Nothing Special   »   [go: up one dir, main page]

WO2010122910A1 - Wireless communication system, base station apparatus and mobile station apparatus - Google Patents

Wireless communication system, base station apparatus and mobile station apparatus Download PDF

Info

Publication number
WO2010122910A1
WO2010122910A1 PCT/JP2010/056441 JP2010056441W WO2010122910A1 WO 2010122910 A1 WO2010122910 A1 WO 2010122910A1 JP 2010056441 W JP2010056441 W JP 2010056441W WO 2010122910 A1 WO2010122910 A1 WO 2010122910A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
signal
information
base station
uplink
Prior art date
Application number
PCT/JP2010/056441
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 秋元
昇平 山田
智造 野上
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010122910A1 publication Critical patent/WO2010122910A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, and a mobile station apparatus that transmit and receive a plurality of types of signals having different required qualities using a MIMO (Multiple Input Multiple Multiple Output) scheme between the base station apparatus and the mobile station apparatus.
  • MIMO Multiple Input Multiple Multiple Output
  • 3GPP 3rd Generation Partnership Project
  • W-CDMA Wideband-Code Division Multiple Access
  • GSM Global System Mobile for Mobile Communications
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • a communication system based on SC-FDMA Single-Carrier-Frequency-Division-Multiple Access based on resources allocated from a base station apparatus is employed.
  • the modulated transmission signal is converted into a frequency domain signal by DFT (Discrete Fourier Transformation), mapped to the frequency resource allocated by the base station apparatus, and then timed by IDFT (Inverse DFT).
  • IDFT Discrete Fourier Transformation
  • the signal is converted into an area signal and transmitted to the base station apparatus.
  • the uplink data is passed from the upper layer, corresponds to data in which the meaning of each bit is not interpreted in the physical layer, and is referred to as UL-SCH (Uplink Shared Channel) defined in the transport channel.
  • UL-SCH Uplink Shared Channel
  • control information such as spatial multiplexing number information (RI: Rank Indicator) when spatial multiplexing is applied is also transmitted.
  • PUSCH Physical-Uplink-Shared-Channel
  • PUSCH Physical-Uplink-Shared-Channel
  • FIG. 6 is a diagram showing the relationship between resource management and channels divided by time and frequency in LTE uplink.
  • the uplink resource mainly includes a physical uplink control channel (PUCCH) used for transmitting control information, and each mobile station apparatus mainly transmits data.
  • Physical uplink shared channels (PUSCH: Physical-Uplink-Shared-Channel), each of which is expressed as a set of division units called resource blocks (RB: Resource-Block).
  • RB Resource-Block
  • the number of resource blocks in the frequency direction depends on the system bandwidth.
  • a time unit occupied by one resource block is called one slot, and these two are collectively called one subframe.
  • the PUSCH is allocated to the mobile station apparatus in resource block units in which two slots are paired.
  • FIG. 7 is a diagram illustrating an example of the configuration in one resource block of PUSCH in terms of frequency and time.
  • one resource block is composed of seven SC-FDMA symbols (corresponding to one slot) and 12 subcarriers in the frequency direction, and is the minimum resource composed of one SC-FDMA symbol and one subcarrier.
  • the unit is called a resource element (RE).
  • the modulation symbols arranged in the resource element are converted into the time domain by processing such as FFT (Fast Fourier Transformation) in units of SC-FDMA symbols, and then transmitted from the mobile station apparatus to the base station apparatus.
  • FFT Fast Fourier Transformation
  • FIG. 8 is a diagram showing an example of mapping when UL-SCH, CQI, PMI, and RI described in Non-Patent Document 1 and Non-Patent Document 2 are scheduled at the same time.
  • the horizontal axis represents time, and each corresponds to one SC-FDMA symbol.
  • the vertical axis represents a sequence of modulation symbol sequences to be mapped, does not correspond to the frequency axis, is subjected to DFT processing for each SC-FDMA symbol, and is mapped to resources allocated on the frequency axis.
  • an ACK / NACK is mapped to two SC-FDMA symbols adjacent to a reference signal, and an RI is mapped to an SC-FDMA symbol separated by two from the reference signal.
  • the CQI is mapped to all SC-FDMA symbols excluding the reference signal.
  • Non-Patent Document 2 and Non-Patent Document 3 it is determined that an offset from UL-SCH corresponding to the type of information is applied to the modulation scheme and coding rate.
  • ACK / NACK and RI are always QPSK regardless of the UL-SCH modulation scheme.
  • the coding rate applied to ACK / NACK, RI, and CQI / PMI is determined by applying the offset notified from the base station apparatus to the coding rate applied to UL-SCH.
  • LTE does not employ spatial multiplexing based on MIMO (Multiple Input Multiple Output) for the uplink, and this is not taken into consideration.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRA Multiplexing and channel coding
  • TS 36.212 v 8.5.0 Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation (Release 8)” 3GPP TS 36.211 v 8.5.0 “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical layer procedures (Release 8)” 3GPP TS 36.213 v 8.5.0
  • An object of the present invention is to provide a wireless communication system, a base station apparatus, and a mobile station apparatus.
  • the wireless communication system of the present invention is a wireless communication system that transmits and receives a plurality of types of signals having different required qualities between a base station apparatus and a mobile station apparatus using a MIMO (Multiple Input Multiple Multiple Output) system.
  • MIMO Multiple Input Multiple Multiple Output
  • the required quality of the signal different numbers of spatially multiplexed sequences are selected, and based on the selected number of spatially multiplexed sequences, each signal is transmitted / received by the MIMO scheme.
  • the wireless communication system of the present invention selects at least one of different modulation schemes or coding rates according to the required quality of the signal, and based on the selected modulation scheme or coding rate, Each of the signals is processed.
  • At least one of different modulation schemes or coding rates is selected, and each signal is processed based on the selected modulation scheme or coding rate. Communication that satisfies the required quality can be carried out efficiently and simply.
  • the number of spatially multiplexed sequences is uniquely determined according to a plurality of types of signals having different required qualities.
  • the number of spatially multiplexed sequences is uniquely determined according to a plurality of types of signals having different required qualities, the number of spatially multiplexed sequences can be selected easily and quickly.
  • Transmission information sequence number information can be transmitted and received between the base station apparatus and the mobile station apparatus without being generated.
  • the radio communication system of the present invention uses the SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) method to transmit and receive signals having the same number of selected spatial multiplexing sequences with the same symbol. It is a feature.
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the base station apparatus of the present invention is a base station apparatus that transmits and receives a plurality of types of signals having different required qualities using a MIMO (Multiple Input Input Multiple Output) method with a mobile station apparatus.
  • An uplink spatial multiplexing information control unit that selects different numbers of spatially multiplexed sequences according to the required quality of the signal, and at least one of a different modulation scheme or coding rate according to the required quality of the signal
  • An uplink modulation scheme / coding rate control unit to transmit, information indicating the number of selected spatial multiplexing sequences, and transmission indicating information indicating the selected modulation scheme or coding rate to the mobile station apparatus And a section.
  • the number of different spatial multiplexing sequences is selected according to the required quality of the signal, and at least one of the different modulation schemes or coding rates is selected according to the required quality of the signal, and the selected space is selected. Since the information indicating the number of multiplexed sequences and the information indicating the selected modulation scheme or coding rate are transmitted to the mobile station device, the mobile station device is based on the number of spatial multiplexed sequences, the modulation scheme or the coding rate. By transmitting the signal, communication that satisfies the required quality can be performed efficiently and easily.
  • a mobile station apparatus is a mobile station apparatus that transmits and receives a plurality of types of signals having different required qualities with a base station apparatus using a MIMO (Multiple Input Input Multiple Output) system.
  • An uplink spatial multiplexing information management unit that manages information indicating the number of spatially multiplexed sequences received from the base station apparatus; and an uplink modulation scheme that manages information indicating the modulation scheme or coding rate received from the base station apparatus -Based on the coding rate management unit and the information indicating the managed modulation scheme or coding rate, the transmission signal is modulated and / or coded according to the required quality, and is managed.
  • a mobile station-side transmitter that transmits a transmission signal to the base station apparatus in the MIMO scheme with the number of spatially multiplexed sequences corresponding to the required quality based on the information indicating the number of spatially multiplexed sequences. It is characterized in Rukoto.
  • the number of spatially multiplexed sequences managed by performing at least one of modulation and coding corresponding to the required quality on the transmission signal Since the transmission signal is transmitted to the base station apparatus by the MIMO scheme with the number of spatially multiplexed sequences corresponding to the required quality based on the information indicating that, it is possible to efficiently and easily perform communication that satisfies the required quality it can.
  • a mobile station apparatus when a mobile station apparatus transmits a plurality of types of information having different required qualities in communication resources allocated from the base station apparatus, it is efficient by applying different spatial multiplexing numbers to each. In addition, communication that satisfies the required quality can be performed easily.
  • the mobile communication system includes a mobile station device and a base station device.
  • UL-SCH Uplink Shared Channel
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • PUSCH Physical Uplink Shared Channel
  • FIG. 1 is a block diagram showing a schematic configuration of a base station apparatus according to this embodiment.
  • the base station apparatus 200 includes a transmission unit 210, a scheduling unit 220, a reception unit 230, and an antenna 240.
  • the transmission unit 210 includes an encoding unit 211, a modulation unit 212, a mapping unit 213, and a wireless transmission unit 214.
  • the scheduling unit 220 includes an uplink transmission resource control unit 221, an uplink spatial multiplexing information control unit 222, an uplink modulation scheme / coding rate control unit 223, a downlink transmission resource control unit 224, and a downlink spatial multiplexing information control.
  • the reception unit 230 includes a radio reception unit 231, an uplink propagation path calculation unit 232, and an inverse mapping / demodulation processing unit 233.
  • antennas 240 There are as many antennas 240 as necessary for transmitting downlink signals and receiving uplink signals.
  • the downlink data generated in the upper layer in base station apparatus 200 and transmitted to each mobile station apparatus and scheduling information for control information transmission output from scheduling section 220 are input to encoding section 211, respectively. Is encoded according to the control signal from the scheduling unit 220 and an encoded bit string is output.
  • the control signal from the scheduling unit 220 represents information representing a coding rate or a coding scheme such as a turbo code or a tail biting convolutional code.
  • a plurality of pieces of information may be combined and encoded, and each piece of information may be encoded separately.
  • the plurality of output bit strings of the encoding unit 211 are input to the modulation unit 212, each of which is modulated according to a control signal from the scheduling unit 220, for example, converted into BPSK, QPSK, 16QAM, and 64QAM symbols and output.
  • the output of the modulation unit 212 is input to the mapping unit 213 together with the downlink scheduling and spatial multiplexing information provided from the scheduling unit 220, and transmission data is generated.
  • the transmission data refers to, for example, an OFDM signal
  • the mapping operation corresponds to an operation corresponding to the frequency and time resources specified for each mobile station apparatus. If spatial multiplexing by MIMO is employed, this processing is performed in this block.
  • the control information refers to uplink or downlink resource allocation information, that is, transmission timing and frequency resource information, uplink or downlink signal modulation scheme and coding rate, and CQI and PMI for the mobile station apparatus. , RI transmission request, etc.
  • the signal generated by the mapping unit 213 is output to the wireless transmission unit 214.
  • the wireless transmission unit 214 it is converted into a form suitable for the transmission method, and if it is a communication method specifically compliant with OFDMA, IFFT (Inverse Fast Fourier Transformation) is performed on the signal in the frequency domain, A time domain signal is generated.
  • the output signal of the wireless transmission unit 214 is supplied to the antenna 240 and transmitted from here to each mobile station apparatus.
  • the scheduling unit 220 manages and controls the control information from the higher layer and the control information transmitted from the base station apparatus 200, determines the resource allocation to each mobile station apparatus, the modulation scheme, the coding rate, and these operations. Control and output of control information are performed.
  • the uplink transmission resource control unit 221 manages uplink resources used by each mobile station apparatus and generates a control signal thereof.
  • the uplink spatial multiplexing information control unit 222 manages information that can be calculated from the propagation path measurement signal transmitted from the mobile station apparatus, determines the number of multiplexed sequences of MIMO spatial multiplexing to be applied to uplink signal transmission, The control signal related to it is generated.
  • the uplink modulation scheme / coding rate control unit 223 manages information that can be calculated from the channel measurement signal transmitted from the mobile station apparatus, and determines the modulation scheme and coding rate to be applied to uplink signal transmission. At the same time, a control signal associated therewith is generated.
  • the uplink spatial multiplexing information control unit 222 and the uplink modulation scheme / coding rate control unit 223 perform different operations depending on the type of uplink signal, that is, the required required quality. It is a feature. Specifically, if the uplink signal is composed of UL-SCH, CQI, and RI, the uplink spatial multiplexing information control unit 222 can set different spatial multiplexing numbers for each signal, and the uplink modulation scheme The coding rate control unit 223 can set a different modulation scheme / coding rate for each signal.
  • the downlink transmission resource control unit 224 manages the downlink resource allocated to each mobile station apparatus and generates a control signal to be transmitted to each mobile station apparatus.
  • the downlink spatial multiplexing information control unit 225 manages control information (for example, RI) transmitted from the mobile station apparatus or information that can be calculated therefrom, and determines the number of multiplexed sequences of MIMO spatial multiplexing to be applied to downlink signal transmission. At the same time, a control signal associated therewith is generated.
  • the downlink modulation scheme / coding rate control unit 226 manages control information (for example, CQI or PMI) transmitted from the mobile station apparatus or information that can be calculated from the control information, and applies the modulation scheme and code applied to downlink signal transmission. At the same time as the conversion rate is determined, a control signal associated therewith is generated.
  • the signal transmitted from the mobile station apparatus is received by the antenna 240 and then input to the radio reception unit 231.
  • the wireless reception unit 231 receives data and control signals, generates a digital signal corresponding to the transmission method, and outputs it. Specifically, if the OFDM method is adopted, after the received signal is converted from analog to digital, a signal subjected to FFT processing in units of processing time is output.
  • the radio reception unit 231 includes a signal for measuring the state of the uplink propagation path and a signal including information processed by an upper layer (for example, information to be managed as a data signal or control information). Are output as a first signal and a second signal, respectively.
  • the first output of the radio reception unit 231 is output to the uplink propagation path calculation unit 232.
  • information necessary for uplink signal scheduling, spatial multiplexing, modulation scheme, and coding rate determination is calculated and output to scheduling section 220.
  • the second output of the wireless reception unit 231 is output to the inverse mapping / demodulation processing unit 233.
  • the inverse mapping / demodulation processing unit 233 demodulates and extracts a plurality of types of information transmitted from the mobile station apparatus using the mapping pattern, modulation scheme, and coding rate managed by the scheduling unit 220.
  • the scheduling unit 220 if spatial multiplexing is applied to the uplink signal and two or more types of information having different communication qualities are transmitted at the same time, the time and frequency position in which each signal is included are separated in advance, and scheduling is performed.
  • inverse mapping and demodulation processing using different modulation schemes, coding rates, and spatial multiplexing numbers are performed.
  • those processed in the upper layer are output to the upper layer, and control information managed by the scheduling unit 220, such as CQI and RI, is assigned to the scheduling unit. 220.
  • FIG. 2 is a block diagram showing a schematic configuration of the mobile station apparatus according to the present embodiment.
  • the mobile station device 300 includes a reception unit 310, a scheduling information management unit 320, a transmission unit 330, and an antenna 340.
  • the reception unit 310 includes a wireless reception unit 311, a demodulation processing unit 312, and a downlink propagation path calculation unit 313.
  • the scheduling information management unit 320 includes an uplink transmission resource management unit 321, an uplink spatial multiplexing information management unit 322, an uplink modulation scheme / coding rate management unit 323, a downlink spatial multiplexing information management unit 324, a downlink modulation.
  • a system / coding rate management unit 325 and a downlink transmission resource management unit 326 are provided.
  • the output signal of the wireless reception unit 311 is input to the demodulation processing unit 312.
  • the demodulation processor 312 includes downlink signal scheduling information output from the scheduling information manager 320 (that is, information indicating where the signal addressed to the local station is allocated), the number of spatially multiplexed sequences, the modulation scheme, Control information such as a coding rate is also input, and demodulation processing is performed.
  • the demodulated signals are classified according to the signal type, information processed in the upper layer is passed to the upper layer, and information managed by the scheduling information management unit is input to the scheduling information management unit 320. Is done.
  • the downlink propagation path calculation unit 313 calculates management information such as the number of spatially multiplexed sequences applicable to the downlink, the modulation scheme, and the coding rate, using the propagation path calculation signal provided from the radio reception unit 311 as an input signal. To do. This management information is input to the scheduling information management unit 320.
  • the scheduling information management unit 320 manages the control information transmitted from the base station apparatus 200, and also performs management for transmitting the control information calculated by the mobile station apparatus 300 to the base station apparatus 200.
  • the uplink transmission resource management unit 321 manages the uplink resource information of the own station transmitted from the base station apparatus 200 and performs transmission control of the uplink signal.
  • Uplink spatial multiplexing information management section 322 manages the number of MIMO spatial multiplexing sequences transmitted from base station apparatus 200, and performs management when applying this value to an uplink signal.
  • the uplink modulation scheme / coding rate management unit 323 manages the modulation scheme and coding rate information applied to the uplink signal transmitted from the base station apparatus 200, and applies this value to the uplink signal. Manage.
  • the uplink spatial multiplexing information management unit 322 and the uplink modulation scheme / coding rate management unit 323 operate differently depending on the type of uplink signal, that is, the required quality required. It is said. Specifically, if the uplink signal is composed of UL-SCH, CQI, and RI, the uplink spatial multiplexing information management unit 322 can set different spatial multiplexing numbers for each signal, and the uplink modulation scheme
  • the coding rate management unit 323 can set a different modulation scheme / coding rate for each signal.
  • the downlink transmission resource management unit 326 manages information on downlink resource allocation transmitted from the base station apparatus 200 to the own station and controls extraction of signals transmitted to the own station.
  • the downlink spatial multiplexing information management unit 324 determines the number of spatial multiplexing sequences to be applied to the downlink signal based on the propagation path information calculated from the downlink signal, and simultaneously generates a control signal (RI) related thereto.
  • the downlink modulation scheme / coding rate management unit 325 determines a modulation scheme and a coding rate to be applied to downlink signal transmission based on the propagation path information calculated from the downlink signal, and simultaneously controls a control signal ( CQI, PMI) is generated.
  • the transmission unit 330 transmits the uplink data, CQI, and other information simultaneously on the assigned uplink resource.
  • the downlink data and the signal managed by the uplink spatial multiplexing information management unit 322 are supplied to the encoding unit 331 at the transmission timing, and the input signal is encoded at a different coding rate depending on the type. It is.
  • the plurality of series of output signals are input to the modulation unit 332, and are modulated by different modulation schemes depending on the respective types. This output is output to the spatial multiplexing / mapping unit 333.
  • Spatial multiplexing / mapping unit 333 performs signal mapping according to the spatial multiplexing number for each transmission information and mapping position information input from scheduling information management unit 320. Specifically, when SC-FDMA is applied to the transmission method, a signal is mapped to the assigned frequency domain.
  • the signal mapped by the spatial multiplexing / mapping unit 333 is input to the wireless transmission unit 334.
  • these signals are converted into a signal form to be transmitted. Specifically, an operation of converting a frequency domain signal into a time domain signal by IFFT and providing a guard interval corresponds to this.
  • the output of the wireless transmission unit 334 is supplied to the antenna 240.
  • FIG. 3 is a sequence chart in which transmission resources for transmitting UL-SCH, CQI, PMI, and RI are allocated from base station apparatus 200 to mobile station apparatus 300, and transmission is performed using these resources.
  • UL-SCH, CQI, PMI, and RI are simultaneously transmitted as information having different required qualities, but the information types are not limited to these, and other information is transmitted. It is possible to apply the same procedure as in this embodiment.
  • the base station apparatus 200 allocates resources for transmitting uplink data to the mobile station apparatus 300 and transmits a signal requesting to transmit CQI, PMI, and RI simultaneously (step S300).
  • Step S300 may include information on a modulation scheme applied to uplink signal (UL-SCH) transmission, a coding rate, and the number of spatial multiplexing, and the difference value or difference from the UL-SCH value is calculated. Only the index to represent may be notified. Further, this difference value may be shared between the mobile station apparatus 300 and the base station apparatus 200 in a form described in a specification or the like in advance.
  • UL-SCH uplink signal
  • Information regarding modulation schemes, coding rates, and spatial multiplexing numbers applied to CQI, PMI, and RI may be uniquely calculated from information applied to UL-SCH or may be explicitly notified. Furthermore, for the spatial multiplexing number, a specific value may be used for each specific information. For example, when the RI is transmitted, this always corresponds to transmission with the spatial multiplexing number set to 1. In this case, a fixed value described in a specification or the like is applied as the value to be used.
  • the base station apparatus 200 transmits a known signal used for calculating CQI, PMI, and RI to the mobile station apparatus 300 (Step S301).
  • the base station apparatus 200 calculates CQI, PMI, and RI, and at the same time, determines UL- according to the allocated resource size (eg, corresponding to the number of frequency subcarriers), modulation scheme, and coding rate.
  • An SCH is generated (step S302).
  • the coding rate corresponding to the type of information is calculated from the information given by the process of step S300 (step S303). Encoding and modulation are performed for each information (step S304).
  • a plurality of pieces of information may be encoded together, for example, a bit string obtained by serializing CQI and PMI may be generated and encoded.
  • the mapping position of each information is calculated in consideration of the number of symbols of each modulated information, and the mapping and spatial multiplexing signals are considered in consideration of the spatial multiplexing number given by the processing of step S300. Is generated (step S305).
  • FIG. 4 is a diagram showing an example in which UL-SCH, CQI, PMI, and RI are mapped.
  • the part denoted by 400 is a diagram showing resource mapping on the assumption that the SC-FDMA scheme is adopted for the uplink, the horizontal axis shows time, and one unit is 1 SC-FDMA symbol.
  • the vertical axis represents that signals (modulation symbols) in one SC-FDMA symbol are arranged in the frequency domain assigned to one mobile station apparatus 300.
  • this resource 400 there are a reference signal (RS: Reference signal) (401), UL-SCH (402), RI (403), CQI and PMI (404) used by the receiver for channel estimation. .
  • RS Reference signal
  • RI is transmitted with rank 1
  • other information is transmitted with rank N (N> 1). Since the MIMO spatial multiplexing signal separation processing at the receiver is performed in the frequency domain, it is difficult to process information of different ranks within one SC-FDMA symbol. For this reason, the second and sixth SC-FDMA symbols including the RI are transmitted with rank 1, and the other SC-FDMA symbols are transmitted with rank N.
  • the signal generated in this way is transmitted from the mobile station apparatus 300 to the base station apparatus 200 (step S308), and received (step S309), the base station apparatus 200 performs inverse mapping.
  • Each information is extracted by the processing (step S310).
  • the inverse mapping processing includes processing related to separation when the transmission signal is spatially multiplexed.
  • the signal that has been reverse-mapped and separated into the respective information (UL-SCH, CQI, PMI, RI) is decoded (step S311), and the transmitted bit string is extracted.
  • the base station apparatus and mobile station apparatus adopt the same configuration as in the first embodiment, and their operations are also performed according to the sequence chart shown in FIG.
  • the difference from the first embodiment is the mapping of each information shown in FIG. 4 and the arrangement of the number of spatially multiplexed sequences applied to it.
  • UL-SCH since the RI to be transmitted in rank 1 is mapped to two SC-FDMA symbols, UL-SCH that can be transmitted in rank N must be transmitted in rank 1, which is inefficient. .
  • the purpose of this embodiment is to improve the inefficiency.
  • FIG. 5A is a diagram illustrating an example of mapping in the second embodiment.
  • FIG. 5A shows an example in which UL-SCH, CQI, PMI, and RI are mapped.
  • this resource 400 there are a reference signal (RS: Reference signal) (401), UL-SCH (402), RI (403), CQI and PMI (404) used by the receiver for channel estimation.
  • RS Reference signal
  • UL-SCH 402
  • RI 403
  • CQI and PMI 404
  • rank N N> 1
  • the SC-FDMA symbol to which the RI is mapped is limited to the second one, only this symbol is transmitted with rank 1, and the other SC-FDMA symbols are transmitted with rank N.
  • UL-SCH, CQI, PMI may be mapped to that portion (501 and 502 in FIG. 5A). In that case, the lowest rank among the applied ranks is applied. In this case, UL-SCH mapped to 501 and 502 is transmitted in rank 1.
  • FIG. 5B is a diagram showing another example of mapping.
  • not only RI but also CQI and PMI are transmitted in rank 1.
  • the area that must be transmitted in the lower rank is reduced, and the UL-SCH area that can be transmitted in rank N is reduced.
  • the specific procedure is the same as that in the first embodiment, and is as described with reference to FIG.
  • mapping shown in FIG. 4 and the mapping shown in FIG. 5A are switched.
  • the mapping shown in FIG. 4 is used.
  • priority is given to improving the uplink data transmission efficiency over the time diversity effect
  • the mapping shown in FIG. 5A is used. It is possible to realize efficient communication.
  • the mapping shown in FIG. 4 and the mapping shown in FIG. 5A can be switched using the number of allocated resource blocks, that is, the frequency band as a threshold. As a result, it is possible to eliminate the notification of the change of the mapping method between the mobile station apparatus and the base station apparatus.
  • each function in the base station apparatus and a program for realizing each function in the mobile station apparatus are recorded on a computer-readable recording medium, and the recording medium is recorded on this recording medium.
  • the base station apparatus and mobile station apparatus may be controlled by causing the computer system to read and execute the recorded program.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” means that a program is dynamically held for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In this case, it is intended to include those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client in that case.
  • the program may be for realizing a part of the above-described functions, and may be capable of realizing the above-described functions in combination with a program already recorded in the computer system. .
  • base station apparatus 210 transmitting section 211 encoding section 212 modulating section 213 mapping section 214 radio transmitting section 220 scheduling section 221 uplink transmission resource control section 222 uplink spatial multiplexing information control section 223 uplink modulation scheme / coding rate control section 224 downlink transmission resource control unit 225 downlink spatial multiplexing information control unit 226 downlink modulation scheme / coding rate control unit 230 reception unit 231 radio reception unit 232 uplink propagation path calculation unit 233 inverse mapping / demodulation processing unit 240 antenna 300 Mobile station apparatus 310 Reception section 311 Radio reception section 312 Demodulation processing section 313 Downlink propagation path calculation section 320 Scheduling information management section 321 Uplink transmission resource management section 322 Uplink spatial multiplexing information management section 323 Uplink modulation scheme / coding Management unit 324 downlink spatial multiplexing information management unit 325 downlink modulation scheme and coding rate management unit 326 downlink transmission resource management unit 330 transmitting unit 331 coding unit 332 modulation unit 333 spatial multiplex

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

When two or more types of information of required qualities, which are different in allocated communication resources, are to be transmitted, communications can be performed which efficiently and simply satisfy the required qualities. A base station apparatus (200), which uses a MIMO (Multiple Input Multiple Output) system to transmit/receive, to/from mobile station apparatuses, a plurality of types of signals having different required qualities, comprises: an uplink spatial multiplexing information control unit (222) that selects, in accordance with the required qualities of signals, respective different numbers of spatial multiplexing sequences; an uplink modulation scheme/coding rate control unit (223) that selects, in accordance with the required qualities of the signals, at least either respective different modulation schemes or coding rates; and a transmission unit (210) that transmits, to the mobile station apparatuses, information indicating the selected numbers of spatial multiplexing sequences as well as information indicating the selected modulation schemes or coding rates.

Description

無線通信システム、基地局装置および移動局装置Wireless communication system, base station apparatus, and mobile station apparatus
 本発明は、基地局装置と移動局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する無線通信システム、基地局装置および移動局装置に関する。 The present invention relates to a radio communication system, a base station apparatus, and a mobile station apparatus that transmit and receive a plurality of types of signals having different required qualities using a MIMO (Multiple Input Multiple Multiple Output) scheme between the base station apparatus and the mobile station apparatus. About.
 従来から、次世代セルラー移動通信の一方式として、国際的な標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、W-CDMA(Wideband-Code Division Multiple Access)とGSM(Global System for Mobile Communications)を発展させたネットワークの仕様に関して検討が行なわれている。 Traditionally, 3GPP (3rd Generation Partnership Project), an international standardization project, uses W-CDMA (Wideband-Code Division Multiple Access) and GSM (Global System Mobile for Mobile Communications) as a next generation cellular mobile communication system. The network specifications that have been developed are being studied.
 3GPPでは、以前からセルラー移動通信方式について検討されており、第3世代セルラー移動通信方式として、W-CDMA方式が標準化された。また、通信速度を更に向上させたHSDPA(High-Speed Downlink Packet Access)も標準化され、サービスが運用されている。現在、3GPPでは、第3世代無線アクセス技術の進化、すなわち、Long Term Evolution(以下、「LTE」と呼称する。)や、さらなる通信速度の高速化へ向けたLTE Advanced(以下、「LTE-A」と呼称する。)についても検討が行なわれている。 In 3GPP, cellular mobile communication systems have been studied for some time, and the W-CDMA system has been standardized as a third-generation cellular mobile communication system. In addition, HSDPA (High-Speed Downlink Packet Access) that further improves the communication speed has been standardized and the service is being operated. Currently, in 3GPP, the evolution of the third generation radio access technology, that is, Long Term Evolution (hereinafter referred to as “LTE”) and LTE Advanced (hereinafter referred to as “LTE-A”) for further higher communication speeds. Is also being studied.
 LTEにおける上りリンクデータの送信では、基地局装置から割り当てられたリソースに基づくSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースにした通信方式が採用されている。具体的には、変調された送信信号は、DFT(Discrete Fourier Transformation)により周波数領域の信号へと変換され、基地局装置により割り当てられた周波数リソースにマッピングされた後、IDFT(Inverse DFT)により時間領域の信号へと変換され基地局装置へと送信される。ここでは、上りリンクデータとは、上位レイヤから渡され、物理層では、各ビットの意味を解釈しないデータに対応し、トランスポートチャネルで定義されたUL-SCH(Uplink Shared Channel)と呼称することとする。実際に送信されるデータは、UL-SCHに対して符号化などの処理が施されたものである。 In uplink data transmission in LTE, a communication system based on SC-FDMA (Single-Carrier-Frequency-Division-Multiple Access) based on resources allocated from a base station apparatus is employed. Specifically, the modulated transmission signal is converted into a frequency domain signal by DFT (Discrete Fourier Transformation), mapped to the frequency resource allocated by the base station apparatus, and then timed by IDFT (Inverse DFT). The signal is converted into an area signal and transmitted to the base station apparatus. Here, the uplink data is passed from the upper layer, corresponds to data in which the meaning of each bit is not interpreted in the physical layer, and is referred to as UL-SCH (Uplink Shared Channel) defined in the transport channel. And Data that is actually transmitted is obtained by performing processing such as encoding on the UL-SCH.
 一方、LTEの上りリンクには、下りリンクの受信品質情報に関する情報(CQI:Channel Quality Indicator)、下りリンク信号の送信信号前処理に関する情報(PMI:Precoding Matrix Indicator)、そして、下りリンク信号にMIMO(Multiple Input Multiple Output)空間多重を適用した場合の空間多重系列数情報(RI:Rank Indicator)などの制御情報も送信される。これらの制御情報は、UL-SCHと同時にPUSCH(Physical Uplink Shared Channel)を用いて送信することもでき、また、UL-SCHを含まず単独でPUSCHを用いて送信することができる。 On the other hand, in LTE uplink, information on downlink reception quality information (CQI: Channel : Quality Indicator), information on downlink signal transmission signal preprocessing (PMI: Precoding Matrix Indicator), and downlink signal MIMO (Multiple Input 多重 Multiple Output) Control information such as spatial multiplexing number information (RI: Rank Indicator) when spatial multiplexing is applied is also transmitted. These pieces of control information can be transmitted using PUSCH (Physical-Uplink-Shared-Channel) simultaneously with UL-SCH, or can be transmitted independently using PUSCH without including UL-SCH.
 図6は、LTEの上りリンクにおける時間および周波数で分割されるリソース管理とチャネルの関係を示す図である。各図において、それぞれの横軸は、時間を、縦軸は、周波数を表している。図6に示すとおり、上りリンクリソースは、主に制御情報を送信するために利用される物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)と、各移動局装置が主にデータを送信するための物理上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)を持ち、それぞれは、リソースブロック(RB:Resource Block)と呼ばれる分割単位の集合として表現される。周波数方向におけるリソースブロック数は、システムの帯域幅に依存している。また、時間方向については、1リソースブロックが占める時間単位を1スロットとよび、これを二つ合わせて1サブフレームと呼んでいる。PUSCHは、2個のスロットをペアにしたリソースブロック単位で移動局装置に割り当てられる。 FIG. 6 is a diagram showing the relationship between resource management and channels divided by time and frequency in LTE uplink. In each figure, each horizontal axis represents time, and the vertical axis represents frequency. As shown in FIG. 6, the uplink resource mainly includes a physical uplink control channel (PUCCH) used for transmitting control information, and each mobile station apparatus mainly transmits data. Physical uplink shared channels (PUSCH: Physical-Uplink-Shared-Channel), each of which is expressed as a set of division units called resource blocks (RB: Resource-Block). The number of resource blocks in the frequency direction depends on the system bandwidth. In the time direction, a time unit occupied by one resource block is called one slot, and these two are collectively called one subframe. The PUSCH is allocated to the mobile station apparatus in resource block units in which two slots are paired.
 図7は、PUSCHの1リソースブロック内における構成を周波数および時間において示した例を示す図である。図7において、1リソースブロックは、7個のSC-FDMAシンボル(1スロットに相当)、周波数方向に12サブキャリアから構成され、1SC-FDMAシンボルと、1サブキャリアで構成される最小のリソースの単位をリソースエレメント(RE)と呼ぶ。リソースエレメントに配置された変調シンボルは、SC-FDMAシンボル単位でFFT(Fast Fourier Transformation)などの処理により時間領域に変換された後、移動局装置から基地局装置へ送信される。PUSCHには、復調時における伝搬路推定用途の参照信号(若しくはパイロット信号とも呼称される)が、図7中の3番のSC-FDMAシンボルに配置されることが決定されている。 FIG. 7 is a diagram illustrating an example of the configuration in one resource block of PUSCH in terms of frequency and time. In FIG. 7, one resource block is composed of seven SC-FDMA symbols (corresponding to one slot) and 12 subcarriers in the frequency direction, and is the minimum resource composed of one SC-FDMA symbol and one subcarrier. The unit is called a resource element (RE). The modulation symbols arranged in the resource element are converted into the time domain by processing such as FFT (Fast Fourier Transformation) in units of SC-FDMA symbols, and then transmitted from the mobile station apparatus to the base station apparatus. In PUSCH, it is determined that a reference signal for propagation path estimation at the time of demodulation (or also referred to as a pilot signal) is arranged in the third SC-FDMA symbol in FIG.
 図8は、非特許文献1および非特許文献2に記載されているUL-SCH、CQI、PMI、RIが同時にスケジュールされた場合のマッピングの例を示す図である。横軸は、時間を表し、それぞれ1SC-FDMAシンボルに対応する。縦軸は、マッピングする変調シンボル系列の並びを表しており、周波数軸に対応したものではなく、各SC-FDMAシンボルごとにDFT処理され、周波数軸上で割り当てられたリソースにマッピングされる。図8に示されるとおり、LTEでは、参照信号に隣接した2つのSC-FDMAシンボルにACK/NACKがマッピングされる、参照信号からふたつ離れたSC-FDMAシンボルにRIがマッピングされる。そして、CQIは、参照信号を除いた全てのSC-FDMAシンボルにマッピングされる。 FIG. 8 is a diagram showing an example of mapping when UL-SCH, CQI, PMI, and RI described in Non-Patent Document 1 and Non-Patent Document 2 are scheduled at the same time. The horizontal axis represents time, and each corresponds to one SC-FDMA symbol. The vertical axis represents a sequence of modulation symbol sequences to be mapped, does not correspond to the frequency axis, is subjected to DFT processing for each SC-FDMA symbol, and is mapped to resources allocated on the frequency axis. As shown in FIG. 8, in LTE, an ACK / NACK is mapped to two SC-FDMA symbols adjacent to a reference signal, and an RI is mapped to an SC-FDMA symbol separated by two from the reference signal. The CQI is mapped to all SC-FDMA symbols excluding the reference signal.
 一方、LTEでは、UL-SCHとACK/NACK、CQI/PMI、RIについてその誤りが与える影響が異なるため、異なる要求品質が設定されている。例えば、ACK/NACKやRIは、CQI/PMIより高い品質が要求され、CQI/PMIは、UL-SCHより高い品質が要求されている。このため、非特許文献2および非特許文献3では、変調方式および符号化率について、情報の種類に応じたUL-SCHからのオフセットを適用することが決められている。 On the other hand, in LTE, since the influence of errors on UL-SCH, ACK / NACK, CQI / PMI, and RI is different, different required qualities are set. For example, ACK / NACK and RI require higher quality than CQI / PMI, and CQI / PMI requires higher quality than UL-SCH. For this reason, in Non-Patent Document 2 and Non-Patent Document 3, it is determined that an offset from UL-SCH corresponding to the type of information is applied to the modulation scheme and coding rate.
 具体的には、ACK/NACKとRIは、UL-SCHの変調方式によらず常にQPSKとなる。また、ACK/NACK、RI、CQI/PMIに適用される符号化率も、UL-SCHに適用される符号化率に基地局装置から通知されたオフセットを適用して決定される。これにより、異なる通信品質が要求される情報を、その要求を満たしつつ同時に送信することが可能となる。なお、LTEには、上りリンクに対してMIMO(Multiple Input Multiple Output)による空間多重が採用されておらず、これについては考慮されていない。 Specifically, ACK / NACK and RI are always QPSK regardless of the UL-SCH modulation scheme. Also, the coding rate applied to ACK / NACK, RI, and CQI / PMI is determined by applying the offset notified from the base station apparatus to the coding rate applied to UL-SCH. As a result, information that requires different communication qualities can be transmitted simultaneously while satisfying the request. Note that LTE does not employ spatial multiplexing based on MIMO (Multiple Input Multiple Output) for the uplink, and this is not taken into consideration.
 上記の従来の方法をMIMO空間多重に拡張するとき、ACK/NACK、RIなどの要求品質の高い情報も空間多重されて送信されることになる。しかしながら、空間多重においては、多重されたレイヤ間の分離不完全性に基づく空間レイヤ間の干渉が発生する。このため、高い誤り率特性が要求される情報について、その品質を達成することが難しくなるという問題が発生する。 When the above conventional method is extended to MIMO spatial multiplexing, information with high required quality such as ACK / NACK and RI is also spatially multiplexed and transmitted. However, in spatial multiplexing, interference between spatial layers occurs based on separation imperfection between multiplexed layers. For this reason, there arises a problem that it is difficult to achieve the quality of information that requires high error rate characteristics.
 本発明は、このような事情に鑑みてなされたものであり、割り当てられた通信リソースにおいて異なる要求品質の2種類以上の情報を送信する場合に、効率的かつ簡易に要求品質を満たす通信を行なうことができる無線通信システム、基地局装置および移動局装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and when two or more types of information having different required qualities are transmitted in allocated communication resources, communication that satisfies the required qualities is performed efficiently and easily. An object of the present invention is to provide a wireless communication system, a base station apparatus, and a mobile station apparatus.
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、基地局装置と移動局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する無線通信システムであって、前記信号の要求品質に応じて、それぞれ異なる空間多重系列数を選定し、前記選定した空間多重系列数に基づいて、前記各信号をMIMO方式で送受信することを特徴としている。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, the wireless communication system of the present invention is a wireless communication system that transmits and receives a plurality of types of signals having different required qualities between a base station apparatus and a mobile station apparatus using a MIMO (Multiple Input Multiple Multiple Output) system. Thus, according to the required quality of the signal, different numbers of spatially multiplexed sequences are selected, and based on the selected number of spatially multiplexed sequences, each signal is transmitted / received by the MIMO scheme.
 このように、信号の要求品質に応じて、それぞれ異なる空間多重系列数を選定し、前記選定した空間多重系列数に基づいて、前記各信号をMIMO方式で送受信するので、効率的かつ簡易に要求品質を満たす通信を実施することができる。 In this way, since different spatial multiplexing sequences are selected according to the required quality of the signal, and each signal is transmitted / received by the MIMO scheme based on the selected spatial multiplexing sequence, the request can be made efficiently and easily. Communication that satisfies the quality can be implemented.
 (2)また、本発明の無線通信システムは、前記信号の要求品質に応じて、それぞれ異なる変調方式または符号化率の少なくとも一方を選定し、前記選定した変調方式または符号化率に基づいて、前記各信号の処理を行なうことを特徴としている。 (2) Further, the wireless communication system of the present invention selects at least one of different modulation schemes or coding rates according to the required quality of the signal, and based on the selected modulation scheme or coding rate, Each of the signals is processed.
 このように、信号の要求品質に応じて、それぞれ異なる変調方式または符号化率の少なくとも一方を選定し、前記選定した変調方式または符号化率に基づいて、前記各信号の処理を行なうので、効率的かつ簡易に要求品質を満たす通信を実施することができる。 As described above, according to the required quality of the signal, at least one of different modulation schemes or coding rates is selected, and each signal is processed based on the selected modulation scheme or coding rate. Communication that satisfies the required quality can be carried out efficiently and simply.
 (3)また、本発明の無線通信システムにおいて、前記空間多重系列数は、前記要求品質の異なる複数種類の信号に応じて一意に決定されることを特徴としている。 (3) In the wireless communication system of the present invention, the number of spatially multiplexed sequences is uniquely determined according to a plurality of types of signals having different required qualities.
 このように、空間多重系列数は、前記要求品質の異なる複数種類の信号に応じて一意に決定されるので、空間多重系列数の選定を簡易かつ迅速に行なうことが可能となる。 Thus, since the number of spatially multiplexed sequences is uniquely determined according to a plurality of types of signals having different required qualities, the number of spatially multiplexed sequences can be selected easily and quickly.
 (4)また、本発明の無線通信システムにおいて、前記要求品質の異なる複数種類の信号のうち、送信信号系列数情報に対する空間多重系列数は、1であることを特徴としている。 (4) Further, in the wireless communication system of the present invention, the number of spatially multiplexed sequences for the transmission signal sequence number information among the plurality of types of signals having different required qualities is one.
 このように、要求品質の異なる複数種類の信号のうち、送信信号系列数情報に対する空間多重系列数は、1であるので、多重されたレイヤ間の分離不完全性に基づく空間レイヤ間の干渉が発生することなく、送信信号系列数情報を基地局装置と移動局装置との間で送受信することが可能となる。 As described above, since the number of spatially multiplexed sequences for the transmission signal sequence number information among a plurality of types of signals having different required qualities is 1, interference between spatial layers based on separation incompleteness between multiplexed layers is present. Transmission information sequence number information can be transmitted and received between the base station apparatus and the mobile station apparatus without being generated.
 (5)また、本発明の無線通信システムは、SC-FDMA(Single Carrier Frequency Division Multiple Access)方式を用いて、前記選定した空間多重系列数が同一である信号を同一のシンボルで送受信することを特徴としている。 (5) Also, the radio communication system of the present invention uses the SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) method to transmit and receive signals having the same number of selected spatial multiplexing sequences with the same symbol. It is a feature.
 このように、SC-FDMA方式を用いて、選定した空間多重系列数が同一である信号を同一のシンボルで送受信するので、空間多重数を低くして送信しなければならない情報を、限られた領域、例えば、特定のSC-FDMAシンボルに集中させることで、上りリンクデータ送信の効率低下を低減させることができる。 As described above, since signals having the same number of selected spatial multiplexing sequences are transmitted and received using the same symbol using the SC-FDMA system, information that must be transmitted with a lower number of spatial multiplexing is limited. By concentrating on a region, for example, a specific SC-FDMA symbol, it is possible to reduce a decrease in efficiency of uplink data transmission.
 (6)また、本発明の基地局装置は、移動局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する基地局装置であって、前記信号の要求品質に応じて、それぞれ異なる空間多重系列数を選定する上りリンク空間多重情報制御部と、前記信号の要求品質に応じて、それぞれ異なる変調方式または符号化率の少なくとも一方を選定する上りリンク変調方式・符号化率制御部と、前記選定された空間多重系列数を示す情報、および前記選定された変調方式または符号化率を示す情報を前記移動局装置に対して送信する送信部と、を備えることを特徴としている。 (6) Moreover, the base station apparatus of the present invention is a base station apparatus that transmits and receives a plurality of types of signals having different required qualities using a MIMO (Multiple Input Input Multiple Output) method with a mobile station apparatus. An uplink spatial multiplexing information control unit that selects different numbers of spatially multiplexed sequences according to the required quality of the signal, and at least one of a different modulation scheme or coding rate according to the required quality of the signal An uplink modulation scheme / coding rate control unit to transmit, information indicating the number of selected spatial multiplexing sequences, and transmission indicating information indicating the selected modulation scheme or coding rate to the mobile station apparatus And a section.
 このように、信号の要求品質に応じて、それぞれ異なる空間多重系列数を選定すると共に、信号の要求品質に応じて、それぞれ異なる変調方式または符号化率の少なくとも一方を選定し、選定された空間多重系列数を示す情報、および選定された変調方式または符号化率を示す情報を移動局装置に対して送信するので、移動局装置が、上記空間多重系列数、変調方式または符号化率に基づいて信号を送信することにより、効率的かつ簡易に要求品質を満たす通信を実施することができる。 In this way, the number of different spatial multiplexing sequences is selected according to the required quality of the signal, and at least one of the different modulation schemes or coding rates is selected according to the required quality of the signal, and the selected space is selected. Since the information indicating the number of multiplexed sequences and the information indicating the selected modulation scheme or coding rate are transmitted to the mobile station device, the mobile station device is based on the number of spatial multiplexed sequences, the modulation scheme or the coding rate. By transmitting the signal, communication that satisfies the required quality can be performed efficiently and easily.
 (7)また、本発明の移動局装置は、基地局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する移動局装置であって、前記基地局装置から受信した空間多重系列数を示す情報を管理する上りリンク空間多重情報管理部と、前記基地局装置から受信した変調方式または符号化率を示す情報を管理する上りリンク変調方式・符号化率管理部と、前記管理されている変調方式または符号化率を示す情報に基づいて、送信信号に対して、要求品質に応じた変調または符号化の少なくとも一方を行ない、前記管理されている空間多重系列数を示す情報に基づいて、要求品質に応じた空間多重系列数で、送信信号をMIMO方式で前記基地局装置に対して送信する移動局側送信部と、を備えることを特徴としている。 (7) A mobile station apparatus according to the present invention is a mobile station apparatus that transmits and receives a plurality of types of signals having different required qualities with a base station apparatus using a MIMO (Multiple Input Input Multiple Output) system. An uplink spatial multiplexing information management unit that manages information indicating the number of spatially multiplexed sequences received from the base station apparatus; and an uplink modulation scheme that manages information indicating the modulation scheme or coding rate received from the base station apparatus -Based on the coding rate management unit and the information indicating the managed modulation scheme or coding rate, the transmission signal is modulated and / or coded according to the required quality, and is managed. A mobile station-side transmitter that transmits a transmission signal to the base station apparatus in the MIMO scheme with the number of spatially multiplexed sequences corresponding to the required quality based on the information indicating the number of spatially multiplexed sequences. It is characterized in Rukoto.
 このように、管理されている変調方式または符号化率を示す情報に基づいて、送信信号に対して、要求品質に応じた変調または符号化の少なくとも一方を行ない、管理されている空間多重系列数を示す情報に基づいて、要求品質に応じた空間多重系列数で、送信信号をMIMO方式で前記基地局装置に対して送信するので、効率的かつ簡易に要求品質を満たす通信を実施することができる。 In this way, based on information indicating the managed modulation scheme or coding rate, the number of spatially multiplexed sequences managed by performing at least one of modulation and coding corresponding to the required quality on the transmission signal Since the transmission signal is transmitted to the base station apparatus by the MIMO scheme with the number of spatially multiplexed sequences corresponding to the required quality based on the information indicating that, it is possible to efficiently and easily perform communication that satisfies the required quality it can.
 本発明によれば、移動局装置が、基地局装置から割り当てられた通信リソースにおいて異なる要求品質を持つ複数種類の情報を送信する場合に、それぞれに異なる空間多重数を適用することにより、効率的かつ簡易に要求品質を満たす通信を実施することができる。 Advantageous Effects of Invention According to the present invention, when a mobile station apparatus transmits a plurality of types of information having different required qualities in communication resources allocated from the base station apparatus, it is efficient by applying different spatial multiplexing numbers to each. In addition, communication that satisfies the required quality can be performed easily.
本実施形態に係る基地局装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the base station apparatus which concerns on this embodiment. 本実施形態に係る移動局装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the mobile station apparatus which concerns on this embodiment. 基地局装置200から移動局装置300へUL-SCH、CQI、PMI、RIを送信するための送信リソースが割り当てられ、そのリソースでの送信を行なうシーケンスチャートである。10 is a sequence chart in which transmission resources for transmitting UL-SCH, CQI, PMI, and RI are allocated from base station apparatus 200 to mobile station apparatus 300, and transmission is performed using the resources. UL-SCH、CQI、PMI、RIがマッピングされた例を示す図である。It is a figure which shows the example by which UL-SCH, CQI, PMI, and RI were mapped. 第2の実施形態におけるマッピングの例を示す図である。It is a figure which shows the example of the mapping in 2nd Embodiment. 他のマッピングの例を示す図である。It is a figure which shows the example of another mapping. LTEの上りリンクにおける時間および周波数で分割されるリソース管理とチャネルの関係を示す図である。It is a figure which shows the relationship between the resource management divided | segmented by the time and frequency in the uplink of LTE, and a channel. PUSCHの1リソースブロック内における構成を周波数および時間において示した例を示す図である。It is a figure which shows the example which showed the structure in 1 resource block of PUSCH in a frequency and time. 非特許文献1および非特許文献2に記載されているUL-SCH、CQI、PMI、RIが同時にスケジュールされた場合のマッピングの例を示す図である。It is a figure which shows the example of mapping when UL-SCH, CQI, PMI, and RI described in the nonpatent literature 1 and the nonpatent literature 2 are scheduled simultaneously.
 (第1の実施形態)
 本発明の第1の実施形態による移動通信システムは、移動局装置と基地局装置とを有している。本実施形態では、移動局装置から基地局装置に対して、UL-SCH(Uplink Shared Channel)、CQI(Channel Quality Indicator)、RI(Rank Indicator)をPUSCH(Physical Uplink Shared Channel)で同時に送信することを想定している。ただし、本発明は、CQIやRIに限定されるものでなく、要求品質の異なる2個以上の情報を同時に送信する状況において同様に適用可能であり、他の情報信号を送信してもよい。
(First embodiment)
The mobile communication system according to the first embodiment of the present invention includes a mobile station device and a base station device. In the present embodiment, UL-SCH (Uplink Shared Channel), CQI (Channel Quality Indicator), and RI (Rank Indicator) are simultaneously transmitted from the mobile station apparatus to the base station apparatus through PUSCH (Physical Uplink Shared Channel). Is assumed. However, the present invention is not limited to CQI or RI, but can be similarly applied in a situation where two or more pieces of information having different required qualities are transmitted simultaneously, and other information signals may be transmitted.
 図1は、本実施形態に係る基地局装置の概略構成を示すブロック図である。図1に示すように、本実施形態による基地局装置200は、送信部210、スケジューリング部220、受信部230、およびアンテナ240を備えている。送信部210は、符号化部211、変調部212、マッピング部213、無線送信部214を備えている。また、スケジューリング部220は、上りリンク送信リソース制御部221、上りリンク空間多重情報制御部222、上りリンク変調方式・符号化率制御部223、下りリンク送信リソース制御部224、下りリンク空間多重情報制御部225、下りリンク変調方式・符号化率制御部226を備えており、受信部230は、無線受信部231、上りリンク伝搬路算出部232、逆マッピング・復調処理部233を備えている。アンテナ240は、下りリンク信号の送信および上りリンク信号の受信に必要な数だけ備えられている。 FIG. 1 is a block diagram showing a schematic configuration of a base station apparatus according to this embodiment. As shown in FIG. 1, the base station apparatus 200 according to the present embodiment includes a transmission unit 210, a scheduling unit 220, a reception unit 230, and an antenna 240. The transmission unit 210 includes an encoding unit 211, a modulation unit 212, a mapping unit 213, and a wireless transmission unit 214. Also, the scheduling unit 220 includes an uplink transmission resource control unit 221, an uplink spatial multiplexing information control unit 222, an uplink modulation scheme / coding rate control unit 223, a downlink transmission resource control unit 224, and a downlink spatial multiplexing information control. 225 and a downlink modulation scheme / coding rate control unit 226. The reception unit 230 includes a radio reception unit 231, an uplink propagation path calculation unit 232, and an inverse mapping / demodulation processing unit 233. There are as many antennas 240 as necessary for transmitting downlink signals and receiving uplink signals.
 基地局装置200における上位レイヤで生成された、各移動局装置に送信する下りリンクデータと、スケジューリング部220から出力される制御情報送信のためのスケジューリング情報は、符号化部211に入力され、それぞれがスケジューリング部220からの制御信号に従った符号化が施され符号化ビット列が出力される。ただし、スケジューリング部220からの制御信号とは、符号化率を表す情報や、例えば、ターボ符号、テイルバイティング畳み込み符号などの符号化方式を表すものである。また、複数の情報を組み合わせて符号化されてもよく、それぞれの情報が個別に符号化されてもよい。 The downlink data generated in the upper layer in base station apparatus 200 and transmitted to each mobile station apparatus and scheduling information for control information transmission output from scheduling section 220 are input to encoding section 211, respectively. Is encoded according to the control signal from the scheduling unit 220 and an encoded bit string is output. However, the control signal from the scheduling unit 220 represents information representing a coding rate or a coding scheme such as a turbo code or a tail biting convolutional code. In addition, a plurality of pieces of information may be combined and encoded, and each piece of information may be encoded separately.
 符号化部211の複数の出力ビット列は、変調部212に入力され、それぞれがスケジューリング部220からの制御信号に従った変調、例えば、BPSK、QPSK、16QAM、64QAMのシンボルに変換され出力される。変調部212の出力は、スケジューリング部220から提供される下りスケジューリングと空間多重の情報と共にマッピング部213へ入力され、送信データが生成される。ここで送信データとは、例えばOFDM信号のことを指しており、マッピング動作とは、移動局装置ごとに指定された周波数、時間リソースに対応させる動作に相当する。また、MIMOによる空間多重が採用されていれば、この処理がこのブロックにおいて行なわれる。ここで、制御情報とは、上りリンクもしくは下りリンクのリソース割り当て情報、つまり送信タイミングと周波数リソースの情報、上りリンクもしくは下りリンク信号の変調方式および符号化率、および、移動局装置に対するCQI、PMI、RIの送信要求などのことである。 The plurality of output bit strings of the encoding unit 211 are input to the modulation unit 212, each of which is modulated according to a control signal from the scheduling unit 220, for example, converted into BPSK, QPSK, 16QAM, and 64QAM symbols and output. The output of the modulation unit 212 is input to the mapping unit 213 together with the downlink scheduling and spatial multiplexing information provided from the scheduling unit 220, and transmission data is generated. Here, the transmission data refers to, for example, an OFDM signal, and the mapping operation corresponds to an operation corresponding to the frequency and time resources specified for each mobile station apparatus. If spatial multiplexing by MIMO is employed, this processing is performed in this block. Here, the control information refers to uplink or downlink resource allocation information, that is, transmission timing and frequency resource information, uplink or downlink signal modulation scheme and coding rate, and CQI and PMI for the mobile station apparatus. , RI transmission request, etc.
 マッピング部213により生成された信号は、無線送信部214へと出力される。無線送信部214では、送信方式にあった形態に変換され、具体的にOFDMAに準じた通信方式であれば、周波数領域の信号に対してIFFT(Inverse Fast Fourier Transformation)が施されることにより、時間領域の信号が生成される。無線送信部214の出力信号は、アンテナ240に供給され、ここから各移動局装置へ送信される。 The signal generated by the mapping unit 213 is output to the wireless transmission unit 214. In the wireless transmission unit 214, it is converted into a form suitable for the transmission method, and if it is a communication method specifically compliant with OFDMA, IFFT (Inverse Fast Fourier Transformation) is performed on the signal in the frequency domain, A time domain signal is generated. The output signal of the wireless transmission unit 214 is supplied to the antenna 240 and transmitted from here to each mobile station apparatus.
 スケジューリング部220は、上位レイヤからの制御情報および基地局装置200から送信された制御情報を管理および制御し、各移動局装置へのリソース割り振りや変調方式、符号化率の決定およびこれらの動作の制御やその制御情報の出力などを行なっている。上りリンクに関して、上りリンク送信リソース制御部221は、各移動局装置が利用する上りリンクリソースを管理するとともに、その制御信号の生成を行なう。上りリンク空間多重情報制御部222は、移動局装置から送信される伝搬路測定用信号から算出できる情報を管理して、上りリンク信号送信に適用するMIMO空間多重の多重系列数を決定すると同時に、それに関連した制御信号の生成を行なう。上りリンク変調方式・符号化率制御部223は、移動局装置から送信される伝搬路測定用信号から算出できる情報を管理して、上りリンク信号送信に適用する変調方式と符号化率を決定すると同時に、それに関連した制御信号の生成を行なう。 The scheduling unit 220 manages and controls the control information from the higher layer and the control information transmitted from the base station apparatus 200, determines the resource allocation to each mobile station apparatus, the modulation scheme, the coding rate, and these operations. Control and output of control information are performed. With respect to the uplink, the uplink transmission resource control unit 221 manages uplink resources used by each mobile station apparatus and generates a control signal thereof. The uplink spatial multiplexing information control unit 222 manages information that can be calculated from the propagation path measurement signal transmitted from the mobile station apparatus, determines the number of multiplexed sequences of MIMO spatial multiplexing to be applied to uplink signal transmission, The control signal related to it is generated. The uplink modulation scheme / coding rate control unit 223 manages information that can be calculated from the channel measurement signal transmitted from the mobile station apparatus, and determines the modulation scheme and coding rate to be applied to uplink signal transmission. At the same time, a control signal associated therewith is generated.
 なお、本実施形態においては、上りリンク空間多重情報制御部222と上りリンク変調方式・符号化率制御部223は、上りリンク信号の種類、つまり求められる要求品質に応じて異なる動作をすることを特徴としている。具体的に、上りリンク信号がUL-SCHとCQIとRIから構成されていれば、上りリンク空間多重情報制御部222は、それぞれの信号に対して異なる空間多重数を設定でき、上りリンク変調方式・符号化率制御部223は、それぞれの信号に対して異なる変調方式・符号化率を設定できる。 In the present embodiment, the uplink spatial multiplexing information control unit 222 and the uplink modulation scheme / coding rate control unit 223 perform different operations depending on the type of uplink signal, that is, the required required quality. It is a feature. Specifically, if the uplink signal is composed of UL-SCH, CQI, and RI, the uplink spatial multiplexing information control unit 222 can set different spatial multiplexing numbers for each signal, and the uplink modulation scheme The coding rate control unit 223 can set a different modulation scheme / coding rate for each signal.
 下りリンクに関して、下りリンク送信リソース制御部224は、各移動局装置に割り当てられる下りリンクリソースを管理するとともに、各移動局装置に送信する制御信号の生成を行なう。下りリンク空間多重情報制御部225は、移動局装置から送信される制御情報(例えば、RI)もしくはそれから算出できる情報を管理して、下りリンク信号送信に適用するMIMO空間多重の多重系列数を決定すると同時に、それに関連した制御信号の生成を行なう。下りリンク変調方式・符号化率制御部226は、移動局装置から送信される制御情報(例えば、CQIやPMI)もしくはそれから算出できる情報を管理して、下りリンク信号送信に適用する変調方式と符号化率を決定すると同時に、それに関連した制御信号の生成を行なう。 Regarding the downlink, the downlink transmission resource control unit 224 manages the downlink resource allocated to each mobile station apparatus and generates a control signal to be transmitted to each mobile station apparatus. The downlink spatial multiplexing information control unit 225 manages control information (for example, RI) transmitted from the mobile station apparatus or information that can be calculated therefrom, and determines the number of multiplexed sequences of MIMO spatial multiplexing to be applied to downlink signal transmission. At the same time, a control signal associated therewith is generated. The downlink modulation scheme / coding rate control unit 226 manages control information (for example, CQI or PMI) transmitted from the mobile station apparatus or information that can be calculated from the control information, and applies the modulation scheme and code applied to downlink signal transmission. At the same time as the conversion rate is determined, a control signal associated therewith is generated.
 一方、移動局装置から送信された信号は、アンテナ240で受信された後、無線受信部231に入力される。無線受信部231は、データや制御信号を受け取り、送信方式に応じたディジタル信号を生成して出力する。具体的には、OFDM方式が採用されているのであれば、受信信号をアナログ・ディジタル変換した後、処理時間単位でFFT処理を施した信号が出力される。ここで、無線受信部231には、上りリンクの伝搬路の状況を測定するための信号と、上位レイヤで処理される情報(例えば、データ信号や制御情報として管理されるべき情報)を含む信号の2種類に分けられ、それぞれ第一の信号および第二の信号として出力される。 On the other hand, the signal transmitted from the mobile station apparatus is received by the antenna 240 and then input to the radio reception unit 231. The wireless reception unit 231 receives data and control signals, generates a digital signal corresponding to the transmission method, and outputs it. Specifically, if the OFDM method is adopted, after the received signal is converted from analog to digital, a signal subjected to FFT processing in units of processing time is output. Here, the radio reception unit 231 includes a signal for measuring the state of the uplink propagation path and a signal including information processed by an upper layer (for example, information to be managed as a data signal or control information). Are output as a first signal and a second signal, respectively.
 無線受信部231の第一の出力は、上りリンク伝搬路算出部232へ出力される。ここでは、上りリンク信号のスケジューリング、空間多重、変調方式および符号化率の決定に必要な情報が算出され、スケジューリング部220へと出力される。 The first output of the radio reception unit 231 is output to the uplink propagation path calculation unit 232. Here, information necessary for uplink signal scheduling, spatial multiplexing, modulation scheme, and coding rate determination is calculated and output to scheduling section 220.
 無線受信部231の第二の出力は、逆マッピング・復調処理部233へと出力される。逆マッピング・復調処理部233には、スケジューリング部220が管理するマッピングパターン、変調方式および符号化率を利用して、移動局装置から送信された複数種類の情報をそれぞれ復調、抽出する。ここで、上りリンク信号に空間多重が適用されており、2種類以上の通信品質の異なる情報が同時に送信されていれば、それぞれの信号が含まれている時間、周波数位置をあらかじめ分離し、スケジューリング部220から入力される制御情報に従って、それぞれ異なる変調方式、符号化率、空間多重数を適用した逆マッピング、復調処理が行なわれる。このような処理により得られた信号のうち、上位レイヤで処理されるものについては、上位レイヤへと出力され、スケジューリング部220で管理される制御情報、例えば、CQIやRIなどについては、スケジューリング部220に出力される。 The second output of the wireless reception unit 231 is output to the inverse mapping / demodulation processing unit 233. The inverse mapping / demodulation processing unit 233 demodulates and extracts a plurality of types of information transmitted from the mobile station apparatus using the mapping pattern, modulation scheme, and coding rate managed by the scheduling unit 220. Here, if spatial multiplexing is applied to the uplink signal and two or more types of information having different communication qualities are transmitted at the same time, the time and frequency position in which each signal is included are separated in advance, and scheduling is performed. In accordance with the control information input from unit 220, inverse mapping and demodulation processing using different modulation schemes, coding rates, and spatial multiplexing numbers are performed. Among the signals obtained by such processing, those processed in the upper layer are output to the upper layer, and control information managed by the scheduling unit 220, such as CQI and RI, is assigned to the scheduling unit. 220.
 図2は、本実施形態に係る移動局装置の概略構成を示すブロック図である。図2に示すように、移動局装置300は、受信部310、スケジューリング情報管理部320、送信部330、および、アンテナ340を備えている。受信部310は、無線受信部311、復調処理部312、下りリンク伝搬路算出部313を備えている。また、スケジューリング情報管理部320は、上りリンク送信リソース管理部321、上りリンク空間多重情報管理部322、上りリンク変調方式・符号化率管理部323、下りリンク空間多重情報管理部324、下りリンク変調方式・符号化率管理部325、下りリンク送信リソース管理部326を備えている。アンテナ340は、上りリンク信号の送信および下りリンク信号の受信に必要な数だけ備えられている。送信部330は、符号化部331、変調部332、空間多重・マッピング部333、無線送信部334を備えている。 FIG. 2 is a block diagram showing a schematic configuration of the mobile station apparatus according to the present embodiment. As illustrated in FIG. 2, the mobile station device 300 includes a reception unit 310, a scheduling information management unit 320, a transmission unit 330, and an antenna 340. The reception unit 310 includes a wireless reception unit 311, a demodulation processing unit 312, and a downlink propagation path calculation unit 313. Also, the scheduling information management unit 320 includes an uplink transmission resource management unit 321, an uplink spatial multiplexing information management unit 322, an uplink modulation scheme / coding rate management unit 323, a downlink spatial multiplexing information management unit 324, a downlink modulation. A system / coding rate management unit 325 and a downlink transmission resource management unit 326 are provided. The antennas 340 are provided as many as necessary for transmitting uplink signals and receiving downlink signals. The transmission unit 330 includes an encoding unit 331, a modulation unit 332, a spatial multiplexing / mapping unit 333, and a wireless transmission unit 334.
 基地局装置200から送信される下りリンク信号をアンテナ340で受信すると、この受信信号は、無線受信部311へ入力される。無線受信部311では、アナログ・ディジタル(A/D)変換などの他に、通信方式に応じた処理が施され、出力される。具体的にOFDMAであれば、A/D変換後の時系列の信号は、FFT処理され、時間・周波数領域の信号に変換されて出力される。 When the downlink signal transmitted from the base station apparatus 200 is received by the antenna 340, the received signal is input to the radio reception unit 311. The wireless reception unit 311 performs processing according to the communication method in addition to analog / digital (A / D) conversion and the like, and outputs the result. Specifically, in the case of OFDMA, a time-series signal after A / D conversion is subjected to FFT processing, converted into a time / frequency domain signal, and output.
 無線受信部311の出力信号は、復調処理部312へ入力される。これと共に復調処理部312には、スケジューリング情報管理部320から出力される下りリンク信号のスケジューリング情報(つまり自局宛の信号がどこに割り当てられているかという情報)、空間多重の系列数、変調方式、符号化率といった制御情報も入力され、復調処理が行なわれる。復調された信号は、信号の種類によって分類され、上位レイヤにて処理される情報は、上位レイヤへと渡され、スケジューリング情報管理部にて管理される情報については、スケジューリング情報管理部320に入力される。下りリンク伝搬路算出部313は、無線受信部311から提供される伝搬路算出用の信号を入力信号として、下りリンクに適用できる空間多重の系列数、変調方式、符号化率といった管理情報を計算する。この管理情報は、スケジューリング情報管理部320へと入力される。 The output signal of the wireless reception unit 311 is input to the demodulation processing unit 312. At the same time, the demodulation processor 312 includes downlink signal scheduling information output from the scheduling information manager 320 (that is, information indicating where the signal addressed to the local station is allocated), the number of spatially multiplexed sequences, the modulation scheme, Control information such as a coding rate is also input, and demodulation processing is performed. The demodulated signals are classified according to the signal type, information processed in the upper layer is passed to the upper layer, and information managed by the scheduling information management unit is input to the scheduling information management unit 320. Is done. The downlink propagation path calculation unit 313 calculates management information such as the number of spatially multiplexed sequences applicable to the downlink, the modulation scheme, and the coding rate, using the propagation path calculation signal provided from the radio reception unit 311 as an input signal. To do. This management information is input to the scheduling information management unit 320.
 スケジューリング情報管理部320は、基地局装置200から送信された制御情報を管理し、また、移動局装置300で算出された制御情報を基地局装置200へ送信するための管理も行なう。上りリンク送信リソース管理部321は、基地局装置200から送信された自局の上りリンクリソース情報を管理するとともに、上りリンク信号の送信制御を行なう。上りリンク空間多重情報管理部322は、基地局装置200から送信されたMIMO空間多重の系列数を管理すると共に、この値を上りリンク信号に適用する際の管理を行なう。 The scheduling information management unit 320 manages the control information transmitted from the base station apparatus 200, and also performs management for transmitting the control information calculated by the mobile station apparatus 300 to the base station apparatus 200. The uplink transmission resource management unit 321 manages the uplink resource information of the own station transmitted from the base station apparatus 200 and performs transmission control of the uplink signal. Uplink spatial multiplexing information management section 322 manages the number of MIMO spatial multiplexing sequences transmitted from base station apparatus 200, and performs management when applying this value to an uplink signal.
 上りリンク変調方式・符号化率管理部323は、基地局装置200から送信された上りリンク信号に適用する変調方式、符号化率の情報を管理するとともに、この値を上りリンク信号に適用する際の管理を行なう。なお、本実施形態において、上りリンク空間多重情報管理部322と上りリンク変調方式・符号化率管理部323は、上りリンク信号の種類、つまり求められる要求品質に応じて異なる動作をすることを特徴としている。具体的に、上りリンク信号がUL-SCHとCQIとRIから構成されていれば、上りリンク空間多重情報管理部322は、それぞれの信号に対して異なる空間多重数を設定でき、上りリンク変調方式・符号化率管理部323は、それぞれの信号に対して異なる変調方式・符号化率を設定できる。 The uplink modulation scheme / coding rate management unit 323 manages the modulation scheme and coding rate information applied to the uplink signal transmitted from the base station apparatus 200, and applies this value to the uplink signal. Manage. In this embodiment, the uplink spatial multiplexing information management unit 322 and the uplink modulation scheme / coding rate management unit 323 operate differently depending on the type of uplink signal, that is, the required quality required. It is said. Specifically, if the uplink signal is composed of UL-SCH, CQI, and RI, the uplink spatial multiplexing information management unit 322 can set different spatial multiplexing numbers for each signal, and the uplink modulation scheme The coding rate management unit 323 can set a different modulation scheme / coding rate for each signal.
 下りリンクに関して、下りリンク送信リソース管理部326は、基地局装置200から自局に送信された下りリンクリソース割り当てに関する情報を管理するとともに、自局宛に送信された信号の抽出の制御を行なう。下りリンク空間多重情報管理部324は、下りリンク信号から算出した伝搬路情報を基に、下りリンク信号に適用する空間多重系列数を決定すると同時に、それに関連した制御信号(RI)の生成を行なう。下りリンク変調方式・符号化率管理部325は、下りリンク信号から算出した伝搬路情報を基に、下りリンク信号送信に適用する変調方式と符号化率を決定すると同時に、それに関連した制御信号(CQI、PMI)の生成を行なう。 Regarding the downlink, the downlink transmission resource management unit 326 manages information on downlink resource allocation transmitted from the base station apparatus 200 to the own station and controls extraction of signals transmitted to the own station. The downlink spatial multiplexing information management unit 324 determines the number of spatial multiplexing sequences to be applied to the downlink signal based on the propagation path information calculated from the downlink signal, and simultaneously generates a control signal (RI) related thereto. . The downlink modulation scheme / coding rate management unit 325 determines a modulation scheme and a coding rate to be applied to downlink signal transmission based on the propagation path information calculated from the downlink signal, and simultaneously controls a control signal ( CQI, PMI) is generated.
 送信部330は、上りリンクデータやCQIなどの情報を割り当てられた上りリンクリソースにおいて同時に送信する。下りリンクデータおよび上りリンク空間多重情報管理部322で管理される信号は、その送信タイミングにおいて符号化部331へ供給され、入力された信号は、それぞれの種類によって異なる符号化率の符号化が行なわれる。この複数系列の出力信号は、変調部332へと入力され、それぞれの種類によって異なる変調方式により変調される。この出力は、空間多重・マッピング部333へと出力される。 The transmission unit 330 transmits the uplink data, CQI, and other information simultaneously on the assigned uplink resource. The downlink data and the signal managed by the uplink spatial multiplexing information management unit 322 are supplied to the encoding unit 331 at the transmission timing, and the input signal is encoded at a different coding rate depending on the type. It is. The plurality of series of output signals are input to the modulation unit 332, and are modulated by different modulation schemes depending on the respective types. This output is output to the spatial multiplexing / mapping unit 333.
 空間多重・マッピング部333は、スケジューリング情報管理部320から入力される、送信情報ごとの空間多重数、およびマッピング位置情報に応じて信号のマッピングを行なう。具体的に、送信方式にSC-FDMAが適用される場合には、割り当てられた周波数領域に信号をマッピングする。 Spatial multiplexing / mapping unit 333 performs signal mapping according to the spatial multiplexing number for each transmission information and mapping position information input from scheduling information management unit 320. Specifically, when SC-FDMA is applied to the transmission method, a signal is mapped to the assigned frequency domain.
 空間多重・マッピング部333によりマッピングされた信号は、無線送信部334へ入力される。無線送信部334では、これらの信号が送信する信号形態に変換される。具体的には、周波数領域の信号をIFFTにより時間領域の信号へ変換し、ガードインターバルを付与する動作などがこれに相当する。無線送信部334の出力は、アンテナ240に供給される。 The signal mapped by the spatial multiplexing / mapping unit 333 is input to the wireless transmission unit 334. In the wireless transmission unit 334, these signals are converted into a signal form to be transmitted. Specifically, an operation of converting a frequency domain signal into a time domain signal by IFFT and providing a guard interval corresponds to this. The output of the wireless transmission unit 334 is supplied to the antenna 240.
 図3は、基地局装置200から移動局装置300へUL-SCH、CQI、PMI、RIを送信するための送信リソースが割り当てられ、そのリソースでの送信を行なうシーケンスチャートである。ここでは、要求品質の異なる情報としてUL-SCH、CQI、PMI、RIが同時に送信されることを想定しているが、情報の種類としてこれらに限られるわけではなく、その他の情報を送信する場合においても、本実施形態と同様の手順を適用することが可能である。 FIG. 3 is a sequence chart in which transmission resources for transmitting UL-SCH, CQI, PMI, and RI are allocated from base station apparatus 200 to mobile station apparatus 300, and transmission is performed using these resources. Here, it is assumed that UL-SCH, CQI, PMI, and RI are simultaneously transmitted as information having different required qualities, but the information types are not limited to these, and other information is transmitted. It is possible to apply the same procedure as in this embodiment.
 基地局装置200は、移動局装置300に対して、上りリンクデータを送信するためのリソースを割り当てるとともに、CQI、PMI、RIを同時に送信することを要求する信号を送信する(ステップS300)。ステップS300には、上りリンク信号(UL-SCH)の送信に適用する変調方式、符号化率、空間多重数に関する情報が含まれていてもよく、UL-SCHの値からの差分値もしくは差分を表すインデックスだけが通知されてもよい。また、この差分値は、あらかじめ仕様書などに記載される形で移動局装置300と基地局装置200で共有されていてもよい。CQI、PMI、RIに適用する変調方式、符号化率、空間多重数に関する情報は、UL-SCHに適用される情報から一意に算出されてもよく、明示的に通知されてもよい。さらに空間多重数については、特定の情報ごとに特定の値を利用するようにしてもよい。例えば、RIを送信する場合は、必ず空間多重数を1として送信することに該当する。この場合、利用される値は、仕様書等に記載された固定の値が適用されることとなる。 The base station apparatus 200 allocates resources for transmitting uplink data to the mobile station apparatus 300 and transmits a signal requesting to transmit CQI, PMI, and RI simultaneously (step S300). Step S300 may include information on a modulation scheme applied to uplink signal (UL-SCH) transmission, a coding rate, and the number of spatial multiplexing, and the difference value or difference from the UL-SCH value is calculated. Only the index to represent may be notified. Further, this difference value may be shared between the mobile station apparatus 300 and the base station apparatus 200 in a form described in a specification or the like in advance. Information regarding modulation schemes, coding rates, and spatial multiplexing numbers applied to CQI, PMI, and RI may be uniquely calculated from information applied to UL-SCH or may be explicitly notified. Furthermore, for the spatial multiplexing number, a specific value may be used for each specific information. For example, when the RI is transmitted, this always corresponds to transmission with the spatial multiplexing number set to 1. In this case, a fixed value described in a specification or the like is applied as the value to be used.
 ステップS300と前後して、基地局装置200は、移動局装置300に対して、CQI、PMI、RIを計算するために利用される既知信号を送信する(ステップS301)。ステップS301を受信した基地局装置200は、CQI、PMI、RIを算出すると同時に、割り当てられたリソースの大きさ(例えば周波数サブキャリア数に相当する)、変調方式、符号化率に応じてUL-SCHを生成する(ステップS302)。次に、生成されたUL-SCH、CQI、PMI、RIなどの情報は、ステップS300の処理により与えられた情報から、情報の種類に応じた符号化率を計算し(ステップS303)、それぞれの情報ごとに符号化および変調を行なう(ステップS304)。 Before and after Step S300, the base station apparatus 200 transmits a known signal used for calculating CQI, PMI, and RI to the mobile station apparatus 300 (Step S301). Receiving step S301, the base station apparatus 200 calculates CQI, PMI, and RI, and at the same time, determines UL- according to the allocated resource size (eg, corresponding to the number of frequency subcarriers), modulation scheme, and coding rate. An SCH is generated (step S302). Next, for the generated information such as UL-SCH, CQI, PMI, RI, etc., the coding rate corresponding to the type of information is calculated from the information given by the process of step S300 (step S303). Encoding and modulation are performed for each information (step S304).
 ここで、複数の情報をまとめて符号化を行なってもよく、例えば、CQIとPMIを直列化したビット列を生成し、これに対して符号化を行なってもよい。次に、変調されたそれぞれの情報のシンボル数を勘案して、それぞれの情報のマッピング位置を計算し、また、ステップS300の処理により与えられた空間多重数を勘案して、マッピングおよび空間多重信号の生成が行なわれる(ステップS305)。 Here, a plurality of pieces of information may be encoded together, for example, a bit string obtained by serializing CQI and PMI may be generated and encoded. Next, the mapping position of each information is calculated in consideration of the number of symbols of each modulated information, and the mapping and spatial multiplexing signals are considered in consideration of the spatial multiplexing number given by the processing of step S300. Is generated (step S305).
 図4は、UL-SCH、CQI、PMI、RIがマッピングされた例を示す図である。図4において、400を付した部分は、上りリンクにSC-FDMA方式が採用されていることを前提としたリソースのマッピングを表す図であり、横軸は、時間を表しており、1単位は、1SC-FDMAシンボルを表している。縦軸は、1つの移動局装置300に割り当てられた周波数領域において、1SC-FDMAシンボルにおける信号(変調シンボル)が並べられたことを表している。このリソース400の中には、受信機がチャネル推定に用いる参照信号(RS:Reference Signal)(401)、UL-SCH(402)、RI(403)、CQIとPMI(404)が存在している。ここで、RIは、ランク1、それ以外の情報は、ランクN(N>1)で送信することを想定する。受信機におけるMIMO空間多重信号の分離処理は、周波数領域で行なわれるため、1SC-FDMAシンボル内でランクの異なる情報を処理することは困難である。このため、RIが含まれる2番目と6番目のSC-FDMAシンボルをランク1で送信し、その他のSC-FDMAシンボルをランクNで送信する。 FIG. 4 is a diagram showing an example in which UL-SCH, CQI, PMI, and RI are mapped. In FIG. 4, the part denoted by 400 is a diagram showing resource mapping on the assumption that the SC-FDMA scheme is adopted for the uplink, the horizontal axis shows time, and one unit is 1 SC-FDMA symbol. The vertical axis represents that signals (modulation symbols) in one SC-FDMA symbol are arranged in the frequency domain assigned to one mobile station apparatus 300. In this resource 400, there are a reference signal (RS: Reference signal) (401), UL-SCH (402), RI (403), CQI and PMI (404) used by the receiver for channel estimation. . Here, it is assumed that RI is transmitted with rank 1, and other information is transmitted with rank N (N> 1). Since the MIMO spatial multiplexing signal separation processing at the receiver is performed in the frequency domain, it is difficult to process information of different ranks within one SC-FDMA symbol. For this reason, the second and sixth SC-FDMA symbols including the RI are transmitted with rank 1, and the other SC-FDMA symbols are transmitted with rank N.
 ただし、RIを送信するSC-FDMAシンボルのランクは、1に限るわけでなく、Nより小さい値であれば他の値に規定してもよい。また、これはNからのオフセット値を規定することも可能であり、例えば、オフセットを2とし、N=4であればランク2でRIを送信することも可能である。さらにこのオフセットの値は、基地局装置から各移動局装置へ個別に通知することも可能である。 However, the rank of the SC-FDMA symbol that transmits the RI is not limited to 1, and may be defined to other values as long as the value is smaller than N. This can also define an offset value from N. For example, if the offset is 2, and N = 4, it is also possible to transmit RI at rank 2. Further, the offset value can be individually notified from the base station apparatus to each mobile station apparatus.
 このようにして生成された信号は、図3に示すように、移動局装置300から基地局装置200へ送信され(ステップS308)、これを受信した(ステップS309)基地局装置200は、逆マッピング処理により、それぞれの情報の抽出を行なう(ステップS310)。ここで、逆マッピング処理とは、送信信号に空間多重がされている場合には、その分離に関する処理も含んでいる。逆マッピングされ、それぞれの情報(UL-SCH、CQI、PMI、RI)に分離された信号は、復号処理され(ステップS311)送信されたビット列が抽出される。 As shown in FIG. 3, the signal generated in this way is transmitted from the mobile station apparatus 300 to the base station apparatus 200 (step S308), and received (step S309), the base station apparatus 200 performs inverse mapping. Each information is extracted by the processing (step S310). Here, the inverse mapping processing includes processing related to separation when the transmission signal is spatially multiplexed. The signal that has been reverse-mapped and separated into the respective information (UL-SCH, CQI, PMI, RI) is decoded (step S311), and the transmitted bit string is extracted.
 以上の手順により、要求品質が異なる複数の信号を送信する場合に、それぞれの品質を満たすことができる空間多重数を採用した通信を行なうことが可能となる。 According to the above procedure, when a plurality of signals having different required qualities are transmitted, it is possible to perform communication employing a spatial multiplexing number that can satisfy each quality.
 (第2の実施形態)
 第2の実施形態では、基地局装置および移動局装置は、第1の実施形態と同様の構成を採り、それらの動作も、図3に示すシーケンスチャートに沿って行なわれる。第1の実施形態と異なる点は、図4で示した各情報のマッピングと、それに適用する空間多重系列数ランクの配置である。図4では、ランク1で送信したいRIが二つのSC-FDMAシンボルにマッピングされているため、ランクNで送信可能であるUL-SCHをランク1で送信しなければならず、非効率であった。本実施形態は、その非効率を改善することを目的としている。
(Second Embodiment)
In the second embodiment, the base station apparatus and mobile station apparatus adopt the same configuration as in the first embodiment, and their operations are also performed according to the sequence chart shown in FIG. The difference from the first embodiment is the mapping of each information shown in FIG. 4 and the arrangement of the number of spatially multiplexed sequences applied to it. In FIG. 4, since the RI to be transmitted in rank 1 is mapped to two SC-FDMA symbols, UL-SCH that can be transmitted in rank N must be transmitted in rank 1, which is inefficient. . The purpose of this embodiment is to improve the inefficiency.
 図5Aは、第2の実施形態におけるマッピングの例を示す図である。図5Aでは、UL-SCH、CQI、PMI、RIがマッピングされる例を示している。このリソース400の中には、受信機がチャネル推定に用いる参照信号(RS:Reference Signal)(401)、UL-SCH(402)、RI(403)、CQIとPMI(404)が存在している。ここで、RIは、ランク1、それ以外の情報は、ランクN(N>1)で送信することを想定する。本実施形態では、RIがマッピングされるSC-FDMAシンボルを2番目のみに限定し、このシンボルのみをランク1で送信し、その他のSC-FDMAシンボルをランクNで送信する。もし、RIを送信するSC-FDMAシンボルに余りが生じた場合には、その部分に他の情報(UL-SCHやCQI、PMI)などをマッピングしてもよい(図5Aの501、502)。その場合には、適用されるランクのうち最も低いものが適用され、この場合では、501、502にマッピングされたUL-SCHは、ランク1で送信される。 FIG. 5A is a diagram illustrating an example of mapping in the second embodiment. FIG. 5A shows an example in which UL-SCH, CQI, PMI, and RI are mapped. In this resource 400, there are a reference signal (RS: Reference signal) (401), UL-SCH (402), RI (403), CQI and PMI (404) used by the receiver for channel estimation. . Here, it is assumed that RI is transmitted with rank 1, and other information is transmitted with rank N (N> 1). In this embodiment, the SC-FDMA symbol to which the RI is mapped is limited to the second one, only this symbol is transmitted with rank 1, and the other SC-FDMA symbols are transmitted with rank N. If there is a remainder in the SC-FDMA symbol that transmits the RI, other information (UL-SCH, CQI, PMI) or the like may be mapped to that portion (501 and 502 in FIG. 5A). In that case, the lowest rank among the applied ranks is applied. In this case, UL-SCH mapped to 501 and 502 is transmitted in rank 1.
 図5Bは、他のマッピングの例を示す図である。図5Bでは、さらに別の例として、RIだけでなくCQI、PMIもランク1で送信する。この場合、RIとCQI、PMIを例えば、第3および第5のSC-FDMAシンボルに集中させることで、低いランクで送信しなければならない領域を減らし、ランクNで送信できるUL-SCHの領域を広く設定することができる。具体的な手順については、第1の実施形態と同様であり、図4を用いて説明したとおりである。 FIG. 5B is a diagram showing another example of mapping. In FIG. 5B, as still another example, not only RI but also CQI and PMI are transmitted in rank 1. In this case, by concentrating RI, CQI, and PMI on, for example, the third and fifth SC-FDMA symbols, the area that must be transmitted in the lower rank is reduced, and the UL-SCH area that can be transmitted in rank N is reduced. Can be set widely. The specific procedure is the same as that in the first embodiment, and is as described with reference to FIG.
 なお、予め閾値を設けて、以上説明した第1の実施形態と、第2の実施形態とを切り替えることも可能である。すなわち、図4で示したマッピングと、図5Aで示したマッピングとを切り替えるのである。これは、時間ダイバーシチ効果が顕著な場合は、図4で示したマッピングを用いる一方、時間ダイバーシチ効果よりも上りリンクデータの送信効率の向上を優先させる場合は、図5Aに示すマッピングを用いることにより、効率的な通信を実現することが可能となる。また、割り当てられたリソースブロックの数、すなわち周波数帯域を閾値として図4で示したマッピングと図5Aで示したマッピングを切り替えることも可能である。これにより、マッピング方法の変更を移動局装置、基地局装置間で通知することを排除することが可能となる。 It should be noted that it is possible to switch between the first embodiment and the second embodiment described above by providing a threshold value in advance. That is, the mapping shown in FIG. 4 and the mapping shown in FIG. 5A are switched. When the time diversity effect is significant, the mapping shown in FIG. 4 is used. On the other hand, when priority is given to improving the uplink data transmission efficiency over the time diversity effect, the mapping shown in FIG. 5A is used. It is possible to realize efficient communication. Also, the mapping shown in FIG. 4 and the mapping shown in FIG. 5A can be switched using the number of allocated resource blocks, that is, the frequency band as a threshold. As a result, it is possible to eliminate the notification of the change of the mapping method between the mobile station apparatus and the base station apparatus.
 以上の手順により、要求品質が異なる複数の信号を送信する場合に、それぞれの品質を満たすことができる空間多重数を採用した通信を行なうことが可能となる。さらに、空間多重数を低くして送信しなければならない情報を限られた領域、例えば、特定のSC-FDMAシンボルに集中させることで、上りリンクデータ送信の効率低下を低減させることができる。 According to the above procedure, when a plurality of signals having different required qualities are transmitted, it is possible to perform communication employing a spatial multiplexing number that can satisfy each quality. Further, by concentrating information that must be transmitted with a reduced number of spatial multiplexing in a limited area, for example, a specific SC-FDMA symbol, it is possible to reduce a decrease in the efficiency of uplink data transmission.
 また、以上に説明したそれぞれの実施形態において、基地局装置内の各機能や、移動局装置内の各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより基地局装置や移動局装置の制御を行なっても良い。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 In each of the embodiments described above, each function in the base station apparatus and a program for realizing each function in the mobile station apparatus are recorded on a computer-readable recording medium, and the recording medium is recorded on this recording medium. The base station apparatus and mobile station apparatus may be controlled by causing the computer system to read and execute the recorded program. The “computer system” here includes an OS and hardware such as peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” means that a program is dynamically held for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In this case, it is intended to include those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client in that case. In addition, the program may be for realizing a part of the above-described functions, and may be capable of realizing the above-described functions in combination with a program already recorded in the computer system. .
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成は、これらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。 The embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design and the like within the scope not departing from the gist of the present invention are also claimed. Included in the range.
200 基地局装置
210 送信部
211 符号化部
212 変調部
213 マッピング部
214 無線送信部
220 スケジューリング部
221 上りリンク送信リソース制御部
222 上りリンク空間多重情報制御部
223 上りリンク変調方式・符号化率制御部
224 下りリンク送信リソース制御部
225 下りリンク空間多重情報制御部
226 下りリンク変調方式・符号化率制御部
230 受信部
231 無線受信部
232 上りリンク伝搬路算出部
233 逆マッピング・復調処理部
240 アンテナ
300 移動局装置
310 受信部
311 無線受信部
312 復調処理部
313 下りリンク伝搬路算出部
320 スケジューリング情報管理部
321 上りリンク送信リソース管理部
322 上りリンク空間多重情報管理部
323 上りリンク変調方式・符号化率管理部
324 下りリンク空間多重情報管理部
325 下りリンク変調方式・符号化率管理部
326 下りリンク送信リソース管理部
330 送信部
331 符号化部
332 変調部
333 空間多重・マッピング部
334 無線送信部
340 アンテナ
200 base station apparatus 210 transmitting section 211 encoding section 212 modulating section 213 mapping section 214 radio transmitting section 220 scheduling section 221 uplink transmission resource control section 222 uplink spatial multiplexing information control section 223 uplink modulation scheme / coding rate control section 224 downlink transmission resource control unit 225 downlink spatial multiplexing information control unit 226 downlink modulation scheme / coding rate control unit 230 reception unit 231 radio reception unit 232 uplink propagation path calculation unit 233 inverse mapping / demodulation processing unit 240 antenna 300 Mobile station apparatus 310 Reception section 311 Radio reception section 312 Demodulation processing section 313 Downlink propagation path calculation section 320 Scheduling information management section 321 Uplink transmission resource management section 322 Uplink spatial multiplexing information management section 323 Uplink modulation scheme / coding Management unit 324 downlink spatial multiplexing information management unit 325 downlink modulation scheme and coding rate management unit 326 downlink transmission resource management unit 330 transmitting unit 331 coding unit 332 modulation unit 333 spatial multiplexing mapping unit 334 radio transmission unit 340 antenna

Claims (7)

  1.  基地局装置と移動局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する無線通信システムであって、
     前記信号の要求品質に応じて、それぞれ異なる空間多重系列数を選定し、前記選定した空間多重系列数に基づいて、前記各信号をMIMO方式で送受信することを特徴とする無線通信システム。
    A wireless communication system that transmits and receives a plurality of types of signals having different required qualities using a MIMO (Multiple Input Multiple Output) scheme between a base station apparatus and a mobile station apparatus,
    A wireless communication system, wherein a different number of spatially multiplexed sequences is selected according to the required quality of the signal, and each signal is transmitted and received by a MIMO scheme based on the selected number of spatially multiplexed sequences.
  2.  前記信号の要求品質に応じて、それぞれ異なる変調方式または符号化率の少なくとも一方を選定し、前記選定した変調方式または符号化率に基づいて、前記各信号の処理を行なうことを特徴とする請求項1記載の無線通信システム。 The method according to claim 1, wherein at least one of a different modulation scheme or coding rate is selected according to the required quality of the signal, and the processing of each signal is performed based on the selected modulation scheme or coding rate. Item 2. A wireless communication system according to Item 1.
  3.  前記空間多重系列数は、前記要求品質の異なる複数種類の信号に応じて一意に決定されることを特徴とする請求項1記載の無線通信システム。 The wireless communication system according to claim 1, wherein the number of spatially multiplexed sequences is uniquely determined according to a plurality of types of signals having different required qualities.
  4.  前記要求品質の異なる複数種類の信号のうち、送信信号系列数情報に対する空間多重系列数は、1であることを特徴とする請求項3記載の無線通信システム。 4. The wireless communication system according to claim 3, wherein among the plurality of types of signals having different required qualities, the number of spatially multiplexed sequences with respect to transmission signal sequence number information is one.
  5.  SC-FDMA(Single Carrier Frequency Division Multiple Access)方式を用いて、前記選定した空間多重系列数が同一である信号を同一のシンボルで送受信することを特徴とする請求項1から請求項4記載のいずれかに記載の無線通信システム。 5. The system according to claim 1, wherein a signal having the same number of selected spatial multiplexing sequences is transmitted / received by using the same symbol by using SC-FDMA (Single Carrier Frequency Division Multiple Access). A wireless communication system according to claim 1.
  6.  移動局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する基地局装置であって、
     前記信号の要求品質に応じて、それぞれ異なる空間多重系列数を選定する上りリンク空間多重情報制御部と、
     前記信号の要求品質に応じて、それぞれ異なる変調方式または符号化率の少なくとも一方を選定する上りリンク変調方式・符号化率制御部と、
     前記選定された空間多重系列数を示す情報、および前記選定された変調方式または符号化率を示す情報を前記移動局装置に対して送信する送信部と、を備えることを特徴とする基地局装置。
    A base station apparatus that transmits and receives a plurality of types of signals having different required qualities using a MIMO (Multiple Input Multiple Output) method with a mobile station apparatus,
    An uplink spatial multiplexing information control unit that selects different numbers of spatially multiplexed sequences according to the required quality of the signal;
    An uplink modulation scheme / coding rate control unit that selects at least one of different modulation schemes or coding rates according to the required quality of the signal;
    A base station apparatus comprising: a transmitter that transmits information indicating the selected number of spatially multiplexed sequences and information indicating the selected modulation scheme or coding rate to the mobile station apparatus. .
  7.  基地局装置との間で、MIMO(Multiple Input Multiple Output)方式を用いて、要求品質の異なる複数種類の信号を送受信する移動局装置であって、
     前記基地局装置から受信した空間多重系列数を示す情報を管理する上りリンク空間多重情報管理部と、
     前記基地局装置から受信した変調方式または符号化率を示す情報を管理する上りリンク変調方式・符号化率管理部と、
     前記管理されている変調方式または符号化率を示す情報に基づいて、送信信号に対して、要求品質に応じた変調または符号化の少なくとも一方を行ない、前記管理されている空間多重系列数を示す情報に基づいて、要求品質に応じた空間多重系列数で、送信信号をMIMO方式で前記基地局装置に対して送信する移動局側送信部と、を備えることを特徴とする移動局装置。
    A mobile station apparatus that transmits and receives a plurality of types of signals having different required qualities using a MIMO (Multiple Input Multiple Output) method with a base station apparatus,
    An uplink spatial multiplexing information management unit for managing information indicating the number of spatial multiplexing sequences received from the base station device;
    An uplink modulation scheme / coding rate management unit for managing information indicating a modulation scheme or a coding rate received from the base station apparatus;
    Based on the information indicating the managed modulation scheme or coding rate, the transmission signal is modulated or coded according to the required quality, and the number of managed spatial multiplexing sequences is indicated. A mobile station apparatus comprising: a mobile station side transmission unit configured to transmit a transmission signal to the base station apparatus by a MIMO scheme with the number of spatially multiplexed sequences corresponding to required quality based on information.
PCT/JP2010/056441 2009-04-22 2010-04-09 Wireless communication system, base station apparatus and mobile station apparatus WO2010122910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009103747 2009-04-22
JP2009-103747 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010122910A1 true WO2010122910A1 (en) 2010-10-28

Family

ID=43011030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056441 WO2010122910A1 (en) 2009-04-22 2010-04-09 Wireless communication system, base station apparatus and mobile station apparatus

Country Status (1)

Country Link
WO (1) WO2010122910A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077085A1 (en) * 2012-11-16 2014-05-22 日本電気株式会社 Mobile communication terminal, cqi calculation method, and recording medium
JP2015111886A (en) * 2009-04-23 2015-06-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for control and data multiplexing in mimo communication system
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
CN111556568A (en) * 2019-01-04 2020-08-18 联发科技股份有限公司 Wireless device in wireless local area network and related method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197403A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Multiantenna transmitter and retransmitting method of multiantenna transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197403A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Multiantenna transmitter and retransmitting method of multiantenna transmitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Multiplexing ACK/NAK in the PUSCH", 3GPP TSG RAN WG1 #52 RL-080678, 11 February 2008 (2008-02-11) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111886A (en) * 2009-04-23 2015-06-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for control and data multiplexing in mimo communication system
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
WO2014077085A1 (en) * 2012-11-16 2014-05-22 日本電気株式会社 Mobile communication terminal, cqi calculation method, and recording medium
CN111556568A (en) * 2019-01-04 2020-08-18 联发科技股份有限公司 Wireless device in wireless local area network and related method
CN111556568B (en) * 2019-01-04 2023-09-01 联发科技股份有限公司 Wireless device in wireless local area network and related method

Similar Documents

Publication Publication Date Title
US10932242B2 (en) Multiplexing large payloads of control information from user equipments
US9883519B2 (en) Wireless communication system, communication device and communication method
JP4517009B2 (en) Communication apparatus and communication method
US20120163320A1 (en) Wireless communication system, mobile station apparatus and base station apparatus
US20110243023A1 (en) Base station apparatus, user apparatus and method in mobile communications system
JP5826852B2 (en) SC-FDMA transmitter and transmission method
KR20090110857A (en) Base station device, user device, and method used in mobile communication system
US9031589B2 (en) Transmission apparatus, wireless communication system, mobile station apparatus control program, and base station apparatus control program
US10602531B2 (en) Communication system, communication method, and base station
CN110832921B (en) Method and device used in user and base station of wireless communication
WO2010122910A1 (en) Wireless communication system, base station apparatus and mobile station apparatus
JPWO2017051583A1 (en) Apparatus, method, and program
CN111416639A (en) Method and apparatus in a node used for wireless communication
CN111512682A (en) Method and device used in user equipment and base station for wireless communication
WO2012070497A9 (en) Terminal device, base station device, communication system and communication method
KR20150136222A (en) Method and apparatus for processing signal
CN111431680A (en) Method and device used in user equipment and base station for wireless communication
JP5797299B2 (en) Base station apparatus, transmission apparatus, transmission method, and reception method
JP6868594B2 (en) Uplink control signaling in cellular telephone communication systems
JP2010200077A (en) Mobile communication system, base station device, mobile station device, and mobile communication method
WO2011040125A1 (en) Radio communication system, mobile station apparatus, base station apparatus and communication method
WO2009154231A1 (en) Base station device and mobile station device
JP2014131112A (en) Radio transmission device, control device, radio communication system and communication method
WO2010146924A1 (en) Wireless communication system, base station device, mobile station device, wireless communication method, and wireless communication program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP