WO2010018432A1 - Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate -containing polymer - Google Patents
Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate -containing polymer Download PDFInfo
- Publication number
- WO2010018432A1 WO2010018432A1 PCT/IB2009/006431 IB2009006431W WO2010018432A1 WO 2010018432 A1 WO2010018432 A1 WO 2010018432A1 IB 2009006431 W IB2009006431 W IB 2009006431W WO 2010018432 A1 WO2010018432 A1 WO 2010018432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- polymer
- pcc
- monomer
- suspension
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/02—Compounds of alkaline earth metals or magnesium
- C09C1/021—Calcium carbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/182—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
- C01F11/183—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/66—Coatings characterised by a special visual effect, e.g. patterned, textured
- D21H19/68—Coatings characterised by a special visual effect, e.g. patterned, textured uneven, broken, discontinuous
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/37—Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/675—Oxides, hydroxides or carbonates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/38—Coatings with pigments characterised by the pigments
- D21H19/385—Oxides, hydroxides or carbonates
Definitions
- Synthetic calcium carbonate referred to hereafter as precipitated calcium carbonate (PCC) 5 is a known filler and coating pigment, particularly implemented in paper applications. It is obtained by hydration of calcium oxide (CaO), or "burnt lime", forming a suspension of calcium hydroxide (Ca(OH)2); this hydration step is also referred to as a step of "slaking lime”. The obtained calcium hydroxide is thereafter precipitated by bubbling CO 2 gas through the suspension, to form PCC.
- polymorphs of PCC may be obtained, including aragonitic and scalenohedral polymorphs.
- the nature of the polymorph is generally determined based on analysis of scanning electron microscope (SEM) images of the product, aragonite crystal being generally needle-shaped as opposed to the ovoid form of scalenohedral products.
- the skilled man refers to the PCC production capacity in terms of the weight of PCC produced relative to both the carbonation time and the weight of the final PCC suspension. Increasing this production capacity, namely by decreasing the carbonation time without overly increasing the final PCC suspension weight through addition of water to Emit suspension viscosity, represents a goal of significant economical interest.
- carbonation time is the time from the start of introduction of C ⁇ 2 -containing gas to a calcium source in suspension to reaching a minimum suspension conductivity.
- Additives are also known to be implemented during the PCC production process in order to reduce carbonation time. According to « Change of formation yield and characterization of PCC particle synthesized with impurity ions by carbonation process » (Materials Science Forum, 510-511, March 2006, pp. 1026-1029), this is achieved by addition of ions, such as aluminium, iron and magnesium; however, the crystallographic structure, or polymorph, of the resulting PCC differs relative to the PCC that would be obtained via a process excluding these ions.
- WO 2005 / 000742 and WO 2004 / 106236 disclose a PCC production process in which a polyacrylate and polyphosphate are added prior to completion of the carbonation reaction.
- These documents fail to refer to any influence these additives might have on carbonation time. Indeed, as shown in the Examples herebelow, PCC production processes implementing such simple polyacrylates do not allow the same, advantageous improvement in PCC production capacity as do the processes of the present invention. Additionally, these documents clearly suggest that the crystallographic PCC structures obtained in the presence of the mentioned additives differ from that obtained in their absence.
- the Applicant has surprisingly identified a process to prepare a precipitated calcium carbonate (PCC) comprising the following steps:
- step ( ⁇ ) providing a C ⁇ 2-comprising gas; (iii) contacting said calcium source of step (i) and said CCvcomprising gas of step (ii) in an aqueous environment in a reactor, in one or more steps;
- step (v) optionally concentrating said PCC-comprising suspension of step (iv);
- step (vi) optionally adding dispersing additives to the suspension of step (iv) and/or (v); (vii) optionally grinding the product of step iv, v or vi; characterised in that:
- - m, n, p and q are whole numbers having a value of less than 150, and at least one of m, n, p and' q has a value of greater than 0, such that 25 ⁇ (m+n+p)q
- ⁇ 150 and preferably such that 50 ⁇ (m+n+p)q ⁇ 150;
- R represents a functional Unking group selected from ethers, esters or amides,
- Ri and R2 are the same or different, and represent hydrogen or alkyl groups having 1 to 4 carbon atoms, - R' represents hydrogen or a hydrocarbon radical having 1 to 40, preferably 1 to 3, carbon atoms, R' being even more preferably a methyl radical or hydrogen,
- FR 2,911,147 discloses the use of similar polymers for the dispersing of metal oxides and hydroxides; in this document, no mention is made of the use of such polymers in a process to produce PCC having a reduced carbonation time subject to the above-mentioned requirements of the skilled man.
- the proposed increase in calcium oxide hydration time in FR 2,911,147 would rather drive the skilled man not to implement such polymers in view of his goal to develop an efficient PCC production process.
- monomer(s) (a) are selected from among anionic monomers, such as acrylic, methacrylic or maleic acid, cationic monomers such as acrylamide, methacrylamide, neutral monomers such as acrylic, methacrylic or maleic acid esters, or mixtures thereof.
- anionic monomers such as acrylic, methacrylic or maleic acid
- cationic monomers such as acrylamide, methacrylamide
- neutral monomers such as acrylic, methacrylic or maleic acid esters, or mixtures thereof.
- said monomer(s) (a) are a mixture of anionic and neutral monomer(s).
- the monomer unit ratio of anionic monomers:neutral monomers be from 50:50 to 2:1, more preferably of 8:1 to 12:1, and most preferably of 10:1.
- said monomer(s) (a) are a mixture of anionic and neutral monomer(s) selected from among acrylic and/or methacrylic acids and esters thereof.
- cationic monomers are selected, it is preferred that these be selected from among cationic (meth)acrylic esters, and preferably from among chloride and/or sulfate salts of one or more of the following: [2-(methacryloyloxy)ethyl]trimethyl ammonium, [3-acrylamido)propyl]trimethylammonium, dimethyl diallyl ammonium, [3- (methaciylarrddo)propyl]trimethylammonium.
- monomer(s) (b) may additionally feature substituents not comprising Formula (I) selected from one or more of the following functional groups: alkyl, aryl, alkyl ester, hydrogen, alkyl amide, carboxyl and allyl, and preferably features at least one methyl substituent.
- monomer(s) (b) feature a methyl group in trans- position relative to the substituent comprising Formula (I) in which said functional group linking is an ester.
- monomer(s) (b) have at least one substituent consisting of Formula (I).
- said polymer features an intrinsic viscosity of less than or equal to 100 ml/g, as determined by the method described in "Outlines of macromolecular chemistry" volume III (Vollmert Verlag, Düsseldorf 1985), implementing a solution of double-distilled water and a capillary tube according to DIN 53101/Oa (having a constant of 0.005 and a diameter of 0.53 mm).
- Any dissociated acid groups in said polymer may be partially or folly neutralised by one or more neutralisation agents having a monovalent or polyvalent cation, said neutralisation agents being preferably selected from among ammonia or from among calcium, sodium, magnesium, potassium or lithium hydroxides or oxides, or from among primary, secondary or tertiary aliphatic and/or cyclic amines, and preferably from among stearyl amine, mono-, di- or triethanoamines, cyclohexylamine, methylcyclohexylamine, aminomethylpropanol, morpholine, said neutralisation agent being preferably sodium hydroxide.
- said polymer Before or after any neutralisation reaction, said polymer may be treated and separated into multiple phases, by static or dynamic processes, by one or more polar solvents, said solvents being preferably selected from among water, methanol, ethanol, propanol, isopropanol, butanol, acetone, tetrahydrofuran, or mixtures thereof.
- solvents being preferably selected from among water, methanol, ethanol, propanol, isopropanol, butanol, acetone, tetrahydrofuran, or mixtures thereof.
- the polymer may be obtained via a process of radical polymerisation in solution, in direct or inverse emulsion, in suspension or by precipitation in solvents, in the presence of catalytic systems or transfer agents, or via a controlled radical polymerisation, preferably controlled by nitroxides (NMP) or by cobaloximes, or by Atom Transfer Radical Polymerisation (ATRP), by sulphur-derivative controlled radical polymerisation, selected from among carbamates, dithioesters or trithiocarbonates (Reversible Addition- Fragmentation chain Transfer or RAFT) or xanthates.
- a controlled radical polymerisation preferably controlled by nitroxides (NMP) or by cobaloximes, or by Atom Transfer Radical Polymerisation (ATRP), by sulphur-derivative controlled radical polymerisation, selected from among carbamates, dithioesters or trithiocarbonates (Reversible Addition- Fragmentation chain Transfer or RAFT) or xanthates.
- the polymer is added to the process in amount totalling 0.01 to 0.5, preferably 0.05 to 0.2 % by dry weight relative to the dry weight of PCC obtained in step (iv).
- Said polymer may be fractionated in doses added over time prior to and/or during step (i ⁇ ).
- said polymer may be added during more than one of steps (i), ( ⁇ ) and (i ⁇ ). It is preferred that 20, preferably 50, more preferably 80, and most preferably 100 % by weight of the polymer be added prior to reaching an aqueous environment maximum viscosity during step (i ⁇ ).
- 20 preferably 50, more preferably 80, and most preferably 100 % by weight of the polymer is added prior to reaching an aqueous environment conductivity drop associated with a conductivity curve inflection point slope of more than 45° during step (i ⁇ ).
- step (iii) 20 preferably 50, more preferably 80, and most preferably 100 % by weight of the polymer is added prior to step (iii).
- step (i) is partially or fully slaked by addition of slaking water to form a slaked lime suspension prior to step (iii).
- slaking water preferably 50, more preferably 80, and most preferably 100 % by weight of the polymer may be added to said slaking water.
- step (iii) 20 preferably 50, more preferably 80, and most preferably 100 % by weight of the polymer is added to the already slaked lime suspension prior to step (iii).
- CO 2 -comprising gas may be bubbled through the aqueous environment until this environment has a pH drop to 7.5, and preferably to 7.2.
- CO 2 -comprising gas may be bubbled through the aqueous environment until this environment has a conductivity drop. As shown in the Examples herebelow, to ensure a maximum of PCC is formed, it may also be of interest to continue bubbling the CO 2 - comprising gas through the slurry for some time following this conductivity drop. It is preferred that this CO 2 -comprising gas be provided to the reactor at an overpressure of at least 0.1, preferably of at least 0.2, more preferably of at least 0.3, even more preferably of at least 0.4 and most preferably of at least 0.6 bar relative to the pressure in said reactor.
- the pressure in the reactor is generally between 50 mbar and 25 bar, and preferably is 1 bar.
- the volume fraction of CO 2 in said CO 2 -comprising gas is generally greater than 4 %. As shown in the Examples, the skilled man may indeed even wish to vary the CO 2 content of this gas over the carbonation time.
- the rate of C ⁇ 2-comprising gas introduction may also be adapted by the skilled man. In general, it is greater than or equal to 100 m 3 /h.
- the CO 2 gas of said CO 2 -comprising gas may be "fresh" CO 2 according to FR 2 885 899
- the CO 2 gas might even be obtained from dry ice.
- the skilled man will know to adapt his process conditions (such as temperature, use of seeds or additional additives prior to and/or during step ( ⁇ i)) to the quality of bis starting materials according to the PCC polymorph he intends to produce.
- the skilled man will know, among other parameters, to adapt his reactor volume and the solids content of Ca(OH) 2 suspension, the CO 2 partial pressure in feed gas, gas feed rate and CO 2 yield (reactor efficiency) according to the product he desires.
- He may run the process of the present invention as a continuous or batch process. He may adapt the aqueous environment agitation rate, though this generally lies between 200 to 300 rpm during step (iii).
- step (iv) he may wish to concentrate this suspension by mechanical and/or thermal concentration. During such a concentration, it may be advantageous to add dispersing additives, such as common polyacrylates.
- Said PCC of step (iv) may also be dried.
- the present invention also lies in the aqueous suspension from the inventive process.
- the present invention also lies in a dry product obtained by drying the aqueous suspension from the inventive process.
- this dry product generally features the same or less residual calcium hydroxide as a product obtained by the same process but in the absence of said polymer, the residual lime content being determined by XRD analysis. Indeed, it is among the advantages of the present invention that the degree of conversion of calcium hydroxide to PCC is not negatively affected.
- this dry product may contain less than 6 %, and preferably less than 3 %, by weight relative to the weight of the total product weight, of residual calcium hydroxide.
- the PCC-comprising suspension or dry product obtained following the process of the present invention finds applications in paper, paint or plastic, and especially in paper or plastic.
- PCC was synthesised by bubbling a CO 2 -comprising gas through a suspension of calcium hydroxide.
- - PAA is a sodium polyacrylate with a molecular weight of about 10 500 g/mol
- - PEG is a polyethylene glycol with a molecular weight of about 600 g/mol
- Polymer P is a polymer resulting from the polymerisation of the following monomers (expressed in % monomer units of each constituent):
- the efficiency of the PCC production process was determined according to the weight of PCC produced (in kg) relative to both carbonation time (in hours) and final PCC suspension weight (in kg).
- the obtained precipitated calcium carbonate polymorph was determined by visual analysis of the SEM images of the product.
- the particle size characteristics of the obtained PCC was determined based on measurements made using SedigraphTM 5100 instrumentation from MICROMERITICSTM.
- the specific surface area (in m 2 /g) of the obtained PCC was determined using the BET method, according to ISO 9277:1995.
- the BrookfieldTM viscosity of the final PCC suspension was measured at 25 0 C under 100 rpm ( ⁇ 12 ).
- Residual lime content in the obtained PCC was determined by XRD analysis.
- Test 1 (Reference process for the production of scalenohedral PCC)
- a gas of 20-30 % by volume of CO 2 in air was then bubbled upwards through the suspension at a rate of 200 ⁇ rYh under a suspension agitation of between 200 and 300 rpnx
- Overpressure in gas feed was 150-200 mbar, corresponding to hydrostatic pressure of Ca(OBTh suspension in the reactor.
- the temperature of the suspension was not controlled and allowed to rise due to the heat generated in the exothermic precipitation reaction.
- the final product had a residual lime content of less than 6 % by weight relative to the weight of the final PCC product.
- Carbonation time representing the time elapsed between the start of gas introduction and reaching a conductivity minimum, and other product and process conditions, are given in Table 1.
- Test 3 (Process according to the invention for the production of scalenohedral PCC)
- aragonite structure-promoting seed was added to the calcium hydroxide suspension.
- a gas of 4-8 % by volume of CO 2 in air was then bubbled upwards through the suspension at a rate of 100 m 3 /h under a suspension agitation of 200 to 300 rpm during 15 minutes, calculated from start of introduction of said gas. Thereafter, the CO 2 volume fraction in the gas was augmented to 20-30 % under the same conditions until the end of the carbonation.
- Overpressure in gas feed was 100-150 mbar, corresponding to hydrostatic pressure of Ca(OH) 2 suspension in the reactor.
- the temperature of the suspension was not controlled and allowed to rise due to the heat generated in the exothermic precipitation reaction. After conductivity reached a minimum, gassing was continued for another 4 minutes and then stopped.
- the final product had a residual lime content of less than 6 % by weight relative to the weight of the final PCC product.
- Carbonation time representing the time elapsed between the start of gas introduction and reaching a conductivity minimum
- other product and process conditions are given in Table 1.
- the final PCC product had a residual lime content of less than 6 % by weight. Other results are given in Table 1.
- the final PCC product had a residual lime content of less than 6 % by weight. Other results are given in Table 1.
- Test 7 (Process according to the invention for the production of aragonitic PCC) This test was run under the same conditions as Test 4, according to the conditions listed in Table 1, with the addition of Polymer P to the calcium hydroxide suspension prior to commencing carbonation, in an amount listed in Table 1.
- the final PCC product had a residual lime content of less than 6 % by weight. Other results are given in Table 1.
- Test 8 Provides according to the invention for the production of aragonitic PCO
- the final PCC product had a residual lime content of less than 6 % by weight. Other results are given in Table 1.
- Test 9 (Reference process for the production of aragonitic PCQ
- aragonite structure-promoting seed was added to the calcium hydroxide suspension.
- a gas of 4-8 % by volume of CO2 in air was then bubbled upwards through the suspension at a rate of 100 m 3 /h under a suspension agitation of 200 to 300 rpm during 15 minutes, calculated from start of introduction of said gas.
- the CO 2 volume fraction in the gas was augmented to 20-30 % under the same conditions until the end of the carbonation.
- Overpressure in gas feed was 100-150 mbar, corresponding to hydrostatic pressure OfCa(OH) 2 suspension in the reactor.
- the temperature of the suspension was not controlled and allowed to rise due to the heat generated in the exothermic precipitation reaction.
- the final product had a residual lime content of less than 6 % by weight relative to the weight of the final PCC product.
- Figure IA and Figure IB show an SEM image of the obtained product of Test 9, featuring the typical needle shape of the aragonitic PCC polymorph.
- Carbonation time representing the time elapsed between the start of gas introduction and reaching a conductivity minimum, and other product and process conditions, are given in Table 1.
- the final PCC product had a residual lime content of less than 6 % by weight. Other results are given in Table 1.
- Test 11 (Prior art process for the production of aragonitic PCC)
- S-PCC indicates a PCC of essentially scalenohedral polymorph, as determined according to an SEM image of the product.
- A- PCC refers to an essentially aragonitic PCC product according to SEM images.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Paper (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Description
Claims
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0918000A BRPI0918000A2 (en) | 2008-08-13 | 2009-08-04 | process for preparing a precipitated calcium carbonate. |
CA2733080A CA2733080C (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate-containing polymer |
KR1020117004226A KR101724160B1 (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate-containing polymer |
RU2011109185/05A RU2509788C2 (en) | 2008-08-13 | 2009-08-04 | Method of producing deposited calcium carbonate using low-charge polymer containing acrylate and/or maleate |
ES09786092.8T ES2609310T3 (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate by implementing polymer containing acrylate and / or low-loading maleinate |
DK09786092.8T DK2318464T3 (en) | 2008-08-13 | 2009-08-04 | Process for Preparing Precipitated Calcium Carbonate Implementing Low-Charge Acrylate and / or Maleinate-Containing Polymer |
CN200980131263.3A CN102124061B (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate and/or maleinate-containing polymer |
US12/737,595 US9017631B2 (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate-containing polymer |
MX2011001505A MX343447B (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate -containing polymer. |
SI200931568A SI2318464T1 (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate and/or maleinate -containing polymer |
EP09786092.8A EP2318464B1 (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate and/or maleinate -containing polymer |
HRP20161633TT HRP20161633T1 (en) | 2008-08-13 | 2016-12-05 | Process to prepare precipitated calcium carbonate implementing low charge acrylate and/or maleinate -containing polymer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08014443.9A EP2157136B1 (en) | 2008-08-13 | 2008-08-13 | Precipitated calcium carbonate obtained by a process implementing low charge acrylate and/or maleinate containing polymer |
EP08014443.9 | 2008-08-13 | ||
US10031908P | 2008-09-26 | 2008-09-26 | |
US61/100,319 | 2008-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018432A1 true WO2010018432A1 (en) | 2010-02-18 |
Family
ID=40280816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2009/006431 WO2010018432A1 (en) | 2008-08-13 | 2009-08-04 | Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate -containing polymer |
Country Status (16)
Country | Link |
---|---|
US (1) | US9017631B2 (en) |
EP (2) | EP2157136B1 (en) |
KR (1) | KR101724160B1 (en) |
CN (1) | CN102124061B (en) |
BR (1) | BRPI0918000A2 (en) |
CA (1) | CA2733080C (en) |
DK (1) | DK2318464T3 (en) |
ES (1) | ES2609310T3 (en) |
HR (1) | HRP20161633T1 (en) |
MX (1) | MX343447B (en) |
PL (1) | PL2318464T3 (en) |
PT (2) | PT2157136T (en) |
RU (1) | RU2509788C2 (en) |
SI (1) | SI2318464T1 (en) |
TW (1) | TW201012756A (en) |
WO (1) | WO2010018432A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2592054A1 (en) | 2011-11-11 | 2013-05-15 | Omya Development AG | Aqueous suspensions of calcium carbonate-comprising materials with low deposit built up |
EP2684999A1 (en) | 2012-07-13 | 2014-01-15 | Omya International AG | High solids and low viscous aqueous slurries of calcium carbonate-comprising materials with improved rheological stability under increased temperature |
EP2939980A1 (en) | 2014-04-30 | 2015-11-04 | Omya International AG | Production of precipitated calcium carbonate |
EP3012223A1 (en) | 2014-10-24 | 2016-04-27 | Omya International AG | PCC with reduced portlandite content |
EP3061729A1 (en) | 2015-02-27 | 2016-08-31 | Omya International AG | High solids PCC with cationic additive |
EP3118161A1 (en) | 2015-07-17 | 2017-01-18 | Omya International AG | High solids pcc with depolymerized carboxylated cellulose |
EP3156369A1 (en) | 2015-10-16 | 2017-04-19 | Omya International AG | High solids pcc with copolymeric additive |
US10676620B2 (en) | 2015-07-31 | 2020-06-09 | Omya International Ag | Precipitated calcium carbonate with improved resistance to structural breakdown |
WO2022090384A1 (en) | 2020-11-02 | 2022-05-05 | Omya International Ag | Process for producing precipitated calcium carbonate in the presence of natural ground calcium carbonate |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SI2524898T1 (en) * | 2011-05-16 | 2015-10-30 | Omya International Ag | Method for the production of precipitated calcium carbonate from pulp mill waste |
US8859663B2 (en) * | 2011-12-27 | 2014-10-14 | Hankuk Paper Mfg. Co., Ltd. | Calcium carbonate having a surface charge, the preparing process thereof and filler for producing a paper using the same |
EP2828434B1 (en) | 2012-03-23 | 2018-08-15 | Omya International AG | Process for preparing scalenohedral precipitated calcium carbonate |
HUE027523T2 (en) * | 2012-03-23 | 2016-11-28 | Omya Int Ag | Preparation of pigments |
EP2801555B1 (en) * | 2013-05-07 | 2016-10-26 | Omya International AG | Water purification and sludge dewatering employing surface-treated calcium carbonate and phyllosilicate, use of the combination of surface-treated calcium carbonate and phyllosilicate and composite material |
WO2015164589A1 (en) | 2014-04-23 | 2015-10-29 | Calera Corporation | Methods and systems for utilizing carbide lime or slag |
CN104294703B (en) * | 2014-09-29 | 2016-06-22 | 金东纸业(江苏)股份有限公司 | A kind of modified abrasive calcium carbonate and production method thereof |
FR3033163B1 (en) | 2015-02-27 | 2019-08-23 | Coatex | PRODUCTION OF PRECIPITED CALCIUM CARBONATE |
CN115443252A (en) | 2020-02-25 | 2022-12-06 | 艾瑞莱克公司 | Method and system for treating lime to form vaterite |
US11377363B2 (en) | 2020-06-30 | 2022-07-05 | Arelac, Inc. | Methods and systems for forming vaterite from calcined limestone using electric kiln |
CN112441605B (en) * | 2020-12-21 | 2022-03-29 | 安徽省宣城市华纳新材料科技有限公司 | Preparation method of vermicular precipitated calcium carbonate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468719A1 (en) * | 1990-07-27 | 1992-01-29 | Ecc International Limited | Precipitated calcium carbonate |
EP1151966A1 (en) * | 2000-04-14 | 2001-11-07 | Schaefer Kalk | Stable plate-like calcitic calcium carbonate, process for its preparation and the use thereof |
US20030180208A1 (en) * | 2000-03-06 | 2003-09-25 | 3P Technologies Ltd. | Precipitated aragonite and a process for producing it |
WO2004106236A1 (en) * | 2003-05-29 | 2004-12-09 | Specialty Minerals (Michigan) Inc. | Platy precipitated calcium carbonate synthesis method |
WO2005000742A1 (en) * | 2003-06-06 | 2005-01-06 | Specialty Minerals (Michigan) Inc. | Process for the production of platy precipitated calcium carbonates, product produced thereby, and paper incorporating same |
FR2911147A1 (en) * | 2007-01-09 | 2008-07-11 | Coatex S A S Soc Par Actions S | PROCESS FOR THE MANUFACTURE OF AN OXIDE POWDER AND METAL HYDROXIDE AUTODISPERSABLE IN WATER, POWDER AND AQUEOUS DISPERSION OBTAINED, AND USES THEREOF |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9802999D0 (en) * | 1998-02-13 | 1998-04-08 | Ecc Int Ltd | Production of products containing precipitated calcium carbonate |
BR9917234A (en) * | 1999-03-31 | 2002-04-23 | Minerals Tech Inc | Process for the preparation of discrete particles of calcium carbonate, and, composition |
US6251356B1 (en) | 1999-07-21 | 2001-06-26 | G. R. International, Inc. | High speed manufacturing process for precipitated calcium carbonate employing sequential perssure carbonation |
FR2810261B1 (en) * | 2000-06-15 | 2002-08-30 | Coatex Sa | USE OF LOW ANIONIC COPOLYMERS AS A DISPERSING AGENT AND / OR AID FOR GRINDING AQUEOUS SUSPENSION OF MINERALS, AQUEOUS SUSPENSIONS OBTAINED AND USES THEREOF |
US7557541B2 (en) | 2001-05-28 | 2009-07-07 | Marinka-Toth Jozsef | Method and apparatus for charging a rechargeable battery with non-liquid electrolyte |
CN100455515C (en) | 2003-12-24 | 2009-01-28 | 上海华明高技术(集团)有限公司 | Method for preparing nano calcium carbonate particle |
FR2885899B1 (en) | 2005-05-20 | 2007-12-28 | Omya Development Ag | MINERAL MATERIALS CONTAINING CARBONATE WITH REDUCED FOSSIL FUEL CELL CARBONIC GAS EMISSION AT THE TIME OF THEIR DECOMPOSITIONS AND THEIR SYNTHESIS PROCESS AND USES THEREOF |
CN100545092C (en) | 2005-06-24 | 2009-09-30 | 上海华明高技术(集团)有限公司 | A kind of preparation method of submicron grade superfine calcium carbonate dispersion particle |
FR2900411B1 (en) * | 2006-04-27 | 2008-08-29 | Coatex Sas | PROCESS FOR THE TREATMENT OF MINERAL MATERIALS BY AMPHOTERIC POLYMERS, THE MINERAL MATERIALS OBTAINED, THEIR USE AS A REDUCING AGENT OF THE QUANTITY OF COLLOIDS IN THE MANUFACTURE OF PAPER. |
BRPI0601717A (en) * | 2006-05-04 | 2007-12-18 | Du Pont Brasil | process for the manufacture of calcium carbonate |
FR2907347B1 (en) * | 2006-10-19 | 2008-12-05 | Coatex Sas | USE OF A STERIC DISPERSIENT AGENT OF MINERAL MATERIALS IN WATER, AQUEOUS DISPERSION OBTAINED AND USE THEREOF IN THE MANUFACTURE OF PAPER |
FR2934992B1 (en) * | 2008-08-13 | 2010-08-27 | Coatex Sas | USE OF A LOW IONIC ACRYLIC POLYMER IN THE SYNTHESIS OF PRECIPITATED CALCIUM CARBONATE |
-
2008
- 2008-08-13 EP EP08014443.9A patent/EP2157136B1/en active Active
- 2008-08-13 PT PT08014443T patent/PT2157136T/en unknown
-
2009
- 2009-08-04 WO PCT/IB2009/006431 patent/WO2010018432A1/en active Application Filing
- 2009-08-04 MX MX2011001505A patent/MX343447B/en active IP Right Grant
- 2009-08-04 SI SI200931568A patent/SI2318464T1/en unknown
- 2009-08-04 BR BRPI0918000A patent/BRPI0918000A2/en not_active Application Discontinuation
- 2009-08-04 CN CN200980131263.3A patent/CN102124061B/en not_active Expired - Fee Related
- 2009-08-04 KR KR1020117004226A patent/KR101724160B1/en active IP Right Grant
- 2009-08-04 PT PT97860928T patent/PT2318464T/en unknown
- 2009-08-04 RU RU2011109185/05A patent/RU2509788C2/en not_active IP Right Cessation
- 2009-08-04 EP EP09786092.8A patent/EP2318464B1/en active Active
- 2009-08-04 PL PL09786092T patent/PL2318464T3/en unknown
- 2009-08-04 US US12/737,595 patent/US9017631B2/en active Active
- 2009-08-04 ES ES09786092.8T patent/ES2609310T3/en active Active
- 2009-08-04 DK DK09786092.8T patent/DK2318464T3/en active
- 2009-08-04 CA CA2733080A patent/CA2733080C/en not_active Expired - Fee Related
- 2009-08-05 TW TW098126338A patent/TW201012756A/en unknown
-
2016
- 2016-12-05 HR HRP20161633TT patent/HRP20161633T1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468719A1 (en) * | 1990-07-27 | 1992-01-29 | Ecc International Limited | Precipitated calcium carbonate |
US20030180208A1 (en) * | 2000-03-06 | 2003-09-25 | 3P Technologies Ltd. | Precipitated aragonite and a process for producing it |
EP1151966A1 (en) * | 2000-04-14 | 2001-11-07 | Schaefer Kalk | Stable plate-like calcitic calcium carbonate, process for its preparation and the use thereof |
WO2004106236A1 (en) * | 2003-05-29 | 2004-12-09 | Specialty Minerals (Michigan) Inc. | Platy precipitated calcium carbonate synthesis method |
WO2005000742A1 (en) * | 2003-06-06 | 2005-01-06 | Specialty Minerals (Michigan) Inc. | Process for the production of platy precipitated calcium carbonates, product produced thereby, and paper incorporating same |
FR2911147A1 (en) * | 2007-01-09 | 2008-07-11 | Coatex S A S Soc Par Actions S | PROCESS FOR THE MANUFACTURE OF AN OXIDE POWDER AND METAL HYDROXIDE AUTODISPERSABLE IN WATER, POWDER AND AQUEOUS DISPERSION OBTAINED, AND USES THEREOF |
Non-Patent Citations (1)
Title |
---|
J. GARCIA-CARMONA, J. GOMEZ-MORALES, J. FRAILE-SAINZ, R. RODRIGUEZ-CLEMENTE: "Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives", POWDER TECHNOLOGY, vol. 130, 2003, pages 307 - 315, XP002512879 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9105372B2 (en) | 2011-11-11 | 2015-08-11 | Omya International Ag | Aqueous suspensions of calcium carbonate-comprising materials with low deposit built up |
WO2013068334A1 (en) | 2011-11-11 | 2013-05-16 | Omya Development Ag | Aqueous suspensions of calcium carbonate-comprising materials with low deposit built up |
EP2592054A1 (en) | 2011-11-11 | 2013-05-15 | Omya Development AG | Aqueous suspensions of calcium carbonate-comprising materials with low deposit built up |
US9376542B2 (en) | 2012-07-13 | 2016-06-28 | Omya International Ag | High solids and low viscous aqueous slurries of calcium carbonate-comprising materials with improved rheological stability under increased temperature |
WO2014009396A3 (en) * | 2012-07-13 | 2014-03-20 | Omya International Ag | High solids and low viscous aqueous slurries of calcium carbonate-comprising materials with improved rheological stability under increased temperature |
WO2014009396A2 (en) | 2012-07-13 | 2014-01-16 | Omya International Ag | High solids and low viscous aqueous slurries of calcium carbonate-comprising materials with improved rheological stability under increased temperature |
EP2684999A1 (en) | 2012-07-13 | 2014-01-15 | Omya International AG | High solids and low viscous aqueous slurries of calcium carbonate-comprising materials with improved rheological stability under increased temperature |
RU2610509C2 (en) * | 2012-07-13 | 2017-02-13 | Омиа Интернэшнл Аг | High solids and low viscous aqueous slurries of calcium carbonate-comprising materials with improved rheological stability under increased temperature |
EP2939980A1 (en) | 2014-04-30 | 2015-11-04 | Omya International AG | Production of precipitated calcium carbonate |
US10000388B2 (en) | 2014-04-30 | 2018-06-19 | Omya International Ag | Production of PCC |
EP3012223A1 (en) | 2014-10-24 | 2016-04-27 | Omya International AG | PCC with reduced portlandite content |
WO2016062682A1 (en) | 2014-10-24 | 2016-04-28 | Omya International Ag | Pcc with reduced portlandite content |
US11021374B2 (en) | 2014-10-24 | 2021-06-01 | Omya International Ag | PCC with reduced portlandite content |
US10294115B2 (en) | 2014-10-24 | 2019-05-21 | Omya International Ag | PCC with reduced portlandite content |
US10501634B2 (en) | 2015-02-27 | 2019-12-10 | Omya International Ag | High solids precipitated calcium carbonate with cationic additive |
EP3061729A1 (en) | 2015-02-27 | 2016-08-31 | Omya International AG | High solids PCC with cationic additive |
WO2017013012A1 (en) | 2015-07-17 | 2017-01-26 | Omya International Ag | High solids pcc with depolymerized carboxylated cellulose |
EP3118161A1 (en) | 2015-07-17 | 2017-01-18 | Omya International AG | High solids pcc with depolymerized carboxylated cellulose |
US10676620B2 (en) | 2015-07-31 | 2020-06-09 | Omya International Ag | Precipitated calcium carbonate with improved resistance to structural breakdown |
US11111388B2 (en) | 2015-07-31 | 2021-09-07 | Omya International Ag | Precipitated calcium carbonate with improved resistance to structural breakdown |
WO2017064175A1 (en) | 2015-10-16 | 2017-04-20 | Omya International Ag | High solids pcc with copolymeric additive |
EP3156369A1 (en) | 2015-10-16 | 2017-04-19 | Omya International AG | High solids pcc with copolymeric additive |
US10689519B2 (en) | 2015-10-16 | 2020-06-23 | Omya International Ag | High solids precipitated calcium carbonate with copolymeric additive |
WO2022090384A1 (en) | 2020-11-02 | 2022-05-05 | Omya International Ag | Process for producing precipitated calcium carbonate in the presence of natural ground calcium carbonate |
Also Published As
Publication number | Publication date |
---|---|
SI2318464T1 (en) | 2017-01-31 |
TW201012756A (en) | 2010-04-01 |
PL2318464T3 (en) | 2017-04-28 |
US20110158890A1 (en) | 2011-06-30 |
BRPI0918000A2 (en) | 2015-11-17 |
MX2011001505A (en) | 2011-04-26 |
HRP20161633T1 (en) | 2017-01-13 |
EP2157136B1 (en) | 2019-03-20 |
MX343447B (en) | 2016-11-07 |
KR20110058779A (en) | 2011-06-01 |
DK2318464T3 (en) | 2017-01-16 |
EP2318464B1 (en) | 2016-09-28 |
ES2609310T3 (en) | 2017-04-19 |
PT2318464T (en) | 2016-12-15 |
EP2318464A1 (en) | 2011-05-11 |
RU2509788C2 (en) | 2014-03-20 |
KR101724160B1 (en) | 2017-04-06 |
EP2157136A1 (en) | 2010-02-24 |
PT2157136T (en) | 2019-06-21 |
CA2733080C (en) | 2017-05-16 |
CN102124061B (en) | 2014-04-23 |
RU2011109185A (en) | 2012-09-20 |
US9017631B2 (en) | 2015-04-28 |
CN102124061A (en) | 2011-07-13 |
CA2733080A1 (en) | 2010-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2733080C (en) | Process to prepare precipitated calcium carbonate implementing low charge acrylate a/o maleinate-containing polymer | |
US10472522B2 (en) | Process for manufacturing aqueous suspensions of mineral materials or dried mineral materials, the obtained products, as well as uses thereof | |
US8445579B2 (en) | Use in a paint of a dry-ground calcium carbonate with a copolymer of (meth)acrylic acid with an alkoxy or hydroxy polyalkyleneglycol group | |
EP2552835A1 (en) | Process for obtaining precipitated calcium carbonate | |
RU2660880C2 (en) | Precipitated calcium carbonate production | |
US20110135560A1 (en) | Use of a weakly ionic acrylic polymer in the synthesis of precipitated calcium carbonate | |
TW201434923A (en) | Rheologically stable aqueous mineral material suspensions comprising organic polymers having reduced volatile organic compound (VOC) content | |
EP3487939A1 (en) | Process for preparing surface-reacted calcium carbonate | |
CN108367936B (en) | High solids PCC with copolymeric additives | |
CN107257777B (en) | High solids PCC with cationic additive | |
JPH0431319A (en) | Stabilization of vaterize-type calcium carbonate | |
US8841374B2 (en) | Method for grinding calcium carbonate in water in the presence of a solution of acrylic polymer and an alkali carbonate salt manufactured in place in the said solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131263.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09786092 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009786092 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009786092 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2733080 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/001505 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117004226 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011109185 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12737595 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0918000 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110210 |