Nothing Special   »   [go: up one dir, main page]

WO2010119973A1 - Hydrocarbon oil production system and method for producing hydrocarbon oil - Google Patents

Hydrocarbon oil production system and method for producing hydrocarbon oil Download PDF

Info

Publication number
WO2010119973A1
WO2010119973A1 PCT/JP2010/056898 JP2010056898W WO2010119973A1 WO 2010119973 A1 WO2010119973 A1 WO 2010119973A1 JP 2010056898 W JP2010056898 W JP 2010056898W WO 2010119973 A1 WO2010119973 A1 WO 2010119973A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
hydrocarbon oil
raw material
dry distillation
Prior art date
Application number
PCT/JP2010/056898
Other languages
French (fr)
Japanese (ja)
Inventor
直彌 吉川
二郎 及川
浩康 中村
Original Assignee
Ggiジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ggiジャパン株式会社 filed Critical Ggiジャパン株式会社
Priority to JP2011509377A priority Critical patent/JPWO2010119973A1/en
Publication of WO2010119973A1 publication Critical patent/WO2010119973A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a hydrocarbon oil production system and a hydrocarbon oil production method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-205135 discloses a methane fermentation tank for methane fermentation treatment of low-calorie waste, a carbonization furnace for burning carbonization by burning high-calorie waste, and the carbonization furnace.
  • a composite waste treatment system including a liquid fuel synthesizing apparatus that performs FT synthesis (Fischer-Tropsch synthesis) and that supplies biogas generated in a methane fermentation tank to a gasification furnace as a combustor is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-260832 discloses that solid waste can be efficiently and easily gasified and reformed simultaneously with carbonization in one furnace, and at that time, heat quantity can be easily adjusted.
  • Solid waste can be overheated as a waste recycling method and waste recycling system for small and medium-sized facilities that can be efficiently gasified, and can efficiently recycle carbides, useful gases, and liquid fuel even if the equipment scale is small. It is put into a carbonization / gasification furnace inclined downward from the inlet side to the outlet side together with water vapor, and in this carbonization / gasification furnace, it is heated indirectly in an air shut-off state by an electric heater without burning. Carbonization is performed by pyrolysis, and the amount of sediment in the furnace is increased toward the outlet side, causing water gas shift reaction with the heat, and dry distillation gas mainly composed of hydrogen and carbon monoxide.
  • Patent Document 3 Japanese Patent Application Laid-Open No.
  • 2007-204558 includes a gasification unit that holds a certain amount of biomass and heats it with a heating body to gasify it, and particulate matter, tar, A gas refining unit that removes at least one substance selected from sulfur compounds and nitrogen compounds and purifies biomass gas, and a liquid fuel manufacturing unit that liquefies the purified biomass refining gas to produce a biomass liquid fuel stock solution A gas-liquid separator that separates the biomass liquid fuel stock solution into biomass liquid fuel, water, and light hydrocarbons, a vacuum recovery unit that recovers the biomass liquid fuel separated by the gas-liquid separator by reducing the pressure, and Combusting unreacted material that is not gasified in the gasification unit, and supplying the generated heat to the gasification unit, a liquid combustion from biomass Manufacturing apparatus is disclosed.
  • Another object of the present invention is to provide a hydrocarbon production system and production method capable of obtaining a target industrially valuable hydrocarbon oil in a high yield.
  • the present invention for solving the above-mentioned problems is directed to a pyrolysis device that pyrolyzes a carbonaceous raw material into a dry distillation gas, a purification device that purifies the dry distillation gas, and a hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst.
  • a hydrocarbon oil production system comprising a hydrogen supply device for metering and adding hydrogen to the dry distillation gas, preferably between the purification device and the hydrocarbon synthesis device. It is characterized by having. Between the said refiner
  • the gas adjusting device further has a gas supply line for mixing unreacted gas from the hydrocarbon synthesizer, and the purified dry distillation gas, hydrogen from the hydrogen supply device, and the hydrocarbon It is particularly preferred to mix the unreacted gas from the synthesizer.
  • Superheated steam is preferable as the carrier gas heat source of the thermal decomposition apparatus, and more preferably, hydrogen is synthesized by superheated steam.
  • the refining device is preferably composed of a desulfurization device and an ion exchange scrubber.
  • the carbonaceous raw material of the present invention marine product-derived raw materials, forestry-derived raw materials, agricultural-derived raw materials, livestock-derived raw materials, sludge-derived raw materials, waste-derived raw materials, coal-derived raw materials, general waste-derived raw materials, waste plastics, waste tires, sludge At least one selected from the group consisting of chlorofluorocarbon and asbestos is applicable.
  • the system of the present invention preferably includes a pretreatment device for pretreating the carbonaceous raw material so as to have a predetermined carbon content and hydrogen content.
  • the present invention for solving the above-mentioned problems is a method for producing a hydrocarbon oil in which a carbonaceous raw material is pyrolyzed to generate a dry distillation gas, and after purification of the dry distillation gas, a hydrocarbon oil is obtained by a hydrocarbon synthesis catalyst.
  • the method for producing hydrocarbon oil preferably further includes a step of mixing the unreacted gas generated in step (F) with the mixed gas of step C.
  • FIG. 1 is a drawing showing a basic configuration of a hydrocarbon oil production system according to an embodiment of the present invention.
  • FIG. 2 is a drawing showing a basic configuration of a hydrocarbon oil production system according to another embodiment of the present invention.
  • FIG. 3 is a drawing showing an example of a raw material pretreatment apparatus applicable to the hydrocarbon oil production system of the present invention.
  • FIG. 4 is a drawing showing an example of a thermal decomposition apparatus in the hydrocarbon oil production system of the present invention.
  • FIG. 5 is a drawing showing an example of a carrier gas supply system that supplies the thermal decomposition apparatus.
  • FIG. 6 is a drawing showing an example of a purification apparatus in the hydrocarbon oil production system of the present invention.
  • FIG. 1 is a drawing showing a basic configuration of a hydrocarbon oil production system according to an embodiment of the present invention.
  • FIG. 2 is a drawing showing a basic configuration of a hydrocarbon oil production system according to another embodiment of the present invention.
  • FIG. 3 is a drawing
  • FIG. 7 is a drawing showing an example of a hydrogen supply system in the hydrocarbon oil production system of the present invention.
  • FIG. 8 is a drawing showing an example of an adjusting device in the hydrocarbon oil production system of the present invention.
  • FIG. 9 is a flowchart showing an example of calculation of the hydrogen addition amount in the hydrocarbon oil production system of the present invention.
  • FIG. 10 is a flowchart showing a method for producing a hydrocarbon oil of the present invention.
  • FIG. 11 is a drawing showing an example in which the hydrocarbon oil production system of the present invention is applied to waste treatment.
  • FIG. 12 is a view showing an example in which the hydrocarbon oil production system of the present invention is mounted on a container.
  • FIG. 13 is a drawing showing a business model in which the hydrocarbon oil production system of the present invention is applied to waste treatment.
  • FIG. 14 is a drawing showing an example of a pretreatment device when the hydrocarbon oil production system of the present invention is applied to sludge, sludge, and the like.
  • FIG. 15 is a diagram showing an example in which the hydrocarbon oil production system of the present invention is applied to treatment of sludge, sludge, and the like.
  • the hydrocarbon production system of the present invention includes a pyrolysis device 10 that pyrolyzes a carbonaceous raw material into a dry distillation gas, a purification device 20 that purifies the dry distillation gas, and a hydrocarbon synthesized from the purified gas.
  • the FT synthesis tower 70 which is a hydrocarbon synthesis device that uses hydrocarbon oil in the presence of a catalyst, and a hydrogen supply device 50 that supplies hydrogen to the dry distillation gas in a shortage for hydrocarbon synthesis, are mainly constituted.
  • This hydrocarbon production system has an adjustment device 40 that mixes purified dry distillation gas and hydrogen. More preferably, in the hydrocarbon production system of the present invention, the adjusting device 40 has a configuration in which unreacted gas in the FT synthesis tower is returned to the adjusting device 40 via the unreacted gas tank 100 as desired. As will be described later, the pyrolysis apparatus 10 replaces the inlet 11 for charging a carbonaceous raw material, which is a raw material or a processed product, and the atmosphere in the pyrolysis apparatus 10, and the generated dry distillation gas is purified later. A carrier gas supply system 20 for sending to the apparatus 30 is provided.
  • the hydrocarbon oil production apparatus of the present invention purifies a dry distillation gas generated by pyrolyzing a predetermined carbonaceous raw material with a thermal decomposition apparatus 10 with a purification apparatus 30 and adds hydrogen to the purified dry distillation gas to form a mixed gas.
  • the mixed gas is converted into hydrocarbon oil by the FT synthesis tower.
  • the yield of the hydrocarbon oil in the hydrocarbon oil production apparatus of the present invention is increased.
  • the yield of the hydrocarbon oil is further increased. As shown in FIG.
  • the carbonaceous raw material that can be used in the present invention is not particularly limited as long as it has a carbon source that generates dry distillation gas by thermal decomposition treatment, and can be appropriately used from a wide range of carbon-containing materials. .
  • a carbonaceous raw material applicable in the present invention as shown in FIG.
  • the hydrocarbon oil production system of the present invention includes two concepts of a waste treatment system for producing hydrocarbon oil as a valuable material from waste and a hydrocarbon oil production system from a predetermined raw material such as biomass. Those skilled in the art will readily understand that. These carbonaceous materials have different carbon contents and hydrogen contents depending on the origin.
  • the hydrogen content is adjusted to be from 5 to 1: 6, preferably from 1: 2 to 1: 5, more preferably from 1: 2 to 1: 4.
  • the carbonaceous raw material is provided in various forms as a crude raw material. Therefore, in the present invention, two viewpoints are used for pretreatment for using such a crude material as a production material.
  • pretreatment in the present invention (1) sufficient moisture adjustment to be within a predetermined carbon hydrogen molar ratio range (moisture adjustment is important from the viewpoint of energy reduction in thermal decomposition); (2) It is important to pulverize to a predetermined size in advance so as to efficiently thermally decompose.
  • pretreatment of these carbonaceous raw materials is appropriately selected from the viewpoints of introduction of pretreatment devices, energy required for moisture adjustment, introduction of pulverizers, efficiency of pulverizers, and the like.
  • the carbonaceous raw material satisfies predetermined raw material standards (carbon and hydrogen content, water content, and size).
  • predetermined raw material standards carbon and hydrogen content, water content, and size.
  • moisture adjustment may be omitted, and when pulverization after drying is not required, such as sludge, grinding is omitted. May be.
  • the pretreatment in the present invention is appropriately selected according to the carbon source (carbonaceous raw material) to be used and its situation.
  • the target moisture content is less than 60%, preferably less than 30%, more preferably less than 10%. If the water content is too high, energy consumption due to excessive evaporation in the thermal decomposition apparatus becomes too large.
  • the size of the carbonaceous raw material is preferably as fine as possible from the viewpoint of efficiently performing thermal decomposition. For example, when the carbonaceous raw material is derived from waste, impurities are clearly removed by sorting, dewatering, crushing, pulverizing, and drying, so that the raw material has a predetermined size and moisture content. By pretreating in this way, the carbon content and hydrogen content per unit weight can be assumed.
  • the carbonaceous raw material thus pretreated is used as a raw material reference for the starting material, and is used as a calculation reference for the amount of hydrogen to be described later based on the carbon and hydrogen content per unit weight. .
  • the carbonaceous raw material pretreated in the present invention is then thermally decomposed into crude dry distillation gas by the thermal decomposition apparatus 10.
  • the pyrolysis apparatus 10 applicable in the present invention includes, for example, an inlet 11 for charging a pretreated carbonaceous raw material as shown in FIG.
  • the pyrolysis apparatus 10 shown in FIG. 4 has a configuration in which a carbonaceous raw material charged from the charging port 11 is pushed in by a raw material pushing device 11a.
  • the introduced carbonaceous raw material is heated to a pyrolysis temperature in a carrier gas atmosphere by a heating means (not shown) and pyrolyzed to become a dry distillation gas containing impurities and a remaining solid component.
  • the heat source of the thermal decomposition apparatus can be oil as in the past, but those using electric energy or a hybrid with an oil type are preferred from the viewpoint of easy temperature control in the heat separator.
  • the thermal decomposition apparatus using electric energy may be a conventional electric furnace, but may be a heating method using microwaves or a heating method using a ceramic heating element.
  • the pyrolysis apparatus includes an input amount measuring device (for example, a weight sensor) for measuring the input amount of the carbonaceous raw material, a flow rate sensor for measuring the flow rate of the carrier gas, and a furnace It is preferable to provide a known sensor such as a temperature sensor for measuring the internal temperature, a pressure sensor for measuring the internal pressure of the apparatus, and a flow rate sensor for measuring the discharge amount and discharge pressure of the dry distillation gas.
  • the pyrolysis apparatus 10 includes a weight sensor for measuring the input amount of the carbonaceous raw material, a flow sensor for measuring the flow rate of the carrier gas, and a flow rate sensor and temperature for measuring the discharge amount and discharge temperature of the dry distillation gas.
  • Information from the sensor is important for calculating the carbon content and the hydrogen content (and hence the molar ratio of carbon to hydrogen).
  • the electric heating method is easy to control based on information from these sensors, and is preferable in terms of energy cost reduction, quick start-up, and ease of maintenance and operation.
  • the energy cost is about 1/10 compared to an electric furnace (an additional half by inserting an inverter circuit), the start-up is faster (about 5 minutes), and higher-temperature pyrolysis is possible.
  • the predetermined carbonaceous raw material is generally thermally decomposed at a high temperature of 700 ° C.
  • a carbonization gas mainly composed of is produced (crude carbonization gas).
  • the crude dry distillation gas is composed of carbon monoxide + hydrogen (water gas) 50 to 60%, low molecular weight hydrocarbons (methane, ethane, butane). Propane, etc.) about 20%, other gases (nitrogen oxide, sulfur oxide, hydrochloric acid, VOC, etc.) about 10%, and the balance was solids (char, inorganic, etc.).
  • the carrier gas supply system 20 is mainly composed of a water tank 21 for storing water for generating water vapor and an induction heating line 22 for overheating the generated water vapor. Since the superheated steam can be heated to a temperature of about 600 ° C. to 900 ° C., it can also be used as a heat source for the thermal decomposition apparatus 10. In the embodiment shown in FIG. 5, superheated steam can be sent to a hydrogen supply system 50 to be described later and used for generating hydrogen by catalytic reaction, and water from a purification device 40 such as an ion exchange scrubber can be used.
  • the purification device 30 is a device that removes impurities from the generated crude dry distillation gas, and can be configured by combining devices well known in the art.
  • the combination of the desulfurization / detarring device 31 and the ion exchange scrubber 33 or the combination of the desulfurization / detarging device 31, the ion exchange scrubber 33 and the cyclone 32 is purified.
  • the dry distillation gas is purer and the hydrocarbon oil as the final product does not contain chlorine or the like.
  • the ion exchange scrubber is a scrubber having both an anion exchange resin layer and a cation exchange resin layer, and is removed at an efficiency of 98% or more during gas treatment of HCl, HCN, Cl 2 , NO 2 , SO 2, etc. Is possible. Further, it is possible to simultaneously perform the adsorption treatment of the contaminated gas and the regeneration of the ion exchange fiber in one chamber. Conventionally, the gas generated by this type of pyrolysis has been treated with a normal scrubber. However, depending on the origin of the carbonaceous raw material, normal scrubbers may not sufficiently remove halogens and metal ions such as chlorine and iodine, and may remain in the purified gas, adversely affecting the hydrocarbon oil that is the final product.
  • the crude water gas often contains a sulfur component, a tar component, and the like, which may adversely affect the hydrocarbon oil that is the final product. Therefore, in the present invention, these components are removed by a desulfurization / detar apparatus.
  • a desulfurization / detar apparatus is not particularly limited as long as it achieves the object of the present invention, but can be composed of activated carbon that becomes denser from upstream to downstream, and is configured to switch a plurality of activated carbon layers in terms of maintenance. It is also possible to do.
  • the desulfurization / detarging apparatus 31 is a known apparatus as described in Patent Document 3, for example, and the cyclone 32 is also a known apparatus.
  • reflux gas which has a fixed property irrespective of the origin of a carbonaceous raw material can be obtained combining with the pretreatment of this invention. That is, it is preferable to use a reflux gas substantially free of ionic components, particularly halogen components and sulfur components.
  • Such purified carbonization gas is extremely advantageous for providing the desired hydrocarbon oil containing no chlorine or the like. (Hydrogen supply system)
  • purified water gas is mixed with hydrogen in order to make up for the lack of hydrogen compared to carbon.
  • the hydrogen required to produce hydrocarbon oils according to the present invention is deficient compared to carbon from purified water gas. Therefore, in order to produce hydrocarbon oil with a good yield (yield) by the system and method of the present invention, hydrogen is supplied from the hydrogen supply system to the purified water gas.
  • the resulting hydrogen is taken into a hydrogen tank and used to mix with purified water gas as necessary. In this way, hydrogen can be produced in the system.
  • a hydrogen supply system 50 capable of producing hydrogen in the system, a large amount of hydrogen can be supplied to the purified water gas. This makes it possible to obtain hydrocarbons with a good yield in the system of the present invention. It is also possible to use the obtained hydrogen for power generation.
  • Hydrogen from such a hydrogen supply system is added to the purified dry distillation gas. Hydrogen may be added in advance to the carrier gas or added to the water source of superheated steam as microbubbles. However, it is preferable to provide an adjusting device as shown in FIG.
  • the adjusting device 40 mixes the dry distillation gas purified by the purifying device 30, hydrogen from the hydrogen supply system 50, and preferably unreacted gas from the FT synthesis tower 70 described later, into a predetermined amount, and sends it to the FT synthesis tower.
  • a buffer tank that is a device for adjusting a mixed gas to be sent and temporarily stores a gas mixed with a gas mixer 41 including control valves 42a, 42b, and 42c such as electromagnetic valves for adjusting a gas pressure of each gas. 43.
  • the amount of hydrogen added at this time is determined, for example, as shown in FIG. That is, in the present invention, as described with reference to FIG.
  • the raw material standards are determined in advance by the starting raw material and its pretreatment (hydrogen content and carbon content), and the hydrogen content and carbon of the dry distillation gas are determined by this raw material standard.
  • the content rate is determined.
  • the amount of dry distillation gas generated per unit time is calculated by measuring the amount of gas generated by the actual operation of the thermal decomposition apparatus 10 and discharged from the thermal decomposition apparatus 10.
  • the gas generation amount of the dry distillation gas can be approximately obtained as a value obtained by subtracting the flow rate of the carrier gas introduced per unit time from the flow rate of gas discharged from the discharge port 11 per unit time. Then, the amount of hydrogen shortage is calculated from the composition of carbonized gas (carbon and hydrogen content) and the flow rate.
  • the adjusting device 40 supplies a predetermined amount of hydrogen gas from the hydrogen supply system 50 based on the hydrogen addition amount calculated in this way via the control valve 42c and the dry distillation gas purified from the purification device 30 via the control valve 42a. If necessary, the flow rate of the off-gas is controlled through the control valve 42 b and sent to the gas mixer 41, and the mixed gas of these gases is temporarily stored in the buffer tank 43.
  • a mixed gas in which the carbon: hydrogen molar ratio is optimized in the adjusting device 40.
  • the mixed gas in which the ratio of carbon and hydrogen is optimized is sent to the subsequent FT synthesis tower.
  • FT synthesis a mixed gas in which the ratio of carbon and hydrogen is optimized is sent to the FT synthesis tower 70 and subjected to the FT synthesis reaction until it becomes a hydrocarbon having a predetermined molecular weight range.
  • the FT synthesis tower itself is composed of an FT synthesis tower in which a Fischer-Tropsch catalyst known in the art is packed by a known method.
  • the mixed gas having an optimized ratio of carbon and hydrogen is compressed by, for example, the compressor 60 and brought into contact with the Fischer-Tropsch catalyst at a predetermined temperature, typically 200 to 250 ° C.
  • the gas containing hydrocarbons thus synthesized is a separation device 80, generally a device that separates hydrocarbon oil 90 and off-gas (unreacted gas) mainly composed of lower hydrocarbons by a condenser.
  • the separated unreacted gas is temporarily stored in the unreacted gas tank 100 if desired, and then returned to the adjusting device 40 again to be mixed with purified dry distillation gas and hydrogen.
  • the FT synthesis tower 70 is again used for the hydrocarbon synthesis reaction.
  • the unreacted gas means a gas that has not been converted to a desired molecular weight, and generally means an unreacted water gas and a lower hydrocarbon (methane, ethane, butane, propane, etc.).
  • the yield of hydrocarbon oil is increased by circulating the unreacted gas.
  • the carbonized raw material that has been pretreated is thermally decomposed as a starting material, and the dry distillation gas generated by the thermal decomposition is purified and purified.
  • the method for producing a hydrocarbon oil of the present invention is a method for producing a hydrocarbon oil in which a carbonaceous raw material is pyrolyzed to generate a dry distillation gas, and after the dry distillation gas is purified, a hydrocarbon oil is obtained by a hydrocarbon synthesis catalyst, The following steps (A) to (F) are included.
  • step A introducing a carbonaceous raw material having a predetermined carbon content and hydrogen content into a thermal decomposition apparatus;
  • step B a step of converting the input carbonaceous raw material into a dry distillation gas by pyrolysis,
  • C refining the dry distillation gas;
  • D preparing a mixed gas for synthesis by adding hydrogen to the purified dry distillation gas so as to have a predetermined carbon: hydrogen molar ratio;
  • E The step of converting the prepared mixed gas into hydrocarbon and
  • step F The step of separating the mixed gas obtained in step (E) into hydrocarbon oil and unreacted components
  • a carbonaceous raw material pretreated so as to have a known carbon content and hydrogen content is put into a thermal decomposition apparatus. At this time, it is important to pre-treat the carbon content and the hydrogen content within a predetermined range in advance.
  • the known amount of the carbonaceous raw material charged in Step B is pyrolyzed, and the impurities are purified in Step C.
  • the carbon content and hydrogen content in the carbonized gas purified in this way are within a known range, and the amount of hydrogen necessary to obtain the optimum carbon to hydrogen molar ratio is, for example, as shown in FIG. Can be obtained by calculation.
  • step D the amount of hydrogen calculated in this way is added to the refined dry distillation gas to optimize the amount of carbon and hydrogen components in the mixed gas.
  • the mixed gas in which the molar ratio of carbon and hydrogen is adjusted is converted into a hydrocarbon by FT synthesis in Step E.
  • the component obtained at the process E in the process F is isolate
  • the unreacted component can be returned to step D and re-synthesised as desired.
  • waste can be treated as a carbonaceous raw material satisfying a predetermined raw material standard by dehydrating, selecting, pulverizing (primary / secondary), and drying. Since the molar ratio of carbon: hydrogen fluctuates depending on the content of waste, sampling of component analysis of waste (carbonaceous raw material) that has been pretreated appropriately may be performed to correct the raw material standards. preferable.
  • the system of the present invention can be mounted on a container or the like to constitute a mobile waste treatment system or a temporarily installed waste treatment system. These mobile waste disposal systems and temporarily installed waste disposal systems are suitable for small-scale waste disposal in terms of installation of the system building and application for permission.
  • the waste treatment system based on the hydrocarbon oil production system of the present invention adds hydrogen under a preset raw material standard to optimize the molar ratio of carbon and hydrogen.
  • the amount of hydrocarbon oil obtained can be assumed to some extent. Therefore, since it is possible to calculate the introduction cost, profits obtained by selling hydrocarbon oil, etc., it is possible to easily introduce the system.
  • the hydrocarbon production system of the present invention is separately introduced into two containers, container 1 and container 2, but all the components may be mounted in one container, or, for example, a pretreatment device Etc. can be changed as appropriate, for example, fixedly installed on site.
  • a pretreatment device Etc can be changed as appropriate, for example, fixedly installed on site.
  • the hydrocarbon oil production system of the present invention appropriately pretreats sludge, sludge, household waste, animals (especially livestock, poultry manure) and the like to satisfy the raw material standards required by the present invention. It can be used as a quality raw material. At this time, for example, as shown in FIG.
  • the slurry-like sludge is agitated and cut as desired, and dried by hot air after dehydration by mesh and / or dehydration by centrifugation and suction, thereby requiring the raw material required by the present invention. It is possible to make the carbonaceous raw material satisfy the standards, and it is possible to reduce the volume of sludge and the like. Production of hydrocarbon oil from the carbonaceous raw material thus obtained is as described above. In addition, as shown in FIG. 15, it is also possible to manufacture hydrocarbon oil by stocking garbage and manure discharged from a home. (BTL) In the embodiment shown in FIG.
  • the cultivation of biomass production and the conservation of biomass resources in the biomass manufacturer that is the raw material supplier, the production of hydrocarbons at the hydrocarbon oil production site, and the produced hydrocarbons It is possible to implement a series of new businesses that consist of a hydrocarbon oil sales business that sells oil.
  • the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be widely applied.
  • the production system and the production method of the present invention can be applied to any raw material containing a predetermined amount of carbon such as a carbonaceous raw material such as coal and waste plastic shown in FIG. 3 or a gaseous raw material such as chlorofluorocarbon gas.
  • the present invention relates to a pyrolysis apparatus for pyrolyzing a carbonaceous raw material to obtain a dry distillation gas, a purification apparatus for purifying the dry distillation gas, and a hydrocarbon synthesis using the purified gas as a hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst.
  • hydrocarbon oil is produced by FT synthesis after adding hydrogen so as to have a predetermined molar ratio according to the carbon: hydrogen molar ratio of the carbonaceous raw material. It is possible to produce the desired hydrocarbon oil with a good yield. for that reason. It is applicable not only for the introduction of a new hydrocarbon oil production system, but also in a wide range of fields such as waste treatment and biomass energy production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A target hydrocarbon oil is efficiently produced from various starting carbonaceous materials. A system for producing a hydrocarbon oil, which comprises: a heat decomposition device for thermally decomposing a carbonaceous material to give a dry distillation gas; a purification device for purifying the dry distillation gas; and a hydrocarbon-synthesizing device for converting the thus purified gas into a hydrocarbon oil in the presence of a hydrocarbon-synthesizing catalyst. This system is provided with a hydrogen-supply unit for supplying hydrogen gas between the purification device and the hydrocarbon-synthesizing device.

Description

炭化水素オイル製造システム及び炭化水素オイルの製造方法Hydrocarbon oil production system and method for producing hydrocarbon oil
 本発明は、炭化水素オイル製造システム及び炭化水素オイルの製造方法に関する。 The present invention relates to a hydrocarbon oil production system and a hydrocarbon oil production method.
 廃棄物やバイオマスを熱分解して、乾留ガスを発生させ、発生した乾留ガスをフィッシャ・トロプシュ合成触媒を用いて液体燃料化する種々の試みが施されている。
 特許文献1(特開2006−205135号公報)には、低カロリー廃棄物をメタン発酵処理するメタン発酵槽と、高カロリー廃棄物を燃焼させて炭化処理する炭化炉と、該炭化炉にて製造した炭化物を導入し燃焼させてガス化するガス化炉と、該ガス化炉にて発生したガスを精製するガス精製装置と、該精製したCO、H2を主成分とする精製ガスから液体燃料をFT合成(フィッシャー・トロプシュ合成)する液体燃料合成装置とを備え、メタン発酵槽にて発生したバイオガスをガス化炉に助燃剤として送給する複合廃棄物処理システムが開示されている。
 また、特許文献2(特開2008−260832号公報)には、固形廃棄物を一つの炉内で炭化と同時に効率良く簡単にガス化及びガス改質できるとともに、その際に、熱量調整が容易で安定してガス化でき、炭化物と有用ガスと液体燃料とを装置規模が小さくとも効率良く再生できる、中小規模施設向きの廃棄物再生処理方法及び廃棄物再生処理システムとして、固形廃棄物を過熱水蒸気と共に入口側から出口側へ向かって下向きに傾斜させた炭化・ガス化炉内に投入し、この炭化・ガス化炉内で電気ヒータにより空気遮断状態で間接的に加熱して燃焼させることなく熱分解により炭化させるとともに、その炭化物の炉内での滞積量を出口側へ向かって多くしてその熱で水性ガスシフト反応を起こし、水素と一酸化炭素を主体とした乾留ガスを生成する熱分解炭化・ガス化工程と、この乾留ガスをフィッシャー・トロプシュ合成触媒を用いて液体燃料化する液体燃料化工程とを有することを特徴とする廃棄物再生処理方法が開示されている。
 また、特許文献3(特開2007−204558)には、バイオマスを一定量保持して加熱体で加熱しガス化するガス化部と、ガス化部により発生したバイオマスガスから粒子状物質、タール、硫黄化合物および窒素化合物から選択される少なくとも1つ以上の物質を除去し、バイオマスガスを精製するガス精製部と、精製されたバイオマス精製ガスを液体化してバイオマス液体燃料原液を製造する液体燃料製造部と、前記バイオマス液体燃料原液をバイオマス液体燃料、水および軽質炭化水素に分離する気液分離部と、前記気液分離部で分離されたバイオマス液体燃料を減圧して回収する減圧回収部と、前記ガス化部でガス化されない未反応物を燃焼させ、発生した熱を前記ガス化部へ供給する燃焼部と、からなるバイオマスからの液体燃料製造装置が開示されている。
 これらの技術は、設計の段階あるいは実験段階であり、工業的規模で連続して運転可能な炭素質原料から炭化水素オイルを高い収量で製造する技術は、確立されていない。
 すなわち、従来技術では、原料となる炭素質原料に含まれる炭素量に比較して少量の炭化水素しか得られなかった。
Various attempts have been made to pyrolyze waste and biomass to generate dry distillation gas and to convert the generated dry distillation gas into a liquid fuel using a Fischer-Tropsch synthesis catalyst.
Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-205135) discloses a methane fermentation tank for methane fermentation treatment of low-calorie waste, a carbonization furnace for burning carbonization by burning high-calorie waste, and the carbonization furnace. A gasification furnace for introducing and burning the generated carbide to gasify, a gas purification device for purifying the gas generated in the gasification furnace, and liquid fuel from the purified gas mainly containing the purified CO and H2 A composite waste treatment system including a liquid fuel synthesizing apparatus that performs FT synthesis (Fischer-Tropsch synthesis) and that supplies biogas generated in a methane fermentation tank to a gasification furnace as a combustor is disclosed.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-260832) discloses that solid waste can be efficiently and easily gasified and reformed simultaneously with carbonization in one furnace, and at that time, heat quantity can be easily adjusted. Solid waste can be overheated as a waste recycling method and waste recycling system for small and medium-sized facilities that can be efficiently gasified, and can efficiently recycle carbides, useful gases, and liquid fuel even if the equipment scale is small. It is put into a carbonization / gasification furnace inclined downward from the inlet side to the outlet side together with water vapor, and in this carbonization / gasification furnace, it is heated indirectly in an air shut-off state by an electric heater without burning. Carbonization is performed by pyrolysis, and the amount of sediment in the furnace is increased toward the outlet side, causing water gas shift reaction with the heat, and dry distillation gas mainly composed of hydrogen and carbon monoxide. There is disclosed a waste regeneration treatment method characterized by comprising a pyrolysis carbonization / gasification step for producing a gas and a liquid fuel conversion step for converting the dry distillation gas into a liquid fuel using a Fischer-Tropsch synthesis catalyst. .
Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-204558) includes a gasification unit that holds a certain amount of biomass and heats it with a heating body to gasify it, and particulate matter, tar, A gas refining unit that removes at least one substance selected from sulfur compounds and nitrogen compounds and purifies biomass gas, and a liquid fuel manufacturing unit that liquefies the purified biomass refining gas to produce a biomass liquid fuel stock solution A gas-liquid separator that separates the biomass liquid fuel stock solution into biomass liquid fuel, water, and light hydrocarbons, a vacuum recovery unit that recovers the biomass liquid fuel separated by the gas-liquid separator by reducing the pressure, and Combusting unreacted material that is not gasified in the gasification unit, and supplying the generated heat to the gasification unit, a liquid combustion from biomass Manufacturing apparatus is disclosed.
These technologies are in a design stage or an experimental stage, and a technique for producing hydrocarbon oil with a high yield from a carbonaceous raw material that can be continuously operated on an industrial scale has not been established.
That is, in the prior art, only a small amount of hydrocarbon was obtained as compared with the amount of carbon contained in the carbonaceous raw material as a raw material.
特開2006−205135号公報JP 2006-205135 A 特開2008−260832号公報JP 2008-260832 A 特開2007−204558号公報JP 2007-204558 A
 本発明の別の課題は、目的とする工業的に価値のある炭化水素オイルを高い収量で得ることが可能な炭化水素の製造システムおよび製造方法を提供することである。 Another object of the present invention is to provide a hydrocarbon production system and production method capable of obtaining a target industrially valuable hydrocarbon oil in a high yield.
 上記課題を解決する本発明は、炭素質原料を熱分解して乾留ガスとする熱分解装置と、乾留ガスを精製する精製装置と、精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置と、から構成された炭化水素オイル製造システムであって、前記乾留ガスに水素を計量添加する水素供給装置を、好ましくは前記精製装置と前記炭化水素合成装置との間に備えたことを特徴とする。
 前記精製装置と前記炭化水素合成装置との間に、前記精製した乾留ガスと前記水素とを混合して、ガス中の炭素と水素との割合を調整するためのガス調整装置を有していることが好ましく。さらに前記ガス調整装置は、さらに炭化水素合成装置からの未反応のガスを混合するためのガス供給ラインを有しており、前記精製した乾留ガスと、前記水素供給装置からの水素と前記炭化水素合成装置からの未反応ガスとを混合することが特に好ましい。
 熱分解装置のキャリアガス熱源として過熱水蒸気が好ましく、更に好ましくは過熱水蒸気により水素を合成する。
 精製装置は、脱硫装置とイオン交換スクラバとから構成されていることが好ましい。
 本発明の炭素質原料として、水産物由来原料、林業由来原料、農業由来原料、畜産由来原料、汚泥由来原料、廃棄物由来原料、石炭由来原料、一般廃棄物由来原料、廃プラスチック、廃タイヤ、ヘドロ、フロンガスおよびアスベストからなる群から選択された少なくとも1つを適用可能である。
 本発明のシステムは、前記炭素質原料を所定の炭素含有量、水素含有量となるように前処理する前処理装置を備えていることが好ましい。
 上記課題を解決する本発明は、炭素質原料を熱分解して乾留ガスを発生させ、乾留ガスを精製後に炭化水素合成触媒により炭化水素オイルを得る炭化水素オイルの製造方法であって、(A) 所定の炭素含有率および水素含有率を有する炭素質原料を熱分解装置に投入する工程と、(B) 投入した炭素質原料を熱分解により乾留ガスとする工程と、(C) 乾留ガスを精製する工程と、(D) 精製した乾留ガスに所定の炭素:水素モル比となるように水素を添加して合成用の混合ガスを調製する工程と、(E) 調製した混合ガスを炭化水素に転化する工程と(F) 工程(E)で得られた混合ガスを炭化水素オイルと、未反応分とに分離する工程とを含むことを特徴とする炭化水素オイルの製造方法である。
 炭化水素オイルの製造方法は、さらに、工程(F)で生じた未反応ガスを工程Cの混合ガスに混合する工程を有することが好ましい。
The present invention for solving the above-mentioned problems is directed to a pyrolysis device that pyrolyzes a carbonaceous raw material into a dry distillation gas, a purification device that purifies the dry distillation gas, and a hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst. A hydrocarbon oil production system comprising a hydrogen supply device for metering and adding hydrogen to the dry distillation gas, preferably between the purification device and the hydrocarbon synthesis device. It is characterized by having.
Between the said refiner | purifier and the said hydrocarbon synthesizer, it has the gas regulator for mixing the said refined dry distillation gas and the said hydrogen, and adjusting the ratio of the carbon in a gas, and hydrogen. It is preferable. Further, the gas adjusting device further has a gas supply line for mixing unreacted gas from the hydrocarbon synthesizer, and the purified dry distillation gas, hydrogen from the hydrogen supply device, and the hydrocarbon It is particularly preferred to mix the unreacted gas from the synthesizer.
Superheated steam is preferable as the carrier gas heat source of the thermal decomposition apparatus, and more preferably, hydrogen is synthesized by superheated steam.
The refining device is preferably composed of a desulfurization device and an ion exchange scrubber.
As the carbonaceous raw material of the present invention, marine product-derived raw materials, forestry-derived raw materials, agricultural-derived raw materials, livestock-derived raw materials, sludge-derived raw materials, waste-derived raw materials, coal-derived raw materials, general waste-derived raw materials, waste plastics, waste tires, sludge At least one selected from the group consisting of chlorofluorocarbon and asbestos is applicable.
The system of the present invention preferably includes a pretreatment device for pretreating the carbonaceous raw material so as to have a predetermined carbon content and hydrogen content.
The present invention for solving the above-mentioned problems is a method for producing a hydrocarbon oil in which a carbonaceous raw material is pyrolyzed to generate a dry distillation gas, and after purification of the dry distillation gas, a hydrocarbon oil is obtained by a hydrocarbon synthesis catalyst. ) A step of introducing a carbonaceous raw material having a predetermined carbon content and hydrogen content into a thermal decomposition apparatus; (B) a step of converting the input carbonaceous raw material into a dry distillation gas by pyrolysis; and (C) a dry distillation gas A step of refining, (D) a step of preparing a mixed gas for synthesis by adding hydrogen to the purified dry distillation gas so as to have a predetermined carbon: hydrogen molar ratio, and (E) a hydrocarbon prepared from the prepared mixed gas And (F) a method for producing a hydrocarbon oil, comprising the step of separating the mixed gas obtained in step (E) into a hydrocarbon oil and an unreacted component.
The method for producing hydrocarbon oil preferably further includes a step of mixing the unreacted gas generated in step (F) with the mixed gas of step C.
 図1は、本発明の一実施形態に係る炭化水素オイル製造システムの基本構成を示す図面である。
 図2は、本発明の別の実施形態に係る炭化水素オイル製造システムの基本構成を示す図面である。
 図3は、本発明の炭化水素オイル製造システムに適用可能な原料の前処理装置の一例を示す図面である。
 図4は、本発明の炭化水素オイル製造システムにおける熱分解装置の一例を示す図面である。
 図5は、熱分解装置に供給するキャリアガス供給系の一例を示す図面。
 図6は、本発明の炭化水素オイル製造システムにおける精製装置の一例を示す図面である。
 図7は、本発明の炭化水素オイル製造システムにおける水素供給系の一例を示す図面である。
 図8は、本発明の炭化水素オイル製造システムにおける調整装置の一例を示す図面である。
 図9は、本発明の炭化水素オイル製造システムにおける水素添加量の算定の一例を示すフローチャートである。
 図10は、本発明の炭化水素オイルの製造方法を示すフローチャートである。
 図11は、本発明の炭化水素オイル製造システムを廃棄物処理に適用した例を示す図面である。
 図12は、本発明の炭化水素オイル製造システムをコンテナに搭載した例を示す図面である。
 図13は、本発明の炭化水素オイル製造システムを廃棄物処理に適用したビジネスモデルを示す図面である。
 図14は、本発明の炭化水素オイル製造システムを汚泥・ヘドロ等に適用する場合の前処理装置の一例を示す図面である。
 図15は、本発明の炭化水素オイル製造システムを汚泥・ヘドロ等の処理に適用した例を示す図面である。
FIG. 1 is a drawing showing a basic configuration of a hydrocarbon oil production system according to an embodiment of the present invention.
FIG. 2 is a drawing showing a basic configuration of a hydrocarbon oil production system according to another embodiment of the present invention.
FIG. 3 is a drawing showing an example of a raw material pretreatment apparatus applicable to the hydrocarbon oil production system of the present invention.
FIG. 4 is a drawing showing an example of a thermal decomposition apparatus in the hydrocarbon oil production system of the present invention.
FIG. 5 is a drawing showing an example of a carrier gas supply system that supplies the thermal decomposition apparatus.
FIG. 6 is a drawing showing an example of a purification apparatus in the hydrocarbon oil production system of the present invention.
FIG. 7 is a drawing showing an example of a hydrogen supply system in the hydrocarbon oil production system of the present invention.
FIG. 8 is a drawing showing an example of an adjusting device in the hydrocarbon oil production system of the present invention.
FIG. 9 is a flowchart showing an example of calculation of the hydrogen addition amount in the hydrocarbon oil production system of the present invention.
FIG. 10 is a flowchart showing a method for producing a hydrocarbon oil of the present invention.
FIG. 11 is a drawing showing an example in which the hydrocarbon oil production system of the present invention is applied to waste treatment.
FIG. 12 is a view showing an example in which the hydrocarbon oil production system of the present invention is mounted on a container.
FIG. 13 is a drawing showing a business model in which the hydrocarbon oil production system of the present invention is applied to waste treatment.
FIG. 14 is a drawing showing an example of a pretreatment device when the hydrocarbon oil production system of the present invention is applied to sludge, sludge, and the like.
FIG. 15 is a diagram showing an example in which the hydrocarbon oil production system of the present invention is applied to treatment of sludge, sludge, and the like.
(基本構成)
 以下、本発明の実施の形態を添付図面に基づいて説明する。まず、図1に基づいて本発明の炭化水素オイル製造システムの基本構成を説明する。
 図1に示す通り、本発明の炭化水素製造システムは、炭素質原料を熱分解して乾留ガスとする熱分解装置10と、乾留ガスを精製する精製装置20と、精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置であるFT合成塔70と、乾留ガスに炭化水素合成に不足分の水素を供給する水素供給装置50とから主として構成されており、本発明の炭化水素製造システムは、精製した乾留ガスと水素とを混合する調整装置40とを有している。更に好ましくは、本発明の炭化水素製造システムにおいて、調整装置40は、FT合成塔において未反応のガスを所望に応じて未反応ガスタンク100を介して調整装置40に戻す構成を有している。
 なお、後述する通り、熱分解装置10は、原料または処理物である炭素質原料を投入するための投入口11と、熱分解装置10内の雰囲気を置換し、発生した乾留ガスを後段の精製装置30へ送るキャリアガス供給系20を備えている。
 本発明の炭化水素オイル製造装置は、所定の炭素質原料を熱分解装置10で熱分解して発生した乾留ガスを精製装置30で精製し、精製した乾留ガスに水素を添加して混合ガスとし、この混合ガスをFT合成塔により炭化水素オイルとする。この際に、炭素質原料の炭素含有量と水素含有量に基づいて不足分の水素を水素供給系50から供給するので、本発明の炭化水素オイル製造装置における炭化水素オイルの収率が上がる。
 また、本発明の好ましい実施形態において、FT合成塔で未反応のガスを循環混合するので、さらに炭化水素オイルの収率が更に増加する。
 なお、図2に示す通り調整装置40を設けず、精製装置30からの乾留ガスに直接所定量の水素を水素供給系から計量添加することも本発明の範囲内である。また、水素は、キャリアガス供給系20からのキャリアガスと同時に熱分解炉に所定量添加してもよい。
(原料)
 本発明で使用可能な炭素質原料は、熱分解処理により乾留ガスを発生する炭素源を有するものであれば特に限定されるものではなく、幅広い炭素含有物質のなかから適宜用いることが可能である。
 本発明で適用可能な炭素質原料として、図3に示す通り水産物由来原料、林業由来原料、農業由来原料、畜産由来原料、汚泥由来原料、廃棄物由来原料、石炭由来原料、一般廃棄物由来原料、廃プラスチック、廃タイヤ、ヘドロ、フロンガスおよびアスベストおよびこれらの混合物が挙げられるがこれらに限定されるものではない。
 本発明の炭化水素オイル製造システムにおいては、廃棄物から有価物としての炭化水素オイルを製造する廃棄物処理システムと、バイオマスなどの所定の原料から炭化水素オイル製造システムという二つの概念を含んでいることを当業者は用意に理解できるであろう。
 なお、これらの炭素質原料は、由来に依存して異なる炭素含有量および水素含有量を有している。例えば、木材チップの場合、乾燥基準で炭素約50から60質量%、水素4~8質量%、廃プラスチップの場合炭素約20から30質量%、水素50~70質量%、汚泥の場合炭素約40から50質量%、水素10~20質量%、一般廃棄物の場合炭素約40から60質量%、水素15~30質量%が含まれている。このように多くの炭素質原料は、水素含有量に対して炭素含有量が過剰である。
 このような炭素含有量、水素含有量に基づいて本発明では、最適な炭素:水素モル比(C:H)となうように水素を添加するが、一般には、C:H=1:1.5から1:6、好ましくは1:2から1:5、より好ましくは1:2から1:4となるように水素含有量を調整する。
 この際に、炭素質原料は、粗製原料として種々の形態で提供される。そのため、本発明では、2つの観点このような粗製原料を製造原料とするための前処理を施す。
 本発明における前処理は、(1)所定の炭素水素モル比範囲内となるように十分な水分調整を行うこと(水分調整は、熱分解におけるエネルギの削減という観点からも重要である)と、(2)効率よく熱分解するように所定のサイズにあらかじめ粉砕しておくことが重要である。
 しかしながら、前処理装置の導入、水分調整に要するエネルギ、粉砕装置の導入、粉砕装置の効率などの観点からこれらの炭素質原料の前処理は適宜選択される。本発明で重要なのは、炭素質原料が所定の原料基準(炭素および水素の含有率、水分含有量、サイズ)を満たすことである。
 なお、炭素質原料は、例えば木材チップのように予め水分含有量が十分に少ない場合には水分調整を省略してもよく、また汚泥のように乾燥後粉砕を要しない場合には粉砕を省略してもよい。
 本発明での前処理は、使用する炭素源(炭素質原料)及びその状況に応じて適宜選択される。前処理の際に重要であるのは、不純物のできる限り除去すること及び水分調整、サイズ調整である。
 目標とする水分含有率は、60%未満、好ましくは30%未満、より好ましくは10%未満である。水分含有量が高すぎると熱分解装置での過剰の蒸発によるエネルギ消費が大きくなりすぎる。
 炭素質原料のサイズは、熱分解を効率的に行うという観点から細かいほど好ましい。たとえば、炭素質原料が廃棄物由来である場合には、選別、脱水、破砕、粉砕、乾燥により不純物をあらかた除去して、原料を所定のサイズ・水分含有量にする。
 このようにして前処理することにより、単位重量当たりの炭素含有量および水素含有量が想定できる。換言すると、本発明においては、このようにして前処理した炭素質原料を出発原料の原料基準として、単位重量当たりの炭素および水素含有率に基づいて、後述する水素の添加量の算出基準とする。
 なお、本発明の特定の実施形態において、炭素質原料を水分調整しながら破砕・粉砕をすることが好ましい。
(熱分解)
 本発明において前処理された炭素質原料は、次いで熱分解装置10で粗製乾留ガスに熱分解される。本発明において適用可能な熱分解装置10は、例えば図4に示す通り前処理された炭素質原料投入する投入口11と、熱分解装置10内の雰囲気を置換する機能と、発生した乾留ガスを次工程に搬送するキャリアガス機能とを有するキャリアガス導入口13と、発生した乾留ガス(粗製乾留ガス)を排出する排出口12とを有しており、投入口11から投入した炭素質原料を熱分解する図示しない熱源を有する装置であり、このような機能を有する熱分解装置であれば特に限定されるものではく、ロータリーキルン方式等の連続式であってもバッチ式であっても適用可能である。
 図4に示す熱分解装置10は、投入口11から投入した炭素質原料を原料押し込み装置11aにより押し込む構成を有している。この際に、原料中に含まれる空気は投入口下方から排除され、熱分解装置10内部に入る時には実質量の酸素が除去される。
 そのため、キャリアガスの導入により相当量の空気が置換される。そして、導入した炭素質原料は、図示しない加熱手段によりキャリアガス雰囲気下で熱分解温度まで加熱されて熱分解されて不純物を含む乾留ガスと、残余の固体成分とになる。
 なお、熱分解装置の熱源は、従来の通りオイルであることもできるが、熱分釜内の温度制御が容易である点から電気エネルギを使用するものあるいはオイル式とのハイブリッドが好ましい。
 なお、電気エネルギを使用する場合には、本発明で得られた炭化水素(ガス及び/又はオイル)を熱源にあるいは、本発明により発生した水素と炭化水素とを混合したものをエネルギ源として使用することが好ましい。電気エネルギを使用する熱分解装置としては、従来のような電気炉であってもよいが、マイクロ波による加熱又はセラミック発熱体による加熱方式であってもよい。
 なお、本発明の好ましい実施形態において、熱分解装置は、炭素質原料の投入量を測定するための投入量測定装置(例えば、重量センサ)、キャリアガスの流量を測定するための流量センサ、炉内温度を測定するための温度センサ、装置内圧力を測定する圧力センサ、乾留ガスの排出量と排出圧を測定するための流量センサなど周知のセンサを設けていることが好ましい。
 特に、熱分解装置10は、炭素質原料の投入量を測定するための重量センサ、キャリアガスの流量を測定するための流量センサ乾留ガスの排出量と排出温度を測定するための流量センサと温度センサからの情報は、炭素含有量と、水素含有量(したがって、炭素と水素とのモル比)を計算するのに重要である。
 電熱方式は、これらのセンサからの情報に基づいて制御が容易であり、エネルギコスト削減、立ち上がりの早さ、メンテナンス・操作の容易性の点で好ましい。特にマイクロ波形式の場合、電気炉に比較してエネルギコストが1/10程度となり(インバータ回路を入れることによりさらに半分)、立ちあがりがより早く(5分程度)、より高温熱分解が可能となり、小型化が可能であり、そしてメンテナンス・操作が容易であるという利点がある。
 なお、このように所定の炭素質原料を一般には700℃以上の高温で熱分解することにより、熱分解する炭素質原料の種類、前処理の程度に依存して所定の熱分解率で水性ガスを主体とした乾留ガスが生成する(粗製乾留ガス)。
 例えば、本発明者等の実験によると、例えば廃棄物を出発原料にした場合、粗製乾留ガスは、一酸化炭素+水素(水性ガス)50~60%、低分子量炭化水素(メタン、エタン、ブタン、プロパン等)約20%、その他のガス(窒素酸化物、硫黄酸化物、塩酸、VOC等)約10%、であり、残部が固形分(チャー、無機物等)であった。ついで、熱分解により生じた粗製乾留ガスは、次の精製装置へと送られる。
 キャリアガス供給系20としては、水蒸気を発生させる水を貯蔵する水タンク21と発生した水蒸気を過熱するための誘導加熱ライン22とから主として構成されている。過熱水蒸気は、600℃から900℃程度の温度にまで加熱することが可能であるので、熱分解装置10の熱源として使用することも可能である。
 なお、図5に示す実施形態では、過熱水蒸気を後述する水素供給系50へ送り触媒反応により水素を発生するために使用することも可能であり、またイオン交換スクラバなどの精製装置40からの水を熱時水タンク21に送る構成とすることも可能である。
 このように構成することにより、装置構成が簡単となりなおかつ消費エネルギが少なくなるという利点がある。
(精製装置)
 精製装置30は、生成した粗製乾留ガスから不純物を除去する装置であり、当該技術分野に周知の装置を組み合わせて構成することができる。本発明の好ましい実施形態において、図6に示す通り、脱硫・脱タール装置31と、イオン交換スクラバ33との組み合わせまたは脱硫・脱タール装置31とイオン交換スクラバ33とサイクロン32との組み合わせが精製した乾留ガスがより純粋であり、最終生成物である炭化水素オイルに塩素等を含まない点で好ましい。
 すなわち、イオン交換スクラバは、陰イオン交換樹脂層と陽イオン交換樹脂層の両方を有するスクラバであり、HCl、HCN、Cl、NO,SO等のガス処理時98%以上の効率で除去可能である。また、一つのチャンバ内で汚染ガスの吸着処理とイオン交換繊維の再生を同時に行うことが可能である。
 従来、この種の熱分解により発生したガスは、通常のスクラバで処理されていた。しかしながら、炭素質原料の由来によっては、通常のスクラバでは塩素やヨウ素などのハロゲンや金属イオンを十分に除去できず精製したガス中に残存する場合があり、最終製品である炭化水素オイルに悪影響を及ぼす場合があった。そこで、本発明では、イオン交換スクラバを採用することが好ましい。
 また、粗製水性ガスには硫黄成分やタール成分などが含まれる場合が多く、最終製品である炭化水素オイルに悪影響を及ぼす場合がある。そこで、本発明では、脱硫/脱タール装置によるこれらの成分の除去を行う。このような装置は、本発明の目的を奏するものであれば特に限定されないが、上流から下流に向かうに従って密となる活性炭により構成することができ、メンテナンスの面から複数の活性炭層を切り替える構成とすることも可能である。
 脱硫・脱タール装置31は、例えば特許文献3に記載の通り公知の装置であり、同様にサイクロン32も周知の装置である。
 このようにして構成することによって、本発明の前処理と組み合わせて炭素質原料の由来に無関係に一定の性状を有する精製還流ガスを得ることができる。すなわち、イオン成分、特にハロゲン成分や硫黄分などを実質的に含まない還流ガスとすることが好ましい。このような精製乾留ガスは、塩素等を含まない目的とする炭化水素オイルを提供するのに極めて有利である。
(水素供給系)
 本発明において、炭素と比較して不足している水素を補うために精製した水性ガスを水素と混合する。すなわち、本発明により炭化水素オイルを製造するために必要な水素は、精製した水性ガスからの炭素と比較して不足している。そのため、本発明のシステム及び方法により良好な収率(収量)で炭化水素オイルを製造するために、水素供給系から精製した水性ガスに水素を供給する。本発明においては、水素をオンサイトで合成して、合成した水素を要求量に応じて使用することが好ましく、キャリアガスとして使用する過熱水蒸気と水素発生触媒により発生した水素を利用することより好ましい。
 より具体的には、図7に示す通り、CaBr/FeO触媒を図5に示す過熱水蒸気と接触させることにより、水蒸気を酸素と水素とに分解する。得られた水素を水素タンクに取り込み、必要に応じて精製した水性ガスと混合するのに使用する。
 このようにして、水素をシステム内で製造することが可能となる。システム内で水素を製造できる水素供給系50を配置することによって、多量の水素を精製した水性ガスに供給することができる。これにより本発明のシステムで良好な収量で炭化水素を得ることが可能となる。また、得られた水素を発電に利用することも可能である。
(乾留ガスへの水素添加)
 本発明において、このような水素供給系からの水素を精製した乾留ガスに添加するが、水素の添加は、キャリアガス中に予め添加してもよくあるいは過熱水蒸気の水源にマイクロバブルとして添加してもよいが、図8に示す通り、調整装置を設けることが好ましい。
(調整装置)
 調整装置40は、精製装置30で精製した乾留ガスと、水素供給系50からの水素と、好ましくは後述するFT合成塔70からの未反応ガスとを所定量で混合して、FT合成塔へ送る混合ガスを調整する装置であり、各ガスのガス圧を調整するための電磁弁等の制御弁42a、42b、42cを備えたガス混合器41と混合したガスを一時的に貯蔵するバッファタンク43とから構成されている。
 この際の水素の添加量は、例えば図9に示す通りに決定される。
 すなわち、本発明においては、図3で説明した通り出発原料とその前処理により予め原料基準が定められている(水素含有率と炭素含有率)、この原料基準により乾留ガスの水素含有率と炭素含有率が定まる。
 そして、実際の熱分解装置10の運転により発生し、熱分解装置10から排出されるガスの量を測定することにより乾留ガスの単位時間当たりの発生量を算定する。なお、乾留ガスのガス発生量は、排出口11から単位時間当たりに排出されるガスの流量から単位時間当たりに導入するキャリアガスの流量を減じた値として近似的に求めることができる。
 そして、乾留ガスの組成(炭素および水素の含有率)と流量から不足分の水素量を算定する。
 また、本発明の特定の実施形態において、FT合成塔70からの未反応ガスを混合する場合、一般に未反応ガスの成分は、低級炭化水素であるので、これらの組成とその流量から要求水素量の補正を行って実際に導入する水素量を算定する。
 調整装置40は、このようにして算定した水素添加量に基づいて水素供給系50から所定量の水素ガスを制御弁42cを介して、精製装置30から精製した乾留ガスを制御弁42aを介して、そして所望によりオフガスを制御弁42bを介して各々流量制御してガス混合器41に送り、そして、これらの気体の混合ガスをバッファタンク43に一時貯蔵する構成となっている。
 このようにして、調整装置40内で、炭素:水素モル比が最適化された混合ガスを調製することが可能となる。
 そしてこのようにして、炭素と水素の割合が最適化された混合ガスを後段のFT合成塔に送る。
(FT合成)
 本発明において、炭素と水素の割合を最適化した混合ガスをFT合成塔70に送り、所定の分子量範囲を有する炭化水素となるまでFT合成反応を施す。FT合成塔自体は、当該技術分野で周知のフィッシャ・トロプシュ触媒を周知の方法で充填したFT合成塔から構成される。
 FT合成塔70において、炭素と水素の割合が最適化された混合ガスを、例えば圧縮器60で圧縮され、所定温度、代表的には200から250℃の温度でフィッシャ・トロプシュ触媒と接触させることにより、所望の炭化水素へと転化させる。
 このようにして合成した炭化水素を含む気体は、分離装置80、一般的にはコンデンサにより炭化水素オイル90と、低級炭化水素から主として構成されるオフガス(未反応ガス)とに分離する装置である。
 本発明の好ましい実施形態において、分離された未反応ガスは、所望により未反応ガスタンク100に一時的に貯蔵された後に、再び調整装置40に戻して、精製した乾留ガスと、水素と混合されて、再びFT合成塔70で炭化水素合成反応に供される。なお、本発明でいう未反応ガスとは、所望の分子量まで転化されなかったガスを意味し、一般には未反応水性ガスと低級炭化水素(メタン、エタン、ブタン、プロパン等)を意味する。
 このように、未反応ガスを循環させることにより炭化水素オイルの収量が増加する。
 このように構成された本発明の炭化水素オイル製造システムでは、前処理した炭素質原料を出発原料として熱分解して熱分解により発生した乾留ガスを精製し、精製する。この際に、炭素質原料に含まれる不純物は、予め想定範囲内であり、実質的に全ての不純物を脱硫・脱タール装置およびイオン交換スクラバを含む精製装置により除去することが可能である。そのため、炭素:水素含有率が所定範囲内にある乾留ガスが安定して生成する。このような乾留ガスに所定量の水素を添加することによって収率よく炭化水素オイルを製造することが可能となる。また。分離した未反応のガスを調整装置に循環して、所定量の水素と乾留ガスとともにFT合成を行うので収率はより一層向上できる。
(製造方法)
 次に本発明の炭化水素オイルの製造方法を図10に基づいて説明する。
 本発明の炭化水素オイルの製造方法は、炭素質原料を熱分解して乾留ガスを発生させ、乾留ガスを精製後に炭化水素合成触媒により炭化水素オイルを得る炭化水素オイルの製造方法であって、下記の(A)~(F)工程を含む。
(A) 所定の炭素含有率および水素含有率を有する炭素質原料を熱分解装置に投入する工程と、
(B) 投入した炭素質原料を熱分解により乾留ガスとする工程と、
(C) 乾留ガスを精製する工程と、
(D) 精製した乾留ガスに所定の炭素:水素モル比となるように水素を添加して合成用の混合ガスを調製する工程と、
(E) 調製した混合ガスを炭化水素に転化する工程と
(F) 工程(E)で得られた混合ガスを炭化水素オイルと、未反応分とに分離する工程
 まず、工程Aでは、例えば図3に示すように既知の炭素含有量と水素含有量になるように前処理された炭素質原料を熱分解装置に投入する。この際に、所定範囲内の炭素含有量と水素含有量となるように予め前処理しておくことが重要である。
 次いで、工程Bで投入された既知量の炭素質原料を熱分解し、工程Cで不純物を精製する。
 このようにして精製された乾留ガス中の炭素含有量と水素含有量は既知範囲内であり、最適な炭素と水素とのモル比を得るために必要な水素量は、例えば図9に示す通りに計算により求めることができる。このようにして計算した量の水素を工程Dにおいて、精製した乾留ガスに添加して混合ガスにおける炭素成分と水素成分の量を調整して最適化する。
 この際のモル比は、前述の通りC:H=1:1.5から1:6、好ましくは1:2から1:5、より好ましくは1:2から1:4である。
 このようにして、炭素と水素とのモル比を調整した混合ガスを工程EでFT合成により炭化水素に転化する。
 そして、工程Fにおいて工程Eで得られた成分を炭化水素オイルと未反応分とに分離し、炭化水素オイルを回収する。
 未反応分は、所望に応じて、工程Dに戻して再びFT合成にすることもできる。
 このように本発明の方法では、炭素分が過剰であり水素分が不足する数多くの炭素質原料に水素を添加するので、炭素分を余すことなく炭化水素オイルに転化できる。また、未反応分を調整工程に戻して再びFT合成を行うことによって収量は更に増加することが可能である。
(適用例)
 以下の本発明の特定の実施形態を示す。なお、以下の実施形態に示すシステムは、例えば図1に示すものが好ましい。
(廃棄物処理)
 図11から図12に本発明のシステムを廃棄物処理に適用した例を示す。
 図11に示す実施形態は、生ゴミ、一般廃棄物、廃プラスチックなどの廃棄物処理に本発明の炭化水素オイル製造システムを適用した例である。
 図11に示す通り、廃棄物を脱水、選別、粉砕(一次・二次)、乾燥することによって、所定の原料基準を満たす炭素質原料として扱うことが可能である。
 なお、廃棄物は、廃棄物の内容に応じて炭素:水素のモル比が変動するので、適宜前処理した廃棄物(炭素質原料)の成分分析のサンプリングを行って原料基準を補正することが好ましい。
 また、図12に示す通り、本発明のシステムを、コンテナ等に搭載して移動式廃棄物処理システムや一時設置廃棄物処理システムを構成することも可能である。これらの移動式廃棄物処理システムや一時設置廃棄物処理システムは、システムの建屋の設置や許可申請等の点で小規模廃棄物処理に適している。
 また、本発明の炭化水素オイル製造システムに基づく廃棄物処理システムは、予め設定した原料基準の下に水素を添加して炭素と水素とのモル比を最適化しているので、処理量に応じて得られる炭化水素オイルの量がある程度想定可能である。そのため、導入コストや炭化水素オイルを販売して得られる利益などを計算することが可能であるので、システムを容易に導入することが可能である。
 なお、図12では、コンテナ1とコンテナ2の2つのコンテナに本発明の炭化水素製造システムを分けて導入したが1台のコンテナに全ての構成要素を搭載してもよく、あるいは例えば前処理装置などを現場に固定設置するなど適宜変更可能である。
 また、図13に示す通り、廃棄物を回収する廃棄物処理業者(原料供給元)と、本発明の炭化水素オイル製造システムに基づく廃棄物処理システムの運営サイトと製造した炭化水素オイル販売業者から構成される一連の新規事業を構築することが可能である。
(汚泥処理、家庭ゴミ処理、動物の糞尿処理等)
 本発明の炭化水素オイル製造システムは、汚泥、ヘドロ、家庭から排出される生ごみ、動物(特に家畜、家禽の糞尿)などを適切に前処理して、本発明の要求する原料基準を満たす炭素質原料とすることが可能である。
 この際に、例えば図14に示す通り、所望に応じてスラリー状の汚泥を攪拌・切断して、メッシュによる脱水及び/又は遠心分離・吸引による脱水後に熱風乾燥することにより本発明の要求する原料基準を満たす炭素質原料とすることが可能であるとともに、汚泥等の減容化を図ることが可能である。このようにして得られた炭素質原料から炭化水素オイルを製造することは前述の通りである。
 なお、図15に示す通り家庭から排出される生ごみと糞尿とをストックして炭化水素オイルを製造することも可能である。
(BTL)
 図11に示す実施形態は、バイオマスとして例えば藻類、ウッドチップ、農産物残渣(トウモロコシの芯、農産物の不要部分(茎、枝など食用にならない部分)、廃農産物などのバイオマスを適正に前処理した後に本発明の方法を実施することによって所定の炭化水素オイルとすることが可能である。特に、このようなバイオマス原料は、由来が明確であるので適切な前処理後にジェット燃料用の炭化水素オイルなどの所定要件を満たす製品用に適用可能である。
 また、図13に示すビジネスモデルと同様に、原料の供給元であるバイオマス製造業者におけるバイオマス生産業の育成とバイオマス資源の保全と、炭化水素オイル製造サイトによる炭化水素の製造と、製造した炭化水素オイルを販売する炭化水素オイル販売業とから構成される一連の新規事業を実施することが可能である。
 以上、本発明の実施の形態を説明したが、本発明はこれらの実施の形態に限定されることなく幅広く適用可能である。例えば、図3に示す石炭、廃プラスチックなどの炭素質原料やフロンガスなどの気体原料など所定量の炭素を含む原料であれば本発明の製造システムおよび製造方法を適用することが可能である。
(Basic configuration)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, the basic structure of the hydrocarbon oil production system of the present invention will be described with reference to FIG.
As shown in FIG. 1, the hydrocarbon production system of the present invention includes a pyrolysis device 10 that pyrolyzes a carbonaceous raw material into a dry distillation gas, a purification device 20 that purifies the dry distillation gas, and a hydrocarbon synthesized from the purified gas. The FT synthesis tower 70, which is a hydrocarbon synthesis device that uses hydrocarbon oil in the presence of a catalyst, and a hydrogen supply device 50 that supplies hydrogen to the dry distillation gas in a shortage for hydrocarbon synthesis, are mainly constituted. This hydrocarbon production system has an adjustment device 40 that mixes purified dry distillation gas and hydrogen. More preferably, in the hydrocarbon production system of the present invention, the adjusting device 40 has a configuration in which unreacted gas in the FT synthesis tower is returned to the adjusting device 40 via the unreacted gas tank 100 as desired.
As will be described later, the pyrolysis apparatus 10 replaces the inlet 11 for charging a carbonaceous raw material, which is a raw material or a processed product, and the atmosphere in the pyrolysis apparatus 10, and the generated dry distillation gas is purified later. A carrier gas supply system 20 for sending to the apparatus 30 is provided.
The hydrocarbon oil production apparatus of the present invention purifies a dry distillation gas generated by pyrolyzing a predetermined carbonaceous raw material with a thermal decomposition apparatus 10 with a purification apparatus 30 and adds hydrogen to the purified dry distillation gas to form a mixed gas. The mixed gas is converted into hydrocarbon oil by the FT synthesis tower. At this time, since the shortage of hydrogen is supplied from the hydrogen supply system 50 based on the carbon content and hydrogen content of the carbonaceous raw material, the yield of the hydrocarbon oil in the hydrocarbon oil production apparatus of the present invention is increased.
In a preferred embodiment of the present invention, since the unreacted gas is circulated and mixed in the FT synthesis tower, the yield of the hydrocarbon oil is further increased.
As shown in FIG. 2, it is also within the scope of the present invention to add a predetermined amount of hydrogen directly from the hydrogen supply system to the dry distillation gas from the purification device 30 without providing the adjusting device 40. Further, a predetermined amount of hydrogen may be added to the pyrolysis furnace simultaneously with the carrier gas from the carrier gas supply system 20.
(material)
The carbonaceous raw material that can be used in the present invention is not particularly limited as long as it has a carbon source that generates dry distillation gas by thermal decomposition treatment, and can be appropriately used from a wide range of carbon-containing materials. .
As a carbonaceous raw material applicable in the present invention, as shown in FIG. 3, marine product-derived raw materials, forestry-derived raw materials, agricultural-derived raw materials, livestock-derived raw materials, sludge-derived raw materials, waste-derived raw materials, coal-derived raw materials, general waste-derived raw materials , Waste plastics, waste tires, sludge, chlorofluorocarbons and asbestos and mixtures thereof, but are not limited thereto.
The hydrocarbon oil production system of the present invention includes two concepts of a waste treatment system for producing hydrocarbon oil as a valuable material from waste and a hydrocarbon oil production system from a predetermined raw material such as biomass. Those skilled in the art will readily understand that.
These carbonaceous materials have different carbon contents and hydrogen contents depending on the origin. For example, in the case of wood chips, about 50 to 60% by mass of carbon on a dry basis, 4 to 8% by mass of hydrogen, about 20 to 30% by mass of carbon in the case of waste plus chips, 50 to 70% by mass of hydrogen, and about carbon in the case of sludge. 40 to 50% by mass, 10 to 20% by mass of hydrogen, and in the case of general waste, about 40 to 60% by mass of carbon and 15 to 30% by mass of hydrogen are contained. Thus, many carbonaceous raw materials have an excessive carbon content relative to the hydrogen content.
In the present invention, hydrogen is added based on such carbon content and hydrogen content so as to obtain an optimal carbon: hydrogen molar ratio (C: H). Generally, C: H = 1: 1. The hydrogen content is adjusted to be from 5 to 1: 6, preferably from 1: 2 to 1: 5, more preferably from 1: 2 to 1: 4.
At this time, the carbonaceous raw material is provided in various forms as a crude raw material. Therefore, in the present invention, two viewpoints are used for pretreatment for using such a crude material as a production material.
In the pretreatment in the present invention, (1) sufficient moisture adjustment to be within a predetermined carbon hydrogen molar ratio range (moisture adjustment is important from the viewpoint of energy reduction in thermal decomposition); (2) It is important to pulverize to a predetermined size in advance so as to efficiently thermally decompose.
However, pretreatment of these carbonaceous raw materials is appropriately selected from the viewpoints of introduction of pretreatment devices, energy required for moisture adjustment, introduction of pulverizers, efficiency of pulverizers, and the like. What is important in the present invention is that the carbonaceous raw material satisfies predetermined raw material standards (carbon and hydrogen content, water content, and size).
In addition, for carbonaceous raw materials, for example, when the moisture content is sufficiently low, such as wood chips, moisture adjustment may be omitted, and when pulverization after drying is not required, such as sludge, grinding is omitted. May be.
The pretreatment in the present invention is appropriately selected according to the carbon source (carbonaceous raw material) to be used and its situation. What is important in the pretreatment is removal of impurities as much as possible, moisture adjustment, and size adjustment.
The target moisture content is less than 60%, preferably less than 30%, more preferably less than 10%. If the water content is too high, energy consumption due to excessive evaporation in the thermal decomposition apparatus becomes too large.
The size of the carbonaceous raw material is preferably as fine as possible from the viewpoint of efficiently performing thermal decomposition. For example, when the carbonaceous raw material is derived from waste, impurities are clearly removed by sorting, dewatering, crushing, pulverizing, and drying, so that the raw material has a predetermined size and moisture content.
By pretreating in this way, the carbon content and hydrogen content per unit weight can be assumed. In other words, in the present invention, the carbonaceous raw material thus pretreated is used as a raw material reference for the starting material, and is used as a calculation reference for the amount of hydrogen to be described later based on the carbon and hydrogen content per unit weight. .
In the specific embodiment of the present invention, it is preferable to crush and pulverize the carbonaceous raw material while adjusting the water content.
(Thermal decomposition)
The carbonaceous raw material pretreated in the present invention is then thermally decomposed into crude dry distillation gas by the thermal decomposition apparatus 10. The pyrolysis apparatus 10 applicable in the present invention includes, for example, an inlet 11 for charging a pretreated carbonaceous raw material as shown in FIG. 4, a function of replacing the atmosphere in the pyrolysis apparatus 10, and generated dry distillation gas. It has a carrier gas introduction port 13 having a carrier gas function to be transferred to the next process, and a discharge port 12 for discharging the generated dry distillation gas (crude dry distillation gas). It is a device having a heat source (not shown) that performs thermal decomposition, and is not particularly limited as long as it has such a function, and can be applied to a continuous type such as a rotary kiln type or a batch type. It is.
The pyrolysis apparatus 10 shown in FIG. 4 has a configuration in which a carbonaceous raw material charged from the charging port 11 is pushed in by a raw material pushing device 11a. At this time, the air contained in the raw material is removed from below the inlet, and a substantial amount of oxygen is removed when entering the inside of the thermal decomposition apparatus 10.
Therefore, a considerable amount of air is replaced by the introduction of the carrier gas. The introduced carbonaceous raw material is heated to a pyrolysis temperature in a carrier gas atmosphere by a heating means (not shown) and pyrolyzed to become a dry distillation gas containing impurities and a remaining solid component.
The heat source of the thermal decomposition apparatus can be oil as in the past, but those using electric energy or a hybrid with an oil type are preferred from the viewpoint of easy temperature control in the heat separator.
When electric energy is used, the hydrocarbon (gas and / or oil) obtained by the present invention is used as a heat source, or the mixture of hydrogen and hydrocarbons generated by the present invention is used as an energy source. It is preferable to do. The thermal decomposition apparatus using electric energy may be a conventional electric furnace, but may be a heating method using microwaves or a heating method using a ceramic heating element.
In a preferred embodiment of the present invention, the pyrolysis apparatus includes an input amount measuring device (for example, a weight sensor) for measuring the input amount of the carbonaceous raw material, a flow rate sensor for measuring the flow rate of the carrier gas, and a furnace It is preferable to provide a known sensor such as a temperature sensor for measuring the internal temperature, a pressure sensor for measuring the internal pressure of the apparatus, and a flow rate sensor for measuring the discharge amount and discharge pressure of the dry distillation gas.
In particular, the pyrolysis apparatus 10 includes a weight sensor for measuring the input amount of the carbonaceous raw material, a flow sensor for measuring the flow rate of the carrier gas, and a flow rate sensor and temperature for measuring the discharge amount and discharge temperature of the dry distillation gas. Information from the sensor is important for calculating the carbon content and the hydrogen content (and hence the molar ratio of carbon to hydrogen).
The electric heating method is easy to control based on information from these sensors, and is preferable in terms of energy cost reduction, quick start-up, and ease of maintenance and operation. In particular, in the case of the micro-wave type, the energy cost is about 1/10 compared to an electric furnace (an additional half by inserting an inverter circuit), the start-up is faster (about 5 minutes), and higher-temperature pyrolysis is possible. There is an advantage that downsizing is possible and maintenance and operation are easy.
In this manner, the predetermined carbonaceous raw material is generally thermally decomposed at a high temperature of 700 ° C. or higher, so that the water gas can be obtained at a predetermined thermal decomposition rate depending on the type of carbonaceous raw material to be thermally decomposed and the degree of pretreatment A carbonization gas mainly composed of is produced (crude carbonization gas).
For example, according to experiments by the present inventors, for example, when waste is used as a starting material, the crude dry distillation gas is composed of carbon monoxide + hydrogen (water gas) 50 to 60%, low molecular weight hydrocarbons (methane, ethane, butane). Propane, etc.) about 20%, other gases (nitrogen oxide, sulfur oxide, hydrochloric acid, VOC, etc.) about 10%, and the balance was solids (char, inorganic, etc.). Subsequently, the crude dry distillation gas generated by the thermal decomposition is sent to the next purification apparatus.
The carrier gas supply system 20 is mainly composed of a water tank 21 for storing water for generating water vapor and an induction heating line 22 for overheating the generated water vapor. Since the superheated steam can be heated to a temperature of about 600 ° C. to 900 ° C., it can also be used as a heat source for the thermal decomposition apparatus 10.
In the embodiment shown in FIG. 5, superheated steam can be sent to a hydrogen supply system 50 to be described later and used for generating hydrogen by catalytic reaction, and water from a purification device 40 such as an ion exchange scrubber can be used. It is also possible to adopt a configuration in which the water is sent to the hot water tank 21.
This configuration has an advantage that the apparatus configuration is simplified and energy consumption is reduced.
(Purification equipment)
The purification device 30 is a device that removes impurities from the generated crude dry distillation gas, and can be configured by combining devices well known in the art. In a preferred embodiment of the present invention, as shown in FIG. 6, the combination of the desulfurization / detarring device 31 and the ion exchange scrubber 33 or the combination of the desulfurization / detarging device 31, the ion exchange scrubber 33 and the cyclone 32 is purified. It is preferable in that the dry distillation gas is purer and the hydrocarbon oil as the final product does not contain chlorine or the like.
In other words, the ion exchange scrubber is a scrubber having both an anion exchange resin layer and a cation exchange resin layer, and is removed at an efficiency of 98% or more during gas treatment of HCl, HCN, Cl 2 , NO 2 , SO 2, etc. Is possible. Further, it is possible to simultaneously perform the adsorption treatment of the contaminated gas and the regeneration of the ion exchange fiber in one chamber.
Conventionally, the gas generated by this type of pyrolysis has been treated with a normal scrubber. However, depending on the origin of the carbonaceous raw material, normal scrubbers may not sufficiently remove halogens and metal ions such as chlorine and iodine, and may remain in the purified gas, adversely affecting the hydrocarbon oil that is the final product. There was a case. Therefore, in the present invention, it is preferable to employ an ion exchange scrubber.
In addition, the crude water gas often contains a sulfur component, a tar component, and the like, which may adversely affect the hydrocarbon oil that is the final product. Therefore, in the present invention, these components are removed by a desulfurization / detar apparatus. Such an apparatus is not particularly limited as long as it achieves the object of the present invention, but can be composed of activated carbon that becomes denser from upstream to downstream, and is configured to switch a plurality of activated carbon layers in terms of maintenance. It is also possible to do.
The desulfurization / detarging apparatus 31 is a known apparatus as described in Patent Document 3, for example, and the cyclone 32 is also a known apparatus.
By comprising in this way, the refinement | purification recirculation | reflux gas which has a fixed property irrespective of the origin of a carbonaceous raw material can be obtained combining with the pretreatment of this invention. That is, it is preferable to use a reflux gas substantially free of ionic components, particularly halogen components and sulfur components. Such purified carbonization gas is extremely advantageous for providing the desired hydrocarbon oil containing no chlorine or the like.
(Hydrogen supply system)
In the present invention, purified water gas is mixed with hydrogen in order to make up for the lack of hydrogen compared to carbon. That is, the hydrogen required to produce hydrocarbon oils according to the present invention is deficient compared to carbon from purified water gas. Therefore, in order to produce hydrocarbon oil with a good yield (yield) by the system and method of the present invention, hydrogen is supplied from the hydrogen supply system to the purified water gas. In the present invention, it is preferable to synthesize hydrogen on-site and use the synthesized hydrogen according to the required amount, more preferably to use superheated steam used as a carrier gas and hydrogen generated by a hydrogen generation catalyst. .
More specifically, as shown in FIG. 7, by bringing the CaBr / FeO catalyst into contact with the superheated steam shown in FIG. 5, the steam is decomposed into oxygen and hydrogen. The resulting hydrogen is taken into a hydrogen tank and used to mix with purified water gas as necessary.
In this way, hydrogen can be produced in the system. By arranging a hydrogen supply system 50 capable of producing hydrogen in the system, a large amount of hydrogen can be supplied to the purified water gas. This makes it possible to obtain hydrocarbons with a good yield in the system of the present invention. It is also possible to use the obtained hydrogen for power generation.
(Hydrogen addition to dry distillation gas)
In the present invention, hydrogen from such a hydrogen supply system is added to the purified dry distillation gas. Hydrogen may be added in advance to the carrier gas or added to the water source of superheated steam as microbubbles. However, it is preferable to provide an adjusting device as shown in FIG.
(Adjustment device)
The adjusting device 40 mixes the dry distillation gas purified by the purifying device 30, hydrogen from the hydrogen supply system 50, and preferably unreacted gas from the FT synthesis tower 70 described later, into a predetermined amount, and sends it to the FT synthesis tower. A buffer tank that is a device for adjusting a mixed gas to be sent and temporarily stores a gas mixed with a gas mixer 41 including control valves 42a, 42b, and 42c such as electromagnetic valves for adjusting a gas pressure of each gas. 43.
The amount of hydrogen added at this time is determined, for example, as shown in FIG.
That is, in the present invention, as described with reference to FIG. 3, the raw material standards are determined in advance by the starting raw material and its pretreatment (hydrogen content and carbon content), and the hydrogen content and carbon of the dry distillation gas are determined by this raw material standard. The content rate is determined.
The amount of dry distillation gas generated per unit time is calculated by measuring the amount of gas generated by the actual operation of the thermal decomposition apparatus 10 and discharged from the thermal decomposition apparatus 10. The gas generation amount of the dry distillation gas can be approximately obtained as a value obtained by subtracting the flow rate of the carrier gas introduced per unit time from the flow rate of gas discharged from the discharge port 11 per unit time.
Then, the amount of hydrogen shortage is calculated from the composition of carbonized gas (carbon and hydrogen content) and the flow rate.
Further, in the specific embodiment of the present invention, when the unreacted gas from the FT synthesis tower 70 is mixed, since the component of the unreacted gas is generally a lower hydrocarbon, the required hydrogen amount is calculated from the composition and the flow rate thereof. The amount of hydrogen to be actually introduced is calculated by correcting the above.
The adjusting device 40 supplies a predetermined amount of hydrogen gas from the hydrogen supply system 50 based on the hydrogen addition amount calculated in this way via the control valve 42c and the dry distillation gas purified from the purification device 30 via the control valve 42a. If necessary, the flow rate of the off-gas is controlled through the control valve 42 b and sent to the gas mixer 41, and the mixed gas of these gases is temporarily stored in the buffer tank 43.
In this way, it is possible to prepare a mixed gas in which the carbon: hydrogen molar ratio is optimized in the adjusting device 40.
In this way, the mixed gas in which the ratio of carbon and hydrogen is optimized is sent to the subsequent FT synthesis tower.
(FT synthesis)
In the present invention, a mixed gas in which the ratio of carbon and hydrogen is optimized is sent to the FT synthesis tower 70 and subjected to the FT synthesis reaction until it becomes a hydrocarbon having a predetermined molecular weight range. The FT synthesis tower itself is composed of an FT synthesis tower in which a Fischer-Tropsch catalyst known in the art is packed by a known method.
In the FT synthesis tower 70, the mixed gas having an optimized ratio of carbon and hydrogen is compressed by, for example, the compressor 60 and brought into contact with the Fischer-Tropsch catalyst at a predetermined temperature, typically 200 to 250 ° C. To convert to the desired hydrocarbon.
The gas containing hydrocarbons thus synthesized is a separation device 80, generally a device that separates hydrocarbon oil 90 and off-gas (unreacted gas) mainly composed of lower hydrocarbons by a condenser. .
In a preferred embodiment of the present invention, the separated unreacted gas is temporarily stored in the unreacted gas tank 100 if desired, and then returned to the adjusting device 40 again to be mixed with purified dry distillation gas and hydrogen. The FT synthesis tower 70 is again used for the hydrocarbon synthesis reaction. In the present invention, the unreacted gas means a gas that has not been converted to a desired molecular weight, and generally means an unreacted water gas and a lower hydrocarbon (methane, ethane, butane, propane, etc.).
Thus, the yield of hydrocarbon oil is increased by circulating the unreacted gas.
In the hydrocarbon oil production system of the present invention configured as described above, the carbonized raw material that has been pretreated is thermally decomposed as a starting material, and the dry distillation gas generated by the thermal decomposition is purified and purified. At this time, impurities contained in the carbonaceous raw material are within an assumed range in advance, and substantially all impurities can be removed by a purification apparatus including a desulfurization / detarring apparatus and an ion exchange scrubber. Therefore, a dry distillation gas having a carbon: hydrogen content within a predetermined range is stably generated. By adding a predetermined amount of hydrogen to such dry distillation gas, it becomes possible to produce hydrocarbon oil with high yield. Also. Since the separated unreacted gas is circulated to the adjusting device and FT synthesis is performed together with a predetermined amount of hydrogen and dry distillation gas, the yield can be further improved.
(Production method)
Next, the manufacturing method of the hydrocarbon oil of this invention is demonstrated based on FIG.
The method for producing a hydrocarbon oil of the present invention is a method for producing a hydrocarbon oil in which a carbonaceous raw material is pyrolyzed to generate a dry distillation gas, and after the dry distillation gas is purified, a hydrocarbon oil is obtained by a hydrocarbon synthesis catalyst, The following steps (A) to (F) are included.
(A) introducing a carbonaceous raw material having a predetermined carbon content and hydrogen content into a thermal decomposition apparatus;
(B) a step of converting the input carbonaceous raw material into a dry distillation gas by pyrolysis,
(C) refining the dry distillation gas;
(D) preparing a mixed gas for synthesis by adding hydrogen to the purified dry distillation gas so as to have a predetermined carbon: hydrogen molar ratio;
(E) The step of converting the prepared mixed gas into hydrocarbon and (F) The step of separating the mixed gas obtained in step (E) into hydrocarbon oil and unreacted components First, in step A, for example, FIG. As shown in FIG. 3, a carbonaceous raw material pretreated so as to have a known carbon content and hydrogen content is put into a thermal decomposition apparatus. At this time, it is important to pre-treat the carbon content and the hydrogen content within a predetermined range in advance.
Next, the known amount of the carbonaceous raw material charged in Step B is pyrolyzed, and the impurities are purified in Step C.
The carbon content and hydrogen content in the carbonized gas purified in this way are within a known range, and the amount of hydrogen necessary to obtain the optimum carbon to hydrogen molar ratio is, for example, as shown in FIG. Can be obtained by calculation. In step D, the amount of hydrogen calculated in this way is added to the refined dry distillation gas to optimize the amount of carbon and hydrogen components in the mixed gas.
The molar ratio at this time is C: H = 1: 1.5 to 1: 6, preferably 1: 2 to 1: 5, more preferably 1: 2 to 1: 4, as described above.
In this way, the mixed gas in which the molar ratio of carbon and hydrogen is adjusted is converted into a hydrocarbon by FT synthesis in Step E.
And the component obtained at the process E in the process F is isolate | separated into a hydrocarbon oil and an unreacted part, and hydrocarbon oil is collect | recovered.
The unreacted component can be returned to step D and re-synthesised as desired.
As described above, in the method of the present invention, hydrogen is added to a large number of carbonaceous raw materials that are excessive in carbon content and insufficient in hydrogen content, so that they can be converted into hydrocarbon oil without leaving the carbon content. Further, the yield can be further increased by returning the unreacted component to the adjustment step and performing FT synthesis again.
(Application example)
The following specific embodiments of the invention are shown. Note that the system shown in the following embodiment is preferably the one shown in FIG. 1, for example.
(Waste treatment)
11 to 12 show examples in which the system of the present invention is applied to waste treatment.
The embodiment shown in FIG. 11 is an example in which the hydrocarbon oil production system of the present invention is applied to waste treatment such as garbage, general waste, and waste plastic.
As shown in FIG. 11, waste can be treated as a carbonaceous raw material satisfying a predetermined raw material standard by dehydrating, selecting, pulverizing (primary / secondary), and drying.
Since the molar ratio of carbon: hydrogen fluctuates depending on the content of waste, sampling of component analysis of waste (carbonaceous raw material) that has been pretreated appropriately may be performed to correct the raw material standards. preferable.
In addition, as shown in FIG. 12, the system of the present invention can be mounted on a container or the like to constitute a mobile waste treatment system or a temporarily installed waste treatment system. These mobile waste disposal systems and temporarily installed waste disposal systems are suitable for small-scale waste disposal in terms of installation of the system building and application for permission.
In addition, the waste treatment system based on the hydrocarbon oil production system of the present invention adds hydrogen under a preset raw material standard to optimize the molar ratio of carbon and hydrogen. The amount of hydrocarbon oil obtained can be assumed to some extent. Therefore, since it is possible to calculate the introduction cost, profits obtained by selling hydrocarbon oil, etc., it is possible to easily introduce the system.
In FIG. 12, the hydrocarbon production system of the present invention is separately introduced into two containers, container 1 and container 2, but all the components may be mounted in one container, or, for example, a pretreatment device Etc. can be changed as appropriate, for example, fixedly installed on site.
In addition, as shown in FIG. 13, from a waste disposal contractor (raw material supplier) that collects waste, an operation site of a waste disposal system based on the hydrocarbon oil production system of the present invention, and a manufactured hydrocarbon oil distributor It is possible to build a series of new businesses.
(Sludge treatment, household waste treatment, animal manure treatment, etc.)
The hydrocarbon oil production system of the present invention appropriately pretreats sludge, sludge, household waste, animals (especially livestock, poultry manure) and the like to satisfy the raw material standards required by the present invention. It can be used as a quality raw material.
At this time, for example, as shown in FIG. 14, the slurry-like sludge is agitated and cut as desired, and dried by hot air after dehydration by mesh and / or dehydration by centrifugation and suction, thereby requiring the raw material required by the present invention. It is possible to make the carbonaceous raw material satisfy the standards, and it is possible to reduce the volume of sludge and the like. Production of hydrocarbon oil from the carbonaceous raw material thus obtained is as described above.
In addition, as shown in FIG. 15, it is also possible to manufacture hydrocarbon oil by stocking garbage and manure discharged from a home.
(BTL)
In the embodiment shown in FIG. 11, for example, algae, wood chips, agricultural product residues (corn cores, unnecessary parts of agricultural products (parts that do not become edible, such as stems and branches), and waste agricultural products are appropriately pretreated as biomass. By carrying out the method of the present invention, it is possible to obtain a predetermined hydrocarbon oil, in particular, such a biomass feedstock has a clear origin, so that hydrocarbon oil for jet fuel after appropriate pretreatment, etc. It can be applied to products that meet the prescribed requirements.
Similarly to the business model shown in FIG. 13, the cultivation of biomass production and the conservation of biomass resources in the biomass manufacturer that is the raw material supplier, the production of hydrocarbons at the hydrocarbon oil production site, and the produced hydrocarbons It is possible to implement a series of new businesses that consist of a hydrocarbon oil sales business that sells oil.
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be widely applied. For example, the production system and the production method of the present invention can be applied to any raw material containing a predetermined amount of carbon such as a carbonaceous raw material such as coal and waste plastic shown in FIG. 3 or a gaseous raw material such as chlorofluorocarbon gas.
 本発明は、炭素質原料を熱分解して乾留ガスとする熱分解装置と、乾留ガスを精製する精製装置と、精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置と、から構成された炭化水素オイル製造システムにおいて、炭素質原料の炭素:水素モル比に応じて所定のモル比となるように水素を添加してからFT合成により炭化水素オイルを製造するので、収率よく目的とする炭化水素オイルを製造することが可能である。
 そのため。新規の炭化水素オイル製造システムの導入としてだけではなく、廃棄物処理分野やバイオマスエネルギ製造分野など幅広く適用可能である。
The present invention relates to a pyrolysis apparatus for pyrolyzing a carbonaceous raw material to obtain a dry distillation gas, a purification apparatus for purifying the dry distillation gas, and a hydrocarbon synthesis using the purified gas as a hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst. In a hydrocarbon oil production system composed of an apparatus, hydrocarbon oil is produced by FT synthesis after adding hydrogen so as to have a predetermined molar ratio according to the carbon: hydrogen molar ratio of the carbonaceous raw material. It is possible to produce the desired hydrocarbon oil with a good yield.
for that reason. It is applicable not only for the introduction of a new hydrocarbon oil production system, but also in a wide range of fields such as waste treatment and biomass energy production.
10 熱分解装置
20 キャリアガス供給系
30 精製装置
40 調整装置
50 水素供給系
70 FT合成塔
80 炭化水素オイル
DESCRIPTION OF SYMBOLS 10 Thermal decomposition apparatus 20 Carrier gas supply system 30 Purification apparatus 40 Adjustment apparatus 50 Hydrogen supply system 70 FT synthesis tower 80 Hydrocarbon oil

Claims (19)

  1.  炭素質原料を熱分解して乾留ガスとする熱分解装置と、
     乾留ガスを精製する精製装置と、
     精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置と、
    から構成された炭化水素オイル製造システムであって、
     前記乾留ガスに乾留ガスの発生量に応じた水素を計量添加する水素供給装置を備えたことを特徴とする炭化水素オイル製造システム。
    A pyrolysis device that pyrolyzes the carbonaceous raw material into a dry distillation gas;
    A refining device for refining dry distillation gas;
    A hydrocarbon synthesizer that converts the purified gas into hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst;
    A hydrocarbon oil production system comprising:
    A hydrocarbon oil production system comprising a hydrogen supply device for metering and adding hydrogen to the dry distillation gas according to the amount of dry distillation gas generated.
  2.  前記精製装置と前記炭化水素合成装置との間に、前記精製した乾留ガスと前記水素とを混合して、ガス中の炭素と水素との割合を調整するためのガス調整装置を有していることを特徴とする請求項1に記載の炭化水素オイル製造システム。 Between the said refiner | purifier and the said hydrocarbon synthesizer, it has the gas regulator for mixing the said refined dry distillation gas and the said hydrogen, and adjusting the ratio of the carbon in a gas, and hydrogen. The hydrocarbon oil production system according to claim 1.
  3.  前記熱分解装置は、炭素質原料の投入量を測定するための重量センサ、キャリアガスの流量を測定するための流量センサ乾留ガスの排出量と排出温度を測定するための流量センサと温度センサとを備えており、
     前記システムは、これらのセンサにより単位時間当たりの乾留ガス中の炭素含有量と水素含有量を測定するための電子計算機を備えており、測定した結果と炭素質原料の種類に基づいて水素の添加量を算出し、算出した水素添加量に基づいて前記水素供給系より水素を供給することを特徴とする請求項2に記載の炭化水素オイル製造システム。
    The pyrolysis apparatus includes a weight sensor for measuring the input amount of the carbonaceous raw material, a flow sensor for measuring the flow rate of the carrier gas, a flow sensor and a temperature sensor for measuring the discharge amount and discharge temperature of the dry distillation gas. With
    The system is equipped with an electronic computer for measuring the carbon content and hydrogen content in dry distillation gas per unit time using these sensors, and adding hydrogen based on the measurement results and the type of carbonaceous raw material The hydrocarbon oil production system according to claim 2, wherein an amount is calculated, and hydrogen is supplied from the hydrogen supply system based on the calculated hydrogen addition amount.
  4.  前記ガス調整装置は、さらに炭化水素合成装置からの未反応のガスを混合するためのガス供給ラインを有しており、前記精製した乾留ガスと、前記水素供給装置からの水素と前記炭化水素合成装置からの未反応ガスとを混合することを特徴とする請求項2に記載の炭化水素オイル製造システム。 The gas regulator further includes a gas supply line for mixing unreacted gas from the hydrocarbon synthesizer, and the purified dry distillation gas, hydrogen from the hydrogen supplier, and the hydrocarbon synthesis The hydrocarbon oil production system according to claim 2, wherein unreacted gas from the apparatus is mixed.
  5.  前記ガス調整装置は、各々流量調整バブルを備えた精製した乾留ガスの導入口と水素ガスの導入口と未反応ガス導入口を有するガス混合部と、混合ガスを一時的に貯蔵する少なくとも1つのバッファタンクより構成されていることを特徴とする請求項4に記載の炭化水素オイル製造システム。 The gas adjusting device includes a gas mixing section having a purified dry distillation gas inlet, a hydrogen gas inlet and an unreacted gas inlet each having a flow rate adjustment bubble, and at least one for temporarily storing the mixed gas. The hydrocarbon oil production system according to claim 4, comprising a buffer tank.
  6.  過熱水蒸気をキャリアガスまたはキャリアガスおよび熱分解装置の熱源として、前記熱分解装置に導入することを特徴とする請求項1に記載の炭化水素オイル製造システム。 The hydrocarbon oil production system according to claim 1, wherein superheated steam is introduced into the thermal decomposition apparatus as a carrier gas or a carrier gas and a heat source of the thermal decomposition apparatus.
  7.  前記水素供給装置は、過熱水蒸気と水素発生触媒との接触により水素を発生される水素発生装置を含むことを特徴とする請求項5に記載の炭化水素オイル製造システム。 6. The hydrocarbon oil production system according to claim 5, wherein the hydrogen supply device includes a hydrogen generation device that generates hydrogen by contact between superheated steam and a hydrogen generation catalyst.
  8.  前記水素供給装置は、水の電気分解により水素を発生する水素発生装置を含むことを特徴とする請求項2に記載の炭化水素オイル製造システム。 3. The hydrocarbon oil production system according to claim 2, wherein the hydrogen supply device includes a hydrogen generation device that generates hydrogen by electrolysis of water.
  9.  前記精製装置は、脱硫装置とイオン交換スクラバとから構成されていることを特徴とする請求項2に記載の炭化水素オイル製造システム。 The hydrocarbon oil production system according to claim 2, wherein the refining device comprises a desulfurization device and an ion exchange scrubber.
  10.  前記炭素質原料を所定のサイズに粉砕するための少なくとも1つの粉砕装置をさらに有していることを特徴とする請求項2に記載の炭化水素オイル製造システム。 The hydrocarbon oil production system according to claim 2, further comprising at least one crushing device for crushing the carbonaceous raw material into a predetermined size.
  11.  前記炭素質原料が、水産物由来原料、林業由来原料、農業由来原料、畜産由来原料、汚泥由来原料、廃棄物由来原料、石炭由来原料、一般廃棄物由来原料、廃プラスチック、廃タイヤ、ヘドロ、フロンガスおよびアスベストからなる群から選択された少なくとも1つであることを特徴とする請求項1に記載の炭化水素オイル製造システム。 The carbonaceous raw materials are marine product-derived raw materials, forestry-derived raw materials, agricultural-derived raw materials, livestock-derived raw materials, sludge-derived raw materials, waste-derived raw materials, coal-derived raw materials, general waste-derived raw materials, waste plastics, waste tires, sludge, chlorofluorocarbons. 2. The hydrocarbon oil production system according to claim 1, wherein the system is at least one selected from the group consisting of asbestos and asbestos.
  12.  前記炭素質原料を所定の炭素含有量、水素含有量となるように前処理する前処理装置を備えていることを特徴とする請求項9に記載の炭化水素オイル製造システム。 10. The hydrocarbon oil production system according to claim 9, further comprising a pretreatment device for pretreating the carbonaceous raw material to have a predetermined carbon content and hydrogen content.
  13.  前記炭素質原料が、バイオマス原料であることを特徴とする請求項1に記載の炭化水素オイル製造システム。 The hydrocarbon oil production system according to claim 1, wherein the carbonaceous raw material is a biomass raw material.
  14.  前記炭素質原料を所定の炭素含有量、水素含有量となるように前処理する前処理装置を備えていることを特徴とする請求項2に記載の炭化水素オイル製造システム。 The hydrocarbon oil production system according to claim 2, further comprising a pretreatment device for pretreating the carbonaceous raw material to have a predetermined carbon content and hydrogen content.
  15.  製造する炭化水素オイルがジェット燃料用であることを特徴とする請求項11に記載の炭化水素オイル製造システム。 The hydrocarbon oil production system according to claim 11, wherein the hydrocarbon oil to be produced is for jet fuel.
  16.  炭素質原料を熱分解して乾留ガスを発生させ、乾留ガスを精製後に炭化水素合成触媒により炭化水素オイルを得る炭化水素オイルの製造方法であって、
    (A) 所定の炭素含有率および水素含有率を有する炭素質原料を熱分解装置に投入する工程と、
    (B) 投入した炭素質原料を熱分解により乾留ガスとする工程と、
    (C) 乾留ガスを精製する工程と、
    (D) 精製した乾留ガスに所定の炭素:水素モル比となるように水素を添加して合成用の混合ガスを調製する工程と、
    (E) 調製した混合ガスを炭化水素に転化する工程と
    (F) 工程(E)で得られた混合ガスを炭化水素オイルと、未反応分とに分離する工程と
    を含むことを特徴とする炭化水素オイルの製造方法。
    A method for producing a hydrocarbon oil in which a carbonaceous raw material is pyrolyzed to generate a dry distillation gas, and after purification of the dry distillation gas, a hydrocarbon oil is obtained by a hydrocarbon synthesis catalyst,
    (A) introducing a carbonaceous raw material having a predetermined carbon content and hydrogen content into a thermal decomposition apparatus;
    (B) a step of converting the input carbonaceous raw material into a dry distillation gas by pyrolysis,
    (C) refining the dry distillation gas;
    (D) preparing a mixed gas for synthesis by adding hydrogen to the purified dry distillation gas so as to have a predetermined carbon: hydrogen molar ratio;
    (E) a step of converting the prepared mixed gas into hydrocarbon, and (F) a step of separating the mixed gas obtained in step (E) into hydrocarbon oil and unreacted components. A method for producing hydrocarbon oil.
  17.  さらに、工程(F)で生じた未反応分を工程Dの混合ガスに混合する工程を有することを特徴とする請求項16に記載の炭化水素オイルの製造方法。 Furthermore, the manufacturing method of the hydrocarbon oil of Claim 16 which has the process of mixing the unreacted part which arose in the process (F) with the mixed gas of the process D.
  18.  導入する炭素質原料中に含まれる炭素と水素との比率に基づいて、混合ガス中の炭素と水素との比率がモル比で1:2から1:4となるように水素を添加することを特徴とする請求項16に記載の炭化水素オイルの製造方法。 Based on the ratio of carbon to hydrogen contained in the carbonaceous raw material to be introduced, hydrogen is added so that the ratio of carbon to hydrogen in the mixed gas is 1: 2 to 1: 4 in molar ratio. The method for producing a hydrocarbon oil according to claim 16, wherein the hydrocarbon oil is produced.
  19.  前記炭素質原料を所定範囲の炭素含有量と水素含有量となるように水分調整する工程と、
     前記炭素質原料を粉砕する工程と、
    をさらに含むことを特徴とする請求項15に記載の炭化水素オイルの製造方法。
    Adjusting the moisture of the carbonaceous raw material so that the carbon content and the hydrogen content are within a predetermined range;
    Crushing the carbonaceous raw material;
    The method for producing a hydrocarbon oil according to claim 15, further comprising:
PCT/JP2010/056898 2009-04-14 2010-04-13 Hydrocarbon oil production system and method for producing hydrocarbon oil WO2010119973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011509377A JPWO2010119973A1 (en) 2009-04-14 2010-04-13 Hydrocarbon oil production system and method for producing hydrocarbon oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16897609P 2009-04-14 2009-04-14
US61/168.976 2009-04-14

Publications (1)

Publication Number Publication Date
WO2010119973A1 true WO2010119973A1 (en) 2010-10-21

Family

ID=42982628

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/056897 WO2010119972A1 (en) 2009-04-14 2010-04-13 Btl fuel production system and method for producing btl fuel
PCT/JP2010/056898 WO2010119973A1 (en) 2009-04-14 2010-04-13 Hydrocarbon oil production system and method for producing hydrocarbon oil

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056897 WO2010119972A1 (en) 2009-04-14 2010-04-13 Btl fuel production system and method for producing btl fuel

Country Status (2)

Country Link
JP (2) JPWO2010119972A1 (en)
WO (2) WO2010119972A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224829A (en) * 2011-04-19 2012-11-15 Ggi Japan Kk Pyrolysis system, and method for producing pyrolytic oil
JP2014510163A (en) * 2011-02-11 2014-04-24 スティーブ・クルースニャク Fischer-Tropsch process enhancement for hydrocarbon fuel preparation
US9115324B2 (en) 2011-02-10 2015-08-25 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation
US9212319B2 (en) 2012-05-09 2015-12-15 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment
US9315452B2 (en) 2011-09-08 2016-04-19 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015010621B1 (en) * 2012-11-12 2021-08-10 Lanzatech New Zealand Limited METHOD TO PRODUCE AT LEAST ONE PRODUCT FROM A GASEOUS SUBSTRATE
EP2784288B1 (en) * 2013-03-28 2020-02-19 Lumenion AG Power plant and method for generating electric power
CN108675589A (en) * 2018-07-23 2018-10-19 哈尔滨金源伟业环保科技有限公司 A kind of continous way greasy filth pyrolysis treatment systems and pyrolysis treating method
JP6552030B1 (en) * 2018-09-14 2019-07-31 株式会社 ユーリカ エンジニアリング Syngas production system for low carbon FT synthetic oil production
WO2020054063A1 (en) * 2018-09-14 2020-03-19 株式会社 ユーリカ エンジニアリング Synthetic gas production system for low-carbon ft synthetic oil production
WO2021261417A1 (en) * 2020-06-22 2021-12-30 株式会社Ihi Hydrocarbon generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461073A (en) * 1977-10-24 1979-05-17 Nippon Kasei Chem Toxic gas absorption and adsorption apparatus
JPS62169887A (en) * 1985-10-04 1987-07-27 アリゾナ ボ−ド オブ リ−ゼンツ Production of liquid hydrocarbon fuel from biomass
JPH03205302A (en) * 1989-12-29 1991-09-06 Alpha Kuresuto:Kk Method for producing hydrogen
JPH11323352A (en) * 1998-05-20 1999-11-26 Chiyoda Corp Manufacture of hydrocarbon oil
WO2009025222A1 (en) * 2007-08-17 2009-02-26 Biomass Energy Corporation Method and apparatus for production of hydrocarbon from biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461073A (en) * 1977-10-24 1979-05-17 Nippon Kasei Chem Toxic gas absorption and adsorption apparatus
JPS62169887A (en) * 1985-10-04 1987-07-27 アリゾナ ボ−ド オブ リ−ゼンツ Production of liquid hydrocarbon fuel from biomass
JPH03205302A (en) * 1989-12-29 1991-09-06 Alpha Kuresuto:Kk Method for producing hydrogen
JPH11323352A (en) * 1998-05-20 1999-11-26 Chiyoda Corp Manufacture of hydrocarbon oil
WO2009025222A1 (en) * 2007-08-17 2009-02-26 Biomass Energy Corporation Method and apparatus for production of hydrocarbon from biomass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115324B2 (en) 2011-02-10 2015-08-25 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation
JP2014510163A (en) * 2011-02-11 2014-04-24 スティーブ・クルースニャク Fischer-Tropsch process enhancement for hydrocarbon fuel preparation
JP2012224829A (en) * 2011-04-19 2012-11-15 Ggi Japan Kk Pyrolysis system, and method for producing pyrolytic oil
US9315452B2 (en) 2011-09-08 2016-04-19 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment
US9212319B2 (en) 2012-05-09 2015-12-15 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment

Also Published As

Publication number Publication date
JPWO2010119973A1 (en) 2012-10-22
WO2010119972A1 (en) 2010-10-21
JPWO2010119972A1 (en) 2012-10-22

Similar Documents

Publication Publication Date Title
WO2010119973A1 (en) Hydrocarbon oil production system and method for producing hydrocarbon oil
Vuppaladadiyam et al. Biomass pyrolysis: A review on recent advancements and green hydrogen production
Zhang et al. Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier
Udomsirichakorn et al. Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification
Demirbaş Hydrogen production from biomass by the gasification process
US8541637B2 (en) Process and system for thermochemical conversion of biomass
US7619012B2 (en) Method and apparatus for steam hydro-gasification in a fluidized bed reactor
Bian et al. Hydrogen/methane production from supercritical water gasification of lignite coal with plastic waste blends
Klinghoffer et al. Gasification and pyrolysis of municipal solid waste (MSW)
Dai et al. Synergetic effect of co-pyrolysis of sewage sludge and lignin on biochar production and adsorption of methylene blue
Salaudeen et al. Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes
Molino et al. Steam gasification of refuse-derived fuel in a rotary kiln pilot plant: Experimental tests
CA2748985A1 (en) Method for processing organic waste and a device for carrying out said method
Saghir et al. Recent trends in gasification based waste-to-energy
Donaj et al. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification
CA2774943A1 (en) A method to produce methane rich fuel gas from carbonaceous feedstocks using a steam hydrogasification reactor and a water gas shift reactor
WO2011128513A1 (en) A waste refining method
Taralas et al. Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production
Farsi Biomass conversion to biomethanol
JP2006282914A (en) Method of manufacturing biomass coke
Munawar et al. Thermochemical conversions of municipal solid waste into fuels and chemicals
MX2009000701A (en) Method and apparatus for steam hydro-gasification in a fluidized bed reactor.
US20130118075A1 (en) System And Method For Thermal Conversion Of Carbon Based Materials
JP2023523800A (en) Feedstock processing system and method for producing Fischer-Tropsch liquids and transportation fuels
Li et al. Solid waste of calcium lignin replaces fossil fuel power by gasification to reduce CO2 emissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011509377

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10764555

Country of ref document: EP

Kind code of ref document: A1