Nothing Special   »   [go: up one dir, main page]

WO2010109573A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2010109573A1
WO2010109573A1 PCT/JP2009/055625 JP2009055625W WO2010109573A1 WO 2010109573 A1 WO2010109573 A1 WO 2010109573A1 JP 2009055625 W JP2009055625 W JP 2009055625W WO 2010109573 A1 WO2010109573 A1 WO 2010109573A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
speed
gear
output shaft
input shaft
Prior art date
Application number
PCT/JP2009/055625
Other languages
English (en)
French (fr)
Inventor
佐藤 宏
米田 修
幸男 豊良
満弘 田畑
香治 村上
純一 森村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/055625 priority Critical patent/WO2010109573A1/ja
Priority to CN2009801012164A priority patent/CN101918237B/zh
Priority to EP09829857.3A priority patent/EP2412553B1/en
Priority to US12/746,437 priority patent/US8170760B2/en
Publication of WO2010109573A1 publication Critical patent/WO2010109573A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3023Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure
    • F16H63/3026Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure comprising friction clutches or brakes
    • F16H2063/3036Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure comprising friction clutches or brakes the clutch is actuated by springs and released by a fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19223Disconnectable counter shaft

Definitions

  • the present invention is used for a vehicle including an internal combustion engine and a motor as a prime mover, and mechanical power output from an engine output shaft of the internal combustion engine and a rotor of the motor can be shifted by a speed change mechanism and transmitted to drive wheels.
  • the present invention relates to a vehicle drive device.
  • a first transmission mechanism configured with a first group of shift stages and a shift stage other than the first group are used.
  • Two transmission mechanisms including a second transmission mechanism composed of two groups of shift stages are provided, and further includes an input shaft of the first transmission mechanism (hereinafter referred to as a first input shaft) and an output shaft of the internal combustion engine (hereinafter referred to as a first input shaft).
  • a so-called dual clutch transmission is used that shifts by alternately switching these two clutches.
  • a motor is provided on at least one of the first input shaft and the second input shaft of the dual clutch transmission.
  • a vehicle drive device in which (a rotor of a motor) is coupled (see, for example, Patent Documents 1 and 2).
  • Patent Document 3 a hydraulic pressure is generated by the rotation of a rotating shaft (rotor) of a motor coupled to an input shaft of a transmission, and the hydraulic pressure is applied to a first clutch and a second clutch.
  • a mechanical oil pump (mechanical oil pump) to be supplied is disclosed.
  • a mechanical oil pump is driven by a motor to switch between an engaged state and a released state of the clutch. It is described that the hydraulic pressure necessary for the operation (hereinafter referred to as “engagement / release operation”) is secured.
  • Patent Document 4 discloses a drive device (transaxle) in which a motor generator is connected to first and second input shafts of a dual clutch (double clutch) type transmission, and includes a first engine clutch. However, it has been proposed to be configured to be normally engaged.
  • Patent Document 5 discloses a dual clutch transmission in which a rotor of an electric motor is engaged with one of first and second input shafts. Further, in Patent Document 6 below, a “start clutch” provided between the input shaft of the automatic transmission and the engine can be configured to be engaged when no external power is applied. Proposed.
  • Patent Document 7 discloses that the first friction clutch corresponding to the first input shaft of the dual clutch transmission is normally disengaged and the second friction clutch corresponding to the second input shaft. Has been proposed to be configured as a normally engaged state.
  • Patent Document 8 discloses a dual clutch (twin clutch) type transmission in which a second drive unit (drive unit) is connected to a second input shaft.
  • the second clutch is a clutch operated by a hydraulic actuator
  • hydraulic pressure is supplied to the actuator in advance before starting cranking of the internal combustion engine.
  • vehicle stopped a hybrid vehicle having an internal combustion engine and a motor as a prime mover is stopped
  • the motor is inactive, and the rotor and the member engaged therewith are rotated. Therefore, when the technique of Patent Document 3 is applied, before starting cranking of the internal combustion engine, the mechanical oil pump is driven to supply the second clutch with the hydraulic pressure necessary for the engaging operation. It is not possible.
  • the present invention has been made in view of the above, and transmits mechanical power from a rotor of a motor provided as a prime mover to an engine output shaft without performing engagement / disengagement operation of a clutch.
  • An object of the present invention is to provide a vehicle drive device capable of cranking an engine.
  • a vehicle drive apparatus is used in a vehicle including an internal combustion engine and a motor as a prime mover, and is mechanically output from an engine output shaft of the internal combustion engine and a rotor of the motor.
  • a vehicle drive device capable of shifting power by a speed change mechanism and transmitting it to drive wheels, receiving mechanical power from an engine output shaft by a first input shaft, and by any one of a plurality of shift stages
  • the first speed change mechanism capable of shifting and transmitting the power to the drive wheels, and mechanical power from the engine output shaft and the rotor are received by the second input shaft engaged with the rotor, and any one of the plurality of speed stages
  • a second speed change mechanism capable of shifting to one of the driving wheels, a first clutch capable of engaging the engine output shaft and the first input shaft, an engine output shaft and a second input shaft.
  • a second clutch capable of engaging the second clutch, Wherein the operating force for operating the engagement / release operation of the second clutch is configured to be engaged when not acting.
  • the first clutch is configured to be in a released state when an operating force for operating the engagement / release operation of the first clutch is not acting. Can do.
  • the vehicle drive device includes a control device capable of controlling selection of a gear position in the second speed change mechanism and powering of the motor, and the control device performs cranking of the internal combustion engine while the vehicle is stopped. In addition, it is possible to power the motor in a state in which no gear stage is selected in the second transmission mechanism.
  • the vehicle drive device includes a control device capable of controlling the selection of the shift speed in the first and second transmission mechanisms, the engagement / release state of the first clutch, and the power running of the motor.
  • the second speed change mechanism may be in a state in which no gear stage is selected, and the motor is powered to engage the first clutch.
  • the shift stage of the first speed change mechanism includes the first speed gear stage that is the lowest speed shift stage, and the control device sets the first gear stage when starting the vehicle.
  • the first speed gear stage can be selected from the gear stages of the transmission mechanism.
  • the second clutch is configured to be in the engaged state when the operating force for operating the engagement / release operation of the second clutch is not applied.
  • the engine output shaft can be operated without engaging / disengaging the second clutch by setting the gear stage of the second transmission mechanism to a non-selected state and releasing the first clutch to power the motor. Can be rotationally driven.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a hybrid vehicle according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating the structure of the dual clutch mechanism according to the present embodiment.
  • FIG. 3 is a schematic diagram for explaining the structure of a modified dual clutch mechanism according to the present embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a hybrid vehicle and a drive device.
  • FIG. 2 is a schematic diagram showing a structure of a dual clutch mechanism provided in the drive device.
  • FIG. 3 is a schematic diagram showing the structure of a modified dual clutch mechanism.
  • the hybrid vehicle 1 includes a single internal combustion engine 5 and a single motor generator 50 (hereinafter simply referred to as “motor”) as a prime mover for rotationally driving the drive wheels 88.
  • the motor 50 is included in the driving device 10 that shifts mechanical power from the internal combustion engine 5 and transmits the mechanical power to the vehicle propulsion shaft 66.
  • the internal combustion engine 5 is coupled with the drive device 10 including the motor 50 and mounted on the hybrid vehicle 1.
  • the hybrid vehicle 1 is provided with a hybrid vehicle electronic control device 100 (hereinafter referred to as ECU) as a control device (control means) for controlling the internal combustion engine 5 and the drive device 10.
  • ECU hybrid vehicle electronice control device 100
  • the internal combustion engine 5 includes a fuel injection device, an ignition device, and a throttle valve device (not shown). These devices are controlled by the ECU 100.
  • the mechanical power generated by the internal combustion engine 5 is output from an output shaft (crankshaft) 8.
  • the output side of the internal combustion engine 5 (hereinafter referred to as the engine output shaft) is coupled to the input side of a dual clutch mechanism 20 of the drive device 10 described later, for example, a clutch housing 14a (see FIG. 2).
  • the ECU 100 can adjust the mechanical power output from the engine output shaft 8 of the internal combustion engine 5.
  • the hybrid vehicle 1 is a power transmission device that transmits mechanical power from the internal combustion engine 5 and the motor 50 as a prime mover to the drive wheels 88, and the mechanical power from the engine output shaft 8 and the motor 50 is shifted to torque.
  • a drive device 10 is provided that can output toward the drive shaft 80 by changing the angle.
  • the drive device 10 uses either the first clutch 21 or the second clutch 22 to transmit mechanical power from the engine output shaft 8 of the internal combustion engine 5 to a transmission mechanism described later, and the internal combustion engine 5. From the first output shaft 37, the mechanical power transmitted from the first clutch 21 is received by the first input shaft 27 and shifted by any one of the first stage gears.
  • the first transmission mechanism 30 capable of transmitting to the shaft 66 and the mechanical power transmitted from the internal combustion engine 5 through the second clutch 22 are received by the second input shaft 28, and any of the second group of gears
  • the second transmission mechanism 40 that can be transmitted from the second output shaft 48 to the vehicle propulsion shaft 66, and the mechanical power transmitted to the vehicle propulsion shaft 66 is decelerated and applied to the drive wheels 88. Distributing to the right and left drive shafts 80 And a fast device 70.
  • the first transmission mechanism 30, the second transmission mechanism 40, and the dual clutch mechanism 20 constitute a dual clutch transmission (20, 30, 40).
  • the first speed change mechanism 30 and the second speed change mechanism 40 have six speed stages from the first speed gear stage 31 to the sixth speed gear stage 46 in the forward direction, and one gear stage in the reverse direction and the reverse gear stage. 39.
  • the reduction ratios of the first to sixth gear stages 31 to 46, which are forward shift stages, are the first speed gear stage 31, the second speed gear stage 42, the third speed gear stage 33, and the fourth speed gear stage 44.
  • the fifth speed gear stage 35 and the sixth speed gear stage 46 are set so as to decrease in this order. That is, among the first to sixth gear stages 31 to 46, the first gear stage 31 is the lowest speed stage.
  • the first speed change mechanism 30 is configured as a parallel shaft gear device having a plurality of gear pairs.
  • the first group of shift speeds is an odd speed, that is, a first speed gear stage 31, a third speed gear stage 33, and the like.
  • the fifth speed gear stage 35 and the reverse gear stage 39 are included.
  • the fifth speed gear stage 35 is the highest speed shift stage.
  • the “coupling mechanism” is constituted by a meshing clutch such as a dog clutch.
  • the first speed gear stage 31 includes a pair of gears, and is provided to be rotatable around a first speed main gear 31 a that is a fixed gear coupled to the first input shaft 27 and a first output shaft 37. And a first speed counter gear 31c which is a loose gear meshing with the first speed main gear 31a.
  • the first speed change mechanism 30 is provided with a first speed coupling mechanism 31e corresponding to the first speed gear stage 31 and capable of engaging the first speed counter gear 31c and the first output shaft 37. ing.
  • the ECU 100 selects the first speed gear stage 31 (sets to the engaged state), that is, sets the first speed coupling mechanism 31e to the engaged state, and engages the first speed counter gear 31c and the first output shaft 37.
  • the mechanical power from the first input shaft 27 is transmitted to the first output shaft 37 via the first speed main gear 31a and the first speed counter gear 31c.
  • the first speed change mechanism 30 can shift the mechanical power received from the first input shaft 27 by the first speed gear 31 and change the torque to be transmitted to the first output shaft 37. It has become.
  • the third speed gear stage 33 is composed of a gear pair, and is provided to be rotatable around a third speed main gear 33 a that is a fixed gear coupled to the first input shaft 27 and a first output shaft 37. And a third speed counter gear 33c which is a loose gear meshing with the third speed main gear 33a.
  • the first speed change mechanism 30 is provided with a third speed coupling mechanism 33e corresponding to the third speed gear stage 33 and capable of engaging the third speed counter gear 33c and the first output shaft 37. ing.
  • the ECU 100 selects the third speed gear stage 33 (sets to the engaged state), that is, sets the third speed coupling mechanism 33e to the engaged state, and engages the third speed counter gear 33c and the first output shaft 37.
  • the first speed change mechanism 30 can shift the mechanical power received from the first input shaft 27 by the third speed gear stage 33 and change the torque to be transmitted to the first output shaft 37. It has become.
  • the fifth speed gear stage 35 is composed of a gear pair and is rotatable about a first speed shaft 37 and a fifth speed main gear 35 a that is a fixed gear coupled to the first input shaft 27. And a fifth speed counter gear 35c, which is a loose gear meshing with the fifth speed main gear 35a.
  • the first speed change mechanism 30 is provided with a fifth speed coupling mechanism 35e corresponding to the fifth speed gear stage 35 and capable of engaging the fifth speed counter gear 35c and the first output shaft 37. ing.
  • the ECU 100 selects (sets to the engaged state) the fifth speed gear stage 35, that is, sets the fifth speed coupling mechanism 35e to the engaged state, and engages the fifth speed counter gear 35c and the first output shaft 37.
  • the first speed change mechanism 30 can change the mechanical power received from the first input shaft 27 by the fifth speed gear stage 35, change the torque, and transmit it to the first output shaft 37. It is possible.
  • the reverse gear stage 39 meshes with a reverse main gear 39a that is a fixed gear coupled to the first input shaft 27, a reverse intermediate gear 39b that meshes with the reverse main gear 39a, and a reverse intermediate gear 39b, and a first output shaft 37.
  • a reverse counter gear 39c which is a loose gear provided so as to be rotatable around the center.
  • the first transmission mechanism 30 is provided with a reverse coupling mechanism 39e that can engage the reverse counter gear 39c and the first output shaft 37 corresponding to the reverse gear stage 39.
  • the ECU 100 selects the reverse gear stage 39 (sets to the engaged state), that is, sets the reverse coupling mechanism 39e to the engaged state, and engages the reverse counter gear 39c and the first output shaft 37, thereby the first
  • the speed change mechanism 30 can transmit the mechanical power received from the first input shaft 27 to the first output shaft 37 by changing the rotational direction to the reverse direction and changing the speed by the reverse gear stage 39 and changing the torque. It is possible.
  • a first drive gear 37c is coupled to the first output shaft 37 of the first speed change mechanism 30, and the first drive gear 37c meshes with the power integrated gear 58.
  • a vehicle propulsion shaft 66 is coupled to the power integration gear 58. The vehicle propulsion shaft 66 is engaged with a drive shaft 80 to which drive wheels 88 are coupled via a final reduction gear 70 described later. That is, the first output shaft 37 of the first transmission mechanism 30 is engaged with the drive shaft 80 and the drive wheels 88.
  • the switching of the coupling mechanisms 31e, 33e, 35e, and 39e in the first transmission mechanism 30 between the engaged state and the released state (non-engaged state) is controlled by the ECU 100 via the actuator (not shown).
  • the ECU 100 selects (sets to the engaged state) any one of the shift stages 31, 33, 35, 39 of the first transmission mechanism 30, the ECU 100 selects the selected (set to the engaged state).
  • the corresponding coupling mechanism is brought into the engaged state, and the coupling mechanism corresponding to the gear stage not selected in the first transmission mechanism 30 is brought into the released state.
  • the first speed change mechanism 30 changes the mechanical power received by the first input shaft 27 at the selected (engaged) shift speed, and transmits it to the first output shaft 37 for driving. It is possible to output toward the shaft 80.
  • the coupling mechanisms 31e, 33e, 35e of the respective shift stages 31, 33, 35 of the first transmission mechanism 30 are selected. , 39e are all released. Thereby, the first transmission mechanism 30 can block transmission of mechanical power between the first input shaft 27 and the first output shaft 37.
  • the second transmission mechanism 40 is configured as a parallel shaft gear device having a plurality of gear pairs, and the second group of shift stages is an even stage, that is, the second speed.
  • the gear stage 42 includes a fourth speed gear stage 44 and a sixth speed gear stage 46.
  • a rotor 52 of a motor 50 described later is coupled to the input shaft 28 (hereinafter referred to as a second input shaft) of the second transmission mechanism 40.
  • the second speed gear stage 42 includes a pair of gears, and is provided to be rotatable around a second speed main gear 42 a that is a fixed gear coupled to the second input shaft 28 and a second output shaft 48. And a second speed counter gear 42c which is a loose gear meshing with the second speed main gear 42a.
  • the second speed change mechanism 40 is provided with a second speed coupling mechanism 42e corresponding to the second speed gear stage 42 and capable of engaging the second speed counter gear 42c and the second output shaft 48. ing.
  • the ECU 100 selects (sets to the engaged state) the second speed gear stage 42, that is, sets the second speed coupling mechanism 42e to the engaged state, and engages the second speed counter gear 42c and the second output shaft 48.
  • the mechanical power from the second input shaft 28 is transmitted to the second output shaft 48 via the second speed main gear 42a and the second speed counter gear 42c.
  • the second speed change mechanism 40 can shift the mechanical power received from the second input shaft 28 by the second speed gear stage 42, change the torque, and transmit it to the second output shaft 48. It has become.
  • the fourth speed gear stage 44 is composed of a pair of gears, and is provided to be rotatable about a fourth speed main gear 44 a that is a fixed gear coupled to the second input shaft 28 and a second output shaft 48. And a fourth speed counter gear 44c which is a loose gear meshing with the fourth speed main gear 44a.
  • the second speed change mechanism 40 is provided with a fourth speed coupling mechanism 44e corresponding to the fourth speed gear stage 44 and capable of engaging the fourth speed counter gear 44c with the second output shaft 48. ing.
  • the ECU 100 selects (sets to the engaged state) the fourth speed gear stage 44, that is, sets the fourth speed coupling mechanism 44e to the engaged state, and engages the fourth speed counter gear 44c and the second output shaft 48.
  • the second speed change mechanism 40 can change the mechanical power received from the second input shaft 28 by the fourth speed gear stage 44, change the torque, and transmit it to the second output shaft 48. It is possible.
  • the sixth speed gear stage 46 is composed of a gear pair, and is provided so as to be rotatable about a sixth speed main gear 46 a that is a fixed gear coupled to the second input shaft 28 and a second output shaft 48. And a sixth speed counter gear 46c which is a loose gear meshing with the sixth speed main gear 46a.
  • the second speed change mechanism 40 is provided with a sixth speed coupling mechanism 46e corresponding to the sixth speed gear stage 46 so that the sixth speed counter gear 46c and the second output shaft 48 can be engaged.
  • the ECU 100 selects (sets to the engaged state) the sixth speed gear stage 46, that is, sets the sixth speed coupling mechanism 46e to the engaged state, and engages the sixth speed counter gear 46c and the second output shaft 48.
  • the second speed change mechanism 40 can change the mechanical power received from the second input shaft 28 by the sixth speed gear stage 46, change the torque, and transmit it to the second output shaft 48. It is possible.
  • the second drive gear 48c is coupled to the second output shaft 48 of the second speed change mechanism 40, and the second drive gear 48c meshes with the power integrated gear 58.
  • a vehicle propulsion shaft 66 is coupled to the power integrated gear 58, and the vehicle propulsion shaft 66 is engaged with a drive shaft 80 coupled to the drive wheels 88 via a final reduction device 70 described later. That is, the second output shaft 48 of the second transmission mechanism 40, the drive shaft 80, and the drive wheels 88 are engaged.
  • each coupling mechanism 42e, 44e, 46e in the second transmission mechanism 40 is controlled by the ECU 100 via an actuator (not shown).
  • the ECU 100 selects (sets to the engaged state) any one of the shift stages 42, 44, 46 of the second transmission mechanism 40, the ECU 100 corresponds to the selected (set to the engaged state) shift stage.
  • the coupling mechanism is brought into the engaged state, and the coupling mechanism corresponding to the gear stage not selected in the second transmission mechanism 40 is brought into the released state.
  • the second speed change mechanism 40 shifts the mechanical power received by the second input shaft 28 at the selected (engaged) shift speed and transmits it to the second output shaft 48 for transmission to the drive shaft. It is possible to output to 80.
  • the coupling mechanisms 42e, 44e, 46e of the gear stages 42, 44, 46 of the second transmission mechanism 40 are selected. Are all released. Thereby, the second speed change mechanism 40 can block transmission of mechanical power between the second input shaft 28 and the second output shaft 48.
  • the drive device 10 of the hybrid vehicle 1 transmits a mechanical power output from the engine output shaft 8 by the internal combustion engine 5 to one of the first transmission mechanism 30 and the second transmission mechanism 40.
  • a dual clutch mechanism 20 is provided.
  • the dual clutch mechanism 20 includes a first clutch 21 that is a friction clutch device capable of engaging the engine output shaft 8 and the first input shaft 27 of the first speed change mechanism 30, and the engine output shaft 8 and the second speed change.
  • the second clutch 22 is a friction clutch device capable of engaging with the second input shaft 28 of the mechanism 40.
  • the first clutch 21 and the second clutch 22 are constituted by a friction clutch mechanism, and the first clutch 21 and the second clutch 22 can be a wet multi-plate clutch or a dry single-plate clutch.
  • the first clutch 21 has a disk-like friction plate, and is constituted by a friction type disk clutch that transmits mechanical power by the frictional force of the friction plate.
  • the first clutch 21 is configured to be able to engage the engine output shaft 8 of the internal combustion engine 5 and the first input shaft 27 of the first transmission mechanism 30. When the first clutch 21 is engaged, the engine output shaft 8 and the first input shaft 27 can be engaged and rotate together.
  • the engagement / release operation of the first clutch 21 is operated by a hydraulic actuator (not shown) or the like.
  • the first clutch 21 is configured to be in a disengaged state when an operating force for operating the engagement / release operation of the first clutch 21 by the actuator is not applied, so-called a normally open type clutch. It has become.
  • the second clutch 22 is configured by a friction disk clutch or the like, and engages the engine output shaft 8 of the internal combustion engine 5 and the second input shaft 28 of the second transmission mechanism 40. It is configured to be possible. By bringing the second clutch 22 into the engaged state, the engine output shaft 8 and the second input shaft 28 can be engaged and rotate together.
  • the engagement / release operation of the second clutch 22 is operated by a hydraulic actuator (not shown) or the like.
  • the second clutch 22 is configured to be in an engaged state, and is of a so-called normally closed type. It is a clutch.
  • the switching between the engaged state and the released state (non-engaged state) of the first clutch 21 and the second clutch 22 is controlled by the ECU 100 via an actuator (not shown).
  • the ECU 100 sets the mechanical power from the internal combustion engine 5 to the first clutch 21 or the second clutch 22 by engaging one and releasing the other. Transmission to either one of the first transmission mechanism 30 and the second transmission mechanism 40 is possible.
  • a clutch housing 14 a of the dual clutch mechanism 20 is coupled to the engine output shaft 8. That is, the clutch housing 14a rotates integrally with the engine output shaft 8.
  • the clutch housing 14a is configured to be able to accommodate friction plates 27a and 28a described later.
  • first input shaft 27 of the first transmission mechanism 30 and the second input shaft 28 of the second transmission mechanism 40 are arranged coaxially and have a double shaft structure.
  • first input shaft 27 is configured as a hollow shaft
  • second input shaft 28 extends into the first input shaft 27.
  • the second input shaft 28 that is an inner shaft is configured to be longer in the axial direction than the first input shaft 27 that is an outer shaft.
  • main gears 31 a, 33 a, 35 a, 39 a of the respective gear stages of the first transmission mechanism 30 are arranged from the engine output shaft 8 side toward the drive wheel 88 side, and then the second transmission mechanism 40.
  • Main gears 42a, 44a, 46a of the respective speed stages are provided.
  • a disc-shaped friction plate 27 a is coupled to the end of the first input shaft 27, while a friction plate 28 a is coupled to the end of the second input shaft 28 in the same manner.
  • the friction plates 27 a and 28 a are accommodated in the above-described clutch housing 14 a and constitute the first clutch 21 and the second clutch 22.
  • the first clutch 21 has a friction mating plate (not shown) provided on the clutch housing 14a so as to face the friction plate 27a, and an actuator (not shown) for operating the friction mating plate.
  • the actuator operates the engagement / release operation of the first clutch 21.
  • the friction counterpart plate is biased in a direction opposite to the direction in contact with the friction plate 27 a by a “spring” (biasing member) (not shown). That is, in the first clutch 21, when the operating force by the actuator is not acting, the friction plate 27 a and the clutch housing 14 a are not engaged, and power is transmitted between the first input shaft 27 and the engine output shaft 8. Is in a “released state” where is blocked.
  • springs such as a diaphragm spring and a coil spring can be used as the “spring” as such an urging member.
  • the first clutch 21 When the friction mating plate is operated by the actuator, the first clutch 21 is pressed against the friction plate 27a, and the friction plate 27a and the clutch housing 14a are engaged. That is, the first clutch 21 is coupled to the first input shaft 27 coupled to the friction plate 27a and the clutch housing 14a when an operation force for operating the engagement / release operation of the first clutch 21 by the actuator is applied.
  • the engine output shaft 8 is engaged.
  • the friction counterpart plate when the friction counterpart plate is not operated by the actuator, that is, when the operating force for operating the engagement / release operation of the first clutch 21 is not acting on the first clutch 21, the friction counterpart plate is A released state in which power transmission between the first input shaft 27 coupled to the friction plate 27a and the engine output shaft 8 coupled to the clutch housing 14a is urged so as not to contact the friction plate 27a and the engine output shaft 8 coupled to the clutch housing 14a. Become. In this way, the first clutch 21 is configured to be in the released state when the operating force for operating the engagement / release operation of the first clutch 21 by the actuator is not acting.
  • the second clutch 22 includes a friction mating plate (not shown) provided in the clutch housing 14a so as to face the friction plate 28a, and an actuator (not shown) for operating the friction mating plate. ).
  • the actuator operates the engagement / release operation of the second clutch 22.
  • the friction counterpart plate is urged so as to come into contact with the friction plate 28 a by a “spring” (biasing member) (not shown). That is, in the second clutch 22, when the operating force by the actuator is not acting, the friction plate 28 a and the clutch housing 14 a are engaged, and the second input shaft 28 and the engine output shaft 8 are engaged.
  • springs such as a diaphragm spring and a coil spring can be used as the “spring” as such an urging member.
  • the friction counter plate when the friction counter plate is operated by the actuator, the friction counter plate is separated from the friction plate 28a, and the power transmission between the friction plate 28a and the clutch housing 14a is cut off. That is, the second clutch 22 is coupled to the second input shaft 28 coupled to the friction plate 28a and the clutch housing 14a when an operation force for operating the engagement / release operation of the second clutch 22 by the actuator is applied.
  • a disengaged state in which the power transmission with the engine output shaft 8 is interrupted, is established.
  • the friction counterpart plate when the friction counterpart plate is not operated by the actuator, that is, when the operating force for operating the engagement / release operation of the second clutch 22 is not acting on the second clutch 22, the friction counterpart plate is The second input shaft 28 urged to contact the friction plate 28a and the engine output shaft 8 coupled to the clutch housing 14a is engaged with the second input shaft 28 coupled to the friction plate 28a.
  • the second clutch 22 is configured to be in an engaged state when an operating force for operating the engagement / release operation of the second clutch 22 by the actuator is not acting.
  • the first input shaft 27 of the first transmission mechanism 30 and the second input shaft 28 of the second transmission mechanism 40 are arranged coaxially.
  • the detailed structure of the mechanism 20 is not limited to this.
  • the first input shaft 27 and the second input shaft 28 may be arranged to extend in parallel with a predetermined interval.
  • a drive gear 14 c is coupled to the end of the engine output shaft 8.
  • the first gear 16 and the second gear 18 are meshed with the drive gear 14 c, the first gear 16 is coupled to the first clutch 21, and the second gear 18 is coupled to the second clutch 22. ing.
  • the first clutch 21 is configured to be able to engage the first input shaft 27 of the first transmission mechanism 30 and the first gear 16 that engages with the engine output shaft 8.
  • the second clutch 22 is configured to be able to engage the second input shaft 28 of the second transmission mechanism 40 and the second gear 18 that engages with the engine output shaft 8.
  • the first and second clutches 21 and 22 can each be constituted by an arbitrary clutch mechanism such as a friction clutch, and the first clutch 21 is not operated by an operating force for operating the engagement / release operation.
  • the second clutch 22 is configured to be in an engaged state when no operating force is applied.
  • the ECU 100 controls the operating force for operating the engagement / release state of the first and second clutches 21, 22, that is, the engagement / release operation of the first and second clutches 21, 22 by the actuator.
  • the drive device 10 of the hybrid vehicle 1 is provided with a motor 50 as a prime mover. That is, the drive device 10 includes a dual clutch transmission (20, 30, 40) configured by the dual clutch mechanism 20, the first transmission mechanism 30, and the second transmission mechanism 40, and the motor 50. .
  • the motor 50 has a function as an electric motor that converts supplied electric power into mechanical power and outputs it, and a rotating electric machine that has a function as an electric generator that converts input mechanical power into electric power and recovers it, This is a so-called motor generator.
  • the motor 50 is composed of a permanent magnet AC synchronous motor, and receives a three-phase AC power supplied from an inverter 110, which will be described later, to form a rotating magnetic field, and a rotor that is attracted to the rotating magnetic field and rotates. And the rotor 52.
  • the motor 50 is provided with a resolver (not shown) that detects the rotational angle position of the rotor 52, and sends a signal related to the rotational angle position of the rotor 52 to the ECU 100.
  • the rotor 52 of the motor 50 is coupled to the second input shaft 28 of the second transmission mechanism 40, and the mechanical power (torque) output from the rotor 52 by the motor 50 is the second input shaft of the second transmission mechanism 40. 28. That is, the rotor 52 of the motor 50 and the second input shaft 28 of the second transmission mechanism 40 are engaged. Further, the motor 50 can convert mechanical power (torque) transmitted from the drive wheels 88 to the rotor 52 via the second output shaft 48 into AC power and collect it in the secondary battery 120. Yes.
  • the speed reduction mechanism which decelerates the rotational speed of the rotor 52 and transmits to the 2nd input shaft 28, the rotational speed of the rotor 52 is shifted, and the 2nd input shaft It is also possible to provide a speed change mechanism for transmitting to 28.
  • the rotor of the motor generator is not coupled to the first input shaft 27 of the first transmission mechanism 30. When at least one of the first clutch 21 and the second clutch 22 is in a released state, the first input shaft 27 of the first transmission mechanism 30 does not receive mechanical power output from the rotor 52 of the motor 50.
  • the fact that the motor 50 functions as an electric motor and the motor 50 outputs mechanical power from the rotor 52 is referred to as “powering”.
  • the motor 50 is caused to function as a generator, and mechanical power transmitted from the driving wheel 88 to the rotor 52 of the motor 50 is converted into electric power and recovered.
  • the braking of the rotation of the rotor 52 and the member (for example, the drive wheel 88) engaged therewith is referred to as “regenerative braking”.
  • the ECU 100 controls power running and regenerative braking by the motor 50, that is, switching of the function of the motor 50 as an electric motor / generator.
  • the hybrid vehicle 1 is provided with an inverter 110 as a power supply device that supplies AC power to the motor 50.
  • the inverter 110 is configured to convert DC power supplied from the secondary battery 120 into AC power and supply the AC power to the motor 50.
  • the inverter 110 is also configured to convert the AC power from the motor 50 into DC power and collect it in the secondary battery 120.
  • the ECU 100 controls the power supply from the inverter 110 to the motor 50 and the power recovery from the motor 50.
  • the drive device 10 of the hybrid vehicle 1 decelerates mechanical power transmitted from the prime mover to the vehicle propulsion shaft 66 and distributes it to the left and right drive shafts 80 engaged with the drive wheels 88.
  • the final reduction gear 70 includes a drive pinion 68 coupled to the vehicle propulsion shaft 66, and a differential mechanism 74 in which the drive pinion 68 and the ring gear 72 mesh with each other substantially orthogonally.
  • the final reduction gear 70 decelerates the mechanical power transmitted from at least one of the prime mover, that is, the internal combustion engine 5 and the motor 50 to the vehicle propulsion shaft 66 by the drive pinion 68 and the ring gear 72, and drives the left and right by the differential mechanism 74.
  • the drive wheel 88 distributed to the shaft 80 and coupled to the drive shaft 80 can be rotationally driven.
  • the ECU 100 is provided as a control device for controlling.
  • the ECU 100 relates to a signal related to the rotational angle position of the engine output shaft 8 (hereinafter referred to as a crank angle), a signal related to the state of charge (SOC) of the secondary battery 120, and the rotational angle position of the rotor 52 of the motor 50. A signal or the like is detected.
  • the ECU 100 determines whether the first and second clutches 21 and 22 are engaged with the gears selected in the first transmission mechanism 30 and the second transmission mechanism 40, that is, the engagement / release state of the coupling mechanisms 31e to 46e. Detect / disconnect state. Further, the ECU 100 detects a signal related to an operation amount of an accelerator pedal (not shown) and a signal related to an operation amount of a brake pedal (not shown), which are operated by a driver.
  • the ECU 100 calculates various control variables.
  • the control variables include the rotational speed of the engine output shaft 8 of the internal combustion engine 5 (hereinafter referred to as engine rotational speed), the torque output from the engine output shaft 8 by the internal combustion engine 5 (hereinafter referred to as engine load), and the motor.
  • Motor rotational speed which is the rotational speed of 50 rotors 52, torque output by the motor 50 from the rotor 52 (hereinafter referred to as motor output torque), traveling speed of the hybrid vehicle 1 (hereinafter referred to as vehicle speed), two The storage state (SOC) of the secondary battery 120 and the like are included.
  • the ECU 100 grasps the operating states of the internal combustion engine 5 and the motor 50.
  • the ECU 100 performs the shift operation in the first and second transmission mechanisms 30 and 40, that is, the engagement / release state of the coupling mechanisms 31e to 46e of the respective shift stages 31 to 46, and the first clutch 21 and the second clutch 22. It is possible to control the engaged / released state, that is, the operating force for operating the engagement / release operation of the first clutch 21 and the second clutch 22. Further, the ECU 100 can control the motor output torque and the motor rotation speed, and the engine load and the engine rotation speed of the internal combustion engine 5.
  • the ECU 100 selects any one of the first speed stages 31, 33, 35, 39 of the first speed change mechanism 30, and the corresponding cup.
  • the engine output shaft 8 is connected to the first input shaft 27 and the first output shaft 37 by setting the ring mechanism to the engaged state, further bringing the first clutch 21 to the engaged state and releasing the second clutch 22.
  • the drive shaft 80 is engaged via the power integrated gear 58, the vehicle propulsion shaft 66, and the final reduction gear 70.
  • the first speed change mechanism 30 receives the mechanical power output from the engine output shaft 8 of the internal combustion engine 5 by the first input shaft 27, and shifts (odd number) 31, 33, 35, and reverse It is possible to change the torque at the selected gear stage among the gear stages 39, change the torque, and output the torque toward the drive shaft 80 engaged with the drive wheels 88.
  • the rotation of the drive wheel 88 is transmitted to the second output shaft 48 of the second transmission mechanism 40 via the power integrated gear 58.
  • the power integration gear 58 The mechanical power transmitted from the second output shaft 48 to the second output shaft 48 is shifted by the selected gear among the gears (even-numbered gears) 42, 44, 46 of the second transmission mechanism 40, and is transmitted to the second input shaft 28.
  • the rotor 52 of the motor 50 is rotated by being transmitted.
  • the ECU 100 selects any one of the second speed stages 42, 44, 46 of the second speed change mechanism 40 and puts the corresponding coupling mechanisms 42e, 44e, 46e into an engaged state.
  • the engine output shaft 8 is made to be the second input shaft 28, the second output shaft 48, the power integrated gear 58, the vehicle by bringing the second clutch 22 into the engaged state and releasing the first clutch 21.
  • the drive shaft 80 is engaged via the propulsion shaft 66 and the final reduction gear 70.
  • the second speed change mechanism 40 receives the mechanical power output from the engine output shaft 8 of the internal combustion engine 5 and the rotor 52 of the motor 50 by the second input shaft 28, and each speed stage (even number stage) 42. , 44, and 46, the speed is changed at a selected speed, the torque is changed, and the output can be output toward the drive shaft 80 engaged with the drive wheel 88.
  • the rotation of the drive wheel 88 is transmitted to the first output shaft 37 of the first transmission mechanism 30 via the power integrated gear 58.
  • the ECU 100 selects any one of the first gear stages 31, 33, 35, 39 of the first transmission mechanism 30, and puts the corresponding coupling mechanisms 31e, 33e, 35e, 39e into an engaged state.
  • the mechanical power transmitted from the power integrated gear 58 to the first output shaft 37 is selected from among the shift stages (odd stages) 31, 33, 35 and the reverse gear stage 39 of the first transmission mechanism 30.
  • the gear is shifted by the gear position (in an engaged state) and transmitted to the first input shaft 27 to rotate the first input shaft 27.
  • the transmission of power between the engine output shaft 8 and the drive wheels 88 is interrupted at the time of shifting by alternately connecting the first clutch 21 and the second clutch 22. The details can be described below.
  • the ECU 100 selects one of the shift stages 31 to 46 of the first and second transmission mechanisms 30 and 40 (sets to the engaged state). For example, when the selected gear stage is the first speed gear stage 31 among the gear stages 31, 33, 35, 39 of the first transmission mechanism 30, the ECU 100 sets the first speed cup corresponding to the first speed gear stage 31. The ring mechanism 31e is brought into the engaged state, and the other coupling mechanisms 33e, 35e, 39e are brought into the released state. Then, the ECU 100 puts the first clutch 21 into an engaged state and puts the second clutch 22 into a released state.
  • the driving device 10 receives the mechanical power from the internal combustion engine 5 by the first input shaft 27, and is the first selected shift stage among the first stage (odd number) shift stages 31, 33, 35.
  • the speed is changed by the first gear 31 and transmitted from the first output shaft 37 to the drive shaft 80, so that the drive wheels 88 can be rotationally driven.
  • the ECU 100 is one speed higher (high gear) side than the first speed gear 31 which is the speed selected in the first speed change mechanism 30 among the speeds 42, 44, 46 of the second speed change mechanism 40.
  • the second input gear 28 of the second speed change mechanism 40 is idled by selecting the second speed gear stage 42 that is the first speed change stage and bringing the corresponding second speed coupling mechanism 42e into the engaged state. In this manner, a gear shifting operation from the first speed gear stage 31 to the second speed gear stage 42, that is, an engagement / release operation of the first clutch 21 and the second clutch 22 is prepared.
  • the ECU 100 places the first clutch 21 in the released state.
  • the driving device 10 performs an operation of re-clipping the first clutch 21 and the second clutch 22, so-called “clutch-to-clutch”. With this operation, the driving device 10 gradually moves the power transmission path from the engine output shaft 8 from the first input shaft 27 of the first transmission mechanism 30 to the second input shaft 28 of the second transmission mechanism 40. The shift to the second gear stage 42 is completed.
  • the driving device 10 shifts from the first speed gear stage 31 that is the odd speed stage to the speed stage of the first transmission mechanism 30, that is, the second speed gear that is the even speed stage of the second transmission mechanism 40.
  • the stage 42 it is possible to shift without causing any interruption in power transmission from the engine output shaft 8 to the drive shaft 80.
  • cranking control control processing related to cranking of the internal combustion engine while the vehicle is stopped in the hybrid vehicle according to the present embodiment
  • the ECU 100 does not select any of the gear stages 42, 44, 46 in the second transmission mechanism 40, that is, the coupling mechanisms 42e, 44e, 46e corresponding to the gear stages 42, 44, 46, respectively. Are all released, and power transmission between the second input shaft 28 and the second output shaft 48 is interrupted.
  • the operating force for operating the engagement / release operation of the second clutch 22 by the actuator is not acting, and the second clutch 22 which is a normally closed clutch is in an engaged state.
  • the engine output shaft 8 is engaged with the rotor 52 of the motor 50 via the second clutch 22 and the second input shaft 28.
  • the first clutch 21 which is a normally open clutch, is in a released state without operating force for operating the engagement / release operation of the first clutch 21 by the actuator. Power transmission between the engine output shaft 8 and the first input shaft 27 is cut off.
  • the rotor 52 of the motor 50 and the engine output shaft 8 are the stationary drive wheels 88 and the rotating members (for example, the first output shaft 37 and the second output shaft 48) engaged therewith. Regardless of this, it is possible to rotate together.
  • the ECU 100 powers the motor 50 in response to a request to start the internal combustion engine 5 while the vehicle is stopped.
  • the mechanical power output from the rotor 52 of the motor 50 to the second input shaft 28 is transmitted from the second clutch 22 to the engine output shaft 8 and rotationally drives the engine output shaft 8. In this way, the ECU 100 can perform cranking for starting the internal combustion engine 5 while the drive wheels 88 are stationary.
  • motor start control a control process related to the start by the motor in the hybrid vehicle according to the present embodiment (hereinafter simply referred to as “motor start control”) will be described with reference to FIG.
  • the ECU 100 sets the second speed change mechanism 40 to a state in which none of the gear stages 42, 44, 46 is selected (all released state), and the second input shaft 28 and the second output shaft 48 are connected. The power transmission between them is cut off. At this time, since the second clutch 22 is in an engaged state with no operating force acting, the engine output shaft 8 and the rotor 52 of the motor 50 are engaged and can rotate integrally. Yes.
  • the ECU 100 selects the first speed gear stage 31 in the first transmission mechanism 30 to put the corresponding coupling mechanism 31e into the engaged state and put the first clutch 21 into the engaged state.
  • the ECU 100 applies an operating force to the first clutch 21 by an actuator to bring the first clutch 21 into an engaged state and engage the engine output shaft 8 and the first input shaft 27.
  • the first and second clutches 21 and 22 are both engaged and the first speed change mechanism 30 selects the gear stage (first gear stage) 31 (sets the engagement state).
  • the 50 rotors 52 are engaged with the engine output shaft 8, the first input shaft 27, the first output shaft 37, and the drive wheels 88.
  • the second speed change mechanism 40 power transmission between the second input shaft 28 and the second output shaft 48 is interrupted, so that no double meshing of the gear occurs in the drive device 10.
  • the first and second clutches 21 and 22 may be half-engaged.
  • the ECU 100 powers the motor 50 in response to a request for starting the hybrid vehicle 1 while the vehicle is stopped.
  • the mechanical power output from the rotor 52 of the motor 50 to the second input shaft 28 is transmitted to the first input shaft 27 via the engaged first and second clutches 21 and 22.
  • the mechanical power transmitted from the rotor 52 of the motor 50 to the first input shaft 27 is shifted by the first speed gear 31 and transmitted from the first output shaft 37 to the vehicle propulsion shaft 66, and is transmitted by the final reduction gear 70.
  • the drive wheels 88 are rotationally driven by being distributed to the left and right drive shafts 80.
  • the ECU 100 can shift the mechanical power from the rotor 52 of the motor 50 by the shift speed of the first transmission mechanism 30 and transmit it to the drive wheels 88 to start the hybrid vehicle 1.
  • the hybrid vehicle 1 may be started by putting the first clutch 21 into an engaged state or a semi-engaged state after the power running of the motor 50 is started.
  • control method for starting the hybrid vehicle 1 is not limited to starting with the motor described above, but can also be started using an internal combustion engine as a prime mover.
  • the ECU 100 After starting the internal combustion engine 5 by performing the above-described cranking control, the ECU 100 causes the first clutch 21 to be engaged so that the mechanical power from the engine output shaft 8 is supplied from the first clutch 21 to the first input.
  • the hybrid vehicle 1 can be started by transmitting to the shaft 27, shifting by the first transmission mechanism 30, and transmitting to the drive wheel 88.
  • the vehicle drive device 10 receives the mechanical power from the engine output shaft 8 by the first input shaft 27, and any one of the plurality of shift stages 31, 33, 35, 39 is used.
  • the first transmission mechanism 30 that can be shifted by one of them and transmitted to the drive wheels 88, and the second input shaft 28 that engages the mechanical power from the engine output shaft 8 and the rotor 52 with the rotor 52.
  • the second speed change mechanism 40 that can be shifted by any one of the plurality of speed stages 42, 44, 46 and transmitted to the drive wheels 88, the engine output shaft 8, the first input shaft 27,
  • the second clutch 22 includes a first clutch 21 that can engage the engine output shaft 8 and the second input shaft 28, and the second clutch 22 is engaged with the second clutch 22. Engagement when no operating force is applied Become was assumed to be formed by a so-called normally closed type clutch.
  • the vehicle drive device 10 sets the gears 42, 44, 46 of the second speed change mechanism 40 to a state in which none of the gears 42, 44, 46 is selected (all is set to the released state) and the first clutch 21 to the released state. If 50 is powered, the engine output shaft 8 can be rotationally driven without engaging / disengaging the second clutch 22.
  • the first clutch 21 is a so-called normally open clutch that is in a released state when an operating force for operating the engagement / release operation of the first clutch 21 is not applied. Therefore, the first and second clutches 21 and 22 can be operated simply by powering the motor 50 with none of the gear stages 42, 44, and 46 of the second transmission mechanism 40 selected (all released).
  • the engine output shaft 8 can be rotationally driven without performing the engagement / release operation.
  • the mechanical power output from the motor 50 to the second input shaft 28 can be obtained by simply selecting any one of the gear stages 31, 33, 35, 39 of the first transmission mechanism 30.
  • the first transmission shaft 27 can be transmitted to the first input shaft 27 via the first and second clutches 21, 22, and can be shifted to the driving wheel 88 by the shift speed of the first transmission mechanism 30.
  • the first clutch 21 is in the released state. , 40, any gear is selected, and even if the coupling mechanism corresponding to the gear is in the engaged state, double engagement of the gear does not occur in the drive device 10.
  • the ECU 100 is provided as a control device capable of controlling the selection of the gear position in the second transmission mechanism 40 and the power running of the motor 50, and the ECU 100 starts the internal combustion engine 5 while the vehicle is stopped.
  • the second gear mechanism 40 does not select any gear stage (all released), and the motor 50 is powered, the engagement / release operation of the first and second clutches 21 and 22 is performed. Without this, the mechanical power from the motor 50 can be transmitted from the second clutch 22 to the engine output shaft 8 to rotate the engine output shaft 8. Thereby, the internal combustion engine 5 can be started in a state where the hybrid vehicle 1 is stopped without performing the engagement / release operation of the first and second clutches 21 and 22.
  • the ECU 100 is a control device that can control the selection of the shift speed in the first and second transmission mechanisms 30, 40, the engaged / released state of the first clutch 21, and the power running of the motor 50.
  • the ECU 100 puts the first clutch 21 into an engaged state by setting the second speed change mechanism 40 to a state in which no gear stage is selected (all released state) and powering the motor 50.
  • the mechanical power from the motor 50 is transmitted to the first input shaft 27 via the first and second clutches 21 and 22 simply by performing the engaging operation for bringing the first clutch 21 into the engaged state.
  • the speed can be changed by the speed change mechanism 30 and transmitted to the drive wheels 88. Thereby, it is possible to start the hybrid vehicle 1 by selectively using only the motor 50.
  • the ECU 100 sets the second speed change mechanism 40 so that none of the speed stages are selected (all released) and selects one of the speed stages of the first speed change mechanism 30.
  • the first clutch 21 is engaged and the motor 50 is powered, so that the mechanical power from the motor 50 is transmitted to the first input shaft 27 via the first and second clutches 21 and 22.
  • And can be transmitted to the drive wheels 88 by changing the speed of the first speed change mechanism 30.
  • the mechanical power of the motor 50 is shifted by the first transmission mechanism 30 and transmitted to the drive wheels 88 only by performing the engaging operation for bringing the first clutch 21 into the engaged state. You can start.
  • the shift stages 31, 33, 35, 39 of the first transmission mechanism 30 include the first speed gear stage 31 that is the shift stage on the lowest speed side (the largest reduction ratio).
  • the ECU 100 as the control device selects (sets to the engaged state) the first speed gear stage 31 among the speed stages of the first transmission mechanism 30 when starting the vehicle.
  • the mechanical power can be transmitted to the drive wheels 88 by decelerating and increasing the torque at the gear stage having the largest reduction ratio among the first and second transmission mechanisms 30 and 40.
  • the hybrid vehicle 1 can be started with good responsiveness by the mechanical power from the motor 50.
  • the shift stages 42, 44, and 46 of the second transmission mechanism 40 which is a transmission mechanism in which the rotor 52 of the motor 50 is engaged with the input shaft, are even stages (second speed gear stage, fourth speed stage). (Gear stage, sixth gear stage), the aspect of the drive device 10 to which the present invention is applicable is not limited to this.
  • the shift stage of the first transmission mechanism in which the input shaft is not engaged with the rotor of the motor is composed of even stages
  • the shift stage of the second transmission mechanism in which the input shaft engages with the rotor of the motor is an odd stage. It is good also as what is comprised by.
  • the motor 50 provided as a prime mover functions as an electric motor that converts supplied electric power into mechanical power and outputs it, and a generator that converts inputted mechanical power into electric power.
  • the motor according to the present invention is not limited to this.
  • the motor as the prime mover is only required to be able to output mechanical power from the rotor to the input shaft of the speed change mechanism.
  • the motor may be configured by an electric motor having only a function of converting supplied power into mechanical power and outputting it.
  • the rotor 52 of the motor 50 is coupled to the second input shaft 28 of the second transmission mechanism 40.
  • the aspect of the driving device 10 of the present invention is limited to this. It is not a thing.
  • the second input shaft only needs to be engaged with the rotor of the motor.
  • a speed reduction mechanism is provided between the second input shaft and the rotor to reduce the rotational speed of the rotor and transmit it to the second input shaft. It is good as a thing.
  • the first speed change mechanism 30 transmits the mechanical power received by the first input shaft 27 from the first output shaft 37 to the power integrated gear 58 that engages with the drive wheels 88
  • the speed change mechanism 40 transmits the mechanical power received by the second input shaft 28 from the second output shaft 48 to the power integrated gear 58.
  • the first speed change mechanism 30 and the second speed change mechanism 40 are different from each other.
  • the present invention is not limited to this.
  • the first speed change mechanism 30 and the second speed change mechanism 40 only need to be able to transmit the mechanical power received by the input shafts 27 and 28 to the drive wheels 88, for example, the first speed change mechanism 30 and the second speed change mechanism 40, for example.
  • the speed change mechanism 40 may transmit mechanical power received by the first input shaft 27 and the second input shaft 28 to a common output shaft that engages with the drive wheels 88, respectively.
  • the vehicle drive device 10 transmits mechanical power from the engine output shaft 8 of the internal combustion engine 5 and the rotor 52 of the motor 50 to at least one of the first transmission mechanism 30 and the second transmission mechanism 40.
  • the first transmission mechanism 30 and the second transmission mechanism 40 are transmitted from the power integrated gear 58 to the drive wheels 88 via the vehicle propulsion shaft 66 and the differential mechanism 74 of the final reduction gear 70.
  • the mode of power transmission from the drive wheel 88 toward the drive wheel 88 is not limited to this.
  • the first speed change mechanism 30 and the second speed change mechanism 40 only need to be able to transmit the mechanical power received by the first input shaft 27 and the second input shaft 28 to the drive wheels 88, respectively.
  • the power integrated gear 58 or the first and second drive gears 37c and 48c engaged with the power integrated gear 58 may directly drive the ring gear 72 of the differential mechanism 74.
  • the present invention is useful for a hybrid vehicle including an internal combustion engine and a motor as a prime mover and including a dual clutch transmission, and in particular, an input shaft of one of the two transmission mechanisms. It is useful for a hybrid vehicle in which the rotor of the motor is engaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 クラッチの係合/解放動作を行わなくとも、モータのロータからの機械的動力を機関出力軸に伝達させて、内燃機関のクランキングを行うことが可能な車両用駆動装置を提供する。ハイブリッド車両1用の駆動装置10は、機関出力軸8からの機械的動力を第1入力軸27で受け、駆動輪88に向けて伝達可能な第1変速機構30と、機関出力軸8及びロータ52からの機械的動力を、当該ロータ52と係合する第2入力軸28で受け、駆動輪88に向けて伝達可能な第2変速機構40と、機関出力軸8と第1入力軸27を係合可能な第1クラッチ21と、機関出力軸8と第2入力軸28とを係合可能な第2クラッチ22とを有しており、第2クラッチ22は、当該第2クラッチ22の係合/解放動作を操作する操作力が作用していないときに係合状態となるよう構成されている。

Description

車両用駆動装置
 本発明は、原動機として内燃機関とモータとを備えた車両に用いられ、内燃機関の機関出力軸及びモータのロータから出力される機械的動力を、変速機構により変速して駆動輪に伝達可能な車両用駆動装置に関する。
 車両用変速機においては、近年、変速時における機械的動力の伝達の途切れをなくすために、第1群の変速段で構成される第1変速機構と、第1群以外の変速段である第2群の変速段で構成される第2変速機構との2つの変速機構を備え、さらに、第1変速機構の入力軸(以下、第1入力軸と記す)と、内燃機関の出力軸(以下、機関出力軸と記す)とを係合可能な第1クラッチと、第2変速機構の入力軸(以下、第2入力軸と記す)と機関出力軸とを係合可能な第2クラッチとを備え、これら2つのクラッチを交互につなぎ替えることで変速を行う、いわゆるデュアルクラッチ式変速機を用いたものが知られている。
 また、原動機として内燃機関(エンジン)とモータジェネレータ(以下、単に「モータ」と記す)とを備えた車両において、デュアルクラッチ式変速機の第1入力軸及び第2入力軸の少なくとも一方に、モータ(モータのロータ)が結合された車両用駆動装置が提案されている(例えば、特許文献1,2参照)。
 また、下記の特許文献3には、変速機の入力軸に結合されたモータの回転軸(ロータ)の回転を受けて作動して油圧を発生し、当該油圧を第1クラッチ及び第2クラッチに供給する機械式のオイルポンプ(メカオイルポンプ)について開示されている。特許文献3には、内燃機関(エンジン)が非作動状態にある場合(エンジン停止中)においては、モータにより機械式のオイルポンプを駆動することで、クラッチの係合状態と解放状態とを切替える動作(以下、「係合/解放動作」と記す)に必要な油圧を確保することが記載されている。
 また、下記の特許文献4には、デュアルクラッチ(ダブルクラッチ)式変速機の第1及び第2入力軸にモータジェネレータが接続された駆動装置(トランスアクスル)について開示されており、第1エンジンクラッチが、通常、係合状態となるよう構成することが提案されている。また、下記の特許文献5には、第1及び第2入力軸の一方に電気モータのロータが係合するデュアルクラッチ式変速機について開示されている。また、下記の特許文献6には、自動変速機の入力軸とエンジンとの間に設けられた「発進クラッチ」を、外部動力が作用していないときに係合状態となるよう構成することが提案されている。また、下記の特許文献7には、デュアルクラッチ式変速機の第1入力軸に対応する第1摩擦クラッチを、ノーマル解放状態(normally disengaged)とし、且つ第2入力軸に対応する第2摩擦クラッチを、ノーマル係合状態(normally engaged)係合状態として構成することが提案されている。また、下記の特許文献8には、第2入力軸に第2駆動装置(drive unit)が接続されたデュアルクラッチ(ツインクラッチ)式変速機が開示されている。
特開2003-79005号公報 特開2006-118590号公報 特開2007-15679号公報 米国特許出願公開第2002/0088290号明細書 米国特許出願公開第2002/0033059号明細書 特開2003-35360号公報 米国特許出願公開第2006/0230855号明細書 米国特許出願公開第2007/0204709号明細書
 ところで、特許文献1,2のようにデュアルクラッチ式の変速機の第2入力軸にモータのロータが結合された車両用駆動装置においては、内燃機関を始動するために、ロータから第2入力軸に出力された機械的動力を、第2クラッチを介して内燃機関の機関出力軸に伝達させて、機関出力軸を回転させる、いわゆるクランキングを行うことが求められている。
 上述の第2クラッチが油圧式アクチュエータにより操作されるクラッチである場合、当該クラッチの係合/解放動作を行うためには、内燃機関のクランキングを開始する前に、アクチュエータに予め油圧を供給する必要がある。しかし、原動機として内燃機関とモータとを備えたハイブリッド車両が停止している間(以下、車両停止中と記す)においては、モータは非作動状態であり、ロータとこれに係合する部材は回転していないため、特許文献3の技術を適用したのでは、内燃機関のクランキングを開始する前に、機械式のオイルポンプを駆動して第2クラッチに係合動作に必要な油圧を供給することはできない。
 なお、電動のオイルポンプを用いて上述のクラッチに油圧を供給する構成とすることや、第2クラッチを電磁式のクラッチとして構成することも考えられるが、特許文献3のように、油圧が供給されて作動するクラッチと、油圧を供給する機械式オイルポンプとを組み合わせた構成に比べて、部品点数やコスト上の観点から問題がある。
 したがって、上述のようなデュアルクラッチ式変速機を備えたハイブリッド車両においては、内燃機関のクランキングを行う際に、上述の第2クラッチの係合/解放動作を行わなくても、モータのロータからの機械的動力を機関出力軸に伝達させて、内燃機関のクランキングを行う技術が要望されている。
 本発明は、上記に鑑みてなされたものであって、クラッチの係合/解放動作を行わなくとも、原動機として設けられたモータのロータからの機械的動力を機関出力軸に伝達させて、内燃機関のクランキングを行うことが可能な車両用駆動装置を提供することを目的とする。
 上記の目的を達成するために、本発明に係る車両用駆動装置は、原動機として内燃機関とモータとを備えた車両に用いられ、内燃機関の機関出力軸及びモータのロータから出力される機械的動力を、変速機構により変速して駆動輪に伝達可能な車両用駆動装置であって、機関出力軸からの機械的動力を第1入力軸で受け、複数の変速段のうちいずれか1つにより変速して、駆動輪に向けて伝達可能な第1変速機構と、機関出力軸及びロータからの機械的動力を、当該ロータと係合する第2入力軸で受け、複数の変速段のうちいずれか1つにより変速して、駆動輪に向けて伝達可能な第2変速機構と、機関出力軸と第1入力軸とを係合可能な第1クラッチと、機関出力軸と第2入力軸とを係合可能な第2クラッチとを備え、第2クラッチは、当該第2クラッチの係合/解放動作を操作する操作力が作用していないときに係合状態となるよう構成されていることを特徴とする。
 本発明に係る車両用駆動装置において、第1クラッチは、当該第1クラッチの係合/解放動作を操作する操作力が作用していないときに解放状態となるよう構成されているものとすることができる。
 本発明に係る車両用駆動装置において、第2変速機構における変速段の選択と、モータの力行とを制御可能な制御装置を備え、制御装置は、車両停止中において内燃機関のクランキングを行う際に、第2変速機構において変速段をいずれも選択しない状態にしてモータを力行させるものとすることができる。
 本発明に係る車両用駆動装置において、第1及び第2変速機構における変速段の選択と、第1クラッチの係合/解放状態と、モータの力行とを制御可能な制御装置を備え、制御装置は、車両を発進させる際に、第2変速機構において変速段をいずれも選択しない状態にすると共にモータを力行させ、第1クラッチを係合状態にするものとすることができる。
 本発明に係る車両用駆動装置において、第1変速機構の変速段は、最も低速側の変速段である第1速ギヤ段を含んでおり、制御装置は、車両を発進させる際に、第1変速機構の変速段のうち第1速ギヤ段を選択するものとすることができる。
 本発明によれば、第2クラッチは、当該第2クラッチの係合/解放動作を操作する操作力が作用していないときに係合状態となるよう構成されているものとしたので、駆動装置は、第2変速機構の変速段をいずれも選択しない状態にすると共に第1クラッチを解放状態にしてモータを力行させることで、第2クラッチの係合/解放動作を行うことなく、機関出力軸を回転駆動することができる。
図1は、本実施形態に係るハイブリッド車両の概略構成を示す模式図である。 図2は、本実施形態に係るデュアルクラッチ機構の構造を説明する模式図である。 図3は、本実施形態に係る変形例のデュアルクラッチ機構の構造を説明する模式図である。
 以下、本発明を実施するための形態(以下、実施形態と記す)について詳細に説明する。なお、本実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 まず、本実施形態に係るハイブリッド車両及び駆動装置の構成について、図1~図3を用いて説明する。図1は、ハイブリッド車両及び駆動装置の概略構成を示す模式図である。図2は、駆動装置に設けられたデュアルクラッチ機構の構造を示す模式図である。図3は、変形例のデュアルクラッチ機構の構造を示す模式図である。
 ハイブリッド車両1は、駆動輪88を回転駆動するための原動機として、単数の内燃機関5と、単数のモータジェネレータ50(以下、単に「モータ」と記す)とを備えている。モータ50は、内燃機関5からの機械的動力を変速して車両推進軸66に伝達する駆動装置10に含まれている。内燃機関5は、モータ50を備えた駆動装置10と共に結合されて、ハイブリッド車両1に搭載される。ハイブリッド車両1には、内燃機関5及び駆動装置10を制御する制御装置(制御手段)として、ハイブリッド車両用電子制御装置100(以下、ECUと記す)が設けられている。
 内燃機関5は、図示しない燃料噴射装置、点火装置、及びスロットル弁装置を備えている。これら装置は、ECU100により制御される。内燃機関5が発生した機械的動力は、出力軸(クランク軸)8から出力される。内燃機関5の出力軸8(以下、機関出力軸と記す)には、後述する駆動装置10のデュアルクラッチ機構20の入力側、例えば、クラッチハウジング14a(図2参照)が結合される。ECU100は、内燃機関5の機関出力軸8から出力する機械的動力を調整することが可能となっている。
 また、ハイブリッド車両1には、原動機としての内燃機関5及びモータ50からの機械的動力を駆動輪88に伝達する動力伝達装置として、機関出力軸8及びモータ50からの機械的動力を変速しトルクを変化させて、駆動軸80に向けて出力可能な駆動装置10が設けられている。
 駆動装置10は、第1クラッチ21及び第2クラッチ22のいずれかを用いて内燃機関5の機関出力軸8からの機械的動力を後述する変速機構に伝達するデュアルクラッチ機構20と、内燃機関5から第1クラッチ21を介して伝達される機械的動力を、第1入力軸27で受けて、第1群の変速段のうちいずれか1つにより変速して、第1出力軸37から車両推進軸66に伝達可能な第1変速機構30と、内燃機関5から第2クラッチ22を介して伝達される機械的動力を、第2入力軸28で受けて、第2群の変速段のうちいずれか1つにより変速して、第2出力軸48から車両推進軸66に伝達可能な第2変速機構40と、車両推進軸66に伝達された機械的動力を、減速すると共に駆動輪88に係合する左右の駆動軸80に分配する終減速装置70とを有している。第1変速機構30と、第2変速機構40と、デュアルクラッチ機構20により、デュアルクラッチ式変速機(20,30,40)が構成されている。
 第1変速機構30及び第2変速機構40は、前進に第1速ギヤ段31から第6速ギヤ段46までの6つの変速段を有しており、後進に1つの変速段、後進ギヤ段39を有している。前進の変速段である第1速~第6速ギヤ段31~46の減速比は、第1速ギヤ段31、第2速ギヤ段42、第3速ギヤ段33、第4速ギヤ段44、第5速ギヤ段35、第6速ギヤ段46の順に小さくなるよう設定されている。つまり、第1速~第6速ギヤ段31~46のうち、第1速ギア段31が最も低速側の変速段となっている。
 第1変速機構30は、複数の歯車対を備えた平行軸歯車装置として構成されており、第1群の変速段は、奇数段すなわち第1速ギヤ段31と、第3速ギヤ段33と、第5速ギヤ段35と、後進ギヤ段39により構成されている。第1変速機構30の前進の変速段31,33,35のうち、第5速ギヤ段35が最も高速側の変速段となっている。なお、以下の説明において、「カップリング機構」は、ドグクラッチ等の噛み合いクラッチにより構成されている。
 第1速ギヤ段31は、歯車対で構成されており、第1入力軸27に結合されている固定歯車である第1速メインギヤ31aと、第1出力軸37を中心に回転可能に設けられ、第1速メインギヤ31aと噛み合うルーズ歯車である第1速カウンタギヤ31cとを有している。第1変速機構30には、第1速ギヤ段31に対応して、第1速カウンタギヤ31cと第1出力軸37とを係合させることが可能な第1速カップリング機構31eが設けられている。
 ECU100が第1速ギヤ段31を選択する(係合状態にする)、即ち第1速カップリング機構31eを係合状態にして、第1速カウンタギヤ31cと第1出力軸37を係合させることで、第1入力軸27からの機械的動力は、第1速メインギヤ31a及び第1速カウンタギヤ31cを介して第1出力軸37に伝達される。これにより、第1変速機構30は、第1入力軸27から受けた機械的動力を、第1速ギヤ段31により変速し、トルクを変化させて第1出力軸37に伝達することが可能となっている。
 第3速ギヤ段33は、歯車対で構成されており、第1入力軸27に結合されている固定歯車である第3速メインギヤ33aと、第1出力軸37を中心に回転可能に設けられ、第3速メインギヤ33aと噛み合うルーズ歯車である第3速カウンタギヤ33cとを有している。第1変速機構30には、第3速ギヤ段33に対応して、第3速カウンタギヤ33cと第1出力軸37とを係合させることが可能な第3速カップリング機構33eが設けられている。
 ECU100が第3速ギヤ段33を選択する(係合状態にする)、即ち第3速カップリング機構33eを係合状態にして、第3速カウンタギヤ33cと第1出力軸37を係合させることで、第1変速機構30は、第1入力軸27から受けた機械的動力を、第3速ギヤ段33により変速し、トルクを変化させて第1出力軸37に伝達することが可能となっている。
 また、第5速ギヤ段35は、歯車対で構成されており、第1入力軸27に結合されている固定歯車である第5速メインギヤ35aと、第1出力軸37を中心に回転可能に設けられ、第5速メインギヤ35aと噛み合うルーズ歯車である第5速カウンタギヤ35cとを有している。第1変速機構30には、第5速ギヤ段35に対応して、第5速カウンタギヤ35cと第1出力軸37とを係合させることが可能な第5速カップリング機構35eが設けられている。
 ECU100が第5速ギヤ段35を選択する(係合状態にする)、即ち第5速カップリング機構35eを係合状態にして、第5速カウンタギヤ35cと第1出力軸37とを係合させることで、第1変速機構30は、第1入力軸27から受けた機械的動力を、第5速ギヤ段35により変速し、トルクを変化させて、第1出力軸37に伝達することが可能となっている。
 また、後進ギヤ段39は、第1入力軸27に結合されている固定歯車である後進メインギヤ39aと、後進メインギヤ39aと噛み合う後進中間ギヤ39bと、後進中間ギヤ39bと噛み合い、第1出力軸37を中心に回転可能に設けられたルーズ歯車である後進カウンタギヤ39cとを有している。第1変速機構30には、後進ギヤ段39に対応して、後進カウンタギヤ39cと第1出力軸37とを係合させることが可能な後進カップリング機構39eが設けられている。
 ECU100が後進ギヤ段39を選択する(係合状態にする)、即ち後進カップリング機構39eを係合状態にして、後進カウンタギヤ39cと第1出力軸37とを係合させることで、第1変速機構30は、第1入力軸27から受けた機械的動力を、後進ギヤ段39により、回転方向を逆方向に変えると共に変速し、トルクを変化させて第1出力軸37に伝達することが可能となっている。
 第1変速機構30の第1出力軸37には、第1駆動ギヤ37cが結合されており、当該第1駆動ギヤ37cは、動力統合ギヤ58と噛み合っている。動力統合ギヤ58には、車両推進軸66が結合されている。車両推進軸66は、後述する終減速装置70を介して、駆動輪88が結合された駆動軸80と係合している。つまり、第1変速機構30の第1出力軸37と、駆動軸80及び駆動輪88は係合している。
 以上のように、第1変速機構30における各カップリング機構31e,33e,35e,39eの係合状態と解放状態(非係合状態)との切替えは、図示しないアクチュエータを介してECU100により制御される。ECU100は、第1変速機構30の変速段31,33,35,39のうちいずれか1つの変速段を選択する(係合状態にする)場合、選択する(係合状態にする)変速段に対応するカップリング機構を係合状態にすると共に、第1変速機構30において選択していない変速段に対応するカップリング機構を解放状態にする。これにより、第1変速機構30は、第1入力軸27で受けた機械的動力を、選択された(係合状態にある)変速段で変速して、第1出力軸37に伝達し、駆動軸80に向けて出力することが可能となっている。
 また、ECU100が、第1変速機構30の変速段31,33,35,39をいずれも選択しない場合、第1変速機構30の各変速段31,33,35のカップリング機構31e,33e,35e,39eを全て解放状態にする。これにより、第1変速機構30は、第1入力軸27と第1出力軸37との間における機械的動力の伝達を遮断することが可能となっている。
 一方、第2変速機構40は、第1変速機構30と同様に、複数の歯車対を備えた平行軸歯車装置として構成されており、第2群の変速段は、偶数段、すなわち第2速ギヤ段42と、第4速ギヤ段44と、第6速ギヤ段46から構成されている。第2変速機構40の入力軸28(以下、第2入力軸と記す)には、後述するモータ50のロータ52が結合されている。
 第2速ギヤ段42は、歯車対で構成されており、第2入力軸28に結合されている固定歯車である第2速メインギヤ42aと、第2出力軸48を中心に回転可能に設けられ、第2速メインギヤ42aと噛み合うルーズ歯車である第2速カウンタギヤ42cとを有している。第2変速機構40には、第2速ギヤ段42に対応して、第2速カウンタギヤ42cと第2出力軸48とを係合させることが可能な第2速カップリング機構42eが設けられている。
 ECU100が第2速ギヤ段42を選択する(係合状態にする)、即ち第2速カップリング機構42eを係合状態にして、第2速カウンタギヤ42cと第2出力軸48とを係合させることで、第2入力軸28からの機械的動力は、第2速メインギヤ42a及び第2速カウンタギヤ42cを介して第2出力軸48に伝達される。これにより、第2変速機構40は、第2入力軸28から受けた機械的動力を、第2速ギヤ段42により変速し、トルクを変化させて、第2出力軸48に伝達させることが可能となっている。
 第4速ギヤ段44は、歯車対で構成されており、第2入力軸28に結合されている固定歯車である第4速メインギヤ44aと、第2出力軸48を中心に回転可能に設けられ、第4速メインギヤ44aと噛み合うルーズ歯車である第4速カウンタギヤ44cとを有している。第2変速機構40には、第4速ギヤ段44に対応して、第4速カウンタギヤ44cと第2出力軸48とを係合させることが可能な第4速カップリング機構44eが設けられている。
 ECU100が第4速ギヤ段44を選択する(係合状態にする)、即ち第4速カップリング機構44eを係合状態にして、第4速カウンタギヤ44cと第2出力軸48とを係合させることで、第2変速機構40は、第2入力軸28から受けた機械的動力を、第4速ギヤ段44により変速し、トルクを変化させて、第2出力軸48に伝達することが可能となっている。
 第6速ギヤ段46は、歯車対で構成されており、第2入力軸28に結合されている固定歯車である第6速メインギヤ46aと、第2出力軸48を中心に回転可能に設けられ、第6速メインギヤ46aと噛み合うルーズ歯車である第6速カウンタギヤ46cとを有している。第2変速機構40には、第6速ギヤ段46に対応して、第6速カウンタギヤ46cと第2出力軸48とを係合可能な第6速カップリング機構46eが設けられている。
 ECU100が第6速ギヤ段46を選択する(係合状態にする)、即ち第6速カップリング機構46eを係合状態にして、第6速カウンタギヤ46cと第2出力軸48とを係合させることで、第2変速機構40は、第2入力軸28から受けた機械的動力を、第6速ギヤ段46により変速し、トルクを変化させて、第2出力軸48に伝達することが可能となっている。
 第2変速機構40の第2出力軸48には、第2駆動ギヤ48cが結合されており、当該第2駆動ギヤ48cは、動力統合ギヤ58と噛み合っている。動力統合ギヤ58には、車両推進軸66が結合されており、車両推進軸66は、後述する終減速装置70を介して、駆動輪88に結合された駆動軸80と係合している。つまり、第2変速機構40の第2出力軸48と、駆動軸80及び駆動輪88は係合している。
 以上のように、第2変速機構40における各カップリング機構42e,44e,46eの係合状態と解放状態(非係合状態)との切替えは、図示しないアクチュエータを介してECU100により制御される。ECU100は、第2変速機構40の変速段42,44,46のうちいずれか1つの変速段を選択する(係合状態にする)場合、選択する(係合状態にする)変速段に対応するカップリング機構を係合状態にすると共に、第2変速機構40において選択しない変速段に対応するカップリング機構を解放状態にする。これにより、第2変速機構40は、第2入力軸28で受けた機械的動力を、選択された(係合状態にある)変速段で変速して、第2出力軸48に伝達し駆動軸80に向けて出力することが可能となっている。
 また、ECU100が、第2変速機構40の変速段42,44,46をいずれも選択しない場合には、第2変速機構40の各変速段42,44,46のカップリング機構42e,44e,46eを全て解放状態にする。これにより、第2変速機構40は、第2入力軸28と第2出力軸48との間における機械的動力の伝達を遮断することが可能となっている。
 また、ハイブリッド車両1の駆動装置10には、内燃機関5が機関出力軸8から出力する機械的動力を、第1変速機構30及び第2変速機構40のうちいずれか一方に伝達させる動力伝達装置として、デュアルクラッチ機構20が設けられている。デュアルクラッチ機構20は、機関出力軸8と第1変速機構30の第1入力軸27とを係合させることが可能な摩擦クラッチ装置である第1クラッチ21と、機関出力軸8と第2変速機構40の第2入力軸28とを係合させることが可能な摩擦クラッチ装置である第2クラッチ22とを有している。なお、第1クラッチ21及び第2クラッチ22は、摩擦クラッチ機構により構成されており、第1クラッチ21及び第2クラッチ22には、湿式多板クラッチや、乾式単板クラッチを用いることができる。
 第1クラッチ21は、円板状の摩擦板を有し、摩擦板の摩擦力により機械的動力を伝達する摩擦式ディスククラッチ等で構成されている。第1クラッチ21は、内燃機関5の機関出力軸8と第1変速機構30の第1入力軸27とを係合させることが可能に構成されている。第1クラッチ21が係合状態となることで、機関出力軸8と第1入力軸27が係合して一体に回転することが可能となる。
 第1クラッチ21は、油圧式のアクチュエータ(図示せず)等により係合/解放動作が操作される。アクチュエータによる第1クラッチ21の係合/解放動作を操作する操作力が作用していないとき、第1クラッチ21は、解放状態となるよう構成されており、いわゆるノーマルオープン(normally open)式のクラッチとなっている。
 第2クラッチ22は、第1クラッチ21と同様に、摩擦式ディスククラッチ等で構成されており、内燃機関5の機関出力軸8と第2変速機構40の第2入力軸28とを係合させることが可能に構成されている。第2クラッチ22を係合状態にすることで、機関出力軸8と第2入力軸28が係合して一体に回転することが可能となる。
 第2クラッチ22は、油圧式のアクチュエータ(図示せず)等により係合/解放動作が操作される。アクチュエータによる第2クラッチ22の係合/解放動作を操作する操作力が作用していないとき、第2クラッチ22は、係合状態となるよう構成されており、いわゆるノーマルクローズ(normally closed)式のクラッチとなっている。
 第1クラッチ21及び第2クラッチ22の係合状態と解放状態(非係合状態)との切替えは、図示しないアクチュエータを介してECU100により制御される。ECU100は、デュアルクラッチ機構20において、第1クラッチ21又は第2クラッチ22のうちいずれか一方を係合状態にして、他方を解放状態にすることで、内燃機関5からの機械的動力を、第1変速機構30及び第2変速機構40のうちいずれか一方に伝達させることが可能となっている。
 ここで、第1クラッチ21及び第2クラッチ22から構成されるデュアルクラッチ機構20の詳細な構造の一例について図2を用いて説明する。図2に示すように、デュアルクラッチ機構20において、機関出力軸8には、デュアルクラッチ機構20のクラッチハウジング14aが結合されている。すなわち、クラッチハウジング14aは、機関出力軸8と一体に回転する。クラッチハウジング14aは、後述する摩擦板27a,28aを収容可能に構成されている。
 これに対して、第1変速機構30の第1入力軸27と、第2変速機構40の第2入力軸28は、同軸に配置されており、2重軸構造となっている。具体的には、第1入力軸27は、中空シャフトとして構成されており、第1入力軸27内には、第2入力軸28が延びている。内側の軸である第2入力軸28は、外側の軸である第1入力軸27に比べて軸方向に長く構成されている。機関出力軸8側から駆動輪88側に向かうに従って、まず、第1変速機構30の各変速段のメインギヤ31a,33a,35a,39aが配設されており、次に、第2変速機構40の各変速段のメインギヤ42a,44a,46aが配設されている。
 第1入力軸27の端には、円板状の摩擦板27aが結合されており、一方、第2入力軸28の端にも、同様に摩擦板28aが結合されている。これら摩擦板27a,28aは、上述のクラッチハウジング14a内に収容されており、第1クラッチ21及び第2クラッチ22を構成している。
 第1クラッチ21は、摩擦板27aと対向するようにクラッチハウジング14aに設けられた摩擦相手板(図示せず)と、摩擦相手板を操作するアクチュエータ(図示せず)とを有している。アクチュエータは、第1クラッチ21の係合/解放動作を操作する。
 第1クラッチ21において、摩擦相手板は、図示しない「ばね」(付勢部材)により摩擦板27aと接する方向とは逆方向に付勢されている。すなわち、第1クラッチ21は、アクチュエータによる操作力が作用していないとき、摩擦板27aとクラッチハウジング14aは係合しておらず、第1入力軸27と機関出力軸8との間における動力伝達が遮断された「解放状態」となっている。なお、このような付勢部材としての「ばね」には、ダイヤフラム式のばねやコイル式のばね等、様々な形式のばねを用いることができる。
 第1クラッチ21は、アクチュエータにより摩擦相手板が操作されると、摩擦相手板が摩擦板27aに押し付けられて、当該摩擦板27aとクラッチハウジング14aが係合する。つまり、第1クラッチ21は、アクチュエータによる第1クラッチ21の係合/解放動作を操作する操作力が作用すると、摩擦板27aに結合された第1入力軸27と、クラッチハウジング14aに結合された機関出力軸8が係合する係合状態となる。
 一方、第1クラッチ21は、アクチュエータにより摩擦相手板が操作されない場合、すなわち第1クラッチ21の係合/解放動作を操作する操作力が作用していない場合においては、摩擦相手板は、ばねにより摩擦板27aと接しないよう付勢されて、摩擦板27aに結合された第1入力軸27と、クラッチハウジング14aに結合された機関出力軸8との間における動力伝達が遮断される解放状態となる。このようにして、第1クラッチ21は、アクチュエータによる第1クラッチ21の係合/解放動作を操作する操作力が作用していないときに解放状態となるように構成されている。
 第2クラッチ22は、第1クラッチ21と同様に、摩擦板28aと対向するようにクラッチハウジング14aに設けられた摩擦相手板(図示せず)と、摩擦相手板を操作するアクチュエータ(図示せず)とを有している。アクチュエータは、第2クラッチ22の係合/解放動作を操作する。
 第2クラッチ22において、摩擦相手板は、図示しない「ばね」(付勢部材)により摩擦板28aと接するように付勢されている。すなわち第2クラッチ22は、アクチュエータによる操作力が作用していないとき、摩擦板28aとクラッチハウジング14aは係合しており、第2入力軸28と機関出力軸8が係合する「係合状態」となっている。なお、このような付勢部材としての「ばね」には、ダイヤフラム式のばねやコイル式のばね等、様々な形式のばねを用いることができる。
 第2クラッチ22は、アクチュエータにより摩擦相手板が操作されると、摩擦相手板が摩擦板28aから引き離されて、当該摩擦板28aとクラッチハウジング14aとの間における動力伝達が遮断される。つまり、第2クラッチ22は、アクチュエータによる第2クラッチ22の係合/解放動作を操作する操作力が作用すると、摩擦板28aに結合された第2入力軸28と、クラッチハウジング14aに結合された機関出力軸8との間における動力伝達が遮断される状態である解放状態となる。
 一方、第2クラッチ22は、アクチュエータにより摩擦相手板が操作されない場合、すなわち第2クラッチ22の係合/解放動作を操作する操作力が作用していない場合においては、摩擦相手板は、ばねにより摩擦板28aと接するように付勢されて、摩擦板28aに結合された第2入力軸28と、クラッチハウジング14aに結合された機関出力軸8が係合する係合状態となる。このようにして、第2クラッチ22は、アクチュエータによる第2クラッチ22の係合/解放動作を操作する操作力が作用していないときに係合状態となるよう構成されている。
 なお、上述のデュアルクラッチ機構20の詳細な構造において、第1変速機構30の第1入力軸27と第2変速機構40の第2入力軸28は同軸に配置されるものとしたが、デュアルクラッチ機構20の詳細な構造は、これに限定されるものではない。例えば、図3に示すように、第1入力軸27と第2入力軸28は、所定の間隔を空けて平行に延びるよう配置されるものとしても良い。この変形例のデュアルクラッチ機構20においては、機関出力軸8の端に、駆動ギヤ14cが結合されている。駆動ギヤ14cには、第1ギヤ16と、第2ギヤ18が噛み合っており、第1ギヤ16は、第1クラッチ21に結合されており、第2ギヤ18は、第2クラッチ22に結合されている。第1クラッチ21は、第1変速機構30の第1入力軸27と、機関出力軸8に係合する第1ギヤ16とを係合可能に構成されている。一方、第2クラッチ22は、第2変速機構40の第2入力軸28と、機関出力軸8に係合する第2ギヤ18とを係合可能に構成されている。
 第1及び第2クラッチ21,22は、それぞれ摩擦式クラッチ等の任意のクラッチ機構で構成することができ、第1クラッチ21は、係合/解放動作を操作する操作力が作用していないときに解放状態となるよう構成されており、これに対して第2クラッチ22は、操作力が作用していないときに係合状態となるよう構成されている。第1クラッチ21及び第2クラッチ22において交互に係合状態と解放状態を切替ることで、機関出力軸8から出力される内燃機関5の機械的動力は、駆動ギヤ14cから、第1変速機構30の第1入力軸27又は第2変速機構40の第2入力軸28のいずれかに伝達されることとなる。
 なお、第1及び第2クラッチ21,22の係合/解放状態、すなわちアクチュエータによる第1及び第2クラッチ21,22の係合/解放動作を操作する操作力は、ECU100により制御される。
 また、ハイブリッド車両1の駆動装置10には、原動機としてモータ50が設けられている。つまり、駆動装置10は、デュアルクラッチ機構20、第1変速機構30、及び第2変速機構40により構成されるデュアルクラッチ式変速機(20,30,40)と、モータ50とを有している。モータ50は、供給された電力を機械的動力に変換して出力する電動機としての機能と、入力された機械的動力を電力に変換して回収する発電機としての機能とを兼ね備えた回転電機、いわゆるモータジェネレータである。モータ50は、永久磁石式交流同期電動機で構成されており、後述するインバータ110から三相の交流電力の供給を受けて回転磁界を形成するステータ54と、回転磁界に引き付けられて回転する回転子であるロータ52とを有している。モータ50には、ロータ52の回転角位置を検出するレゾルバ(図示せず)が設けられており、ロータ52の回転角位置に係る信号をECU100に送出している。
 モータ50のロータ52は、第2変速機構40の第2入力軸28に結合されており、モータ50がロータ52から出力する機械的動力(トルク)は、第2変速機構40の第2入力軸28に伝達される。つまり、モータ50のロータ52と第2変速機構40の第2入力軸28は係合している。また、モータ50は、駆動輪88から第2出力軸48を介してロータ52に伝達された機械的動力(トルク)を交流電力に変換して二次電池120に回収することも可能となっている。
 なお、第2入力軸28とロータ52との間には、ロータ52の回転速度を減速して第2入力軸28に伝達する減速機構や、ロータ52の回転速度を変速して第2入力軸28に伝達する変速機構を設けるものとしても良い。一方、第1変速機構30の第1入力軸27には、モータジェネレータのロータが結合されていない。第1クラッチ21及び第2クラッチ22のうち少なくとも一方が解放状態にある場合、第1変速機構30の第1入力軸27は、モータ50のロータ52から出力される機械的動力を受けない。
 なお、以下の説明において、モータ50を電動機として機能させて、モータ50がロータ52から機械的動力を出力することを「力行」と記す。これに対して、モータ50を発電機として機能させて、駆動輪88からモータ50のロータ52に伝達された機械的動力を電力に変換して回収すると共に、このときロータ52に生じる回転抵抗により、ロータ52及びこれに係合する部材(例えば、駆動輪88)の回転を制動することを「回生制動」と記す。モータ50による力行と回生制動、すなわちモータ50の電動機/発電機としての機能の切替えは、ECU100により制御される。
 また、ハイブリッド車両1には、モータ50に交流電力を供給する電力供給装置として、インバータ110が設けられている。インバータ110は、二次電池120から供給される直流電力を交流電力に変換してモータ50に供給することが可能に構成されている。また、インバータ110は、モータ50からの交流電力を直流電力に変換して二次電池120に回収することも可能に構成されている。このようなインバータ110からモータ50への電力供給、及びモータ50からの電力回収は、ECU100により制御される。
 また、ハイブリッド車両1の駆動装置10には、原動機から車両推進軸66に伝達された機械的動力を、減速すると共に、駆動輪88に係合する左右の駆動軸80に分配する終減速装置70が設けられている。終減速装置70は、車両推進軸66に結合された駆動ピニオン68と、駆動ピニオン68とリングギヤ72が略直交して噛み合う差動機構74とを有している。終減速装置70は、原動機すなわち内燃機関5及びモータ50のうち少なくとも一方から車両推進軸66に伝達された機械的動力を、駆動ピニオン68及びリングギヤ72により減速し、差動機構74により左右の駆動軸80に分配して、駆動軸80に結合されている駆動輪88を回転駆動することが可能となっている。
 また、ハイブリッド車両1には、内燃機関5及びモータ50と、第1及び第2変速機構30,40における変速動作と、第1及び第2クラッチ21,22の係合/解放状態とを協調して制御する制御装置としてECU100が設けられている。ECU100は、機関出力軸8の回転角位置(以下、クランク角と記す)に係る信号と、二次電池120の蓄電状態(SOC)に係る信号と、モータ50のロータ52の回転角位置に係る信号等を検出している。また、ECU100は、第1変速機構30及び第2変速機構40において選択されている変速段、すなわちカップリング機構31e~46eの係合/解放状態と、第1及び第2クラッチ21,22の係合/解放状態とを検出している。また、ECU100は、運転者により操作される、アクセルペダル(図示せず)の操作量に係る信号と、ブレーキペダル(図示せず)の操作量に係る信号とを検出している。
 これら信号に基づいて、ECU100は、各種制御変数を算出している。制御変数には、内燃機関5の機関出力軸8の回転速度(以下、機関回転速度と記す)と、内燃機関5が機関出力軸8から出力するトルク(以下、機関負荷と記す)と、モータ50のロータ52の回転速度であるモータ回転速度と、モータ50がロータ52から出力するトルク(以下、モータ出力トルクと記す)と、ハイブリッド車両1の走行速度(以下、車速と記す)と、二次電池120の蓄電状態(SOC)等が含まれている。
 これら制御変数に基づいて、ECU100は、内燃機関5及びモータ50の運転状態を把握している。ECU100は、第1及び第2変速機構30,40における変速動作、すなわち各変速段31~46の各カップリング機構31e~46eの係合/解放状態と、第1クラッチ21及び第2クラッチ22の係合/解放状態、すなわち第1クラッチ21及び第2クラッチ22の係合/解放動作を操作する操作力とを制御することが可能となっている。また、ECU100は、モータ出力トルク及びモータ回転速度と、内燃機関5の機関負荷及び機関回転速度とを制御することが可能となっている。
 以上のように構成された車両用駆動装置10において、ECU100が第1変速機構30の第1群の変速段31,33,35,39のうちいずれか1つの変速段を選択し、対応するカップリング機構を係合状態にして、さらに第1クラッチ21を係合状態にすると共に第2クラッチ22を解放状態にすることで、機関出力軸8は、第1入力軸27、第1出力軸37、動力統合ギヤ58、車両推進軸66、終減速装置70を介して駆動軸80と係合する。これにより、第1変速機構30は、内燃機関5の機関出力軸8から出力された機械的動力を、第1入力軸27で受けて、変速段(奇数段)31,33,35、及び後進ギヤ段39のうち選択した変速段により変速し、トルクを変化させて、駆動輪88に係合する駆動軸80に向けて出力することが可能となっている。
 この場合、駆動輪88の回転は、動力統合ギヤ58を介して第2変速機構40の第2出力軸48に伝達される。ECU100が第2変速機構40の第2群の変速段42,44,46のうちいずれか1つの変速段を選択して、対応するカップリング機構を係合状態にしているとき、動力統合ギヤ58から第2出力軸48に伝達された機械的動力は、第2変速機構40の変速段(偶数段)42,44,46のうち選択されている変速段により変速され、第2入力軸28に伝達されて、モータ50のロータ52を回転させる。なお、ECU100が第2変速機構40の変速段42,44,46をいずれも選択しないとき、すなわち第2変速機構40の各変速段42,444,46のカップリング機構42e,44e,46eを全て解放状態にしているときには、第2出力軸48と第2入力軸28との間で動力伝達が遮断されて、駆動輪88の回転は、第2入力軸28に伝達されることはない。
 一方、ECU100が、第2変速機構40の第2群の変速段42,44,46のうちいずれか1つの変速段を選択して、対応するカップリング機構42e,44e,46eを係合状態にして、さらに第2クラッチ22を係合状態にすると共に第1クラッチ21を解放状態にすることで、機関出力軸8は、第2入力軸28、第2出力軸48、動力統合ギヤ58、車両推進軸66、終減速装置70を介して駆動軸80と係合する。これにより、第2変速機構40は、内燃機関5の機関出力軸8及びモータ50のロータ52から出力された機械的動力を、第2入力軸28で受けて、各変速段(偶数段)42,44,46のうち選択した変速段により変速し、トルクを変化させて、駆動輪88に係合する駆動軸80に向けて出力することが可能となっている。
 この場合、駆動輪88の回転は、動力統合ギヤ58を介して第1変速機構30の第1出力軸37に伝達される。ECU100が第1変速機構30の第1群の変速段31,33,35,39のうちいずれか1つの変速段を選択し、対応するカップリング機構31e,33e,35e,39eを係合状態にしているとき、動力統合ギヤ58から第1出力軸37に伝達された機械的動力は、第1変速機構30の変速段(奇数段)31,33,35及び後進ギヤ段39のうち選択された(係合状態にある)変速段により変速され、第1入力軸27に伝達されて、当該第1入力軸27を回転させる。なお、ECU100が第1変速機構30の変速段31,33,35,39をいずれも選択しないとき、すなわち第1変速機構30の各変速段31,33,35のカップリング機構31e,33e,35e,39eを全て解放状態にしているときには、第1出力軸37と第1入力軸27との間で動力伝達が遮断されて、駆動輪88の回転は、第1入力軸27に伝達されることはない。
 以上のように構成されたハイブリッド車両1は、第1クラッチ21及び第2クラッチ22を交互につなぎ替えることで、変速時において、機関出力軸8と駆動輪88との間における動力伝達の途切れを抑制することが可能となっており、以下に詳細を説明する。
 まず、ECU100が第1及び第2変速機構30,40の変速段31~46のうちいずれか1つの変速段を選択する(係合状態にする)。例えば、選択した変速段が第1変速機構30の変速段31,33,35,39のうち第1速ギヤ段31である場合、ECU100は、第1速ギヤ段31に対応する第1速カップリング機構31eを係合状態にすると共に、その他のカップリング機構33e,35e,39eを解放状態にする。そして、ECU100は、第1クラッチ21を係合状態にすると共に第2クラッチ22を解放状態にする。これにより、駆動装置10は、内燃機関5からの機械的動力を、第1入力軸27で受け、第1群(奇数段)の変速段31,33,35のうち選択した変速段である第1速ギヤ段31により変速し、第1出力軸37から駆動軸80に伝達して、駆動輪88を回転駆動することができる。
 このとき、ECU100は、第2変速機構40の変速段42,44,46のうち、第1変速機構30において選択している変速段である第1速ギヤ段31より、一段高速(ハイギヤ)側の変速段である第2速ギヤ段42を選択し、対応する第2速カップリング機構42eを係合状態にすることで、第2変速機構40の第2入力軸28を空転させる。このようにして、第1速ギヤ段31から第2速ギヤ段42への変速動作、すなわち第1クラッチ21及び第2クラッチ22の係合/解放動作に備えている。
 そして、第1変速機構30の第1速ギヤ段31から、第2変速機構40の第2速ギヤ段42への変速(アップシフト)を行う場合、ECU100が、第1クラッチ21を解放状態にしながら第2クラッチ22を係合状態にすることで、駆動装置10は、第1クラッチ21と第2クラッチ22とを掴み替える動作、いわゆる「クラッチ・トゥ・クラッチ」を行う。この動作により、駆動装置10は、機関出力軸8からの動力伝達経路を、徐々に第1変速機構30の第1入力軸27から第2変速機構40の第2入力軸28に移していき、第2速ギヤ段42への変速が完了することとなる。
 このようにして、駆動装置10は、第1変速機構30の変速段、すなわち奇数段である第1速ギヤ段31から、第2変速機構40の変速段、すなわち偶数段である第2速ギヤ段42への変速時において、機関出力軸8から駆動軸80への動力伝達に途切れを生じさせることなく変速することができる。
 次に、本実施形態に係るハイブリッド車両における車両停止中の内燃機関のクランキングに係る制御処理(以下、クランキング制御と記す)について、図1を用いて説明する。
 まず、車両停車中において、ECU100は、第2変速機構40において変速段42,44,46をいずれも選択しない状態、すなわち変速段42,44,46にそれぞれ対応するカップリング機構42e,44e,46eを全て解放状態にして、第2入力軸28と第2出力軸48との間における動力伝達を遮断する。
 このとき、アクチュエータによる第2クラッチ22の係合/解放動作を操作する操作力は作用しておらず、ノーマルクローズ式クラッチである第2クラッチ22は、係合状態となっている。機関出力軸8は、第2クラッチ22及び第2入力軸28を介して、モータ50のロータ52と係合している。
 一方、ノーマルオープン式クラッチである第1クラッチ21は、アクチュエータによる第1クラッチ21の係合/解放動作を操作する操作力は作用しておらず、解放状態となっている。機関出力軸8と第1入力軸27との間における動力伝達は遮断されている。
 このようにして、モータ50のロータ52と機関出力軸8は、静止している駆動輪88及び、これに係合する回転部材(例えば、第1出力軸37及び第2出力軸48)とは関係なく、一体に回転することが可能となる。
 そして、ECU100は、車両停止中に内燃機関5を始動する要求を受けて、モータ50を力行させる。モータ50のロータ52から第2入力軸28に出力された機械的動力は、第2クラッチ22から機関出力軸8に伝達されて、機関出力軸8を回転駆動する。このようにして、ECU100は、駆動輪88が静止した状態のまま、内燃機関5を始動するためのクランキングを行うことができる。
 次に、本実施形態に係るハイブリッド車両におけるモータによる発進に係る制御処理(以下、単に「モータ発進制御」と記す)について、図1を用いて説明する。
 まず、車両停車中において、ECU100は、第2変速機構40において変速段42,44,46をいずれも選択しない状態(全て解放状態)にして、第2入力軸28と第2出力軸48との間における動力伝達を遮断する。このとき、第2クラッチ22は、操作力が作用しておらず係合状態となっているため、機関出力軸8とモータ50のロータ52は、係合しており一体に回転可能となっている。
 加えて、ECU100は、第1変速機構30において第1速ギヤ段31を選択して、対応するカップリング機構31eを係合状態にする共に、第1クラッチ21を係合状態にする。ECU100は、アクチュエータにより第1クラッチ21に操作力を作用させて、第1クラッチ21を係合状態にして、機関出力軸8と第1入力軸27を係合する。
 このように第1及び第2クラッチ21,22を共に係合状態にすると共に第1変速機構30において変速段(第1速ギヤ段)31を選択する(係合状態にする)ことで、モータ50のロータ52は、機関出力軸8、第1入力軸27、第1出力軸37、及び駆動輪88と係合する。なお、第2変速機構40において第2入力軸28と第2出力軸48との間における動力伝達は遮断されているので、駆動装置10においてギヤの二重噛み合いが生じることはない。なお、このとき、第1及び第2クラッチ21,22は、半係合状態にするものとしても良い。
 そして、ECU100は、車両停止中にハイブリッド車両1を発進する要求を受けて、モータ50を力行させる。モータ50のロータ52から第2入力軸28に出力された機械的動力は、係合状態にある第1及び第2クラッチ21,22を介して、第1入力軸27に伝達される。モータ50のロータ52から第1入力軸27に伝達された機械的動力は、第1速ギヤ段31により変速されて、第1出力軸37から車両推進軸66に伝達され、終減速装置70により左右の駆動軸80に分配されて駆動輪88を回転駆動する。このようにして、ECU100は、モータ50のロータ52からの機械的動力を、第1変速機構30の変速段により変速し、駆動輪88に伝達してハイブリッド車両1を発進させることができる。なお、モータ50の力行を開始した後に、第1クラッチ21を係合状態又は半係合状態にすることで、ハイブリッド車両1を発進させるものとしても良い。
 なお、ハイブリッド車両1を発進させる制御手法は、上述のモータによる発進だけではではなく、原動機として内燃機関を用いて発進させることもできる。上述のクランキング制御を行って内燃機関5を始動した後、ECU100が第1クラッチ21を係合状態にすることで、機関出力軸8からの機械的動力を、第1クラッチ21から第1入力軸27に伝達し、第1変速機構30により変速して、駆動輪88に伝達することでハイブリッド車両1を発進させることもできる。
 以上に説明したように本実施形態に係る車両用駆動装置10は、機関出力軸8からの機械的動力を第1入力軸27で受け、複数の変速段31,33,35,39のうちいずれか1つにより変速して、駆動輪88に向けて伝達可能な第1変速機構30と、機関出力軸8及びロータ52からの機械的動力を、当該ロータ52と係合する第2入力軸28で受け、複数の変速段42,44,46のうちいずれか1つにより変速して、駆動輪88に向けて伝達可能な第2変速機構40と、機関出力軸8と第1入力軸27とを係合可能な第1クラッチ21と、機関出力軸8と第2入力軸28とを係合可能な第2クラッチ22とを備えており、第2クラッチ22は、当該第2クラッチ22の係合/解放動作を操作する操作力が作用していないときに係合状態となる、いわゆるノーマルクローズ式のクラッチで構成されているものとした。
 これにより、車両用駆動装置10は、第2変速機構40の変速段42,44,46をいずれも選択しない状態にする(全て解放状態にする)と共に第1クラッチ21を解放状態にして、モータ50を力行させれば、第2クラッチ22の係合/解放動作を行うことなく、機関出力軸8を回転駆動することができる。
 また、本実施形態において、第1クラッチ21は、当該第1クラッチ21の係合/解放動作を操作する操作力が作用していないときに解放状態となる、いわゆるノーマルオープン式のクラッチで構成されているものとしたので、第2変速機構40の変速段42,44,46をいずれも選択しない状態(全て解放状態)にしてモータ50を力行させるだけで、第1及び第2クラッチ21,22の係合/解放動作を行うことなく、機関出力軸8を回転駆動することができる。加えて、第1変速機構30の変速段31,33,35,39のうちいずれか1つを選択しておくだけで、モータ50から第2入力軸28に出力された機械的動力を、第1及び第2クラッチ21,22を介して第1入力軸27に伝達させ、第1変速機構30の変速段により変速して駆動輪88に伝達することができる。
 また、第1クラッチ21及び第2クラッチ22の係合/解放動作を操作するアクチュエータが何らかの理由で作動しなくても、第1クラッチ21が解放状態となるため、第1及び第2変速機構30,40において、いずれかの変速段が選択されており、変速段に対応するカップリング機構が係合状態にあっても、駆動装置10においてギヤの二重噛み合いが生じてしまうことがない。
 また、本実施形態においては、第2変速機構40における変速段の選択と、モータ50の力行とを制御可能な制御装置としてECU100を備え、ECU100は、車両停止中において内燃機関5を始動する際に、第2変速機構40において変速段をいずれも選択しない状態(全て解放状態)にしてモータ50を力行させるものとしたので、第1及び第2クラッチ21,22の係合/解放動作を行うことなく、モータ50からの機械的動力を第2クラッチ22から機関出力軸8に伝達させて機関出力軸8を回転駆動することができる。これにより、第1及び第2クラッチ21,22の係合/解放動作を行うことなく、ハイブリッド車両1が停車した状態で内燃機関5を始動させることができる。
 また、本実施形態においては、第1及び第2変速機構30,40における変速段の選択と、第1クラッチ21の係合/解放状態と、モータ50の力行とを制御可能な制御装置としてECU100を備え、ECU100は、車両を発進させる際に、第2変速機構40において変速段をいずれも選択しない状態(全て解放状態)にすると共にモータ50を力行させ、第1クラッチ21を係合状態にするものとした。第1クラッチ21を係合状態にする係合動作を行うだけで、モータ50からの機械的動力を、第1及び第2クラッチ21,22を介して第1入力軸27に伝達させ、第1変速機構30により変速して、駆動輪88に伝達することができる。これにより、モータ50のみを選択使用して、ハイブリッド車両1を発進させることができる。
 なお、ECU100は、車両を発進させる際に、第2変速機構40において変速段をいずれも選択しない状態(全て解放状態)にすると共に第1変速機構30の変速段のうちいずれか1つを選択し、且つ第1クラッチ21を係合状態にしてモータ50を力行させるものとすることで、モータ50からの機械的動力を、第1及び第2クラッチ21,22を介して第1入力軸27に伝達させ、第1変速機構30の変速段により変速して、駆動輪88に伝達することができる。これにより、第1クラッチ21を係合状態にする係合動作を行うだけで、モータ50の機械的動力を、第1変速機構30により変速して駆動輪88に伝達して、ハイブリッド車両1を発進させることができる。
 なお、本実施形態においては、第1変速機構30の変速段31,33,35,39は、最も低速側(最も減速比の大きい)の変速段である第1速ギヤ段31を含んでおり、制御装置としてのECU100は、車両を発進させる際に、第1変速機構30の変速段のうち第1速ギヤ段31を選択する(係合状態にする)ものとしたので、モータ50からの機械的動力を、第1及び第2変速機構30,40のうち最も減速比の大きい変速段で減速しトルクを増大させて、駆動輪88に伝達することができる。これにより、モータ50からの機械的動力により、良好な応答性でハイブリッド車両1を発進させることができる。
 なお、本実施形態において、モータ50のロータ52が入力軸に係合する変速機構である第2変速機構40の変速段42,44,46は、偶数段(第2速ギア段、第4速ギア段、第6速ギア段)で構成されているものとしたが、本発明が適用可能な駆動装置10の態様は、これに限定されるものではない。入力軸がモータのロータに係合してない第1変速機構の変速段が、偶数段で構成されており、入力軸がモータのロータに係合する第2変速機構の変速段が、奇数段で構成されているものとしても良い。
 また、本実施形態において、原動機として設けられたモータ50は、供給された電力を機械的動力に変換して出力する電動機としての機能と、入力された機械的動力を電力に変換する発電機としての機能とを兼ね備えたモータジェネレータであるものとしたが、本発明に係るモータは、これに限定されるものではない。原動機としてのモータは、ロータから変速機構の入力軸に機械的動力を出力できれば良く、例えば、供給電力を機械的動力に変換して出力する機能のみを有する電動機で構成するものとしても良い。
 なお、本実施形態において、第2変速機構40の第2入力軸28には、モータ50のロータ52が結合されるものとしたが、本発明の駆動装置10の態様は、これに限定されるものではない。第2入力軸は、モータのロータと係合していれば良く、例えば、第2入力軸とロータとの間に、ロータの回転速度を減速して第2入力軸に伝達する減速機構を設けるものとしても良い。
 また、本実施形態において、第1変速機構30は、第1入力軸27で受けた機械的動力を、第1出力軸37から駆動輪88と係合する動力統合ギヤ58に伝達し、第2変速機構40は、第2入力軸28で受けた機械的動力を、第2出力軸48から動力統合ギヤ58に伝達するものとしたが、第1変速機構30及び第2変速機構40の態様は、これに限定されるものではない。第1変速機構30及び第2変速機構40は、それぞれ入力軸27,28で受けた機械的動力を、駆動輪88に向けて伝達可能であれば良く、例えば、第1変速機構30と第2変速機構40は、それぞれ第1入力軸27、第2入力軸28で受けた機械的動力を、駆動輪88と係合する共通の出力軸に伝達するものとしても良い。
 また、本実施形態において、車両用駆動装置10は、内燃機関5の機関出力軸8及びモータ50のロータ52からの機械的動力を、第1変速機構30及び第2変速機構40のうち少なくとも一方により変速して、動力統合ギヤ58から、車両推進軸66、終減速装置70の差動機構74を介して駆動輪88に伝達するものとしたが、第1変速機構30及び第2変速機構40から駆動輪88に向けての動力伝達の態様は、これに限定されるものではない。駆動装置10において、第1変速機構30及び第2変速機構40は、それぞれ第1入力軸27及び第2入力軸28で受けた機械的動力を、駆動輪88に向けて伝達可能であれば良く、例えば、動力統合ギヤ58、又は当該動力統合ギヤ58と噛み合う第1及び第2駆動ギヤ37c,48cが、直接に差動機構74のリングギヤ72を駆動するものとしても良い。
 以上のように、本発明は、原動機として内燃機関とモータとを備え、デュアルクラッチ式の変速機を備えたハイブリッド車両に有用であり、特に、2つの変速機構のうち一方の変速機構の入力軸にモータのロータが係合しているハイブリッド車両に有用である。
符号の説明
 1 ハイブリッド車両
 5 内燃機関
 8 機関出力軸
 10 駆動装置(車両用駆動装置)
 20 デュアルクラッチ機構
 21 第1クラッチ
 22 第2クラッチ
 27 第1入力軸
 28 第2入力軸
 30 第1変速機構
 31,33,35,39 ギヤ段(変速段、歯車対)
 37 第1出力軸
 40 第2変速機構
 42,44,46 ギヤ段(変速段、歯車対)
 48 第2出力軸
 50 モータ(モータジェネレータ)
 52 モータのロータ
 58 動力統合ギヤ
 66 車両推進軸
 70 終減速装置
 80 駆動軸
 88 駆動輪
 100 車両用駆動装置の電子制御装置(ECU、制御装置)

Claims (5)

  1.  原動機として内燃機関とモータとを備えた車両に用いられ、内燃機関の機関出力軸及びモータのロータから出力される機械的動力を、変速機構により変速して駆動輪に伝達可能な車両用駆動装置であって、
     機関出力軸からの機械的動力を第1入力軸で受け、複数の変速段のうちいずれか1つにより変速して、駆動輪に向けて伝達可能な第1変速機構と、
     機関出力軸及びロータからの機械的動力を、当該ロータと係合する第2入力軸で受け、複数の変速段のうちいずれか1つにより変速して、駆動輪に向けて伝達可能な第2変速機構と、
     機関出力軸と第1入力軸とを係合可能な第1クラッチと、
     機関出力軸と第2入力軸とを係合可能な第2クラッチと、
     を備え、
     第2クラッチは、当該第2クラッチの係合/解放動作を操作する操作力が作用していないときに係合状態となるよう構成されている
     ことを特徴とする車両用駆動装置。
  2.  請求項1に記載の車両用駆動装置において、
     第1クラッチは、当該第1クラッチの係合/解放動作を操作する操作力が作用していないときに解放状態となるよう構成されている
     車両用駆動装置。
  3.  請求項2に記載の車両用駆動装置において、
     第2変速機構における変速段の選択と、モータの力行とを制御可能な制御装置を備え、
     制御装置は、
     車両停止中において内燃機関のクランキングを行う際に、第2変速機構において変速段をいずれも選択しない状態にしてモータを力行させる
     車両用駆動装置。
  4.  請求項2に記載の車両用駆動装置において、
     第1及び第2変速機構における変速段の選択と、第1クラッチの係合/解放状態と、モータの力行とを制御可能な制御装置を備え、
     制御装置は、
     車両を発進させる際に、第2変速機構において変速段をいずれも選択しない状態にすると共にモータを力行させ、第1クラッチを係合状態にする
     車両用駆動装置。
  5.  請求項4に記載の車両用駆動装置において、
     第1変速機構の変速段は、最も低速側の変速段である第1速ギヤ段を含んでおり、
     制御装置は、
     車両を発進させる際に、第1変速機構の変速段のうち第1速ギヤ段を選択する
     車両用駆動装置。
PCT/JP2009/055625 2009-03-23 2009-03-23 車両用駆動装置 WO2010109573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/055625 WO2010109573A1 (ja) 2009-03-23 2009-03-23 車両用駆動装置
CN2009801012164A CN101918237B (zh) 2009-03-23 2009-03-23 车辆用驱动装置
EP09829857.3A EP2412553B1 (en) 2009-03-23 2009-03-23 Drive device for vehicle
US12/746,437 US8170760B2 (en) 2009-03-23 2009-03-23 Vehicle driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055625 WO2010109573A1 (ja) 2009-03-23 2009-03-23 車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2010109573A1 true WO2010109573A1 (ja) 2010-09-30

Family

ID=42780283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055625 WO2010109573A1 (ja) 2009-03-23 2009-03-23 車両用駆動装置

Country Status (4)

Country Link
US (1) US8170760B2 (ja)
EP (1) EP2412553B1 (ja)
CN (1) CN101918237B (ja)
WO (1) WO2010109573A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471290A (zh) * 2014-06-16 2017-03-01 沃尔沃卡车集团 用于控制车辆中的双离合器变速器中的惯性滑行的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040692A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anfahren eines Hybridfahrzeuges
EP2474759B1 (en) * 2009-09-01 2017-04-26 Hitachi Nico Transmission Co., Ltd. Twin clutch type hybrid transmission
DE102011003080A1 (de) * 2011-01-19 2012-07-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebsvorrichtung
DE102011089467B4 (de) * 2011-12-21 2023-10-05 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
KR20130104386A (ko) * 2012-03-14 2013-09-25 현대자동차주식회사 하이브리드 파워트레인
KR101836523B1 (ko) * 2012-10-18 2018-03-08 현대자동차주식회사 차량의 dct 제어방법
JP2014149020A (ja) * 2013-01-31 2014-08-21 Aisin Seiki Co Ltd 自動変速機用ドグクラッチ制御装置
US8942899B1 (en) * 2013-08-22 2015-01-27 GM Global Technology Operations LLC Method and apparatus for engine torque cancellation in a powertrain system
DE102013022142A1 (de) * 2013-12-19 2015-06-25 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hybrid-Antriebsstrang für ein Kraftfahrzeug
CN103727181B (zh) * 2014-01-09 2017-03-15 陈兵 一种带液力变矩器的双输入轴变速器
EP3161354B1 (en) * 2014-06-24 2017-11-29 Volvo Truck Corporation A method for controlling a drivetrain of a vehicle
CN105443673A (zh) * 2014-06-30 2016-03-30 广州汽车集团股份有限公司 七速双离合器式自动变速器
CN105333073A (zh) * 2014-06-30 2016-02-17 广州汽车集团股份有限公司 七速双离合器式自动变速器
CN105202126A (zh) * 2014-06-30 2015-12-30 广州汽车集团股份有限公司 七速双离合器式自动变速器
US9944166B2 (en) * 2015-03-09 2018-04-17 Ford Global Technologies, Llc Axle assembly for hybrid electric vehicle
CN105526344A (zh) * 2016-02-26 2016-04-27 梁贱成 一种车辆传动装置
CN105711407A (zh) * 2016-04-08 2016-06-29 上海馨联动力系统有限公司 一种在混合动力汽车中使用的动力传动装置
DE102019112233A1 (de) * 2019-05-10 2020-11-12 Schaeffler Technologies AG & Co. KG Reibkupplung für eine elektrische Antriebsmaschine mit einer Rotationsachse
DE102019125050A1 (de) 2019-09-18 2021-03-18 Bayerische Motoren Werke Aktiengesellschaft Antriebsvorrichtung eines Hybridantriebes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033059A1 (en) 2000-07-18 2002-03-21 Thomas Pels Gearbox
US20020088290A1 (en) 2001-01-10 2002-07-11 Bowen Thomas C. Twin clutch automated transaxle with motor/generator synchronization
JP2003035360A (ja) 2001-07-24 2003-02-07 Toyota Motor Corp 自動変速機およびその制御装置
JP2003079005A (ja) 2001-06-19 2003-03-14 Hitachi Ltd 自動車の動力伝達装置
JP2006118590A (ja) 2004-10-21 2006-05-11 Nissan Motor Co Ltd ハイブリッド車両
US20060230855A1 (en) 2005-04-19 2006-10-19 Martin Leibbrandt, Ulrich Eggert, Christian Krauss Hybrid twin-clutch transmission
JP2007015679A (ja) 2005-06-06 2007-01-25 Nissan Motor Co Ltd ハイブリッド車両のオイルポンプ駆動制御装置
US20070204709A1 (en) 2006-03-02 2007-09-06 Crf Societa Consortile Per Azioni Double clutch transmission for a motor vehicle
DE102006036758A1 (de) 2006-08-05 2008-02-28 Zf Friedrichshafen Ag Automatisiertes Doppelkupplungsgetriebe eines Kraftfahrzeuges

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041159C2 (de) * 1990-12-21 1994-01-27 Daimler Benz Ag Druckmittelbetätigte Reibungskupplung mit ausschließlich axial bewegbaren Reibscheiben
JP3952005B2 (ja) * 2003-11-18 2007-08-01 日産自動車株式会社 ハイブリッド車両の駆動装置
KR100634589B1 (ko) * 2003-12-24 2006-10-13 현대자동차주식회사 하이브리드 전기자동차용 이중 클러치 변속기 및 그모드별 작동방법
FR2871205B1 (fr) * 2004-06-03 2007-10-05 Peugeot Citroen Automobiles Sa Element de transmission a embrayages humides pour chaine de traction de vehicule automobile, et vehicule automobile equipe d'un tel element
US7490526B2 (en) * 2006-05-22 2009-02-17 Magna Powertrain Usa, Inc. Dual clutch powershift transmission with transfer shaft
CN100567767C (zh) * 2007-03-15 2009-12-09 重庆大学 双离合器混合动力汽车传动系统
US8083642B2 (en) * 2007-09-21 2011-12-27 Nissan Motor Co., Ltd. Transmission apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033059A1 (en) 2000-07-18 2002-03-21 Thomas Pels Gearbox
US20020088290A1 (en) 2001-01-10 2002-07-11 Bowen Thomas C. Twin clutch automated transaxle with motor/generator synchronization
JP2003079005A (ja) 2001-06-19 2003-03-14 Hitachi Ltd 自動車の動力伝達装置
JP2003035360A (ja) 2001-07-24 2003-02-07 Toyota Motor Corp 自動変速機およびその制御装置
JP2006118590A (ja) 2004-10-21 2006-05-11 Nissan Motor Co Ltd ハイブリッド車両
US20060230855A1 (en) 2005-04-19 2006-10-19 Martin Leibbrandt, Ulrich Eggert, Christian Krauss Hybrid twin-clutch transmission
JP2007015679A (ja) 2005-06-06 2007-01-25 Nissan Motor Co Ltd ハイブリッド車両のオイルポンプ駆動制御装置
US20070204709A1 (en) 2006-03-02 2007-09-06 Crf Societa Consortile Per Azioni Double clutch transmission for a motor vehicle
DE102006036758A1 (de) 2006-08-05 2008-02-28 Zf Friedrichshafen Ag Automatisiertes Doppelkupplungsgetriebe eines Kraftfahrzeuges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412553A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471290A (zh) * 2014-06-16 2017-03-01 沃尔沃卡车集团 用于控制车辆中的双离合器变速器中的惯性滑行的方法
JP2017518470A (ja) * 2014-06-16 2017-07-06 ボルボトラックコーポレーション 車両のデュアルクラッチトランスミッションにおけるフリーホイーリングを制御するための方法
US10144426B2 (en) 2014-06-16 2018-12-04 Volvo Truck Corporation Method for controlling free-wheeling in a dual clutch transmission in a vehicle

Also Published As

Publication number Publication date
EP2412553A1 (en) 2012-02-01
EP2412553B1 (en) 2017-05-10
CN101918237B (zh) 2013-06-05
CN101918237A (zh) 2010-12-15
US20110054745A1 (en) 2011-03-03
US8170760B2 (en) 2012-05-01
EP2412553A4 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
WO2010109573A1 (ja) 車両用駆動装置
JP4285571B2 (ja) 車両用駆動装置
US8661941B2 (en) Hybrid drive system
US8677860B2 (en) Transmission
JP5467197B2 (ja) ハイブリッド駆動装置
WO2010064550A1 (ja) ハイブリッド車両用動力伝達装置
US20120021861A1 (en) Power transmission apparatus for hybrid vehicle
JP2009173196A (ja) ハイブリッド車両
US9636987B2 (en) Hybrid vehicle
KR101490917B1 (ko) 하이브리드 전기 자동차용 더블 클러치 장치
JP2009001079A (ja) 動力伝達装置
JP2009113535A (ja) ハイブリッド車両
JP2010076625A (ja) ハイブリッド車両
JP5107173B2 (ja) ハイブリッド車両
JP4305557B2 (ja) 車両用駆動装置
JP2009166567A (ja) ハイブリッド車両
JP5395115B2 (ja) ハイブリッド駆動装置
JP2010208376A (ja) ハイブリッド車両
KR20160035331A (ko) 차량의 변속장치
JP2009173204A (ja) 車両における動力装置
JP4872880B2 (ja) 動力出力装置
JP5109929B2 (ja) 内燃機関始動制御装置
JP5083171B2 (ja) 内燃機関始動制御装置
JP2009132250A (ja) ハイブリッド車両
JP2010089537A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101216.4

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2009829857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12746437

Country of ref document: US

Ref document number: 2009829857

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE