WO2010132236A1 - Internal connector for organic electronic devices - Google Patents
Internal connector for organic electronic devices Download PDFInfo
- Publication number
- WO2010132236A1 WO2010132236A1 PCT/US2010/033520 US2010033520W WO2010132236A1 WO 2010132236 A1 WO2010132236 A1 WO 2010132236A1 US 2010033520 W US2010033520 W US 2010033520W WO 2010132236 A1 WO2010132236 A1 WO 2010132236A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic
- type
- dopant
- bis
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 320
- 239000000463 material Substances 0.000 claims abstract description 112
- 239000002019 doping agent Substances 0.000 claims abstract description 63
- 238000004770 highest occupied molecular orbital Methods 0.000 claims abstract description 42
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims abstract description 39
- 239000012044 organic layer Substances 0.000 claims abstract description 29
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- -1 aromatic tertiary amine Chemical class 0.000 claims description 14
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 12
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 7
- 239000007983 Tris buffer Substances 0.000 claims description 6
- 150000002219 fluoranthenes Chemical class 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 claims description 5
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 5
- 150000001454 anthracenes Chemical class 0.000 claims description 4
- 150000005041 phenanthrolines Chemical class 0.000 claims description 4
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims description 3
- 125000004207 3-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(OC([H])([H])[H])=C1[H] 0.000 claims description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical group [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 claims description 2
- 150000002460 imidazoles Chemical class 0.000 claims 2
- SUSQOBVLVYHIEX-UHFFFAOYSA-N phenylacetonitrile Chemical compound N#CCC1=CC=CC=C1 SUSQOBVLVYHIEX-UHFFFAOYSA-N 0.000 claims 2
- IOQMWOBRUDNEOA-UHFFFAOYSA-N 2,3,5,6-tetrafluorobenzonitrile Chemical compound FC1=CC(F)=C(F)C(C#N)=C1F IOQMWOBRUDNEOA-UHFFFAOYSA-N 0.000 claims 1
- YDNOJUAQBFXZCR-UHFFFAOYSA-N 2-(2,3,4,5,6-pentafluorophenyl)acetonitrile Chemical compound FC1=C(F)C(F)=C(CC#N)C(F)=C1F YDNOJUAQBFXZCR-UHFFFAOYSA-N 0.000 claims 1
- VJXYKQRWJGDSJU-UHFFFAOYSA-N 2-[2,3-bis[cyano-[2,3,5,6-tetrafluoro-4-(2,3,4,5,6-pentafluorophenyl)phenyl]methylidene]cyclopropylidene]-2-[2,3,5,6-tetrafluoro-4-(2,3,4,5,6-pentafluorophenyl)phenyl]acetonitrile Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C(C(=C1F)F)=C(F)C(F)=C1C(C#N)=C(C1=C(C#N)C=2C(=C(F)C(=C(F)C=2F)C=2C(=C(F)C(F)=C(F)C=2F)F)F)C1=C(C#N)C1=C(F)C(F)=C(C=2C(=C(F)C(F)=C(F)C=2F)F)C(F)=C1F VJXYKQRWJGDSJU-UHFFFAOYSA-N 0.000 claims 1
- RTYBURPHEBMXKQ-UHFFFAOYSA-N 2-[2,3-bis[cyano-[2,6-dichloro-3,5-difluoro-4-(trifluoromethyl)phenyl]methylidene]cyclopropylidene]-2-[2,6-dichloro-3,5-difluoro-4-(trifluoromethyl)phenyl]acetonitrile Chemical compound FC1=C(C(F)(F)F)C(F)=C(Cl)C(C(C#N)=C2C(C2=C(C#N)C=2C(=C(F)C(=C(F)C=2Cl)C(F)(F)F)Cl)=C(C#N)C=2C(=C(F)C(=C(F)C=2Cl)C(F)(F)F)Cl)=C1Cl RTYBURPHEBMXKQ-UHFFFAOYSA-N 0.000 claims 1
- QAOLRMFUVGUPFO-UHFFFAOYSA-N 2-[2,5-dibromo-4-(dicyanomethylidene)-3,6-difluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(Br)C(=C(C#N)C#N)C(F)=C(Br)C1=C(C#N)C#N QAOLRMFUVGUPFO-UHFFFAOYSA-N 0.000 claims 1
- UTRVZPGFBIRJKU-UHFFFAOYSA-N 2-[2,6-dichloro-3,5-difluoro-4-(trifluoromethyl)phenyl]acetonitrile Chemical compound FC1=C(Cl)C(CC#N)=C(Cl)C(F)=C1C(F)(F)F UTRVZPGFBIRJKU-UHFFFAOYSA-N 0.000 claims 1
- 238000002347 injection Methods 0.000 description 51
- 239000007924 injection Substances 0.000 description 51
- 125000003118 aryl group Chemical group 0.000 description 24
- 238000000034 method Methods 0.000 description 22
- 239000002800 charge carrier Substances 0.000 description 21
- 230000000903 blocking effect Effects 0.000 description 18
- 239000000758 substrate Substances 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 15
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000000370 acceptor Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 10
- 150000002739 metals Chemical group 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical group CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000004305 biphenyl Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 6
- 235000010290 biphenyl Nutrition 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 125000001624 naphthyl group Chemical group 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005284 basis set Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 2
- MAIALRIWXGBQRP-UHFFFAOYSA-N 9-naphthalen-1-yl-10-naphthalen-2-ylanthracene Chemical compound C12=CC=CC=C2C(C2=CC3=CC=CC=C3C=C2)=C(C=CC=C2)C2=C1C1=CC=CC2=CC=CC=C12 MAIALRIWXGBQRP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000006193 alkinyl group Chemical group 0.000 description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- LBAIJNRSTQHDMR-UHFFFAOYSA-N magnesium phthalocyanine Chemical compound [Mg].C12=CC=CC=C2C(N=C2NC(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2N1 LBAIJNRSTQHDMR-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- UHVLDCDWBKWDDN-UHFFFAOYSA-N n-phenyl-n-[4-[4-(n-pyren-2-ylanilino)phenyl]phenyl]pyren-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=CC3=CC=CC4=CC=C(C2=C43)C=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=CC4=CC=CC5=CC=C(C3=C54)C=2)C=C1 UHVLDCDWBKWDDN-UHFFFAOYSA-N 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JUZOKZZEHHXCPF-UHFFFAOYSA-N 1-n,1-n-diphenyl-4-n-[4-(n-phenylanilino)phenyl]-4-n-[4-[4-(n-phenylanilino)phenyl]phenyl]benzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 JUZOKZZEHHXCPF-UHFFFAOYSA-N 0.000 description 1
- AOUOXXCMWHQDIH-UHFFFAOYSA-N 2-[4,5-bis(2-methoxyphenyl)-1,3-dimethyl-2-propan-2-ylimidazol-2-yl]-4,5-bis(4-methoxyphenyl)-1,3-dimethyl-2-propan-2-ylimidazole Chemical compound C1=CC(OC)=CC=C1C1=C(C=2C=CC(OC)=CC=2)N(C)C(C(C)C)(C2(C(C)C)N(C(=C(N2C)C=2C(=CC=CC=2)OC)C=2C(=CC=CC=2)OC)C)N1C AOUOXXCMWHQDIH-UHFFFAOYSA-N 0.000 description 1
- MATLFWDVOBGZFG-UHFFFAOYSA-N 2-n,2-n,6-n,6-n-tetranaphthalen-1-ylnaphthalene-2,6-diamine Chemical compound C1=CC=C2C(N(C=3C=C4C=CC(=CC4=CC=3)N(C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MATLFWDVOBGZFG-UHFFFAOYSA-N 0.000 description 1
- VXJRNCUNIBHMKV-UHFFFAOYSA-N 2-n,6-n-dinaphthalen-1-yl-2-n,6-n-dinaphthalen-2-ylnaphthalene-2,6-diamine Chemical compound C1=CC=C2C(N(C=3C=C4C=CC(=CC4=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C4=CC=CC=C4C=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=CC2=C1 VXJRNCUNIBHMKV-UHFFFAOYSA-N 0.000 description 1
- IIIFDGMMJHGOJB-UHFFFAOYSA-N 4-N-naphthalen-1-yl-1-N-(1-naphthalen-1-ylcyclohexa-2,4-dien-1-yl)-4-N-[4-[4-[N-naphthalen-1-yl-4-[(1-naphthalen-1-ylcyclohexa-2,4-dien-1-yl)amino]anilino]phenyl]phenyl]benzene-1,4-diamine Chemical compound C1C=CC=CC1(C=1C2=CC=CC=C2C=CC=1)NC1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(NC3(C=CC=CC3)C=3C4=CC=CC=C4C=CC=3)=CC=2)C=2C3=CC=CC=C3C=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IIIFDGMMJHGOJB-UHFFFAOYSA-N 0.000 description 1
- PCJBLJBFFVNJEG-UHFFFAOYSA-N 4-N-naphthalen-1-yl-4-N-[4-[4-[N-naphthalen-1-yl-4-(2-naphthalen-1-ylanilino)anilino]phenyl]phenyl]-1-N-(2-naphthalen-1-ylphenyl)benzene-1,4-diamine Chemical compound C1=CC=C2C(C3=CC=CC=C3NC=3C=CC(=CC=3)N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=CC(NC=4C(=CC=CC=4)C=4C5=CC=CC=C5C=CC=4)=CC=3)C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 PCJBLJBFFVNJEG-UHFFFAOYSA-N 0.000 description 1
- NMUMJOWSOFMVRA-UHFFFAOYSA-N 4-N-naphthalen-1-yl-4-N-[4-[4-[N-naphthalen-1-yl-4-(N-(4-phenylphenyl)anilino)anilino]phenyl]phenyl]-1-N-phenyl-1-N-(4-phenylphenyl)benzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 NMUMJOWSOFMVRA-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- YXYUIABODWXVIK-UHFFFAOYSA-N 4-methyl-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 YXYUIABODWXVIK-UHFFFAOYSA-N 0.000 description 1
- MEIBOBDKQKIBJH-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-4-phenylcyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCC(CC1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MEIBOBDKQKIBJH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- LQYYDWJDEVKDGB-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]ethenyl]phenyl]ethenyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C=CC=2C=CC(C=CC=3C=CC(=CC=3)N(C=3C=CC(C)=CC=3)C=3C=CC(C)=CC=3)=CC=2)=CC=1)C1=CC=C(C)C=C1 LQYYDWJDEVKDGB-UHFFFAOYSA-N 0.000 description 1
- QYNTUCBQEHUHCS-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n-[4-[4-(n-[4-(n-(3-methylphenyl)anilino)phenyl]anilino)phenyl]phenyl]-1-n,4-n-diphenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 QYNTUCBQEHUHCS-UHFFFAOYSA-N 0.000 description 1
- QCRMNYVCABKJCM-UHFFFAOYSA-N 5-methyl-2h-pyran Chemical compound CC1=COCC=C1 QCRMNYVCABKJCM-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- MZYDBGLUVPLRKR-UHFFFAOYSA-N 9-(3-carbazol-9-ylphenyl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=CC=C1 MZYDBGLUVPLRKR-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- UIORJUJOSUBRAU-UHFFFAOYSA-N C1=CC=C2N(O)CC(C(O)=O)=NC2=C1 Chemical compound C1=CC=C2N(O)CC(C(O)=O)=NC2=C1 UIORJUJOSUBRAU-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- DWHUCVHMSFNQFI-UHFFFAOYSA-N N-[4-[4-(N-coronen-1-ylanilino)phenyl]phenyl]-N-phenylcoronen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=C3C=CC4=CC=C5C=CC6=CC=C(C7=C6C5=C4C3=C72)C=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=C4C=CC5=CC=C6C=CC7=CC=C(C8=C7C6=C5C4=C83)C=2)C=C1 DWHUCVHMSFNQFI-UHFFFAOYSA-N 0.000 description 1
- 101710172465 Nucleoside triphosphatase I Proteins 0.000 description 1
- 238000005052 Osteryoung square wave voltammetry Methods 0.000 description 1
- 241000282372 Panthera onca Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000003975 aryl alkyl amines Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000005347 halocycloalkyl group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- FQHFBFXXYOQXMN-UHFFFAOYSA-M lithium;quinolin-8-olate Chemical compound [Li+].C1=CN=C2C([O-])=CC=CC2=C1 FQHFBFXXYOQXMN-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000013212 metal-organic material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- PNDZMQXAYSNTMT-UHFFFAOYSA-N n-(4-naphthalen-1-ylphenyl)-4-[4-(n-(4-naphthalen-1-ylphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 PNDZMQXAYSNTMT-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- CLTPAQDLCMKBIS-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-1-ylamino)phenyl]phenyl]-n-naphthalen-1-ylnaphthalen-1-amine Chemical group C1=CC=C2C(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 CLTPAQDLCMKBIS-UHFFFAOYSA-N 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical group C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- TXDKXSVLBIJODL-UHFFFAOYSA-N n-[4-[4-(n-anthracen-9-ylanilino)phenyl]phenyl]-n-phenylanthracen-9-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=C2C=CC=CC2=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=C3C=CC=CC3=2)C=C1 TXDKXSVLBIJODL-UHFFFAOYSA-N 0.000 description 1
- OMQCLPPEEURTMR-UHFFFAOYSA-N n-[4-[4-(n-fluoranthen-8-ylanilino)phenyl]phenyl]-n-phenylfluoranthen-8-amine Chemical group C1=CC=CC=C1N(C=1C=C2C(C=3C=CC=C4C=CC=C2C=34)=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C(C=4C=CC=C5C=CC=C3C=45)=CC=2)C=C1 OMQCLPPEEURTMR-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- BLFVVZKSHYCRDR-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-2-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=CC=CC2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=CC=CC3=CC=2)C=C1 BLFVVZKSHYCRDR-UHFFFAOYSA-N 0.000 description 1
- LUBWJINDFCNHLI-UHFFFAOYSA-N n-[4-[4-(n-perylen-2-ylanilino)phenyl]phenyl]-n-phenylperylen-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=3C=CC=C4C=CC=C(C=34)C=3C=CC=C(C2=3)C=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=4C=CC=C5C=CC=C(C=45)C=4C=CC=C(C3=4)C=2)C=C1 LUBWJINDFCNHLI-UHFFFAOYSA-N 0.000 description 1
- TUPXWIUQIGEYST-UHFFFAOYSA-N n-[4-[4-(n-phenanthren-2-ylanilino)phenyl]phenyl]-n-phenylphenanthren-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C(C3=CC=CC=C3C=C2)=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C(C4=CC=CC=C4C=C3)=CC=2)C=C1 TUPXWIUQIGEYST-UHFFFAOYSA-N 0.000 description 1
- GNLSNQQRNOQFBK-UHFFFAOYSA-N n-[4-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical group C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 GNLSNQQRNOQFBK-UHFFFAOYSA-N 0.000 description 1
- QCILFNGBMCSVTF-UHFFFAOYSA-N n-[4-[4-[4-(n-anthracen-1-ylanilino)phenyl]phenyl]phenyl]-n-phenylanthracen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC3=CC=CC=C3C=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC4=CC=CC=C4C=C3C=CC=2)C=C1 QCILFNGBMCSVTF-UHFFFAOYSA-N 0.000 description 1
- NBHXGUASDDSHGV-UHFFFAOYSA-N n-[4-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 NBHXGUASDDSHGV-UHFFFAOYSA-N 0.000 description 1
- RJSTZCQRFUSBJV-UHFFFAOYSA-N n-[4-[4-[n-(1,2-dihydroacenaphthylen-3-yl)anilino]phenyl]phenyl]-n-phenyl-1,2-dihydroacenaphthylen-3-amine Chemical group C1=CC(C2=3)=CC=CC=3CCC2=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=2CCC3=CC=CC(C=23)=CC=1)C1=CC=CC=C1 RJSTZCQRFUSBJV-UHFFFAOYSA-N 0.000 description 1
- RYZPDEZIQWOVPJ-UHFFFAOYSA-N n-naphthalen-1-yl-n-[4-[4-[naphthalen-1-yl(naphthalen-2-yl)amino]phenyl]phenyl]naphthalen-2-amine Chemical group C1=CC=C2C(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C4=CC=CC=C4C=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=CC2=C1 RYZPDEZIQWOVPJ-UHFFFAOYSA-N 0.000 description 1
- SBMXAWJSNIAHFR-UHFFFAOYSA-N n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(NC=3C=C4C=CC=CC4=CC=3)=CC=C21 SBMXAWJSNIAHFR-UHFFFAOYSA-N 0.000 description 1
- FWRJQLUJZULBFM-UHFFFAOYSA-N n-phenyl-n-[4-[4-(n-tetracen-2-ylanilino)phenyl]phenyl]tetracen-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=C3C=C4C=CC=CC4=CC3=CC2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=C4C=C5C=CC=CC5=CC4=CC3=CC=2)C=C1 FWRJQLUJZULBFM-UHFFFAOYSA-N 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005547 polycyclic aromatic hydrocarbon Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004365 square wave voltammetry Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 150000003513 tertiary aromatic amines Chemical class 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 125000005000 thioaryl group Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 125000005106 triarylsilyl group Chemical group 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
- H10K50/131—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/311—Phthalocyanine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/125—Deflectable by temperature change [e.g., thermostat element]
- Y10T428/12507—More than two components
Definitions
- This invention relates to an organic electronic device with at least two phototransducing (charge transporting) units separated by an internal connector region formed from a p-type organic layer, an intermediate layer and a n-type doped organic layer.
- OLEDs can be composed of organic materials disposed in stacked layers. Devices of this type may require two separate charge transporting regions or units that must be physically separated from each other while maintaining good electric and physical contact between them so that current can flow efficiently through both regions.
- This connecting region can be composed of multiple layers with different electronic properties so that current can pass with reduced resistance.
- the layer(s) that make up the connecting region can have various names such as charge generation layer(s) or recombination layer(s).
- One common arrangement of this type is known as a 'pn' also 'pin' or 'p-i-n' junction. This is typically composed of a layer with p-type (hole generating) and a layer with n-type (electron generating) properties. In this way, a region with high conductivity is created.
- US6717358 discloses tandem OLEDs with two electroluminescent units where the connecting region is formed from a n-type doped layer, interfacial layer, p-type doped layer arrangement where the interfacial layer must be transparent and formed from a semi-conducting material with bandgap ⁇ 4.0 eV.
- US7273663 discloses OLEDs with two electroluminescent units where the connecting region is formed from a n-type doped layer, metal compound layer, p-type doped layer arrangement where the metal compound can be a metal oxide, sulfide, selenide or nitride.
- US2006/0263629 discloses OLEDs with two electroluminescent units separated by an "intermediate electrode" of an electron-injection layer, mixed metal-organic material layer, hole-injecting layer arrangement.
- the organic material in the mixed layer may include phthalocyanines among other materials.
- US7494722 discloses tandem OLEDs where the intermediate connector is formed from a n-doped organic layer and an electron-accepting layer containing a compound with a reduction potential greater than -0.5 eV (vs. SCE).
- the material in the electron accepting layer may be a hexaazatriphenylene or fluorinated derivatives of tetracyanobenzoquinonedimethane. There may be an interfacial layer between the n-doped organic layer and the electron accepting layer.
- WO2007/071450 discloses electronic devices with p-n junctions where the n-type molecular dopant has a redox potential ⁇ 1.5 eV and the p-type molecular dopant has a redox potential > 0 eV.
- Disclosures of electronic devices which use phthalocyanines as a connecting layer between two charge transporting units include EP 1564826 and
- the invention provides an electronic device comprising an anode and a cathode, between which there are at least two organic phototransducing units where the units are separated by an intermediate connecting region which comprises: a) an organic p-type layer; b) an intermediate layer in direct contact with the organic p-type layer and including a compound that has a LUMO more negative than -3.0 eV and is different from the organic compound in the organic p-type layer; and c) an n-type doped organic layer in direct contact with the intermediate layer and including an electron transport material as a host and an organic n-dopant with an effective HOMO less negative than -4.5 eV.
- the organic electronic device is a tandem
- the organic electronic device is a solar cell where two photoactive units that convert light into electricity are separated by the intermediate connecting region.
- Devices of the invention provide improvement in features such as drive voltage, voltage stability during operation, efficiency and long device lifetime.
- Such junctions may be introduced in all kinds of organic semiconductor devices such as organic TFTs, solar cells or alike.
- FIG. 1 shows a schematic illustration of a tandem OLED device in which the present invention can be incorporated
- FIG. 2 shows a schematic cross-sectional view of a particular embodiment as a solar cell device of the present invention.
- FIG. 3 shows a schematic cross-sectional view of a particular embodiment as a tandem OLED device of the present invention. It will be understood that the figures are not to scale since the individual layers are too thin and the thickness differences of various layers are too great to permit depiction to scale.
- the invention is generally as described above.
- the devices of the invention contain an intermediate connecting region (ICR) which has a p-type organic layer (p-DOL) in direct contact with an intermediate layer (IL) which in turn is in direct contact with an n-doped organic layer (n-DOL).
- ICR intermediate connecting region
- IL intermediate layer
- n-DOL n-doped organic layer
- Both the IL and n-doped layers contain specific kinds of materials.
- a phototransducing unit is a layer or a series of layers which converts light into electricity such as a photoactive layer in a solar cell, or it may also be a unit which converts electricity in light such as an emission layer in an OLED.
- Phototransducting units are also efficient charge-transporting units.
- an n-type doped layer has at least two materials; an organic n-type host as a major component which can accept and transport electrons and a dopant as a minor component which can easily supply electrons.
- This layer has semiconducting properties after doping, and the electrical current through this layer is substantially carried by electrons. The conductivity is provided as a result of electron transfer from HOMO of the dopant to the LUMO of the host material (electron transport material).
- the n-doping therefore increases considerably the charge carrier density of the host.
- the conductivity which is initially very low, is increased by generating charge carriers in the host material. Doping in this case leads to an increase in the conductivity of charge transport layers, as a result of which ohmic losses in charge transport are reduced, and to an improved transfer of the charge carriers between the contacts and the organic layer.
- the inventive n-DOL in the ICR contains an electron transporting material as a host and an organic material with an effective HOMO less negative than -4.5 eV as an n-dopant.
- Strongly reducing species such as alkali metals, alkaline earth metals or sources thereof have been commonly used as n-dopants.
- lithium is often used as an n-dopant.
- diffusion of the metal into other layers is known to decrease stability.
- vapor deposition of metals such as lithium can be problematic during manufacturing.
- One of the advantages of this invention is that using an organic dopant avoids the use of reducing metals and problems associated with them.
- the n-dopant is an organic molecule or a neutral radical or combination thereof that is a strong reducing agent with an effective HOMO energy level less negative than -4.5 eV in the n-DOL. It is preferred that the effective HOMO be less negative than -3.5 eV, preferably less negative than -3.0 eV, more preferably less negative than -2.6 eV.
- the organic n-dopant can be created by a precursor during the layer forming (deposition) process or during a subsequent process of layer formation (see DE 10307125.3).
- the effective HOMO of an n-dopant corresponds to the reducing power of the active reducing species in the device itself.
- its effective HOMO is the same as that as measured directly.
- a precursor to the n-dopant is used so the HOMO as measured for the precursor is not representative of the actual species present in the n-DOL.
- the precursor must be further activated once the layer is formed to form the active reducing species.
- the effective HOMO of the n-dopant should be determined using in-f ⁇ lm measurements using the following procedure.
- a homogenous n-doped layer is prepared with an electron transporting host material co-evaporated with the n-dopant or precursor using vacuum thermal evaporation methods.
- the layer is deposited over a substrate which contains electrodes with defined patterns for conductivity measurements (e.g. 2-point or 4-point measurements).
- conductivity measurements e.g. 2-point or 4-point measurements.
- One way to perform the activation is to shine light on the substrate during the evaporation. The light is turned off for the conductivity measurement.
- a series of samples are prepared using the same procedure with the same dopant but using different host materials.
- the different host materials are chosen to form a stepped LUMO series as indicated in the table below:
- the conductivity of all the samples is measured from the one with the ETM with more negative LUMO up to the one with less negative LUMO.
- the effective HOMO is equal to the LUMO of the last matrix which shows conductivity after doping of at least 10 ⁇ 7 S/cm. Once a narrow range of values for the effective HOMO is found, it can be further narrowed by consecutive sets of experiments using ETMs with closer LUMO levels. When the n-dopant is unaffected by the fabrication process, its effective HOMO is the same as that measured directly.
- HOMO and LUMO energy levels can be directly determined from redox properties of molecules, which can be measured by well-known literature procedures, such as cyclic voltammetry (CV) and Osteryoung square-wave voltammetry (SWV).
- CV cyclic voltammetry
- SWV Osteryoung square-wave voltammetry
- a calculated energy level can be used. Typical calculations are carried out by using the B3LYP method as implemented in the Gaussian 98 (Gaussian, Inc., Pittsburgh, PA) computer program.
- the basis set for use with the B3LYP method is defined as follows: MIDI! for all atoms for which MIDI! is defined, 6-3 IG* for all atoms defined in 6-3 IG* but not in MIDI!, and either the LACV3P or the LANL2DZ basis set and pseudopotential for atoms not defined in MIDI! or 6- 3 IG*, with LACV3P being the preferred method.
- any published basis set and pseudopotential can be used.
- MIDI!, 6-3 IG* and LANL2DZ are used as implemented in the Gaussian98 computer code and LACV3P is used as implemented in the Jaguar 4.1 (Schrodinger, Inc., Portland Oregon) computer code.
- the molar mass of the organic n-dopant is in a range between 100 and 2000 g/mol, preferably in a range from 200 and 1000 g/mol.
- an organic n-dopant is one that mainly comprises an organic conjugated system which can comprise heteroatoms.
- the organic n-dopant also does not release metal ions in the organic n-type material as the main doping mechanism.
- a "pure-organic" n-dopant is defined as a n-dopant which contains no metals, metallic substances or metal ions at all. Reducing species that are metals with organic ligands are not the organic n-dopant of this invention. Suitable examples of organic n-dopants can be found in
- Preferred organic n-dopant compounds are the heterocyclic radicals or diradicals, the dimers, oligomers, polymers, dispiro compounds and polycycles of:
- bridges Z, Zi and Z 2 can be independently selected from alkyl, alkenyl, alkinyl,cycloalkyl, silyl; alkylsilyl, diazo, disulfide, heterocyclo alkyl, heterocyclyl, piperazinyl, dialkylether, polyether, alkylamine, arylamine, polyamine, Aryl and heteroaryl;
- X and Y can be O, S, N, NR 21 , P, or PR 2 i;
- R 0 -I 9 , R21, R22 and R 23 are independently chosen from substituted or unsubstituted: aryl, heteroaryl, heterocyclyl, diarylamine, diheteroarylamine, dialkylamine, heteroarylalkylamine, arylalkylamine, H, F, cycloalkyl, halo cyclo alkyl, heterocyclo alkyl, alkyl, alkenyl, alkinyl, trialkylsilyl,
- Suitable organic n-dopants include:
- the invention is not particularly limited in regards to the electron transporting host in the n-DOL.
- Preferred classes of electron transporting materials include metal oxinoids, polycyclic aromatic hydrocarbons such as anthracenes, rubrenes, fluoranthenes and phenanthrolines.
- phenanthrolines suitable as the electron transporting material in the n-DOL include:
- Ri-R 4 are independently selected from H, F, Cl, Br, substituted or unsubstituted alkyl or aryl, and substituted or unsubstituted heteroalkyl or heteroaryl.
- the aromatic carbons which belong to only one ring can also be independently substituted by nitrogen or by C-CN, or C-F.
- phenanthrolines include:
- metal oxinoids suitable as the electron transporting material in the n-DOL include metal complexes of 8 -hydroxy quinoline and similar derivatives according to Formula NMOH:
- M represents a metal
- n is an integer of from 1 to 4
- Z independently in each occurrence represents the atoms completing a nucleus having at least two fused aromatic rings.
- the metal can be monovalent, divalent, trivalent, or tetravalent metal.
- the metal can, for example, be an alkali metal, such as lithium, sodium, or potassium; an alkaline earth metal, such as magnesium or calcium; an earth metal, such as aluminum or gallium, or a transition metal such as zinc or zirconium.
- alkali metal such as lithium, sodium, or potassium
- alkaline earth metal such as magnesium or calcium
- earth metal such as aluminum or gallium, or a transition metal such as zinc or zirconium.
- any monovalent, divalent, trivalent, or tetravalent metal known to be an useful chelating metal can be employed.
- Z completes a heterocyclic nucleus containing at least two fused aromatic rings, at least one of which is an azole or azine ring. Additional rings, including both aliphatic and aromatic rings, can be fused with the two required rings, if required. To avoid adding molecular bulk without improving on function the number of ring atoms is usually maintained at 18 or less.
- NMOH-I Aluminum trisoxine [alias, tris(8-quinolinolato)aluminum(III), AIq or AIq 3 ]
- NMOH-2 Magnesium bisoxine [alias, bis(8-quinolinolato)magnesium(II)]
- NMOH-3 Bis[benzo ⁇ f ⁇ -8-quinolinolato]zinc (II)
- NMOH-4 Bis(2-methyl-8-quinolinolato)aluminum(III)- ⁇ -oxo-bis(2- methyl-8-quinolinolato) aluminum(III)
- NMOH-5 Indium trisoxine [alias, tris(8-quinolinolato)indium]
- NMOH-6 Aluminum tris(5-methyloxine) [alias, tris(5 -methyl- 8- quinolinolato) aluminum(III)]
- NMOH-7 Lithium oxine [alias, (8-quinolinolato)lithium(I)]
- NMOH-8 Gallium oxine [alias, tris(8-quinolinolato)gallium(III)]
- NMOH-9 Zirconium oxine [alias, tetra(8-quinolinolato)zirconium(IV)] and
- NMOH- 10 Bis(2-methyl-8-quinolinato)-4-phenylphenolatoaluminum (III).
- poly cyclic aromatic hydrocarbons suitable as the electron transporting material in the n-DOL include anthracene compounds according to Formula (NAH):
- R 1 and R 6 each independently represent an aryl group having 6-24 carbon atoms such as a phenyl group or a naphthyl group.
- R 2 - R 5 and R 7 -R 10 are each independently chosen from hydrogen, alkyl groups from 1- 24 carbon atoms or aromatic groups from 6-24 carbon atoms.
- R 1 and R 6 each represent an independently selected phenyl group, biphenyl group, or naphthyl group
- R 3 represents a hydrogen or a phenyl or naphthyl group
- R 2 , R 4 , R 5 , R 7 -R 10 represent hydrogen.
- rubrenes suitable as the electron transporting material in the n-DOL include may be represented by Formula (NRH):
- Ar 1 - Ar 4 represent independently selected aromatic groups, for example, phenyl groups, tolyl groups, naphthyl groups, 4- biphenyl groups, or 4-t-butylphenyl groups.
- Ar 1 and Ar 4 represent the same group, and independently of Ar 1 and Ar 4 , Ar 2 and Ar 3 are the same.
- R 1 - R 4 independently represent hydrogen or a substituent, such as a methyl group, a t-butyl group, or a fluoro group. In one embodiment R 1 and R 4 are not hydrogen and represent the same group.
- polycyclic aromatic hydrocarbons suitable as the electron transporting material in the n-DOL include fluoranthenes according to Formula (NFH):
- R 1 ⁇ R 20 are independently chosen from hydrogen, alkyl groups from 1-24 carbon atoms or aromatic groups from 6-24 carbon atoms provided adjacent groups can combine to form fused aromatic rings.
- R 11 and R 14 represent aryl groups and R 12 , R 13 and R 15 -R 20 are independently chosen from hydrogen, alkyl groups from 1-24 carbon atoms or aromatic groups from 6-24 carbon atoms provided adjacent groups cannot combine to form fused aromatic rings.
- Particularly desirable are fluoranthenes where Rn and R14 are both aryl groups, particularly phenyl, and Ri 5, Ri6, Ri9 and R20 are all hydrogen.
- Suitable fluoranthene compounds can be prepared using known synthetic methods or modification thereof, for example, by methods similar to those described by Marappan Velusamy et al, Dalton Trans., 3025-3034 (2007) or P. Bergmann et al., Chemische Berichte, 828-35 (1967).
- the inventive n-DOL is not light emissive; that is, it does not provide any significant (less than 10% of the total) amount of light.
- the thickness can be between 5 to 150 nm, preferably between 5 to 70 nm and more preferably between 10 to 50 nm.
- the ratio of host(s) to n-dopant is not critical; however, the molar doping concentration is in the range of 1 : 1000 (dopant molecule: host molecule) and 1:1, preferably between 1 :500 and 1 :2, and more preferably between 1 :100 and 1 :10. In individual cases doping concentrations larger than 1:1 can be applied, for example, if large conductivities are required.
- an organic n-dopant does not always provide the desired voltage and stability.
- an intermediate layer between the n-DOL and p-DOL which contains a material that has a LUMO that is more negative than -3.0 eV. This type of material generally has good electron mobility properties.
- the IL is in direct physical contact with the n-DOL and p- DOL.
- This interlayer should not contain any metals, totally inorganic compounds or be additionally doped with a more reducing or oxidizing compound.
- the interlayer can contain materials that can also be organometallic as well as totally organic.
- the IL consists essentially (greater than 99% by volume) of a single compound. If the IL is produced with a combination of materials, this combination of materials should not form an electrical doped layer. In other words, the energy levels of the materials used in the co-deposition of the IL is such that no energy transfer (positive or negative) occurs from the LUMO of one material to the HOMO of the other material.
- Suitable materials for use in the interlay er of the ICR are metal complexes of phthalocyanines such as copper phthalocyanine (CuPC), Zn phthalocyanine (ZnPC) or magnesium phthalocyanine (MgPc).
- CuPC copper phthalocyanine
- ZnPC Zn phthalocyanine
- MgPc magnesium phthalocyanine
- the phthalocyanine rings may be optionally substituted.
- CuPC is highly preferred.
- hexaazatriphenylene compounds such as those described in Szalay et al, J. Cluster Sci, 15(4) 503-530 (2004), Kanakarajan et al, JOC, 51(26) 5231-3 (1986), US6436559 and US6720573.
- R independently represents hydrogen or an independently selected substituent, at least one R represents an electron- withdrawing substituent having a Hammett's sigma para value of at least 0.3. Particularly preferred is HAT-I where R is cyano:
- the inventive IL of the ICR is not light emissive; that is, it does not provide any significant (less than 10% of the total) amount of light.
- the thickness can be between 1 to 15 nm, preferably between 2 to 10 nm and more preferably between 3 to 7 nm
- an organic p-type layer p-DOL
- An organic p-type layer preferentially conducts holes.
- an organic p-type layer consists of materials that contain no metals, metallic substances or metal ions at all. Species that are metals with organic ligands are not materials of the organic p-type type layer of this invention.
- the p-DOL includes an organic p-type material, either alone or in combination with a hole transporting host.
- the p-DOL is a p-type doped organic layer. This means that this layer has semiconducting properties after doping, and the electrical current through this layer is substantially carried by the holes.
- the conductivity is provided as a result of electron transfer from LUMO of the host (hole transport material) to the HOMO of the dopant.
- the p-doping therefore increases considerably the charge carrier density of the host.
- the conductivity, which is initially very low, is increased by generating charge carriers in the host material. Doping in this case leads to an increase in the conductivity of charge transport layers, as a result of which ohmic losses in charge transport are reduced, and to an improved transfer of the charge carriers between the contacts and the organic layer.
- An organic p-type material is a molecule or a neutral radical or combination thereof with a LUMO more negative than -4.5 eV, preferably more negative than -4.8 eV, and more preferably more negative than -5.04 eV.
- the molar mass of the p-type material is preferably in the range of 200 to 2000 g / mol, more preferably between 300 and 1000 g / mol, and even more preferably between 600 g/mol and 1000 g/mol.
- the acceptor can be created by a precursor during the layer forming (deposition) process or during a subsequent process of layer formation.
- One suitable class of p-type material suitable for use in the p-DOL of the ICR are hexaazatriphenylene compounds such as those of Formula (HAT).
- a very desirable compound for use in the p-DOL is HAT-I .
- fluorinated derivatives of cyanobenzoquinonedimethanes such as those described in EP1912268, WO2007/071450 and US20060250076.
- fluorinated derivatives of cyanobenzoquinonedimethanes include:
- TCNQ-7 Preferred is TCNQ-7.
- Yet another class of material for use as p-type material in the p- DOL of the ICR are radialenes such as those described in US20080265216, Iyoda et al, Organic Letters, 6(25), 4667-4670 (2004), JP3960131, Enomoto et al, Bull. Chem. Soc. Jap., 73(9), 2109-2114 (2000), Enomoto et al, Tet. Let., 38(15), 2693-2696 (1997) and Iyoda et al, JCS, Chem. Comm., (21), 1690-1692 (1989).
- radialenes include:
- Preferred is PR-I.
- Some of the same classes of materials suitable for the IL of the ICR can also be used for the p-DOL of the ICR. However, the same material or same class of material cannot be used in both the IL and p-DOL in the same device. The material in the p-DOL should have a more negative LUMO value than the material present in the IL.
- host materials in the p-DOL that are compounds that have excellent hole-transporting properties in combination with the p-type material.
- Preferred materials for the p-DOL host are tertiary aromatic amines.
- Suitable classes of aromatic tertiary amines are those which include at least two aromatic tertiary amine moieties as described in U.S. Pat. Nos. 4,720,432 and 5,061,569. Such compounds include those represented by structural Formula (A)
- Qi and Q2 are independently selected aromatic tertiary amine moieties; and G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon to carbon bond.
- G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon to carbon bond.
- at least one of Qi or Q 2 contains a polycyclic fused ring structure, e.g., a naphthalene or carbazole.
- G is an aryl group, it is conveniently a phenylene, biphenylene, or naphthalene moiety.
- a useful class of triarylamines satisfying structural Formula A and containing two triarylamine moieties is represented by structural Formula (B)
- Ri and R 2 each independently represents a hydrogen atom, an aryl group, or an alkyl group or Ri and R 2 together represent the atoms completing a cycloalkyl group; and R 3 and R 4 each independently represents an aryl group, which is in turn substituted with a diaryl substituted amino group, as indicated by structural Formula (C)
- R 5 and R 6 are independently selected aryl groups.
- at least one of R5 or R 6 contains a polycyclic fused ring structure, e.g., a naphthalene.
- Another class of aromatic tertiary amines are the tetraaryldiamines. Desirable tetraaryldiamines include two diarylamino groups, such as indicated by Formula (C), linked through an arylene group.
- Useful tetraaryldiamines include those represented by Formula (D) wherein each ARE is an independently selected arylene group, such as a phenylene or anthracene moiety; n is an integer of from 1 to 4; and Ar, R 7 , R 8 , and Rg are independently selected aryl groups.
- at least one of Ar, R 7 , Rg, and R 9 is a polycyclic fused ring structure, e.g., a naphthalene or carbazole.
- Another class of the hole-transporting material comprises a material of formula (E):
- ArI-Ar 6 independently represent aromatic groups, for example, phenyl groups or tolyl groups, and R1-R12 independently represent hydrogen or independently selected substituent, for example an alkyl group containing from 1 to 4 carbon atoms, an aryl group, a substituted aryl group.
- Illustrative of useful aromatic tertiary amines are the following: 1 , 1 -bis(4-di-p-tolylaminophenyl)cyclohexane; 1 , 1 -bis(4-di-p-tolylaminophenyl)-4- phenylcyclohexane; l,5-bis[N-(l-naphthyl)-N-phenylamino]naphthalene; 2,6-bis(di- /)-tolylamino)naphthalene; 2,6-bis[di-( 1 -naphthyl)amino]naphthalene; 2,6-bis[N-( 1 - naphthyl)-N-(2-naphthyl)amino]naphthalene; 2,6-bis[N,N-di(2- naphthyl)amine]fluorene; 4-(di-p-tolylamino
- the inventive p-DOL of the ICR is not light emissive; that is, it does not provide any significant (less than 10% of the total) amount of light.
- the ICR is reverse polarized (charges are created instead of recombined) therefore it does not emit light.
- the thickness can be between 5 to 150 nm, preferably between 5 to 70 nm and more preferably between 10 to 50 nm.
- the ratio of host(s) to n-dopant is not critical; however, the molar doping concentration is in the range of 1 : 1000 (dopant molecule: host molecule) and 1 :1, preferably between 1 :500 and 1 :2, and more preferably between 1 : 100 and 1 : 10.
- Tandem OLED devices In individual cases doping concentrations larger than 1 :1 are applied, e.g. if large conductivities are required. This invention is also particularly useful in so-called tandem or stacked OLED devices.
- the ICR is located between two electroluminescent (EL) units. These EL units are phototransducing. Tandem OLED devices generally comprise a cathode, a 1 st EL unit, an intermediate connecting region (ICR), a 2 nd EL unit and an anode.
- Each individual EL unit comprises light-emitting layer(s) (LEL), electron-transporting layer(s) (ETL) and electron-injecting layer(s) (EIL) and optionally additional layers such as hole- injecting layer(s), hole-transporting layer(s), exciton-blo eking layer(s), spacer layer(s) and hole-blocking layer(s).
- LEL light-emitting layer
- ETL electron-transporting layer
- EIL electron-injecting layer
- optionally additional layers such as hole- injecting layer(s), hole-transporting layer(s), exciton-blo eking layer(s), spacer layer(s) and hole-blocking layer(s).
- An OLED can be constructed with many different layer combinations. Each layer has at least one specific function and therefore it comprises a material or material mixture with features to satisfy the layer function requirements.
- Basic OLED information can be found in Chen, Shi, and Tang, “Recent Developments in Molecular Organic Electroluminescent Materials,” Macromol. Symp. 125, 1 (1997) and the references cited therein; Hung and Chen, "Recent Progress of Molecular Organic Electroluminescent Materials and
- the substrate supports the OLED. It can be flexible or rigid, transparent, opaque, reflective, or translucent. The substrate should be transparent or translucent for bottom emitting OLEDs.
- Bottom electrode The bottom electrode must be conductive. For bottom emitting OLEDs, it must also be transparent. Usually transparent conductors (TCOs) like ITO are used.
- the bottom electrode can also comprise a very thin metal layer or conductive organic semiconductor.
- the bottom electrode can comprise thicker conductive layers, such as metals or conductive carbon.
- the bottom electrode can be the substrate at the same time.
- a more stable way to provide the injection is to use a layer comprising strong acceptors as hole injection layers; organic p-dopants can be used for this purpose.
- the hole injection layer can be a pure layer of p-dopant and can be about 1 nm thick. IfHTL is p-doped, then the injection layer may not be necessary.
- HTL Hole Transport layer
- This layer supports the transport of positive charge carriers (holes) from the anode to the LEL.
- This layer can be doped with p- dopants to lower its resistivity and to avoid the respective power loss due to the high resistivity of the undoped semiconductor.
- the doped HTL can also be used as optical spacer, because it can be made very thick, up to 1000 nm or more without significant increase in resistivity.
- HTL side electron blocking layer This layer has a high LUMO, more positive than the LUMO from the adjacent LEL, such that electrons from the LEL cannot be efficiently injected into the EBL, i.e. electrons from the LEL are blocked.
- This layer may preferably have a HOMO such that the holes are easily transferred from the HTL into the LEL. Rules for designing EBL for high efficient OLEDs are given in US20040062949.
- Light Emitting layer(s) The light emitting layers must have at least one layer comprising an emission material (the layer comprising the emission material is also called EML) and can optionally comprise additional layers to block excitons (XBL or exciton blocking layer). LEL can also comprise additional layers to be used as spacer. The LEL can additionally comprise layers to improve charge carrier injection from the adjacent layers to the EML, where the additional layers are sometimes called hole injection layers and electron injection layers but should not be confused with the anode side hole injection layer and the cathode side electron injection layer.
- EML emission material
- XBL or exciton blocking layer exciton blocking layer
- LEL can also comprise additional layers to be used as spacer.
- the LEL can additionally comprise layers to improve charge carrier injection from the adjacent layers to the EML, where the additional layers are sometimes called hole injection layers and electron injection layers but should not be confused with the anode side hole injection layer and the cathode side electron injection layer.
- the LUMO of the electron injection layer is close to the LUMO of the EML and the HOMO of the hole injection layer is close to the HOMO of the EML, where in the anode side hole injection layer the LUMO of the hole injection layer is close to the HOMO of the HTL, and in the cathode side electron injection layer the HOMO of the electron injection layer is close to the LUMO of the HTL.
- the EML comprises a mixture of two or more materials the charge carrier injection can occur in different materials for instance in a material which is not the emitter, or the charge carrier injection can also occur directly into the emitter. Many different energy transfer processes can occur inside the EML or adjacent EMLs leading to different types of emission.
- excitons can be formed in a host material, which are then transferred as singlet or triplet excitons to an emitter material which can a be singlet or triplet emitter which then emits light.
- a mixture of different types of emitter can be provided for higher efficiency.
- Mixed light can be realized by using emission from the EML host and the EML dopant, which materials can be in the same or in different EML.
- the HBL and EBL have already the correct energy levels to provide a good injection of charge carriers in the EML and block the injection from the opposite charge carriers from the EML into the HBL and EBL at the same time.
- the LEL may be fluorescent or phosphorescent or a combination of both.
- HBL ETL side hole blocking layer
- This layer has a low HOMO, more negative than the HOMO of the EML, such that holes from the EML cannot be efficiently injected into the HBL, i.e. holes from the EML are blocked.
- This layer may preferably have a LUMO such that the electrons are easily transferred from the ETL to the EML. Rules for designing HBL for high efficient OLEDs are given in US20040062949.
- Electron Transport layer This layer supports the transport of negative charge carriers (electrons) from the cathode to the LEL.
- This layer can be doped with n-dopants to lower its resistivity and to avoid the respective power loss due to the high resistivity of the undoped semiconductor.
- the doped ETL can also be used as optical spacer, because it can be made very thick, up to 1000 nm or more without significant increase in resistivity.
- Cathode side electron injection layer EIL
- the device can comprise a buffer layer between the cathode and the ETL. This buffer layer can provide protection against the cathode deposition or metal diffusion from the cathode. Sometimes this buffer layer is called injection layer.
- injection layer Another kind of injection layer is to use a layer comprising n-dopant between the ETL and the Cathode.
- This layer can be a pure layer of n-dopant which is only about 1 nm thick.
- the use of the strong donor (n-dopant) as injection layer provides lower voltages and higher efficiency in the device. If the ETL is n-doped, then the injection layer may not be necessary.
- the cathode can be transparent for top emitting OLEDs. It can be opaque or reflective for bottom emitting OLEDs. It is required that the cathode has a reasonable good conductivity.
- the cathode can comprise metals, TCOs, conductive polymers, or other conductive organic materials.
- the features of two or more layers can be combined in one layer, then these layers can be collapsed into one, simplifying the fabrication process.
- a smaller number of layers can be used if the requirements for two or more layers are met by one single layer.
- the EBL and HTL can work as a XBL and therefore an additional XBL is not necessary.
- the layer sequence is inverted except for the substrate.
- FIG. 1 illustrates a tandem OLED 100.
- This tandem OLED has an anode 110 and a cathode 170, at least one of which is transparent. Disposed between the anode and the cathode are N EL units and N-I intermediate connector regions of the invention (each of them indicated as “int. connector” in the figure), where N is an integer greater than 1.
- the EL units, stacked and connected serially, are designated 120.1 to 120.N, where 120.1 is the first EL unit (adjacent to the anode), 120.2 is the second EL unit, 120.N-1 is the (N-l) th EL unit, and 120.N is the N th EL unit (nearby the cathode).
- the intermediate connectors, disposed between the EL unit, are designated 130.1 to 130.(N-I), where 130.1 is the first intermediate connector disposed between EL units 120.1 and 120.2; 130.2 is the second intermediate connector in contact with EL unit 120.2 and another EL unit (not shown in the figure); and 130.(N-I) is the last intermediate connector disposed between EL units 120.(N-I) and 120.N.
- the tandem OLED 100 is externally connected to a voltage/current source 180 through electrical conductors 190. Tandem OLED 100 is operated by applying an electric potential produced by a voltage/current source 180 between a pair of contact electrodes, anode 110 and cathode 170. Under a forward bias of (V x N), this externally applied electrical potential is distributed among the N EL units and the N-I intermediate connectors.
- Fig. 2 shows one embodiment of the invention as an organic solar cell device 200.
- the following layers are deposited in the following sequence: anode 202, hole injection layer 203, hole transport layer 204, electron blocking layer 205, first photoactive layer 206, hole blocking layer 207, n- doped organic layer 208, intermediate layer 209, p-type organic layer 210, electron blocking layer 211, second photoactive layer 212, hole blocking layer 213, electron transport layer 214, electron injection layer 215 and cathode 216.
- the cathode and anode are connected to electrical connectors (not shown).
- Fig. 3 shows one embodiment of the invention as a tandem OLED.
- the anode 301 is located on the substrate 300.
- the anode 301 and the cathode 314 are connected to a voltage / current source 350 by electrical connectors 360.
- In the 1 st EL unit 320 there is a hole injection layer 302, a hole transport layer 303, a blue light emitting layer 304 and an electron transport layer 305.
- the 2nd EL unit 330 there is a hole transport layer 309, a red light emitting layer 310, a green light emitting layer 311, an electron transport layer 312 and a electron injection layer 313.
- the intermediate connection region 340 there is a n-type doped organic layer 306, an intermediate layer 307 and an organic p- type layer 308.
- the tandem OLED device includes a way for emitting white light, which can include complimentary emitters, a white emitter, or a filtering structure.
- Embodiments of the current invention can be used in stacked devices that comprise solely fluorescent elements to produce white light.
- the device can also include combinations of fluorescent emitting materials and phosphorescent emitting materials (sometimes referred to as hybrid OLED devices).
- hybrid fluorescent / phosphorescent device would comprise a blue fluorescent emitter and proper proportions of a green and red phosphorescent emitter, or other color combinations suitable to make white emission.
- hybrid devices having non- white emission can also be useful by themselves.
- Hybrid fluorescent / phosphorescent elements having non- white emission can also be combined with additional phosphorescent elements in series in a stacked OLED.
- white emission can be produced by one or more hybrid blue fluorescent / red phosphorescent elements stacked in series with a green phosphorescent element as disclosed in US 6936961B2.
- the OLED device is part of a display device.
- the OLED device is part of an area lighting device.
- the OLED device of the invention is useful in any device where stable light emission is desired such as a lamp or a component in a static or motion imaging device, such as a television, cell phone, DVD player, or computer monitor. For full color display, the pixilated LELs can be needed.
- This pixilated deposition of LELs is achieved using shadow masks, integral shadow masks, U.S. Pat. No. 5,294,870, spatially defined thermal dye transfer from a donor sheet, U.S. Pat. Nos. 5,688,551, 5,851,709, and 6,066,357, and inkjet method, U.S. Pat. No. 6,066,357.
- OLEDs of this invention can employ various well-known optical effects in order to enhance their emissive properties if desired.
- the ICR of the invention is also beneficial for stacked organic photovoltaic (solar cell) devices, as the open circuit voltage might be increased to a maximum of n-times the photon energy. In this case, the phototransducing layer(s) generate electricity when exposed to light.
- the open circuit voltage is increased by nearly the same factor which the short circuit current is decreased; this efficient power extraction with lower currents and higher voltages is highly desired when the series resistance created from the very thin transparent conductors limits the device performance.
- Another advantage of stacked (or tandem) organic solar cells is that the intrinsic photo-active layers can be made very thin, allowing a higher fill factor, where the loss of absorption from the thin layers is compensated by the multiplicity of intrinsic photo-active layers.
- the stacking of photovoltaic devices thus allows harvesting of more than 50% of the incident light due to the presence of more than one photoactive layer in the stack. It is highly desired that all the layers, including the ICR in organic solar cells are highly thermally stable and transparent. Furthermore, the ICR does not contribute to the photocurrent, since it is polarized in a way to recombine and not generate charge carriers. It is also constructed in a way to recombine charge carriers with a minimal loss in open circuit voltage.
- a conventional-layered small molecule organic solar cell is described below.
- the organic solar cell is also a diode; therefore the layer names are similar to the names for OLEDs.
- the layer names are made in reference to a diode polarized in the forward direction (conductive direction).
- Substrate Bottom electrode (Anode): Same as for an OLED Anode side hole injection layer (HIL): Same as for an OLED Hole Transport layer (HTL): Same as for an OLED
- the photoactive (phototranducing) layer comprises absorber material, donor-material and acceptor material.
- the donor and acceptor material permits exciton separation into positive and negative charge carriers.
- the donor and acceptor are much weaker than those compounds used for dopants, because they need to separate the charge carriers but still keep them at an energy level which is high enough such that useful energy can be extracted from the device.
- This donor and acceptor material pair can be formed into separated layers called a donor-acceptor heterojunction or into a single layer, called a bulk donor- acceptor heterojunction.
- the donor-acceptor pair in the photoactive layer do not exchange charge carriers between each other in their neutral state, i.e.
- the photoactive layer should have high mobility for both types of charge carries such that they can be efficiently transported to the transport layers. A large exciton diffusion length is also desired so that an exciton absorbed in one of the materials can reach the donor-acceptor interface and be separated there.
- Exciton blocking layers can be included to avoid the excitons to be quenched at the interfaces to the other layers.
- the photoactive layers can comprise other layers to support absorption, exciton and charge carrier separation, and transport.
- the LUMO of the electron injection layer is preferably closer to the LUMO of the photoactive layer and the HOMO of the hole injection layer is preferably close to the HOMO of the photoactive layer, wherein the anode side hole injection layer the LUMO of the hole injection layer is preferably close to the HOMO of the HTL, and in the cathode side electron injection layer the HOMO of the electron injection layer is preferably close to the LUMO of the HTL.
- the HBL and EBL have the appropriate energy levels to provide an efficient good extraction of the charge carriers from the photoactive layer and block the injection from the opposite charge carriers from the photoactive layer into the HBL and EBL at the same time.
- ETL side hole blocking layer This layer has a low HOMO, more negative than the HOMO of the photoactive layer, such that holes from the photo active layer cannot be efficiently injected into the HBL, i.e. holes from the photoactive layer are blocked.
- This layer may preferably have a LUMO such that the electrons are easily transferred from the photoactive layer to the ETL.
- a suitable material for HBL which blocks holes from the photoactive layer and at the same time does not hinder electron injection, is not available.
- a buffer layer can be used instead, which does not fulfill all the requirements of an HBL.
- An example is a BPhen commonly used as a buffer between a C60 layer, which is part of the photoactive layer, and the cathode.
- Another example is the use of an undoped HTL (or ETL) between the photoactive layer and the doped HTL (or ETL).
- Electron Transport layer ETL: Same as for an OLED
- Cathode side electron injection layer Same as for an OLED Top electrode (Cathode): Same as for an OLED
- the characteristic features of two or more layers can be combined in a single layer if the materials fulfil the requirements. In some cases, layers can be omitted. For instance, EBL layers are not always used.
- the OSC can comprise polymer layers and for instance it can be a single polymer layer.
- the polymer layer can comprise polymer and small molecules.
- the OSC of the invention is stacked in tandem or multiple OSCs separated by the ICR in the following manner: Substrate / Electrode / OSC / ICR /... / OSC / Electrode where the optional HTL, ETL, and injection layers can be added.
- the "" refers to a sequence of OSC / ICR, which can be repeated from O to 50 times.
- the stacked OSC can also comprise hybrid polymer and small molecule layers.
- An example of a tandem organic solar cell can be constructed using vapor deposition technique in the following sequence:
- ITO indium-tin oxide
- a 25 nm hole transport layer (collapsed layers 203 and 204) of hole- transporting N4,N4'-diphenyl-N4,N4'-dim-tolylbiphenyl-4,4'-diamine and including 5.0 % of TCNQ-7 is deposited.
- a 20 nm thick mixture of ZnPc and C60 with molar ratio 1 :1 (206) is deposited.
- HBL is not used in this case, instead of layer (207) a 5 nm layer of C60 is deposited, which in this case does not fulfill al the requirements for an HBL but serves as a buffer between layer (206) and the doped layer (208)
- a 10 nm thick C60 (208) layer is deposited, doped with 5.0 % of NDR-2.
- N4,N4'-diphenyl-N4,N4'-dim-tolylbiphenyl-4,4'-diamine (210) layer doped with 5.0 % of TCNQ-7 is deposited.
- a 5 nm thick N4,N4'-diphenyl-N4,N4'-dim-tolylbiphenyl-4,4'-diamine (211) layer is deposited
- a 20 nm mixture of ZnPc and C60 with a molar ratio 1 :2 (ZnPc:C60) (212) is deposited.
- a 6 nm BPhen layer is used instead of layers 213, 214, and 215 is deposited. This BPhen layer, which in this case is not an ideal HBL serves as a buffer between layer (212) and cathode (216)
- Embodiments of the invention can provide EL devices that have good luminance efficiency, good operational stability, and reduced drive voltages. Embodiments of the invention can also give reduced voltage rises over the lifetime of the devices and can be produced with high reproducibility and consistency to provide good light efficiency. They can have lower power consumption requirements and, when used with a battery, provide longer battery lifetimes.
- the invention and its advantages are further illustrated by the specific examples that follow.
- the term "percentage” or “percent” and the symbol “%” indicate the volume percent (or a thickness ratio as measured on a thin film thickness monitor) of a particular first or second compound of the total material in the layer of the invention and other components of the devices. If more than one second compound is present, the total volume of the second compounds can also be expressed as a percentage of the total material in the layer of the invention.
- a glass substrate coated with a 60 nm layer of indium-tin oxide (ITO) as the anode was sequentially ultrasonicated in a commercial detergent, rinsed in deionized water and exposed to oxygen plasma for about 1 min.
- ITO indium-tin oxide
- HIL hole-injection layer
- HTLl hole transport layer
- BLEL blue light-emitting layer
- n-DOL n-doped organic layer
- a 5 nm thick intermediate layer (IL) third layer as per Table 1 was then deposited.
- a 10 nm thick p-doped organic layer (p-DOL) of 97% NPB host and 3 % PR- 1 was then deposited.
- a second 10 nm thick hole transport layer (HTL2) of hole-transporting material 4,4'-Bis[ ⁇ /-(l-naphthyl)- ⁇ /-phenylamino]biphenyl (NPB) was then deposited 10.
- a 20 nm thick red-orange light-emitting layer (RLEL) corresponding to host material NPB and including 3% of light-emitting material FD-46 was then deposited.
- GLEL green light-emitting layer
- ETL2 second electron transporting layer
- EIL electron injection layer
- Steps 3-5 constitute the first electroluminescent unit (ELl)
- steps 6-9 constitute the intermediate connector region (ICR)
- steps 9-12 constitute the second electroluminescent unit (EL2).
- the device was then hermetically packaged in a dry glove box for protection against ambient environment.
- the devices thus formed were tested for operational voltage and color at an operating current density of 20 mA/cm 2 and the results are reported in Table 1 in the form of voltage (V), efficiency (cd/A and Lm/W) and CIE (Commission Internationale de L'Eclairage) coordinates.
- T 50 is the time (in hours) required for the luminance to drop by 50% of the original value at 80 niA/cm 2 .
- White tandem OLED devices were constructed exactly as described above for example 1-2 (CuPC in the IL of step 7) except that AIq was substituted for NPH-5 in the n-DOL of step according to Table 2.
- White tandem OLED devices were constructed as described for devices 1-1 to 1-6 for steps 1-5 and 9-14.
- the ICR of steps 6-8 were modified according to Table 3.
- n-Mixl is 49% LiQ and 49% Bphen doped with 2% Lithium (non-inventive n-DOL);
- n-Mix2 is 90% NPH-5 and 10% NDR-2; and
- p-Mixl is 97% NPB and 3% PR-I.
- a glass substrate coated with a 60 nm layer of indium-tin oxide (ITO) as the anode was sequentially ultrasonicated in a commercial detergent, rinsed in deionized water and exposed to oxygen plasma for about 1 min.
- ITO indium-tin oxide
- HIL hole-injection layer
- HTLl hole transport layer
- BLEL blue light-emitting layer
- n-DOL n-doped organic layer
- HTL2 hole-transporting material 4,4'-Bis[ ⁇ /-(l-naphthyl)- ⁇ /-phenylamino]biphenyl (NPB) was then deposited
- RLEL red-orange light-emitting layer
- GLEL green light-emitting layer
- ETL2 second electron transporting layer
- EIL electron injection layer
- a cathode of 100 nm aluminum was then deposited.
- Steps 3-5 constitute the first electroluminescent unit (ELl)
- steps 6-9 constitute the intermediate connector region (ICR)
- steps 9-12 constitute the second electroluminescent unit (EL2).
- the device was then hermetically packaged in a dry glove box for protection against ambient environment.
- the devices thus formed were tested for operational voltage and color at an operating current density of 20 mA/cm 2 and the results are reported in Table 4 in the form of voltage (V), efficiency (cd/A) and CIE (Commission Internationale de L'Eclairage) coordinates.
- example 4-8 with a thicker IL of 15 nm CuPC could be considered equivalent to having an IL of 5 nm CuPC and a p-type layer of 10 nm CuPC.
- the architecture of the device is chosen such that a current flow can only occur if a reverse bias is applied, i.e. if the pn-junction is driven in the generating mode.
- a reverse bias i.e. if the pn-junction is driven in the generating mode.
- the injection barriers for the holes from the ITO into a hole blocking material and for the electrons from Aluminum into the electron blocking layer are so high that only small currents are flowing.
- Model devices with an ICR were constructed using vapor deposition techniques in the following sequence:
- a glass substrate coated with a 90 nm layer of indium-tin oxide (ITO) as the anode was sequentially washed with N-methylpyrrolidinone, de-ionized water, acetone and de-ionized water followed by an UV ozone treatment.
- ITO indium-tin oxide
- HBL hole blocking layer
- p-DOL p-doped organic layer
- Steps 3-5 constitute the intermediate connector region (ICR).
- the device was then hermetically packaged in a dry glove box for protection against ambient environment.
- the devices thus formed were tested for operational voltage V 1 at an operating current density at 1 mA/cm 3 or V 2 at 10 mA/cm 3 .
- V ⁇ se is measured as the slope of the Voltage-Time curve after 100 hours at 40 mA/cm 2 .
- devices with an ICR were constructed using vapor deposition techniques in the following sequence:
- ITO indium-tin oxide
- HBL hole blocking layer
- n-DOL n-doped organic layer
- IL intermediate layer
- EBL electron blocking layer
- Steps 3-5 constitute the intermediate connector region (ICR).
- the device was then hermetically packaged in a dry glove box for protection against ambient environment.
- the devices thus formed were tested for operational voltage V 1 at an operating current density at 1 mA/cm 3 or V 2 at 10 mA/cm 3 .
- V is measured at 1 mA/cm 2 and V ⁇ se is measured as the slope of the Voltage-Time curve after 100 hours at 40 mA/cm 2 .
- Electron transport layer (1 st EL Unit)
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117026502A KR101711596B1 (en) | 2009-05-13 | 2010-05-04 | Internal connector for organic electronic devices |
JP2012510851A JP5632461B2 (en) | 2009-05-13 | 2010-05-04 | Internal connectors for organic electronic devices |
CN201080021101.7A CN102439746B (en) | 2009-05-13 | 2010-05-04 | Internal connector for organic electronic devices |
EP10775272.7A EP2430677B1 (en) | 2009-05-13 | 2010-05-04 | Internal connector for organic electronic devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/465,235 | 2009-05-13 | ||
US12/465,235 US8603642B2 (en) | 2009-05-13 | 2009-05-13 | Internal connector for organic electronic devices |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010132236A1 true WO2010132236A1 (en) | 2010-11-18 |
Family
ID=43067539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/033520 WO2010132236A1 (en) | 2009-05-13 | 2010-05-04 | Internal connector for organic electronic devices |
Country Status (7)
Country | Link |
---|---|
US (1) | US8603642B2 (en) |
EP (1) | EP2430677B1 (en) |
JP (1) | JP5632461B2 (en) |
KR (1) | KR101711596B1 (en) |
CN (1) | CN102439746B (en) |
TW (1) | TWI504034B (en) |
WO (1) | WO2010132236A1 (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010004453A1 (en) * | 2010-01-12 | 2011-07-14 | Novaled AG, 01307 | Organic light emitting component has connection units formed with p-doped and n-doped hole transport layers and n-type and p-type dot layers formed with organic n-dopant and p-dopant materials respectively |
WO2011134458A1 (en) * | 2010-04-27 | 2011-11-03 | Novaled Ag | Organic semiconducting material and electronic component |
WO2013102985A1 (en) * | 2012-01-06 | 2013-07-11 | 出光興産株式会社 | Organic photoelectric conversion element and organic thin-film solar battery module |
WO2013145666A1 (en) * | 2012-03-29 | 2013-10-03 | ソニー株式会社 | Organic electroluminescent element |
WO2013180503A1 (en) * | 2012-05-31 | 2013-12-05 | 주식회사 엘지화학 | Organic light emitting diode |
CN103493236A (en) * | 2011-04-08 | 2014-01-01 | 欧司朗光电半导体有限公司 | Optoelectronic component and use of a copper complex as dopant for doping a layer |
WO2014147134A1 (en) | 2013-03-20 | 2014-09-25 | Basf Se | Azabenzimidazole carbene complexes as efficiency booster in oleds |
WO2014177518A1 (en) | 2013-04-29 | 2014-11-06 | Basf Se | Transition metal complexes with carbene ligands and the use thereof in oleds |
CN104205394A (en) * | 2012-03-19 | 2014-12-10 | 欧司朗光电半导体有限公司 | Optoelectronic component and method for producing an optoelectronic component |
US8951443B2 (en) | 2009-07-31 | 2015-02-10 | Novaled Ag | Organic semiconducting material and electronic component |
CN104449671A (en) * | 2014-11-11 | 2015-03-25 | 吉林大学 | Organic neutral radical electroluminescence material and organic electroluminescence device prepared by using material |
WO2015063046A1 (en) | 2013-10-31 | 2015-05-07 | Basf Se | Azadibenzothiophenes for electronic applications |
JPWO2013145667A1 (en) * | 2012-03-29 | 2015-12-10 | ソニー株式会社 | Organic electroluminescence device |
WO2016016791A1 (en) | 2014-07-28 | 2016-02-04 | Idemitsu Kosan Co., Ltd (Ikc) | 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds) |
EP2982676A1 (en) | 2014-08-07 | 2016-02-10 | Idemitsu Kosan Co., Ltd. | Benzimidazo[2,1-B]benzoxazoles for electronic applications |
EP2993215A1 (en) | 2014-09-04 | 2016-03-09 | Idemitsu Kosan Co., Ltd. | Azabenzimidazo[2,1-a]benzimidazoles for electronic applications |
EP3015469A1 (en) | 2014-10-30 | 2016-05-04 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016079667A1 (en) | 2014-11-17 | 2016-05-26 | Idemitsu Kosan Co., Ltd. | Indole derivatives for electronic applications |
WO2016079169A1 (en) | 2014-11-18 | 2016-05-26 | Basf Se | Pt- or pd-carbene complexes for use in organic light emitting diodes |
EP3034489A1 (en) | 2014-12-16 | 2016-06-22 | Novaled GmbH | Substituted 1,2,3-triylidenetris(cyanomethanylylidene)) cyclopropanes for VTE, electronic devices and semiconducting materials using them |
EP3034506A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 4-functionalized carbazole derivatives for electronic applications |
EP3034507A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs) |
EP3054498A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd. | Bisimidazodiazocines |
EP3053918A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd | 2-carbazole substituted benzimidazoles for electronic applications |
EP3061759A1 (en) | 2015-02-24 | 2016-08-31 | Idemitsu Kosan Co., Ltd | Nitrile substituted dibenzofurans |
EP3070144A1 (en) | 2015-03-17 | 2016-09-21 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3072943A1 (en) | 2015-03-26 | 2016-09-28 | Idemitsu Kosan Co., Ltd. | Dibenzofuran/carbazole-substituted benzonitriles |
EP3075737A1 (en) | 2015-03-31 | 2016-10-05 | Idemitsu Kosan Co., Ltd | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
EP3150604A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150606A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes |
WO2017056055A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes |
WO2017056053A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
WO2017093958A1 (en) | 2015-12-04 | 2017-06-08 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes |
EP3184534A1 (en) | 2015-12-21 | 2017-06-28 | UDC Ireland Limited | Transition metal complexes with tripodal ligands and the use thereof in oleds |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
WO2017178864A1 (en) | 2016-04-12 | 2017-10-19 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3318566A1 (en) | 2012-09-20 | 2018-05-09 | UDC Ireland Limited | Azadibenzofurans for electronic applications |
EP3418285A1 (en) | 2017-06-20 | 2018-12-26 | Idemitsu Kosan Co., Ltd. | Composition comprising a substituted ir complex and a phenylquinazoline bridged with a heteroatom |
EP3466957A1 (en) | 2014-08-08 | 2019-04-10 | UDC Ireland Limited | Oled comprising an electroluminescent imidazo-quinoxaline carbene metal complexes |
EP3466954A1 (en) | 2017-10-04 | 2019-04-10 | Idemitsu Kosan Co., Ltd. | Fused phenylquinazolines bridged with a heteroatom |
US10347851B2 (en) | 2013-12-20 | 2019-07-09 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
Families Citing this family (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8057712B2 (en) * | 2008-04-29 | 2011-11-15 | Novaled Ag | Radialene compounds and their use |
JP2011521414A (en) * | 2008-05-16 | 2011-07-21 | エルジー・ケム・リミテッド | Multilayer organic light emitting device |
US8283054B2 (en) * | 2009-04-03 | 2012-10-09 | Global Oled Technology Llc | Tandem white OLED with efficient electron transfer |
KR101750301B1 (en) * | 2009-05-29 | 2017-06-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting element, light-emitting device, electronic device, and lighting device |
EP2367215A1 (en) * | 2010-03-15 | 2011-09-21 | Novaled AG | An organic photoactive device |
US8637858B2 (en) | 2010-09-24 | 2014-01-28 | Novaled Ag | Tandem white OLED |
US20120177813A1 (en) * | 2010-10-17 | 2012-07-12 | Thompson Mark E | Chemical annealing method for fabrication of organic thin films for optoelectronic devices |
JP2012204110A (en) * | 2011-03-24 | 2012-10-22 | Sony Corp | Display element, display device, and electronic apparatus |
KR20130006937A (en) * | 2011-06-27 | 2013-01-18 | 삼성디스플레이 주식회사 | Organic light emitting element |
JP6282114B2 (en) | 2011-10-04 | 2018-02-21 | 株式会社Joled | Organic electroluminescence device |
CN104247070B (en) | 2011-11-30 | 2017-04-12 | 诺瓦尔德股份有限公司 | Display |
JP5803648B2 (en) * | 2011-12-16 | 2015-11-04 | セイコーエプソン株式会社 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE |
TW201338232A (en) * | 2012-03-02 | 2013-09-16 | Innocom Tech Shenzhen Co Ltd | Series organic electroluminescent module |
US20150115241A1 (en) | 2012-04-02 | 2015-04-30 | Novaled Gmbh | Use of a Semiconducting Compound in an Organic Light Emitting Device |
KR101908509B1 (en) * | 2012-04-05 | 2018-10-18 | 엘지디스플레이 주식회사 | Tandem White Organic Emitting Device |
CN103378310A (en) * | 2012-04-28 | 2013-10-30 | 海洋王照明科技股份有限公司 | Organic light-emitting device and manufacturing method thereof |
EP2862420B1 (en) | 2012-06-19 | 2018-02-21 | Koninklijke Philips N.V. | Organic electroluminescent device |
EP2684932B8 (en) * | 2012-07-09 | 2016-12-21 | Hodogaya Chemical Co., Ltd. | Diarylamino matrix material doped with a mesomeric radialene compound |
TWI506835B (en) * | 2012-07-10 | 2015-11-01 | Innocom Tech Shenzhen Co Ltd | Organic light emitting diode, and panel and display containing the same |
EP2706584A1 (en) * | 2012-09-07 | 2014-03-12 | Novaled AG | Charge transporting semi-conducting material and semi-conducting device |
KR102124227B1 (en) | 2012-09-24 | 2020-06-17 | 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 | Metal compounds, methods, and uses thereof |
KR102071843B1 (en) | 2012-10-09 | 2020-01-31 | 메르크 파텐트 게엠베하 | Electronic device |
US20150274762A1 (en) | 2012-10-26 | 2015-10-01 | Arizona Board Of Regents Acting For And On Behalf Of Arizona State University | Metal complexes, methods, and uses thereof |
GB2508092B (en) * | 2012-10-31 | 2015-09-23 | Lg Display Co Ltd | Light emitting device and organic light emitting display device including the same |
KR20140055452A (en) * | 2012-10-31 | 2014-05-09 | 삼성디스플레이 주식회사 | Organic light emitting device |
CN104037349A (en) * | 2013-03-06 | 2014-09-10 | 海洋王照明科技股份有限公司 | Stacked organic light emitting device and preparation method thereof |
EP2790236B1 (en) | 2013-04-10 | 2017-09-20 | Novaled GmbH | Semiconducting material comprising aza-substituted phosphine oxide matrix and metal salt |
KR101468063B1 (en) * | 2013-05-10 | 2014-12-02 | 서울대학교산학협력단 | Double-sided organic light-emitting diode and display device and illumination |
DE102013107113B4 (en) * | 2013-07-05 | 2024-08-29 | Pictiva Displays International Limited | Organic light-emitting device and method for producing an organic light-emitting device |
EP2840622B1 (en) | 2013-08-19 | 2019-02-13 | Novaled GmbH | Electronic or optoelectronic device comprising an anchored thin molecular layer, process for its preparation and compound used therein |
KR102081117B1 (en) | 2013-08-29 | 2020-02-25 | 엘지디스플레이 주식회사 | White organic light emitting device |
TWI618273B (en) * | 2013-09-17 | 2018-03-11 | 樂金顯示科技股份有限公司 | Organic light emitting device |
EP2860782B1 (en) | 2013-10-09 | 2019-04-17 | Novaled GmbH | Semiconducting material comprising a phosphine oxide matrix and metal salt |
JP6804823B2 (en) | 2013-10-14 | 2020-12-23 | アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University | Platinum complex and device |
DE102013017361B4 (en) * | 2013-10-18 | 2023-05-04 | Pictiva Displays International Limited | Organic light emitting device and method for producing an organic light emitting device |
ES2673573T3 (en) | 2013-12-23 | 2018-06-22 | Novaled Gmbh | Semiconductor material with doping N comprising a phosphine oxide matrix and a doping metal |
EP2887412B1 (en) | 2013-12-23 | 2016-07-27 | Novaled GmbH | Semiconducting material |
KR102203774B1 (en) * | 2013-12-31 | 2021-01-18 | 엘지디스플레이 주식회사 | White Organic Emitting Device |
KR102135929B1 (en) * | 2013-12-31 | 2020-07-20 | 엘지디스플레이 주식회사 | White Organic Emitting Device |
US10020455B2 (en) | 2014-01-07 | 2018-07-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues |
CN103715361B (en) * | 2014-01-15 | 2016-03-30 | 吉林大学 | A kind of based on the organic electroluminescence device of doublet electronics at the different interorbital transition luminescence of Neutral radical molecule |
JP6379338B2 (en) * | 2014-02-12 | 2018-08-29 | 株式会社Joled | Organic electroluminescent device, display device, and method of manufacturing organic electroluminescent device |
KR102192001B1 (en) * | 2014-03-31 | 2020-12-16 | 엘지디스플레이 주식회사 | Carbazole compound and organic light emitting diode including the same |
US9941479B2 (en) | 2014-06-02 | 2018-04-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues |
JP6525599B2 (en) | 2014-06-27 | 2019-06-05 | キヤノン株式会社 | Organic compound, electric field element, organic light emitting element, display apparatus, image information processing apparatus, illumination apparatus, image forming apparatus, exposure apparatus |
EP2963697B1 (en) | 2014-06-30 | 2020-09-23 | Novaled GmbH | Electrically doped organic semiconducting material and organic light emitting device comprising it |
KR102304718B1 (en) * | 2014-07-10 | 2021-09-27 | 삼성디스플레이 주식회사 | Organic light emitting device |
US9923155B2 (en) | 2014-07-24 | 2018-03-20 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues |
GB2528906A (en) * | 2014-08-04 | 2016-02-10 | Novaled Gmbh | Organic light emitting devices and methods |
EP2983221B1 (en) * | 2014-08-07 | 2020-10-07 | OLEDWorks GmbH | Light emitting device |
WO2016025921A1 (en) | 2014-08-15 | 2016-02-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes |
US11329244B2 (en) | 2014-08-22 | 2022-05-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light-emitting diodes with fluorescent and phosphorescent emitters |
DE102014020048B3 (en) * | 2014-08-25 | 2024-09-12 | Pictiva Displays International Limited | Organic light emitting device |
EP3002797B1 (en) | 2014-09-30 | 2020-04-29 | Novaled GmbH | A light emitting organic device and an active OLED display |
US10033003B2 (en) | 2014-11-10 | 2018-07-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate metal complexes with carbon group bridging ligands |
JP6468818B2 (en) * | 2014-11-27 | 2019-02-13 | キヤノン株式会社 | 2,2′-bibenzo [d] imidazolidene compound having a condensed ring at the 1-position, 1′-position, 3-position and 3′-position, organic light-emitting device having the same, display device, image information processing device, lighting device, image Forming device, exposure device |
US9711730B2 (en) * | 2015-01-25 | 2017-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929361B2 (en) | 2015-02-16 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3059776B1 (en) | 2015-02-18 | 2021-03-31 | Novaled GmbH | Semiconducting material and naphtofuran matrix compound |
US11056657B2 (en) | 2015-02-27 | 2021-07-06 | University Display Corporation | Organic electroluminescent materials and devices |
EP3079179A1 (en) | 2015-04-08 | 2016-10-12 | Novaled GmbH | Semiconducting material comprising a phosphine oxide matrix and metal salt |
CN104795432A (en) * | 2015-05-04 | 2015-07-22 | 京东方科技集团股份有限公司 | Organic light-emitting diode device and display device |
US9859510B2 (en) | 2015-05-15 | 2018-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418568B2 (en) | 2015-06-01 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9879039B2 (en) | 2015-06-03 | 2018-01-30 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues |
EP3109916B1 (en) | 2015-06-23 | 2021-08-25 | Novaled GmbH | Organic light emitting device comprising polar matrix, metal dopant and silver cathode |
DE102015110091B4 (en) | 2015-06-23 | 2019-06-06 | Novaled Gmbh | Phosphepin matrix compound for a semiconductor material |
KR102581921B1 (en) | 2015-06-23 | 2023-09-21 | 노발레드 게엠베하 | Organic light-emitting device containing polar matrix and metal dopant |
EP3109915B1 (en) | 2015-06-23 | 2021-07-21 | Novaled GmbH | Organic light emitting device comprising polar matrix and metal dopant |
EP3109919B1 (en) | 2015-06-23 | 2021-06-23 | Novaled GmbH | N-doped semiconducting material comprising polar matrix and metal dopant |
US11127905B2 (en) | 2015-07-29 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10211411B2 (en) | 2015-08-25 | 2019-02-19 | Arizona Board Of Regents On Behalf Of Arizona State University | Thermally activated delayed fluorescent material based on 9,10-dihydro-9,9-dimethylacridine analogues for prolonging device longevity |
US10672996B2 (en) | 2015-09-03 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102500272B1 (en) | 2015-09-16 | 2023-02-16 | 삼성디스플레이 주식회사 | Compound and Organic light emitting device comprising same |
EP3168894B8 (en) | 2015-11-10 | 2023-07-26 | Novaled GmbH | N-doped semiconducting material comprising two metal dopants |
EP3168886B8 (en) | 2015-11-10 | 2023-07-26 | Novaled GmbH | Metallic layer comprising alkali metal and second metal |
EP3168324A1 (en) | 2015-11-10 | 2017-05-17 | Novaled GmbH | Process for making a metal containing layer |
KR102650149B1 (en) | 2015-11-10 | 2024-03-20 | 노발레드 게엠베하 | Process for manufacturing metal-containing layers |
KR102410499B1 (en) * | 2015-11-30 | 2022-06-16 | 엘지디스플레이 주식회사 | Organic light emitting display device |
CN106356452B (en) * | 2015-12-09 | 2018-09-18 | 广东阿格蕾雅光电材料有限公司 | Only electronics organic semiconductor diodes device |
CN106542957B (en) * | 2015-12-09 | 2019-05-14 | 广东阿格蕾雅光电材料有限公司 | Organic Electron Transport Material |
KR102536929B1 (en) * | 2015-12-31 | 2023-05-24 | 엘지디스플레이 주식회사 | Organic light emitting diode |
US20170229663A1 (en) | 2016-02-09 | 2017-08-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10236456B2 (en) | 2016-04-11 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
DE102016106917A1 (en) * | 2016-04-14 | 2017-10-19 | Osram Oled Gmbh | Organic electronic component with carrier generation layer |
US11335865B2 (en) | 2016-04-15 | 2022-05-17 | Arizona Board Of Regents On Behalf Of Arizona State University | OLED with multi-emissive material layer |
EP3252841A1 (en) * | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
US10672997B2 (en) | 2016-06-20 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11482683B2 (en) | 2016-06-20 | 2022-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862054B2 (en) | 2016-06-20 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10941168B2 (en) | 2016-06-22 | 2021-03-09 | Novaled Gmbh | Phosphepine matrix compound for a semiconducting material |
US10608186B2 (en) | 2016-09-14 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680187B2 (en) | 2016-09-23 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11196010B2 (en) | 2016-10-03 | 2021-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11011709B2 (en) | 2016-10-07 | 2021-05-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN110291094A (en) | 2016-10-12 | 2019-09-27 | 亚利桑那州立大学董事会 | Narrowband red phosphorescent tetradentate platinum (II) complex compound |
KR20180044466A (en) | 2016-10-21 | 2018-05-03 | 삼성디스플레이 주식회사 | Organic Light Emitting Diodes |
EP3312896B1 (en) * | 2016-10-24 | 2021-03-31 | Novaled GmbH | Organic electroluminescent device comprising a redox-doped electron transport layer and an auxiliary electron transport layer |
US20180130956A1 (en) | 2016-11-09 | 2018-05-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680188B2 (en) | 2016-11-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11183670B2 (en) | 2016-12-16 | 2021-11-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light emitting diode with split emissive layer |
US11780865B2 (en) | 2017-01-09 | 2023-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2018140765A1 (en) | 2017-01-27 | 2018-08-02 | Jian Li | Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues |
WO2018180215A1 (en) * | 2017-03-28 | 2018-10-04 | 保土谷化学工業株式会社 | Organic electroluminescent element |
US10844085B2 (en) | 2017-03-29 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3382770B1 (en) | 2017-03-30 | 2023-09-20 | Novaled GmbH | Ink composition for forming an organic layer of a semiconductor |
CN106953023B (en) * | 2017-04-27 | 2019-07-02 | 武汉华星光电技术有限公司 | Charge generation layer, stacked OLED device and display screen |
US10944060B2 (en) | 2017-05-11 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11101435B2 (en) | 2017-05-19 | 2021-08-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complexes based on biscarbazole and analogues |
US10516117B2 (en) | 2017-05-19 | 2019-12-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues |
CN107256927B (en) * | 2017-06-13 | 2020-01-24 | 上海天马有机发光显示技术有限公司 | Organic light emitting device and display apparatus |
US12098157B2 (en) | 2017-06-23 | 2024-09-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228010B2 (en) | 2017-07-26 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744142B2 (en) | 2017-08-10 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11839147B2 (en) * | 2017-09-04 | 2023-12-05 | Beijing Summer Sprout Technology Co., Ltd. | Hole injection layer and charge generation layer containing a truxene based compound |
US11647643B2 (en) | 2017-10-17 | 2023-05-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Hole-blocking materials for organic light emitting diodes |
CN117279468A (en) | 2017-10-17 | 2023-12-22 | 李健 | Phosphorescent excimer with preferred molecular orientation as monochromatic emitter for display and illumination applications |
US20190161504A1 (en) | 2017-11-28 | 2019-05-30 | University Of Southern California | Carbene compounds and organic electroluminescent devices |
US11937503B2 (en) | 2017-11-30 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11542289B2 (en) | 2018-01-26 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12037348B2 (en) | 2018-03-09 | 2024-07-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue and narrow band green and red emitting metal complexes |
US20200075870A1 (en) | 2018-08-22 | 2020-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20210273178A1 (en) * | 2018-09-28 | 2021-09-02 | Sharp Kabushiki Kaisha | Display device and method of manufacturing display device |
CN114516821B (en) * | 2018-10-09 | 2024-02-13 | 宁波卢米蓝新材料有限公司 | Compound containing multiple rings, application and organic electroluminescent device |
KR102143585B1 (en) * | 2018-11-08 | 2020-08-11 | 엘티소재주식회사 | Heterocyclic compound and organic light emitting device comprising the same |
JP2022513170A (en) * | 2018-11-29 | 2022-02-07 | メルク パテント ゲーエムベーハー | Electronic device |
US11737349B2 (en) | 2018-12-12 | 2023-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11878988B2 (en) | 2019-01-24 | 2024-01-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues |
US11594691B2 (en) | 2019-01-25 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters |
US11780829B2 (en) | 2019-01-30 | 2023-10-10 | The University Of Southern California | Organic electroluminescent materials and devices |
US20200251664A1 (en) | 2019-02-01 | 2020-08-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP2020158491A (en) | 2019-03-26 | 2020-10-01 | ユニバーサル ディスプレイ コーポレイション | Organic electroluminescent materials and devices |
US10838556B2 (en) | 2019-04-05 | 2020-11-17 | Apple Inc. | Sensing system for detection of light incident to a light emitting layer of an electronic device display |
US12033811B2 (en) | 2019-07-02 | 2024-07-09 | Novaled Gmbh | Solar cell |
JP2021009950A (en) * | 2019-07-02 | 2021-01-28 | ノヴァレッド ゲーエムベーハー | Solar cell |
US20210032278A1 (en) | 2019-07-30 | 2021-02-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20210047354A1 (en) | 2019-08-16 | 2021-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11527582B1 (en) | 2019-09-24 | 2022-12-13 | Apple Inc. | Display stack with integrated photodetectors |
US11611058B2 (en) | 2019-09-24 | 2023-03-21 | Apple Inc. | Devices and systems for under display image sensor |
US11785838B2 (en) | 2019-10-02 | 2023-10-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Green and red organic light-emitting diodes employing excimer emitters |
US20210135130A1 (en) | 2019-11-04 | 2021-05-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20210217969A1 (en) | 2020-01-06 | 2021-07-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220336759A1 (en) | 2020-01-28 | 2022-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102509034B1 (en) * | 2020-02-13 | 2023-03-10 | 삼성디스플레이 주식회사 | Organic light emitting device and apparatus including the same |
US11592873B2 (en) | 2020-02-14 | 2023-02-28 | Apple Inc. | Display stack topologies for under-display optical transceivers |
US11295664B2 (en) | 2020-03-11 | 2022-04-05 | Apple Inc. | Display-synchronized optical emitters and transceivers |
US11945985B2 (en) | 2020-05-19 | 2024-04-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal assisted delayed fluorescent emitters for organic light-emitting diodes |
US11327237B2 (en) | 2020-06-18 | 2022-05-10 | Apple Inc. | Display-adjacent optical emission or reception using optical fibers |
EP3989305A1 (en) * | 2020-10-22 | 2022-04-27 | Novaled GmbH | Organic electronic device comprising a compound of formula (1), display device comprising the organic electronic device as well as compounds of formula (1) for use in organic electronic devices |
KR20230028768A (en) | 2020-06-22 | 2023-03-02 | 노발레드 게엠베하 | Organic electronic devices comprising compounds of formula (I), organic electronic devices and display devices comprising compounds of formula (I) for use in organic electronic devices |
EP3937268A1 (en) | 2020-07-10 | 2022-01-12 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
US11487859B2 (en) | 2020-07-31 | 2022-11-01 | Apple Inc. | Behind display polarized optical transceiver |
US20220112232A1 (en) | 2020-10-02 | 2022-04-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220158096A1 (en) | 2020-11-16 | 2022-05-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220162243A1 (en) | 2020-11-24 | 2022-05-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220165967A1 (en) | 2020-11-24 | 2022-05-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN116783159A (en) * | 2021-01-10 | 2023-09-19 | 浙江光昊光电科技有限公司 | Organic compound and application thereof in organic electronic device |
US20220271241A1 (en) | 2021-02-03 | 2022-08-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4060758A3 (en) | 2021-02-26 | 2023-03-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059915A3 (en) | 2021-02-26 | 2022-12-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220298192A1 (en) | 2021-03-05 | 2022-09-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11839133B2 (en) | 2021-03-12 | 2023-12-05 | Apple Inc. | Organic photodetectors for in-cell optical sensing |
US20220298190A1 (en) | 2021-03-12 | 2022-09-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220298193A1 (en) | 2021-03-15 | 2022-09-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20220340607A1 (en) | 2021-04-05 | 2022-10-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075531A1 (en) | 2021-04-13 | 2022-10-19 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
US20220352478A1 (en) | 2021-04-14 | 2022-11-03 | Universal Display Corporation | Organic eletroluminescent materials and devices |
US20220407020A1 (en) | 2021-04-23 | 2022-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20230006149A1 (en) | 2021-04-23 | 2023-01-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20230133787A1 (en) | 2021-06-08 | 2023-05-04 | University Of Southern California | Molecular Alignment of Homoleptic Iridium Phosphors |
CN115666146A (en) * | 2021-07-10 | 2023-01-31 | 北京夏禾科技有限公司 | Organic electroluminescent device |
US12124002B2 (en) | 2021-09-03 | 2024-10-22 | Apple Inc. | Beam deflector metasurface |
EP4151699A1 (en) | 2021-09-17 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240343970A1 (en) | 2021-12-16 | 2024-10-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4231804A3 (en) | 2022-02-16 | 2023-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20230292592A1 (en) | 2022-03-09 | 2023-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20230337516A1 (en) | 2022-04-18 | 2023-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20230389421A1 (en) | 2022-05-24 | 2023-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4293001A1 (en) | 2022-06-08 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240016051A1 (en) | 2022-06-28 | 2024-01-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240107880A1 (en) | 2022-08-17 | 2024-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4344390A1 (en) * | 2022-09-21 | 2024-03-27 | Novaled GmbH | Organic electroluminescent device comprising a radialene of formula (i) and a compound of formula (ii), and display device comprising the organic electroluminescent device |
US20240188419A1 (en) | 2022-10-27 | 2024-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240188316A1 (en) | 2022-10-27 | 2024-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240180025A1 (en) | 2022-10-27 | 2024-05-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240188319A1 (en) | 2022-10-27 | 2024-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240196730A1 (en) | 2022-10-27 | 2024-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20240247017A1 (en) | 2022-12-14 | 2024-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10307125A1 (en) | 2002-02-20 | 2004-01-08 | Novaled Gmbh | Doped organic semiconductor material for use e.g. in organic solar cells and LED's, obtained by doping with compounds which produce the doping effect after cleavage of certain groups |
US20050089789A1 (en) * | 2002-05-31 | 2005-04-28 | Samsung Electronics Co., Ltd. | Organophotoreceptor with a light stabilizer |
US20060240278A1 (en) * | 2005-04-20 | 2006-10-26 | Eastman Kodak Company | OLED device with improved performance |
US20070141396A1 (en) * | 2005-12-20 | 2007-06-21 | Min-Seung Chun | Organic luminescence display device and method of manufacturing the same |
EP1837926A1 (en) | 2006-03-21 | 2007-09-26 | Novaled AG | Heterocyclic radicals or diradicals and their dimers, oligomers, polymers, di-spiro and polycyclic derivatives as well as their use in organic semiconductor materials and electronic devices. |
US20080030131A1 (en) | 2006-08-04 | 2008-02-07 | Eastman Kodak Company | Electrically excited organic light-emitting diodes with spatial and spectral coherence |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6337492B1 (en) | 1997-07-11 | 2002-01-08 | Emagin Corporation | Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer |
JP2003264085A (en) * | 2001-12-05 | 2003-09-19 | Semiconductor Energy Lab Co Ltd | Organic semiconductor element, organic electroluminescence element and organic solar cell |
US7956349B2 (en) | 2001-12-05 | 2011-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor element |
US6717358B1 (en) | 2002-10-09 | 2004-04-06 | Eastman Kodak Company | Cascaded organic electroluminescent devices with improved voltage stability |
EP1564826A1 (en) | 2004-02-10 | 2005-08-17 | Université Libre De Bruxelles | Phthalocyanine derivative layer in electronic multilayer devices and method for the manufacturing thereof |
US7273663B2 (en) | 2004-08-20 | 2007-09-25 | Eastman Kodak Company | White OLED having multiple white electroluminescence units |
JP4513060B2 (en) * | 2004-09-06 | 2010-07-28 | 富士電機ホールディングス株式会社 | Organic EL device |
JP4496949B2 (en) * | 2004-12-13 | 2010-07-07 | 株式会社豊田自動織機 | Organic EL device |
US7075231B1 (en) | 2005-01-03 | 2006-07-11 | Eastman Kodak Company | Tandem OLEDs having low drive voltage |
US7494722B2 (en) * | 2005-02-23 | 2009-02-24 | Eastman Kodak Company | Tandem OLED having an organic intermediate connector |
US20060240277A1 (en) * | 2005-04-20 | 2006-10-26 | Eastman Kodak Company | Tandem OLED device |
US7728517B2 (en) * | 2005-05-20 | 2010-06-01 | Lg Display Co., Ltd. | Intermediate electrodes for stacked OLEDs |
US20070046189A1 (en) | 2005-08-31 | 2007-03-01 | Eastman Kodak Company | Intermediate connector for a tandem OLED device |
WO2007071450A1 (en) | 2005-12-23 | 2007-06-28 | Novaled Ag | Electronic device with a layer structure of organic layers |
KR100823443B1 (en) * | 2006-03-14 | 2008-04-18 | 주식회사 엘지화학 | Organic light emitting diode having high efficiency and method for fabricating the same |
US8076839B2 (en) * | 2006-05-11 | 2011-12-13 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
KR101407574B1 (en) | 2007-01-12 | 2014-06-17 | 삼성디스플레이 주식회사 | White light emitting device |
WO2008120603A1 (en) * | 2007-03-30 | 2008-10-09 | Idemitsu Kosan Co., Ltd. | Light emitting element |
-
2009
- 2009-05-13 US US12/465,235 patent/US8603642B2/en active Active
-
2010
- 2010-05-04 WO PCT/US2010/033520 patent/WO2010132236A1/en active Application Filing
- 2010-05-04 CN CN201080021101.7A patent/CN102439746B/en active Active
- 2010-05-04 TW TW099114229A patent/TWI504034B/en active
- 2010-05-04 JP JP2012510851A patent/JP5632461B2/en active Active
- 2010-05-04 EP EP10775272.7A patent/EP2430677B1/en active Active
- 2010-05-04 KR KR1020117026502A patent/KR101711596B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10307125A1 (en) | 2002-02-20 | 2004-01-08 | Novaled Gmbh | Doped organic semiconductor material for use e.g. in organic solar cells and LED's, obtained by doping with compounds which produce the doping effect after cleavage of certain groups |
US20050089789A1 (en) * | 2002-05-31 | 2005-04-28 | Samsung Electronics Co., Ltd. | Organophotoreceptor with a light stabilizer |
US20060240278A1 (en) * | 2005-04-20 | 2006-10-26 | Eastman Kodak Company | OLED device with improved performance |
US20070141396A1 (en) * | 2005-12-20 | 2007-06-21 | Min-Seung Chun | Organic luminescence display device and method of manufacturing the same |
EP1837926A1 (en) | 2006-03-21 | 2007-09-26 | Novaled AG | Heterocyclic radicals or diradicals and their dimers, oligomers, polymers, di-spiro and polycyclic derivatives as well as their use in organic semiconductor materials and electronic devices. |
US20070252140A1 (en) * | 2006-03-21 | 2007-11-01 | Michael Limmert | Heterocyclic Radical or Diradical, the Dimers, Oligomers, Polymers, Dispiro Compounds and Polycycles Thereof, the Use Thereof, Organic Semiconductive Material and Electronic or Optoelectronic Component |
US20080030131A1 (en) | 2006-08-04 | 2008-02-07 | Eastman Kodak Company | Electrically excited organic light-emitting diodes with spatial and spectral coherence |
Non-Patent Citations (1)
Title |
---|
See also references of EP2430677A4 |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8951443B2 (en) | 2009-07-31 | 2015-02-10 | Novaled Ag | Organic semiconducting material and electronic component |
DE102010004453A1 (en) * | 2010-01-12 | 2011-07-14 | Novaled AG, 01307 | Organic light emitting component has connection units formed with p-doped and n-doped hole transport layers and n-type and p-type dot layers formed with organic n-dopant and p-dopant materials respectively |
WO2011134458A1 (en) * | 2010-04-27 | 2011-11-03 | Novaled Ag | Organic semiconducting material and electronic component |
CN103493236A (en) * | 2011-04-08 | 2014-01-01 | 欧司朗光电半导体有限公司 | Optoelectronic component and use of a copper complex as dopant for doping a layer |
JP2014513419A (en) * | 2011-04-08 | 2014-05-29 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optoelectronic devices and the use of copper complexes as doping materials for doping layers |
WO2013102985A1 (en) * | 2012-01-06 | 2013-07-11 | 出光興産株式会社 | Organic photoelectric conversion element and organic thin-film solar battery module |
US9287519B2 (en) | 2012-03-19 | 2016-03-15 | Osram Oled Gmbh | Optoelectronic device and method for producing an optoelectronic device |
CN104205394A (en) * | 2012-03-19 | 2014-12-10 | 欧司朗光电半导体有限公司 | Optoelectronic component and method for producing an optoelectronic component |
US20150303380A1 (en) * | 2012-03-29 | 2015-10-22 | Sony Corporation | Organic electroluminescent device |
JPWO2013145666A1 (en) * | 2012-03-29 | 2015-12-10 | ソニー株式会社 | Organic electroluminescence device |
JPWO2013145667A1 (en) * | 2012-03-29 | 2015-12-10 | ソニー株式会社 | Organic electroluminescence device |
US10573823B2 (en) | 2012-03-29 | 2020-02-25 | Joled Inc | Organic electroluminescent device |
WO2013145666A1 (en) * | 2012-03-29 | 2013-10-03 | ソニー株式会社 | Organic electroluminescent element |
US9831457B2 (en) | 2012-05-31 | 2017-11-28 | Lg Display Co., Ltd. | Organic light emitting diode |
TWI622196B (en) * | 2012-05-31 | 2018-04-21 | 樂金顯示科技股份有限公司 | Organic light emitting device |
WO2013180503A1 (en) * | 2012-05-31 | 2013-12-05 | 주식회사 엘지화학 | Organic light emitting diode |
EP3318566A1 (en) | 2012-09-20 | 2018-05-09 | UDC Ireland Limited | Azadibenzofurans for electronic applications |
US10249827B2 (en) | 2012-09-20 | 2019-04-02 | Udc Ireland Limited | Azadibenzofurans for electronic applications |
WO2014147134A1 (en) | 2013-03-20 | 2014-09-25 | Basf Se | Azabenzimidazole carbene complexes as efficiency booster in oleds |
WO2014177518A1 (en) | 2013-04-29 | 2014-11-06 | Basf Se | Transition metal complexes with carbene ligands and the use thereof in oleds |
WO2015063046A1 (en) | 2013-10-31 | 2015-05-07 | Basf Se | Azadibenzothiophenes for electronic applications |
US10347851B2 (en) | 2013-12-20 | 2019-07-09 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US11765967B2 (en) | 2013-12-20 | 2023-09-19 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US11075346B2 (en) | 2013-12-20 | 2021-07-27 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
EP3916822A1 (en) | 2013-12-20 | 2021-12-01 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
WO2016016791A1 (en) | 2014-07-28 | 2016-02-04 | Idemitsu Kosan Co., Ltd (Ikc) | 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds) |
EP2982676A1 (en) | 2014-08-07 | 2016-02-10 | Idemitsu Kosan Co., Ltd. | Benzimidazo[2,1-B]benzoxazoles for electronic applications |
EP3466957A1 (en) | 2014-08-08 | 2019-04-10 | UDC Ireland Limited | Oled comprising an electroluminescent imidazo-quinoxaline carbene metal complexes |
EP2993215A1 (en) | 2014-09-04 | 2016-03-09 | Idemitsu Kosan Co., Ltd. | Azabenzimidazo[2,1-a]benzimidazoles for electronic applications |
EP3015469A1 (en) | 2014-10-30 | 2016-05-04 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
WO2016067261A1 (en) | 2014-10-30 | 2016-05-06 | Idemitsu Kosan Co., Ltd. | 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications |
CN104449671A (en) * | 2014-11-11 | 2015-03-25 | 吉林大学 | Organic neutral radical electroluminescence material and organic electroluminescence device prepared by using material |
WO2016079667A1 (en) | 2014-11-17 | 2016-05-26 | Idemitsu Kosan Co., Ltd. | Indole derivatives for electronic applications |
WO2016079169A1 (en) | 2014-11-18 | 2016-05-26 | Basf Se | Pt- or pd-carbene complexes for use in organic light emitting diodes |
WO2016097983A1 (en) | 2014-12-15 | 2016-06-23 | Idemitsu Kosan Co., Ltd. | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds) |
EP3034507A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs) |
EP3034506A1 (en) | 2014-12-15 | 2016-06-22 | Idemitsu Kosan Co., Ltd | 4-functionalized carbazole derivatives for electronic applications |
WO2016097017A1 (en) | 2014-12-16 | 2016-06-23 | Novaled Gmbh | Substituted 1,2,3-triylidenetris(cyanomethanylylidene)) cyclopropanes for vte, electronic devices and semiconducting materials using them |
EP3034489A1 (en) | 2014-12-16 | 2016-06-22 | Novaled GmbH | Substituted 1,2,3-triylidenetris(cyanomethanylylidene)) cyclopropanes for VTE, electronic devices and semiconducting materials using them |
EP3053918A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd | 2-carbazole substituted benzimidazoles for electronic applications |
EP3054498A1 (en) | 2015-02-06 | 2016-08-10 | Idemitsu Kosan Co., Ltd. | Bisimidazodiazocines |
WO2016125110A1 (en) | 2015-02-06 | 2016-08-11 | Idemitsu Kosan Co., Ltd. | Bisimidazolodiazocines |
EP3061759A1 (en) | 2015-02-24 | 2016-08-31 | Idemitsu Kosan Co., Ltd | Nitrile substituted dibenzofurans |
EP3070144A1 (en) | 2015-03-17 | 2016-09-21 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3072943A1 (en) | 2015-03-26 | 2016-09-28 | Idemitsu Kosan Co., Ltd. | Dibenzofuran/carbazole-substituted benzonitriles |
EP3075737A1 (en) | 2015-03-31 | 2016-10-05 | Idemitsu Kosan Co., Ltd | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016157113A1 (en) | 2015-03-31 | 2016-10-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
EP4060757A1 (en) | 2015-06-03 | 2022-09-21 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
WO2017056053A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150604A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
EP3150606A1 (en) | 2015-10-01 | 2017-04-05 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes |
WO2017056052A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes |
WO2017056055A1 (en) | 2015-10-01 | 2017-04-06 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
WO2017093958A1 (en) | 2015-12-04 | 2017-06-08 | Idemitsu Kosan Co., Ltd. | Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes |
EP3184534A1 (en) | 2015-12-21 | 2017-06-28 | UDC Ireland Limited | Transition metal complexes with tripodal ligands and the use thereof in oleds |
US10490754B2 (en) | 2015-12-21 | 2019-11-26 | Udc Ireland Limited | Transition metal complexes with tripodal ligands and the use thereof in OLEDs |
WO2017109722A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
WO2017178864A1 (en) | 2016-04-12 | 2017-10-19 | Idemitsu Kosan Co., Ltd. | Seven-membered ring compounds |
EP3418285A1 (en) | 2017-06-20 | 2018-12-26 | Idemitsu Kosan Co., Ltd. | Composition comprising a substituted ir complex and a phenylquinazoline bridged with a heteroatom |
EP3466954A1 (en) | 2017-10-04 | 2019-04-10 | Idemitsu Kosan Co., Ltd. | Fused phenylquinazolines bridged with a heteroatom |
Also Published As
Publication number | Publication date |
---|---|
EP2430677B1 (en) | 2020-01-15 |
US8603642B2 (en) | 2013-12-10 |
JP5632461B2 (en) | 2014-11-26 |
KR101711596B1 (en) | 2017-03-02 |
CN102439746B (en) | 2015-02-18 |
TWI504034B (en) | 2015-10-11 |
JP2012527089A (en) | 2012-11-01 |
EP2430677A1 (en) | 2012-03-21 |
US20100288362A1 (en) | 2010-11-18 |
CN102439746A (en) | 2012-05-02 |
KR20120023641A (en) | 2012-03-13 |
EP2430677A4 (en) | 2014-03-12 |
TW201106515A (en) | 2011-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2430677B1 (en) | Internal connector for organic electronic devices | |
CN107925014B (en) | Metal amides as HILs for Organic Light Emitting Diodes (OLEDs) | |
US7955719B2 (en) | Tandem OLED device with intermediate connector | |
EP2568515B1 (en) | OLED device with fluoranthene electron transport materials | |
JP2011082564A (en) | Oled having non-hole blocking buffer layer | |
WO2011010696A1 (en) | Organic electroluminescent element | |
JP2012134159A (en) | Organic electric element | |
Peng et al. | Efficient quantum-dot light-emitting diodes with 4, 4, 4-tris (N-carbazolyl)-triphenylamine (TcTa) electron-blocking layer | |
CN110492007B (en) | Acridine compound and application thereof in organic electroluminescent device | |
CN108832008B (en) | Application of exciplex in organic light-emitting diode | |
AU2013232448A1 (en) | Metal oxide charge transport material doped with organic molecules | |
KR20210070215A (en) | Organic electroluminescent device | |
KR101715219B1 (en) | Quinoxaline compounds and semiconductor materials | |
Gao et al. | Highly Efficient White Organic Light‐Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow‐Emitting Layers | |
Lee et al. | Improvement of Power Efficiency in Phosphorescent White Organic Light‐Emitting Diodes Using p‐Doped Hole Transport Layer | |
KR20150020706A (en) | P-i-n-type organic light-emitting diode | |
CN105633303B (en) | Preparation method of organic phosphorescent device | |
Cao et al. | Stable blue fluorescent organic light-emitting diodes based on an inorganically doped homojunction | |
Yoon et al. | Realization of high-performance blue organic light-emitting diodes using multi-emissive layers | |
CN114613927B (en) | Charge generation layer, electroluminescent device and preparation method thereof | |
Kim et al. | Study of deep blue organic light-emitting diodes using doped BCzVBi with various blue host materials | |
Kondakova et al. | P‐171: High‐Efficiency Low‐Voltage Phosphorescent OLED Devices with Mixed Host | |
Lee et al. | P‐133: Distinguished Student Paper: Highly Efficient Deep Blue Organic Light‐Emitting Device | |
Ho et al. | 39.2: Efficient Single‐Layer Small Molecule Blue OLEDs Based on a Multifunctional Bipolar Transport Material | |
KR20240002222A (en) | Organic electroluminescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080021101.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10775272 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010775272 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117026502 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012510851 Country of ref document: JP |