Nothing Special   »   [go: up one dir, main page]

WO2010101215A1 - 炭素繊維凝集体、及びその製造方法 - Google Patents

炭素繊維凝集体、及びその製造方法 Download PDF

Info

Publication number
WO2010101215A1
WO2010101215A1 PCT/JP2010/053546 JP2010053546W WO2010101215A1 WO 2010101215 A1 WO2010101215 A1 WO 2010101215A1 JP 2010053546 W JP2010053546 W JP 2010053546W WO 2010101215 A1 WO2010101215 A1 WO 2010101215A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
catalyst
carbon
aggregate
aluminum hydroxide
Prior art date
Application number
PCT/JP2010/053546
Other languages
English (en)
French (fr)
Inventor
神原 英二
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2010525149A priority Critical patent/JP4593692B2/ja
Priority to KR1020107015839A priority patent/KR101126119B1/ko
Priority to US13/129,312 priority patent/US20110218288A1/en
Priority to CN2010800010713A priority patent/CN101939256B/zh
Priority to EP10748808.2A priority patent/EP2351705B1/en
Publication of WO2010101215A1 publication Critical patent/WO2010101215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a carbon fiber aggregate, a method for producing the same, and a use thereof. More specifically, the present invention relates to a carbon fiber aggregate suitable as a filler for improving conductivity by being added to a resin material, a production method thereof, and a composite material containing the carbon fiber aggregate.
  • a conductive resin composite material in which a conductive filler such as carbon black, carbon fiber, or metal powder is blended with a matrix resin such as a thermosetting resin or a thermoplastic resin to impart conductivity is known.
  • a matrix resin such as a thermosetting resin or a thermoplastic resin to impart conductivity.
  • the physical properties of the matrix resin are adversely affected, and the inherent properties of the resin are not reflected in the prepared composite material. Therefore, a filler material that exhibits sufficiently high conductivity even with a small amount of blending has been desired.
  • Carbon nanotubes are attracting attention as such filler materials.
  • a method for producing carbon nanotubes a method using a chemical vapor deposition method (hereinafter referred to as a CVD method) is known.
  • CVD method there are known a method in which an organometallic complex or the like is used as a catalyst, and a catalytic metal is produced in a gas phase in a reaction system, a method in which the catalytic metal is supported on a carrier, and the like.
  • the former method using an organometallic complex or the like as a catalyst has many defects in the graphite layer, and if the heat treatment is not carried out at a higher temperature after the reaction, it becomes conductive when added as a conductive filler. Therefore, it is difficult to manufacture at low cost.
  • the latter method using a catalyst carrier can be roughly divided into a method using a substrate as a carrier (substrate method) and a method using a powdery carrier.
  • substrate method When the substrate method is used industrially, the surface area of the substrate cannot be increased unless a large number of substrates are used, so that not only the efficiency of the apparatus is low, but also the generated carbon nanotubes need to be recovered from the substrate, and the number of processes is large, which is economical It has not been put into practical use.
  • the method using a powdery carrier has the advantage that not only the device efficiency is high because the specific surface area is larger than the method using a substrate, but also a reactor used for various chemical synthesis can be used. .
  • U.S. Pat. No. 5,726,116 discloses a plurality of carbon fibrils whose longitudinal axes are in substantially the same relative orientation, each of the fibrils having substantially the same longitudinal axis.
  • Carbon fibril aggregates having parallel graphite layers and no continuous pyrolytic carbon outer coating layer are disclosed, and in examples using ⁇ -alumina as the catalyst support, the carbon fibril aggregates are linear or slightly It has been shown to take the form of a linear fiber bundle (combed yarn) in which curved or twisted fibers are bundled.
  • Patent Document 2 aluminum hydroxide fine particles (Alcoa Corporation: H-705) having an average particle diameter of 1 ⁇ m or less are 280 to 600 ° C. and the mass reduction rate is 27. It is disclosed that a combed yarn type carbon fibril aggregate similar to that of Patent Document 1 can be obtained by using activated alumina baked to about 33% as a catalyst carrier.
  • Patent Document 3 discloses a catalyst in which Fe and Co are supported on aluminum hydroxide at a specific ratio and then heat-treated. By using these catalysts, carbon production is performed. It has been shown that efficiency is improved. Furthermore, it is also disclosed that bayerite type aluminum hydroxide is suitable as the aluminum hydroxide to be used.
  • Patent Document 4 carbon catalyst is supported by using a catalyst that has been subjected to heat treatment and classification as needed after supporting a catalytic metal using aluminum hydroxide having a particle size of less than 80 ⁇ m as a support. It is disclosed that the generation efficiency is improved.
  • the carbon generation efficiency can be improved, but the conductivity when added to a resin composite material in particular is small. It had the disadvantage that there was no imparting effect.
  • the present invention has a carbon fiber aggregate capable of imparting conductivity to a resin composite material even when added in a small amount as a filler material for improving conductivity, thermal conductivity and strength, and It is in providing the manufacturing method.
  • the present inventors have conducted heat treatment of specific aluminum hydroxide, and then synthesized carbon fibers using a supported catalyst on which a catalytic metal is supported.
  • the inventors have found that a carbon fiber aggregate having an aggregated state can be obtained, and that the carbon fiber aggregate exhibits conductivity even when added in a small amount to a resin composite material, and has completed the present invention.
  • the present invention includes the following aspects.
  • Aluminum hydroxide having a BET specific surface area of 1 m 2 / g or less and a 50% volume cumulative particle diameter (D 50 ) of 10 to 300 ⁇ m is heat-treated to give a BET specific surface area of 50 to 200 m 2 / g.
  • a method for producing a carbon fiber aggregate comprising contacting a catalyst containing a catalyst metal or a catalyst metal precursor supported on a carrier and a carbon-containing compound in a heating region.
  • the carbon fiber aggregate has a diameter of 5 to 100 nm, an aspect ratio of 5 to 1000, and a non-linear primary carbon fiber in which the graphite layer extends substantially parallel to the fiber axis is
  • the secondary agglomerated fiber is a non-linear shape having a diameter of 1 ⁇ m or more and a length of 5 ⁇ m or more, and the secondary agglomerated fibers are aggregated to form a cocoon-shaped aggregate.
  • the carbon fiber aggregate has a diameter of 5 to 100 nm, an aspect ratio of 5 to 1000, and a non-linear carbon fiber in which the graphite layer extends substantially parallel to the fiber axis is aggregated to form a secondary Consists of agglomerated fiber, the secondary agglomerated fiber is a non-linear shape having a diameter of 1 ⁇ m or more and a length of 5 ⁇ m or more, and a cocoon shape in which the ratio of the major axis to the minor axis is 5 or more
  • the carbon fiber aggregate characterized by including the aggregate.
  • Aluminum hydroxide having a BET specific surface area of 1 m 2 / g or less and a 50% volume cumulative particle diameter (D 50 ) of 10 to 300 ⁇ m is heat-treated to give a BET specific surface area of 50 to 200 m 2 / g.
  • a catalyst for producing a carbon fiber aggregate obtained by supporting a catalyst metal or a catalyst metal precursor on the support.
  • the catalyst for producing a carbon fiber aggregate according to the above 13, obtained by impregnating the support with a solution containing a catalytic metal element and then drying.
  • the catalytic metal element is a combination of an element selected from Fe, Co and Ni, an element selected from Ti, V and Cr and an element selected from Mo and W
  • a carbon fiber aggregate capable of expressing the conductivity of the resin composite material can be obtained with a small amount of addition.
  • the electron micrograph image (* 430) of the preferable primary particle aggregate form aluminum hydroxide used by this invention.
  • Electron micrograph images of pseudo boehmite aggregates produced by neutralization method (A: ⁇ 200, B: ⁇ 2000) The electron micrograph image (* 43) of the product (carbon fiber aggregate) of Example 1.
  • FIG. The electron micrograph image (* 2500) of the product (secondary aggregate fiber) of Example 1.
  • FIG. The electron micrograph image (* 20000) of the product (primary carbon fiber) of Example 1.
  • FIG. Electron micrographs of ⁇ -alumina (manufactured by Strem Chemical) carrier (A: ⁇ 2000, B: ⁇ 20000).
  • a catalyst supporting a catalytic metal is brought into contact with a carbon-containing compound at a high temperature to cause carbon fiber coagulation having a unique cage shape. A collection can be obtained.
  • Aluminum hydroxide and its baked goods have been often used as carriers for catalysts for carbon fiber production.
  • the function required for aluminum hydroxide as a catalyst carrier and its baked product is to support the catalyst metal compound in a highly dispersed state and suppress the aggregation growth of the catalyst metal compound. Accordingly, it has been considered that the catalyst activity is higher when a carrier having a fine particle and a large specific surface area is used. Therefore, conventionally, as disclosed in Patent Document 2, fine aluminum hydroxide is used, or it is used as a carrier after a slight heat treatment to increase the specific surface area.
  • the present invention uses coarse particles of aluminum hydroxide and adopts a production method described later, thereby making the resin composite conductive with a smaller amount than conventional carbon fibers. It is possible to obtain a carbon fiber aggregate capable of imparting.
  • Aluminum hydroxide is synthesized by various methods, and various aluminum hydroxides having different crystal forms, particle size distributions, impurity amounts, etc. can be obtained depending on the synthesis method and conditions.
  • An example of a preferred form of aluminum hydroxide used in the present invention is that of a gibbsite structure obtained by the Bayer method.
  • aluminum hydroxide having a relatively large single particle shape (a structure in which single particles or several single particles are firmly aggregated).
  • 1 and 2 show electron micrographs of aluminum hydroxide preferably used in the present invention.
  • the solid particles have a rough surface or a slight amount of fine particles, but are substantially single particles (FIG. 1), or a plurality of primary particles have other particles at the ends of the particles. Agglomerates that are tightly bound to each other are preferred (FIG. 2).
  • FIG. 2 about 20 primary particles can be confirmed.
  • the average number of primary particles per aggregate was estimated by the following method. That is, assuming that the number of primary particles that can be confirmed by an electron microscope is about half of the number of particles, the number of primary particles that can be confirmed from an electron micrograph was taken as the total number of primary particles. It is preferable that the total number of primary particles is small as it is close to a single particle.
  • the number of suitable primary particles varies depending on the particle size and particle size distribution of the aluminum hydroxide to be used, and thus cannot be uniquely determined. To give a specific example, the total number of primary particles is preferably 100 or less, 50 or less is more preferable, and 20 or less is optimal.
  • the size of the primary particles is measured using an electron micrograph. Usually, since primary particles overlap each other and accurate measurement is difficult, the outer circumference that can be confirmed is extrapolated and the approximate size is measured.
  • the primary particle size is preferably 5 to 300 ⁇ m, more preferably 20 to 200 ⁇ m, and most preferably 40 to 200 ⁇ m.
  • fine alumina gel or pseudo boehmite aggregates produced by a neutralization method or the like, or aggregates of very fine particles formed or granulated from them are not preferable.
  • Such an aggregate of fine particles is characterized by having a very large specific surface area. Since the specific surface area rapidly increases by the heat treatment described later, care must be taken when using the specific surface area as a scale.
  • the BET specific surface area of aluminum hydroxide suitable as a carrier material is preferably 1 m 2 / g or less, 0.5 m 2 / g or less is more preferable, and 0.3 m 2 / g or less is most preferable.
  • the lower limit of 50% volume cumulative particle diameter D 50 of aluminum hydroxide is preferably 10 ⁇ m, more preferably 40 ⁇ m, and most preferably 70 ⁇ m.
  • the upper limit of the 50% volume cumulative particle diameter D 50 is preferably 300 ⁇ m, and more preferably 200 ⁇ m.
  • the preferred range of 50% volume cumulative particle diameter D 50 of aluminum hydroxide is preferably 10 to 300 ⁇ m, more preferably 40 to 200 ⁇ m, most preferably 70 to 200 ⁇ m.
  • 40 to 150 ⁇ m may be preferable.
  • the particle size distribution of aluminum hydroxide for use in the present invention preferred for better particle size distribution is slightly larger are contained many large particles having a particle size in the case of 50% volume cumulative particle diameter D 50 less .
  • the particle size distribution index defined by the following formula as an index of the particle size distribution is preferably 1.50 or less, more preferably 1.20 or less, and most preferably 1.0 or less.
  • D 10 , D 50 and D 90 are respectively 90% volume cumulative particle diameter, 10% volume cumulative particle diameter and 50% volume cumulative particle determined by a particle size distribution meter (manufactured by Nikkiso Co., Ltd .: Microtrac HRA). Is the diameter.
  • the particle size distribution index is preferably 1.0 to 1.50.
  • Patent Document 2 submicron aluminum hydroxide agglomerated particles (for example, Alcoa H-705: BET ratio) (Surface area of 5 m 2 / g or more) is heat-treated until the mass reduction rate becomes 27 to 33%.
  • the specific surface area in this case is estimated to be about 150 to 300 m 2 / g from Fig. 4.4 of the reference.
  • the production method of the present invention is characterized in that the above-described specific aluminum hydroxide is not subjected to the conventional specific surface area level but is subjected to heat treatment under the condition of a lower specific surface area.
  • Patent Document 3 European Patent Publication No. 1797950 (Patent Document 3) and International Publication No. 2006/079186 Pamphlet (Patent Document 4)
  • Patent Document 4 As the dehydration reaction of aluminum hydroxide progresses, the interaction with the catalyst metal becomes stronger, so that the resulting carbon nanotubes are imparted with electrical conductivity to the resin composite material, either because they are dissolved in the carrier or firmly bonded. (See Comparative Example 10 described later).
  • a carrier having a high activity generally used as described above is not used, and a relatively coarse carrier raw material (aluminum hydroxide) is heat-treated at a relatively high temperature so as not to have a very strong activity. It is characterized in that it supports a catalytic metal and is used for a carbon fiber synthesis reaction.
  • the BET specific surface area after heat treatment of aluminum hydroxide used as a carrier material in the present invention is preferably 50 to 200 m 2 / g. Specifically, preferably 50 m 2 / g as a lower limit, more preferably 90m 2 / g. Further, preferably 200 meters 2 / g as an upper limit, 150 meters more preferably 2 / g, 145m 2 / g being most preferred. If the BET specific surface area exceeds 200 m 2 / g, the conductivity imparting effect on the carbon fiber composite material obtained using the metal-supported catalyst is reduced, which is not preferable. When the BET method specific surface area is less than 50 m 2 / g, not only the carbon-fiber-generating efficiency of the metal-supported catalyst is low, but also the effect of imparting conductivity to the composite material of the obtained carbon fiber is not preferable.
  • the heat treatment conditions for aluminum hydroxide are not particularly limited as long as the temperature, time, and atmosphere at which the specific surface area is obtained are selected.
  • the appropriate temperature varies depending on the particle size, impurity concentration, etc. of the aluminum hydroxide used, it is usually preferably 500 to 1000 ° C, more preferably 600 to 1000 ° C, and most preferably 600 to 900 ° C.
  • transition alumina intermediate alumina
  • heat treatment is often performed at a high temperature for a very short time, but unlike these methods.
  • a uniform carrier material is obtained by heat treatment at an appropriate temperature for a relatively long time. Accordingly, a preferable heat treatment time is generally 1 minute to 10 hours, more preferably 10 minutes to 5 hours, and most preferably 10 minutes to 3 hours.
  • the catalyst metal used in the present invention is not particularly limited as long as it is a substance that promotes the growth of carbon fibers.
  • Examples of such a catalyst metal include at least one metal selected from the group consisting of groups 3 to 12 of the group 18 periodic table recommended by IUPAC in 1990.
  • At least one metal selected from the group consisting of 3, 5, 6, 8, 9, and 10 groups is preferable, and iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), molybdenum ( At least one metal selected from Mo), tungsten (W), vanadium (V), titanium, (Ti) ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt) and rare earth elements preferable.
  • compounds containing metal elements that act as catalysts include inorganic salts such as nitrates, sulfates and carbonates of catalyst metals, organic salts such as acetates, and organic complexes such as acetylacetone complexes.
  • inorganic salts such as nitrates, sulfates and carbonates of catalyst metals
  • organic salts such as acetates
  • organic complexes such as acetylacetone complexes.
  • it is a compound containing a catalytic metal such as an organometallic compound, it is not particularly limited. From the viewpoint of reactivity, nitrates and acetylacetone complexes are preferred.
  • reaction activity is controlled by using two or more of these catalytic metals and catalytic metal precursor compounds.
  • a suitable catalyst an element selected from Fe, Co and Ni, an element selected from Ti, V and Cr, and Mo and W disclosed in JP-A-2008-174442 are selected. The combination with an element is mentioned.
  • the supported catalyst used in the production method of the present invention is not particularly limited as to its preparation method, but it is particularly preferred to produce it by an impregnation method in which a catalyst is obtained by impregnating a carrier with a liquid containing a catalytic metal element.
  • an impregnation method in which a catalyst is obtained by impregnating a carrier with a liquid containing a catalytic metal element.
  • Specific examples include a method in which a catalyst metal precursor compound is dissolved or dispersed in a solvent, this solution or dispersion is impregnated into a granular carrier, and then dried.
  • the liquid containing the catalytic metal element may be an organic compound containing a liquid catalytic metal element, or may be a solution obtained by dissolving or dispersing a compound containing a catalytic metal element in an organic solvent or water.
  • Organic solvents used here include aromatic hydrocarbons such as benzene, toluene and xylene, saturated hydrocarbons such as hexane and cyclohexane, ethers such as diethyl ether, dimethyl ether, methyl ethyl ether, furan, dibenzofuran, chloroform and tetrahydrofuran, formaldehyde Aldehydes such as acetaldehyde, propionaldehyde, acrolein and benzaldehyde, and halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene and chloroethane.
  • a dispersant or a surfactant may be added to the liquid containing the catalytic metal element.
  • a dispersant or a surfactant preferably a cationic surfactant or an anionic surfactant
  • the concentration of the catalytic metal element in the liquid containing the catalytic metal element can be appropriately selected depending on the solvent and the catalytic metal species.
  • the amount of the liquid containing the catalytic metal element mixed with the carrier is preferably equivalent to the amount of liquid absorbed by the carrier used.
  • Drying after sufficiently mixing the liquid containing the catalytic metal element and the carrier is usually performed at 70 to 150 ° C. In drying, vacuum drying may be used.
  • the carbon source (carbon-containing compound) used in the method for producing a carbon fiber aggregate of the present invention is not particularly limited.
  • the carbon-containing compound CCl 4 , CHCl 3 , CH 2 Cl 2 , CH 3 Cl, CO, CO 2 , CS 2 and other organic compounds can be used.
  • Particularly useful compounds include CO, CO 2 , aliphatic hydrocarbons and aromatic hydrocarbons.
  • Carbon compounds containing elements such as nitrogen, phosphorus, oxygen, sulfur, fluorine, chlorine, bromine and iodine can also be used.
  • preferred carbon-containing compound CO
  • inorganic gas such as CO 2, methane, ethane, propane, butane, pentane, hexane, heptane, alkanes octane, ethylene, propylene, alkenes such as butadiene, acetylene Alkynes such as benzene, toluene, xylene, monocyclic aromatic hydrocarbons such as styrene, polycyclic compounds having a condensed ring such as indene, naphthalene, anthracene, and phenanthrene, cyclopropane such as cyclopropane, cyclopentane, and cyclohexane.
  • inorganic gas such as CO 2, methane, ethane, propane, butane, pentane, hexane, heptane, alkanes octane, ethylene, propylene, alkenes such as
  • Examples thereof include cycloolefins such as paraffins, cyclopentene, cyclohexene, cyclopentadiene, and dicyclopentadiene, and alicyclic hydrocarbon compounds having a condensed ring such as a steroid. Furthermore, these hydrocarbons contain oxygen, nitrogen, sulfur, phosphorus, halogen, etc., for example, oxygen-containing compounds such as methanol, ethanol, propanol, butanol, methylthiol, methylethyl sulfide, dimethylthioketone, etc.
  • cycloolefins such as paraffins, cyclopentene, cyclohexene, cyclopentadiene, and dicyclopentadiene
  • alicyclic hydrocarbon compounds having a condensed ring such as a steroid.
  • oxygen-containing compounds such as methanol, ethanol, propanol, butanol, methylthiol, methyle
  • Sulfur-containing aliphatic compounds sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide, sulfur-containing or nitrogen-containing heterocyclic compounds such as pyridine, quinoline, benzothiophene, thiophene, chloroform, carbon tetrachloride, chloroethane, trichloroethylene, etc.
  • Natural gas, gasoline, kerosene, heavy oil, creosote oil, kerosene, turpentine oil, camphor oil, pine oil, gear oil, cylinder oil and the like can also be used. These can also be used as a mixture of two or more.
  • preferred carbon-containing compounds include CO, methane, ethane, propane, butane, ethylene, propylene, butadiene, methanol, ethanol, propanol, butanol, acetylene, benzene, toluene, xylene and mixtures thereof.
  • Particularly preferred carbon-containing compounds include ethylene, propylene and ethanol.
  • Carrier gas In the method for producing a carbon fiber aggregate of the present invention, it is recommended to use a carrier gas in addition to these carbon-containing compounds.
  • the carrier gas hydrogen gas, nitrogen gas, carbon dioxide gas, helium gas, argon gas, krypton gas, or a mixed gas thereof can be used.
  • a gas containing oxygen molecules such as air (that is, oxygen in the molecular state: O2) is not suitable because it deteriorates the catalyst.
  • the catalytic metal precursor compound used in the present invention may be in an oxidized state.
  • a gas containing a reducing hydrogen gas as a carrier gas. Therefore, a preferable carrier gas is a gas containing hydrogen gas of 1 vol% or more, further 30 vol% or more, and most preferably 85 vol% or more. For example, 100 vol% hydrogen gas or a gas obtained by diluting hydrogen gas with nitrogen gas.
  • the catalyst metal precursor compound may be in an oxidized state
  • a step of reducing the catalyst metal to the catalyst metal by contacting with a reducing gas before contacting with the carbon-containing compound is often provided.
  • the carbon fiber formation efficiency is insufficient because the aggregation of the catalytic metal proceeds, or the conductivity imparting effect of the generated carbon fiber to the resin composite material is reduced.
  • a more preferable method is a method in which the temperature of the reaction furnace is raised to a predetermined temperature and then the catalyst is supplied simultaneously with the carbon-containing compound.
  • the above-mentioned carbon-containing compound is preferably liquid or solid at room temperature, and is heated and vaporized to be introduced as a carbon-containing gas.
  • the supply amount of these carbon-containing gases varies depending on the catalyst used, the carbon-containing compound, and the reaction conditions, and therefore cannot be uniquely determined. In general, the preferred range is (carbon-containing gas flow rate) / (carrier gas flow rate + carbon-containing). Gas flow rate) is 10 to 90 vol%, more preferably 30 to 70 vol%. When the carbon-containing compound is ethylene, the range of 30 to 90 vol% is particularly preferable.
  • the temperature at which the catalyst and the carbon-containing compound are brought into contact varies depending on the carbon-containing compound used, but is generally from 400 to 1100 ° C., preferably from 500 to 800 ° C. If the temperature is too low or too high, the amount of carbon fiber aggregates produced may be significantly reduced. Further, at a high temperature at which a side reaction other than the generation of carbon fiber occurs, there is a tendency that a large amount of a non-conductive substance that is not suitable for application as a filler adheres to the carbon fiber surface.
  • each carbon fiber is aggregated in a unique cocoon-like form. It is considered that this agglomerated form can maintain the contradictory state of maintaining a good dispersion state in the resin composite and maintaining a network of fibers.
  • the primary carbon fiber constituting the carbon fiber aggregate obtained by the method of the present invention has a fiber diameter (diameter) of preferably 5 to 100 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 50 nm.
  • the aspect ratio (fiber length / fiber diameter) is usually 5 to 1000.
  • the fiber diameter and fiber length are measured from an electron micrograph.
  • the graphite layer extends substantially parallel to the fiber axis.
  • substantially parallel means that the inclination of the graphite layer with respect to the fiber axis is within about ⁇ 15 degrees.
  • a graphite layer is a graphene sheet which comprises carbon fiber, and can be observed as a striped pattern by an electron micrograph (TEM).
  • the length of the graphite layer is preferably 0.02 to 15 times the fiber diameter.
  • the shorter the length of the graphite layer the higher the adhesion strength between the carbon fiber and the resin when the resin or the like is filled, and the mechanical strength of the composite of the resin and the carbon fiber is increased.
  • the length of the graphite layer and the inclination of the graphite layer can be measured by observation with an electron micrograph or the like.
  • the ratio of the number of graphite layers having a length less than twice the fiber diameter is preferably 30 to 90%.
  • the length of the graphite layer is measured from an electron micrograph.
  • the shape of the primary carbon fiber of a preferable aspect is a tube shape which has a cavity in the center part of a fiber.
  • the hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous.
  • the ratio (d 0 / d) between the fiber diameter (d) and the cavity inner diameter (d 0 ) is not particularly limited, but is usually 0.1 to 0.8, preferably 0.1 to 0.6.
  • the tube-like primary carbon fiber according to a preferred embodiment of the present invention is preferably such that the shell surrounding the cavity has a multilayer structure.
  • the inner layer of the shell is composed of crystalline carbon
  • the outer layer is composed of carbon including the pyrolysis layer
  • the graphite layer is irregularly arranged irregularly with the parts regularly arranged in parallel. The thing which consists of the part which was made is mentioned.
  • the carbon fiber in which the inner layer of the former shell is composed of crystalline carbon and the outer layer is composed of carbon including a pyrolysis layer has high adhesion strength with the resin when filled in the resin, and the resin and carbon.
  • the mechanical strength of the fiber composite is increased.
  • the layer consisting of irregular carbon atoms is thick, the fiber strength tends to be weak, and irregular carbon If the layer of atomic arrangement is thin, the interface strength with the resin tends to be weak.
  • a layer composed of an irregular arrangement of carbon atoms is present in an appropriate thickness, or one fiber It is preferable that a thick irregular graphite layer and a thin irregular graphite layer are mixed (distributed).
  • the carbon fiber aggregate of the present invention has a BET specific surface area of usually 20 to 400 m 2 / g, preferably 30 to 350 m 2 / g, more preferably 40 to 350 m 2 / g.
  • the value of a specific surface area is calculated
  • the form of the primary carbon fiber of the present invention is a non-linear fiber that is twisted and bent over almost the entire region of the fiber. It is a feature. It is presumed that the secondary agglomerated fibers have a relatively strong agglomeration force because they are bent like this.
  • the carbon fiber aggregate in a preferred embodiment of the present invention is characterized by forming secondary aggregated fibers in which primary carbon fibers are aggregated as described above. It is possible to specify the structure of such a carbon fiber aggregate by observing it using an electron micrograph. The fiber diameter, fiber length, and the like are specified as an average value of several tens to hundreds of specimens observed using an electron micrograph.
  • the above-described meandering primary carbon fibers are characterized by relatively randomly aggregated secondary aggregated fibers. Further, the secondary agglomerated fibers themselves are not linear, but are curved or bent like the respective carbon fibers.
  • the diameter of the secondary agglomerated fiber is usually 1 to 100 ⁇ m, preferably 5 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m. Secondary aggregated fibers are further aggregated, and the ends thereof are often taken into the aggregates, so that it is often difficult to accurately measure the length.
  • the length of the aggregated fiber that can be confirmed by observation with an electron microscope is usually 5 to 500 ⁇ m, preferably 10 to 500 ⁇ m, and more preferably 20 to 200 ⁇ m.
  • the resin composite material A carbon fiber aggregate containing a bowl-shaped aggregate having a high conductivity imparting effect is obtained. The larger the ratio of the major axis to the minor axis, the greater the conductivity imparting effect of the bowl-shaped aggregate.
  • secondary aggregate fibers further aggregate to form a cocoon-shaped aggregate.
  • the cocoon-shaped agglomerates can be identified by defining the ratio of the major axis to the minor axis by observation with an electron micrograph.
  • the carbon fiber aggregate of the present invention is actually obtained as a mixture with an agglomerate of amorphous or almost spherical shape other than a bowl shape, or the agglomerate breaks apart at the sample preparation stage for electron microscope photography. Therefore, since the major axis is shortened, it is often difficult to grasp quantitatively.
  • it contains cocoon-shaped aggregates having a major axis / minor axis ratio of at least 3 or more, preferably 5 or more, more preferably 7 or more.
  • the minor axis of the bowl-shaped aggregate is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 300 ⁇ m or more.
  • the degree of aggregation of the secondary aggregated fibers in the bowl-shaped aggregate is coarser than the degree of aggregation of the primary carbon fibers in the secondary aggregated fibers. Therefore, when this cocoon-shaped aggregate is added to the resin and kneaded, the secondary aggregate fibers are relatively easily dispersed, but the primary carbon fibers forming the secondary aggregate fibers are strongly entangled with each other. Therefore, it is considered that the network structure is maintained without being completely dispersed (not separated) in the resin composite.
  • the ratio of the major axis to the minor axis of the cocoon-shaped aggregate is large, the secondary aggregate fibers are presumed to have orientation, but when the length of the secondary aggregate fibers is short, it is difficult to align.
  • the length of the secondary fiber is long to some extent. It is considered that the secondary agglomerated fibers easily form the high dispersion state as described above when added and kneaded in the composite material. At this time, if the secondary agglomerated fibers are long, the network structure is easily maintained even between the secondary agglomerated fibers, and this is considered to be a factor that can add conductivity to the composite material with a small amount of addition.
  • the carbon fiber of the present invention has a unique cage-like aggregate structure, the conductivity of the resin composite material is manifested even in a low addition region where the conductivity is not manifested in the prior art. Conceivable.
  • a resin composite material can be prepared by blending and kneading the carbon fiber aggregate in a preferred embodiment of the present invention with a resin.
  • the amount of carbon fiber added to the resin composite material is 0.5 to 30% by mass.
  • the desired conductivity could not be obtained unless 5 to 15% by mass was blended, but in the carbon fiber aggregate of the present invention, 1/3 to 1/5 (mass ratio) or less.
  • An excellent effect of showing the same conductivity with the added amount is obtained.
  • sufficient conductivity can be obtained by addition of 0.5 to 10% by mass, preferably 0.5 to 5% by mass. When the addition amount is less than 0.5% by mass, it is difficult to form a sufficiently conductive and thermally conductive path in the resin blend. On the other hand, when the addition amount exceeds 30% by mass, the characteristics of the resin itself are easily lost.
  • the resin used for the resin composite material in a preferred embodiment of the present invention is not particularly limited, but is preferably a thermosetting resin, a photocurable resin, or a thermoplastic resin.
  • a thermosetting resin for example, polyamide, polyether, polyimide, polysulfone, epoxy resin, unsaturated polyester resin, phenol resin and the like can be used.
  • the photocurable resin for example, radical curable resin (acrylic resin) Acrylic monomers such as polyester monomers, polyester acrylates, urethane acrylates, epoxy acrylates, unsaturated polyesters, enethiol polymers), cationic curing resins (epoxy resins, oxetane resins, vinyl ether resins), etc.
  • the thermoplastic resin for example, nylon resin, polyethylene resin, polyamide resin, polyester resin, polycarbonate resin, polyarylate resin, cyclopolyolefin resin, and the like can be used.
  • the resin composite material blended with the carbon fiber aggregate in a preferred embodiment according to the present invention is a product that requires impact resistance and electrical conductivity and antistatic properties, such as OA equipment, electronic equipment, conductive packaging parts, conductive Can be suitably used as a molding material for conductive sliding members, conductive heat conductive members, antistatic packaging parts, and automotive parts to which electrostatic coating is applied.
  • a conventionally known method for molding a conductive resin composition can be employed.
  • the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.
  • Example 1 [Heat treatment] Gibbsite type aluminum hydroxide H-100 (manufactured by Showa Denko KK, BET specific surface area: 0.12 m 2 / g) was heated in a muffle furnace at 650 ° C. for 1 hour. The specific surface area of the aluminum hydroxide after the heat treatment measured by the BET method was 140 m 2 / g.
  • the aluminum hydroxide used is an aggregate having a primary particle size of about 40 particles of about 25 ⁇ m.
  • the physical properties of aluminum hydroxide (BET specific surface area, particle size distribution index, number of primary particles, primary particle size before heat treatment) are shown in Table 1.
  • FIG. 4 aggregate mass, ⁇ 43
  • FIG. 5 secondary aggregate fiber, ⁇ 2500
  • FIG. 6 primary carbon fiber, ⁇ 20000
  • FIG. 7 primary carbon fiber, ⁇ 2000000. It was shown to.
  • the product forms a cocoon-shaped round agglomerate having a minor axis of about 100 to 300 ⁇ m, a major axis of about 100 to 1,000 ⁇ m, and a ratio of major axis to minor axis of 3 to It was about 6.
  • the secondary agglomerated fibers had a meandering shape with a diameter of about 2-5 ⁇ m and a length of at least about 10 ⁇ m (FIG. 5).
  • Each fiber is a non-linear meandering fiber (Fig. 6), the diameter is about 10 nm, the graphite layer extends almost parallel to the fiber axis, Adhesion of a carbon layer that was thought to originate from decomposition was observed (FIG. 7).
  • the volume resistivity of this flat plate was measured by a four-probe method according to JIS-K7194 using a volume resistivity meter (Mitsubishi Chemical Corp .; Loresta MCPT-410) and found to be 2 ⁇ 10 3 ⁇ cm. It was.
  • Table 2 summarizes the catalyst preparation conditions (heat treatment temperature, BET specific surface area of the support after heat treatment), catalyst metal loading, carbon fiber synthesis temperature, and results (increased mass and composite material resistance).
  • Example 2 The same procedure as in Example 1 was performed except that the synthesis temperature of the carbon fiber aggregate was 690 ° C. The product form was equivalent to Example 1. The synthesis conditions (reaction temperature) and results are shown in Table 2 in the same manner as in Example 1.
  • Example 3 The same procedure as in Example 2 was performed except that a 100 mesh (Me) sieve product (BET specific surface area: 0.062 m 2 / g) manufactured by Showa Denko KK was used as the gibbsite type aluminum hydroxide.
  • the product form was equivalent to Example 1.
  • Table 1 shows the physical properties of the aluminum hydroxide used, and Table 2 shows the synthesis conditions and results.
  • Example 4 Obtained by classifying gibbsite-type aluminum hydroxide obtained by the method described in JP-A-2003-095455, the number of primary particles is about 1 to 5, the primary particle size is about 20 to 50 ⁇ m, and the BET specific surface area is 0.24 m. 2 / g, 50% volume cumulative particle diameter D 50 45 ⁇ m, particle size distribution index 1.20 was used as a raw material, the heat treatment temperature was 850 ° C., and the catalyst loading was 10% by mass. Performed as in Example 2.
  • FIG. 8 and FIG. 9 show electron micrographs of the carbon fiber aggregates (FIG. 8: x55, FIG. 9: x1300).
  • the short diameter of the carbon fiber aggregate was about 100 to 200 ⁇ m
  • the long diameter was about 200 to 800 ⁇ m
  • the ratio of the long diameter to the short diameter was about 4 to 10.
  • Table 1 shows the physical properties of the aluminum hydroxide used
  • Table 2 shows the synthesis conditions and results.
  • Comparative Example 1 As in US Pat. No. 5,726,116 (Patent Document 1), ⁇ -alumina (manufactured by Strem Chemical, BET specific surface area: 130 m 2 / g, 50% volume cumulative particle diameter D 50 : 10 ⁇ m) was used as a carrier. An electron micrograph of the carrier is shown in FIG. 10 (FIG. 10-A: ⁇ 2000, FIG. 10-B: ⁇ 20000). From the figure, it is clear that it is a heat-treated product of alumina gel / pseudoboehmite synthesized by a neutralization method or the like, unlike the heat-treated coarse gibbsite-type aluminum hydroxide.
  • Example 2 Except that 1 part by mass of support and 2.6 parts by mass of iron nitrate nonahydrate methanol solution (concentration 70% by mass) were mixed and then dried in a 120 ° C. vacuum dryer for 16 hours as a catalyst. This was carried out in the same manner as in Example 2.
  • the electron micrographs of the product are shown in FIG. 11 ( ⁇ 400) and FIG. 12 ( ⁇ 5000).
  • the product was a mixture of secondary agglomerated fibers close to a straight line and randomly oriented carbon fibers. They further aggregated to form aggregates. Agglomerates were a mixture of aggregates of various shapes close to a sphere and those that collapsed.
  • the synthesis conditions and results are shown in Table 3.
  • Comparative Example 2 Showa Denko H-43M (BET specific surface area: 7.3 m 2 / g, 50% volume cumulative particle diameter D 50 : 0.68 ⁇ m) was used as the gibbsite type aluminum hydroxide, and the heat treatment temperature was 550 ° C. Except for this, the same procedure as in Example 2 was performed. The shape of the product was the same as in Comparative Example 1. The physical properties of the aluminum hydroxide used are shown in Table 1, and the synthesis conditions and results are shown in Table 3.
  • Comparative Example 3 It implemented similarly to the comparative example 2 except having set heat processing temperature to 700 degreeC.
  • FIG. 13 shows an electron micrograph of the obtained carbon fiber aggregate mass ( ⁇ 30). It was an aggregate of various shapes close to a sphere. The synthesis conditions and results are shown in Table 3.
  • Comparative Example 4 Example except that boehmite APYRAL AOH 60 (BET method specific surface area: 6 m 2 / g, 50% volume cumulative particle diameter D 50 : 0.9 ⁇ m) manufactured by Nalvac was used as aluminum hydroxide and the heat treatment temperature was 850 ° C. Performed in the same manner as 2. The shape of the product was equivalent to that of Comparative Example 3. The synthesis conditions and results are shown in Table 3.
  • Comparative Example 5 As an aluminum hydroxide, a synthetic boehmite V-250 (BET method specific surface area: 230 m 2 / g, 50% volume cumulative particle diameter D 50 : 50 ⁇ m, synthesized by neutralization of an aluminum solution and granulated and dried. Using an electron microscope image; FIG. 3), the same procedure as in Example 2 was performed except that the heat treatment temperature was 850 ° C. The product was a nearly spherical aggregate (FIG. 14, x33). The synthesis conditions and results are shown in Table 3.
  • Comparative Example 6 Comparison except that ⁇ alumina (OxideAluC manufactured by Degussa Co., BET specific surface area: 100 m 2 / g, 50% volume cumulative particle diameter D 50 : 0.9 ⁇ m) synthesized by vapor phase method was used instead of ⁇ alumina. Performed as in Example 1. The appearance of the aggregate was the same as in Comparative Example 3. Each fiber was randomly oriented in the aggregate (FIG. 15, ⁇ 5000). The synthesis conditions and results are shown in Table 3.
  • ⁇ alumina OxideAluC manufactured by Degussa Co., BET specific surface area: 100 m 2 / g, 50% volume cumulative particle diameter D 50 : 0.9 ⁇ m
  • Comparative Example 7 The same procedure as in Comparative Example 1 was conducted except that AKP-G015 (BET specific surface area: 150 m 2 / g, 50% volume cumulative particle diameter D 50 : 2.1 ⁇ m) manufactured by Sumitomo Chemical Co., Ltd. was used as the ⁇ -alumina. .
  • the form of the fiber was the same as in Comparative Example 6. The synthesis conditions and results are shown in Table 3.
  • Examples 5-6, Comparative Examples 8-9 The heat treatment was carried out in the same manner as in Example 2 except that the temperature shown in Tables 4 and 5 was used. The synthesis conditions and results are shown in Tables 4 and 5.
  • Comparative Example 10 In the same manner as in European Patent Publication No. 1797950 (Patent Document 3), a catalyst metal was supported on aluminum hydroxide, and then a catalyst was prepared by a heat treatment method. That is, after mixing 1 part by weight of gibbsite type aluminum hydroxide (Showa Denko H-43M) and 2.6 parts by weight of a methanol solution of iron nitrate nonahydrate (concentration 70% by weight), a 120 ° C. vacuum dryer. For 16 hours, and the dried catalyst was heat-treated at 700 ° C. for 1 hour. It implemented like Example 2 using the catalyst after heat processing. The product form was equivalent to Comparative Example 3. The synthesis conditions and results are shown in Table 6.
  • Comparative Examples 11-12 Instead of the gibbsite type aluminum hydroxide, Bayerite (VersalBT manufactured by Union Showa Co., Ltd., BET specific surface area: 25 m 2 / g, 50% volume cumulative particle diameter D 50 : 20 ⁇ m) (Comparative Example 11), pseudoboehmite (Union Showa) Comparative Example 10 was carried out except that V-250) (Comparative Example 12) was used. The synthesis conditions and results are shown in Table 6.
  • Aluminum hydroxide gibbsite
  • Carbon fiber aggregates synthesized by contacting with a carbon source under a heating region are synthesized using a catalyst prepared from aluminum hydroxide having a specific surface area and a 50% volume cumulative particle diameter D 50 outside the range of claim 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、BET法比表面積が1m2/g以下、50%体積累計粒子径が10~300μmの水酸化アルミニウムを、BET法比表面積が50~200m2/gとなるまで加熱処理し、ついで金属触媒または触媒金属前駆体を担持させた担持触媒と炭素含有化合物を加熱領域下で接触させる炭素繊維凝集体の製造方法、その方法で得られる直径5~100nm、アスペクト比5~1000、黒鉛層が繊維軸に対しほぼ平行に伸長している非直線状の一次炭素繊維が凝集して二次凝集繊維を構成し、前記二次凝集繊維は直径1μm以上、長さ5μm以上の非直線状であり、さらに前記二次凝集繊維が凝集した長径と短径の比が5以上の繭状の凝集塊を含む炭素繊維凝集体、及びその炭素繊維凝集体を含む樹脂複合材料を提供する。本発明によれば、少量配合した場合でも樹脂複合材料に導電性の付与が可能なフィラー材料として有用な炭素繊維凝集体を提供することができる。

Description

炭素繊維凝集体、及びその製造方法
 本発明は炭素繊維凝集体、その製造方法及び用途に関する。さらに詳しく言えば、樹脂材料に添加して導電性を改善するフィラーとして好適な炭素繊維凝集体、その製造方法及びその炭素繊維凝集体を配合した複合材料に関する。
 従来、熱硬化性樹脂や熱可塑性樹脂などのマトリックス樹脂に、カーボンブラック、カーボン繊維または金属粉等の導電性フィラーを配合して導電性を付与した導電性樹脂複合材料が知られている。
 しかし、この種の複合材料に高導電性(特に望ましくは、体積抵抗率1×106Ω・cm以下)を付与するには、相当な量の導電性フィラーを添加する必要がある。しかし、多量の導電性フィラーを添加するとマトリックス樹脂の物性に悪影響を及ぼし、調製された複合材料に樹脂本来の特性が反映されなくなるという欠点があった。そのため少量の配合量でも十分に高い導電性を発現するフィラー材料が望まれていた。
 このようなフィラー材料として、カーボンナノチューブが注目されている。カーボンナノチューブの製造方法としては、化学的気相成長法(以下、CVD法という。)による方法が知られている。CVD法としては、有機金属錯体などを触媒として用い、反応系内で触媒金属を気相中に生成させる方法と、触媒金属を担体に担持して用いる方法などが知られている。
 このようなCVD法のうち、前者の有機金属錯体などを触媒として使用する方法では、グラファイト層の欠陥が多く、反応後に、さらに高温で加熱処理を実施しないと導電性フィラーとして添加した場合に導電性が発現しないという問題があり、安価に製造することは困難であった。
 後者の触媒担体を用いる方法は、担体として基板を用いる方法(基板法)と粉末状の担体を用いる方法に大別できる。基板法は産業的に利用する場合、多数の基板を使用しないと基板表面積を稼げないため装置効率が低いだけでなく、生成したカーボンナノチューブを基板から回収する必要があり、工程数が多いため経済的ではなく、実用化には至っていない。
 一方、粉末状の担体を用いる方法は、基板を用いる方法に比較して比表面積が大きいため装置効率が高いだけでなく、様々な化学合成に用いられる反応装置が使用可能であるという利点を有する。
 このような粉末状の担体として、アルミナ、マグネシア、シリカ、ゼオライトなどの比表面積の大きな微粉末を用いることが数多く提案されているものの、いずれの担体を用いても、樹脂複合材料に使用した場合に少量の添加量で導電性を付与できる炭素繊維を合成することはできなかった。
 米国特許第5726116号公報(特許文献1)には、長手方向の軸が実質的に同じ相対的配向になっている複数の炭素フィブリルで、それらフィブリルの各々がその長手方向の軸に実質的に平行な黒鉛層を有し、連続的熱分解炭素外側被覆層を持たない炭素フィブリル凝集体が開示され、触媒担体としてγアルミナを用いた実施例には、炭素フィブリル凝集体が直線状かわずかに湾曲あるいはねじれている繊維が束になった直線状の繊維束(コームドヤーン:combed yarn)の形態をとることが示されている。
 国際公開公報第95/31281号パンフレット(特許文献2)の実施例には、平均粒子径1μm以下の水酸化アルミニウム微粒子(アルコア社製:H-705)を280~600℃で質量減少率が27~33%となるまで假焼した活性アルミナを触媒担体として用いることにより特許文献1と同様のコームドヤーン型の炭素フィブリル凝集体が得られることが開示されている。
 欧州特許公開第1797950号公報(特許文献3)には、水酸化アルミニウムにFeとCoを特定割合で担持させた後、熱処理した触媒が開示されており、これらの触媒を用いることにより、炭素生成効率が向上することが示されている。さらに、用いる水酸化アルミニウムとしてはバイヤライト型の水酸化アルミニウムが好適であることも開示されている。
 国際公開第2006/079186号パンフレット(特許文献4)には、80μm未満の粒子サイズの水酸化アルミニウムを担体として触媒金属を担持した後、必要に応じて熱処理、分級した触媒を用いることにより、炭素生成効率が向上することが開示されている。
 また、同様に水酸化アルミニウムを担体として用いる例として、アルミニウム塩の水溶液を中和すること(中和法)によって得られる極めて微粒のアルミナゲルや擬ベーマイトを必要に応じて造粒した後、假焼した活性アルミナや遷移アルミナを担体として用いたり(特開昭52-107329号公報;特許文献5)、アルミニウム塩と触媒金属塩の水溶液を中和するなどしてアルミニウムと触媒金属を共沈させて、必要に応じて假焼した触媒を用いるカーボンナノチューブの合成方法(国際公開第2006/50903号パンフレット;特許文献6)も知られている。
米国特許第5726116号公報 国際公開第95/31281号パンフレット 欧州特許公開第1797950号公報 国際公開第2006/079186号パンフレット 特開昭52-107329号公報 国際公開第2006/50903号パンフレット
 特許文献1~6の方法では、代表例を後述の比較例1、2、10及び11に示したように、炭素生成効率の向上は図れるものの、特に樹脂複合材料へ少量添加した際の導電性付与効果がないという欠点を有していた。
 本発明の課題は、上記問題点に鑑み、導電性、熱伝導性や強度向上のためのフィラー材料として、少量添加した場合でも樹脂複合材料に導電性の付与が可能な炭素繊維凝集体、及びその製造方法を提供することにある。
 本発明者は上記の課題を解決するため鋭意検討した結果、特定の水酸化アルミニウムを加熱処理した後、触媒金属を担持させた担持触媒を用いて炭素繊維を合成することにより特異な繭状の凝集状態を有する炭素繊維凝集体が得られること、及びこの炭素繊維凝集体は樹脂複合材料へ少量添加した場合でも導電性が発現することを見出し本発明を完成するに至った。
 すなわち、本発明は、以下の態様を含む。
[1]BET法比表面積が1m2/g以下で、50%体積累積粒子径(D50)が10~300μmの水酸化アルミニウムを、加熱処理してBET法比表面積を50~200m2/gとした担体に触媒金属または触媒金属前駆体を担持させた触媒と炭素含有化合物を加熱領域下で接触させることを特徴とする炭素繊維凝集体の製造方法。
[2]水酸化アルミニウムの加熱処理温度が500~1000℃である前記1に記載の炭素繊維凝集体の製造方法。
[3]炭素繊維凝集体が、直径が5~100nm、アスペクト比が5~1000であり、黒鉛層が繊維軸に対しほぼ平行に伸長している非直線状の一次炭素繊維が凝集して二次凝集繊維を構成し、前記二次凝集繊維は直径が1μm以上、長さが5μm以上の非直線状であり、さらに前記二次凝集繊維が凝集して繭状の凝集塊を形成しているものである前記1または2に記載の炭素繊維凝集体の製造方法。
[4]繭状の凝集塊が、長径と短径の比が5以上のものを含む前記3に記載の炭素繊維凝集体の製造方法。
[5]水酸化アルミニウムがギブサイトである前記1~4のいずれかに記載の炭素繊維凝集体の製造方法。
[6]水酸化アルミニウムとして、式(1)で示される粒度分布指数が1.50以下のものを使用する前記1~5のいずれかに記載の炭素繊維凝集体の製造方法:
Figure JPOXMLDOC01-appb-I000002
(式中、D90、D10及びD50は、各々粒度分布計で求めた90%体積累積粒子径、10%体積累積粒子径、50%体積累積粒子径である。)
[7]水酸化アルミニウムとして、一次粒子の大きさが5~300μmのものを使用する前記1~6のいずれかに記載の炭素繊維凝集体の製造方法:
[8]触媒金属または触媒金属前駆体が、Fe、Ni、Co、Cr、Mo、W、Ti、V、Ru、Rh、Pd、Pt及び希土類元素の少なくともひとつを含む前記1~7のいずれかに記載の炭素繊維凝集体の製造方法。
[9]触媒金属元素を含有する化合物を含む溶液または分散液を、担体に含浸させた後乾燥することにより得られる担持触媒を使用する前記1~8のいずれかに記載の炭素繊維凝集体の製造方法。
[10]前記1~9のいずれかに記載の製造方法により得られる炭素繊維凝集体。
[11]炭素繊維凝集体が、直径が5~100nm、アスペクト比が5~1000であり、黒鉛層が繊維軸に対しほぼ平行に伸長している非直線状の炭素繊維が凝集して二次凝集繊維を構成し、前記二次凝集繊維は直径が1μm以上、長さが5μm以上の非直線状であり、さらに前記二次凝集繊維が凝集した長径と短径の比が5以上の繭状の凝集塊を含むことを特徴とする炭素繊維凝集体。
[12]前記10または11に記載の炭素繊維凝集体を含有する樹脂複合材料。
[13]BET法比表面積が1m2/g以下で、50%体積累積粒子径(D50)が10~300μmの水酸化アルミニウムを、加熱処理してBET法比表面積を50~200m2/gとした担体に、触媒金属または触媒金属前駆体を担持させてなる炭素繊維凝集体製造用触媒。
[14]前記担体に触媒金属元素を含む溶液を含浸させた後乾燥することにより得られる前記13に記載の炭素繊維凝集体製造用触媒。
[15]水酸化アルミニウムがギブサイトである前記13または14に記載の炭素繊維凝集体製造用触媒。
[16]水酸化アルミニウムの加熱処理温度が500~1000℃である前記12~15のいずれかに記載の炭素繊維凝集体製造用触媒。
[17]触媒金属元素が、Fe、Co及びNiから選択される元素とTi,V及びCrから選択される元素とMo及びWから選択される元素とを組み合わせたものである前記12~16のいずれかに記載の炭素繊維凝集体製造用触媒。
 本発明の方法によれば、少量の添加で樹脂複合材料の導電性が発現可能な炭素繊維凝集体が得られる。
本発明で用いる好ましい実質的に単一粒子状水酸化アルミニウムの電子顕微鏡写真像(×1200)。 本発明で用いる好ましい一次粒子凝集体状水酸化アルミニウムの電子顕微鏡写真像(×430)。 中和法で生成する擬ベーマイト凝集粒の電子顕微鏡写真像(A:×200、B:×2000) 実施例1の生成物(炭素繊維凝集体)の電子顕微鏡写真像(×43)。 実施例1の生成物(二次凝集繊維)の電子顕微鏡写真像(×2500)。 実施例1の生成物(一次炭素繊維)の電子顕微鏡写真像(×20000)。 実施例1の生成物(一次炭素繊維)の電子顕微鏡写真像(×2000000)。 実施例4の生成物(炭素繊維凝集体)の電子顕微鏡写真像(×55)。 実施例4の生成物(炭素繊維凝集体)の電子顕微鏡写真像(×1300)。 γアルミナ(ストレムケミカル製)担体の電子顕微鏡写真(A:×2000、B:×20000)。 比較例1の生成物の電子顕微鏡写真像(×400)。 比較例1の生成物の電子顕微鏡写真像(×5000)。 比較例3の生成物(炭素繊維凝集体)の電子顕微鏡写真像(×30)。 比較例5の生成物(炭素繊維凝集体)の電子顕微鏡写真像(×33)。 比較例6の生成物の電子顕微鏡写真像(×5000)。
 本発明の好ましい実施態様においては、特定の水酸化アルミニウムを加熱処理した後、触媒金属を担持した触媒を、高温下で炭素含有化合物と接触させることにより特異な繭状の形態をもつ炭素繊維凝集体を得ることができる。
[水酸化アルミニウム]
 水酸化アルミニウム及びその假焼品は、これまで炭素繊維製造用触媒の担体としてよく用いられている。触媒担体である水酸化アルミニウム及びその假焼品に求められる機能は、触媒金属化合物を高分散状態で担持して触媒金属化合物の凝集成長を抑制することにある。従って、担体としては、微粒で比表面積の大きいものを用いる方が触媒活性は高いと考えられていた。そこで、従来、特許文献2に開示されているように微粒の水酸化アルミニウムを用いたり、軽度に熱処理して比表面積を増加させた後担体として使用されている。
 さらに、(1)生成した炭素繊維の主たる不純物成分となる担体を酸やアルカリを用いて溶解除去することにより、あるいは(2)炭素繊維の生成効率を高めることにより、担体を溶解除去する必要のない程度まで低減させるなどの工夫が必要であった。担体を溶解除去する(1)の場合においても、担体成分としては、微粒で比表面積の大きいほど溶解性が高く良好であると考えられてきた。また、(2)の担体を溶解除去しない場合においては、樹脂複合材料としたとき樹脂複合材料の表面の平滑性を損なったり、破壊起点になるなど樹脂複合材料の特性を悪化させる原因とならないように微粒の担体が用いられてきた。
 このように従来、触媒担体としては比表面積が大きく、微細な担体が好ましいとされてきた。
 本発明は、先行技術あるいは上述の考え方とは異なり、粗大粒子である水酸化アルミニウムを用い、後述する製造方法を採用することにより、従来の炭素繊維よりも少ない添加量で樹脂複合体に導電性を付与できる炭素繊維凝集体を得ることを可能としたものである。
 水酸化アルミニウムは種々の方法によって合成され、その合成方法、条件などにより結晶形態、粒度分布、不純物量などが異なる種々の水酸化アルミニウムを得ることができる。
 本発明で使用する好ましい形態の水酸化アルミニウムの一例として、バイヤー法などで得られるギブサイト型構造のものが挙げられる。
 本発明においては、比較的大きな単粒子状(単粒子あるいは数個の単粒子が強固に凝集した構造)の水酸化アルミニウムを使用することが好ましい。図1及び図2に本発明で好ましく用いられる水酸化アルミニウムの電子顕微鏡写真を示す。有姿の粒子はその表面が荒れていたり、微細粒子の付着が若干存在するものの実質的に単一粒子であるか(図1)、複数個の一次粒子がその粒子の端部が他の粒子と強固に結合した凝集体が好ましい(図2)。図2では約20個の一次粒子が確認できる。このような構造は電子顕微鏡写真で直接観察することができるが、凝集体を構成する一次粒子の数は電子顕微鏡観察からは全てを(360度にわたって)確認することはできない。本発明においては、凝集体一個当たりの平均一次粒子の数を以下の方法で推定した。すなわち、電子顕微鏡によって確認できるのは有姿粒子の約半分の一次粒子数であると仮定して、電子顕微鏡写真から確認できた一次粒子数の2倍を全一次粒子数とした。全一次粒子数が少ない方が単粒子状に近く好ましい。好適な一次粒子の数は使用する水酸化アルミニウムの粒子径や粒度分布などによっても異なるため一義的には決められないが、具体例を挙げると、その全一次粒子数は100個以下が好ましく、50個以下がさらに好ましく、20個以下が最適である。
 一次粒子の大きさは、電子顕微鏡写真を用いて測定する。通常は一次粒子同士が重なりあっていて正確な測定は困難なため、確認できる外周を外挿し、おおよその大きさを測定した。一次粒子の大きさとしては、5~300μmが好ましく、20~200μmがさらに好ましく、40~200μmが最も好ましい。
 単粒子状の水酸化アルミニウムを担体原料として用いることにより、得られる炭素繊維は長径と短径の比の大きな繭状の凝集塊を形成し、樹脂複合材料に少量添加した場合でも導電性の付与効果が大きくなる。水酸化アルミニウムが単粒子状でないと繭状の凝集粒子とならなかったり、樹脂複合材料に少量添加した際の導電性の付与効果が小さかったりする。
 従って、中和法などで生成する微細なアルミナゲルや擬ベーマイトの凝集粒(図3)や、それらを成形あるいは造粒した非常に微細な粒子の凝集体は好ましくない。
 このような微細粒子の凝集体は非常に大きな比表面積を有することが特徴である。比表面積は後述の加熱処理によって急激に増加するため、比表面積を尺度とする場合には注意を要するが、担体原料として好適な水酸化アルミニウムのBET法比表面積は1m2/g以下が好ましく、0.5m2/g以下がさらに好ましく、0.3m2/g以下が最も好ましい。
 単粒子状の水酸化アルミニウムであっても、50%体積累積粒子径D50が10μm未満の粒子を原料として用いると、炭素繊維の生成効率は高いが、繭状の凝集塊とならなかったり、導電性の付与効果が小さかったりするため好ましくない。粒子が大きいほうが得られる繊維の導電性付与効果が高く好ましい。しかし、D50が300μmを超えるような粗大粒子では炭素繊維生成後も触媒担体由来の粗大な残渣が炭素繊維中に残留し、樹脂複合材料にしたときに破壊基点になるなどの悪影響を及ぼす。
 従って、水酸化アルミニウムの50%体積累積粒子径D50の下限は10μmが好ましく、40μmがさらに好ましく、70μmが最も好ましい。50%体積累積粒子径D50の上限は300μmが好ましく、200μmがさらに好ましい。従って、好ましい水酸化アルミニウムの50%体積累積粒子径D50の範囲は10~300μmが好ましく、40~200μmがさらに好ましく、70~200μmが最も好ましいが、例えば、肉厚の薄い成形品や、表面平滑性が求められる品物、薄膜、塗料などの用途によっては40~150μmが好ましい場合もある。
 本発明で使用する水酸化アルミニウムの粒度分布は狭い方が好ましいが、50%体積累積粒子径D50が小さい場合には粒度分布はやや広めの方が粒子径の大きい粒子が多く含まれるため好ましい。
 粒度分布の大きさの指標となる下記式で定義する粒度分布指数が1.50以下が好ましく、1.20以下がさらに好ましく、1.0以下が最も好ましい。
Figure JPOXMLDOC01-appb-M000003
 式中、D10、D50及びD90は、各々粒度分布計(日機装(株)製:マイクロトラックHRA)で求めた90%体積累積粒子径、10%体積累積粒子径、50%体積累積粒子径である。
 D50が70μm以下の場合には、粒度分布指数は1.0~1.50が好ましい。
[加熱処理]
 水酸化アルミニウムは加熱処理することにより結晶中のH2Oが離脱し、無定形アルミナ、活性アルミナを経て、様々な形態の遷移アルミナとなり、1000℃以上の高温でαアルミナへと転移する。比表面積は熱処理の過程で無定形アルミナになる際に最も高い値をとり、その後低下していく(Oxides and Hydroxides of Aluminum, K. Wefers and G. M. Bell  Technical Paper (AlcoaReseachLabs), 1972:参考文献)。従って、一般に、高比表面積が望まれる炭素繊維合成用の触媒担体としては、比較的低温で処理したものが用いられてきた。具体的には国際公開公報第95/31281号パンフレット(特許文献2)に開示されているように、サブミクロンの水酸化アルミニウムの凝集粒(具体例としてはアルコア社製H-705:BET法比表面積5m2/g以上)を質量減少率が27~33%となるまで加熱処理したものである。この場合の比表面積は、参考文献のFig.4.4から150~300m2/g程度であると推定される。
 しかし、このように大きな比表面積の触媒担体を用いると複合材料への導電性付与効果が低くなるという欠点があった(後述の比較例9参照)。本発明の製造方法では、従来の比表面積レベルでなく、上述の特定の水酸化アルミニウムをより低い比表面積となる条件で加熱処理することに特徴がある。
 また、欧州特許公開第1797950号公報(特許文献3)及び国際公開第2006/079186号パンフレット(特許文献4)に開示されているような水酸化アルミニウムに触媒金属を担持した後に加熱処理する方法では、水酸化アルミニウムの脱水反応の進行につれて触媒金属との相互作用が強まり、担体中に固溶したり強固に結合するためか、生成したカーボンナノチューブの樹脂複合材への導電性付与効果は本発明の方法に比べて低くなる(後述の比較例10参照)。
 本発明の方法では、このように一般に用いられている活性の高い担体は使用せず、比較的粗大な担体原料(水酸化アルミニウム)を比較的高温で熱処理して、あまり強い活性を持たない状態で触媒金属を担持し、炭素繊維の合成反応に供するところに特徴がある。
 従って、本発明で担体原料として用いる水酸化アルミニウムの加熱処理後のBET法比表面積は50~200m2/gであるものが好ましい。具体的には、下限としては50m2/gが好ましく、90m2/gがさらに好ましい。また、上限としては200m2/gが好ましく、150m2/gがさらに好ましく、145m2/gが最も好ましい。BET法比表面積が200m2/gを超えると、金属担持触媒を用いて得られる炭素繊維の複合材料に対する導電性付与効果が小さくなるため好ましくない。BET法比表面積が50m2/g未満では、金属担持触媒の炭素繊維生成効率が低いだけでなく、得られる炭素繊維の複合材料への導電性付与効果が小さくなり好ましくない。
 水酸化アルミニウムの加熱処理条件は、上記の比表面積が得られる温度、時間、雰囲気を選定すればよく、特に限定されない。使用する水酸化アルミニウムの粒度、不純物濃度などにより適切な温度は異なるが、通常500~1000℃が好ましく、600~1000℃がさらに好ましく、600~900℃が最も好ましい。一般に、水酸化アルミニウムを假焼して活性アルミナなどの高比表面積の遷移アルミナ(中間アルミナ)を得る場合には、高温で極く短時間加熱処理する場合が多いが、これらの方法とは異なり、本発明では適切な温度で、比較的長い時間加熱処理することにより、均一な担体原料を得る。従って、好ましい熱処理時間は一般に1分~10時間が好ましく、10分~5時間がさらに好ましく、10分~3時間が最適である。
[触媒金属及び触媒金属前駆体]
 本発明で用いる触媒金属は、炭素繊維の成長を促進する物質であれば、特に制限されない。このような触媒金属としては、例えば、IUPACが1990年に勧告した18族型元素周期表の3~12族からなる群から選ばれる少なくとも1種の金属が挙げられる。中でも、3、5、6、8、9、10族からなる群から選ばれる少なくとも1種の金属が好ましく、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、バナジウム(V)、チタニウム、(Ti)ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)及び希土類元素から選ばれる少なくとも1種の金属が特に好ましい。また、これらの触媒として作用する金属元素を含有する化合物(触媒前駆体)としては、触媒金属の硝酸塩、硫酸塩、炭酸塩などの無機塩類、酢酸塩などの有機塩、アセチルアセトン錯体などの有機錯体、有機金属化合物など、触媒金属を含有する化合物であれば特に限定されない。反応性の観点からは硝酸塩やアセチルアセトン錯体などが好ましい。
 これらの触媒金属及び触媒金属前駆体化合物を2種以上使用することにより、反応活性を調節することは広く知られている。好適な触媒の例としては、特開2008-174442号公報に開示されている、Fe、Co及びNiから選択される元素とTi,V及びCrから選択される元素とMo及びWから選択される元素とを組み合わせたものが挙げられる。
[触媒金属の担持方法]
 本発明の製造方法で使用する担持触媒は、その調製法については特に制限されないが、特に触媒金属元素を含む液を担体に含浸させることにより触媒を得る含浸法によって製造することが好ましい。
 具体例としては、触媒金属前駆体化合物を溶媒に溶解または分散し、この溶液または分散液を粉粒状担体に含浸させ、次いで乾燥する方法が挙げられる。
 触媒金属元素を含む液は、液状の触媒金属元素を含む有機化合物でもよいし、触媒金属元素を含む化合物を有機溶媒または水に溶解または分散させたものでもよい。ここで用いる有機溶媒としてはベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、シクロヘキサン等の飽和炭化水素、ジエチルエーテル、ジメチルエーテル、メチルエチルエーテル、フラン、ジベンゾフラン、クロロホルム、テトラヒドロフランなどのエーテル類、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、ベンズアルデヒドなどのアルデヒド類、四塩化炭素、トリクロルエチレン、クロルエタン等のハロゲン化炭化水素等が挙げられる。
 触媒金属元素を含む液には触媒金属元素の分散性を改善するなどの目的で、分散剤や界面活性剤(好ましくは、カチオン性界面活性剤、アニオン性界面活性剤)を添加してもよい。触媒金属元素を含む液中の触媒金属元素濃度は、溶媒及び触媒金属種によって適宜選択することができる。担体と混合される触媒金属元素を含む液の量は、用いる担体の吸液量相当であることが好ましい。
 触媒金属元素を含む液と担体とを十分に混合した後の乾燥は、通常70~150℃で行う。乾燥においては真空乾燥を用いてもよい。
[炭素含有化合物]
 本発明の炭素繊維凝集体の製造方法において使用される炭素源(炭素含有化合物)は特に限定されない。炭素含有化合物としては、CCl4、CHCl3、CH2Cl2、CH3Cl、CO、CO2、CS2等のほか有機化合物全般が使用可能である。特に有用性の高い化合物としては、CO、CO2、脂肪族炭化水素及び芳香族炭化水素を挙げることができる。また、窒素、リン、酸素、硫黄、弗素、塩素、臭素、沃素等の元素を含んだ炭素化合物も使用することができる。
 好ましい炭素含有化合物の具体例としては、CO、CO2等の無機ガス、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等のアルカン類、エチレン、プロピレン、ブタジエン等のアルケン類、アセチレン等のアルキン類、ベンゼン、トルエン、キシレン、スチレン等の単環式芳香族炭化水素、インデン、ナフタリン、アントラセン、フェナントレン等の縮合環を有する多環式化合物、シクロプロパン、シクロペンタン、シクロヘキサン等のシクロパラフィン類、シクロペンテン、シクロヘキセン、シクロペンタジエン、ジシクロペンタジエン等のシクロオレフィン類、ステロイド等の縮合環を有する脂環式炭化水素化合物等がある。さらに、これらの炭化水素に酸素、窒素、硫黄、リン、ハロゲン等が含まれた誘導体、例えば、メタノール、エタノール、プロパノール、ブタノール等の含酸素化合物、メチルチオール、メチルエチルスルフィド、ジメチルチオケトン等の含硫黄脂肪族化合物、フェニルチオール、ジフェニルスルフィド等の含硫黄芳香族化合物、ピリジン、キノリン、ベンゾチオフェン、チオフェン等の含硫黄または含窒素複素環式化合物、クロロホルム、四塩化炭素、クロルエタン、トリクロルエチレン等のハロゲン化炭化水素、また天然ガス、ガソリン、灯油、重油、クレオソート油、ケロシン、テレピン油、樟脳油、松根油、ギヤー油、シリンダ油等も使用することができる。これらは2種以上の混合物として用いることもできる。
 これらの中で、好ましい炭素含有化合物として、CO、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエン、メタノール、エタノール、プロパノール、ブタノール、アセチレン、ベンゼン、トルエン、キシレン及びこれらの混合物が挙げられ、特に好ましい炭素含有化合物として、エチレン、プロピレン及びエタノールが挙げられる。
[キャリアーガス]
 本発明の炭素繊維凝集体の製造方法においては、これらの炭素含有化合物に加えて、キャリアーガスを使用することが推奨される。キャリアーガスとしては水素ガス、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガス、クリプトンガス、またはこれらの混合ガスを用いることができる。しかし、空気等の酸素分子(すなわち、分子状態の酸素:O2)を含有するガスは触媒を劣化するため適さない。本発明で用いる触媒金属前駆体化合物は酸化状態にある場合があり、こうした場合にはキャリアーガスとして還元性の水素ガスを含有するガスを用いることが好ましい。従って、好ましいキャリアーガスとしては水素ガスを1vol%以上、さらには30vol%以上、最も好ましくは85vol%以上含んだガスであり、例えば100vol%水素ガスや水素ガスを窒素ガスで希釈したガスである。
[前処理]
 一般に、触媒金属前駆体化合物は酸化状態にある場合があるため、炭素含有化合物と接触させる前に還元性のガスと接触させることにより触媒金属に還元する工程を設ける場合が多いが、本発明でこのような還元処理を実施すると触媒金属の凝集が進行するためか炭素繊維生成効率が充分でなかったり、生成した炭素繊維の樹脂複合材料への導電性付与効果が低くなる。本発明では、このような還元処理をはじめとする高温での保持時間を極力短くすることが好ましい。
 従って、予め反応炉中に触媒を静置し、昇温反応させる場合は、昇温速度を速くして、所定温度に到達後は直ちに炭素含有化合物と接触させることが好ましい。さらに好ましい方法は、反応炉を所定温度に昇温した後に、触媒を炭素含有化合物と同時に供給する方法である。
[炭素含有ガス濃度]
 上述の炭素含有化合物は、常温で液体または固体のものは、加熱し気化させて炭素含有ガスとして導入することが好ましい。これら炭素含有ガスの供給量は、使用する触媒、炭素含有化合物、反応条件によって異なるため一義的には決められないが、一般に好ましい範囲は、(炭素含有ガス流量)/(キャリアーガス流量+炭素含有ガス流量)が10~90vol%であり、30~70vol%がさらに好ましい。炭素含有化合物がエチレンの場合は、特に30~90vol%の範囲が好ましい。
[反応温度]
 本発明の方法において、触媒と炭素含有化合物を接触させる温度は、使用する炭素含有化合物などにより異なるが、一般に400~1100℃であり、好ましくは500~800℃である。温度は低過ぎても高過ぎても炭素繊維凝集体の生成量が著しく低くなる場合がある。また、炭素繊維の生成以外の副反応が起こるような高温では、炭素繊維表面にフィラーとしての応用に適さない非導電性の物質が多量に付着する傾向がある。
[炭素繊維凝集体]
 本発明の方法で得られる炭素繊維凝集体は、各々の炭素繊維が特異な繭状の形態で凝集している。この凝集形態により、樹脂複合体中での良好な分散状態と繊維同士のネットワークの維持という相反する状態を保持できるものと考えられる。
 本発明の方法で得られる炭素繊維凝集体を構成する一次炭素繊維は、繊維径(直径)が好ましくは5~100nm、より好ましくは5~70nm、特に好ましくは5~50nmである。また、アスペクト比(繊維長/繊維径)は通常5~1000である。繊維径、及び繊維長は電子顕微鏡写真から測定する。
 本発明の好ましい態様の一次炭素繊維は、黒鉛層が繊維軸に対してほぼ平行に伸長している。なお、ここで、ほぼ平行とは繊維軸に対する黒鉛層の傾きが約±15度以内のことをいう。黒鉛層とは、炭素繊維を構成するグラフェンシートのことであり、電子顕微鏡写真(TEM)により縞模様として観察することができる。
 黒鉛層の長さは、繊維径の0.02~15倍であることが好ましい。黒鉛層の長さが短いほど、樹脂等に充填したときに炭素繊維と樹脂との密着強度が高くなり、樹脂と炭素繊維のコンポジットの機械的強度が高くなる。黒鉛層の長さ及び黒鉛層の傾きは電子顕微鏡写真などによる観察によって測定することができる。本発明の好ましい態様の一次炭素繊維は、繊維径の2倍未満の長さを有する黒鉛層の数の割合が30~90%であることが好ましい。黒鉛層の長さは、電子顕微鏡写真から測定する。
 また、好ましい態様の一次炭素繊維の形状は、繊維の中心部に空洞を有するチューブ状である。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。繊維径(d)と空洞部内径(d0 )との比(d0 /d)は特に限定されないが、通常0.1~0.8、好ましくは0.1~0.6である。
 本発明の好ましい態様のチューブ状の一次炭素繊維は、空洞を囲むシェルが多層構造になっているものが好ましい。具体的には、シェルの内層が結晶性の炭素で構成され、外層が熱分解層を含む炭素で構成されているもの、黒鉛層が平行に規則的に配列した部分と乱れて不規則に配列した部分とからなるものが挙げられる。
 前者のシェルの内層が結晶性の炭素で構成され、外層が熱分解層を含む炭素で構成されている炭素繊維は、樹脂等に充填したときに樹脂との密着強度が高くなり、樹脂と炭素繊維のコンポジットの機械的強度が高くなる。
 黒鉛層が平行に規則的に配列した部分と乱れて不規則に配列した部分とからなる炭素繊維では、不規則な炭素原子配列からなる層が厚いと繊維強度が弱くなりやすく、不規則な炭素原子配列からなる層が薄いと樹脂との界面強度が弱くなりやすい。繊維強度を強く、かつ樹脂との界面強度を強くするためには、不規則な炭素原子配列からなる層(不規則な黒鉛層)が適当な厚さで存在しているか、もしくは1本の繊維の中に厚い不規則な黒鉛層と薄い不規則な黒鉛層とが混在(分布)しているものが良い。
 本発明の炭素繊維凝集体は、そのBET法比表面積が通常20~400m2/g、好ましくは30~350m2/g、より好ましくは40~350m2/gである。なお本明細書において、比表面積の値は窒素吸着によるBET法で求めたものである。
 本発明の一次炭素繊維の形態は、特許文献1に示されるような「直線ないしはわずかに屈曲した繊維」とは異なり、繊維のほぼ全領域に亘って、くねくねと曲がった非直線状の繊維であることが特徴である。このようにくねくねと曲がっているために、二次凝集繊維の中では、比較的強い凝集力を有しているものと推定される。また、このくねくねした構造を有することにより、樹脂中に少量分散した場合でも繊維同士のネットワークが途切れず、従来技術の直線に近い繊維では発現しない低添加量の領域において導電性が発現する一因となっているものと考えられる。
 本発明の好ましい実施態様における炭素繊維凝集体は、上述のように一次炭素繊維が凝集した二次凝集繊維を形成していることが特徴である。電子顕微鏡写真を用いて観察することによりこのような炭素繊維凝集体の構造を特定することが可能である。繊維径、繊維長さなどは、電子顕微鏡写真を用いて観察される数十~百の検体の平均値として特定される。
 上述のくねくねとした一次炭素繊維は二次凝集繊維中では比較的ランダムに凝集していることが特徴である。また、二次凝集繊維自身も直線状ではなく、湾曲していたり、各々の炭素繊維と同様にくねくねと曲がっている。この二次凝集繊維の径は通常1~100μmであり、5~100μmが好ましく、10~50μmがさらに好ましい。二次凝集繊維はさらに凝集し、凝集塊中にその末端が取り込まれている場合が多いため、その長さを正確に測定することは困難な場合が多い。電子顕微鏡観察で確認できる凝集繊維の長さは、通常5~500μm、好ましくは10~500μm、さらに好ましくは、20~200μmである。
 従来の製造方法では、少量添加での樹脂複合材料への導電性付与効果が小さい無定形の凝集塊やほぼ球形の凝集塊しか得られないが、本発明の製造方法によれば、樹脂複合材料への導電性付与効果が高い繭状の凝集塊を含む炭素繊維凝集体が得られる。繭状の凝集塊はその長径と短径の比が大きいほど導電性付与効果が大きい。
 すなわち、本発明の炭素繊維凝集体は、二次凝集繊維がさらに凝集して繭状の凝集塊を形成している。繭状の凝集塊は電子顕微鏡写真による観察で、長径と短径の比を規定して特定することができる。本発明の炭素繊維凝集体は実際には繭状以外の無定形やほぼ球形などの凝集塊との混合物として得られたり、電子顕微鏡撮影のための試料調整段階などで凝集塊が壊れてばらばらになり、長径が短くなったりするので定量的に把握することは困難なケースが多い。好ましい態様では、長径と短径の比が少なくとも3以上、好ましくは5以上、さらに好ましくは7以上の繭状の凝集塊を含む。また、繭状の凝集塊の短径は50μm以上が好ましく、100μm以上がより好ましく、300μm以上がさらに好ましい。
 繭状の凝集塊中での二次凝集繊維同士の凝集度合いは二次凝集繊維内の各々の一次炭素繊維の凝集度合いよりも粗である。従って、この繭状の凝集塊を樹脂中に添加し混練すると、二次凝集繊維は比較的容易に分散するが、二次凝集繊維を形成している各々の一次炭素繊維はお互いに強固に絡み合っているため、樹脂複合体中で完全に分散せずに(ばらばらにはならずに)、ネットワーク構造が維持されると考えられる。繭状の凝集塊の長径と短径の比が大きい場合には、二次凝集繊維同士は配向性を有していると推定されるが、二次凝集繊維の長さが短いと配向しにくいので、二次繊維の長さはある程度長いことが配向するためには必要であると考えられる。二次凝集繊維は複合材料中に添加、混練された場合に、上述のような高分散状態を容易に形成するものと考えられる。このとき、二次凝集繊維が長いと二次凝集繊維間でもネットワーク構造が維持されやすく、このことが少量の添加で複合材料に導電性を付加できる要因であると考えられる。
 このように、本発明の炭素繊維は特異な繭状の凝集体構造を有するために、従来技術では到底導電性が発現しない低添加量の領域においても樹脂複合材料の導電性が発現するものと考えられる。
 本発明の好ましい態様における炭素繊維凝集体を樹脂に配合、混練することにより樹脂複合材料を調製することができる。一般に樹脂複合材料に配合する炭素繊維の添加量は、0.5~30質量%である。従来の炭素繊維では5~15質量%を配合しなければ所望の導電性が得られなかったが、本発明の炭素繊維凝集体ではその1/3から1/5(質量比)あるいはそれ以下の添加量で同等の導電性を示す優れた効果が得られる。具体的には、0.5~10質量%、好ましくは、0.5~5質量%の添加で十分な導電性が得られる。添加量が0.5質量%未満であると、樹脂配合体中に十分な導電性、熱伝導性の経路を作ることが難しい。一方、添加量が30質量%を超える高濃度になると樹脂自体の特性が失われやすい。
 本発明の好ましい実施態様における樹脂複合材料に用いる樹脂は、特に限定されないが、熱硬化性樹脂、光硬化性樹脂もしくは熱可塑性樹脂が好ましい。
 熱硬化性樹脂としては、例えば、ポリアミド、ポリエーテル、ポリイミド、ポリスルホン、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂などを用いることができ、光硬化性樹脂としては、例えば、ラジカル硬化系樹脂(アクリル系モノマーやポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレートなどのアクリル系オリゴマー、不飽和ポリエステル、エンチオール系の重合体)、カチオン硬化系樹脂(エポキシ樹脂、オキセタン樹脂、ビニルエーテル系樹脂)などを用いることができ、熱可塑性樹脂としては、例えば、ナイロン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、シクロポリオレフィン樹脂などを用いることができる。
 本発明による好ましい実施態様における炭素繊維凝集体を配合した樹脂複合材料は、耐衝撃性と共に、導電性や帯電防止性が要求される製品、例えばOA機器、電子機器、導電性包装用部品、導電性摺動用部材、導電性熱伝導性部材、帯電防止性包装用部品、静電塗装が適用される自動車部品などの成形材料として好適に使用できる。これら製品を製造する際には、従来知られている導電性樹脂組成物の成形法によることができる。成形法としては、例えば、射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、トランスファー成形法などが挙げられる。
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、これらは単なる例示であって、本発明はこれらに制限されるものではない。
実施例1:
[加熱処理]
 ギブサイト型水酸化アルミニウムH-100(昭和電工(株)製,BET法比表面積:0.12m2/g)をマッフル炉で650℃、1時間加熱した。BET法で測定した加熱処理後の水酸化アルミニウムの比表面積は140m2/gであった。なお、用いた水酸化アルミニウムは、25μm程度の一次粒子径約40個の凝集体である。水酸化アルミニウムの物性値(加熱処理前のBET法比表面積、粒度分布指数、一次粒子数、一次粒子径)を表1に示す。
[触媒担持]
 加熱処理後の水酸化アルミニウム1質量部と2.6質量部の硝酸鉄9水和物(純正化学社製,特級試薬)のメタノール溶液(濃度70質量%)を混合後、120℃の真空乾燥器で16時間乾燥させ,触媒金属(Fe)を20質量%担持した担持触媒を得た。
[炭素繊維凝集体の合成]
 内径3.2cmの石英管(長さ1m)の中央部に約40cmの横型反応炉を設置し、触媒を乗せた石英ボートを配設し、窒素ガスを500ml/分で流通させた。石英管を電気炉中に設置して、1時間かけて640℃に加熱した。その後、直ちに、窒素ガスを、250ml/分のエチレンガス、250ml/分の水素ガス(エチレン濃度50vol%)に切り替え、20分間反応させた。窒素ガス下で、冷却後、生成した炭素繊維凝集体を回収した。質量増加(回収物量/仕込み触媒量)は7倍であった。生成物の電子顕微鏡写真を図4(凝集塊,×43)、図5(二次凝集繊維,×2500)、図6(一次炭素繊維,×20000)及び図7(一次炭素繊維,×2000000)に示した。図4に示されるように生成物は繭状の丸みを帯びた凝集塊を形成しており、その短径は約100~300μm、長径は約100~1000μm、長径と短径の比は3~6程度であった。二次凝集繊維はくねくねとした形状で、その径はおおよそ2~5μm程度、その長さは少なくとも10μm程度であった(図5)。各々の繊維(一次繊維)は非直線状のくねくねとした繊維であり(図6)、直径は約10nmで、黒鉛層が繊維軸に対しほぼ平行に伸長し、繊維表面の所々には、熱分解由来と思われる炭素層の付着が認められた(図7)。
[樹脂複合材料の作成・評価]
 実施例1で製造した炭素繊維凝集体1質量部、及びシクロオレフィンポリマー(日本ゼオン社製;ゼオノア1420R)99質量部をラボプラストミル(東洋精機製作所製;30C150型)を用いて、270℃,80rpm,10分間の条件で混練し樹脂複合材料を得た。この複合材料を280℃,50MPa,60秒間の条件で熱プレスし、100mm×100mm×2mmの平板を作製した。この平板について、体積抵抗率計(三菱化学社製;ロレスタMCPT-410)を用いて、JIS-K7194に準拠して、4探針法で体積抵抗率を測定したところ2×103Ωcmであった。触媒調製条件(熱処理温度、熱処理後の担体のBET法比表面積)、触媒金属担持量、炭素繊維合成温度と結果(増加質量及び複合材料の抵抗値)をまとめて表2に示す。
実施例2:
 炭素繊維凝集体の合成温度を690℃にしたこと以外は実施例1と同様に実施した。生成物の形態は実施例1と同等であった。実施例1と同様に合成条件(反応温度)及び結果を表2に示す。
実施例3:
 ギブサイト型水酸化アルミニウムとして、昭和電工社製H-10Cの100メッシュ(Me)篩上品(BET法比表面積:0.062m2/g)を用いたこと以外は実施例2と同様に実施した。生成物の形態は実施例1と同等であった。用いた水酸化アルミニウムの物性を表1に、合成条件と結果を表2に示す。
実施例4:
 特開2003-0956455号公報に記載の方法で得たギブサイト型水酸化アルミニウムを分級して得られた、一次粒子数約1~5、一次粒子径約20~50μm、BET法比表面積0.24m2/g、50%体積累積粒子径D50 45μm、粒度分布指数1.20の水酸化アルミニウムを原料として用い、加熱処理温度を850℃とし、触媒担持量を10質量%としたこと以外は実施例2と同様に実施した。図8及び図9に、炭素繊維凝集体の電子顕微鏡写真を示した(図8:×55,図9:×1300)。炭素繊維凝集体の短径は約100~200μm、長径は約200~800μm、長径と短径の比は4~10程度であった。用いた水酸化アルミニウムの物性を表1に、合成条件と結果を表2に示す。
比較例1:
 米国特許第5726116号公報(特許文献1)と同様にγアルミナ(ストレムケミカル製,BET法比表面積:130m2/g,50%体積累積粒子径D50:10μm)を担体として用いた。担体の電子顕微鏡写真を図10に示した(図10-A:×2000,図10-B:×20000)。図より、粗大なギブサイト型水酸化アルミニウムを熱処理したものとは異なり、中和法などで合成したアルミナゲル・擬ベーマイトの熱処理品であることが明らかである。担体1質量部と2.6質量部の硝酸鉄9水和物のメタノール溶液(濃度70質量%)を混合後、120℃の真空乾燥器で16時間乾燥したものを触媒として用いたこと以外は、実施例2と同様に実施した。生成物の電子顕微鏡写真を図11(×400)及び図12(×5000)に示した。生成物は直線に近い二次凝集繊維と、ランダムに配向したカーボンファイバーの混合物であった。それらはさらに凝集して凝集塊を形成していた。凝集塊は球形に近い様々な形の凝集体とそれが崩壊したものの混合物であった。合成条件と結果を表3に示す。
比較例2:
 ギブサイト型水酸化アルミニウムとして昭和電工製H-43M(BET法比表面積:7.3m2/g,50%体積累積粒子径D50:0.68μm)を用い、加熱処理温度を550℃としたこと以外は実施例2と同様に実施した。生成物の形状は比較例1と同様であった。用いた水酸化アルミニウムの物性を表1に、合成条件と結果を表3に示す。
比較例3:
 加熱処理温度を700℃としたこと以外は、比較例2と同様に実施した。図13に得られた炭素繊維凝集体塊の電子顕微鏡写真を示した(×30)。球形に近い様々な形の凝集体であった。合成条件と結果を表3に示す。
比較例4:
 水酸化アルミニウムとして、ナルバック社製ベーマイトAPYRAL AOH60(BET法比表面積:6m2/g,50%体積累積粒子径D50:0.9μm)を用い、熱処理温度を850℃としたこと以外は実施例2と同様に実施した。生成物の形状は比較例3と同等であった。合成条件と結果を表3に示す。
比較例5:
 水酸化アルミニウムとして、アルミニウム溶液の中和法で合成し、造粒乾燥したユニオン昭和社製擬ベーマイトV-250(BET法比表面積:230m2/g,50%体積累積粒子径D50:50μm,電子顕微鏡像;図3)を用い、加熱処理温度を850℃としたこと以外は実施例2と同様に実施した。生成物は球状に近い凝集体(図14,×33)であった。合成条件と結果を表3に示す。
比較例6:
 γアルミナの代わりに、気相法で合成したδアルミナ(デグッサ社製 OxideAluC,BET法比表面積:100m2/g,50%体積累積粒子径D50:0.9μm)を用いたこと以外は比較例1と同様に実施した。凝集体の外観は比較例3と同様であった。凝集体中には各々の繊維がランダムに配向していた(図15,×5000)。合成条件と結果を表3に示す。
比較例7:
 γアルミナとして、住友化学社製AKP-G015(BET法比表面積:150m2/g,50%体積累積粒子径D50:2.1μm)を用いたこと以外は、比較例1と同様に実施した。繊維の形態は比較例6と同様であった。合成条件と結果を表3に示す。
実施例5~6、比較例8~9:
 加熱処理温度を表4及び5に示した温度としたこと以外は実施例2と同様に実施した。合成条件と結果を表4及び5に示す。
比較例10:
 欧州特許公開第1797950号公報(特許文献3)と同様に水酸化アルミニウムに触媒金属を担持した後、加熱処理する方法で触媒を調製した。すなわち、ギブサイト型水酸化アルミニウム(昭和電工製H-43M)1質量部と2.6質量部の硝酸鉄9水和物のメタノール溶液(濃度70質量%)を混合後、120℃の真空乾燥器で16時間乾燥し、乾燥後の触媒を700℃で1時間加熱処理した。加熱処理後の触媒を用いて、実施例2と同様に実施した。生成物の形態は比較例3と同等であった。合成条件と結果を表6に示す。
比較例11~12:
 ギブサイト型水酸化アルミニウムに代えて、バイヤライト(ユニオン昭和社製VersalBT,BET法比表面積:25m2/g,50%体積累積粒子径D50:20μm)(比較例11)、擬ベーマイト(ユニオン昭和社製V-250)(比較例12)を用いた以外は、比較例10と同様に実施した。合成条件と結果を表6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1~6から、請求項1に規定する比表面積及び50%体積累積粒子径D50を有する水酸化アルミニウム(ギブサイト)を加熱処理した特定の比表面積を有する担体に触媒金属を担持した触媒を炭素源と加熱領域下で接触させて合成した炭素繊維凝集体は、比表面積及び50%体積累積粒子径D50が請求項1の範囲外の水酸化アルミニウムから調製した触媒を用いて合成した炭素繊維凝集体に比べて1質量%という少ない配合量で樹脂に導電性を付与すること(実施例1~4、比較例2~3)、ギブサイトから調製した触媒を用いると、他の水酸化アルミニウムから調製した触媒に比べて、樹脂への導電性付与効果が大きい炭素繊維凝集体が得られること(実施例1~4、比較例4~5、11~12)、水酸化アルミニウムの加熱処理温度を請求項に規定する範囲内の温度として調製した触媒によれば、範囲外の温度で調製した触媒に比べて樹脂への導電性付与効果が大きい炭素繊維凝集体が得られること(実施例2、5~6、比較例8~9)、ギブサイトを用いた場合でも従来技術(特許文献3)のように触媒金属を担持した後に加熱処理する方法で調製した触媒を用いて合成した炭素繊維凝集体は樹脂への導電性付与効果が小さいこと(比較例10)が分かる。

Claims (11)

  1.  BET法比表面積が1m2/g以下で、50%体積累積粒子径(D50)が10~300μmの水酸化アルミニウムを、加熱処理してBET法比表面積を50~200m2/gとした担体に触媒金属または触媒金属前駆体を担持させた触媒と炭素含有化合物を加熱領域下で接触させることを特徴とする炭素繊維凝集体の製造方法。
  2.  水酸化アルミニウムの加熱処理温度が500~1000℃である請求項1に記載の炭素繊維凝集体の製造方法。
  3.  炭素繊維凝集体が、直径が5~100nm、アスペクト比が5~1000であり、黒鉛層が繊維軸に対しほぼ平行に伸長している非直線状の一次炭素繊維が凝集して二次凝集繊維を構成し、前記二次凝集繊維は直径が1μm以上、長さが5μm以上の非直線状であり、さらに前記二次凝集繊維が凝集して繭状の凝集塊を形成しているものである請求項1または2に記載の炭素繊維凝集体の製造方法。
  4.  繭状の凝集塊が、長径と短径の比が5以上のものを含む請求項3に記載の炭素繊維凝集体の製造方法。
  5.  水酸化アルミニウムがギブサイトである請求項1~4のいずれかに記載の炭素繊維凝集体の製造方法。
  6.  水酸化アルミニウムとして、式(1)で示される粒度分布指数が1.50以下のものを使用する請求項1~5のいずれかに記載の炭素繊維凝集体の製造方法:
    Figure JPOXMLDOC01-appb-M000001
    (式中、D90、D10及びD50は、各々粒度分布計で求めた90%体積累積粒子径、10%体積累積粒子径、50%体積累積粒子径である。)
  7.  水酸化アルミニウムとして、一次粒子の大きさが5~300μmのものを使用する請求項1~6のいずれかに記載の炭素繊維凝集体の製造方法:
  8.  触媒金属または触媒金属前駆体が、Fe、Ni、Co、Cr、Mo、W、Ti、V、Ru、Rh、Pd、Pt及び希土類元素の少なくともひとつを含む請求項1~7のいずれかに記載の炭素繊維凝集体の製造方法。
  9.  炭素繊維凝集体が、直径が5~100nm、アスペクト比が5~1000であり、黒鉛層が繊維軸に対しほぼ平行に伸長している非直線状の炭素繊維が凝集して二次凝集繊維を構成し、前記二次凝集繊維は直径が1μm以上、長さが5μm以上の非直線状であり、さらに前記二次凝集繊維が凝集した長径と短径の比が5以上の繭状の凝集塊を含むことを特徴とする炭素繊維凝集体。
  10.  請求項9に記載の炭素繊維凝集体を含有する樹脂複合材料。
  11.  BET法比表面積が1m2/g以下で、50%体積累積粒子径D50が10~300μmの水酸化アルミニウムを、加熱処理してBET法比表面積を50~200m2/gとした担体に、触媒金属または触媒金属前駆体を担持させてなる炭素繊維凝集体製造用触媒。
PCT/JP2010/053546 2009-03-05 2010-03-04 炭素繊維凝集体、及びその製造方法 WO2010101215A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010525149A JP4593692B2 (ja) 2009-03-05 2010-03-04 炭素繊維凝集体、及びその製造方法
KR1020107015839A KR101126119B1 (ko) 2009-03-05 2010-03-04 탄소 섬유 응집체 및 그 제조 방법
US13/129,312 US20110218288A1 (en) 2009-03-05 2010-03-04 Carbon fiber aggregates and process for production of same
CN2010800010713A CN101939256B (zh) 2009-03-05 2010-03-04 碳纤维聚集体和其制造方法
EP10748808.2A EP2351705B1 (en) 2009-03-05 2010-03-04 Carbon fiber agglomerates and process for production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009052036 2009-03-05
JP2009-052036 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010101215A1 true WO2010101215A1 (ja) 2010-09-10

Family

ID=42709769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053546 WO2010101215A1 (ja) 2009-03-05 2010-03-04 炭素繊維凝集体、及びその製造方法

Country Status (6)

Country Link
US (1) US20110218288A1 (ja)
EP (1) EP2351705B1 (ja)
JP (2) JP4593692B2 (ja)
KR (1) KR101126119B1 (ja)
CN (1) CN101939256B (ja)
WO (1) WO2010101215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099421A1 (ja) * 2011-12-26 2013-07-04 日立造船株式会社 繊維状カーボン含有樹脂

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649269B2 (ja) * 2008-06-18 2015-01-07 昭和電工株式会社 カーボンナノファイバー、その製造方法及び用途
CN104937150B (zh) * 2013-01-25 2016-07-13 东丽株式会社 涂上浆剂碳纤维束、碳纤维束的制造方法及预浸料坯
KR101508101B1 (ko) * 2013-09-30 2015-04-07 주식회사 엘지화학 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법
KR101620194B1 (ko) * 2013-09-30 2016-05-12 주식회사 엘지화학 탄소나노튜브 집합체의 벌크 밀도 조절 방법
US9630166B1 (en) * 2016-02-03 2017-04-25 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Method of fabricating catalyst carrier for generating hydrogen through methane reformation
JP6007350B1 (ja) * 2016-04-22 2016-10-12 茶久染色株式会社 導電性糸
CN106824201B (zh) * 2017-01-05 2019-04-09 东南大学 一种用于甲烷二氧化碳重整制合成气的催化剂及制备方法
JP7226741B2 (ja) * 2020-01-28 2023-02-21 ジカンテクノ株式会社 回転装置の部品及び回転装置の部品の製造方法
KR102228268B1 (ko) * 2020-08-13 2021-03-16 한국실크연구원 실크볼을 이용한 카본 제조장치
JP2024086202A (ja) * 2022-12-16 2024-06-27 スリーエム イノベイティブ プロパティズ カンパニー 接着シート、発泡硬化体及び電動機

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107329A (en) 1976-03-04 1977-09-08 Sumitomo Chem Co Ltd Production of carbon fiber
WO1995031281A1 (en) 1994-05-12 1995-11-23 Hyperion Catalysis International, Inc. Improved catalysts for the manufacture of carbon fibrils and methods of use thereof
US5726116A (en) 1989-09-28 1998-03-10 Hyperion Catalysis International, Inc. Fibril aggregates and method for making same
JP2003095645A (ja) 2001-06-21 2003-04-03 Showa Denko Kk 水酸化アルミニウム及びその製造方法
WO2006050903A2 (de) 2004-11-13 2006-05-18 Bayer Materialscience Ag Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator
WO2006079186A1 (fr) 2004-12-23 2006-08-03 Nanocyl S.A. Procede de synthese d'un catalyseur supporte pour la fabrication de nanotubes de carbone
JP2007091482A (ja) * 2005-09-26 2007-04-12 Sonac Kk カーボンファイバの集合体、集合体を構成するカーボンファイバ、およびカーボンファイバの回収方法
EP1797950A1 (en) 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process
JP2008174442A (ja) 2006-12-21 2008-07-31 Showa Denko Kk 炭素繊維および炭素繊維製造用触媒

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375917B1 (en) * 1984-12-06 2002-04-23 Hyperion Catalysis International, Inc. Apparatus for the production of carbon fibrils by catalysis and methods thereof
CA2066199C (en) * 1989-09-28 2001-07-24 Stephen O. Friend Carbon fibril aggregates
IL109497A (en) * 1993-05-05 1998-02-22 Hyperion Catalysis Int Three-dimensional macroscopic clusters of randomly arranged charcoal fibrils and products containing these
CN1061706C (zh) * 1996-06-19 2001-02-07 中国科学院金属研究所 一种气相生长纳米碳纤维的制备方法
US6214451B1 (en) * 1996-12-10 2001-04-10 Takiron Co., Ltd. Formable antistatic resin molded article
CA2347332A1 (en) * 2000-05-13 2001-11-13 Korea Carbon Black Co., Ltd. Carbon fibrils and method for producing same
KR100497775B1 (ko) * 2002-08-23 2005-06-23 나노미래 주식회사 탄소 나노 섬유 합성용 촉매 및 그 제조 방법과, 이를이용한 탄소 나노 섬유 및 그 제조 방법
JP5335174B2 (ja) * 2003-05-13 2013-11-06 昭和電工株式会社 多孔質体、その製造方法、及び多孔質体を利用した複合材料
JP4535808B2 (ja) * 2003-08-26 2010-09-01 昭和電工株式会社 縮れ状炭素繊維とその製法
US7351444B2 (en) * 2003-09-08 2008-04-01 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
WO2005040068A1 (ja) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. カーボンナノチューブ分散複合材料の製造方法
JP4994671B2 (ja) * 2005-01-21 2012-08-08 昭和電工株式会社 導電性樹脂組成物、その製造方法及び用途
DE102006045481B3 (de) * 2006-09-22 2008-03-06 H.C. Starck Gmbh Metallpulver

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107329A (en) 1976-03-04 1977-09-08 Sumitomo Chem Co Ltd Production of carbon fiber
US5726116A (en) 1989-09-28 1998-03-10 Hyperion Catalysis International, Inc. Fibril aggregates and method for making same
WO1995031281A1 (en) 1994-05-12 1995-11-23 Hyperion Catalysis International, Inc. Improved catalysts for the manufacture of carbon fibrils and methods of use thereof
JP2003095645A (ja) 2001-06-21 2003-04-03 Showa Denko Kk 水酸化アルミニウム及びその製造方法
WO2006050903A2 (de) 2004-11-13 2006-05-18 Bayer Materialscience Ag Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator
WO2006079186A1 (fr) 2004-12-23 2006-08-03 Nanocyl S.A. Procede de synthese d'un catalyseur supporte pour la fabrication de nanotubes de carbone
JP2007091482A (ja) * 2005-09-26 2007-04-12 Sonac Kk カーボンファイバの集合体、集合体を構成するカーボンファイバ、およびカーボンファイバの回収方法
EP1797950A1 (en) 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process
JP2008174442A (ja) 2006-12-21 2008-07-31 Showa Denko Kk 炭素繊維および炭素繊維製造用触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099421A1 (ja) * 2011-12-26 2013-07-04 日立造船株式会社 繊維状カーボン含有樹脂

Also Published As

Publication number Publication date
EP2351705A1 (en) 2011-08-03
EP2351705A4 (en) 2012-04-25
EP2351705B1 (en) 2014-04-30
JP5653696B2 (ja) 2015-01-14
US20110218288A1 (en) 2011-09-08
JPWO2010101215A1 (ja) 2012-09-10
JP2011026198A (ja) 2011-02-10
KR20100111695A (ko) 2010-10-15
JP4593692B2 (ja) 2010-12-08
CN101939256B (zh) 2013-02-13
CN101939256A (zh) 2011-01-05
KR101126119B1 (ko) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4593692B2 (ja) 炭素繊維凝集体、及びその製造方法
JP5649269B2 (ja) カーボンナノファイバー、その製造方法及び用途
US9422162B2 (en) Carbon nanotube agglomerate
KR101543682B1 (ko) 탄소 섬유의 제조 방법
US20090134363A1 (en) Method for synthesis of carbon nanotubes
KR101483051B1 (ko) 탄소나노섬유, 그 제조방법 및 용도
US7879261B2 (en) Carbon nanofiber, production process and use
KR20070104381A (ko) 탄소 나노튜브의 합성 방법
JP2013519515A (ja) カーボンナノチューブの製造
WO2014046471A1 (en) Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
KR101781252B1 (ko) 카본나노튜브 응집체의 제조방법
JP6237225B2 (ja) カーボンナノチューブ合成用触媒
KR101327812B1 (ko) 초저밀도 배향성 번들 구조를 지닌 고전도성 탄소나노튜브 및 이를 이용한 고전도성 고분자 나노복합재 조성물
CN108124443B (zh) 可调节碳纳米管选择性的碳纳米管制备方法及包含由此制备的碳纳米管的复合材料
JP2008529941A (ja) カーボンナノチューブの合成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001071.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010525149

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107015839

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010748808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13129312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE