above it may be estimated that the presence area has changed even though the user has not actually moved due to a false report from the passage detection sensor 100.
- information on the user's exercise type is obtained based on the table associating the change in posture state and the exercise type as illustrated in FIG. It can be determined that there has been movement in the existence area estimation system only when Specifically, for example, as follows.
- the CPU 301 (CPU 23, 311 or 3003) detects an exercise type based on the table.
- This detected content and detected time are stored as a set of data in the "array for storing exercise type information" on the memory 302 (may be the memory 24, 312, or 3005) in order of time.
- the CPU301 receives the information from the passage detection sensor 100 at time t 1. At this time, the CPU 301 refers to the array storing the exercise type information, and determines whether or not the exercise type has been detected within an appropriate time width (about 1 second) before and after t 1 .
- Step 4 If there is a detection, update processing of the change of the existing area is performed, otherwise update processing is not executed. In addition, when the exercise type is “non-wearing”, this information can be ignored.
- the positioning system that combines the information from the passage detection sensor 100 described above, it is possible to realize positioning with further reduced malfunction by further using information on the type of exercise.
- the CPU 301 (or may be CPUs 23, 311, and 3003) detects the user's exercise type based on the table associating the change in posture state and the exercise type as illustrated in FIG. Only when there is, it is determined that the passage detection sensor 100 has operated, and the coordinate values after the transition of the particles are set. In addition, when the exercise type is “non-wearing”, this information can be ignored. As a result, it is possible to reduce malfunctions in setting the coordinate values after the transition of particles due to the false alarm of the passage detection sensor 100.
- the CPU functions as various means for executing the processes described above.
- the memory and / or the external storage device function as means for storing data for various processes executed by the CPU.
- the memory as the storage means can be replaced with an external storage device, and the external storage device can be replaced with a memory. Operation is possible without any changes, and such an embodiment is also an embodiment of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Alarm Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線ビーコン装置からのビーコン信号に基づき、人・動物・物等の位置を、高い測位精度及び外部ノイズや信号欠落への頑健性を持ちつつ推定することができる測位装置、及びこれを用いた見守りシステムを提供する。 確率的遷移による遷移後のパーティクルpi'{座標値i',重みi}、及びそのビーコンパタンBP(pi')を計算し、得られたビーコンパタンBP(pi')と実際の受信ビーコンパタンBP(Receiver)とを用いた尤度計算による遷移後のパーティクルpi'{座標値i',重みi}のパーティクルフィルタリングを行い、前記尤度を用いた遷移後のパーティクルpi'{座標値i',重みi}の重みiの更新による新しいパーティクルpi''{座標値i',重みi'}を計算し、これら各処理のループを繰り返す。
Description
本発明は、無線電波、赤外線等を用いた測位システム、並びにこれと他の様々なセンサ情報を解析する技術とを統合することにより、見守り対象である人、動物、物等の状態を自動的に推定する見守りシステムに関連するものである。人が携帯、保持するセンサデバイス、ないしは人、動物、物等に装着したセンサデバイスを用いて見守り対象のセンシングを行い、見守り対象の位置、加速度、姿勢、運動状態、気圧、心電位、温度、湿度等の情報を統合的に解析することにより、個別のセンサの情報だけでは容易には推定できない見守り対象の全体の状態を自動的に推定し、その結果を通信回線を通じて必要な場所や人へ通知する。
人、動物、物等の見守り対象位置を計測する方法としては、GPSないしはGPS疑似衛星の信号を用いた測位方式が実用化され広く利用されている。このようなGPSの信号を利用できない環境、例えば屋内空間や高層ビルが乱立する環境においては、無線装置(例えば無線LAN、 Bluetooth、 ZigBee、UWB、 IMES、その他の無線センサネットのノード) からの信号をパーティクルフィルタと呼ばれる方法を用いて処理し、測位を行うことが提案されている。以下の説明では、見守りシステムの測位に関する部分のみに注目する場合には、「見守り対象」を「測位対象」と書く場合がある。
特許文献1,2に記載の方法は、パーティクルと呼ばれる仮想的な粒子を多数用意し、これらの集まりとして測位対象の空間内での確率分布を近似し、時間経過に伴って各粒子を確率的に遷移させ、計測された信号の電界強度、伝搬時間、伝搬時間差等の情報から遷移した先の粒子とその重みを尤度関数を用いてフィルタリングし、その結果として次のステップにおける測位対象の確率分布を近似的に得る手法である。これにより、他の方法、例えば単純な三角測量法、三辺測量法、ベイズ推定法等と比べて、測位の精度向上が図れることが知られている。
しかしながら、以上のようなパーティクルフィルタを用いた手法では、多数の粒子の確率的遷移と遷移結果の尤度関数による評価を、繰り返し計算の手法を用いて計算するため、計算に要する計算時間ならびに記憶装置の容量を消費し、またその結果として測位装置の時間当たりの消費電力も増大する。そのため、携帯情報端末装置、無線センサノード、無線タグ装置(RFID)等の計算資源の限られた装置の内部において、パーティクルフィルタを用いた測位を実行するのは困難であった。
このような問題を解決するため、本発明では、パーティクルフィルタの長所である測位の精度の高さや、外部ノイズや信号欠落への頑健性といった特徴を失うことなく、GPSないしはGPS疑似衛星の信号が利用できない環境においても、環境内に設置された「無線ビーコン装置」からのビーコン信号を受信し、測位対象が持つ「測位対象装置」の位置を推定することができる測位装置、測位システム等を提供する。
本発明の一実施形態では、図1に示すように、環境側に無線ビーコン装置1を設置する。無線ビーコン装置1は、自身のID(識別番号及び/又は識別名称等の識別情報)と通信内容からなる無線ビーコン信号を発信する、好ましくは定期的に繰り返し発信する。無線ビーコン装置は、無線LAN、 Bluetooth、ZigBee、 UWB、その他の無線センサネットのノード、赤外線発信装置等に、定期的に無線ビーコン信号を繰り返し発信する機能を、ハードウェアないしはソフトウェアを用いて付加することにより、容易に実現できる。
同じく図1に示すように、人、動物、物等の測位対象は、測位を実行するための測位対象装置2を携帯ないしは装着する。測位対象装置2は、環境に設置された一般に複数の無線ビーコン装置1の信号を受信し、受信した信号を測位対象装置2の内部に格納された信号データとの比較を行って、測位を実行する装置である。なお、本発明の別の実施形態では、ビーコン信号の送受信の方向を反対にする、すなわち測位対象装置2が無線ビーコン信号を発信し、それを一般に複数の無線ビーコン装置1で受信することでも、本発明の以下の部分に修正を加えることなく、測位の機能が実現できる。また測位対象の熱を関知する赤外線センサを用いる場合には、測位対象は測位対象装置2を必ずしも携帯ないしは装着している必要はない。
本発明の一実施形態では、図2に示すように、測位対象装置2は、アンテナ21、ビーコン受信機22、CPU23、メモリ24、外部記憶装置25、ディスプレィ装置/入力装置26、外部通信装置27から構成される。ビーコン信号と外部通信とで、同一の通信方式を用いる場合には、ビーコン受信機22を独立な装置として実装せずに、外部通信装置の受信部を利用してビーコン受信機として利用することも可能である。また、電波ではなく赤外線を用いる場合には、アンテナ21ならびにビーコン受信機22は、赤外線受信機に置き換える。ディスプレィ装置26は、見守りの結果を表示するために使用されるものであり、無線通信等のなんらかの方法によって結果を外部へ送信する場合には省略できる。また外部通信装置16は、見守りの結果を外部へと通知するために使用されるものであり、外部への結果の通知が必要ない場合には省略できる。
測位対象装置2内のビーコン受信機22は、無線ビーコン装置1から送信されるビーコン信号の無線通信と同一の通信方式を用いて、無線ビーコン信号を受信する。これは、無線LAN、 Bluetooth、 ZigBee、UWB、その他の無線センサネットのノード、赤外線受信装置などを利用して容易に実現できる。ビーコン受信機22は、受信したビーコン信号を、それを発信した無線ビーコン装置1のIDならびに受信したビーコン信号の受信信号強度 (RSSI, Received Signal Strength Indication) を組としたリスト形式:
(受信ビーコン信号i:IDi,RSSIi)
のデータ形式を用いて、CPU23へと転送する。IDiは整数ないしは文字列で表現される無線ビーコン装置のIDである。RSSIiは整数ないしは浮動小数点数として表現される受信信号の強度の指標であり、受信した無線ビーコン信号の物理的強度(例えば電界強度)と単調な正の比例関係を有するような指標として設定する。
(受信ビーコン信号i:IDi,RSSIi)
のデータ形式を用いて、CPU23へと転送する。IDiは整数ないしは文字列で表現される無線ビーコン装置のIDである。RSSIiは整数ないしは浮動小数点数として表現される受信信号の強度の指標であり、受信した無線ビーコン信号の物理的強度(例えば電界強度)と単調な正の比例関係を有するような指標として設定する。
測位対象装置2内においては、「ステップ」と呼ばれるある一定の時間幅が設定される。この1ステップの時間幅が、測位を実行するための基本的な時間の単位となる。測位の精度を維持するために、1ステップは、複数のビーコン信号を受信するに充分な長さを持つ必要がある。すなわち、無線ビーコン装置1が送信する無線ビーコン信号の送信間隔より長くなければならない。1ステップの時間幅をtSと表記する。
測位対象装置2内においては、以下のように、複数のビーコン信号のIDとRSSIを組みにした「ビーコンパタン」と呼ばれるデータ形式を用いる。
ここで、ビーコンパタンに現れるデータの個数mは、0以上の任意の整数である。例えば、1ステップの時間幅において、ビーコン受信機22からCPU23へ転送されてきた全ての無線ビーコン信号を、CPU23は上記のようなビーコンパタンの形式でメモリ24(及び/又は外部記憶装置25。以下同じ。)上に格納する。このように、ビーコン受信機22で実際に受信されCPU23によってメモリ24上に上記形式で格納されたデータを、「現在の受信ビーコンパタン」若しくは「実際の受信ビーコンパタン」と呼び、以下のように「BP(Receiver)」と表記する。
ここで、実際の受信ビーコンパタンに現れるデータの個数mは、1ステップの時間幅において、実際に受信されたビーコン信号の個数であり、0以上の値を取る。すなわち、例えば1ステップの時間幅において5個のビーコン信号を受信した場合はm=5となる。また、1ステップの時間幅において全くビーコン信号が受信できなかった場合にはm=0となる。この場合でも、「受信されたビーコン信号の個数が0である」という事実を、対象の測位に利用可能である。
ここで、ビーコンパタンに現れるデータの個数mは、0以上の任意の整数である。例えば、1ステップの時間幅において、ビーコン受信機22からCPU23へ転送されてきた全ての無線ビーコン信号を、CPU23は上記のようなビーコンパタンの形式でメモリ24(及び/又は外部記憶装置25。以下同じ。)上に格納する。このように、ビーコン受信機22で実際に受信されCPU23によってメモリ24上に上記形式で格納されたデータを、「現在の受信ビーコンパタン」若しくは「実際の受信ビーコンパタン」と呼び、以下のように「BP(Receiver)」と表記する。
ここで、実際の受信ビーコンパタンに現れるデータの個数mは、1ステップの時間幅において、実際に受信されたビーコン信号の個数であり、0以上の値を取る。すなわち、例えば1ステップの時間幅において5個のビーコン信号を受信した場合はm=5となる。また、1ステップの時間幅において全くビーコン信号が受信できなかった場合にはm=0となる。この場合でも、「受信されたビーコン信号の個数が0である」という事実を、対象の測位に利用可能である。
CPU23は、メモリ24上において、パーティクルと呼ばれる測位対象の位置を表現するためのデータ領域を複数個(n個)保持する。各パーティクルは、以下の形式のデータである。
i番目のパーティクル: pi=(xi,yi,zi,重みi)
ここで xi,yi,zi はユークリッド空間座標値、重みi はパーティクルの確からしさを表すパラメータであり、各々浮動小数点数ないしは整数として表現される。xi,yi,zi の初期値は0、ないしは予め定められ外部記憶装置25に格納されている値、ないしは入力装置26を用いてユーザが指定する値である。重みi の初期値は1である。ただし、測位対象の平面上での位置を測位する場合であれば、座標値はx,yのみで良い。パーティクルの総数nが多くなれば測位精度が向上するが、一方で測位計算に要する時間が長くなる。典型的には、nは例えば100から10、000程度とし、予め定めておく。
i番目のパーティクル: pi=(xi,yi,zi,重みi)
ここで xi,yi,zi はユークリッド空間座標値、重みi はパーティクルの確からしさを表すパラメータであり、各々浮動小数点数ないしは整数として表現される。xi,yi,zi の初期値は0、ないしは予め定められ外部記憶装置25に格納されている値、ないしは入力装置26を用いてユーザが指定する値である。重みi の初期値は1である。ただし、測位対象の平面上での位置を測位する場合であれば、座標値はx,yのみで良い。パーティクルの総数nが多くなれば測位精度が向上するが、一方で測位計算に要する時間が長くなる。典型的には、nは例えば100から10、000程度とし、予め定めておく。
測位対象装置3は、現在のステップつまり実際にビーコンパタンを受信したときのステップにおいて、その1ステップ前すなわち直前のステップにおけるパーティクルの全てを確率的に遷移させ(パーティクルの「確率的遷移計算」)、これを実際に受信した現在の受信ビーコンパタンBP(Receiver)を用いて評価、修正、変更し、その次のステップすなわち上記現在のステップにおけるパーティクルを計算する。この計算された現在のステップにおけるパーティクルの座標値と重みから、上記加重平均式によって現在のステップにおける測位対象のx,y,z座標位置を計算する。以下では、その具体的方法を述べる。
パーティクルの確率的遷移計算は、各々のパーティクルの座標値の遷移を計算することにより実行される。メモリ24に格納されているn個のパーティクルの各々:
pi=(xi,yi,zi,重みi)
ただし、iは1からnまでの整数(nはパーティクルの総数)
に対して、1ステップ前すなわち直前のステップにおける座標値から、現在のステップにおける座標値への移動を確率的に推定する。具体的には、平均0、分散σ2 の正規分布 N(0, σ2) の正規乱数を用いて、3次元のガウス乱数を生成し、それを各々のパーティクルpiの3次元座標値に加算する。具体的には、CPU23は、まず上のような3次元のガウス乱数をn個生成する。乱数の生成は、既知のアルゴリズム、ソフトウェアが利用できる。ただし、測位対象が平面内に存在することが確実な場合は、鉛直方向z軸の乱数は固定値0としても良い。生成されたn個の3次元乱数を、1~n番目までのパーティクルの3次元座標値に順次加算し、加算された結果のパーティクルを、現在のステップにおけるフィルタリング前のパーティクルとしてメモリ24上に格納する。σ2 の値は、測位対象装置2ないし測位システム作製後に実験により調整するほか、その稼働後にユーザが入力装置26を用いて指定することもできる。
pi=(xi,yi,zi,重みi)
ただし、iは1からnまでの整数(nはパーティクルの総数)
に対して、1ステップ前すなわち直前のステップにおける座標値から、現在のステップにおける座標値への移動を確率的に推定する。具体的には、平均0、分散σ2 の正規分布 N(0, σ2) の正規乱数を用いて、3次元のガウス乱数を生成し、それを各々のパーティクルpiの3次元座標値に加算する。具体的には、CPU23は、まず上のような3次元のガウス乱数をn個生成する。乱数の生成は、既知のアルゴリズム、ソフトウェアが利用できる。ただし、測位対象が平面内に存在することが確実な場合は、鉛直方向z軸の乱数は固定値0としても良い。生成されたn個の3次元乱数を、1~n番目までのパーティクルの3次元座標値に順次加算し、加算された結果のパーティクルを、現在のステップにおけるフィルタリング前のパーティクルとしてメモリ24上に格納する。σ2 の値は、測位対象装置2ないし測位システム作製後に実験により調整するほか、その稼働後にユーザが入力装置26を用いて指定することもできる。
測位を実行する空間の領域内の多数の地点に関して、その各地点(x,y,z座標値)に測位対象装置2が存在したと仮定した場合に、測位対象装置2において受信されるであろうと推定されるビーコンパタンを、外部記憶装置25(及び/又はメモリ24。以下同じ。)に格納しておく。このデータは測位に先立ち別途計測するか、シミュレータないしは近似式によって計算し、ビーコンパタンの形式で外部記憶装置25に格納しておく。あるパーティクルpi=(xi,yi,zi,重みi)が与えられたとき、そのxi,yi,zi座標値において受信されるであろうビーコンパタンのことを、「パーティクルpiのビーコンパタン」と呼び、「BP(pi)」と表記する。もし当該パーティクルの座標値と一致する地点のデータが存在しない場合には、空間距離のもっとも近い地点のデータを用いるか、ないしは距離の近い順に数個の地点を選び出しその加重平均を計算する。
1ステップ前のパーティクルpi=(xi,yi,zi,重みi)の上記確率的遷移計算によって得られる遷移後のパーティクルをpi’=(xi’,yi’,zi’,重みi)とし、このパーティクルpi’の前記別途計測或いは計算によるビーコンパタンを以下のようにBP(pi’)と表記する。
このBP(pi’)と、実際の受信ビーコンパタンBP(Receiver)から、予め設定された尤度関数Pを用いて、遷移後のパーティクルpi’の尤度を計算する。尤度関数Pとしては様々な関数を用いることができるが、たとえば2個の受信ビーコンパタンの間の距離関数:
(ただし、kに該当するビーコン信号のデータが存在しない場合には、piないしはpjのk番目の受信ビーコンのRSSIの平均値は0とする)、又は
(ただし、kに該当するビーコン信号のデータが存在しない場合には、piないしはpjのk番目の受信ビーコンのRSSIの平均値は0とする)、等を用いて、
などを用いることが出来る。ただし、expはeを底とする対数関数である。また、a>1,b>0であり、これらは別途与えられる調整用パラメータである。また、distはdist1またはdist2の何れかないしは他の距離関数である。
(ただし、kに該当するビーコン信号のデータが存在しない場合には、piないしはpjのk番目の受信ビーコンのRSSIの平均値は0とする)、又は
(ただし、kに該当するビーコン信号のデータが存在しない場合には、piないしはpjのk番目の受信ビーコンのRSSIの平均値は0とする)、等を用いて、
などを用いることが出来る。ただし、expはeを底とする対数関数である。また、a>1,b>0であり、これらは別途与えられる調整用パラメータである。また、distはdist1またはdist2の何れかないしは他の距離関数である。
計算された尤度から遷移後のパーティクルpi’=(xi’,yi’,zi’,重みi)の「重みi」を更新する。具体的には、
などを用いることができる。exp、logはeを底とする対数、指数関数である。矢印は、メモリ24上のデータのCPU23による更新を表す。CPU23は、メモリ24上に格納された全てのパーティクルに対して、順次そのデータを読み出し、その各々のデータに対して上記尤度関数P及び重み関数の算術関数を呼び出して値を更新し、その結果をメモリ24上の更新後のパーティクルのデータとして格納する。
などを用いることができる。exp、logはeを底とする対数、指数関数である。矢印は、メモリ24上のデータのCPU23による更新を表す。CPU23は、メモリ24上に格納された全てのパーティクルに対して、順次そのデータを読み出し、その各々のデータに対して上記尤度関数P及び重み関数の算術関数を呼び出して値を更新し、その結果をメモリ24上の更新後のパーティクルのデータとして格納する。
本発明では、以上の、一つ前のステップでのパーティクルpiに対する確率的遷移計算、遷移後のパーティクルpi’の計算、遷移後のパーティクルpi’のビーコンパタンBP(pi’)と現在の(実際の)受信ビーコンパタンBP(Receiver)を用いた遷移後のパーティクルpi’の尤度計算によるパーティクルフィルタリング、尤度を用いた遷移後のパーティクルpi’の重みi更新による新しいパーティクルpi’’の計算までの処理を繰り返し(パーティクルpi’’が次のループにて一つ前のパーティクルpiとなって処理を繰り返す)という処理を施す。これにより、測位対象装置の位置を推定する。
また、測位対象装置2全体の動作を安定化し、かつ精度を向上させるため、リサンプリングという処理を追加することも可能である。リサンプリングは、パーティクルの重みに応じてパーティクルの分割、消去を行うものであり、重みの大きいパーティクルはその重みに比例して複数のパーティクルに分割し、その結果、重みの小さいパーティクルは確率的に選択されて消去するという処理である。
具体的には、例えば以下の処理R1,R2を行う。
[処理R1]i番目のパーティクルpi=(xi,yi,zi,重みi)に対し、
を定義し、全てのパーティクルの集合からこの確率Riに従って独立に新しいn個のパーティクルを選択し、その集合を新しいパーティクルの集合とする。ただし、nはパーティクルの総数である。
[処理R2]新しいパーティクルの集合の全ての要素に対し、その重みを初期値である1にセットする。
[処理R1]i番目のパーティクルpi=(xi,yi,zi,重みi)に対し、
を定義し、全てのパーティクルの集合からこの確率Riに従って独立に新しいn個のパーティクルを選択し、その集合を新しいパーティクルの集合とする。ただし、nはパーティクルの総数である。
[処理R2]新しいパーティクルの集合の全ての要素に対し、その重みを初期値である1にセットする。
しかしながら、これらR1,R2では、
1)nが充分に小さい場合(例えばn=100)、重みの値の変化の結果として、前記数3による測位結果の計算を行うと、リサンプリングの前と後とで測位結果が大きく変化することが多いこと、またこれによって測位結果の画面上での位置表示がリサンプリングの前後で移動してしまうこと、また、
2)R1、R2の計算は確率的な選択すなわち乱数関数を用いた計算を行うため、計算量が多くなること、
が考えられる。
1)nが充分に小さい場合(例えばn=100)、重みの値の変化の結果として、前記数3による測位結果の計算を行うと、リサンプリングの前と後とで測位結果が大きく変化することが多いこと、またこれによって測位結果の画面上での位置表示がリサンプリングの前後で移動してしまうこと、また、
2)R1、R2の計算は確率的な選択すなわち乱数関数を用いた計算を行うため、計算量が多くなること、
が考えられる。
本発明では、これらを解消すべく、以下のリサンプリングの方法を更に用いる。
[ステップ1]CPU23は、記憶手段(メモリ24及び/又は外部記憶装置25等のこと。以下同じ。)に記憶されているn個の全てのパーティクルの重みの総和を計算し、これをnで除算した数を計算し、これをu(浮動小数点数)とする。尚、CPU23によるこれら計算処理において、その計算結果が記憶手段に一端記憶され、次の計算乃至その他の処理のために呼び出されるという処理が介在することは、当然に当業者に十分に理解できることである。このことは以下のCPUによる計算処理についても同様である。
[ステップ2]記憶手段に記憶されている全てのパーティクルに対して以下を実行する。i番目のパーティクルに関して、(重みi/u)+1を計算し、その小数点以下を切り捨てた整数ciを計算する。uは前記ステップで計算されたものである。
[ステップ2A]もしci=1または2ならば、CPU23は、記憶手段に記憶されているそのi番目のパーティクルの内容データには変更を加えず、当該i番目のパーティクルを、リサンプリングのパーティクル群を格納する記憶手段上の「リスト1」へと加える。ただし、このリスト1はパーティクルの重みをキーとして昇順に並ぶようにしておく、すなわちリスト1への追加は、追加パーティクルの重みがその前の要素より大きいように、かつその後の要素より小さい場所に行う。
[ステップ2B]上記2A以外、すなわちci>2の場合には、当該i番目のパーティクルの記憶手段上の元のデータをci個複製し、それらの重みを(1/ci)倍し、これらci個のパーティクルをリサンプリングのパーティクル群を格納する記憶手段上の「リスト2」へと加える。リスト2も、リスト1と同様にパーティクルの重みをキーとして昇順に並ぶようにしておく。
[ステップ3]リスト2に格納されているパーティクルの個数を変数n2に格納する。
n2<nならば、n1←(n-n2)とし(←は変数への値の格納)、次述する[ステップ4]に進む。
n2=nならば、リスト2をリサンプリング結果として記憶手段に格納し、終了する。
n2>nならば、リスト2の要素であるパーティクルに対して、分割前の元のパーティクルの重みの大きいものから順にパーティクルを1個ずつリスト2から消去してゆく。分割前の元のパーティクルの1番重みの大きいものの次は2番目に重みの大きいものという順で、n2=nとなるまで繰り返す。分割前の元のパーティクルの1番重みの小さいものまで進むと、先頭に戻って、分割前の元のパーティクルの1番重みの大きいものから同じ処理を行う。n2=nとなった時点で、リスト2をリサンプリング結果として記憶手段に格納し、終了する。
n2<nならば、n1←(n-n2)とし(←は変数への値の格納)、次述する[ステップ4]に進む。
n2=nならば、リスト2をリサンプリング結果として記憶手段に格納し、終了する。
n2>nならば、リスト2の要素であるパーティクルに対して、分割前の元のパーティクルの重みの大きいものから順にパーティクルを1個ずつリスト2から消去してゆく。分割前の元のパーティクルの1番重みの大きいものの次は2番目に重みの大きいものという順で、n2=nとなるまで繰り返す。分割前の元のパーティクルの1番重みの小さいものまで進むと、先頭に戻って、分割前の元のパーティクルの1番重みの大きいものから同じ処理を行う。n2=nとなった時点で、リスト2をリサンプリング結果として記憶手段に格納し、終了する。
[ステップ4]リスト1の要素で重みの大きいパーティクルから順にn1個を選び、当該n1個のパーティクルをリスト2へと格納する(元々n個あったパーティクルを分割しているため、リスト1の長さは最低でもn1である)。この結果、リスト2の長さはnとなる。リスト2をリサンプリング結果として記憶手段に格納し、終了する。
以上のCPU23による計算処理の内容を見てわかるように、
1)パーティクルの重みの更新においてR2の処理を行っていないため、数3に示した測位結果の計算を行うと、リサンプリングの前と後とで測位結果が大きく変化することがなく、またこれによって測位結果の画面上での位置表示がリサンプリングの前後で移動してしまうのを防ぐことができ、また、
2)計算量はnの線形オーダーO(n)であるため、高速な計算が可能となる。
1)パーティクルの重みの更新においてR2の処理を行っていないため、数3に示した測位結果の計算を行うと、リサンプリングの前と後とで測位結果が大きく変化することがなく、またこれによって測位結果の画面上での位置表示がリサンプリングの前後で移動してしまうのを防ぐことができ、また、
2)計算量はnの線形オーダーO(n)であるため、高速な計算が可能となる。
以上により確率的遷移が計算されたパーティクルpi’’全体が、測位対象の現在の位置を表している。具体的には、数3に示した計算式により、測位対象の現在の位置を計算すれば良い。CPU23は、計算された結果を測位対象装置2のディスプレィ装置26に表示し、測位対象の位置をユーザに示すことができるほか、外部通信装置27により、測位対象の位置をサーバや他のユーザへと知らせることができる。
前述したパーティクルの確率的遷移計算のためのガウス乱数の生成に用いられるパラメータである分散σ2は、定数項とすることができる。しかし、本発明ではさらに、このパラメータを測位対象の種類、環境の種類により動的に変更することにより、測位精度を一層向上させることもできる。
一実施形態では、具体的には図3に示すように、まず、測位を実施する空間全域を有限個の排他的な領域に分割して表現する。たとえば、通路、壁、居室、エレベータ等の空間の属性に応じて領域分割を行うのが現実的である。また測位対象も人、ロボット、台車等の対象の属性情報に従ってクラス分けしておく。領域分割は、対象空間から、システム上事前に決められている属性(記憶手段に予め記憶される)、あるいは個別指定される属性(入力装置からの指定時に記憶手段に記憶される)に対応させた分割領域を、各領域システムが画像処理等により自動認識して、あるいはシステム設計者/管理者、システムユーザ等が入力装置から個別指定して、設定する。各分割領域の範囲は例えば3次元であればx,y,z座標値、2次元であればx,y座標値を用いて画定され、このデータが各々の領域属性つまり領域の種類とともに記憶手段に記憶される。測位対象の属性つまり種類も、画像処理等による自動認識や、システム設計者/管理者、システムユーザ等による個別指定を介して、予め記憶される。
そして、
1)測位対象の種類 KIND_TARGET(k)、
2)i番目の領域iの種類 KIND_REGION(i) 、
3)i番目の領域iに隣接するある一つの領域jの種類KIND_REGION(j)
が与えられたときに、測位対象を表現するパーティクルを領域iから領域jへと確率的に遷移させる計算に用いる乱数のパラメータである分散σ2を定義する写像 RN_VAR:
を用意する。
1)測位対象の種類 KIND_TARGET(k)、
2)i番目の領域iの種類 KIND_REGION(i) 、
3)i番目の領域iに隣接するある一つの領域jの種類KIND_REGION(j)
が与えられたときに、測位対象を表現するパーティクルを領域iから領域jへと確率的に遷移させる計算に用いる乱数のパラメータである分散σ2を定義する写像 RN_VAR:
を用意する。
具体的には図4に示したように、この写像は、3次元の表データとして外部記憶装置25(メモリ24でもよい。以下同じ。)に蓄えておく。外部記憶装置25に3次元の表データの領域を用意し、KIND_TARGET(k)、KIND_REGION(i) 、 KIND_REGION(j) の3種類のキーが確率的遷移計算時にCPU23から与えられた場合に、それら3種類のキーに該当するRN_VAR の値をCPU23が参照できるように格納しておく。表データをファイルとして用意しても良いし、また関係データベースを用意し、上の3種類のキーを与えた場合に、RN_VAR の値を返すようなデータを関係データベース上に用意しても良い。
CPU23は、前述のガウス乱数を生成する際に、外部記憶装置25に格納されたこの3次元の表RN_VAR を参照し、その参照結果を用いて乱数を生成する。その具体的な手順は以下の通りである。
[ステップ1]CPU23は、確率的遷移計算時に、測位対象の種類を、記憶手段から読み出す。
[ステップ2]CPU23は、パーティクルpi=(xi,yi,zi,重みi)に対し、点i:(xi,yi,zi)が表す点が存在する領域iの種類を、記憶手段から読み出す。
[ステップ3]CPU23は、平均0ならびに固定値の分散σ0 2とを用いて生成された乱数 (di,di,di) を(xi,yi,zi)の座標値に加えて得られた点j:(xj,yj,zj)=(xi,yi,zi)+(di,di,di)が存在する領域jの種類を、記憶手段から読み出す。
[ステップ4]CPU23は、上記3種類の情報に該当する外部記憶装置25内の3次元の表データRN_VARを呼び出して、分散σ2を得る。尚、 点i,点jが存在する領域の計算は,既知の多角形内点判定アルゴリズム等によって容易に実現できる。
[ステップ5]CPUは、得られた分散σ2の値を用いて、点j:(xj,yj,zj)の座標値を以下のように補正する。
[ステップ1]CPU23は、確率的遷移計算時に、測位対象の種類を、記憶手段から読み出す。
[ステップ2]CPU23は、パーティクルpi=(xi,yi,zi,重みi)に対し、点i:(xi,yi,zi)が表す点が存在する領域iの種類を、記憶手段から読み出す。
[ステップ3]CPU23は、平均0ならびに固定値の分散σ0 2とを用いて生成された乱数 (di,di,di) を(xi,yi,zi)の座標値に加えて得られた点j:(xj,yj,zj)=(xi,yi,zi)+(di,di,di)が存在する領域jの種類を、記憶手段から読み出す。
[ステップ4]CPU23は、上記3種類の情報に該当する外部記憶装置25内の3次元の表データRN_VARを呼び出して、分散σ2を得る。尚、 点i,点jが存在する領域の計算は,既知の多角形内点判定アルゴリズム等によって容易に実現できる。
[ステップ5]CPUは、得られた分散σ2の値を用いて、点j:(xj,yj,zj)の座標値を以下のように補正する。
CPU23は、メモリ24(外部記憶装置25でもよい。以下同じ。)上に確保された各変数用の領域の読み出し、算術演算、計算結果の格納によって上の処理を実行する。ただし矢印(←)は、変数へのデータの格納の意味である。また、座標値が極座標で表現されている場合には、その座標値を一旦ユークリッド座標へと変換してから上の補正を行い、その補正の結果を極座標値へと変換するか、ないしは上記の補正パラメータの値を極座標表現に変換してから極座標の座標値へと加算すれば良い。
これにより、固定値の分散を用いた場合の測位精度と比較して、測位対象の種類、環境の種類を反映させることにより、本発明の測位はその測位精度の向上をより一層図ることができる。
測位精度を向上させるための別の一つの方法として、測位対象のスカラ値速度を利用して、測位対象の状態遷移確率を動的に変化させる、より具体的には例えば前述した確率的遷移計算時のガウス乱数の生成に用いられるパラメータを動的に変更する方法を述べる。
この方法では、一例として、スカラ値速度vと、適宜定められるパラメータkとを用いて、確率的遷移計算におけるガウス乱数の生成の際の分散σ2 を増加させる。具体的には、分散σ2 を
(1+v/k)σ2
で置き換え、正規分布 N(0, (1+v/k)σ2) の正規乱数を用いて、3次元のガウス乱数を生成し、それを各々のパーティクルpiの3次元座標値(xi,yi,zi)に加算する。ただし、測位対象が平面内に存在することが確実な場合は、鉛直方向z軸の乱数は固定値0 としても良い。
(1+v/k)σ2
で置き換え、正規分布 N(0, (1+v/k)σ2) の正規乱数を用いて、3次元のガウス乱数を生成し、それを各々のパーティクルpiの3次元座標値(xi,yi,zi)に加算する。ただし、測位対象が平面内に存在することが確実な場合は、鉛直方向z軸の乱数は固定値0 としても良い。
これにより、「移動速度が大きい場合ほど、対象物はより遠くまで移動している」という事実を反映させることができ、本発明の測位精度は、固定値の分散σ2を用いた場合の測位精度より更に一層の向上を図ることができる。kの値は、測位システム作成後に実験により調整するほか、測位システムの稼働後にユーザが入力装置を用いて指定することもできる。
より具体的な方法としては、例えば以下のような方法がある。まず、測位対象装置2としては、図5に例示するスカラ値速度センサを付随したものを用いる。CPU23は、
[ステップ1]このスカラ値速度センサ28から測位対象のスカラ値速度vを取得し、
[ステップ2]数値 1+v/k を計算し(kは事前に定められ記憶手段に記憶されている)、
[ステップ3]ガウス乱数の生成に用いられるパラメータσ2 (σ2 の値は、測位対象装置2ないし測位システム作製後に実験により調整され、あるいはその稼働後にユーザが入力装置26を用いて指定され、記憶手段に記憶されている)に、算出された数値 1+v/k を乗じて、正規分布N(0, (1+v/k)σ2) に従う乱数の生成を行う。乱数の生成は、既知のアルゴリズム、ソフトウェアが利用できる。
[ステップ1]このスカラ値速度センサ28から測位対象のスカラ値速度vを取得し、
[ステップ2]数値 1+v/k を計算し(kは事前に定められ記憶手段に記憶されている)、
[ステップ3]ガウス乱数の生成に用いられるパラメータσ2 (σ2 の値は、測位対象装置2ないし測位システム作製後に実験により調整され、あるいはその稼働後にユーザが入力装置26を用いて指定され、記憶手段に記憶されている)に、算出された数値 1+v/k を乗じて、正規分布N(0, (1+v/k)σ2) に従う乱数の生成を行う。乱数の生成は、既知のアルゴリズム、ソフトウェアが利用できる。
また、スカラ値速度センサ28を実現する一つの構成方法としては、図6に示すように、従来から知られる3軸加速度センサを用いる方法がある。勿論3軸に限定されるものではなく、必要に応じて2軸或いは3軸以上の多軸の加速度センサを用いることができる。
3軸加速度センサを用いた場合の一処理例(図6)を説明する。
[ステップ1]まず、3軸加速度センサから3軸各々のスカラ値加速度データα1,α2,α3・・・を取得し、
[ステップ2]これの1ステップの間の平均値を計算し、すなわち、1ステップの間に取得したスカラ値加速度のデータの総和を、取得した回数で除算した値を平均値とし、
[ステップ3]得られた3軸各々の加速度の平均値を2乗し、
[ステップ4]その3軸全ての総和の平方根を計算し(スカラ値加速度α)、
[ステップ5]それに1ステップの時間幅(時間幅は予め決められ記憶手段に記憶されている)を乗算し、その結果をスカラ値速度vとする。尚、既述したが、CPU23によるこれら計算処理において、その計算結果が記憶手段に一端記憶され、次の計算乃至その他の処理のために呼び出されるという処理が介在することは、当然に当業者に十分に理解できることである。
[ステップ1]まず、3軸加速度センサから3軸各々のスカラ値加速度データα1,α2,α3・・・を取得し、
[ステップ2]これの1ステップの間の平均値を計算し、すなわち、1ステップの間に取得したスカラ値加速度のデータの総和を、取得した回数で除算した値を平均値とし、
[ステップ3]得られた3軸各々の加速度の平均値を2乗し、
[ステップ4]その3軸全ての総和の平方根を計算し(スカラ値加速度α)、
[ステップ5]それに1ステップの時間幅(時間幅は予め決められ記憶手段に記憶されている)を乗算し、その結果をスカラ値速度vとする。尚、既述したが、CPU23によるこれら計算処理において、その計算結果が記憶手段に一端記憶され、次の計算乃至その他の処理のために呼び出されるという処理が介在することは、当然に当業者に十分に理解できることである。
測位精度を向上させるためのさらに別の一つの方法として、測位対象のベクトル値速度を利用して、測位対象の状態遷移確率を動的に変化させる、より具体的には前述した確率的遷移計算時のガウス乱数の生成に用いられるパラメータを動的に変更する方法を述べる。
この方法では、一例として、図7に示すように、スカラ値速度センサ28とともにベクトル値速度センサ29を付随した測位対象装置2を用いる。ベクトル値速度センサ29としては地磁気センサ等を用いることができる。
[ステップ1]まず、CPU23は、スカラ値速度センサ28から、前述したのと同様な方法で、スカラ値速度の情報を得る。これをvとする。
[ステップ2]CPU23は、ベクトル値速度センサ29から、測位対象装置2の進行方向の情報を得る。この測位対象装置3の進行方向は、ベクトル(dx,dy,dz)の形式のデータとして取得する。地磁気センサの場合では、磁北の方向と測位対象装置2の方向との角度のずれを検出するので、それをベクトル形式に変換すれば良い。
[ステップ3]図8に示したように、CPU23は、測位対象装置2の進行方向を表すベクトル(dx,dy,dz)の各成分に数値kを乗じた結果得られるベクトル(vx,vy,vz)の長さが、スカラ値速度vと等しくなるようなkを計算する。これは、
で計算すれば良い。
[ステップ4]この結果得られたベクトル値速度の各成分 vx,vy,vz に1ステップの時間幅tS を乗じた数値(vx*tS),(vy*tS),(vz*tS)を計算する。
[ステップ5]前述した正規分布 N(0, σ2) の正規乱数を用いた3次元のガウス乱数の代わりに、3種類の正規分布
の正規乱数を生成する。ただし、測位対象が平面内に存在することが確実な場合は、鉛直方向z軸の乱数は固定値0 としても良い。
[ステップ6]そして、確率的遷移の計算において、これらの乱数をパーティクルの3次元座標値xi,yi,ziに加算する。勿論2次元座標値xi,yiでよい場合にも上記各ステップはそのまま適用できる。
[ステップ1]まず、CPU23は、スカラ値速度センサ28から、前述したのと同様な方法で、スカラ値速度の情報を得る。これをvとする。
[ステップ2]CPU23は、ベクトル値速度センサ29から、測位対象装置2の進行方向の情報を得る。この測位対象装置3の進行方向は、ベクトル(dx,dy,dz)の形式のデータとして取得する。地磁気センサの場合では、磁北の方向と測位対象装置2の方向との角度のずれを検出するので、それをベクトル形式に変換すれば良い。
[ステップ3]図8に示したように、CPU23は、測位対象装置2の進行方向を表すベクトル(dx,dy,dz)の各成分に数値kを乗じた結果得られるベクトル(vx,vy,vz)の長さが、スカラ値速度vと等しくなるようなkを計算する。これは、
で計算すれば良い。
[ステップ4]この結果得られたベクトル値速度の各成分 vx,vy,vz に1ステップの時間幅tS を乗じた数値(vx*tS),(vy*tS),(vz*tS)を計算する。
[ステップ5]前述した正規分布 N(0, σ2) の正規乱数を用いた3次元のガウス乱数の代わりに、3種類の正規分布
の正規乱数を生成する。ただし、測位対象が平面内に存在することが確実な場合は、鉛直方向z軸の乱数は固定値0 としても良い。
[ステップ6]そして、確率的遷移の計算において、これらの乱数をパーティクルの3次元座標値xi,yi,ziに加算する。勿論2次元座標値xi,yiでよい場合にも上記各ステップはそのまま適用できる。
以上により、本発明による測位精度は、固定値の乱数生成パラメータを用いた場合の測位精度よりも更に一層の向上を図ることができる。
以上の説明では、測位対象装置2において受信した無線ビーコン信号を、測位対象装置2のCPU23において解析し、測位対象の位置つまり測位対象装置2の位置を推定する実施形態として記述したが、全く同じ原理、方式で、例えば図9に示したように、環境側に設置されたビーコン受信機32等の受信装置及び測位サーバ30において、測位対象側に設置された無線ビーコン装置10が発信する無線ビーコン信号を用いて、測位対象の位置を推定する実施形態も実現できる。すなわち、測位対象に装着ないしは測位対象が携帯する無線ビーコン装置10が無線ビーコン信号を発信し、その信号を環境側に設置された複数のアンテナ31及び受信機32において受信し、ネットワーク装置20経由で受信された複数のビーコン信号を別途設けられた測位サーバ30に送信し、受信されたビーコン信号のID、電界強度、伝搬時間、伝搬時間差等のデータから成る現在の受信ビーコンパタンBP(Receiver)のデータを測位サーバにおいて予め記憶されたビーコンパタンと比較することにより、以上述べてきたのと同一の原理、方法を用いて測位を実現することができる。この場合、一つの測位対象に関するビーコンパタンに現れるIDは全て同一となるが、複数のアンテナ31及び受信機32で測定されたビーコン信号の電界強度、伝搬時間、伝搬時間差等の値は各々のアンテナ・受信機によって異なるため、各々のアンテナ31及び受信機32で受信された無線ビーコン信号は異なる無線ビーコン信号として扱うことが可能であり、これにより予め測位サーバに記憶されたビーコンパタンとの比較が可能となるのである。
また、以上の説明では、無線ビーコン信号の受信時の電界強度を利用した実施形態として説明したが、本発明の原理は電界強度を利用した方法に留まらず、TOA (Time of Arrival)、 TDOA (Time Difference of Arrival) 等の、ビーコン信号の伝搬時間、ビーコン信号の伝搬時間差を用いた測位にも適用できる。
さらには、信号強度、伝搬時間、伝搬時間差に留まらず、測位対象の移動に伴い連続かつ単調に変化する何らかの受信信号の指標、すなわち、位置p=(x,y,z)において、一般にベクトル形式で表現される何らかの受信信号の指標s(p):
が定義され、全てのiに関して、
1)si(p)が任意のpにおいて連続、かつ、
2)任意のpと微小な任意のΔpに対して、
が成り立つようなベクトルs(p)が定義出来て、かつそのベクトルs(p)の値をビーコン受信機において検出できるのであれば、それを前述した受信ビーコンパタンBPとして利用し、本発明の他の部分には変更を加えることなく測位を実現できる。すわなち、前項までは、無線ビーコン信号を電波信号として記述したが、原理的に電波に留まるものではなく、赤外線のような光信号、超音波のような空気振動でも全く同様な方式、装置、システムで測位を行うことが可能である。
1)si(p)が任意のpにおいて連続、かつ、
2)任意のpと微小な任意のΔpに対して、
が成り立つようなベクトルs(p)が定義出来て、かつそのベクトルs(p)の値をビーコン受信機において検出できるのであれば、それを前述した受信ビーコンパタンBPとして利用し、本発明の他の部分には変更を加えることなく測位を実現できる。すわなち、前項までは、無線ビーコン信号を電波信号として記述したが、原理的に電波に留まるものではなく、赤外線のような光信号、超音波のような空気振動でも全く同様な方式、装置、システムで測位を行うことが可能である。
前述した環境側での測位方式であり、かつ、測位対象の移動に伴い連続かつ単調に変化する受信信号の指標を用いた測位方式の一例として、電波ではなく、焦電型赤外線センサを用いた測位方式について述べる。
図10及び図11に示すように、例えば自宅の居室や介護施設における居室等において、環境側に、無線ビーコン装置として、n素子型焦電型赤外線センサ10を複数個設置する。既知のデバイスではn=2、4(2素子型、4素子型)等のタイプのものが多いが、それらに限らず、2以上の複数の素子を用いたn素子型のものであれば良い。図10中の赤外線センサ10からの扇形領域は検出方向及び範囲を示す。測位対象は熱源であり、典型的には人、動物等である。居室内に設置された複数の焦電型赤外線センサ10は、有線、無線LAN、ZigBee、 Bluetooth 等のネットワーク20によって接続され、観測したデータを環境側等に別途設置した測位サーバ30へ送信することができるように構成する。
焦電型赤外線センサ10は、居室内をくまなくセンシングできるように設置する。このような焦電型赤外線センサ10から出力される信号の強度は、電波の場合とは異なり、距離が遠ざかるにつれて減少するような単純な挙動を示さない。一方、焦電型赤外線センサ10の出力波形を周波数成分に分解した周波数帯毎の信号強度は、対象物までの距離と移動速度に関連し、その変化は連続かつ単調であることがわかっている。よって、焦電型赤外線センサ10の出力を周波数帯毎の信号強度へと変換すれば、測位対象の移動に伴い連続かつ単調に変化する受信信号の指標が構成できる。
このような焦電型赤外線センサ10を用いた測位システムの一実施形態を図11に示す。焦電型赤外線センサ10から得られた信号の波形情報は、先に述べたネットワークの通信装置20経由で測位サーバ30に転送され、測位サーバ30内のCPU301がこれを受け取る。CPU301は、受け取った焦電型赤外線センサ10の信号の波形情報を、周波数弁別器(たとえばデジタルバンドパスフィルタや高速フーリエ変換器)300(図10参照)を用いて、周波数帯毎の信号強度へと変換する。変換を行うための時間幅は、測位のためのステップ幅と同一で良いが、必ずしも同一である必要はない。このような周波数弁別器300は、既知のデジタルバンドパスフィルタや高速フーリエ変換のソフトウェアを外部記憶装置303に格納し、CPU301がこのようなソフトウェアを実行することにより実現できる。この結果、n台のセンサ毎の、m個の周波数帯毎の受信強度データ:
が得られる。
が得られる。
この信号は、同一のセンサの異なる周波数帯の信号を異なる信号であると解釈すれば、n*m個の信号からなるn*m次元のベクトルである。従って、このn*m次元の信号のベクトルの各要素を、n*m個の異なる無線ビーコン装置からの信号と解釈し、これを前述した現在の(つまり実際に受信した)受信ビーコンパタンBP(Receiver)として使用すれば、本発明の他の部分には修正を加えることなく、図11に示した測位システムを用いて、測位が可能になる。
本発明では、図12及び図13に示すように、あらかじめ設定された平面上の線分(図12では破線で表示)を人、動物などの移動体が通過すると反応する通過検出センサ100を用い、それら測位対象が存在する領域を推定するシステムを構成することもできる。
通過検出センサ100の一例としては、赤外線センサがあり、例えば既知の手法により市販の赤外線センサのレンズの調整ならびに受光部回りへの覆いの設置により作製できる。検出範囲を限定するため、必要に応じて遮蔽板を設置する。勿論、赤外線センサに限らず、人の通過を検出できるセンサであれば良い。この通過検出センサ100を居室等の測位対象空間に設置する。
通過検出センサ100とネットワーク通信装置200を介して接続されている測位サーバ300では、予め、対象空間内を排他的な幾つかの領域に分割し、記憶しておく。居室を一例として説明すると、まず図12の例では、「居間」「お手洗い」「ベッド」の3領域に分割している。また同じく図12に示したように、居室外部の領域である「廊下」を、居室を表現する領域群の集合に加え、「居間」「お手洗い」「ベッド」「廊下」という4領域としても良い。これらの分割された領域を R1~Rn (今の場合、n = 4) とし、予め対象空間と対応させて測位サーバ300に記憶させておく。図13の例では、測位サーバ300は、CPU311、メモリ312、外部記憶装置313、ディスプレィ装置314、外部通信装置315を備える。
m台の通過検出センサ100が、上記各領域の境界に設置される。図12では、1~5番の5台の通過検出センサ100が設置されており、m=5である。図12中の通過検出センサ100から延びる矢印は検出方向を表す。
まず、本存在領域推定システムの起動時においてユーザが存在している領域は、システム起動時においてシステムの使用者ないしは管理者が入力装置314によって、システムに指示するものとする。具体的には、システムが提示するメニューからユーザが値を選択する等の方法によって、システムに与えられるものとする。
メモリ312(外部記憶装置313でも良い。以下同じ。)上においてユーザが存在する領域の遷移履歴を格納する「検出対象ユーザの移動履歴情報を格納するテーブル」を用意する。ユーザが入力装置314によって指定した初期位置ならびにその設定がなされた初期時刻を、CPU311はメモリ312の上の領域移動履歴リストに格納する。また、本システムによって領域の移動が検出される度に、CPU311はメモリ312の上の領域移動履歴リストに、移動先と移動が起こった時刻のデータを「検出対象ユーザの移動履歴情報を格納するテーブル」に追加的に格納する。ユーザは1名であると仮定する。
外部記憶装置313には、現在ユーザが存在している領域riと、人の移動を検出する通過検出センサ100の名前(センサID等)とから、ユーザが移動したと推定する先の領域ri+1を対応付ける予め設定された2次元のテーブルを格納する(図14に一例を示す)。テーブルの縦の項目は現在ユーザが存在している領域riの名前であり、横の項目は人の移動を検出した通過検出センサ100の名前である。テーブルの縦、横の項目を指定して決まる参照値は、移動先と推定される領域の名前である。これらの名前は文字列型のデータとして格納する。また、移動が不可能な場合(つまり移動先として推定することができない領域)には値としてVoid と記述され、このような値が参照された場合には、測位サーバ300はこの値を無視し、状態遷移を起こさない。例えば図12においてriがお手洗いR2の場合にセンサ1が何らかの動きを検出するとしてもそのような移動は不可能と考えてテーブル上Voidに設定しておく。
テーブルの項目は、例えば以下のようになる。
現在のユーザの位置:居間R1 AND 通過検出センサ名:センサ1
→ 推定される移動先:ベッドR3
現在のユーザの位置:お手洗いR2 AND 通過検出センサ名:センサ4
→ 推定される移動先:居間R1
現在のユーザの位置:居間R1 AND 通過検出センサ名:センサ1
→ 推定される移動先:ベッドR3
現在のユーザの位置:お手洗いR2 AND 通過検出センサ名:センサ4
→ 推定される移動先:居間R1
通過検出センサ100が人の移動を検出すると、その検出信号をネットワーク通信装置200を介して受信したCPU311が、現在ユーザが存在する領域 ri の名前を縦の項目、人の移動を検出した通過検出センサ100の名前を横の項目として、外部記憶装置313のテーブルを検索する。そのテーブルの検索結果をri+1の値とし、また同時に通過検出センサ100が人の移動を検出した時刻をti+1とし、これらの値をCPU311はメモリ312に格納する。例えば、
IF(ri=居間R1 AND 通過検出センサ名=センサ4)THEN
ri+1 ← ベッドR3;
ti+1 ← センサ4が移動を検出した時刻;
ENDIF
となる。以上により、測位対象が存在する領域を推定することができる。
IF(ri=居間R1 AND 通過検出センサ名=センサ4)THEN
ri+1 ← ベッドR3;
ti+1 ← センサ4が移動を検出した時刻;
ENDIF
となる。以上により、測位対象が存在する領域を推定することができる。
また、外部記憶装置313上に用意された「検出対象ユーザの移動履歴情報を格納するテーブル」に、対象ユーザの初期位置と上の検索により得られた遷移先領域及び時刻を順次追記してゆく。これにより、対象となるユーザが存在する領域が以下の順序付集合として、外部記憶装置313上に用意された移動履歴情報テーブルに格納される。
本発明では、上述した通過検出センサ100を用いた存在領域推定システムを、前述したパーティクルの確率的遷移計算を用いた測位システムに適用させて、さらに一層高い測位精度を実現することができる。
図13における測位サーバ300のCPU311あるいは図2,5,7における測位対象装置2のCPU23あるいは図9における測位サーバ30のCPU301は、通過検出センサ100からの検出情報が得られた際に、前述した測位システムにおけるパーティクルの確率的遷移計算において、全てのパーティクルの遷移後の位置pi’=(xi’,yi’,zi’,重みi)の値として、検出情報を発した通過検出センサ100の検出対象位置の値を代入する。検出対象位置は、図12に示したように通常は2次元の線分であるため、遷移後のパーティクルpi’の位置をこの線分上に等確率で分散させる。具体的には、この線分が
と表現される場合に、各パーティクルに対して[0,1]の区間における一様分布の乱数kiを生成し、その乱数kiを上の方程式に代入して得られるベクトル値(xi,yi,zi)をそのパーティクルの遷移後の座標値(xi’,yi’,zi’,重みi)とするのである。これにより、パーティクルの遷移後の位置をより限定的に制約することが可能となり、精度の向上を図ることができる。
と表現される場合に、各パーティクルに対して[0,1]の区間における一様分布の乱数kiを生成し、その乱数kiを上の方程式に代入して得られるベクトル値(xi,yi,zi)をそのパーティクルの遷移後の座標値(xi’,yi’,zi’,重みi)とするのである。これにより、パーティクルの遷移後の位置をより限定的に制約することが可能となり、精度の向上を図ることができる。
ここまでの部分で、ユーザが存在する位置を推定する「測位システム」ならびにユーザが存在する領域を推定する「存在領域推定システム」について述べた。以下では、これらのシステムと生体センサを併用し、それらの情報を統合的に解析することによって、ユーザの自明ではない状態を自動的に推定する「ユーザ見守りシステム」について述べる。
ユーザの身体状態を観測するための装置乃至システムは、既にいくつかのものが提案、実現されている。例えば、(1)幸島明男、車谷浩一「生体センサと携帯電話を用いた遠隔地からの見守りサービスの実現」電子情報通信学会 2009年度 第2回医療情報通信技術研究会資料集(MICT), No.9,pp. 79-88, (平成21年7月28日).、(2)幸島明男, 井上豊, 池田剛, 山下倫央, 太田正幸, 車谷浩一「モバイルセンシングプラットフォーム:CONSORTS-S ~ ワイヤレス心電センサと携帯電話を用いたヘルスケアサービスの構築」,電子情報通信学会技術研究報告(USN, ユビキタス・センサネットワーク), Vol.107, No.152,pp.23-28, (平成19年7月20日).、(3)Akio Sashima, Yutaka Inoue, Takeshi Ikeda, Tomohisa Yamashita, Masayuki Ohta, Koichi Kurumatani, “Design and Implementation of Wireless Mobile Sensing Platform,”In the Proc. of the Sensing on Everyday Mobile Phones in Support of Participatory Research Workshop at the Fifth ACM Conference on Embedded Networked Sensor Systems (ACM SenSys 2007), Sydney, Australia. November, 2007, (平成19年11月6日)など。
これらの文献では、3軸加速度センサ、心電位センサ、温度センサを一つの筐体内に格納し、1)ユーザが携帯する、ないしは、2)ユーザの身体に装着するといった形態で使用し、無線通信により外部の携帯電話やコンピュータへとセンシング結果を送受信できる小型、軽量のセンサユニットについて述べられている。このセンサユニットを、以下では簡易センサユニットと呼ぶ。また、これらの文献では、簡易センサユニットからの情報を受信、解析し、また他のユーザへとその情報を配信できる、携帯電話、サーバ、インターネット通信回線から成る情報解析サーバユニットの実現方法についても述べられている。
また、上記文献では、心電位センサを用いて心電位を自動的に計測し、そのデータを解析して脈拍数を自動的に計算し、また、それらの情報を他のユーザへと配信するシステムの構成方法も述べられている。また、温度センサを用いて体表温を自動的に計測し、そのデータを解析してセンサユニットをユーザが装着しているかどうかを自動的に判定し、また、それらの情報を他のユーザへと配信するシステムの構成方法も述べられている。
ここで、従来の簡易センサユニットが有する外部無線通信モジュールは、測位システムにおける図2、図5、図7の測位対象装置2のビーコン受信機22として利用できる。よって前述した測位システム並びに存在領域推定システムの各機能を実行するソフトウェアならびにその関連データを例えば簡易センサユニットの外部記憶装置に格納し、内蔵MPUにおいてソフトウェアを実行することにより、測位システムの機能を簡易センサユニットにおいて実現することができる。
本発明ではまたさらに、これら従来の3軸加速度センサ、心電位センサ、温度センサに、気圧を計測する気圧センサ、及び湿度を計測する湿度センサを追加し、気圧情報、湿度情報をも自動的に計測する「生体センサユニット」、ならびにこれら各種センサ情報を統合的に解析する「情報解析サーバユニット」を用いた「ユーザも守りシステム」をも提供することができる。
図15はその一例を示す。生体センサユニット1000は従来の3軸加速度センサ1003、心電位センサ1004、温度センサ1005に加えて、湿度センサ1006、気圧センサ1007を具備し、これら各センサによる自動計測の結果をセンサネットワーク2000を介して情報解析サーバユニット3000へと送受信し、情報解析サーバユニット3000において、受信したデータの解析を実行し、また他のユーザへとその情報を配信できる。このような気圧、湿度を計測するセンサを追加した生体センサユニット1000と、情報解析サーバユニット3000とを用いることにより、以下に述べるような、複数のセンサからの情報を統合的に解析することにより、単一のセンサからの情報だけでは容易に推測できないユーザの状態を自動的に推定し、ユーザの状態を見守る装置乃至システムが実現できるようになる。これを「ユーザ見守りシステム」と呼ぶこととする。
上記ユーザ見守りシステムの別の実現形態として、生体センサユニット1000と情報解析サーバユニット3000を統合して1モジュールとしたユーザ見守りシステムを構成することもできる。図16にその一例を示す。上記実現形態との違いは、生体センサユニット1000と情報解析サーバユニット3000の間の通信が、無線センサネットワーク2000を介さずに直結されている点、また、図15の生体センサユニット1000の内蔵MPU1002の機能は情報解析サーバユニット3000のCPU3003に移管されており、生体センサユニット1000の内蔵MPU1002が実行すべきソフトウェアも情報解析サーバユニット3000のCPU3003において実行される点だけであり、他に差異はない。よって本発明の他の実施形態に関する以下の説明では、図15及び図16の構成を区別する必要がない場合には、単に「ユーザ見守りシステム」と呼ぶ。ユーザ見守りシステムは、どのようなセンサ群からの情報を、どのような推定方法を用いて解析するかによって、幾つもの自動推定の機能を実現することができる。
ここで、上記ユーザ見守りシステムにおいて、前述した測位システム並びに存在領域推定システムの各機能を実行するソフトウェアならびにその関連データを例えば外部記憶装置3006に格納し、CPU3003あるいは内蔵MPU1002においてソフトウェアを実行することにより、測位機能付きのユーザ見守りシステムを実現することができる。
ところで、前記文献では、センサユニットに内蔵された3軸加速度センサの情報の解析により、ユーザの姿勢や体の傾きを自動的に識別するシステムの構成方法も述べられている。この識別結果のことを、以下では「姿勢状態」と呼ぶ。この従来システムでは、以下の7種類の姿勢状態が識別できるとされている。
姿勢状態1(立っている、座っている)
姿勢状態2(寝ている、倒れている)
姿勢状態3(傾いている:前)
姿勢状態4(傾いている:後)
姿勢状態5(傾いている:左)
姿勢状態6(傾いている:右)
姿勢状態7(走っている、歩いている)
これらの「姿勢状態」と同時に、姿勢状態7(走っている、歩いている)の場合には、1秒当たりの「歩数」も同時に算出するシステムの構成方法も述べられている。
姿勢状態1(立っている、座っている)
姿勢状態2(寝ている、倒れている)
姿勢状態3(傾いている:前)
姿勢状態4(傾いている:後)
姿勢状態5(傾いている:左)
姿勢状態6(傾いている:右)
姿勢状態7(走っている、歩いている)
これらの「姿勢状態」と同時に、姿勢状態7(走っている、歩いている)の場合には、1秒当たりの「歩数」も同時に算出するシステムの構成方法も述べられている。
本発明では、このユーザの姿勢状態の変化から、ユーザの運動種類を自動的に推定するユーザ見守りシステムも以下のように実現できる。
図15及び図16において、情報解析サーバユニット3000の外部記憶装置3006に、予め定めた姿勢状態の変化と運動種類を対応付ける2次元のテーブルを用意する。図17にテーブルの一例を示す。テーブルの縦、横の項目は前記姿勢状態1から姿勢状態7までの7項目であり、テーブルは7×7項目の配列データである。テーブルの縦の項目を姿勢の変化の前の姿勢状態とし、横の項目を姿勢の変化の後の姿勢状態とした場合の、推定される運動種類をテーブルの参照値として予め配列データに記憶しておく。縦、横の項目ならびに参照値は、全て名前すなわち文字列型のデータとする。例えば、以下の通りである。
(前:姿勢状態2(寝ている、倒れている)AND
後:姿勢状態1(立っている、座っている))
→ 推定される運動状態:「起き上がった」
(前:姿勢状態1(立っている、座っている)AND
後:姿勢状態2(寝ている、倒れている))
→ 推定される運動状態:「寝転んだ、倒れた」
姿勢状態が2から1へと変化した場合にはユーザが「起き上がった」、姿勢状態が1から2へと変化した場合にはユーザが「寝転んだ、倒れた」と推定する。
(前:姿勢状態2(寝ている、倒れている)AND
後:姿勢状態1(立っている、座っている))
→ 推定される運動状態:「起き上がった」
(前:姿勢状態1(立っている、座っている)AND
後:姿勢状態2(寝ている、倒れている))
→ 推定される運動状態:「寝転んだ、倒れた」
姿勢状態が2から1へと変化した場合にはユーザが「起き上がった」、姿勢状態が1から2へと変化した場合にはユーザが「寝転んだ、倒れた」と推定する。
具体的には、CPU3003は、3軸加速度センサ1003からのデータを常時解析して各時点の姿勢状態を推定する。その具体的方法は前記文献に記載されている。そして、姿勢状態に変化があった場合にのみ、変化の前の姿勢状態と後の姿勢状態の値の文字列を用いて、上に述べたテーブルの縦、横の項目を指定してテーブルを参照し、その結果得られた参照値を運動種類とする。また、参照値が Void の場合には値を無視し、何もしない。また、参照値が複数の文字列を “+” で結んだものである場合には連続した2個の運動であると推定する。例えば、「起き上がった+傾いた(前)」の場合には、「起き上がった」と「傾いた(前)」の2個の連続した動作と推定し、推定された結果を外部記憶装置3006に用意された運動状態の推定結果を格納する順序付き配列のテーブルへと格納する。なお、同じく前記文献に記載されている脈拍数や温度による装着判定の結果を用いて、ユーザの脈拍数が検出されない場合に生体センサユニット1000が非装着であると推定される場合や、温度による装着判定の結果により生体センサユニット1000が非装着であると判定される場合には、その旨の結果、すなわち文字列「非装着」を、運動状態の推定結果を格納する順序付き配列のテーブルへと格納することも可能である。
本発明では、上記運動種類の推定を実行する際に、3軸加速度センサ1003から得られる加速度の絶対値すなわちsqrt(αx
2+αy
2+αz
2)の値を計算し、この絶対値の大きさが別途適切に選ばれた閾値パラメータより大きい場合にのみ、姿勢の変化があったと判断し、運動種類の推定を実行することができる。この方法により、加速度センサ1003の誤差やノイズの混入による誤判断を減少させることが可能となる。
具体的には、内蔵MPU1002またはCPU3003は、加速度センサ1003より受け取った3軸加速度の各成分αx,αy,αzを適切に選ばれた時間幅taの間において平均し、その平均値を用いて、sqrt(αx
2+αy
2+αz
2)を計算し、その値が別途定められた閾値αabsより大きい場合には、前述の運動種類の推定を行い、推定された結果を外部記憶装置3006に用意された運動状態の推定結果を格納する順序付き配列のテーブルへと格納する。
また本発明では、上記運動種類の推定を実行する際に、3軸加速度センサ1003から得られる加速度の絶対値すなわちsqrt(αx
2+αy
2+αz
2)の値を計算し、この絶対値の大きさが別途適切に選ばれた閾値パラメータより大きいか小さいかの判断を加えることにより、図17に示した姿勢状態1,3,4,5,6から2への変化が、「寝転んだ」「倒れた」のいずれであるかの推定を行う。
具体的には、内蔵MPU1002またはCPU3003は、上記運動種類推定処理の過程と並行して、加速度センサ1003より受け取った情報の各成分αx,αy,αzを適切に選ばれた時間幅taの間において平均し、その平均値を用いて、sqrt(αx
2+αy
2+αz
2)を計算する。上記運動種類の推定を行う。ただし、姿勢状態1,3,4,5,6から2への変化を検知した場合には、計算されたsqrt(αx
2+αy
2+αz
2)の値が、別途定められた閾値αfallより小さい場合には「寝転んだ」、それ以外の場合には「倒れた」を推定結果とする。推定された結果を外部記憶装置3006に用意された運動状態の推定結果を格納する順序付き配列のテーブルへと格納する。
またさらに本発明では、内蔵MPU1002またはCPU3003が、上記運動種類推定処理の過程と並行して、加速度センサ1003より受け取った情報の各成分αx,αy,αzを適切に選ばれた時間幅taの間において平均し、その平均値を用いて、sqrt(αx
2+αy
2+αz
2)を計算し、その値が別途定められた閾値αabsより大きい場合には、上記運動種類の推定を行う。ただし、姿勢状態1,3,4,5,6から2への変化を検知した場合には、計算されたsqrt(αx
2+αy
2+αz
2)の値が、別途定められた閾値αfallより小さい場合には「寝転んだ」、それ以外の場合には「倒れた」を推定結果とする。推定された結果を外部記憶装置3006に用意された運動状態の推定結果を格納する順序付き配列のテーブルへと格納する。
本発明では、前述した測位システムあるいは測位機能付きのユーザ見守りシステムにおいて、気圧の情報を利用して測位の精度を向上させることも可能である。気圧の変化と高度の変化は、以下の表1の関係にあることが知られている。
従って、前述したパーティクルの確率的遷移計算に用いる乱数の鉛直方向の成分に、気圧の変化に応じて推定される高度の変化を反映させれば測位精度の向上を図ることができる。具体的には以下の方法を用いる。
[ステップ1]まず、CPU3003(CPU23,301,311でもよい)は、一定間隔tpiで気圧センサ1007からの情報すなわち気圧のデータを取得する。ただしtpiは、測位の1ステップの時間幅よりは短いないしは同一と仮定する。
[ステップ2]CPU3003は、各ステップにおいて気圧のデータの平均値を計算する。すなわち、1ステップの間に取得した気圧のデータの総和を、取得した回数で除算した値を平均値とする。
[ステップ3]測位の計算を実行しようとしている現在のステップ、すなわちパーティクルの確率的遷移計算を行った後に相当するステップにおける気圧の平均値を、pnowというメモリ3005(メモリ24,302,312でもよい)上の変数に格納する。
[ステップ4]また、その一つ前のステップ、すなわちパーティクルの確率的遷移計算を行う前に相当するステップにおける気圧の平均値はpprevという変数に格納されているとする。これは、1ステップの測位計算が全て終了した最後の時点で、pnow の値をpprev に代入すれば良い。
[ステップ5]CPU3003は続いて、上記pΔに上記高度と気圧の関係を示す表1におけるkを乗じ、符号を反転させた数値-k*pΔ (m/S) を計算する。予め外部記憶装置3006(外部記憶装置25,303,313でもよい)に記憶されている上記表1を参照するために必要な高度の情報は、高度h (m) を
h=1020-9.375*k
により計算すればよい。この式は近似式であり、より精度の高い高度の推定式を使用することも可能である。
[ステップ6]計算された-k*pΔは、一つ前のステップから現在のステップまでの鉛直方向の高度の変化の推定値であり、これをパーティクルの遷移計算での乱数の生成に用いる。すなわち、正規分布 N(0, σ2) の正規乱数を用いた3次元のガウス乱数の代わりに、3種類の正規分布
の正規乱数を生成する。
h=1020-9.375*k
により計算すればよい。この式は近似式であり、より精度の高い高度の推定式を使用することも可能である。
[ステップ6]計算された-k*pΔは、一つ前のステップから現在のステップまでの鉛直方向の高度の変化の推定値であり、これをパーティクルの遷移計算での乱数の生成に用いる。すなわち、正規分布 N(0, σ2) の正規乱数を用いた3次元のガウス乱数の代わりに、3種類の正規分布
の正規乱数を生成する。
[ステップ7]そして、確率的遷移の計算において、これらの乱数をパーティクルpiの3次元座標値xi,yi,ziに加算する。勿論2次元座標値xi,yiでよい場合にも上記各ステップはそのまま適用できる。
以上により、各パーティクルの更新において、気圧の変化から推定される高度の変化を反映させることができ、測位の精度の向上を実現できる。
本発明では、前述した測位システム或いは測位機能付きのユーザ見守りシステムにおいて、前記文献に記載されている方法により加速度センサからの加速度データに基づき算出される1秒当たりの歩数の情報から生成された歩行速度を、前述したスカラ値速度vとして用い、これにより、各パーティクルpiの更新において、歩数から推定される歩行速度を反映させることができ、測位の精度を向上させた測位システムが実現できる。
具体的には、CPU3003(CPU23,301,311でもよい)は、前記文献に記載されているように、生体センサユニット1000に設けられた加速度センサ1003(勿論、測位対象装置2に加速度センサを設けてもよい)からの加速度データに基づき、1秒当たりの歩数を推定し、それに典型的な歩幅を乗算して歩行速度を計算する。
より具体的には、歩数の計算は、まず、図6ならびに前述した方法でスカラ値速度を計算する。その計算結果であるスカラ値速度を高速フーリエ変換により周波数帯域毎のパワースペクルに変換する。人間が一秒間に取り得る歩数は最大でも10Hzを超えることはないので、10Hz以下のパワースペクトルだけに注目する。高速フーリエ変換を用いずとも、10Hz以下だけを追加させるローパスフィルターを用いても良い。抽出された10Hz以下のパワースペクトルの値が、別途定められる閾値を超える回数を毎1秒当たりCPUが数えることにより、歩数を得る。例えば、閾値を超える度にメモリ上に用意された変数の値を1づつ増加させてゆけばよい。閾値の値は、10Hz以下のパワースペクトルを数秒間観測し、スペクトルの最大値と最低値の中間の値とすれば良く、これを予め記憶手段に記憶させておく。
歩行速度の計算は、外部記憶装置3006(外部記憶装置25,303,313でもよい)に事前に格納されているユーザの属性毎の典型的な歩幅を表す数値を読み出し、これに歩数を乗算して、歩行速度を得る。そして、この数値をメモリ3005(メモリ24,302,312でもよい)上の変数vに格納し、このvの値をスカラ値速度として用いれば、その他は前述したスカラ値速度を用いてパーティクルの確率的遷移の計算処理を行えば良い。
この方法、すなわち加速度センサからの情報を用いて最初に歩数を計算し、それに歩幅を乗じて歩行速度を算出する方法は、精度の低い加速度センサを用いる場合に特に有効である。何故ならば、精度の低い加速度センサから直接スカラ値速度を計算しても、推定されたスカラ値速度の値そのものの信頼度は低いのに対して、本発明で述べた歩数の計算結果はより精度高く歩数を推定できる。よって、それに定型的な歩幅を乗して計算した歩行速度は、精度の低い加速度センサから直接計算されたスカラ値速度よりも精度が高いことがあるからである。
歩行速度の計算は、外部記憶装置3006(外部記憶装置25,303,313でもよい)に事前に格納されているユーザの属性毎の典型的な歩幅を表す数値を読み出し、これに歩数を乗算して、歩行速度を得る。そして、この数値をメモリ3005(メモリ24,302,312でもよい)上の変数vに格納し、このvの値をスカラ値速度として用いれば、その他は前述したスカラ値速度を用いてパーティクルの確率的遷移の計算処理を行えば良い。
この方法、すなわち加速度センサからの情報を用いて最初に歩数を計算し、それに歩幅を乗じて歩行速度を算出する方法は、精度の低い加速度センサを用いる場合に特に有効である。何故ならば、精度の低い加速度センサから直接スカラ値速度を計算しても、推定されたスカラ値速度の値そのものの信頼度は低いのに対して、本発明で述べた歩数の計算結果はより精度高く歩数を推定できる。よって、それに定型的な歩幅を乗して計算した歩行速度は、精度の低い加速度センサから直接計算されたスカラ値速度よりも精度が高いことがあるからである。
本発明では、上に述べた気圧ならびスカラ値速度の双方を同時に使用し、測位の精度を向上させたシステムを構成することもできる。
具体的には、気圧の変化 pΔ を計算し、またスカラ値速度vを計算した後、正規分布N(0, σ2) の正規乱数を用いた3次元のガウス乱数の代わりに、3種類の正規分布
の正規乱数を生成し、確率的遷移の計算において、これらの乱数をパーティクルの座標値xi,yi,ziに加算する。
の正規乱数を生成し、確率的遷移の計算において、これらの乱数をパーティクルの座標値xi,yi,ziに加算する。
これにより、固定値の乱数生成パラメータを用いた場合よりも測位精度を一層向上させることができる。
本発明では、前述した存在領域推定システムに関して、運動種類の情報を用いることにより、誤推定を減少させたシステムを実現できる。前述した存在領域推定システムでは、通過検出センサ100の誤報により、実際にはユーザが移動していないのに存在領域が変わったと推定されてしまうことがある。これを回避すべく、通過検出センサ100から通過の情報を得た際に、前述した図17に例示したような姿勢状態の変化と運動種類を対応付けるテーブルに基づいてユーザの運動種類の情報を得た場合のみ、存在領域推定システムにおいて移動があったと判断することができる。具体的には例えば以下のとおりである。
[ステップ1]まず、CPU301(CPU23,311,3003でもよい)は、上記テーブルに基づき運動種類を検出する。
[ステップ2]この検出内容と検出時刻を一組のデータとして、メモリ302(メモリ24,312,3005でもよい)上の「運動種類の情報を格納する配列」に時間順に格納しておく。
[ステップ3]存在領域推定システムにおいて、CPU301が通過検出センサ100からの情報を時刻t1に受け取ったとする。この際に、CPU301は、運動種類の情報を格納する配列を参照し、t1の前後の適切な時間幅(1秒程度)の範囲内において運動種類の検出があったかどうかを判定する。
[ステップ4]検出があった場合には存在領域の変化の更新処理を行い、それ以外では更新処理を実行しない。また、運動種類が「非装着」である場合には、この情報を無視することも可能である。
[ステップ2]この検出内容と検出時刻を一組のデータとして、メモリ302(メモリ24,312,3005でもよい)上の「運動種類の情報を格納する配列」に時間順に格納しておく。
[ステップ3]存在領域推定システムにおいて、CPU301が通過検出センサ100からの情報を時刻t1に受け取ったとする。この際に、CPU301は、運動種類の情報を格納する配列を参照し、t1の前後の適切な時間幅(1秒程度)の範囲内において運動種類の検出があったかどうかを判定する。
[ステップ4]検出があった場合には存在領域の変化の更新処理を行い、それ以外では更新処理を実行しない。また、運動種類が「非装着」である場合には、この情報を無視することも可能である。
これにより、通過検出センサ100の誤報による存在領域推定の精度の低下を軽減することができる。
本発明では、前述した通過検出センサ100からの情報を組み合わせた測位システムにおいて、さらに、運動種類の情報を併用することにより、誤動作をより一層減少させた測位を実現できる。
具体的には、CPU301(CPU23,311,3003でもよい)は、前述した図17に例示したような姿勢状態の変化と運動種類を対応付けるテーブルに基づいてユーザの運動種類を検出し、その検出があった場合にのみ通過検出センサ100が動作したと判断して、パーティクルの遷移後の座標値の設定を行う。また、運動種類が「非装着」である場合には、この情報を無視することも可能である。その結果、通過検出センサ100の誤報によるパーティクルの遷移後の座標値の設定の誤動作を減らすことが出来るのである。
以上の説明において、CPUは、以上説明した各処理を実行する各種手段として機能するものであることは言うまでもない。また、メモリ及び/又は外部記憶装置はCPUが実行する各種処理のためのデータを記憶する手段として機能し、この記憶手段としてのメモリを外部記憶装置、外部記憶装置をメモリに置き換えてもシステムに変更を加えることなく動作が可能であり、そのような実施形態も本発明の実施の一形態となる。
Claims (47)
- 第一の受信ビーコンパタンBP(Receiver)を記憶する手段、
第一のパーティクルpiの{座標値i,重みi}を記憶する手段、
第一のパーティクルpi{座標値i,重みi}に関する確率的遷移量を計算する手段、
得られた確率的遷移量を記憶する手段、
前記確率的遷移量により前記第一のパーティクルpi{座標値i,重みi}から遷移させた第二のパーティクルpi’の{座標値i’,重みi}、及びその第二のビーコンパタンBP(pi’)を計算する手段、
得られた第二のパーティクルpi’{座標値i’,重みi}及びその第二のビーコンパタンBP(pi’)を記憶する手段、
前記第二のビーコンパタンBP(pi’)と前記第一の受信ビーコンパタンBP(Receiver)とを用いて、予め設定され記憶手段に記憶されている尤度関数Pにより、前記遷移後の第二のパーティクルpi’{座標値i’,重みi}の尤度を計算する手段、
前記尤度を用いて遷移後の第二のパーティクルpi’{座標値i’,重みi}の重みiを更新し、新しい第三のパーティクルpi’’の{座標値i’,重みi’}を計算する手段、及び
前記各処理のループを繰り返す手段
を備える、測位装置。 - 実際の受信ビーコンパタンBP(Receiver)を記憶する手段、
一つ前のステップにおけるパーティクルpi{座標値i,重みi}を記憶する手段、
一つ前のステップにおけるパーティクルpi{座標値i,重みi}に関する確率的遷移量を計算する手段、
前記確率的遷移量による遷移後のパーティクルpi’{座標値i’,重みi}、及びそのビーコンパタンBP(pi’)を計算する手段、
前記ビーコンパタンBP(pi’)と前記実際の受信ビーコンパタンBP(Receiver)とを用いた遷移後のパーティクルpi’{座標値i’,重みi}の尤度によるパーティクルフィルタリングを行う手段、
前記尤度を用いた遷移後のパーティクルpi’{座標値i’,重みi}の重みiの更新による新しいパーティクルpi’’{座標値i’’,重みi’}を計算する手段、及び
前記各処理のループを繰り返す手段
を備える、測位装置。 - 前記処理の数ループ毎にリサンプリングを行う手段をさらに備える、請求項1又は2に記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、無線ビーコン装置と測位対象装置間で送受信された複数のビーコン信号に基づく、請求項1乃至3のいずれかに記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、無線ビーコン装置と測位対象装置間で送受信された複数のビーコン信号それぞれに含まれる装置IDと、その受信信号強度とに基づく、請求項1乃至4のいずれかに記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、無線ビーコン装置と測位対象装置間で送受信された複数のビーコン信号それぞれに含まれる装置IDと、その伝搬時間及び/又は伝搬時間差とに基づく、請求項1乃至4に記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、無線ビーコン装置と測位対象装置間で送受信されたビーコン信号から生成される、測位対象の移動に伴い連続かつ単調に変化する受信信号の指標に基づく、請求項1乃至4に記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、測位対象を検知した赤外線センサの出力を周波数帯毎の信号強度へ変換することで得られる、測位対象の移動に伴い連続かつ単調に変化する受信信号の指標に基づく、請求項1乃至3に記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、環境側に設置された無線ビーコン装置と測位対象側に設置された測位対象装置間で送受信された複数のビーコン信号に基づく、請求項1乃至7のいずれかに記載の測位装置。
- 受信ビーコンパタンBP(Receiver)は、測位対象側に設置された無線ビーコン装置と環境側に設置された測位対象装置としてのビーコン受信機間で送受信された複数のビーコン信号に基づく、請求項1乃至7のいずれかに記載の測位装置。
- パーティクルpiは測位対象の位置を表す、請求項1乃至10のいずれかに記載の測位装置。
- パーティクルpiは、座標値及びその重みにより測位対象の位置を表す、請求項1乃至11のいずれかに記載の測位装置。
- 確率的遷移計算は、パーティクルpiからパーティクルpi’への移動を確率的に計算することを含む、請求項1乃至12のいずれかに記載の測位装置。
- リサンプリングは、パーティクル毎の重みに応じてパーティクルの分割及び消去を行うことを含む、請求項3乃至13のいずれかに記載の測位装置。
- リサンプリングは、重みの大きいパーティクルをその重みに比例して複数のパーティクルに分割し、重みの小さいパーティクルを消去することを含む、請求項3乃至14のいずれかに記載の測位装置。
- リサンプリングは、
n個の全てのパーティクルの重みの総和を計算すること、
重み総和をnで除算すること、
得られた数をu(浮動小数点数)とすること
を含む、請求項3乃至16のいずれかに記載の測位装置。 - リサンプリングは、全てのパーティクルに対して、
i番目のパーティクルに関して、(重みi/u)+1を計算し、その小数点以下を切り捨てた整数ciを計算すること、
ci=1又は2の場合には、そのi番目のパーティクルを、リサンプリング後のパーティクルを格納するリスト1へ加えること、
ci>2の場合には、そのi番目のパーティクルの元のデータをci個複製し、それらの各重みを(1/ci)倍し、これらci個のパーティクルをリサンプリング後のパーティクルを格納するリスト2へ加えること、
リスト2に格納されているパーティクルの個数を変数n2に格納すること、
n2<nのとき、n-n2を変数n1に格納し、リスト1中のパーティクルで重みの大きいパーティクルから順にn1個のパーティクルを選択し、当該n1個のパーティクルをリスト2へと格納してn2=nとし、このリスト2をリサンプリング結果とすること、
n2=nのとき、リスト2をリサンプリング結果とすること、
n2>nのとき、リスト2の要素に対して、分割前の元のパーティクルの重みの大きいものから順にパーティクルを1個ずつリスト2から消去し、分割前の元のパーティクルの1番重みの大きいものの次は2番目に重みの大きいものという順で、n2=nとなるまでこれを繰り返し、分割前の元のパーティクルの1番重みの小さいものまで進むと、先頭に戻って、分割前の元のパーティクルの1番重みの大きいものから同じ処理を行い、n2=nとなった時点で、リスト2をリサンプリング結果とすること
を含む、請求項3乃至17のいずれかに記載の測位装置。 - 確率的遷移計算における遷移量を、測位対象の種類及び/又は環境の種類によって変化させる、請求項1乃至18のいずれかに記載の測位装置。
- 測定対象の種類KIND_TARGET(k)、測位を実施する空間を有限個の排他的な領域に分割したi番目の領域iの種類KIND_REGION(i)、及びi番目の領域iに隣接する領域jの種類KIND_REGION(j)が与えられたときに、当該測位対象のパーティクルの領域iから領域jへの遷移確率の計算に用いられる分散σ2を定義する写像RN_VAR(KIND_TARGET(k)、KIND_REGION(i) 、 KIND_REGION(j))に基づき、確率的遷移計算における遷移量を変化させる、請求項1乃至19のいずれかに記載の測位装置。
- 確率的遷移計算における遷移量を、測位対象のスカラ値速度により変化させる、請求項1乃至20のいずれかに記載の測位装置。
- 確率的遷移計算に用いられるガウス乱数生成のための分散パラメータσ2を、測位対象のスカラ値速度により変化させる、請求項1乃至21のいずれかに記載の測位装置。
- 確率的遷移計算に用いられるガウス乱数生成のための分散パラメータσ2を、測位対象のスカラ値速度vと、適宜定められるパラメータkとを用いて増加させる、請求項1乃至22のいずれかに記載の測位装置。
- 確率的遷移計算に用いられるガウス乱数生成のための分散パラメータσ2を、測位対象のスカラ値速度vと適宜定められるパラメータkとを用いて(1+v/k)σ2に置き換え、
得られた(1+v/k)σ2から、正規分布 N(0, (1+v/k)σ2) の正規乱数を用いてガウス乱数を生成し、
得られたガウス乱数をパーティクルpiの座標値に加算する、請求項1乃至23のいずれかに記載の測位装置。 - 測位対象側に設置される測位対象装置が持つスカラ値速度センサから、測位対象のスカラ値速度vを取得し、
予め設定され記憶手段に記憶されているパラメータkを取得し、
1+v/k を計算し、
確率的遷移計算に用いられるガウス乱数の生成のための、予め設定され記憶手段に記憶されている分散σ2に、算出された数値 1+v/k を乗じ、
得られた(1+v/k)σ2から、正規分布N(0, (1+v/k)σ2) に従う正規乱数を用いてガウス乱数を生成し、
得られたガウス乱数をパーティクルpiの座標値に加算する、請求項1乃至24のいずれかに記載の測位装置。 - 測位対象側に設置される測位対象装置が持つ多軸加速度センサから各軸のスカラ値速度α1、α2・・・を取得し、
この1ステップの間に取得したスカラ値加速度の総和を、取得した回数で除した値を、各軸の加速度の平均値とし、
得られた各軸の加速度の平均値を二乗し、
得られた各軸の二乗加速度平均値の総和の平方根を計算してスカラ値加速度αとし、
得られたスカラ値加速度αに1ステップの時間幅を乗算してスカラ値速度vとする、請求項23乃至25のいずれかに記載の測位装置。 - 確率的遷移計算における遷移量を、測位対象のベクトル値速度により変化させる、請求項1乃至26のいずれかに記載の測位装置。
- 確率的遷移計算に用いられる正規分布の正規乱数を、測位対象側に設置される測位対象装置が持つベクトル値速度センサから得られる測位対象のベクトル値速度を用いて、生成する、請求項1乃至27のいずれかに記載の測位装置。
- 測位対象側に設置される測位対象装置が持つスカラ値速度センサから、測位対象のスカラ値速度vを取得し、
測位対象側に設置される測位対象装置が持つベクトル値速度センサから、測位対象装置の進行方向ベクトルを取得し、
測位対象装置の進行方向ベクトルの各成分に数値kを乗じた結果得られるベクトルの長さが、スカラ値速度vと等しくなるようなkを計算し、
得られたベクトル値速度の各成分に1ステップの時間幅tS を乗じ、
得られた数値から正規分布の正規乱数を生成し、
得られた正規乱数をパーティクルpiの座標値に加算する、請求項1乃至28のいずれかに記載の測位装置。 - 前記確率的遷移による遷移後のパーティクルpi’の{座標値i’,重みi}の座標値として、測位対象が通過した既定の線分領域の座標値を代入する、請求項1乃至29のいずれかに記載の測位装置。
- 前記確率的遷移による遷移後のパーティクルpi’の{座標値i’,重みi}の座標値として、測位対象が通過した既定の線分領域が
座標値=線分の端点の座標値+k*(線分の方向ベクトル)
但し実数パラメータk=[0,1](0≦k≦1)
である場合に、各パーティクルに対して、[0,1]の区間における一様分布の乱数kiを
座標値=初期座標値+k*(線分の方向ベクトル)
のkに代入して得られるベクトル座標値を代入する、請求項1乃至30のいずれかに記載の測位装置。 - 確率的遷移計算における遷移量を、測位対象の気圧により変化させる、請求項1乃至31のいずれかに記載の測位装置。
- 確率的遷移計算に用いられる正規分布の正規乱数を、測位対象の気圧を用いて、生成する、請求項1乃至32のいずれかに記載の測位装置。
- 測位対象側に設置される測位対象装置が持つ気圧センサから、測位ステップより時間幅の短いないしは同一の一定間隔tpiで、測位対象の気圧hPaを取得し、
各測位ステップにおいて気圧の平均値を計算し、
パーティクルの確率的遷移計算を行った後の測位ステップにおける気圧の平均値を、pnowとして記憶手段に記憶し、
パーティクルの確率的遷移計算を行う前の測位ステップにおける気圧の平均値を、pprevとして記憶手段に記憶し、
前記パーティクルの確率的遷移計算を行う前の測位ステップから前記パーティクルの確率的遷移計算を行った後の測位ステップの間の気圧の変化pΔを計算し、
得られたpΔに、高度と気圧の関係を表す予め設定され記憶手段に記憶されているパラメータk0を乗じ、符号を反転させた数値-k0*pΔを計算し、
得られた-k0*pΔから正規分布の正規乱数を生成し、
得られた正規乱数
をパーティクルpiの座標値に加算する、請求項1乃至33のいずれかに記載の測位装置。 - 確率的遷移計算における遷移量を、測位対象の歩行速度により変化させる、請求項1乃至34のいずれかに記載の測位装置。
- 確率的遷移計算に用いられるガウス乱数生成のための分散パラメータσ2を、測位対象の歩行速度により、生成する、請求項1乃至35のいずれかに記載の測位装置。
- 確率的遷移計算に用いられるガウス乱数生成のための分散パラメータσ2を、測位対象の歩行速度vと、適宜定められるパラメータkとを用いて増加させる、請求項1乃至36のいずれかに記載の測位装置。
- 確率的遷移計算に用いられるガウス乱数生成のための分散パラメータσ2を、測位対象の歩行速度vと適宜定められるパラメータkとを用いて(1+v/k)σ2に置き換え、
正規分布 N(0, (1+v/k)σ2) の正規乱数を用いてガウス乱数を生成し、
得られたガウス乱数をパーティクルpiの座標値に加算する、請求項1乃至37のいずれかに記載の測位装置。 - 測位対象側に設置される測位対象装置が持つ加速度センサから得られる測位対象の加速度データに基づき、測位対象の歩行速度vを取得し、
予め設定され記憶手段に記憶されているパラメータkを取得し、
1+v/k を計算し、
確率的遷移計算に用いられるガウス乱数の生成のための、予め設定され記憶手段に記憶されている分散σ2に、算出された数値 1+v/k を乗じ、
得られた(1+v/k)σ2から、正規分布N(0, (1+v/k)σ2) に従う正規乱数を用いてガウス乱数を生成し、
得られたガウス乱数をパーティクルpiの座標値に加算する、請求項1乃至38のいずれかに記載の測位装置。 - 測位対象の歩行速度vは、測位対象側に設置される測位対象装置が持つ加速度センサから得られる測位対象の加速度データに基づき得られる所定時間内の歩数と、予め設定されている歩幅とを乗じて得る、請求項1乃至39のいずれかに記載の測位装置。
- 確率的遷移計算における遷移量を、測位対象の気圧及び歩行速度により変化させる、請求項1乃至40のいずれかに記載の測位装置。
- 確率的遷移計算に用いられる正規分布の正規乱数を、測位対象の気圧及び歩行速度を用いて、生成する、請求項1乃至41のいずれかに記載の測位装置。
- 測位対象側に設置される測位対象装置が持つ気圧センサから、測位ステップより時間幅の短いないしは同一の一定間隔tpiで、測位対象の気圧hPaを取得し、
各測位ステップにおいて気圧の平均値を計算し、
パーティクルの確率的遷移計算を行った後の測位ステップにおける気圧の平均値を、pnowとして記憶手段に記憶し、
パーティクルの確率的遷移計算を行う前の測位ステップにおける気圧の平均値を、pprevとして記憶手段に記憶し、
前記パーティクルの確率的遷移計算を行う前の測位ステップから前記パーティクルの確率的遷移計算を行った後の測位ステップの間の気圧の変化pΔを計算し、
得られたpΔに、高度と気圧の関係を表す予め設定され記憶手段に記憶されているパラメータk0を乗じ、符号を反転させた数値-k0*pΔを計算し、
また、
測位対象側に設置される測位対象装置が持つ加速度センサから得られる測位対象の加速度データに基づき、測位対象の歩行速度vを取得し、
予め設定され記憶手段に記憶されているパラメータkを取得し、
1+v/k を計算し、
確率的遷移計算に用いられるガウス乱数の生成のための、予め設定され記憶手段に記憶されている分散σ2に、算出された数値 1+v/k を乗じ、
前記得られた-k*pΔ及び(1+v/k)σ2から、正規分布N(0, (1+v/k)σ2) に従う正規乱数を用いてガウス乱数を生成し、
得られたガウス乱数
をパーティクルpiの座標値に加算する、請求項1乃至42のいずれかに記載の測位装置。 - 請求項1乃至43いずれかに記載の測位装置の各手段を実行するセンサユニット。
- 予め設定されたユーザの姿勢状態の変化とユーザの運動種類を対応付ける2次元テーブルを記憶する手段、
ユーザ側に設けられた加速度センサからの情報に基づき識別されたユーザの姿勢状態Aから、更に別途識別された姿勢状態Bへの変化に対応する運動種類を、当該ユーザが姿勢状態Aから姿勢状態Bに変化する際に行った運動種類として、前記2次元テーブルから読み出す手段
を備える、ユーザ運動種類識別装置。 - 2次元テーブルは、縦軸及び横軸の一方の項目に姿勢状態A、他方の項目に姿勢状態Bを有し、各姿勢状態Aから各姿勢状態Bに変化する際の運動種類を互いに対応付けて格納している、請求項45に記載のユーザ運動種類識別装置。
- 加速度センサから得られる加速度の絶対値を計算し、当該絶対値の大きさが予め定めされた閾値より大きい場合にのみ、姿勢の変化があったと判断して、前記運動種類の2次元テーブルからの読み出しを行う、請求項45又は46に記載のユーザ運動種類識別装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-254364 | 2009-11-05 | ||
JP2009254364A JP5515647B2 (ja) | 2009-11-05 | 2009-11-05 | 測位装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011055718A1 true WO2011055718A1 (ja) | 2011-05-12 |
Family
ID=43969957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069478 WO2011055718A1 (ja) | 2009-11-05 | 2010-11-02 | 測位装置、及びこれを用いたセンサ情報の統合解析による見守りシステム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5515647B2 (ja) |
WO (1) | WO2011055718A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013099433A (ja) * | 2011-11-08 | 2013-05-23 | Tokyo Metropolitan Univ | 行動認識プログラム、行動認識用の端末および行動認識用の処理装置 |
JP2014522482A (ja) * | 2011-05-13 | 2014-09-04 | グーグル・インク | モバイル機器の屋内位置特定 |
CN104063524A (zh) * | 2014-06-24 | 2014-09-24 | 百度在线网络技术(北京)有限公司 | 一种关键点信息的获取方法及装置 |
JP2016501594A (ja) * | 2012-11-30 | 2016-01-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 坐位及び立位姿勢の間の遷移を特定する方法及び装置 |
JP2016534361A (ja) * | 2013-10-17 | 2016-11-04 | インテル コーポレイション | ToFフィンガープリント及びジオロケーションのための方法及び装置 |
US9568587B2 (en) | 2011-06-21 | 2017-02-14 | Bae Systems Plc | Tracking algorithm |
EP3021502A4 (en) * | 2013-07-12 | 2017-03-15 | Wen-Sung Lee | Intelligent home positioning system and positioning method therefor |
US9740545B2 (en) | 2015-03-20 | 2017-08-22 | Kabushiki Kaisha Toshiba | Equipment evaluation device, equipment evaluation method and non-transitory computer readable medium |
US10057727B2 (en) | 2016-10-24 | 2018-08-21 | General Electric Company | Indoor positioning system based on motion sensing augmented with beacons |
US10182306B2 (en) | 2015-08-04 | 2019-01-15 | Kabushiki Kaisha Toshiba | Device and method for determining disposition of a plurality of radio apparatuses |
CN110673135A (zh) * | 2018-07-03 | 2020-01-10 | 松下知识产权经营株式会社 | 传感器、推定装置、推定方法和程序记录介质 |
CN111665470A (zh) * | 2019-03-07 | 2020-09-15 | 阿里巴巴集团控股有限公司 | 一种定位方法及装置和机器人 |
CN113411743A (zh) * | 2021-06-18 | 2021-09-17 | 广州土圭垚信息科技有限公司 | 一种终端定位方法、装置及终端 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013007719A (ja) * | 2011-06-27 | 2013-01-10 | Toyota Central R&D Labs Inc | 位置推定装置、位置推定方法及び位置推定プログラム |
KR101231378B1 (ko) * | 2011-08-12 | 2013-02-15 | 숭실대학교산학협력단 | 파티클 필터 기반의 사용자 위치 추적 장치 및 기록매체 |
JP2013044651A (ja) * | 2011-08-24 | 2013-03-04 | Advanced Telecommunication Research Institute International | 端末装置 |
KR101264306B1 (ko) | 2012-01-10 | 2013-05-22 | 숭실대학교산학협력단 | 이동 모델 학습을 통한 실내 위치 추적 장치 및 이를 위한 기록매체 |
KR101268564B1 (ko) | 2012-01-26 | 2013-05-28 | 숭실대학교산학협력단 | 파티클 필터 기반의 단말의 위치 측정 장치 및 방법과 이를 기록한 기록 매체 |
EP2621242A1 (en) | 2012-01-26 | 2013-07-31 | Panasonic Corporation | Improved discontinuous reception operation with additional wake up opportunities |
JP6003193B2 (ja) * | 2012-04-27 | 2016-10-05 | 富士通株式会社 | エリア判別装置、エリア判別方法及びエリア判別プログラム |
JP5978747B2 (ja) * | 2012-05-09 | 2016-08-24 | 富士通株式会社 | 測位システム、測位方法、及びプログラム |
JP6232183B2 (ja) * | 2012-12-07 | 2017-11-15 | 株式会社日立アドバンストシステムズ | 移動端末装置及び測位システム |
JP6241177B2 (ja) * | 2013-09-27 | 2017-12-06 | 富士通株式会社 | 場所モデル更新装置、位置推定方法及びプログラム |
JP6221573B2 (ja) * | 2013-09-27 | 2017-11-01 | 富士通株式会社 | 場所モデル更新装置、位置推定方法及びプログラム |
KR101560629B1 (ko) | 2014-05-15 | 2015-10-15 | 국방과학연구소 | 파티클 필터를 이용하여 위성신호 추적 및 빔포밍을 동시에 수행하는 위성 신호 처리 방법 및 장치 |
CN105451330B (zh) * | 2014-09-25 | 2019-07-30 | 阿里巴巴集团控股有限公司 | 基于电磁信号的移动终端定位方法及其装置 |
JP6665037B2 (ja) * | 2016-06-15 | 2020-03-13 | シャープ株式会社 | データ収集装置、移動観察システム、データ収集装置の制御方法、制御プログラム、および記録媒体 |
US10812877B2 (en) * | 2017-05-15 | 2020-10-20 | Fuji Xerox Co., Ltd. | System and method for calibration-lessly compensating bias of sensors for localization and tracking |
DE112018004763T5 (de) | 2017-08-24 | 2020-06-18 | Mitsubishi Electric Corporation | Aktivititäts-Aufzeichnungseinrichtung, Aktivititäts-Aufzeichnungsprogamm und Aktivititäts-Aufzeichnungsverfahren |
US10567918B2 (en) * | 2017-11-20 | 2020-02-18 | Kabushiki Kaisha Toshiba | Radio-location method for locating a target device contained within a region of space |
US10506384B1 (en) * | 2018-12-03 | 2019-12-10 | Cognitive Systems Corp. | Determining a location of motion detected from wireless signals based on prior probability |
US11403543B2 (en) | 2018-12-03 | 2022-08-02 | Cognitive Systems Corp. | Determining a location of motion detected from wireless signals |
US11567186B2 (en) | 2019-03-19 | 2023-01-31 | Kabushiki Kaisha Toshiba | Compensating radio tracking with comparison to image based tracking |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004242122A (ja) * | 2003-02-07 | 2004-08-26 | Hitachi Ltd | 無線信号の伝搬時間差に基づく端末位置の測位方法及び測位システム |
JP2007208962A (ja) * | 2005-12-07 | 2007-08-16 | Ekahau Oy | ロケーション決定技法 |
JP2008014742A (ja) * | 2006-07-05 | 2008-01-24 | Japan Advanced Institute Of Science & Technology Hokuriku | 移動体位置推定システム、及び、移動体位置推定方法 |
JP2008128726A (ja) * | 2006-11-17 | 2008-06-05 | Yokohama National Univ | 粒子フィルタを用いた測位システム、装置および方法 |
JP2009055138A (ja) * | 2007-08-23 | 2009-03-12 | Ritsumeikan | トレーニングデータの収集方法及びこれを用いた移動体通信端末の位置検出方法 |
-
2009
- 2009-11-05 JP JP2009254364A patent/JP5515647B2/ja active Active
-
2010
- 2010-11-02 WO PCT/JP2010/069478 patent/WO2011055718A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004242122A (ja) * | 2003-02-07 | 2004-08-26 | Hitachi Ltd | 無線信号の伝搬時間差に基づく端末位置の測位方法及び測位システム |
JP2007208962A (ja) * | 2005-12-07 | 2007-08-16 | Ekahau Oy | ロケーション決定技法 |
JP2008014742A (ja) * | 2006-07-05 | 2008-01-24 | Japan Advanced Institute Of Science & Technology Hokuriku | 移動体位置推定システム、及び、移動体位置推定方法 |
JP2008128726A (ja) * | 2006-11-17 | 2008-06-05 | Yokohama National Univ | 粒子フィルタを用いた測位システム、装置および方法 |
JP2009055138A (ja) * | 2007-08-23 | 2009-03-12 | Ritsumeikan | トレーニングデータの収集方法及びこれを用いた移動体通信端末の位置検出方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014522482A (ja) * | 2011-05-13 | 2014-09-04 | グーグル・インク | モバイル機器の屋内位置特定 |
US9568587B2 (en) | 2011-06-21 | 2017-02-14 | Bae Systems Plc | Tracking algorithm |
JP2013099433A (ja) * | 2011-11-08 | 2013-05-23 | Tokyo Metropolitan Univ | 行動認識プログラム、行動認識用の端末および行動認識用の処理装置 |
US9934668B2 (en) | 2012-11-30 | 2018-04-03 | Koninklijke N.V. | Method and apparatus for identifying transitions between sitting and standing postures |
JP2016501594A (ja) * | 2012-11-30 | 2016-01-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 坐位及び立位姿勢の間の遷移を特定する方法及び装置 |
EP3021502A4 (en) * | 2013-07-12 | 2017-03-15 | Wen-Sung Lee | Intelligent home positioning system and positioning method therefor |
JP2016534361A (ja) * | 2013-10-17 | 2016-11-04 | インテル コーポレイション | ToFフィンガープリント及びジオロケーションのための方法及び装置 |
CN104063524A (zh) * | 2014-06-24 | 2014-09-24 | 百度在线网络技术(北京)有限公司 | 一种关键点信息的获取方法及装置 |
US9740545B2 (en) | 2015-03-20 | 2017-08-22 | Kabushiki Kaisha Toshiba | Equipment evaluation device, equipment evaluation method and non-transitory computer readable medium |
US10182306B2 (en) | 2015-08-04 | 2019-01-15 | Kabushiki Kaisha Toshiba | Device and method for determining disposition of a plurality of radio apparatuses |
US10057727B2 (en) | 2016-10-24 | 2018-08-21 | General Electric Company | Indoor positioning system based on motion sensing augmented with beacons |
CN110673135A (zh) * | 2018-07-03 | 2020-01-10 | 松下知识产权经营株式会社 | 传感器、推定装置、推定方法和程序记录介质 |
CN111665470A (zh) * | 2019-03-07 | 2020-09-15 | 阿里巴巴集团控股有限公司 | 一种定位方法及装置和机器人 |
CN113411743A (zh) * | 2021-06-18 | 2021-09-17 | 广州土圭垚信息科技有限公司 | 一种终端定位方法、装置及终端 |
CN113411743B (zh) * | 2021-06-18 | 2022-11-18 | 广州土圭垚信息科技有限公司 | 一种终端定位方法、装置及终端 |
Also Published As
Publication number | Publication date |
---|---|
JP2011099753A (ja) | 2011-05-19 |
JP5515647B2 (ja) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5515647B2 (ja) | 測位装置 | |
CN111919476B (zh) | 一种室内定位的方法、服务器及定位系统 | |
Hsieh et al. | Deep learning-based indoor localization using received signal strength and channel state information | |
JP7154295B2 (ja) | 無線信号の特性の機械学習に基づく動き検出 | |
Hilsenbeck et al. | Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning | |
KR100938047B1 (ko) | 시스템 교정 방법, 위치 탐색 시스템 및 컴퓨터 | |
US10057725B2 (en) | Sensor-based geolocation of a user device | |
JP6177089B2 (ja) | 2台の通信機器間の正確な直線距離推定のための方法およびシステム | |
WO2017121168A1 (zh) | 簇式磁场定位的方法、装置和系统 | |
US10748402B2 (en) | Method and apparatus for matching vital sign information to a concurrently recorded data set | |
EP1359538A2 (en) | Method for measuring the location of radio-frequency badges | |
TW201300813A (zh) | 電子裝置、定位方法與系統、電腦程式產品與記錄媒體 | |
US20150119076A1 (en) | Self-calibrating mobile indoor location estimations, systems and methods | |
Xu et al. | Random sampling algorithm in RFID indoor location system | |
Yoon et al. | Victim localization and assessment system for emergency responders | |
CN117177708A (zh) | 利用超宽带雷达联合估计呼吸率和心率 | |
Huang et al. | Wearable indoor localisation approach in Internet of Things | |
US20230053605A1 (en) | Cold chain management and product tracking | |
Hillyard et al. | Never use labels: Signal strength-based Bayesian device-free localization in changing environments | |
CN105898711B (zh) | 一种基于地磁基准线的定位方法及装置 | |
CN114924225A (zh) | 一种高精度室内定位方法、装置、设备及介质 | |
CN106028450B (zh) | 室内定位方法及设备 | |
US20180164101A1 (en) | Method for processing measurements of at least one electronic sensor placed in a handheld device | |
Scott et al. | User-friendly surveying techniques for location-aware systems | |
Longo et al. | Localization and Monitoring System based on BLE Fingerprint Method. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10828278 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10828278 Country of ref document: EP Kind code of ref document: A1 |