Nothing Special   »   [go: up one dir, main page]

WO2010102736A1 - Holzspantrocknungsanlage zum trocknen von holzspänen und zugehöriges verfahren zum trocknen von holzspänen - Google Patents

Holzspantrocknungsanlage zum trocknen von holzspänen und zugehöriges verfahren zum trocknen von holzspänen Download PDF

Info

Publication number
WO2010102736A1
WO2010102736A1 PCT/EP2010/001245 EP2010001245W WO2010102736A1 WO 2010102736 A1 WO2010102736 A1 WO 2010102736A1 EP 2010001245 W EP2010001245 W EP 2010001245W WO 2010102736 A1 WO2010102736 A1 WO 2010102736A1
Authority
WO
WIPO (PCT)
Prior art keywords
dryer
wood
vapors
wood chip
vapor
Prior art date
Application number
PCT/EP2010/001245
Other languages
English (en)
French (fr)
Inventor
Joachim Hasch
Matthias Iredi
Original Assignee
Kronotec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201080011606.5A priority Critical patent/CN102348949B/zh
Application filed by Kronotec Ag filed Critical Kronotec Ag
Priority to RU2011140939/06A priority patent/RU2534197C2/ru
Priority to KR1020167023267A priority patent/KR101738588B1/ko
Priority to KR1020117023539A priority patent/KR101671045B1/ko
Priority to BRPI1009439A priority patent/BRPI1009439A2/pt
Priority to JP2011553322A priority patent/JP5734879B2/ja
Priority to MX2011008847A priority patent/MX2011008847A/es
Priority to AU2010223604A priority patent/AU2010223604B2/en
Priority to UAA201111855A priority patent/UA106746C2/uk
Priority to CA2753123A priority patent/CA2753123C/en
Priority to US13/202,301 priority patent/US8832959B2/en
Publication of WO2010102736A1 publication Critical patent/WO2010102736A1/de
Priority to ZA2011/06123A priority patent/ZA201106123B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/022Heating arrangements using combustion heating incinerating volatiles in the dryer exhaust gases, the produced hot gases being wholly, partly or not recycled into the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • F26B21/002Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/022Heating arrangements using combustion heating incinerating volatiles in the dryer exhaust gases, the produced hot gases being wholly, partly or not recycled into the drying enclosure
    • F26B23/024Heating arrangements using combustion heating incinerating volatiles in the dryer exhaust gases, the produced hot gases being wholly, partly or not recycled into the drying enclosure by means of catalytic oxidation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/16Wood, e.g. lumber, timber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]

Definitions

  • Wood chip drying plant for drying wood chips and associated method for drying wood chips
  • the invention relates to a wood chip drying plant for drying wood chips, with a furnace, a dryer for the wood chips and a return device for returning vapors in the dryer, wherein the return device comprises a Brüdenerhitzer and wherein the wood chip drying plant is designed to reduce existing in the vapor organic compounds before returning to the dryer.
  • the invention relates to a method of drying wood chips, comprising the steps of (a) passing flue gas from a furnace to a dryer, (b) drying the wood chips in the dryer to form vapors, and (c) Returning at least a portion of the vapor to the dryer.
  • wood dust is burned in the furnace usually.
  • the resulting hot flue gases are in one
  • the resulting vapor is fed to a cyclone and then partially returned to the mixing chamber.
  • the dried wood chips are then mixed with glue and pressed into a wood-based panel.
  • a disadvantage of such wood chip drying plants is that the wood chips produced from the wood shavings
  • BESTATIGUNGSKOPIE th wood-based panels can release volatile organic substances.
  • a further known hot gas production and drying of the wood chips takes place in the form that primarily wood dust is burned with its own combustion air supply in a combustion chamber.
  • the approximately 900-volume flue gases of this combustion pass into a mixing chamber, in which the so-called return vapors, the false air for cooling and optionally external hot gas are introduced.
  • the drying hot gases are adjusted to the necessary requirements (temperature of approx. 350 - 480 0 C, total volume flow and humidity) for introduction into the chip dryer.
  • the hot gas volume flow or drying air volume flow treated in this way is sucked via the dryer drum by means of a suction draft fan.
  • the wood chips are dried in direct contact with the hot gases.
  • the induced draft fan conveys the total hot gas volume flow involved in the drying process to a filter system which is designed primarily as a cyclone separator but also as an electron filter.
  • This filter system separates primarily only solid particles to a limited extent.
  • a partial flow called backflow volumetric flow, is fed back to the aforementioned mixing chamber.
  • the drying of the wood chips requires a balanced temperature, energy and volume flow balance, which must be adjusted depending on the product (chip size, throughput, humidity, type of dryer).
  • the dried wood chips are separated after the dryer drum, mixed with glue and pressed into a wood-based panel.
  • a disadvantage of such wood chip drying plants is that the wood-based panels produced from the wood chips can emit volatile, organic substances resulting from resins and terpenes.
  • the hot gases for drying the wood chips take the resins and Terpene partly out of the wood.
  • the best effect of this is achieved by the fact that the dryer hot gases at the inlet of the dryer are free of fiber of the same kind.
  • the hot gases at the drier inlet are mixed by known methods with backbreaks, which have already taken part in the drying process. The mixing volume flow is thus reduced in the uptake of resins and terpenes.
  • the dryer hot gases conducted into the dryer are made entirely of broths mixed with the exhaust gases from the combustion of primary fuels.
  • the vapors are partially passed into the combustion chamber and here at about 850 0 C thermally treated.
  • the further vapor fraction is passed through a tube bundle heat exchanger and heated here to about 380 to 450 0 C with simultaneous cooling of the (50 graden) hot gases from the combustion chamber.
  • the vapors heated up via the heat exchanger are not thermally treated due to the temperature level.
  • Serious disadvantages of this type of hot gas production with the tube bundle heat exchanger systems is low availability due to contamination of the heat exchanger surfaces. Only a part of the vapors goes through a thermal treatment. The combustion air for burning the primary fuel is sucked in externally. The thermal efficiency of the process is relatively unfavorable.
  • the invention has for its object to provide a wood chip drying plant in which the furnace can be operated with very high efficiency and in which the wood chips have a particularly low content of volatile organic compounds.
  • the invention solves the problem by a generic wood chip drying plant, in which the Brüdenerhitzer comprises a regenerative and / or regenerative-catalytic heat exchanger, the downstream side behind the Is arranged dryer and which is adapted to heat the vapors to a temperature which is so high that existing in the vapor particles are at least predominantly oxidized.
  • the invention solves the problem by a generic method comprising the step of thermally reducing vaporized solids prior to returning to the dryer in a regenerative and / or catalytic heat exchanger.
  • According to the invention is also a wood-based panel, which is produced by a method according to the invention.
  • An advantage of the invention is that by oxidizing present in the vapor solids through the regenerative heat exchanger, these solids can not accumulate in the dryer gas. It has been shown that such solids, such as small wood chips, easily settle in pipes or recuperative heat exchangers and can lead to malfunction
  • the aspect of economical operation with the lowest primary fuel input is the basis of the invention.
  • the invention will substantially reduce the contaminants adhering or containing during the drying of the chips or during the subsequent production of the chipboard and / or OSB boards. Also, the emissions, which are formed by the residual pollutants in the exhaust gases to be derived to the atmosphere drastically reduced.
  • An advantage of the invention is that by the oxidation of hydrocarbons present in the vapors and the combustible solids by the thermal, regenerative heat exchanger system, the capacity of the hot gases introduced into the dryer with respect to exiting resins and terpenes and thus drastically reduces the remaining burden of the dried wood chips.
  • the aggregates and hot gas piping between the thermal, regenerative plant and the drier entry are also drastically reduced in the tendency to fouling. This significantly increases the availability of the system.
  • the invention described in particular also has the advantage that existing hot gas generation systems can be retrofitted with little effort while retaining the existing system components.
  • firing is understood as meaning in particular wood product firing which burns wood chips (biomass) or wood dust.
  • a furnace may also have a support control, for example a gas and / or oil support control.
  • the dryer is understood in particular to mean any device which is set up and designed to dry wood chips.
  • the dryer is provided with an associated control, which regulates a hot gas drying temperature and a hot gas volume flow at the dryer inlet, that a technologically necessary residual moisture in the wood chips at the dryer outlet is achieved.
  • the return device is understood to mean any device which is designed to recirculate gases (vapors) exiting the dryer to a location of the wood chip drying plant so that these gases (vapors) again flow through the dryer.
  • Brines are the gas that leaves the dryer. It is possible that only some of the vapors (called backwashes) are treated in such a way that organic compounds that are left over from backwaters are oxidized or combustible solid particles are burned. In this case, a part of the vapor is not returned, but the atmosphere via a vapor cleaning system supplied. However, it is also possible for the entire vapors after the dryer to be completely supplied to a device for oxidizing organic compounds present in the vapors and for combusting combustible solid particles, so that the remaining emission to the atmosphere substantially decreases.
  • the wood chip drying plant is designed to remove any vapors present in the vapor before returning it to the dryer is understood in particular to mean that at least some of the vapors are treated in such a way that a concentration of solids drops markedly.
  • the wood chip drying plant is designed so that at least the portion of the vapor that re-enters the dryer is treated so that the concentration of solids is reduced by at least 75% to 90%.
  • the particles are understood in particular as meaning wood particles.
  • the wood chip drying plant is designed for heating at least a portion of the vapors to a temperature of at least 720 0 C. As a rule, it is sufficient to choose a temperature of at most 900 °. The temperature is chosen so that a predominant part of the solids is oxidized.
  • the hot gas generation plant with its facilities is designed so that substantially all organic substances (CnHm compounds) and also combustible solid particles are removed by thermal treatment from the drying hot gases prior to introduction into the dryer.
  • the invention is based on the aspect that the remindbrüden be completely heated to a temperature of 720 to 900 0 C and thus burned almost without residue all organic, combustible materials, or be oxidized. This applies in particular to all hydrocarbon compounds (CnHm compounds) but also to all flammable, wood-like solid particles which are introduced via the backwash. Furthermore, the thermally treated backbones after the regenerative treatment as Combustion air of the combustion chamber for wood burning, or fed natural gas, light oil or heavy fuel oil firing with appropriate temperature, which is accompanied by a fuel economy.
  • the return device is designed for returning at least part of the thermally, regeneratively treated vapors into the furnace.
  • a generic wood chip drying plant according to the invention which is designed so that all backwashes, ie vapors that get into the dryer again, are returned to the furnace.
  • the vapors are supplied as combustion air of the flame, for example the wood dust flame, the natural gas flame, the light oil flame and / or the heavy oil flame, so that a fuel economy is effected.
  • thermally untreated vapors may also be supplied to the combustion, with which the thermal treatment of the hydrocarbons and of the combustible solid particles takes place only in the flame. In this variant, however, malfunctions due to contamination on the burner and its ancillary units with reduced availability are inevitable.
  • the return device is designed to heat the vapors to a temperature of at least 750 °.
  • a temperature window of 7200 0 C to 900 0 C is suitable.
  • the Brüdenerhitzer also has a catalytic exhaust treatment plant in which organic substances are catalytically oxidized. Only temperatures of 380 to 480 0 C will be required. However, the combustible solid particles remain unburned in the catalytic process.
  • the Brüdenerhitzer is preferably designed so that the vapors with the organic compounds and optionally remaining solid particles completely participate in a combustion.
  • the thermal, regenerative cleaning system can be designed so that the treated vapors leaving the exhaust air treatment plant with a temperature between 20 0 C and 8O 0 C higher. Particularly suitable is a thermal, regenerative exhaust air treatment plant when the treated vapors leave it with a higher by about 40 0 C temperature.
  • the recirculation device is designed to heat the vapor by means of flue gas of the wood dust firing.
  • the cleaning system is also designed so that for reheating the vapors and primary fuels such as natural gas, light oil and / or heavy oil can be used.
  • a mixing chamber Downstream of the furnace and / or behind the thermal exhaust air treatment plant, a mixing chamber can be arranged, in which the flue gas from the furnace with the treated vapors from the exhaust air treatment plant and optionally with false air and secondary hot gases is mixed so that the resulting dryer hot gas a predetermined Temperature and have a predetermined humidity.
  • the dryer hot gas is then fed to the dryer.
  • the wood chip drying plant has a denitrification plant arranged downstream of the furnace.
  • This denitrification plant works in a temperature window of 800 to 950 0 C particularly effective.
  • urea can be injected into the flue gas stream, so that the nitrogen oxides contained in the flue gas are reduced.
  • the denitrification system is preferably arranged such that the injection point, at which the urea is injected, is arranged in a connection between the furnace and the mixing chamber.
  • the denitrification system can reduce nitrogen oxide emissions by more than 30%, with 50% being achievable.
  • the wood chip drying a dryer gas wetting device is provided for increasing a humidity of dryer gas flowing into the dryer.
  • the dryer gas humidifier is preferably operated so that an absolute humidity of at least 600 grams per cubic meter. It has proved to be favorable if the absolute humidity is below 1 200 grams per cubic meter.
  • the dryer gas humidifying device is set up for mixing the vapors and flue gas of the furnace so that the moisture of the dryer gas adjusts to a desired value.
  • the dryer is at the same time designed as a hot-extracting device in which water-soluble substances are released from the wood shavings. Accumulation of the substances thus released from the wood chips is prevented by the above-described internal afterburning in the recycling device for the recirculated vapors.
  • the wood chip drying plant is designed so that at least 70% of the terpenes present in the wood chips are triggered during drying.
  • This reduction in terpenes in the chips provides for a drastic reduction in terpene emissions in wood-based panels made from the chips.
  • the hot gas generator may also include a regenerative heat exchanger system disposed between the combustor and the mixing chamber.
  • the preheated vapors are then fed to the combustion chamber where they are essentially thermally released from the hydrocarbons and the combustible solid particles.
  • the regenerative heat exchanger system can be designed so that a thermal efficiency of up to 95% is achieved here.
  • An inventive method is characterized in that at least a portion of the vapors is returned to the fire.
  • a part, in particular a predominant part of the vapors which are recycled, are thermally treated, so that a concentration of organic compounds falls below a predetermined threshold value.
  • the return vapors are heated at an inlet temperature of 80 to 130 0 C to a temperature of 720 0 C to 900 0 C and with an approximately 20 to 80 0 C higher outlet temperature in comparison to the inlet temperature to the mixing chamber by means of a fan guided.
  • the heating takes place the regenerative heat exchanger systems with a thermal efficiency, depending on the version of 88 to 97%.
  • the primary heating for the final heating of the return vapors to 720 to 900 0 C happens with the introduction of hot gases from the wood dust firing or alternatively with natural gas, light oil or heavy oil.
  • a method for producing a wood material plate comprising the steps of (a) producing wood chips with a method according to the invention, wherein a predetermined residual moisture in the wood chips is set, (b) mixing the wood chips with adhesive and (c) pressing the wood chips with the adhesive to the material panel.
  • a method according to the invention preferably comprises the step of burning the regenerative heat exchanger free. It has been shown that solids can accumulate in the heat exchanger. These can be eliminated by means of burn-out. It is advantageous if the Brüdenerhitzer comprises at least two regenerative heat exchanger, so that the burnout can be done during operation.
  • a wood-based panel which has been produced by a method according to the invention.
  • a wood-based panel according to the invention comprising pine shavings whose content of terpenes in weight percent is less than 50% of the concentration contained in natural, untreated pine shavings.
  • Figure 2 is a circuit diagram of a second embodiment of a wood chip drying plant according to the invention.
  • Figure 3 is a circuit diagram of a third embodiment of a wood chip drying plant according to the invention.
  • FIG. 1 shows a wood chip drying plant 10 with a furnace 12, the schematically drawn wood dust 14 is supplied.
  • the wood chip drying plant 10 additionally comprises a dryer 16 to which wood chips 18 are fed in a wood chip feed. Dried wood chips leave the dryer 16 via a fume cupboard 19.
  • the wood chip drying plant has a mixing chamber 20, which is supplied with flue gas 22 from the furnace 12. In the mixing chamber 20 also opens a first vapor line 24, a cooling air line 26 and a hot gas line 28.
  • the mixing chamber 20 is adapted to discharge dryer gas 30 in a dryer gas line 32, wherein the dryer gas 30 has a preset temperature and a preset absolute humidity.
  • the drier 16 leaves vapor 34 through a vapor discharge line 36, which leads to a first cyclone 38 and subsequently to a second cyclone 40. Part of the vapor is decoupled from the vapor discharge line 36 and passed into an exhaust gas treatment plant.
  • the Brüdenerhitzer 42 includes countercurrent cooler 46, the incoming vapors heat 34 from the vapor discharge line 36 and cool in the first vapor line 24 effluent vapor.
  • a denitrification plant 50 is arranged, which comprises a urea injection 52.
  • This urea introduction 52 is arranged upstream of the flue-gas line 44 and upstream of the mixing chamber 20 and leads to a selective reduction of the nitrogen oxides to nitrogen.
  • the components which are arranged downstream of the drier 16 with respect to the vapor stream are part of a return device 56.
  • the return device 56 thus comprises, in particular, the vapor heater 42, which could also be referred to as the oxidation reactor, and the lines 36, 44 and 24.
  • an exhaust duct 60 a portion of the vapors is discharged into the atmosphere.
  • the wood chips are preferably chips of greasy wood, For example, softwood and especially pine, which leave the dryer 16 through an outlet 54 are then mixed with adhesive and pressed into a wood-based panel.
  • This wood-based panel is preferably an OSB panel.
  • the wood-based panel shows a drastically reduced terpene emission.
  • the wood chip drying plant according to the invention achieves a thermal efficiency of up to 97%.
  • FIG. 2 shows a second embodiment of a wood chip drying plant 10 according to the invention with a furnace 12, the dryer 16 for the wood chips 18 and the return device 56 for returning the vapors 34 in the dryer 16.
  • the return device 56 includes the Brüdenerhitzer 42, a regenerative, recuperative and / or catalytic heat exchanger 58 which is arranged downstream of the dryer 16 and which is designed to heat the vapor 34 to a temperature which is so high that particles present in the vapor 34 are oxidized, at least for the most part.
  • the resulting flue gases are again passed through the heat exchanger 58 and then pass into the mixing chamber 20, where they are optionally mixed with hot gas or cooling air, so that dryer gas is formed.
  • the dryer gas is fed to the dryer 16.
  • the vapors are directed via an induced draft fan 62 into the cyclone 40, which is combined with an electronic filter and forms a vapor purifier.
  • the return vapors are supplied to the regenerative heat exchanger system 58, which can be heated by means of a firing 64 for natural gas, light oil or heavy oil to perform a burn-out.
  • the vapors leave the regenerative heat exchanger system 58 and arrive at a vapor injection 66 About a combustion air blower 68, a portion of the vapors in the combustion chamber or the furnace 12 is passed
  • the heat exchanger system 58 is designed so that the return vapors pass through it essentially unchanged.
  • the heat exchanger system 58 is used for energy saving and efficiency increase.
  • the firing 64 may burn it out if necessary.
  • the regenerative heat exchanger system 58 is superior to a shell and tube heat exchanger in terms of thermal efficiency and availability.
  • the thermal treatment of the remindbrüden takes place in the furnace 12, that is, the combustion chamber.
  • FIG. 3 shows a circuit diagram of a wood chip drying plant according to the invention, in which the vapors 34 are conducted into a thermally regenerative overall vapor purification plant 70.
  • the total vapor purifier 70 is operated with flue gas 22 and may be fired via the firing 64 with alternative fuels, natural gas, light oil, or heavy fuel oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

Holzspantrocknungsanlage zum Trocknen von Holzspänen (18), mit einer Feuerung (12), einem Trockner (16) für die Holzspäne (18) und einer Rückführvorrichtung (56) zum Rückführen von Brüden (34) in den Trockner (16), wobei die Rückführvorrichtung (56) einen Brüdenerhitzer (42) aufweist und wobei die Holzspantrocknungsanlage (10) ausgebildet ist zum Vermindern von im Brüden (34) vorhandenen organischen Verbindungen vor dem Rückführen in den Trockner (16). Der Brüdenerhitzer (42) umfasst einen regenerativen und/oder katalytischen Wärmetauscher, der abströmseitig hinter dem Trockner (16) angeordnet und ausgebildet ist zum Erwärmen des Brüdens (34) auf eine Temperatur, die so hoch ist, dass im Brüden (34) vorhandene Partikel zumindest zum überwiegenden Teil oxidiert werden.

Description

Holzspantrocknungsanlage zum Trocknen von Holzspänen und zugehöriges Verfahren zum Trocknen von Holzspänen
Die Erfindung betrifft eine Holzspantrocknungsanlage zum Trocknen von Holzspänen, mit einer Feuerung, einem Trockner für die Holzspäne und einer Rückführvorrichtung zum Rückführen von Brüden in den Trockner, wobei die Rückführvorrichtung einen Brüdenerhitzer aufweist und wobei die Holzspantrock- nungsanlage ausgebildet ist zum Vermindern von im Brüden vorhandenen organischen Verbindungen vor dem Rückführen in den Trockner.
Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zum Trocknen von Holzspänen, mit den Schritten (a) Leiten von Rauchgas von einer Feu- erung zu einem Trockner, (b) Trocknen der Holzspäne in dem Trockner, so dass Brüden entsteht und (c) Rückführen zumindest eines Teils des Brüden in den Trockner.
Bei bekannten Holzspantrocknungsanlagen wird in der Feuerung in der Regel Holzstaub verbrannt. Die entstehenden heißen Rauchgase werden in eine
Mischkammer geführt und dort mit Brüden, der auch Rückbrüden genannt wird, zu vermischen. Aufgrund des Mischens sinkt die Temperatur des entstehenden Trocknergases auf cirka 3800C bis 420 0C. Das Trocknergas wird danach dem Trockner zugeführt, wo die Holzspäne getrocknet werden.
Der entstehende Brüden wird einem Zyklon zugeleitet und dann teilweise in die Mischkammer zurückgeführt. Die getrockneten Holzspäne werden danach mit Leim vermengt und zu einer Holzwerkstoffplatte verpresst. Nachteilig an derartigen Holzspantrocknungsanlagen ist, dass die aus den Holzspänen hergestell-
BESTATIGUNGSKOPIE ten Holzwerkstoffplatten flüchtige organische Substanzen abgeben können.
Eine des Weiteren bekannte Heißgaserzeugung und Trocknung der Holzspäne erfolgt in der Form, dass in erster Linie Holzstaub mit eigener Verbrennungs- luftzuführung in einer Brennkammer verbrannt wird. Die cirka 900-grädigen Rauchgase dieser Verbrennung gelangen in eine Mischkammer, in welcher die so genannte Rückbrüden, die Falschluft zur Kühlung und gegebenenfalls externes Heißgas eingebracht werden. In der Mischkammer werden die Trocknungsheißgase zur Einleitung in den Spänetrockner auf die notwendigen Anfor- derungen (Temperatur von ca. 350 - 480 0C, Gesamtvolumenstrom und Feuchtigkeit) eingestellt. Der so aufbereiteten Heißgasvolumenstrom bzw. Trock- nungsluftvolumenstrom wird mittels Saugzugventilator über die Trocknertrommel gesaugt. In der Trocknertrommel werden die Holzspäne in direktem Kontakt mit den Heißgasen getrocknet. Der Saugzugventilator fördert den am Trocknungsprozeß beteiligten Gesamtheißgasvolumenstrom zu einer Filteranlage, die vorwiegend als Zyklonabscheider aber auch als Elektronaßfilter konzipiert ist Diese Filteranlage scheiden in erster Linie nur Feststoffpartikel in begrenztem Umfang ab. Vor bzw. nach dieser Filteranlage wird ein Teilstrom, genannt Rückbrüdenvolumenstrom, der zuvor genannten Mischkammer wieder zugeleitet.
Die Trocknung der Holzspäne erfordert eine ausgewogene Temperatur-, Energie- und Volumenstrombilanz, die in Abhängigkeit des Produktes (Spänegröße, Durchsatz, Feuchtigkeit, Art des Trockners) einzustellen ist.
Die getrockneten Holzspäne werden nach der Trocknertrommel separiert, mit Leim vermengt und zu einer Holzwerkstoffplatte verpresst. Nachteilig an derartigen Holzspantrocknungsanlagen ist, dass die aus den Holzspänen hergestellten Holzwerkstoffplatten flüchtige, organische Substanzen entstehend aus Har- zen und Terpenen abgeben können.
Die Heißgase zur Trocknung der Holzspäne nehmen die enthaltenen Harze und Terpene aus dem Holz zum Teil auf. Der beste Effekt hierfür wird dadurch erzielt, dass die Trocknerheißgase am Eintritt des Trockners frei von Ballaststoffen gleicher Art sind. Die Heißgase am Trocknereintritt werden aber nach bekannten Verfahren mit Rückbrüden, welche bereits am Trocknungsprozeß teil- genommen haben, vermischt. Der Mischvolumenstrom ist somit in der Aufnahme von Harzen und Terpenen gemindert.
Es ist auch bekannt, die Brüden vollständig in einem Kreislauf zu führen, das heißt, dass die in den Trockner geleitete Trocknerheißgase vollständig aus Brü- den erzeugt werden, vermischt mit den Abgasen aus der Verbrennung von Primärbrennstoffen. Zur energetischen Verbesserung des Verfahrens werden die Brüden teilweise in die Brennkammer geleitet und hier bei ca. 850 0C thermisch behandelt. Der weitere Brüdenanteil wird über einen Rohrbündelwärmetauscher geleitet und hier auf ca. 380 bis 450 0C aufgeheizt bei gleichzeitiger Abkühlung der (50 grädigen) Heißgase aus der Brennkammer. Die über den Wärmetauscher aufgeheizten Brüden werden auf Grund des Temperaturniveaus nicht thermisch behandelt. Gravierende Nachteile dieser Art der Heißgaserzeugung mit den Rohrbündelwärmetauschersystemen ist eine geringe Verfügbarkeit durch Verschmutzung der Wärmetauscherflächen. Nur ein Teil der Brüden durchläuft eine thermische Behandlung. Die Verbrennungsluft zur Verfeuerung des Primärbrennstoffes wird extern angesaugt. Der thermische Wirkungsgrad des Verfahrens ist relativ ungünstig.
Es ist daher auch bekannt, die Brüden vollständig in einem Kreislauf zu führen, das heißt, dass das in den Trockner geleitete Trocknergas vollständig aus Brüden erzeugt wurde, bei dem flüchtige Verbindungen thermisch oxidiert wurden. Nachteilig hieran ist, dass eine derartige Holzspantrocknungsanlage eine geringe Verfügbarkeit aufweist.
Aus der US 5,983,521 ist eine Holzspantrocknungsanlage bekannt, bei der die Rückbrüden vollständig in die Brennkammer zurückgeführt werden. Zur Energieeinsparung werden die Rückbrüden durch einen Rekuperator geleitet, der mit Heißgas von der Feuerung beschickt wird. Auf diese Weise werden alle Rückbrüden in der Brennkammer thermisch behandelt. Nachteilig hieran ist, dass der Wirkungsgrad der Feuerung sinkt, da alle Rückbrüden vollständig durch die Feuerung geführt werden müssen.
Aus der DE 197 28 545 A1 ist eine Mülltrocknungsanlage bekannt. Anders bei Holztrocknungsanlagen spielen in Mülltrocknungsanlagen die Feuchtigkeit sowie der Terpen- und Feinstaubgehalt keine relevante Rolle, so dass die dort beschriebene Vorrichtung nicht zum Trocknen von Holzspänen geeignet ist. Aus der CH 133 536 ist ein Verfahren zum Trocknen von Massengütern bekannt, das mehrstufig ausgebildet ist. Einen regenerativ oder katalytisch wirksamen Wärmetauscher beschreibt die Druckschrift nicht.
Aus der DE 29 26 663 ist ein Verfahren bekannt, bei dem die Brüden abgekühlt werden, um eine Kondensation des Wassers und der mitgeführten Terpene zu erreichen. Nachteilig hieran ist der hohe Aufwand beim Herunterkühlen der Brüden.
Aus der WO 01/59381 ist eine Holzspantrocknungsanlage bekannt, bei der ein Teil der Brüden in die Brennkammer zurückgeführt wird. Nachteilig ist hier, dass ein Teil der in den Rückbrüden enthaltenen Terpene sich am zu trocknenden Gut anlagern können, so dass die Holzspäne nach Verlassen des Trockners einen erhöhten Gehalt an flüchtigen organischen Bestandteilen aufweist.
Der Erfindung liegt die Aufgabe zugrunde, eine Holzspantrocknungsanlage anzugeben, bei der die Feuerung mit besonders hohem Wirkungsgrad betrieben werden kann und bei der die Holzspäne einen besonders geringen Gehalt an flüchtigen organischen Bestandteilen aufweisen.
Die Erfindung löst das Problem durch eine gattungsgemäße Holzspantrocknungsanlage, bei der der Brüdenerhitzer einen regenerativen und/oder regene- rativ-katalytischen Wärmetauscher umfasst, der abströmseitig hinter dem Trockner angeordnet ist und der ausgebildet ist zum Erwärmen der Brüden auf eine Temperatur, die so hoch ist, dass im Brüden vorhandene Partikel zumindest zum überwiegenden Teil oxidiert werden.
Gemäß einem zweiten Aspekt löst die Erfindung das Problem durch ein gattungsgemäßes Verfahren, das den Schritt eines thermischen Verminderns von im Brüden vorhandenen Feststoffen vor dem Rückführen in den Trockner in einem regenerativen und/oder katalytischen Wärmetauscher umfasst.
Erfindungsgemäß ist zudem eine Holzwerkstoffplatte, die nach einem erfindungsgemäßen Verfahren hergestellt ist.
Vorteilhaft an der Erfindung ist, dass durch das Oxidieren von im Brüden vorhandenen Feststoffen durch den regenerativen Wärmetauscher sich diese Feststoffe nicht im Trocknergas anreichern können. Es hat sich nämlich gezeigt, dass sich derartige Feststoffe, beispielsweise kleine Holzspäne, leicht in Leitungen oder rekuperativen Wärmetauschern absetzen und zu Betriebsstörungen führen können
Es ist ein weiterer Vorteil, dass dieser Vorteil mit relativ geringen Änderungen an bestehenden Holzspantrocknungsanlagen erreicht werden kann. Der Aspekt einer wirtschaftlichen Betriebsweise bei geringstem Primärbrennstoffeinsatz ist mit die Grundlage der Erfindung. Die Erfindung wird die bei der Trocknung der Späne bzw. bei der anschließenden Herstellung der Spanplatten und/oder OSB-Platten anhaftenden bzw. beinhaltenden Schadstoffe wesentlich reduzieren. Auch werden die Emissionen, welche durch die Restschadstoffe in den zur Atmosphäre abzuleitenden Abgasen sich bilden drastisch reduziert.
Vorteilhaft an der Erfindung ist, dass durch das Oxidieren von in den Brüden vorhandenen Kohlenwasserstoffen und den brennbaren Feststoffen durch das thermisch, regenerative Wärmetauschersystem sich die Aufnahmefähigkeit der in den Trockner eingeführten Heißgase sich in Bezug auf austretenden Harze und Terpene erhöht und damit die verbleibende Belastung der getrockneten Holzspäne drastisch reduziert. Die Aggregate und heißgasführenden Rohrleitungen zwischen der thermisch, regenerativen Anlage und dem Trocknereintritt werden ebenso in der Verschmutzungsneigung drastisch reduziert. Damit wird die Verfügbarkeit der Anlage wesentlich erhöht.
Die beschriebene Erfindung hat insbesondere auch den Vorteil, dass bestehende Heißgaserzeugungsanlagen mit geringem Aufwand bei Beibehaltung der bestehenden Anlagenkomponenten nachgerüstet werden können.
Im Rahmen der vorliegenden Beschreibung wird unter einer Feuerung insbesondere eine Holzproduktfeuerung verstanden, die Holzspäne (Biomasse) oder Holzstaub verfeuert. Eine derartige Feuerung kann auch eine Stützsteuerung, beispielsweise eine Gas- und/oder Ölstützsteuerung, aufweisen.
Unter dem Trockner wird insbesondere jede Vorrichtung verstanden, die eingerichtet und ausgebildet ist, um Holzspäne zu trocknen. Insbesondere ist der Trockner mit einer zugehörigen Steuerung versehen, die eine Heißgastrock- nungstemperatur und einen Heißgasvolumenstrom am Trocknereintritt einre- gelt, dass eine technologisch notwendige Restfeuchtigkeit in den Holzspänen am Trockneraustritt erreicht wird.
Unter der Rückführvorrichtung wird insbesondere jede Vorrichtung verstanden, die ausgebildet ist, um Gase (Brüden), die den Trockner verlassen, an eine Stelle der Holzspantrocknungsanlage so zurückzuführen, das diese Gase (Brüden) erneut durch den Trockner strömen.
Unter Brüden wird dasjenige Gas verstanden, das den Trockner verlässt. Es ist möglich, dass nur ein Teil der Brüden (genannt Rückbrüden) so behandelt wird, dass in Rückbrüden vonhandene organische Verbindungen oxidiert werden bzw. brennbare Feststoffpartikel verbrannt werden. In diesem Fall wird ein Teil des Brüdens nicht zurückgeführt, sondern der Atmosphäre über eine Brüden- reinigungsanlage zugeleitet. Es ist aber auch möglich, dass die gesamten Brüden nach dem Trockner vollständig einer Vorrichtung zum Oxidieren von in den Brüden vorhandenen organischen Verbindungen und zum Verbrennen von brennbaren Feststoffpartikeln zugeführt werden, so dass die noch verbleiben- den Emission zur Atmosphäre der wesentlich sinken.
Unter dem Merkmal, dass die Holzspantrocknungsanlage ausgebildet ist zum Entfernen von im Brüden vorhandenen Feststoffen vor dem Rückführen in den Trockner wird insbesondere verstanden, dass zumindest ein Teil der Brüden so behandelt wird, dass eine Konzentration an Feststoffen deutlich sinkt. Insbesondere ist die Holzspantrocknungsanlage so ausgebildet, dass zumindest der Teil des Brüden, der erneut in den Trockner gelangt, so behandelt werden, dass die Konzentration an Feststoffen um zumindest 75 % bis 90% gesenkt wird. Unter den Partikeln werden insbesondere Holzpartikel verstanden.
Beispielsweise ist die Holzspantrocknungsanlage ausgebildet zum Erwärmen zumindest eines Teils der Brüden auf eine Temperatur von zumindest 7200C. In der Regel ist es ausreichend, eine Temperatur von höchstens 900° zu wählen. Die Temperatur ist so gewählt, dass ein überwiegender Teil der Feststoffe oxi- diert wird.
Die Heißgaserzeugungsanlage mit seinen Einrichtungen ist so ausgebildet, dass im Wesentlichen alle organischen Substanzen (CnHm-Verbindungen) und auch brennbare Feststoffpartikel durch thermische Behandlung aus den Trocknungsheißgasen vor Einleitung in den Trockner entfernt werden.
Die Erfindung basiert mit auf dem Aspekt, dass die Rückbrüden komplett auf eine Temperatur von 720 bis 900 0C aufgeheizt werden und damit alle organischen, brennbaren Stoffe nahezu rückstandslos verbrannt, bzw. oxydiert werden. Dieses gilt insbesondere für alle Kohlenwasserstoffverbindungen (CnHm- Verbindungen) aber auch für alle brennbaren, holzförmigen Feststoffpartikel, die über die Rückbrüden eingebracht werden. Des Weiteren werden die thermisch behandelten Rückbrüden nach der regenerativen Behandlung als Verbrennungsluft der Brennkammer zur Holzverfeuerung, bzw. Erdgas-, Leicht- öl- oder Schwerölfeuerung mit entsprechender Temperatur zugeführt, womit eine Brennstoffersparnis einhergeht.
Insbesondere ist die Rückführvorrichtung ausgebildet zum Rückführen zumindest eines Teils der thermisch, regenerativ behandelten Brüden in die Feuerung. In anderen Worten ist eine gattungsgemäße Holzspantrocknungsanlage erfindungsgemäß, die so ausgebildet ist, dass aller Rückbrüden, also Brüden, die erneut in den Trockner gelangen, in die Feuerung zurückgeleitet werden. Dort werden die Brüden als Verbrennungsluft der Flamme, beispielsweise der Holzstaubflamme, der Erdgasflamme, der Leichtölflamme und/oder der Schwerölflamme zugeführt werden, so dass eine Brennstoffersparnis bewirkt wird. Alternativ können aber auch thermisch unbehandelte Brüden der Verbrennung zugeführt werden, womit dann erst in der Flamme die thermische Behand- lung der Kohlenwasserstoffe und der brennbaren Feststoffpartikel erfolgt. Bei dieser Variante sind aber Betriebsstörungen durch Verschmutzungen am Brenner und deren Nebenaggregaten bei verminderter Verfügbarkeit vorprogrammiert.
Beispielsweise ist die Rückführvorrichtung ausgebildet zum Erhitzen der Brüden auf eine Temperatur von mindestens 750°. Allgemein ist ein Temperaturfenster von 7200 0C bis 900 0C geeignet. Es ist möglich, dass der Brüdenerhitzer zudem eine katalytische Abluftbehandlungsanlage besitzt, in der organische Substanzen katalytisch oxidiert werden. Dabei werden nur Temperaturen von 380 bis 480 0C erforderlich sein. Die brennbaren Feststoffpartikel bleiben aber bei dem katalytischen Verfahren unverbrannt.
Der Brüdenerhitzer ist bevorzugt so ausgelegt, dass die Brüden mit den organischen Verbindungen und gegebenenfalls restlichen Feststoffpartikeln vollstän- dig an einer Verbrennung teilnehmen. Die thermisch, regenerative Reinigungsanlage kann so ausgelegt sein, dass die behandelten Brüden die Abluftbehandlungsanlage mit einer zwischen 200C und 8O0C höheren Temperatur verlassen. Besonders geeignet ist eine thermisch, regenerative Abluftbehandlungsanlage, wenn die behandelten Brüden sie mit einer um cirka 400C höheren Temperatur verlassen.
Vorzugsweise ist die Rückführungsvorrichtung ausgebildet zum Erwärmen des Brüdens mittels Rauchgas der Holzstaubfeuerung. Alternativ oder additiv ist die Reinigungsanlage auch so ausgebildet, dass zum Nachheizen der Brüden auch Primärbrennstoffe wie Erdgas, Leichtöl und/oder Schweröl eingesetzt werden können.
Abströmseitig hinter der Feuerung und/oder hinter der thermischen Abluftbehandlungsanlage kann eine Mischkammer angeordnet sein, in der das Rauchgas von der Feuerung mit den behandelten Brüden aus der Abluftbehandlungsanlage und gegebenenfalls mit Falschluft und sekundären Heißgasen so ge- mischt wird, dass das entstehende Trocknerheißgas eine vorgegebene Temperatur und eine vorgegebene Feuchtigkeit aufweisen. Das Trocknerheißgas wird dann dem Trockner zugeführt.
Gemäß einer bevorzugten Ausführungsform weist die Holzspantrocknungsan- läge eine abströmseitig hinter der Feuerung angeordnete Entstickungsanlage auf. Diese Entstickungsanlage arbeitet in einem Temperaturfenster von 800 bis 950 0C besonders effektiv. In der Entstickungsanlage kann Harnstoff in den Rauchgasstrom eingedüst werden, so dass die im Rauchgas enthaltenen Stickoxide reduziert werden.
Die Entstickungsanlage ist bevorzugt so angeordnet, dass der Eindüsungs- punkt, an dem der Harnstoff eingedüst wird, in einer Verbindung zwischen der Feuerung und der Mischkammer angeordnet ist. Die Entstickungsanlage kann die Stickoxid-Emissionen um mehr als 30% reduzieren, wobei 50 % erreichbar sind.
Gemäß einer bevorzugten Ausführungsform umfasst die Holzspantrocknungs- anläge eine Trocknergas-Anfeuchtungsvorrichtung zum Erhöhen einer Feuchte von in den Trockner strömenden Trocknergases. Die Trocknergas-Anfeuch- tungsvorrichtung wird vorzugsweise so betrieben, dass eine absolute Luftfeuchtigkeit mindestens 600 Gramm pro Kubikmeter umfasst. Es hat sich als günstig herausgestellt, wenn die absolute Luftfeuchtigkeit unterhalb von 1 200 Gramm pro Kubikmeter liegt.
Günstig ist es, wenn die Trocknergas-Anfeuchtungsvorrichtung eingerichtet ist zum Mischen von Brüden und Rauchgas der Feuerung so, dass sich die Feuch- te des Trocknergases auf einen Sollwert einstellt.
Vorteilhaft hieran ist, dass die erhöhte Feuchte wasserlösliche Substanzen aus den Holzspänen herauslöst. Insofern ist der Trockner zugleich als Heißextrakti- onsvorrichtung ausgebildet, in der wasserlösliche Substanzen aus den HoIz- spänen ausgelöst werden. Eine Anreicherung der auf diese Weise aus den Holzspänen herausgelösten Substanzen wird durch die oben beschriebene interne Nachverbrennung in der Rückführvorrichtung für die rückgeführten Brüden verhindert.
Bevorzugt ist die Holzspantrocknungsanlage so ausgebildet, dass zumindest 70% der in den Holzspänen vorhandenen Terpenen beim Trocknen ausgelöst werden. Diese Verringerung an Terpenen in den Spänen sorgt für eine drastische Absenkung der Terpenemissionen in aus den Spänen gefertigten Holzwerkstoffplatten.
Alternativ kann die Heißgaserzeugungsanlage auch ein regeneratives Wärmetauschersystem enthalten, welches zwischen der Brennkammer und der Mischkammer angeordnet ist. Die vorgeheizten Brüden werden dann der Brennkammer zugeführt und dort thermisch von den beinhalteten Kohlenwasserstoffen und den brennbaren Feststoffpartikeln im Wesentlichen befreit. Das regenerative Wärmetauschersystem kann so ausgebildet sein, dass hier ein thermischer Wirkungsgrad von bis zu 95 % erreicht wird. Ebenso ist das regenerative War- metauschersystem mit einem Reinigungsverfahren (burn out) ausgestattet, was die Reinigung bei laufendem Betrieb zulässt und eine sehr hohe Verfügbarkeit garantiert.
Ein erfindungsgemäßes Verfahren zeichnet sich dadurch aus, dass zumindest ein Teil der Brüden in die Feuer zurückgeführt wird. Alternativ oder additiv ist vorgesehen, dass ein Teil, insbesondere ein überwiegender Teil derjenigen Brüden, die zurückgeführt werden, thermisch nachbehandelt werden, so dass eine Konzentration an organischen Verbindungen einen vorgegebenen Schwel- lenwert unterschreitet.
Besonders bevorzugt werden Holzspäne verwendet, die überwiegend Kieferspäne umfassen. Kiefernspäne weisen einen hohen Gehalt an Terpenen auf, so dass bei bisherigen Trocknungsverfahren zum Trocknen dieser Späne ein ho- her Anteil an Terpenen in den Spänen verblieben ist. Das senkt die Qualität der aus diesen Holzspänen hergestellten Holzwerkstoffplatten. Die Erfindung erlaubt hier eine besonders starke Steigerung der Qualität der Holzwerkstoffplatten.
Bevorzugt ist ein Verfahren, bei dem im Rückbrüdenvolumenstrom vor Eintritt in die Mischkammer ein thermisch, regeneratives Wärmetauschersystem durchläuft. In dem Wärmetauschersystem werden die Rückbrüden mit einer Eintrittstemperatur von 80 bis 130 0C auf eine Temperatur von 720 0C bis 900 0C aufgeheizt und mit einer um ca. 20 bis 80 0C höheren Austrittstemperatur im Ver- gleich zur Eintrittstemperatur zur Mischkammer mittels Ventilator geführt. Die Aufheizung erfolgt die regenerativen Wärmetauschersysteme mit einem thermischen Wirkungsgrad, je nach Ausführung von 88 bis zu 97 %. Die Primärbeheizung zur endgültigen Aufwärmung der Rückbrüden auf 720 bis 900 0C geschieht mit der Einbringung von Heißgasen aus der Holzstaubfeuerung bzw. alternativ mit Erdgas, Leichtöl oder Schweröl.
Erfindungsgemäß ist zudem ein Verfahren zum Herstellen einer Holzwerkstoff- platte, insbesondere einer OSB-Platte, mit den Schritten (a) Herstellen von Holzspänen mit einem erfindungsgemäßen Verfahren, wobei eine vorgegebene Restfeuchte in den Holzspänen eingestellt wird, (b) Vermischen der Holzspäne mit Klebstoff und (c) Verpressen der Holzspäne mit dem Klebstoff zu der HoIz- werkstoffplatte.
Ein erfindungsgemäßes Verfahren umfasst bevorzugt den Schritt eines Freibrennens des regenerativen Wärmetauschers. Es hat sich gezeigt, dass sich im Wärmetauscher Feststoffe festsetzen können. Diese lassen sich mittels Frei- brennen (burn-out) beseitigen. Günstig ist es, wenn der Brüdenerhitzer zumindest zwei regenerative Wärmetauscher umfasst, so dass das Freibrennen während des laufenden Betriebs erfolgen kann.
Erfindungsgemäß ist zudem eine Holzwerkstoffplatte, die nach einem erfin- dungsgemäßen Verfahren hergestellt worden ist. Insbesondere ist eine Holzwerkstoffplatte erfindungsgemäß, die Kiefernspäne umfasst, deren Gehalt an Terpenen in Gewichtsprozenten kleiner ist als 50% der in natürlichen, unbehandelten Kieferspänen enthaltenen Konzentration.
Im Folgenden wird die Erfindung anhand eines exemplarischen Ausführungsbeispiels näher erläutert. Dabei zeigt
Figur 1 ein Schaltbild einer erfindungsgemäßen Holzspantrocknungsanla- ge,
Figur 2 ein Schaltbild einer zweiten Ausführungsform einer erfindungsgemäßen Holzspantrocknungsanlage und
Figur 3 ein Schaltbild einer dritten Ausführungsform einer erfindungsgemäßen Holzspantrocknungsanlage
Figur 1 zeigt eine Holzspantrocknungsanlage 10 mit einer Feuerung 12, der schematisch eingezeichneter Holzstaub 14 zugeführt wird. Die Holzspan- trocknungsanlage 10 umfasst zudem einen Trockner 16, dem Holzspäne 18 in einer Holzspanzuführung zugeführt werden. Über einen Abzug 19 verlassen getrocknete Holzspäne den Trockner 16.
Die Holzspantrocknungsanlage weist eine Mischkammer 20 auf, die mit Rauch- gas 22 aus der Feuerung 12 beaufschlagt wird. In die Mischkammer 20 mündet zudem eine erste Brüdenleitung 24, eine Kühlluftleitung 26 und eine Heißgasleitung 28. Die Mischkammer 20 ist ausgebildet, um Trocknergas 30 in einer Trocknergasleitung 32 abzugeben, wobei das Trocknergas 30 eine voreingestellte Temperatur und eine voreingestellte absolute Feuchtigkeit hat.
Den Trockner 16 verlässt Brüden 34 durch eine Brüden-Ableitung 36, die zu einem ersten Zyklon 38 und nachfolgend zu einem zweiten Zyklon 40 führt. Ein Teil des Brüdens wird aus der Brüden-Ableitung 36 ausgekoppelt und in eine Abgasbehandlungsanlage geleitet.
Mittels der Brüden-Anbleitung 36 gelangt der an Feststoffen ärmere Brüden 34 in einen Brüdenerhitzer 42, der über eine Rauchgasleitung 44 mit Rauchgas aus der Feuerung 12 betrieben wird. Der Brüdenerhitzer 42 ist so ausgebildet, dass der Brüden 34 auf eine Temperatur T = 9000C erhitzt wird. Möglich sind aber auch andere Temperaturen zwischen 420 0C und 850 0C. Dabei oxidiert ein Großteil der im Brüden vorhandenen organischen Verbindungen und es entsteht gereinigter Brüden, der durch die erste Brüdenleitung 24 der Misch- kammer 20 zugeleitet wird.
Der Brüdenerhitzer 42 umfasst Gegenstromkühler 46, die einströmenden Brüden 34 aus der Brüden-Ableitung 36 erwärmen und in die erste Brüdenleitung 24 ausströmenden Brüden abkühlen. Einströmender Brüden hat eine Einström- Temperatur von TEintström = 8O0C, wohingegen eine Ausström-Temperatur bei ungefähr Tausström = 130° liegt.
Aus dem Brüdenerhitzer 42 ausströmender Brüden wird in einer Abzweigstelle 48 aufgeteilt in den Strom zur Mischkammer 20 und einen Strom aus Rückbrü- den zur Feuerung 12. Weil der in den Trockner zurückgeführten Brüden 34 vollständig auf eine Temperatur über der Oxidationstemperatur der flüchtigen organischen Verbindungen und der Feststoffe erhitzt wurde,
Abströmseitig unmittelbar hinter der Feuerung 12 ist eine Entstickungsanlage 50 angeordnet, die eine Harnstoffeindüsung 52 umfasst. Diese Harnstoffeindü- sung 52 ist in Strömungsrichtung vor der Rauchgasleitung 44 und vor der Mischkammer 20 angeordnet und führt zu einer selektiven Reduktion der Stickoxide zu Stickstoff.
Die Komponenten, die im Bezug auf den Brüdenstrom stromabwärts hinter dem Trockner 16 angeordnet sind, sind Teil einer Rückführvorrichtung 56. Die Rückführvorrichtung 56 umfasst also insbesondere den Brüdenerhitzer 42, der auch als Oxidationsreaktor bezeichnet werden könnte, sowie die Leitungen 36, 44 und 24. Über eine Abluftleitung 60 wird ein Teil der Brüden in die Atmosphäre geleitet.
Bei den Holzspänen handelt es sich bevorzugt um Späne fetthaltiger Hölzer, beispielsweise Nadelholz und insbesondere um Kiefer, die den Trockner 16 durch einen Auslass 54 verlassen, werden danach mit Klebstoff vermischt und zu einer Holzwerkstoffplatte verpresst. Bei dieser Holzwerkstoffplatte handelt es sich bevorzugt um eine OSB-Platte. Die Holzwerkstoffplatte zeigt eine drastisch reduzierte Terpenemission. Die erfindungsgemäße Holzspantrocknungsanlage erreicht eine thermische Effektivität von bis zu 97%.
Figur 2 zeigt eine zweiten Ausführungsform einer erfindungsgemäßen Holzspantrocknungsanlage 10 mit der einer Feuerung 12, dem Trockner 16 für die Holzspäne 18 und der Rückführvorrichtung 56 zum Rückführen der Brüden 34 in den Trockner 16. Die Rückführvorrichtung 56 umfasst den Brüdenerhitzer 42, der einen regenerativen, rekuperativen und/oder katalytischen Wärmetauscher 58 umfasst, der abströmseitig hinter dem Trockner 16 angeordnet ist und der ausgebildet ist zum Erwärmen des Brüdens 34 auf eine Temperatur, die so hoch ist, dass im Brüden 34 vorhandene Partikel zumindest zum überwiegenden Teil oxidiert werden.
Vom Wärmetauscher 58 aus strömt der Brüden 34 zur Feuerung 12 und wird dort mit Holzstaub 14, Erdgas und/oder Leichtöl vermischt und das Gemisch verbrannt. Die entstehenden Rauchgase werden erneut über den Wärmetauscher 58 geführt und gelangen dann in die Mischkammer 20, wo sie gegebenenfalls mit Heißgas oder Kühlluft gemischt werden, so dass Trocknergas entsteht. Das Trocknergas wird dem Trockner 16 zugeführt.
Die Brüden werden über einen Saugzugventilator 62 in den Zyklon 40 geleitet, der mit einem Elektronassfilter kombiniert ist und eine Brüdenreinigungsanlage bildet. Durch einen weiteren Saugzugventilator werden die Rückbrüden dem regenerativen Wärmetauschersystem 58 zugeführt, der mittels einer Befeuerung 64 für Erdgas, Leichtöl oder Schweröl zum Durchführen eines Burn-out (Ausbrennen) beheizt werden kann. Die Brüden verlassen das regenerative Wärmetauschersystem 58 und gelangen zu einer Brüdeneindüsung 66 Über ein Verbrennungsluftgebläse 68 wird ein Teil der Brüden in die Brennkammer bzw. die Feuerung 12 geleitet
Bei der Ausführungsform nach Figur 2 ist das Wärmetauschersystem 58 so ausgebildet, dass die Rückbrüden es im Wesentlichen unverändert durchlaufen. Das Wärmetauschersystem 58 dient der Energieeinsparung und der Effizienzerhöhung. Durch die Befeuerung 64 kann es, sofern notwendig, ausgebrannt werden. Das regenerative Wärmetauschersystem 58 ist einem Rohrbündelwärmetauscher hinsichtlich des thermischen Wirkungsgrads und der Verfügbar- keit überlegen. Die thermische Behandlung der Rückbrüden erfolgt in der Feuerung 12, das heißt der Brennkammer.
Figur 3 zeigt ein Schaltbild einer erfindungsgemäßen Holzspantrocknungsanla- ge, bei der die Brüden 34 in eine thermisch regenerative Gesamtbrüdenreini- gungsanlage 70 geleitet werden. Die Gesamtbrüdenreinigungsanlage 70 wird mit Rauchgas 22 betrieben und kann über die Befeuerung 64 mit Alternativbrennstoffen, Erdgas, Leichtöl oder Schweröl befeuert werden.

Claims

Ansprüche:
1. Holzspantrocknungsanlage zum Trocknen von Holzspänen (18), mit (a) einer Feuerung (12), (b) einem Trockner (16) für die Holzspäne (18) und
(c) einer Rückführvorrichtung (56) zum Rückführen von Brüden (34) in den Trockner (16),
(d) wobei die Rückführvorrichtung (56) einen Brüdenerhitzer (42) aufweist und (e) wobei die Holzspantrocknungsanlage (10) ausgebildet ist zum Vermindern von im Brüden (34) vorhandenen organischen Verbindungen vor dem Rückführen in den Trockner (16), dadurch gekennzeichnet, dass
(f) der Brüdenerhitzer (42) einen regenerativen und/oder katalytischen Wärmetauscher umfasst, der
(i) abströmseitig hinter dem Trockner (16) angeordnet ist und (ü) ausgebildet ist zum Erwärmen des Brüdens (34) auf eine Temperatur, die so hoch ist, dass im Brüden (34) vorhandene Partikel zumindest zum überwiegenden Teil oxidiert werden.
2. Holzspantrocknungsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Rückführvorrichtung (56) ausgebildet ist zum Rückführen zumindest eines Teils der Brüden (34), insbesondere aller Brüden, in die Feuerung (12).
3. Holzspantrocknungsanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführvorrichtung (56) ausgebildet ist zum Erwärmen der Brüden (34) mittels Rauchgas (22) der Feuerung (12).
4. Holzspantrocknungsanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Brüdenerhitzer (42) ausgebildet ist zum Erwärmen der Brüden (34) mittels interner Verbrennung auf eine Temperatur oberhalb von 7000C.
5. Holzspantrocknungsanlage nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Entstickungsanlage (50), die abströmseitig hinter der Feuerung (12) angeordnet ist.
6. Holzspantrocknungsanlage nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Trocknergas-Anfeuchtungsvorrichtung zum Einstellen einer Feuchte von in den Trockner (16) strömendem Trocknergas (30) auf einen vorgegebenen Soll-Wert.
7. Holzspantrocknungsanlage nach einem der vorstehenden Ansprüche 4 bis 6, gekennzeichnet durch eine Mischkammer (20), die angeordnet ist zum Mischen von
Rauchgas (22) von der Feuerung (12) und - Brüden (34) vom Brüdenerhitzer (42).
8. Verfahren zum Trocknen von Holzspänen (18), mit den Schritten
(a) Leiten von Rauchgas (22) von einer Feuerung (12) zu einem Trockner (16), (b) Trocknen der Holzspäne (18) in dem Trockner (16), so dass Brüden
(34), entsteht, und (c) Rückführen zumindest eines Teils des Brüden (34) in den Trockner
(16), gekennzeichnet durch den Schritt: (d) thermisches Vermindern, insbesondere durch Oxidieren, von im Brüden (34) vorhandenen Feststoffen vor dem Rückführen in den Trockner (16) in einem regenerativen und/oder katalytischen Wärmetauscher.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass zum thermischen Oxidieren von im Brüden (34) vorhandenen organischen Verbindungen und Feststoffen zumindest ein Teils der Brüden (34) in die Feuerung (12) zurückgeführt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das thermische Vermindern von im Brüden (34) vorhandenen Feststoffen mittels eines regenerativen Wärmetauschers erfolgt.
11. Verfahren nach Anspruch 10, gekennzeichnet durch den Schritt
Ausbrennen von im regenerativen Wärmetauscher anhaftenden Feststoffen.
12. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass ein Anteil an Rauchgas von der Feuerung (12) am in den Trockner strömenden Trocknergas größer ist als ein vorgegebener Rauchgasanteil- Schwellenwert.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Rückbrüdenvolumenstrom vor Eintritt in die Mischkammer in einen thermisch regenerativen Wärmetauscher geleitet wird, wobei die Rückbrüden mit einer Eintrittstemperatur von 80 bis 130 0C auf eine Temperatur von 720 0C bis 900 0C aufgeheizt und mit einer um ca. 20 bis 80 °C höheren Austrittstemperatur im Vergleich zur Eintrittstemperatur zur Mischkammer geführt werden.
14. Verfahren zum Herstellen einer Holzwerkstoffplatte, insbesondere einer OSB-Platte, mit den Schritten
Herstellen von Holzspänen (18) mit einem Verfahren nach einem der Ansprüche 8 bis 13, wobei eine vorgegebene Restfeuchte in den
Holzspänen (18) eingestellt wird, Vermischen der Holzspäne (18) mit Klebstoff und Verpressen der Holzspäne (18) mit dem Klebstoff zu der Holzwerkstoffplatte.
15. Holzwerkstoffplatte, hergestellt nach einem Verfahren nach einem der Ansprüche 8 bis 14.
PCT/EP2010/001245 2009-03-10 2010-03-01 Holzspantrocknungsanlage zum trocknen von holzspänen und zugehöriges verfahren zum trocknen von holzspänen WO2010102736A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2011553322A JP5734879B2 (ja) 2009-03-10 2010-03-01 木材チップを乾燥させるための木材チップ乾燥プラントおよび木材チップを乾燥させるための対応の方法
RU2011140939/06A RU2534197C2 (ru) 2009-03-10 2010-03-01 Сушильная установка для сушки древесной стружки и соответствующий способ сушки древесной стружки
KR1020167023267A KR101738588B1 (ko) 2009-03-10 2010-03-01 목재 조각을 건조하기 위한 목재 조각 건조 시스템 및 그와 관련된 목재 조각 건조 방법
KR1020117023539A KR101671045B1 (ko) 2009-03-10 2010-03-01 목재 조각을 건조하기 위한 목재 조각 건조 시스템 및 그와 관련된 목재 조각 건조 방법
BRPI1009439A BRPI1009439A2 (pt) 2009-03-10 2010-03-01 instalação para secagem de cavacos de madeira e processo correspondente para a secagem de cavacos de madeira
CN201080011606.5A CN102348949B (zh) 2009-03-10 2010-03-01 用于干燥木屑的木屑干燥系统以及相应的木屑干燥方法
MX2011008847A MX2011008847A (es) 2009-03-10 2010-03-01 Sistema de secado de viruta de madera para secar virutas de madera y metodo asociado para secar viruta de madera.
CA2753123A CA2753123C (en) 2009-03-10 2010-03-01 Wood chip drying system for drying wood chip and associated method for drying wood chip
UAA201111855A UA106746C2 (uk) 2009-03-10 2010-03-01 Сушильна установка для сушіння деревної стружки і відповідний спосіб сушіння деревної стружки
AU2010223604A AU2010223604B2 (en) 2009-03-10 2010-03-01 Wood chip drying system for drying wood chip and associated method for drying wood chip
US13/202,301 US8832959B2 (en) 2009-03-10 2010-03-01 Wood chip drying system for drying wood chip and associated method for drying wood chip
ZA2011/06123A ZA201106123B (en) 2009-03-10 2011-08-19 Wood chip drying system for drying wood chip and associated method for drying wood chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09003440.6A EP2230477B1 (de) 2009-03-10 2009-03-10 Holzspantrocknungsanlage zum Trocknen von Holzspänen und zugehöriges Verfahren zum Trocknen von Holzspänen
EP09003440.6 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010102736A1 true WO2010102736A1 (de) 2010-09-16

Family

ID=40886442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/001245 WO2010102736A1 (de) 2009-03-10 2010-03-01 Holzspantrocknungsanlage zum trocknen von holzspänen und zugehöriges verfahren zum trocknen von holzspänen

Country Status (18)

Country Link
US (1) US8832959B2 (de)
EP (1) EP2230477B1 (de)
JP (1) JP5734879B2 (de)
KR (2) KR101671045B1 (de)
CN (1) CN102348949B (de)
AU (1) AU2010223604B2 (de)
BR (1) BRPI1009439A2 (de)
CA (1) CA2753123C (de)
ES (1) ES2532627T3 (de)
HU (1) HUE024574T2 (de)
MX (1) MX2011008847A (de)
PL (1) PL2230477T3 (de)
PT (1) PT2230477E (de)
RU (1) RU2534197C2 (de)
SI (1) SI2230477T1 (de)
UA (1) UA106746C2 (de)
WO (1) WO2010102736A1 (de)
ZA (1) ZA201106123B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068605A1 (en) * 2011-09-21 2013-03-21 Chevron Usa, Inc. System for using flue gas heat

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549771B2 (en) * 2009-10-21 2013-10-08 Stmicroelectronics, Inc. Dryness detection method for clothes dryer based on pulse width
CN103358382B (zh) * 2013-07-25 2015-09-23 宁波博帆卫浴有限公司 一种木粉前处理输送装置
CN103712429A (zh) * 2013-12-25 2014-04-09 惠州市奥能科技有限公司 一种燃气式农产品烘干装置
EP3023722A1 (de) * 2014-11-24 2016-05-25 DF Mompresa, S.A.U. Transportable Holzspanentrocknungsanlage
SG10201502704VA (en) * 2015-04-07 2016-11-29 Singnergy Corp Pte Ltd Apparatus and method for improved evaporation drying
DE102015108742B4 (de) * 2015-06-02 2019-04-25 Ecolohe Ag Verfahren und Vorrichtung zum Aufbereiten von organischen Festbrennstoffen, insbesondere Waldhackschnitzeln
CN106196095A (zh) * 2016-08-29 2016-12-07 江苏华伦化工有限公司 一种含有醇醚的废物料的处理装置及方法
EP3589890A1 (de) 2017-03-03 2020-01-08 Douglas Technical Limited Vorrichtung und verfahren zum kontinuierlichen trocknen von schüttgut, insbesondere holzspänen und/oder holzfasern, mit einem wärmetauscher
CA3053982A1 (en) * 2017-03-03 2018-09-07 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a solid fired hot gas generator
CA3053986C (en) * 2017-03-03 2023-03-07 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising multi-fuel burner with a muffle cooling system
WO2018157945A1 (en) 2017-03-03 2018-09-07 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a hot gas cyclone
EA039585B1 (ru) 2017-06-06 2022-02-14 Дуглас Текникал Лимитед Устройство и способ для непрерывной сушки насыпных материалов
CN107289745A (zh) * 2017-07-28 2017-10-24 新疆天河化工有限公司 利用锅炉余热烘干木粉的装置和方法
CN107504764A (zh) * 2017-08-08 2017-12-22 龙门县景龙生物能源有限公司 一种空气能木材烘干设备
CN110108101A (zh) * 2018-02-01 2019-08-09 寿光市鲁丽木业股份有限公司 一种湿刨花干燥系统及其干燥工艺
KR20200126479A (ko) 2019-04-29 2020-11-09 주식회사 웰파인 아로니아를 유효성분으로 함유하는 항비만 음료 및 그 제조방법
CN112082363A (zh) * 2020-09-02 2020-12-15 衡东振好木制品有限公司 一种木门生产装置
WO2022195552A1 (en) * 2021-03-19 2022-09-22 Pegaso Industries S.P.A. A drying process for granular polymer material and a drying plant operating according to this process
DE102021109810A1 (de) * 2021-04-19 2022-10-20 Dürr Systems Ag Werkstückbearbeitungsanlage und verfahren zum herstellen und betreiben einer solchen werkstückbearbeitungsanlage

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH133536A (de) 1928-04-23 1929-06-15 Dunlap Kehoe Richard Verfahren und Vorrichtung zum Trocknen von Massengütern.
DE1912480U (de) * 1964-11-27 1965-03-18 Schilde Maschb Ag Trockner mit beheizungseinrichtung.
DE2926663A1 (de) 1979-07-02 1981-01-15 Gifa Planungsgesellschaft Fuer Verfahren und vorrichtung zur abtrennung von schadstoffen aus abgasen, insbesondere bei der holzspaenetrocknung
US4384850A (en) * 1981-06-17 1983-05-24 Tri-Mark Metal Corporation Recirculating air heater
DE3517433A1 (de) * 1985-05-14 1986-11-27 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren und vorrichtung zum trocknen von holzspaenen, holzfasern oder dergleichen
DE4036666A1 (de) * 1989-11-20 1991-05-23 Kurt Gisiger Verfahren und vorrichtung fuer das trocknen von organischen stoffen, insbesondere von holzteilchen
EP0459603A1 (de) * 1990-06-01 1991-12-04 Körting Hannover Ag Verfahren und Anlage zur kontinuierlichen Trocknung von Holzspänen, Holzfasern oder anderen Schüttgütern
EP0714006A1 (de) * 1994-11-24 1996-05-29 W. Kunz AG Verfahren zum Trocknen einer Substanz, insbesondere von Holzspänen
DE19654043A1 (de) * 1996-12-23 1997-07-03 Knabe Martin Dipl Ing Trockner mit Abgasreinigung mittels thermischer Nachverbrennung
DE19728545A1 (de) 1997-07-04 1999-01-07 Abb Patent Gmbh Verfahren und Vorrichtung zur Trocknung von Müll
WO1999009364A1 (en) * 1997-08-14 1999-02-25 Valmet Fibertech Ab Two stage process for drying of raw wood material
US5983521A (en) 1997-10-10 1999-11-16 Beloit Technologies, Inc. Process for splitting recycled combustion gases in a drying system
WO2001059381A1 (en) 2000-02-11 2001-08-16 Valmet Fibertech Ab Flue gas heating of conveyor dryer for wood strands
DE10011177A1 (de) * 2000-03-08 2001-09-20 Valmet Panelboard Gmbh Verfahren und Vorrichtung zum direkten Trocknen von Teilchen
US6393727B1 (en) * 1999-10-01 2002-05-28 Louisiana-Pacific Corporation Method for reducing VOC emissions during the manufacture of wood products
DE10157596C1 (de) * 2001-11-23 2003-03-20 Fraunhofer Ges Forschung Verfahren zum Aufbereiten faseriger Substanzen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912480C3 (de) 1969-03-12 1974-04-18 Jacob N. 1000 Berlin Belsen Verfahren und Einrichtung zur Erhaltung der Gashülle eines unter Wasser bewegten Körpers
DE2024197A1 (de) * 1970-05-19 1971-12-02 G Siempelkamp & Co , 4150Krefeld Verfahren zur Trocknung von pflanzli chem Span oder Fasergut
US3818975A (en) * 1971-07-13 1974-06-25 Idemitsu Petrochemical Co Method of removing carbonaceous matter from heat exchange tubes
US3949548A (en) * 1974-06-13 1976-04-13 Lockwood Jr Hanford N Gas turbine regeneration system
US4411204A (en) * 1981-12-07 1983-10-25 Combustion Engineering, Inc. Method of firing a pulverized fuel-fired steam generator
JPH0442713Y2 (de) * 1985-01-11 1992-10-08
AT399044B (de) * 1988-05-10 1995-03-27 Kaindl Holzindustrie Verfahren und vorrichtung zur emissionsarmen trocknung von holzspänen
JP2516467B2 (ja) * 1990-10-12 1996-07-24 石井 拓司 木材乾燥装置
JP4392820B2 (ja) * 2001-06-14 2010-01-06 月島機械株式会社 含水物燃焼処理設備及びその方法
DE20112599U1 (de) * 2001-08-01 2002-12-19 Kronospan Technical Co. Ltd., Nikosia MDF-Platte nebst Herstellung
WO2003013809A1 (de) * 2001-08-01 2003-02-20 Kronospan Technical Company Ltd. Umweltfreundlich hergestellte platte aus einem holzwerkstoff
KR100519747B1 (ko) 2003-04-18 2005-10-10 한국에너지기술연구원 순차식 촉매연소 시스템 및 그 방법
DE102006032947A1 (de) * 2006-07-17 2008-01-24 Kaindl Flooring Gmbh Verfahren zur Herstellung von Werkstoffplatten und Werkstoffplatte
CN100516737C (zh) * 2007-10-12 2009-07-22 李祥文 木材烘干炉

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH133536A (de) 1928-04-23 1929-06-15 Dunlap Kehoe Richard Verfahren und Vorrichtung zum Trocknen von Massengütern.
DE1912480U (de) * 1964-11-27 1965-03-18 Schilde Maschb Ag Trockner mit beheizungseinrichtung.
DE2926663A1 (de) 1979-07-02 1981-01-15 Gifa Planungsgesellschaft Fuer Verfahren und vorrichtung zur abtrennung von schadstoffen aus abgasen, insbesondere bei der holzspaenetrocknung
US4384850A (en) * 1981-06-17 1983-05-24 Tri-Mark Metal Corporation Recirculating air heater
DE3517433A1 (de) * 1985-05-14 1986-11-27 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren und vorrichtung zum trocknen von holzspaenen, holzfasern oder dergleichen
DE4036666A1 (de) * 1989-11-20 1991-05-23 Kurt Gisiger Verfahren und vorrichtung fuer das trocknen von organischen stoffen, insbesondere von holzteilchen
EP0459603A1 (de) * 1990-06-01 1991-12-04 Körting Hannover Ag Verfahren und Anlage zur kontinuierlichen Trocknung von Holzspänen, Holzfasern oder anderen Schüttgütern
EP0714006A1 (de) * 1994-11-24 1996-05-29 W. Kunz AG Verfahren zum Trocknen einer Substanz, insbesondere von Holzspänen
DE19654043A1 (de) * 1996-12-23 1997-07-03 Knabe Martin Dipl Ing Trockner mit Abgasreinigung mittels thermischer Nachverbrennung
DE19728545A1 (de) 1997-07-04 1999-01-07 Abb Patent Gmbh Verfahren und Vorrichtung zur Trocknung von Müll
WO1999009364A1 (en) * 1997-08-14 1999-02-25 Valmet Fibertech Ab Two stage process for drying of raw wood material
US5983521A (en) 1997-10-10 1999-11-16 Beloit Technologies, Inc. Process for splitting recycled combustion gases in a drying system
US6393727B1 (en) * 1999-10-01 2002-05-28 Louisiana-Pacific Corporation Method for reducing VOC emissions during the manufacture of wood products
WO2001059381A1 (en) 2000-02-11 2001-08-16 Valmet Fibertech Ab Flue gas heating of conveyor dryer for wood strands
DE10011177A1 (de) * 2000-03-08 2001-09-20 Valmet Panelboard Gmbh Verfahren und Vorrichtung zum direkten Trocknen von Teilchen
DE10157596C1 (de) * 2001-11-23 2003-03-20 Fraunhofer Ges Forschung Verfahren zum Aufbereiten faseriger Substanzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068605A1 (en) * 2011-09-21 2013-03-21 Chevron Usa, Inc. System for using flue gas heat

Also Published As

Publication number Publication date
AU2010223604B2 (en) 2014-12-18
KR20110126163A (ko) 2011-11-22
PT2230477E (pt) 2015-03-04
CA2753123C (en) 2016-11-01
RU2011140939A (ru) 2013-04-20
JP2012519828A (ja) 2012-08-30
CN102348949B (zh) 2014-04-02
UA106746C2 (uk) 2014-10-10
BRPI1009439A2 (pt) 2016-03-01
KR101671045B1 (ko) 2016-10-31
HUE024574T2 (en) 2016-02-29
JP5734879B2 (ja) 2015-06-17
CN102348949A (zh) 2012-02-08
EP2230477B1 (de) 2014-12-31
CA2753123A1 (en) 2010-09-16
MX2011008847A (es) 2011-09-29
KR101738588B1 (ko) 2017-05-22
AU2010223604A1 (en) 2011-09-08
RU2534197C2 (ru) 2014-11-27
ES2532627T3 (es) 2015-03-30
ZA201106123B (en) 2012-10-31
EP2230477A1 (de) 2010-09-22
US20110305897A1 (en) 2011-12-15
SI2230477T1 (sl) 2015-04-30
PL2230477T3 (pl) 2015-05-29
US8832959B2 (en) 2014-09-16
KR20160105536A (ko) 2016-09-06

Similar Documents

Publication Publication Date Title
EP2230477B1 (de) Holzspantrocknungsanlage zum Trocknen von Holzspänen und zugehöriges Verfahren zum Trocknen von Holzspänen
EP2078911B1 (de) Verfahren zur kontinuierlichen Trocknung von Schüttgut, insbesondere von Holzfasern und/oder Holzspänen
DE2615369C3 (de) Verfahren zur Rauchgaskonditionierung in Abfallverbrennungsanlagen mit Wärmeverwertung, insbesondere für kommunalen und industriellen Müll, und Vorrichtung zur Durchführung des Verfahrens
EP0459603B1 (de) Verfahren und Anlage zur kontinuierlichen Trocknung von Holzspänen, Holzfasern oder anderen Schüttgütern
DE102007005782B3 (de) Verfahren und Anlage zur Trocknung von staubförmigen, insbesondere einer Vergasung zuzuführenden Brennstoffen
EP0498014A1 (de) Verfahren zur Verbrennungsluftzuführung und Feuerungsanlage
DE19654043C2 (de) Trockner mit Abgasreinigung mittels thermischer Nachverbrennung
EP0001569A1 (de) Verfahren und Anlage zur Erzeugung elektrischer Energie
DE4203713C2 (de) Verfahren zum Betrieb eines mit einem trocknungsbedürftigen Brennstoff befeuerten Kraftwerkes
DE102010014479B4 (de) Vorrichtung und Verfahren zur Heißgaserzeugung mit integrierter Erhitzung eines Wärmeträgermediums
EP0302910B1 (de) Verbrennung von kohle mit einer wirbelschichtfeuerung
DE102011084902B3 (de) Verfahren und vorrichtung zur fluiderwärmung durch verbrennung kohlenstoffbasierter brennstoffe
EP0132584A2 (de) Verfahren und Anlage zum Vermindern der Schadstoffemissionen in Rauchgasen von Feuerungsanlagen
DE202014010947U1 (de) Kleinfeuerungsanlage mit Einbau
EP0883778A1 (de) Verfahren zur verbrennung von klärschlamm und anlage zur durchführung des verfahrens
WO2003033623A1 (de) Verfahren zur stromerzeugung aus kohlenstoffhaltigem material
DE4402172C2 (de) Verfahren zur Verbrennung von Brennstoff und Anlage zur Durchführung des Verfahrens
EP1918015B1 (de) Rauchgas-Äquilibrierung in Müllverbrennungsanlagen
WO2015140350A1 (de) Vorrichtung und verfahren zum betreiben einer gasturbine mit direkter beschickung dieser gasturbine
DE3329342C2 (de) Verfahren zur Behandlung von Rauchgasen aus einer Dampferzeugungsanlage
EP3798513B1 (de) Heizeinrichtung
WO2023201384A1 (de) Verfahren und system zur abwärmerückgewinnung
DE102010023391A1 (de) Biomassetrocknung mittels Rauchgasabwärme
EP2401552B1 (de) Verfahren zur selbstgängigen verbrennung von schlamm
DD215381A1 (de) Verfahren zur nachverbrennung und temperierung von kreislaufgas fuer konvektionstrockner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011606.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10709793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553322

Country of ref document: JP

Ref document number: 13202301

Country of ref document: US

Ref document number: 2010223604

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2753123

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/008847

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3705/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010223604

Country of ref document: AU

Date of ref document: 20100301

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117023539

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011140939

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10709793

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009439

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009439

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110912