WO2010079823A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO2010079823A1 WO2010079823A1 PCT/JP2010/050146 JP2010050146W WO2010079823A1 WO 2010079823 A1 WO2010079823 A1 WO 2010079823A1 JP 2010050146 W JP2010050146 W JP 2010050146W WO 2010079823 A1 WO2010079823 A1 WO 2010079823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- delay
- circuit
- selection
- semiconductor device
- input
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31725—Timing aspects, e.g. clock distribution, skew, propagation delay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
- G01R31/3016—Delay or race condition test, e.g. race hazard test
Definitions
- the present invention is based on the priority claims of Japanese patent applications: Japanese Patent Application No. 2009-004046 (filed on Jan. 9, 2009) and Japanese Patent Application No. 2009-281886 (filed on Dec. 11, 2009). The entire contents of this application are incorporated herein by reference.
- the present invention relates to a semiconductor device, and more particularly to a configuration and method suitable for grasping delay characteristics.
- the power supply voltage of the LSI is generally lowered. This is intended to reduce power by applying, for example, the lowest operable voltage as a power supply voltage to an LSI.
- a delay replica circuit replica that generates a delay equivalent to the critical path of the core circuit is installed, and the operation clock frequency of the core circuit that is the target of power supply voltage control is compared with the delay value of the replica, By controlling the power supply voltage so that the replica delay value falls within the operation clock cycle, the lowest voltage at which LSI can operate is obtained.
- Patent Document 1 data determined by the fuse state of the fuse circuit in the replica control circuit is read, and the delay amount of the replica circuit is adjusted based on the decoding result of the data, whereby the LSI can operate at the minimum.
- a configuration for adaptively supplying voltage is disclosed.
- Patent Document 1 The entire disclosure of Patent Document 1 is incorporated herein by reference. The following is an analysis of the related art according to the present invention.
- the signal transition timing (edge) in the core circuit is used to observe the critical path delay characteristic of the core circuit.
- an object of the present invention is to provide an apparatus that increases the measurement accuracy of delay characteristics while suppressing an increase in circuit area.
- the invention disclosed in the present application is generally configured as follows in order to solve one or more of the above problems.
- a plurality of flip-flops a selection circuit that selects and outputs input paths to the plurality of flip-flops according to a selection signal, and a delay measurement that measures a delay of a signal output from the selection circuit
- a semiconductor device including the circuit.
- a selection circuit for selecting one There is provided a semiconductor device including a delay measurement circuit that measures a delay between a data signal and a clock signal output in a time division manner from the selection element selected by the selection circuit.
- a core circuit responsible for a main function of a semiconductor device, a delay measurement circuit that inputs an internal signal of the core circuit and performs delay measurement, and a power supply control that supplies power to the core circuit A circuit, a storage element that stores a delay measurement result of the delay measurement circuit, and a control element that inputs a value of the storage element and outputs a control signal to the power supply control circuit
- the core circuit includes a plurality of A flip-flop and a selection circuit that selects and outputs an input path to the plurality of flip-flops according to a selection signal
- the delay measurement circuit is a semiconductor device that measures a delay of an output signal of the selection circuit.
- a delay measurement method using a semiconductor device including a plurality of flip-flops wherein a selection circuit selects and outputs an input path to the plurality of flip-flops according to a selection signal, and the delay measurement circuit includes A delay measurement method is provided for measuring a delay of the selected signal.
- a delay measurement method for creating delay distribution information from measured path delays in the semiconductor device according to the present invention. Further, according to the present invention, there is provided a control method for extracting a feature amount from the delay distribution information and adjusting an operation of the semiconductor device based on the feature amount.
- the present invention it is possible to operate a semiconductor device in an optimum state by extracting various feature amounts from the created path delay distribution information and controlling the operation of the semiconductor device.
- (A), (B) is a figure which shows the structure and timing operation
- (A), (B) is a figure which shows the structure and timing operation
- (A), (B) is a figure which shows the structural example of FF. It is a figure which shows the operation
- a semiconductor device includes a selection circuit (selector) (3) that selectively outputs one signal from a plurality of signals of a plurality of paths in a core circuit, and the selected signal And a delay measuring circuit (4) for measuring the delay time.
- a selection circuit switchector
- a delay measuring circuit for measuring the delay time.
- the delay measurement circuit is constituted by a kind of A / D (analog / digital) conversion circuit that converts a delay time into a digital code. Therefore, the circuit area becomes large, but the selector can be realized with a small area.
- the accurate critical path delay characteristic of the core circuit can be measured by measuring the edges of a plurality of paths.
- the path is input immediately before being input to the flip-flop (FF) or from the inside of the flip-flop (FF). This is because an accurate edge of the core circuit can be output by branching.
- FIG. 1 is a diagram showing a configuration of a semiconductor device according to an embodiment of the present invention.
- the semiconductor device of this embodiment includes a logic circuit 1, a core circuit 10 including a plurality of flip-flops (FF) 2, a selection circuit (selector) 3, and a delay measurement circuit 4. ing. Note that the selection circuit (selector) 3 may be provided in the core circuit 10.
- the selection circuit 3 receives input signals to the plurality of FFs 2 (in FIG. 1, data signals (D1, D2, D3...)) And inputs signals to the plurality of FFs 2 according to the values of the input selection signals ( D1, D2, D3, etc.)
- the selection circuit 3 inputs not only the data signal (D) to FF2 but also the clock signal (CK) to FF2, A configuration may be selected.
- the delay measurement circuit 4 measures the delay time of the output (SOUT) from the selection circuit 3, and outputs the result as a digital code.
- the semiconductor device of this embodiment has a small circuit overhead. This is because only one delay measurement circuit 4 having a relatively large circuit area is required, and the circuit area of the selection circuit 3 is small.
- FIG. 2 is a flowchart showing a procedure for measuring delay characteristics of a plurality of paths in the core circuit 10 of this embodiment.
- the selection circuit 3 selectively outputs any one path from a plurality of paths. Therefore, first, the selection signal is controlled, and a signal of an arbitrary path corresponding to the selection signal is output from the selection circuit 3 (step S11).
- the edge is measured by the delay measurement circuit 4 (step S12).
- the signal selection (S11) and delay measurement (S12) steps of FIG. 2 are executed for each of a plurality of paths in the core circuit 10, thereby switching the signal input to the selection circuit 3 to time division and delaying. Measurements can be made. As a result, detailed delay characteristics of the input paths to the plurality of FFs 2 in the core circuit 10 can be measured.
- FIG. 3 is a timing chart for explaining the timing operation of this embodiment.
- the selection circuit 3 selects D2 according to the selection signal and outputs it to SOUT
- the delay measurement circuit 4 performs the delay measurement of D2
- the selection circuit 3 changes the value of the selection signal so that the selection circuit 3 D1 is selected and output to SOUT
- the delay measurement circuit 4 measures the delay of D1
- the selection circuit 3 selects D3 by the selection signal and outputs it to SOUT.
- the delay measurement circuit 4 measures the delay of D3.
- the delay measurement circuit 4 measures the delay of the DN selected by the selection circuit 3.
- FIG. 4 is a diagram showing an example of the configuration of the delay measurement circuit 4 of FIG.
- the delay measurement circuit 4 includes a delay circuit in which delay elements 12 are cascade-connected in a plurality of stages, a plurality of FFs 42, and a data processing circuit 43.
- D terminals (data terminals) of the plurality of FFs 42 are respectively connected to connection points of delay elements 41 connected in series (cascade).
- a clock signal used in the core circuit 10 is commonly input to the clock terminals (CK) of the plurality of FFs 42.
- the data processing circuit 43 includes at least three registers and an arithmetic operation circuit not shown. Two of these registers hold the delay measurement result of the clock signal edge and the delay measurement result of the data signal edge, respectively, and the arithmetic operation circuit obtains the delay difference from the delay measurement result of the data edge and the clock edge, The third register stores the delay difference between the data calculated by the arithmetic operation circuit and the clock.
- the outputs (Q0, Q1, Q2, Q3,..., Qn) of each FF 42 are input to the data processing circuit 43.
- the output (SOUT) of the selection circuit 3 is input to the head of the delay element 41, propagates through the group of delay elements 41, and then the effective edge (for example, rising edge) of the clock signal (the clock supplied to the delay measurement circuit 4). Is latched by FF42. At this time, by observing how far the signal SOUT has propagated through the delay circuit, the delay of the signal SOUT can be measured.
- this method is not applied to all FFs. For example, on a path or layout that can cause a maximum delay in consideration of deterioration and variation from the path distribution obtained by design. Further area reduction can be achieved by applying to a path that is likely to cause interference or failure.
- FIG. 5 is a diagram showing the configuration of the semiconductor device according to the second embodiment of the present invention.
- a control element 6 that receives a clock signal input to the clock (CK) terminal to the FF2 and a data signal input to the data (D) terminal is disposed adjacent to the corresponding FF2.
- the output signal of the control element 6 is input to the corresponding input terminal of the selection circuit 3.
- the FF 2 and the control element 6 constitute a delay measurement FF 5.
- the control element 6 may be disposed in the vicinity of the input of the FF 2 or may be disposed in the FF 2.
- the configuration of the selection circuit 3 and the delay measurement circuit 4 and the delay measurement procedure are basically the same as those in the first embodiment described with reference to FIGS. .
- the path to each FF 2 is branched from the node immediately before the input to each FF 2 and directly input to the delay measurement circuit 4 via the selection circuit 3.
- the control element 6 detects the relationship between the clock signal (CK) and the data signal (D) for each FF2, and the detected clock signal (CK) and data signal are detected.
- the delay measurement circuit 4 measures the relationship (D).
- FIG. 6 is a diagram showing an example of the configuration of the control element 6 of FIG.
- a selection element 7 is provided as the control element 6 of FIG.
- the selection element 7 selects one of the data signal input to the data terminal (D) of the FF 2 or the clock signal input to the clock terminal (CK) of the FF 2 as it is according to the given control signal. 3 to the corresponding input terminals.
- the clock signal in the vicinity of the clock input terminal) is output in a time-sharing manner, and the delay measurement circuit 4 performs delay measurement, whereby the relationship between the data signal and the clock signal can be calculated.
- FIG. 7 is a diagram illustrating an example of the configuration of FIG.
- a 2-input 1-output multiplexer circuit (MUX) that selectively outputs one of the two inputs according to the value (1/0) of the control signal is used as the selection element 7 in FIG. 6.
- MUX 2-input 1-output multiplexer circuit
- FIG. 8 is a flowchart showing the procedure of delay measurement in the present embodiment.
- FIG. 9 is a timing chart showing an example of the operation of this embodiment.
- the selection signal is first controlled for delay measurement, the measurement target path (S1, S2,... In FIG. 7) is determined (step S21 in FIG. 8), and the control signal in FIG. 7 is set. (Step S22), it is determined whether to propagate the clock signal (CK) or the data signal (D) from the MUX 7 in FIG.
- the clock signal (CK) is selected in step S22, and the edge delay of the clock signal (CK) is measured in step S23.
- step S24 the data signal (D) is selected, and in step S25, the edge delay of the data signal (CK) is measured. In step S26, the delay is calculated.
- step S22 it is possible to measure the delay characteristics of the entire path in the core circuit 10 by executing the delay measurement of the edges of the data and the clock signal in the plurality of FFs 2 while switching the selection signal.
- the delay time is accurately measured by observing the transition of the clock signal (CK) from the last transition of the data signal (D).
- the selection element (multiplexer circuit) 7 selects the clock (CK) and data (D), respectively.
- the clock signal CK2 and the data signal D2 are output from the selection circuit 3 in a time division manner according to 0 and 1 of the control signal, respectively, and the delay measurement is performed.
- the delay of D2 is obtained from the difference between the delay of the clock signal (CK2) and the delay of the data signal (D2).
- the CK1 and D1 are output from the selection circuit 3 in a time-sharing manner according to 0 and 1 of the control signal, the delay measurement is performed, and the clock signal From the difference between the delay of (CK1) and the delay of the data signal (D1), the delay of D2 is obtained.
- the CK3 and D3 are output from the selection circuit 3 in a time-sharing manner according to the control signal 0 or 1, the delay measurement is performed, and the clock signal ( The delay of D3 is obtained from the difference between the delay of CK3) and the delay of the data signal (D3).
- FIG. 10 is a diagram for explaining the procedure for calculating the delay characteristic from the difference between the delay of the clock signal (CK) and the delay of the data signal (D) in step 26 of FIG.
- SOUT is the output of the selection circuit 3, E1, E2,... En in the delay measurement circuit 4 of FIG.
- the output signal and clock of the delay element 41 are clock signals input to the clock terminal of the FF 42 of the delay measurement circuit 4 in FIG.
- the delay of the clock signal (CK) output to the output SOUT of the selection circuit 3 is measured, and the transition point of the output data signal (Q0, Q1, Q2,... Qn) of the FF 42 is set to LSB (Least Significantant). (Bit) side, and the transition point is held in a register (Tck) (not shown) or the like.
- FIG. 10B is the case of the clock input path (CK) where SOUT is FF.
- CK clock input path
- the delay of the data signal (D) output to the output SOUT of the selection circuit 3 is measured in the same manner, and the transition point from the LSB (Least Significant Bit) side of the data is held in the register (Td) or the like.
- the transition point of the data signal (D) is closer to the MSB (Most Significant Bit) side than the transition point of the clock signal (CK). This is because the data cannot be correctly sampled by FF2 unless the signal at the data terminal is fixed (transition) at a predetermined time (setup time) before the rising edge of the clock terminal of FF2.
- the time difference from the transition (Td) of the data signal (D) to the transition (Tck) of the clock signal (CK) is a delay margin of the path.
- FIG. 11A is a diagram showing the configuration of the third exemplary embodiment of the present invention.
- FIG. 11B is a timing chart for explaining the operation of FIG.
- FIG. 11B shows timing waveforms of Sel_CK1, Sel_D1, S1, Sel_CK2, Sel_D2, and S2 of FIG.
- the selection element 7 shown in FIG. 6 is composed of three NAND circuits, and the selection circuit 3 is composed of an OR circuit.
- the FF2 and the three NAND circuits constitute a delay measurement FF5.
- the selection element has a clock selection signal Sel_CK and a data selection signal Sel_D as control signals.
- the clock selection signal (Sel_CK) and the clock signal (CK) are input to the first NAND circuit, and the data selection signal (Sel_D) and the data signal (D) are input to the second NAND circuit.
- the outputs of the first and second NAND circuits are input to the third NAND circuit at the next stage.
- the clock selection signal (Sel_CK) is 1 (High)
- the data selection signal (Sel_D) is 0 (Low)
- the first NAND circuit to which the clock signal (CK) is input is an inversion of the clock signal (CK).
- the output of the second NAND circuit is fixed to 1 (High)
- the third NAND circuit is an inverted signal of the output of the first NAND circuit (inverted signal of the clock signal (CK)), and accordingly A clock signal (CK) is output.
- the clock selection signal (Sel_CK) When the data selection signal (Sel_D) is 1 (High), the clock selection signal (Sel_CK) is set to 0 (Low), and the second NAND circuit that receives the data signal (D) inverts the data signal (D).
- the first NAND circuit output is fixed to 1 (High), and the third NAND circuit is an inverted signal of the output of the second NAND circuit (inverted signal of the data signal (D)), therefore A data signal (CK) is output.
- the output of the delay measurement FF 5 (the output of the third NAND circuit) is input to the selection circuit 3 (OR circuit).
- the selection element including the first to third NAND circuits outputs a signal corresponding to the control signal input to each delay measurement FF 5. For example, when the clock selection signal Sel_CK is 1 (High), the clock signal (CK1) is selected and output. When the data selection signal (Sel_D) is 1, the data signal (D1) is output.
- the multiplexer (MUX) always outputs either the clock signal (CK) or the data signal (D). For this reason, electric power is expected to increase.
- 11A has a configuration in which part of the circuit of the selection circuit 3 is added to the selection element 7 of FIG.
- the logic circuit can have a plurality of configurations in order to realize the same logic, it is also possible to adopt a configuration of another logic circuit for realizing a similar function.
- FIG. 12 is a diagram showing the configuration of the fourth exemplary embodiment of the present invention.
- a processing circuit 8 is used as a control element.
- the processing circuit 8 outputs a simple logical operation result of the data signal (D) input to the data terminal (D) of the FF2 and the clock signal (CK) input to the clock terminal (CK) of the FF2 (S ) That is, the calculation result of the processing circuit 8 that inputs D1 and CK1 is output as one signal S1, is input to the corresponding input terminal of the selection circuit 3, and the calculation result of the processing circuit 8 that inputs D2 and CK2 is one The signal S2 is output and input to the corresponding input terminal of the selection circuit 3.
- the data signal (D) and the clock signal (CK) are output in a time-sharing manner, it takes about twice as much time for delay measurement as in the first embodiment.
- the processing circuit 8 directly calculates the relationship between the clock signal (CK) and the data signal (D) and outputs the result, so that the clock signal (CK) and the data signal (D) are time-divided. ), The delay can be measured at a higher speed.
- FIG. 13A is a diagram showing an example of the configuration of FIG.
- an XOR (exclusive OR) circuit having a data signal (D) and a clock signal (CK) as inputs is used as the processing circuit 8 in FIG.
- the phase difference between the data signal (D) and the clock signal (CK) can be converted into a pulse width by using an XOR circuit.
- the selection circuit 3 propagates the pulse width from the XOR circuit directly to the delay measurement circuit 4.
- the delay margin can be obtained by measuring the pulse width by the delay measuring circuit 4. Thereby, the delay characteristic can be calculated.
- the delay measurement circuit 4 is slightly different from the configuration shown in FIG. 4 and measures the width of an arbitrary pulse. This can be easily handled by changing the data processing circuit 43 of the delay measuring circuit 4 of FIG.
- FIG. 14 is a diagram showing the configuration of the fifth exemplary embodiment of the present invention.
- a setting storage element 21, a control element 22, and a power supply control circuit 23 are provided in addition to the core circuit 10 and the delay measurement circuit 4.
- the delay measurement circuit 4 measures the characteristic of the critical path of the core circuit 10 and stores it in the setting storage element 21.
- the core circuit 10 includes the selection circuit 3 of the above embodiment, or the selection circuit 3 and the delay measurement FF 5, and outputs a signal of the selected path to the delay measurement circuit 4.
- the delay measurement circuit 4 has the configuration of the above-described embodiment described with reference to FIG.
- the core circuit 10 has its power supply voltage variably controlled via the control element 22 and the power supply control circuit 23 based on the information stored in the setting storage element 21.
- the power supply voltage of the core circuit 10 is controlled according to the delay characteristics of the core circuit 10, so that the low voltage operation of the core circuit 10 can be optimized.
- FIG. 15 is a diagram showing the configuration of the sixth exemplary embodiment of the present invention.
- the semiconductor device of this embodiment includes a core circuit 10, a delay measurement circuit 4, a setting register 34 that stores a delay characteristic result, and a delay that can generate an arbitrary delay according to the value of the setting register 34.
- the variable replica circuit 33, the frequency comparison circuit 32 that compares the frequency of the delay variable replica circuit 33 and the clock frequency of the core circuit 10, and the core circuit 10 and the peripheral circuits according to the frequency difference between the delay variable replica circuit 33 and the core circuit 10 A power supply control circuit 31 for supplying power.
- the core circuit 10 of FIG. 15 has the configuration of the embodiment described with reference to FIG.
- the delay variable replica circuit 33 is corrected for delay by the delay measurement circuit 4 so as to operate with the same delay characteristics as the core circuit 10. Thereby, in the present embodiment, it is possible to perform power supply voltage control optimal for the core circuit 10.
- FIG. 16 is a flowchart for explaining the operation of this embodiment.
- step S31 the critical path characteristic of the core circuit 10 is measured using the delay measurement circuit 4 during a test before shipment, and the characteristic value is stored in the setting register 34.
- step S32 core circuit actual operation start
- the delay measurement circuit 4 is used in a state where the normal operation is not affected, and the delay is selectively measured, for example, for each path (critical path, other path, etc.) in the core circuit 10.
- the process of signal selection and delay measurement (steps S34 and S35) between the LOOP start and the LOOP end in FIG. 16 is repeated.
- the delay characteristics of various paths are repeatedly measured for tens of thousands of clocks, and the value of the setting register 34 is updated using the measured delay characteristics (step S37).
- the value of the setting register 34 is set so that the delay of the delay variable replica circuit 33 becomes longer. Correct it.
- the value of the setting register 34 is corrected by the data processing circuit 43 (see FIG. 4) of the delay measurement circuit 4.
- one of the above-described embodiments is used as the delay measurement circuit 4 of the core circuit 10, but the delay measurement of other embodiments may be used.
- the flip-flop (FF1) in FIG. 17A is called “Raizor-FF” and latches the same data signal (D) separately using a normal clock (CLK) and a clock signal delayed by a delay circuit. In this way, malfunctions can be detected.
- the flip-flop (FF2) in FIG. 17B is called “degradation detection FF”, and the data signal (D) and the delayed data signal are separately latched by the same clock (CLK), so that the core circuit It is possible to detect delay degradation. Although a failure or deterioration can be detected only in the fixed delay region of the data signal or the clock signal, the above-described flow can be performed by using these FFs.
- the present invention is suitable for reducing the power consumption of a semiconductor device.
- FIG. 18 is a diagram for explaining a seventh embodiment of the present invention.
- a path delay distribution is created based on a result of performing path delay measurement over a plurality of cycles in the semiconductor device (LSI) having the configuration shown in each of the above embodiments.
- the path delay distribution usually indicates the number of activation paths and the delay amount in one cycle of the semiconductor device.
- Delay information that can be acquired using the present invention is one path in one cycle. That is, for example, as shown in FIG. 1, one delay measurement circuit 4 measures the delay of one path selected by the selection circuit 3 among a plurality of input paths to a plurality of FFs. For this reason, in this embodiment, a path delay distribution in a plurality of cycles is created. If the semiconductor device includes N delay measuring circuits 4 (see FIG. 1), N paths can be measured in parallel in one cycle.
- the semiconductor device extracts various feature amounts from the delay distribution information of the created path. Then, the operation of the semiconductor device (LSI) is controlled based on the extracted feature amount. As a result, the semiconductor device (LSI) can be operated in an optimum state.
- the signal selection phase (S41) for selecting the FF (2 in FIG. 1) that terminates the arbitrary path of the semiconductor device is repeated to the selected FF.
- the delay measurement phase (S42) for measuring the delay of the input path is executed. Note that the processing of S41 to S42 shows the same processing as S21 to S26 of FIG.
- Predetermined conditions such as each instruction set (instruction set of the CPU of the semiconductor device) and each fixed cycle are set for the path delay information acquired by path selection and delay measurement, and delay distribution information is created (S43).
- the semiconductor device (LSI) is operated in an optimal state by performing control to reflect the extracted feature amount in the operation of the semiconductor device (LSI) (S45).
- acquisition of delay distribution information, extraction of feature values, and control of operations are performed in a semiconductor device (LSI), but the present invention is not limited to such a configuration.
- a semiconductor device (LSI) transmits path delay information acquired by an internal delay measurement circuit 4 (see FIG. 1 and the like) to another device (another semiconductor device, a controller, a tester, or the like), and the other device
- the delay distribution information may be acquired and the feature amount may be extracted to control the operation of the semiconductor device (LSI).
- the operation parameters of the semiconductor device (LSI) are set in a nonvolatile memory element (fuse, wire breakage, etc.) in the semiconductor device (LSI) or in a rewritable nonvolatile memory element. May be.
- FIG. 19 is a diagram for explaining an eighth embodiment of the present invention.
- FIG. 19 shows an example of the feature amount extracted from the delay distribution information and an example of the operation of the semiconductor device (LSI). Note that steps S41, S42, and S43 in FIG. 19 are the same as the steps in FIG.
- ⁇ Degree of deterioration ⁇ Activation rate that can be extracted from the number of measured paths
- ⁇ Current consumption extracted from the activation rate -Maximum operating speed extracted from the longest path
- ⁇ Average and variance of distribution extracted from statistical analysis are extracted as feature quantities.
- ⁇ Power-supply voltage, ⁇ Operating temperature, ⁇ Operating frequency, -Optimum operation of the LSI can be realized by reflecting it in at least one of instruction scheduling and the like.
- the feature amount to be extracted may be one deterioration amount or a plurality of deterioration amounts, for example.
- characteristic values of deterioration, activation rate, current consumption, maximum operating speed, distribution average, and distribution dispersion are used for power supply voltage control (operating temperature, operating frequency, instruction scheduling). Although an example is shown, it goes without saying that any one feature amount may be used to control the power supply voltage.
- FIG. 20 is a diagram for explaining a ninth embodiment of the present invention, and shows an example in which current consumption is extracted as the feature amount explained with reference to FIG. That is, in this embodiment, the current consumption tendency is extracted from the delay distribution information acquired in step S43 of FIG.
- LSI semiconductor device
- FIG. 20A a plurality of consecutive instruction sequences sequentially executed by a CPU in the semiconductor device (LSI)
- FIG. 20B Delay distribution information is created (see FIG. 20B).
- the path delay distribution (the delay and the number of paths) in a plurality of cycles is acquired.
- the horizontal axis represents delay (time)
- the vertical axis represents the number of paths, and it can be seen how many paths have a certain delay (the vertical axis may represent the number of times delay information is acquired).
- the total number of paths in the range from the minimum to the maximum delay is the total number of paths.
- an instruction executed by the CPU in the semiconductor device (LSI) may be given from the tester side in a test at the time of product shipment (an instruction may be given at random). Under an environment after product shipment, the instructions are executed by the CPU in the semiconductor device (LSI) in accordance with a program stored in a memory (not shown).
- the total number of activation paths corresponding to each delay distribution is extracted from the delay distribution information of a plurality of paths acquired corresponding to instructions sequentially executed by the CPU in the semiconductor device (LSI) (FIG. 20C). reference). As shown in FIG. 20C, the time transition of the total number of activation paths is acquired, and the time transition (trend) of the current value is extracted.
- step S42 in FIG. 19 when the selected path is activated, a delay value smaller than the system clock cycle is acquired by the delay measurement circuit (for example, 4 in FIG. 1) (see FIG. 10).
- the delay measurement circuit for example, 4 in FIG. 1
- a delay value larger than the system clock cycle can be obtained, so that the activation path can be easily determined.
- the number of activation paths is extracted from a plurality of pieces of delay distribution information having different times. As a result, the current consumption of the LSI can be known. This utilizes the fact that there is generally a correlation between the activation rate of the circuit and the current consumption (the current value and the number of activation paths in FIG. 20C change in time in the same phase as the time. ing).
- a delay of a path having a large load capacity is generally increased, and current consumption for charging / discharging the load with, for example, a power supply amplitude is also increased.
- a single path having a large delay (a large load capacity) is multiplied by a weighting factor w (w> 1) corresponding to the delay amount, so that one path becomes w. You may make it extract the activation path total number according to consumption.
- FIG. 21 is a diagram for explaining a tenth embodiment of the present invention.
- the deterioration tendency is extracted as the feature amount extracted from the delay distribution information acquired in step S43 of FIG.
- a predetermined instruction for example, FIG. Paying attention to the instruction sequence A
- delay distribution information is created based on the path delay information in the instruction.
- delay measurement circuit for example, 4 in FIG. 1
- delay information of one path is acquired in one cycle.
- path delay distributions in a plurality of cycles are obtained for the same instruction. create.
- FIG. 21B shows an example of path delay distribution (horizontal axis: delay, vertical axis: number of paths).
- a median value, a mean value, a maximum value, a variance, a standard deviation, and the like are obtained as statistical information.
- the acquired path delay distribution is a delay information distribution at the time of execution of the same instruction, the same distribution should theoretically be obtained.
- the maximum delay corresponds to the critical path delay.
- the statistical information may be derived by a CPU or the like in the semiconductor device (LSI).
- this slight change in distribution is extracted using statistical analysis.
- the delay in the entire semiconductor device increases.
- the median and standard deviation indicating the delay tendency of the entire path are plotted according to the acquired time (the median and standard deviation in FIG. 21C are time-varying).
- a tendency of progress of deterioration can be obtained.
- a series of processing of path delay distribution (FIG. 21B) and statistical information extraction at the same operation by executing the same instruction is performed at a predetermined time interval (for example, hourly, daily, weekly, monthly or yearly).
- a selection circuit that selects an input path according to a selection signal from a plurality of input paths to the plurality of flip-flops;
- a delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
- a semiconductor device comprising:
- An input path to the flip-flop is branched in the vicinity of the input terminal to the flip-flop or inside the flip-flop, and is connected to an input terminal corresponding to the flip-flop among a plurality of input terminals of the selection circuit.
- a plurality of selection elements arranged corresponding to each of the plurality of flip-flops;
- the selection element selects one path from among branch paths of a plurality of input paths to the flip-flop based on a control signal input to the selection element,
- the semiconductor device according to any one of appendices 1 to 3, wherein a signal of a selected path is supplied to a corresponding input terminal of the selection circuit.
- the selection element inputs signals of a data input path and a clock input path to the flip-flop,
- the selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element.
- the selection circuit selects one of the plurality of selection elements corresponding to the plurality of flip-flops based on the selection signal, and a data signal and a clock signal from the selected one selection element are supplied to the delay measurement circuit. 6.
- a semiconductor device according to claim 1.
- the selection elements are arranged between a branch point of a path from an input path to the flip-flop to an input terminal of the selection circuit and an input terminal of the selection circuit.
- the delay measuring circuit is characterized in that the signal transition time of the data input path and the clock input path to the flip-flop is measured in a time-sharing manner, and a delay amount is calculated from a difference between the measured transition times.
- the semiconductor device according to any one of appendices 5 to 9.
- the delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge.
- a plurality of processing circuits arranged corresponding to each of the plurality of flip-flops;
- the processing circuit inputs respective branch paths of a plurality of input paths to the flip-flop, performs a logical operation of the plurality of input paths, and outputs a logical operation result corresponding to the flip-flop of the selection circuit 4.
- the processing circuit includes a 2-input exclusive OR circuit having a clock input and a data input as inputs.
- a plurality of selection elements arranged corresponding to the plurality of flip-flops, and And the selection element inputs a data input path and a clock input path signal to the corresponding flip-flop, and time-divides the data signal and the clock signal to the flip-flop according to the input control signal.
- a semiconductor device comprising:
- Item 18 The supplementary note 17, wherein the selection element is disposed between a branch point of a path from an input path to the flip-flop to an input terminal of the selection circuit and an input terminal of the selection circuit.
- Item 19 The semiconductor device according to appendix 18, wherein the selection element is disposed in the vicinity of or inside the flip-flop.
- the delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge.
- a core circuit responsible for the main function of the semiconductor device A delay measuring circuit that inputs an internal signal of the core circuit and performs delay measurement; A power supply control circuit for supplying power to the core circuit; A storage element for storing a delay measurement result of the delay measurement circuit; A control element that inputs a value of the storage element and outputs a control signal to the power supply control circuit;
- the core circuit includes a plurality of flip-flops, A selection circuit that selects an input path according to a selection signal from among a plurality of input paths to the plurality of flip-flops, provided inside or outside the core circuit,
- the semiconductor device characterized in that the delay measurement circuit measures a delay of an output signal of the selection circuit.
- variable delay replica circuit is set to have the same delay characteristic as that of a critical path of the core circuit based on delay information obtained by the delay measurement circuit.
- An input path to the flip-flop is branched in the vicinity of the input terminal to the flip-flop or inside the flip-flop, and is connected to an input terminal corresponding to the flip-flop among a plurality of input terminals of the selection circuit.
- the selection element Comprising a selection element arranged corresponding to each of the flip-flops;
- the selection element selects one input path based on a control signal input to the selection element from among branch paths of a plurality of input paths to the flip-flop, 26.
- the semiconductor device according to any one of appendices 21 to 25, wherein a signal of a selected path is supplied to a corresponding input terminal of the selection circuit.
- the selection element inputs signals of a data input path and a clock input path to the flip-flop,
- the selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element.
- the selection circuit selects one of the plurality of selection elements corresponding to the plurality of flip-flops based on the selection signal, and a data signal and a clock signal from the selected one selection element are supplied to the delay measurement circuit. 28.
- the supplementary note 28 wherein the plurality of selection elements are configured such that one selection element of the plurality of selection elements operates alternatively based on a control signal input to each of the plurality of selection elements.
- the delay measuring circuit is characterized in that the signal transition time of the data input path and the clock input path to the flip-flop is measured in a time-sharing manner, and a delay amount is calculated from a difference between the measured transition times.
- the semiconductor device according to any one of appendices 27 to 29.
- the delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge.
- a processing circuit arranged corresponding to each of the flip-flops;
- the processing circuit inputs respective branch paths of a plurality of input paths to the flip-flop, performs a logical operation of the plurality of input paths, and outputs a logical operation result corresponding to the flip-flop of the selection circuit 26.
- the semiconductor device according to any one of appendices 21 to 25, wherein the semiconductor device is supplied to a terminal.
- a selection element arranged corresponding to the flip-flop inputs a data input path and a clock input path signal to the flip-flop,
- the selection element propagates a data signal and a clock signal to the flip-flop in a time division manner in a path between the output of the selection element and the input terminal of the selection circuit according to a control signal input to the selection element.
- a control method wherein a feature amount is extracted from the delay distribution information created by the delay measurement method according to attachment 35, and an operation of the semiconductor device is adjusted based on the feature amount.
- a control method characterized in that at least one of an average value, a median value, and a variance is calculated from the delay distribution information created by the delay measurement method according to attachment 35, and a tendency of aging deterioration is obtained.
- a control method characterized in that, from the delay distribution information created by the delay measurement method according to attachment 35, the longest delay is calculated from the distribution information to obtain the maximum operating speed of the semiconductor device.
- a selection circuit that selects an input path according to a selection signal from a plurality of input paths to the plurality of flip-flops;
- a delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
- path delay distribution information is created from the delay measured by the delay measuring circuit.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electronic Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Provided is a device wherein the accuracy of measuring delay characteristics is improved, while suppressing increase of the circuit area. The device is provided with: a selection circuit (3) which selects and outputs a plurality of input paths to a plurality of flip-flops (2) in accordance with selection signals; and a delay measuring circuit (4) which measures the delay of the signals outputted from the selection circuit (3).
Description
[関連出願についての記載]
本発明は、日本国特許出願:特願2009-004046号(2009年 1月 9日出願)及びの特願2009-281886号(2009年12月11日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、半導体装置に関し、特に、遅延特性の把握に好適な構成と方法に関する。 [Description of related applications]
The present invention is based on the priority claims of Japanese patent applications: Japanese Patent Application No. 2009-004046 (filed on Jan. 9, 2009) and Japanese Patent Application No. 2009-281886 (filed on Dec. 11, 2009). The entire contents of this application are incorporated herein by reference.
The present invention relates to a semiconductor device, and more particularly to a configuration and method suitable for grasping delay characteristics.
本発明は、日本国特許出願:特願2009-004046号(2009年 1月 9日出願)及びの特願2009-281886号(2009年12月11日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、半導体装置に関し、特に、遅延特性の把握に好適な構成と方法に関する。 [Description of related applications]
The present invention is based on the priority claims of Japanese patent applications: Japanese Patent Application No. 2009-004046 (filed on Jan. 9, 2009) and Japanese Patent Application No. 2009-281886 (filed on Dec. 11, 2009). The entire contents of this application are incorporated herein by reference.
The present invention relates to a semiconductor device, and more particularly to a configuration and method suitable for grasping delay characteristics.
近時、半導体回路(LSI)の低電力化の手法として、LSIの電源電圧を下げることが一般に行われている。これは、LSIに対して、例えば動作可能な最低電圧を電源電圧として印加することで電力の低減を図るものである。この手法を利用するためには、LSIの動作可能な最低電圧をなんらか手法で知る必要がある。一般的には、コア回路のクリティカルパス相当の遅延を生成する遅延複製回路(レプリカ)を搭載し、電源電圧制御の対象となるコア回路の動作クロック周波数と、レプリカの遅延値を比較して、レプリカの遅延値が動作クロックサイクル以内に収まるように電源電圧を制御することで、LSIの動作可能な最低電圧を得ている。
Recently, as a technique for reducing the power consumption of a semiconductor circuit (LSI), the power supply voltage of the LSI is generally lowered. This is intended to reduce power by applying, for example, the lowest operable voltage as a power supply voltage to an LSI. In order to use this method, it is necessary to know the minimum voltage at which the LSI can operate by some method. Generally, a delay replica circuit (replica) that generates a delay equivalent to the critical path of the core circuit is installed, and the operation clock frequency of the core circuit that is the target of power supply voltage control is compared with the delay value of the replica, By controlling the power supply voltage so that the replica delay value falls within the operation clock cycle, the lowest voltage at which LSI can operate is obtained.
近時の製造プロセスの微細化に伴い、LSIの動作周波数のばらつきが大きくなっている。
With the recent miniaturization of the manufacturing process, the variation in the operating frequency of LSI is increasing.
なお、特許文献1には、レプリカ制御回路内のフューズ回路のフューズ状態により決定されるデータを読み出し、該データのデコード結果より、レプリカ回路の遅延量を調整することで、LSIが動作可能な最低電圧を適応的に供給する構成が開示されている。
In Patent Document 1, data determined by the fuse state of the fuse circuit in the replica control circuit is read, and the delay amount of the replica circuit is adjusted based on the decoding result of the data, whereby the LSI can operate at the minimum. A configuration for adaptively supplying voltage is disclosed.
上記特許文献1の全開示内容はその引用をもって本書に繰込み記載する。
以下に本発明による関連技術の分析を与える。 The entire disclosure ofPatent Document 1 is incorporated herein by reference.
The following is an analysis of the related art according to the present invention.
以下に本発明による関連技術の分析を与える。 The entire disclosure of
The following is an analysis of the related art according to the present invention.
特許文献1によれば、コア回路のクリティカルパス遅延特性を観測するために、コア回路内の信号遷移のタイミング(エッジ)を利用している。
According to Patent Document 1, the signal transition timing (edge) in the core circuit is used to observe the critical path delay characteristic of the core circuit.
しかしながら、コア回路内には膨大な数のクリティカルパスが存在する。また近年の微細プロセスでは、製造ばらつきや信号間干渉などの影響により、設計上、クリティカルパス以外のパスがクリティカルパスとなる可能性も高まっている。
However, there are a huge number of critical paths in the core circuit. In recent fine processes, the possibility of paths other than the critical path becoming a critical path is increasing due to the influence of manufacturing variations and inter-signal interference.
このため、どのパスのどのエッジを測定すれば、正確なクリティカルパス遅延特性を測定できるかわからない、というのが実情である。
Therefore, the actual situation is that it is not known which edge of which path can be measured to accurately measure the critical path delay characteristic.
この問題に対処するための一つの案として、複数のパスの複数のエッジを測定することでコア回路の特性をより正確に評価する手法について検討を加える。この場合、複数のエッジを測定するには、基本的には、複数のエッジ測定回路を用意する必要がある。その結果、チップ面積が増加する。さらに、複数のエッジ測回路間で特性がばらつき正確なエッジの測定ができないという問題も生じる。
と し て As one proposal for dealing with this problem, a method for more accurately evaluating the characteristics of the core circuit by measuring multiple edges of multiple paths will be examined. In this case, in order to measure a plurality of edges, it is basically necessary to prepare a plurality of edge measurement circuits. As a result, the chip area increases. Furthermore, there is a problem that characteristics cannot be accurately measured due to variations in characteristics among a plurality of edge measuring circuits.
したがって、本発明の目的は、回路面積の増加を抑えつつ、遅延特性の測定精度を高める装置を提供することにある。
Therefore, an object of the present invention is to provide an apparatus that increases the measurement accuracy of delay characteristics while suppressing an increase in circuit area.
本願で開示される発明は、上記問題の1つ又は複数を解決するため、概略以下の構成とされる。
The invention disclosed in the present application is generally configured as follows in order to solve one or more of the above problems.
本発明によれば、複数のフリップフロップと、前記複数のフリップフロップへの入力パスを選択信号にしたがって選択して出力する選択回路と、前記選択回路から出力される信号の遅延を測定する遅延測定回路と、を備えた半導体装置が提供される。
According to the present invention, a plurality of flip-flops, a selection circuit that selects and outputs input paths to the plurality of flip-flops according to a selection signal, and a delay measurement that measures a delay of a signal output from the selection circuit And a semiconductor device including the circuit.
本発明の別の側面によれば、複数のフリップフロップと、前記複数のフリップフロップにそれぞれ対応させて配置される複数の選択素子と、を備え、前記選択素子は、対応する前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、入力される制御信号に応じて、前記フリップフロップへのデータ信号とクロック信号を時分割で出力し、前記複数の選択素子の中から選択信号にしたがって1つを選択する選択回路と、
前記選択回路で選択された前記選択素子より時分割で出力されるデータ信号とクロック信号の遅延を測定する遅延測定回路と、を備えた半導体装置が提供される。 According to another aspect of the present invention, comprising: a plurality of flip-flops; and a plurality of selection elements arranged in correspondence with the plurality of flip-flops, respectively, the selection elements to the corresponding flip-flops Data input path and clock input path signals are input, and the data signal and clock signal to the flip-flop are output in a time-sharing manner according to the input control signal, and the selection signal is selected from the plurality of selection elements. Therefore, a selection circuit for selecting one,
There is provided a semiconductor device including a delay measurement circuit that measures a delay between a data signal and a clock signal output in a time division manner from the selection element selected by the selection circuit.
前記選択回路で選択された前記選択素子より時分割で出力されるデータ信号とクロック信号の遅延を測定する遅延測定回路と、を備えた半導体装置が提供される。 According to another aspect of the present invention, comprising: a plurality of flip-flops; and a plurality of selection elements arranged in correspondence with the plurality of flip-flops, respectively, the selection elements to the corresponding flip-flops Data input path and clock input path signals are input, and the data signal and clock signal to the flip-flop are output in a time-sharing manner according to the input control signal, and the selection signal is selected from the plurality of selection elements. Therefore, a selection circuit for selecting one,
There is provided a semiconductor device including a delay measurement circuit that measures a delay between a data signal and a clock signal output in a time division manner from the selection element selected by the selection circuit.
本発明のさらに別の側面によれば、半導体装置の主機能を担うコア回路と、前記コア回路の内部信号を入力し遅延測定を行う遅延測定回路と、前記コア回路に電源を供給する電源制御回路と、前記遅延測定回路の遅延測定結果を記憶する記憶素子と、前記記憶素子の値を入力し前記電源制御回路へ制御信号を出力する制御素子と、を備え、前記コア回路は、複数のフリップフロップと、前記複数のフリップフロップへの入力パスを選択信号にしたがって選択して出力する選択回路と、を備え、前記遅延測定回路は、前記選択回路の出力信号の遅延測定を行う半導体装置が提供される。
According to still another aspect of the present invention, a core circuit responsible for a main function of a semiconductor device, a delay measurement circuit that inputs an internal signal of the core circuit and performs delay measurement, and a power supply control that supplies power to the core circuit A circuit, a storage element that stores a delay measurement result of the delay measurement circuit, and a control element that inputs a value of the storage element and outputs a control signal to the power supply control circuit, and the core circuit includes a plurality of A flip-flop and a selection circuit that selects and outputs an input path to the plurality of flip-flops according to a selection signal, and the delay measurement circuit is a semiconductor device that measures a delay of an output signal of the selection circuit. Provided.
本発明によれば、複数のフリップフロップを含む半導体装置による遅延測定方法であって、選択回路が、前記複数のフリップフロップへの入力パスを選択信号にしたがって選択して出力し、遅延測定回路が、前記選択された信号の遅延を測定する、遅延測定方法が提供される。
According to the present invention, there is provided a delay measurement method using a semiconductor device including a plurality of flip-flops, wherein a selection circuit selects and outputs an input path to the plurality of flip-flops according to a selection signal, and the delay measurement circuit includes A delay measurement method is provided for measuring a delay of the selected signal.
本発明によれば、上記した本発明に係る半導体装置において、測定したパスの遅延より遅延分布情報を作成する遅延測定方法が提供される。さらに、本発明によれば、前記遅延分布情報より特徴量を抽出し、前記特徴量を基に、前記半導体装置の動作を調整する制御方法が提供される。
According to the present invention, there is provided a delay measurement method for creating delay distribution information from measured path delays in the semiconductor device according to the present invention. Further, according to the present invention, there is provided a control method for extracting a feature amount from the delay distribution information and adjusting an operation of the semiconductor device based on the feature amount.
本発明によれば、回路面積の増加を抑えつつ、遅延特性の測定精度を高めることができる。
According to the present invention, it is possible to improve the measurement accuracy of delay characteristics while suppressing an increase in circuit area.
本発明によれば、作成したパスの遅延分布情報より、様々な特徴量を抽出し、半導体装置の動作を制御することで、半導体装置を最適な状態で動作させることを可能としている。
According to the present invention, it is possible to operate a semiconductor device in an optimum state by extracting various feature amounts from the created path delay distribution information and controlling the operation of the semiconductor device.
本発明の実施の形態について以下に説明する。本発明の一実施の形態に係る半導体装置は、コア回路内の複数のパスの複数の信号の中から選択的に1つの信号を出力する選択回路(セレクタ)(3)と、選択された信号の遅延時間を測定する遅延測定回路(4)とを備えている。本発明によれば、複数のパスの複数の信号の遅延時間を行う場合、例えば任意の時間間隔で選択回路(3)によって選択される信号を切り替えることにより、複数のパスの複数の信号の遅延時間の測定が行われる。また、本発明によれば、複数のパスの信号の遅延測定を実現可能としながら、回路面積の増加を抑えることができる。
Embodiments of the present invention will be described below. A semiconductor device according to an embodiment of the present invention includes a selection circuit (selector) (3) that selectively outputs one signal from a plurality of signals of a plurality of paths in a core circuit, and the selected signal And a delay measuring circuit (4) for measuring the delay time. According to the present invention, when performing delay times of a plurality of signals of a plurality of paths, for example, by switching a signal selected by the selection circuit (3) at an arbitrary time interval, the delay of the plurality of signals of the plurality of paths is performed. Time measurements are taken. Further, according to the present invention, it is possible to suppress an increase in circuit area while enabling delay measurement of signals of a plurality of paths.
前述したように、複数のパスに対応して複数の遅延測定回路を設ける構成(比較例)とした場合、回路面積が増大する。
As described above, when a configuration (comparative example) is provided with a plurality of delay measurement circuits corresponding to a plurality of paths, the circuit area increases.
これに対して、本発明によれば、遅延測定対象の複数のパスに対して1つの遅延測定回路(4)と選択回路(3)とを新たに追加するだけでよい。一般に、遅延測定回路は、遅延時間をデジタルコードに変換する一種のA/D(アナログ/デジタル)変換回路で構成されるため、回路面積は大きくなるが、セレクタは、小面積で実現できる。
On the other hand, according to the present invention, it is only necessary to newly add one delay measurement circuit (4) and a selection circuit (3) to a plurality of delay measurement target paths. In general, the delay measurement circuit is constituted by a kind of A / D (analog / digital) conversion circuit that converts a delay time into a digital code. Therefore, the circuit area becomes large, but the selector can be realized with a small area.
また、本発明によれば、複数のパスのエッジを測定することにより、コア回路の正確なクリティカルパス遅延特性を測定することができる。これは、本発明においては、複数のパスを選択回路(3)を介してコア回路外部へ出力する際に、フリップフロップ(FF)へ入力される直前、もしくは、フリップフロップ(FF)内部からパスを分岐することで、コア回路の正確なエッジを出力できるようにしたためである。
Further, according to the present invention, the accurate critical path delay characteristic of the core circuit can be measured by measuring the edges of a plurality of paths. In the present invention, when a plurality of paths are output to the outside of the core circuit via the selection circuit (3), the path is input immediately before being input to the flip-flop (FF) or from the inside of the flip-flop (FF). This is because an accurate edge of the core circuit can be output by branching.
さらに、本発明によれば、前述したように、複数のパスのエッジを測定する場合にも、面積増加を抑えることができるため、複数のクリティカルパスだけでなく、通常のパスの測定を実現し、コア回路の内部状態を詳しく観測することを可能としている。以下、具体的な実施例に即して説明する。
Furthermore, according to the present invention, as described above, even when measuring edges of a plurality of paths, an increase in area can be suppressed, so that not only a plurality of critical paths but also a normal path can be measured. This makes it possible to observe the internal state of the core circuit in detail. Hereinafter, description will be given in accordance with specific examples.
図1は、本発明の一実施例の半導体装置の構成を示す図である。図1を参照すると、本実施例の半導体装置は、論理回路1と、複数のフリップフロップ(FF)2を含むコア回路10と、選択回路(セレクタ)3と、遅延測定回路4と、を備えている。なお、選択回路(セレクタ)3は、コア回路10内部に備えた構成としてもよい。
FIG. 1 is a diagram showing a configuration of a semiconductor device according to an embodiment of the present invention. Referring to FIG. 1, the semiconductor device of this embodiment includes a logic circuit 1, a core circuit 10 including a plurality of flip-flops (FF) 2, a selection circuit (selector) 3, and a delay measurement circuit 4. ing. Note that the selection circuit (selector) 3 may be provided in the core circuit 10.
選択回路3は、複数のFF2への入力信号(図1では、データ信号(D1、D2、D3…)を入力とし、入力される選択信号の値に応じて、複数のFF2への入力信号(D1、D2、D3…)の中から1つを出力する。なお、選択回路3は、FF2へのデータ信号(D)だけでなく、FF2へのクロック信号(CK)を入力し、選択信号で選択する構成としてもよい。
The selection circuit 3 receives input signals to the plurality of FFs 2 (in FIG. 1, data signals (D1, D2, D3...)) And inputs signals to the plurality of FFs 2 according to the values of the input selection signals ( D1, D2, D3, etc.) The selection circuit 3 inputs not only the data signal (D) to FF2 but also the clock signal (CK) to FF2, A configuration may be selected.
遅延測定回路4は、選択回路3からの出力(SOUT)の遅延時間を測定し、その結果をデジタルコードで出力する。
The delay measurement circuit 4 measures the delay time of the output (SOUT) from the selection circuit 3, and outputs the result as a digital code.
本実施例の半導体装置は、その回路オーバーヘッドが小さい。これは、回路面積が相対的に大きな遅延測定回路4は1つで済み、選択回路3の回路面積は小さいためである。
The semiconductor device of this embodiment has a small circuit overhead. This is because only one delay measurement circuit 4 having a relatively large circuit area is required, and the circuit area of the selection circuit 3 is small.
選択回路3への入力信号は、各FF2への入力される直前、もしくはFF2の内部から分岐されている信号(D1、D2、D3…)が用いられる。これにより、FF2に到着するデータ信号の遷移のタイミング(エッジ)を選択回路3を介して、コア回路10外部へ出力(SOUT)し、遅延測定回路4で遅延測定する
As the input signal to the selection circuit 3, signals (D1, D2, D3...) Immediately before being input to each FF2 or branched from the inside of the FF2 are used. As a result, the transition timing (edge) of the data signal arriving at FF 2 is output (SOUT) to the outside of the core circuit 10 via the selection circuit 3, and the delay measurement circuit 4 measures the delay.
図2は、本実施例のコア回路10内の複数パスの遅延特性の測定手順を示す流れ図である。前述したように、本実施例の半導体装置は、選択回路3で複数のパスの中から任意の1つのパスを選択的に出力する。そのため、始めに、選択信号を制御し、選択信号に対応する任意のパスの信号を選択回路3より出力する(ステップS11)。
FIG. 2 is a flowchart showing a procedure for measuring delay characteristics of a plurality of paths in the core circuit 10 of this embodiment. As described above, in the semiconductor device of this embodiment, the selection circuit 3 selectively outputs any one path from a plurality of paths. Therefore, first, the selection signal is controlled, and a signal of an arbitrary path corresponding to the selection signal is output from the selection circuit 3 (step S11).
任意のパスのエッジを出力したあと、当該エッジを遅延測定回路4により測定する(ステップS12)。
After outputting an edge of an arbitrary path, the edge is measured by the delay measurement circuit 4 (step S12).
図2の信号選択(S11)と遅延測定(S12)の各ステップをコア回路10内の複数パスのそれぞれに対して実行することで、選択回路3へ入力される信号を時分割に切り替えて遅延測定を行うことができる。その結果、コア回路10内部の複数のFF2への入力パスの詳細な遅延特性を測定することが可能である。
The signal selection (S11) and delay measurement (S12) steps of FIG. 2 are executed for each of a plurality of paths in the core circuit 10, thereby switching the signal input to the selection circuit 3 to time division and delaying. Measurements can be made. As a result, detailed delay characteristics of the input paths to the plurality of FFs 2 in the core circuit 10 can be measured.
図3は、本実施例のタイミング動作を説明するタイミング図である。図3に示す例では、選択信号によって、選択回路3がD2を選択してSOUTに出力し遅延測定回路4でD2の遅延測定を行い、つづいて選択信号の値の変更によって、選択回路3はD1を選択してSOUTに出力し、遅延測定回路4でD1の遅延測定を行い、つづいて選択信号によって選択回路3がD3を選択してSOUTに出力し、遅延測定回路4でD3の遅延測定を行い、以下同様にして遅延測定回路4で選択回路3で選択されたDNの遅延測定を行う。
FIG. 3 is a timing chart for explaining the timing operation of this embodiment. In the example shown in FIG. 3, the selection circuit 3 selects D2 according to the selection signal and outputs it to SOUT, the delay measurement circuit 4 performs the delay measurement of D2, and then the selection circuit 3 changes the value of the selection signal so that the selection circuit 3 D1 is selected and output to SOUT, the delay measurement circuit 4 measures the delay of D1, and then the selection circuit 3 selects D3 by the selection signal and outputs it to SOUT. The delay measurement circuit 4 measures the delay of D3. In the same manner, the delay measurement circuit 4 measures the delay of the DN selected by the selection circuit 3.
図4は、図1の遅延測定回路4の構成の一例を示す図である。図4を参照すると、遅延測定回路4は、遅延素子12を複数段カスケード接続した遅延回路と、複数のFF42と、データ処理回路43を備えている。
FIG. 4 is a diagram showing an example of the configuration of the delay measurement circuit 4 of FIG. Referring to FIG. 4, the delay measurement circuit 4 includes a delay circuit in which delay elements 12 are cascade-connected in a plurality of stages, a plurality of FFs 42, and a data processing circuit 43.
複数のFF42のD端子(データ端子)は、直列(カスケード)に接続された遅延素子41の接続点にそれぞれ接続される。また、特に制限されないが、複数のFF42のクロック端子(CK)には、コア回路10で用いられるクロック信号が共通に入力される。特に制限されないが、データ処理回路43は、図示されない3つのレジスタと算術演算回路を少なくとも含む。このうち2つのレジスタは、クロック信号のエッジの遅延測定結果と、データ信号のエッジの遅延測定結果をそれぞれ保持し、算術演算回路は、データエッジとクロックエッジの遅延測定結果から遅延差を求め、3つ目のレジスタは、該算術演算回路で演算されたデータとクロックの遅延差を格納する。
D terminals (data terminals) of the plurality of FFs 42 are respectively connected to connection points of delay elements 41 connected in series (cascade). Although not particularly limited, a clock signal used in the core circuit 10 is commonly input to the clock terminals (CK) of the plurality of FFs 42. Although not particularly limited, the data processing circuit 43 includes at least three registers and an arithmetic operation circuit not shown. Two of these registers hold the delay measurement result of the clock signal edge and the delay measurement result of the data signal edge, respectively, and the arithmetic operation circuit obtains the delay difference from the delay measurement result of the data edge and the clock edge, The third register stores the delay difference between the data calculated by the arithmetic operation circuit and the clock.
各FF42の出力(Q0、Q1、Q2、Q3、・・・、Qn)は、データ処理回路43へ入力される。選択回路3の出力(SOUT)は、遅延素子41の先頭に入力され、遅延素子41群中を伝播した後、クロック信号(遅延測定回路4に供給されるクロック)の有効エッジ(例えば立ち上がりエッジ)でFF42によってラッチされる。このとき、信号SOUTが遅延回路をどこまで伝播したかを観測すれば、信号SOUTの遅延を測定することができる。選択回路3の出力信号(SOUT)がLowからHighへ立ち上がる場合、例えばクロックの立ち上がりエッジで共通にサンプルされた(n+1)個のFF42の出力Q0~Qnのうち、Q0~Qi(ただし、iは0~nの整数)が1(High)、Qi~Qnが0(Low)のとき、FF42の出力値の変化点であるi番目の遅延素子まで伝播したことがわかる。この遅延測定を、複数のパスについてパスを切り替えながら、例えば何万コア周期、繰り返すことで、網羅的に、回路内部のエッジを測定する。
The outputs (Q0, Q1, Q2, Q3,..., Qn) of each FF 42 are input to the data processing circuit 43. The output (SOUT) of the selection circuit 3 is input to the head of the delay element 41, propagates through the group of delay elements 41, and then the effective edge (for example, rising edge) of the clock signal (the clock supplied to the delay measurement circuit 4). Is latched by FF42. At this time, by observing how far the signal SOUT has propagated through the delay circuit, the delay of the signal SOUT can be measured. When the output signal (SOUT) of the selection circuit 3 rises from Low to High, for example, of the outputs Q0 to Qn of (n + 1) FFs 42 commonly sampled at the rising edge of the clock, Q0 to Qi (where i is When the integer of 0 to n is 1 (High) and Qi to Qn are 0 (Low), it can be seen that the propagation has reached the i-th delay element, which is the change point of the output value of the FF. By repeating this delay measurement for a plurality of paths while switching the paths, for example, tens of thousands of core cycles, the edges inside the circuit are comprehensively measured.
また、本実施例において、最小のタイミング・マージン値付近の値だけを、レジスタに記憶することで、少ないメモリ量で回路全体の遅延特性を測定することが可能である。
Also, in this embodiment, by storing only the value near the minimum timing margin value in the register, it is possible to measure the delay characteristics of the entire circuit with a small amount of memory.
さらに、本実施例においては、取得したデータを利用して、クリティカルパスの探索を行うことも可能である。
Further, in the present embodiment, it is possible to search for a critical path using the acquired data.
また、本実施例において、同一クロック信号を複数回測定することで、ジッター特性を評価数ことも可能である。
In this embodiment, it is also possible to evaluate the jitter characteristics by measuring the same clock signal a plurality of times.
さらに、本実施例においては、全てのFFに対して、この手法を適用するのではなく、例えば、設計で求めたパス分布より劣化やばらつきを考慮し最大値遅延に成り得るパスやレイアウト上で干渉や故障の生じやすいパスなどに限定して適用することで更なる面積削減を達成することができる。
Furthermore, in this embodiment, this method is not applied to all FFs. For example, on a path or layout that can cause a maximum delay in consideration of deterioration and variation from the path distribution obtained by design. Further area reduction can be achieved by applying to a path that is likely to cause interference or failure.
次に本発明の第2の実施例について説明する。図5は、本発明の第2の実施例の半導体装置の構成を示す図である。本実施例の半導体装置は、FF2へのクロック(CK)端子へ入力されるクロックとデータ(D)端子で入力されるデータ信号を入力とする制御素子6が対応するFF2に隣接して配置されており、制御素子6の出力信号は、選択回路3の対応する入力端子に入力される。FF2と制御素子6とは、遅延測定用FF5を構成する。なお、制御素子6は、FF2の入力の近傍に配置してもよいし、FF2内に配置してもよい。
Next, a second embodiment of the present invention will be described. FIG. 5 is a diagram showing the configuration of the semiconductor device according to the second embodiment of the present invention. In the semiconductor device of this embodiment, a control element 6 that receives a clock signal input to the clock (CK) terminal to the FF2 and a data signal input to the data (D) terminal is disposed adjacent to the corresponding FF2. The output signal of the control element 6 is input to the corresponding input terminal of the selection circuit 3. The FF 2 and the control element 6 constitute a delay measurement FF 5. The control element 6 may be disposed in the vicinity of the input of the FF 2 or may be disposed in the FF 2.
本実施例において、選択回路3、遅延測定回路4の構成、及び、遅延の測定の手順は、基本的に、図1乃至図3を参照して説明した前記第1の実施例と同様である。
In the present embodiment, the configuration of the selection circuit 3 and the delay measurement circuit 4 and the delay measurement procedure are basically the same as those in the first embodiment described with reference to FIGS. .
図1を参照して説明した前記第1の実施例では、各FF2から遅延測定回路4までの経路の伝播特性の違いにより、遅延特性の測定精度の低下が生じる可能性がある。図1の前記実施例では、各FF2へパスは、各FF2への入力の直前のノードから分岐されて選択回路3を介して遅延測定回路4へ直接入力される。
In the first embodiment described with reference to FIG. 1, there is a possibility that the measurement accuracy of the delay characteristic may be lowered due to the difference in the propagation characteristic of the path from each FF 2 to the delay measurement circuit 4. In the embodiment shown in FIG. 1, the path to each FF 2 is branched from the node immediately before the input to each FF 2 and directly input to the delay measurement circuit 4 via the selection circuit 3.
しかしながら、
(A)FF2は、コア内部の様々な位置に配置されているため、FF2から選択回路3までの経路の長さの相違に伴う伝播経路の相違、
(B)選択回路3の入力端子毎の入力から出力までの遅延特性の相違、
等の理由により、FF2毎に、遅延測定回路4までのエッジ経路の伝播特性が異なる場合がある。このため、FF2に入力される信号の位相を正確に遅延測定回路4まで伝播できず、正確な遅延時間を得ることができない場合がある。 However,
(A) Since FF2 is arranged at various positions inside the core, a difference in propagation path due to a difference in path length from FF2 toselection circuit 3;
(B) Difference in delay characteristics from input to output for each input terminal of theselection circuit 3,
For these reasons, the propagation characteristics of the edge path to thedelay measurement circuit 4 may be different for each FF2. For this reason, the phase of the signal input to the FF 2 cannot be accurately propagated to the delay measurement circuit 4, and an accurate delay time may not be obtained.
(A)FF2は、コア内部の様々な位置に配置されているため、FF2から選択回路3までの経路の長さの相違に伴う伝播経路の相違、
(B)選択回路3の入力端子毎の入力から出力までの遅延特性の相違、
等の理由により、FF2毎に、遅延測定回路4までのエッジ経路の伝播特性が異なる場合がある。このため、FF2に入力される信号の位相を正確に遅延測定回路4まで伝播できず、正確な遅延時間を得ることができない場合がある。 However,
(A) Since FF2 is arranged at various positions inside the core, a difference in propagation path due to a difference in path length from FF2 to
(B) Difference in delay characteristics from input to output for each input terminal of the
For these reasons, the propagation characteristics of the edge path to the
そこで、本実施例では、制御素子6を設けることで、遅延特性の測定精度の低下の問題を解消している。
Therefore, in this embodiment, by providing the control element 6, the problem of a decrease in measurement accuracy of the delay characteristic is solved.
本実施例においては、回路遅延が、厳密には、各FF2へ入力されるクロック信号のエッジとデータ信号のエッジの差分で定義されるということに基づき、単に、FF2へ入力される信号を直接分岐して選択回路3へ入力するのではなく、各FF2毎に、クロック信号(CK)とデータ信号(D)の関係を制御素子6で検出し、検出されたクロック信号(CK)とデータ信号(D)の関係を、遅延測定回路4で測定を行う。かかる構成により、経路毎の伝播特性の違いの影響を回避することができる。
In this embodiment, based on the fact that the circuit delay is strictly defined by the difference between the edge of the clock signal input to each FF2 and the edge of the data signal, the signal input to the FF2 is simply directly applied. Instead of branching and inputting to the selection circuit 3, the control element 6 detects the relationship between the clock signal (CK) and the data signal (D) for each FF2, and the detected clock signal (CK) and data signal are detected. The delay measurement circuit 4 measures the relationship (D). With this configuration, it is possible to avoid the influence of the difference in propagation characteristics for each path.
図6は、図5の制御素子6の構成の一例を示す図である。図6を参照すると、本実施例においては、図5の制御素子6として、選択素子7が設けられている。選択素子7は、与えられた制御信号に応じて、FF2のデータ端子(D)に入力されるデータ信号、又は、FF2のクロック端子(CK)に入力されるクロック信号の一方を、そのまま選択回路3の対応する入力端子に供給する。
FIG. 6 is a diagram showing an example of the configuration of the control element 6 of FIG. Referring to FIG. 6, in this embodiment, a selection element 7 is provided as the control element 6 of FIG. The selection element 7 selects one of the data signal input to the data terminal (D) of the FF 2 or the clock signal input to the clock terminal (CK) of the FF 2 as it is according to the given control signal. 3 to the corresponding input terminals.
本実施例においては、複数のFF2にそれぞれ入力されるデータ信号(D1、D2、・・・)と、複数のFF2に共通に入力されるクロック信号(CK1、CK2・・・は、各FF2のクロック入力端子近傍でのクロック信号)を時分割に出力し、遅延測定回路4で遅延測定することで、データ信号とクロック信号の関係を算出することができる。
In this embodiment, the data signals (D1, D2,...) Input to the plurality of FFs 2 and the clock signals (CK1, CK2,. The clock signal in the vicinity of the clock input terminal) is output in a time-sharing manner, and the delay measurement circuit 4 performs delay measurement, whereby the relationship between the data signal and the clock signal can be calculated.
図7は、図6の構成の一例を示す図である。図7に示す例では、図6の選択素子7として、制御信号の値(1/0)により、2つの入力の1方を選択出力する2入力1出力のマルチプレクサ回路(MUX)が用いられる。図7においてMUX以外の構成は図6と同一であるため、説明は省略する。
FIG. 7 is a diagram illustrating an example of the configuration of FIG. In the example shown in FIG. 7, a 2-input 1-output multiplexer circuit (MUX) that selectively outputs one of the two inputs according to the value (1/0) of the control signal is used as the selection element 7 in FIG. 6. In FIG. 7, the configuration other than the MUX is the same as that in FIG.
図8は、本実施例における遅延測定の手順を示す流れ図である。図9は、本実施例の動作の一例を示すタイミング図である。
FIG. 8 is a flowchart showing the procedure of delay measurement in the present embodiment. FIG. 9 is a timing chart showing an example of the operation of this embodiment.
本実施例では、遅延測定のために始めに選択信号を制御し、測定対象の経路(図7のS1,S2…)を決定し(図8のステップS21)、図7の制御信号を設定し(ステップS22)、図7のMUX7から、クロック信号(CK)を伝播するか、データ信号(D)を伝播するかを決める。
In this embodiment, the selection signal is first controlled for delay measurement, the measurement target path (S1, S2,... In FIG. 7) is determined (step S21 in FIG. 8), and the control signal in FIG. 7 is set. (Step S22), it is determined whether to propagate the clock signal (CK) or the data signal (D) from the MUX 7 in FIG.
図8の例では、ステップS22では、クロック信号(CK)を選択し、ステップS23でクロック信号(CK)のエッジの遅延を測定する。
In the example of FIG. 8, the clock signal (CK) is selected in step S22, and the edge delay of the clock signal (CK) is measured in step S23.
ステップS24では、データ信号(D)を選択し、ステップS25でデータ信号(CK)のエッジの遅延を測定する。ステップS26で遅延を計算する。
In step S24, the data signal (D) is selected, and in step S25, the edge delay of the data signal (CK) is measured. In step S26, the delay is calculated.
ステップS22において、選択信号を切り替えながら、複数のFF2におけるデータとクロック信号のエッジの遅延測定を実行することで、コア回路10内のパス全体の遅延特性を測定することも可能である。
In step S22, it is possible to measure the delay characteristics of the entire path in the core circuit 10 by executing the delay measurement of the edges of the data and the clock signal in the plurality of FFs 2 while switching the selection signal.
各FF2の遅延測定にあたり、クロック信号(CK)の立ち上がり遷移からデータ信号(D)の遷移までの時間を遅延時間として測定することが多い。しかしながら、データ信号(D)上には、回路の過渡的な遷移状態により、グリッチが出現する可能性があり、この方法での測定は難しい。
In measuring the delay of each FF2, the time from the rising transition of the clock signal (CK) to the transition of the data signal (D) is often measured as the delay time. However, a glitch may appear on the data signal (D) due to a transient transition state of the circuit, and measurement by this method is difficult.
そこで、本実施例では、データ信号(D)の最後の遷移からクロック信号(CK)の遷移を観測することで、正確に遅延時間を測定している。
Therefore, in this embodiment, the delay time is accurately measured by observing the transition of the clock signal (CK) from the last transition of the data signal (D).
具体的には、
(1)クロック信号(CK)の遅延測定(図8のステップS23)、
(2)データ信号(D)の遅延測定(図8のステップS25)、
(3)クロック信号(CK)の遅延とデータ信号(D)の遅延の差分より、遅延特性の算出(図8のステップS26)、
の3つの手順により、遅延測定が行われる。 In particular,
(1) Delay measurement of clock signal (CK) (step S23 in FIG. 8),
(2) Delay measurement of data signal (D) (step S25 in FIG. 8),
(3) Calculation of delay characteristics from the difference between the delay of the clock signal (CK) and the delay of the data signal (D) (step S26 in FIG. 8),
The delay measurement is performed by the following three procedures.
(1)クロック信号(CK)の遅延測定(図8のステップS23)、
(2)データ信号(D)の遅延測定(図8のステップS25)、
(3)クロック信号(CK)の遅延とデータ信号(D)の遅延の差分より、遅延特性の算出(図8のステップS26)、
の3つの手順により、遅延測定が行われる。 In particular,
(1) Delay measurement of clock signal (CK) (step S23 in FIG. 8),
(2) Delay measurement of data signal (D) (step S25 in FIG. 8),
(3) Calculation of delay characteristics from the difference between the delay of the clock signal (CK) and the delay of the data signal (D) (step S26 in FIG. 8),
The delay measurement is performed by the following three procedures.
この3つの手順について、図4の遅延測定回路4の動作を図9を参照して説明する。
For these three procedures, the operation of the delay measurement circuit 4 in FIG. 4 will be described with reference to FIG.
制御信号が0(例えばLow)、1(例えばHigh)のとき、選択素子(マルチプレクサ回路)7は、クロック(CK)、データ(D)をそれぞれ選択する。
When the control signal is 0 (for example, Low) or 1 (for example, High), the selection element (multiplexer circuit) 7 selects the clock (CK) and data (D), respectively.
選択回路3に入力される選択信号の値が「2」のとき、制御信号の0、1に応じて選択回路3からクロック信号CK2と、データ信号D2がそれぞれ時分割で出力され、遅延測定が行われ、クロック信号(CK2)の遅延とデータ信号(D2)の遅延の差分より、差分によりD2の遅延が求められる。
When the value of the selection signal input to the selection circuit 3 is “2”, the clock signal CK2 and the data signal D2 are output from the selection circuit 3 in a time division manner according to 0 and 1 of the control signal, respectively, and the delay measurement is performed. The delay of D2 is obtained from the difference between the delay of the clock signal (CK2) and the delay of the data signal (D2).
選択回路3に入力される選択信号の値が「1」のとき、制御信号の0、1に応じて選択回路3からCK1、D1がそれぞれ時分割で出力され、遅延測定が行われ、クロック信号(CK1)の遅延とデータ信号(D1)の遅延の差分より、D2の遅延が求められる。
When the value of the selection signal input to the selection circuit 3 is “1”, the CK1 and D1 are output from the selection circuit 3 in a time-sharing manner according to 0 and 1 of the control signal, the delay measurement is performed, and the clock signal From the difference between the delay of (CK1) and the delay of the data signal (D1), the delay of D2 is obtained.
選択回路3に入力される選択信号の値が「3」のとき、制御信号が0、1に応じて選択回路3からCK3、D3が時分割で出力され、遅延測定が行われ、クロック信号(CK3)の遅延とデータ信号(D3)の遅延の差分より、D3の遅延が求められる。
When the value of the selection signal input to the selection circuit 3 is “3”, the CK3 and D3 are output from the selection circuit 3 in a time-sharing manner according to the control signal 0 or 1, the delay measurement is performed, and the clock signal ( The delay of D3 is obtained from the difference between the delay of CK3) and the delay of the data signal (D3).
図10は、図8のステップ26における、クロック信号(CK)の遅延とデータ信号(D)の遅延の差分より、遅延特性の算出する手順を説明する図である。図10(A)のタイミング図において、SOUTは選択回路3の出力、図4の遅延測定回路4におけるE1、E2、・・・Enは1段目、2段目、・・・n段目の遅延素子41の出力信号、クロックは、図4の遅延測定回路4のFF42のクロック端子に入力されるクロック信号である。
FIG. 10 is a diagram for explaining the procedure for calculating the delay characteristic from the difference between the delay of the clock signal (CK) and the delay of the data signal (D) in step 26 of FIG. In the timing diagram of FIG. 10A, SOUT is the output of the selection circuit 3, E1, E2,... En in the delay measurement circuit 4 of FIG. The output signal and clock of the delay element 41 are clock signals input to the clock terminal of the FF 42 of the delay measurement circuit 4 in FIG.
初めに、選択回路3の出力SOUTに出力されるクロック信号(CK)の遅延を測定し、FF42の出力データ信号(Q0、Q1、Q2、・・・Qn)の遷移点を、LSB(Least Siginificant Bit)側から探索し、遷移点を、レジスタ(Tck)(不図示)等に保持する。
First, the delay of the clock signal (CK) output to the output SOUT of the selection circuit 3 is measured, and the transition point of the output data signal (Q0, Q1, Q2,... Qn) of the FF 42 is set to LSB (Least Significantant). (Bit) side, and the transition point is held in a register (Tck) (not shown) or the like.
図10(B)の例は、SOUTがFFのクロック入力パス(CK)の場合であり、図4の遅延測定回路4のクロックの立ち上がり遷移のタイミングで、SOUT、遅延素子の出力E1は1、他は0であるため、図4の遅延測定回路4のFF42の出力Q0=1、Q1=1、Q2=Q3=...=Qn=0となり(下位2ビットが1)、データ処理回路43の入力Q=0...00011とされ、1から0への遷移地点はLSB側から2、すなわちTck=2となる。
The example of FIG. 10B is the case of the clock input path (CK) where SOUT is FF. At the timing of the rising transition of the clock of the delay measurement circuit 4 of FIG. Since the others are 0, the output Q0 = 1, Q1 = 1, Q2 = Q3 =. . . = Qn = 0 (the lower 2 bits are 1) and the input Q = 0. . . The transition point from 1 to 0 is 2 from the LSB side, that is, Tck = 2. *
次に、選択回路3の出力SOUTに出力されるデータ信号(D)の遅延を同様に測定し、データのLSB(Least Significant Bit)側から遷移点をレジスタ(Td)などに保持する。図10(C)の例は、SOUTがFFのデータ入力パス(D)の場合であり、図4の遅延測定回路4のFF42の出力Q0=Q1=Q2=Q3=Q4=1、Q5=...=Qn=0となり(下位2ビットが1)、データ処理回路43の入力Q=0...0100011111であり、1から0への遷移地点はLSB側から5、すなわちTd=5となる。
Next, the delay of the data signal (D) output to the output SOUT of the selection circuit 3 is measured in the same manner, and the transition point from the LSB (Least Significant Bit) side of the data is held in the register (Td) or the like. The example of FIG. 10C is the case of the data input path (D) where SOUT is FF, and the output Q0 = Q1 = Q2 = Q3 = Q4 = 1, Q5 =. . . = Qn = 0 (the lower 2 bits are 1) and the input Q = 0. . . 000011111, and the transition point from 1 to 0 is 5 from the LSB side, that is, Td = 5. *
データ信号(D)の遷移点は、クロック信号(CK)の遷移点よりもMSB(Most Significant Bit)側にある。これは、FF2のクロック端子の立ち上がりの前の所定時間(セットアップ時間)にデータ端子の信号は確定(遷移)していなければ、FF2ではデータを正しくサンプルすることはできないためである。
The transition point of the data signal (D) is closer to the MSB (Most Significant Bit) side than the transition point of the clock signal (CK). This is because the data cannot be correctly sampled by FF2 unless the signal at the data terminal is fixed (transition) at a predetermined time (setup time) before the rising edge of the clock terminal of FF2.
データ信号(D)の遷移(Td)から、クロック信号(CK)の遷移(Tck)までの時間差はそのパスの遅延マージンとなる。図10の例の場合、遅延マージン=Td-Tck=3、すなわち、差分であるマージン値より、遅延時間を算出できる。
The time difference from the transition (Td) of the data signal (D) to the transition (Tck) of the clock signal (CK) is a delay margin of the path. In the example of FIG. 10, the delay time can be calculated from the delay margin = Td−Tck = 3, that is, the margin value which is a difference.
次に本発明の第3の実施例について説明する。図11(A)は、本発明の第3の実施例の構成を示す図である。図11(B)は、図11(A)の動作を説明するタイミング図である。図11(B)には、図11(A)のSel_CK1、Sel_D1、S1、Sel_CK2、Sel_D2、S2のタイミング波形が示されている。
Next, a third embodiment of the present invention will be described. FIG. 11A is a diagram showing the configuration of the third exemplary embodiment of the present invention. FIG. 11B is a timing chart for explaining the operation of FIG. FIG. 11B shows timing waveforms of Sel_CK1, Sel_D1, S1, Sel_CK2, Sel_D2, and S2 of FIG.
本実施例においては、図6の選択素子7を3つのNAND回路で構成し、選択回路3はOR回路で構成される。FF2と3つのNAND回路とは、遅延測定用FF5を構成する。
In this embodiment, the selection element 7 shown in FIG. 6 is composed of three NAND circuits, and the selection circuit 3 is composed of an OR circuit. The FF2 and the three NAND circuits constitute a delay measurement FF5.
選択素子は、制御信号として、クロック選択信号Sel_CK、データ選択信号Sel_Dを有する。
The selection element has a clock selection signal Sel_CK and a data selection signal Sel_D as control signals.
クロック選択信号(Sel_CK)とクロック信号(CK)は第1のNAND回路へ入力され、データ選択信号(Sel_D)とデータ信号(D)は第2のNAND回路へ入力されている。第1、第2のNAND回路の出力は次段の第3のNAND回路へ入力される。クロック選択信号(Sel_CK)が1(High)のとき、データ選択信号(Sel_D)は0(Low)とされ、クロック信号(CK)を入力する第1のNAND回路は、クロック信号(CK)の反転信号を出力し、第2のNAND回路の出力は1(High)固定とされ、第3のNAND回路は、第1のNAND回路の出力(クロック信号(CK)の反転信号)の反転信号、したがってクロック信号(CK)を出力する。
The clock selection signal (Sel_CK) and the clock signal (CK) are input to the first NAND circuit, and the data selection signal (Sel_D) and the data signal (D) are input to the second NAND circuit. The outputs of the first and second NAND circuits are input to the third NAND circuit at the next stage. When the clock selection signal (Sel_CK) is 1 (High), the data selection signal (Sel_D) is 0 (Low), and the first NAND circuit to which the clock signal (CK) is input is an inversion of the clock signal (CK). And the output of the second NAND circuit is fixed to 1 (High), and the third NAND circuit is an inverted signal of the output of the first NAND circuit (inverted signal of the clock signal (CK)), and accordingly A clock signal (CK) is output.
データ選択信号(Sel_D)が1(High)のとき、クロック選択信号(Sel_CK)は0(Low)とされ、データ信号(D)を入力する第2のNAND回路は、データ信号(D)の反転信号を出力し、第1のNAND回路の出力は1(High)固定とされ、第3のNAND回路は、第2のNAND回路の出力(データ信号(D)の反転信号)の反転信号、したがってデータ信号(CK)を出力する。
When the data selection signal (Sel_D) is 1 (High), the clock selection signal (Sel_CK) is set to 0 (Low), and the second NAND circuit that receives the data signal (D) inverts the data signal (D). The first NAND circuit output is fixed to 1 (High), and the third NAND circuit is an inverted signal of the output of the second NAND circuit (inverted signal of the data signal (D)), therefore A data signal (CK) is output.
遅延測定用FF5の出力(第3のNAND回路の出力)は、選択回路3(OR回路)に入力される。
The output of the delay measurement FF 5 (the output of the third NAND circuit) is input to the selection circuit 3 (OR circuit).
各遅延測定用FF5において、第1乃至第3のNAND回路からなる選択素子は、各遅延測定用FF5に入力される制御信号に応じた信号を出力する。例えば、クロック選択信号Sel_CKが1(High)の場合、クロック信号(CK1)を選択出力し、データ選択信号(Sel_D)が1の場合、データ信号(D1)を出力する。
In each delay measurement FF 5, the selection element including the first to third NAND circuits outputs a signal corresponding to the control signal input to each delay measurement FF 5. For example, when the clock selection signal Sel_CK is 1 (High), the clock signal (CK1) is selected and output. When the data selection signal (Sel_D) is 1, the data signal (D1) is output.
図7の構成では、マルチプレクサ(MUX)は、クロック信号(CK)とデータ信号(D)のいずれかの信号が必ず出力される。このため、電力が増加することが予想される。
In the configuration of FIG. 7, the multiplexer (MUX) always outputs either the clock signal (CK) or the data signal (D). For this reason, electric power is expected to increase.
図11(A)の構成では、制御信号(Sel_CK/Sel_D)を択一的に1になるように制御することで、遅延測定回路4に出力されるパスのみ信号が伝播されるようになり、電力増加を抑えることが可能である。例えば図11(B)に示すように、Sel_CK1のみ1(High)、残りのSel_D1、Sel_CK2、Sel_D2、・・・は全て0(Low)とされる場合、経路S1にCK1が出力され、選択回路3のOR回路を介して遅延測定回路4で遅延測定が行われる。次に、Sel_D1のみが1、残りのSel_CK1、Sel_CK2、Sel_D2・・が全て0とされ、経路S1にデータD1が出力され、選択回路3のOR回路を介して遅延測定回路4で遅延測定が行われる。さらに、Sel_CK2のみが1、残りのSel_D2、Sel_CK1、Sel_D1、・・が全て0とされ、経路S2にCK2が出力され、選択回路3のOR回路を介して遅延測定回路4で遅延測定が行われる。つづいてSel_D2のみが1、残りのSel_CK2、Sel_CK1、Sel_D1、・・が0とされ、経路S2にデータD2が出力され、選択回路3のOR回路を介して遅延測定回路4で遅延測定が行われる。
In the configuration of FIG. 11A, by controlling the control signal (Sel_CK / Sel_D) to be alternatively 1, the signal is propagated only in the path output to the delay measurement circuit 4, It is possible to suppress an increase in power. For example, as shown in FIG. 11B, when only Sel_CK1 is 1 (High) and the remaining Sel_D1, Sel_CK2, Sel_D2,... Are all 0 (Low), CK1 is output to the path S1, and the selection circuit The delay measurement circuit 4 performs delay measurement via the 3 OR circuit. Next, only Sel_D1 is 1, all remaining Sel_CK1, Sel_CK2, Sel_D2,... Are 0, data D1 is output to the path S1, and delay measurement is performed by the delay measurement circuit 4 via the OR circuit of the selection circuit 3. Is called. Further, only Sel_CK2 is 1, all remaining Sel_D2, Sel_CK1, Sel_D1,... Are 0, CK2 is output to the path S2, and the delay measurement circuit 4 performs delay measurement via the OR circuit of the selection circuit 3. . Subsequently, only Sel_D2 is set to 1, the remaining Sel_CK2, Sel_CK1, Sel_D1,... Are set to 0, data D2 is output to the path S2, and the delay measurement circuit 4 performs delay measurement via the OR circuit of the selection circuit 3. .
図11(A)の構成は、選択回路3の回路の一部を、図6の選択素子7に追加した形になる。このように、論理回路は同じ論理を実現するために複数の構成が考えられるため、同様の機能を実現するためのほかの論理回路の構成をとることも可能である。
11A has a configuration in which part of the circuit of the selection circuit 3 is added to the selection element 7 of FIG. As described above, since the logic circuit can have a plurality of configurations in order to realize the same logic, it is also possible to adopt a configuration of another logic circuit for realizing a similar function.
次に本発明の第4の実施例を説明する。図12は、本発明の第4の実施例の構成を示す図である。本実施例は、制御素子として処理回路8を用いている。この処理回路8は、FF2のデータ端子(D)に入力されるデータ信号(D)と、FF2のクロック端子(CK)に入力されるクロック信号(CK)の簡単な論理演算結果を出力(S)する。すなわち、D1とCK1を入力する処理回路8の演算結果は1つの信号S1として出力され、選択回路3の対応する入力端子に入力され、D2とCK2を入力する処理回路8の演算結果は1つの信号S2として出力され、選択回路3の対応する入力端子に入力される。
Next, a fourth embodiment of the present invention will be described. FIG. 12 is a diagram showing the configuration of the fourth exemplary embodiment of the present invention. In this embodiment, a processing circuit 8 is used as a control element. The processing circuit 8 outputs a simple logical operation result of the data signal (D) input to the data terminal (D) of the FF2 and the clock signal (CK) input to the clock terminal (CK) of the FF2 (S ) That is, the calculation result of the processing circuit 8 that inputs D1 and CK1 is output as one signal S1, is input to the corresponding input terminal of the selection circuit 3, and the calculation result of the processing circuit 8 that inputs D2 and CK2 is one The signal S2 is output and input to the corresponding input terminal of the selection circuit 3.
前記実施例1では、データ信号(D)とクロック信号(CK)を時分割で出力するため、前記実施例に比べて、遅延測定に、約2倍の時間が必要とされる。
In the first embodiment, since the data signal (D) and the clock signal (CK) are output in a time-sharing manner, it takes about twice as much time for delay measurement as in the first embodiment.
本実施例においては、処理回路8が直接、クロック信号(CK)とデータ信号(D)の関係を算出し、その結果を出力することで、時分割でクロック信号(CK)とデータ信号(D)を出力する場合と比較して、高速に遅延測定することができる。
In the present embodiment, the processing circuit 8 directly calculates the relationship between the clock signal (CK) and the data signal (D) and outputs the result, so that the clock signal (CK) and the data signal (D) are time-divided. ), The delay can be measured at a higher speed.
図13(A)は、図12の構成の一例を示す図である。図13(A)を参照すると、図12の処理回路8として、データ信号(D)とクロック信号(CK)を入力とするXOR(排他的論理和)回路を利用している。図13(B)のタイミングチャートに示すように、XOR回路を利用することで、データ信号(D)とクロック信号(CK)の位相差を、パルス幅に変換することが可能である。選択回路3は、XOR回路からのパルス幅を直接、遅延測定回路4へ伝播する。遅延測定回路4でパルス幅を測定することで遅延マージンを得ることができる。これにより、遅延特性を算出することが可能である。なお、遅延測定回路4は、図4に示した構成と若干異なり、任意のパルスの幅を測定することになる。これは、図4の遅延測定回路4のデータ処理回路43の変更により簡単に対応できる。
FIG. 13A is a diagram showing an example of the configuration of FIG. Referring to FIG. 13A, an XOR (exclusive OR) circuit having a data signal (D) and a clock signal (CK) as inputs is used as the processing circuit 8 in FIG. As shown in the timing chart of FIG. 13B, the phase difference between the data signal (D) and the clock signal (CK) can be converted into a pulse width by using an XOR circuit. The selection circuit 3 propagates the pulse width from the XOR circuit directly to the delay measurement circuit 4. The delay margin can be obtained by measuring the pulse width by the delay measuring circuit 4. Thereby, the delay characteristic can be calculated. The delay measurement circuit 4 is slightly different from the configuration shown in FIG. 4 and measures the width of an arbitrary pulse. This can be easily handled by changing the data processing circuit 43 of the delay measuring circuit 4 of FIG.
次に本発明の第5の実施例を説明する。図14は、本発明の第5の実施例の構成を示す図である。本実施例は、コア回路10、および遅延測定回路4に加え、設定記憶素子21、制御素子22、電源制御回路23を備えている。遅延測定回路4は、コア回路10のクリティカルパスの特性を測定し、設定記憶素子21に記憶する。コア回路10は、前記実施例の選択回路3、又は選択回路3と遅延測定用FF5を備え、選択したパスの信号を遅延測定回路4に出力する。遅延測定回路4は、図4を参照して説明した前記実施例の構成とされる。
Next, a fifth embodiment of the present invention will be described. FIG. 14 is a diagram showing the configuration of the fifth exemplary embodiment of the present invention. In this embodiment, in addition to the core circuit 10 and the delay measurement circuit 4, a setting storage element 21, a control element 22, and a power supply control circuit 23 are provided. The delay measurement circuit 4 measures the characteristic of the critical path of the core circuit 10 and stores it in the setting storage element 21. The core circuit 10 includes the selection circuit 3 of the above embodiment, or the selection circuit 3 and the delay measurement FF 5, and outputs a signal of the selected path to the delay measurement circuit 4. The delay measurement circuit 4 has the configuration of the above-described embodiment described with reference to FIG.
コア回路10は、設定記憶素子21に記憶された情報を基に、制御素子22および電源制御回路23を介してその電源電圧が可変制御される。
The core circuit 10 has its power supply voltage variably controlled via the control element 22 and the power supply control circuit 23 based on the information stored in the setting storage element 21.
本実施例においては、コア回路10の電源電圧が、コア回路10の遅延特性に応じて制御され、コア回路10の低電圧動作の最適化が実現可能とされる。
In the present embodiment, the power supply voltage of the core circuit 10 is controlled according to the delay characteristics of the core circuit 10, so that the low voltage operation of the core circuit 10 can be optimized.
次に本発明の第6の実施例を説明する。図15は、本発明の第6の実施例の構成を示す図である。図15を参照すると、本実施例の半導体装置は、コア回路10と、遅延測定回路4と、遅延特性結果を記憶する設定レジスタ34と、設定レジスタ34の値に応じ任意の遅延を生成できる遅延可変レプリカ回路33と、遅延可変レプリカ回路33の周波数とコア回路10のクロック周波数を比較する周波数比較回路32と、遅延可変レプリカ回路33とコア回路10の周波数差に応じてコア回路10および周辺の電源供給する電源制御回路31と、を備えている。
Next, a sixth embodiment of the present invention will be described. FIG. 15 is a diagram showing the configuration of the sixth exemplary embodiment of the present invention. Referring to FIG. 15, the semiconductor device of this embodiment includes a core circuit 10, a delay measurement circuit 4, a setting register 34 that stores a delay characteristic result, and a delay that can generate an arbitrary delay according to the value of the setting register 34. The variable replica circuit 33, the frequency comparison circuit 32 that compares the frequency of the delay variable replica circuit 33 and the clock frequency of the core circuit 10, and the core circuit 10 and the peripheral circuits according to the frequency difference between the delay variable replica circuit 33 and the core circuit 10 A power supply control circuit 31 for supplying power.
本実施例は、図14の制御素子22として、遅延可変レプリカ回路33と周波数比較器32とを備えている。図15において、設定レジスタ34、電源制御回路31は、図14の設定記憶素子21、電源制御回路23にそれぞれ対応する。図15のコア回路10は、図7を参照して説明した実施例の構成とされる。
14 is provided with a variable delay replica circuit 33 and a frequency comparator 32 as the control element 22 of FIG. In FIG. 15, the setting register 34 and the power supply control circuit 31 correspond to the setting storage element 21 and the power supply control circuit 23 of FIG. The core circuit 10 of FIG. 15 has the configuration of the embodiment described with reference to FIG.
本実施例では、遅延可変レプリカ回路33は、コア回路10と同じ遅延特性で動作するように、遅延測定回路4により、遅延の補正が行われる。これにより、本実施例においては、コア回路10に最適な電源電圧制御を行うことができる。
In this embodiment, the delay variable replica circuit 33 is corrected for delay by the delay measurement circuit 4 so as to operate with the same delay characteristics as the core circuit 10. Thereby, in the present embodiment, it is possible to perform power supply voltage control optimal for the core circuit 10.
図16は、本実施例の動作を説明するための流れ図である。
FIG. 16 is a flowchart for explaining the operation of this embodiment.
本実施例においては、初期設定として(ステップS31)、出荷前のテスト時に、遅延測定回路4を用いてコア回路10のクリティカルパス特性を測定し、その特性値を設定レジスタ34に記憶する。
In the present embodiment, as an initial setting (step S31), the critical path characteristic of the core circuit 10 is measured using the delay measurement circuit 4 during a test before shipment, and the characteristic value is stored in the setting register 34.
その後、製品出荷し、コア回路10が通常動作する(ステップS32:コア回路実動作開始)。この場合、例えば該通常動作に影響がない状態で、遅延測定回路4を利用し、例えばコア回路10内のパス(クリティカルパスやその他のパス等)を1パスずつ選択的に遅延を測定する。図16のLOOP開始とLOOP終了の間の信号選択と遅延測定(ステップS34、S35)の処理を繰り返す。何万クロックもの間、さまざまなパスの遅延特性を繰り返し測定し、測定した遅延特性を利用して設定レジスタ34の値を更新する(ステップS37)。具体的には、測定されたコア回路10の遅延特性の中に、クロックとの遅延余裕が少ないものがあった場合は、遅延可変レプリカ回路33の遅延が長くなるように設定レジスタ34の値を修正する。設定レジスタ34の値の修正は、遅延測定回路4のデータ処理回路43(図4参照)が行う。
Thereafter, the product is shipped, and the core circuit 10 operates normally (step S32: core circuit actual operation start). In this case, for example, the delay measurement circuit 4 is used in a state where the normal operation is not affected, and the delay is selectively measured, for example, for each path (critical path, other path, etc.) in the core circuit 10. The process of signal selection and delay measurement (steps S34 and S35) between the LOOP start and the LOOP end in FIG. 16 is repeated. The delay characteristics of various paths are repeatedly measured for tens of thousands of clocks, and the value of the setting register 34 is updated using the measured delay characteristics (step S37). Specifically, when there is a measured delay characteristic of the core circuit 10 with a small delay margin with the clock, the value of the setting register 34 is set so that the delay of the delay variable replica circuit 33 becomes longer. Correct it. The value of the setting register 34 is corrected by the data processing circuit 43 (see FIG. 4) of the delay measurement circuit 4.
これにより、初期設定時の検査漏れ、コア回路10の遅延劣化、コア回路10の部分的な温度上昇などによる遅延増加を検出することができ、リアルタイムに、遅延可変レプリカ回路33にコア回路10の動作特性を反映することで、コア回路10の電源最適化を実現するだけでなく、コア回路10の誤動作を防ぐことができる。この動作を、製品出荷後に続けることで、例えば出荷時には低電力機構として動作させ、長期間動作し、回路の劣化が進むと安全機構として動作させることができる。
Thereby, it is possible to detect an increase in delay due to an inspection failure at the time of initial setting, a delay deterioration of the core circuit 10, a partial temperature rise of the core circuit 10, and the like. By reflecting the operation characteristics, not only the power supply optimization of the core circuit 10 can be realized, but also the malfunction of the core circuit 10 can be prevented. By continuing this operation after product shipment, for example, it can be operated as a low-power mechanism at the time of shipment, operated for a long period of time, and can be operated as a safety mechanism when circuit deterioration progresses.
なお、テスト時にクリティカルパスを測らず、シミュレーションの結果を直接設定レジスタ34に設定することも可能である。
It is also possible to set the simulation result directly in the setting register 34 without measuring the critical path during the test.
また、本実施例においては、コア回路10の遅延測定回路4として前記実施例の1つを用いたが、これ以外の実施例の遅延測定を利用してもよい。
In the present embodiment, one of the above-described embodiments is used as the delay measurement circuit 4 of the core circuit 10, but the delay measurement of other embodiments may be used.
また、遅延測定として、図17に示すようなFFを利用することも可能である。図17(A)のフリップフロップ(FF1)は「Raizor-FF」と呼ばれ、同一データ信号(D)を通常のクロック(CLK)と遅延回路で遅延させたクロック信号を用い別々にラッチすることで、誤動作を検地することができる。
Also, it is possible to use an FF as shown in FIG. 17 for delay measurement. The flip-flop (FF1) in FIG. 17A is called “Raizor-FF” and latches the same data signal (D) separately using a normal clock (CLK) and a clock signal delayed by a delay circuit. In this way, malfunctions can be detected.
図17(B)のフリップフロップ(FF2)は「劣化検地FF」と呼ばれ、データ信号(D)と遅延をつけたデータ信号を同一クロック(CLK)で別々にラッチすることで、コア回路の遅延劣化を検出することが可能である。これらの、データ信号もしくはクロック信号の固定遅延の領域でしか故障や劣化を検出することができないが、これらのFFを利用することで上記のフローを実施することもできる。
The flip-flop (FF2) in FIG. 17B is called “degradation detection FF”, and the data signal (D) and the delayed data signal are separately latched by the same clock (CLK), so that the core circuit It is possible to detect delay degradation. Although a failure or deterioration can be detected only in the fixed delay region of the data signal or the clock signal, the above-described flow can be performed by using these FFs.
本発明は半導体装置の低電力化に好適とされる。
The present invention is suitable for reducing the power consumption of a semiconductor device.
次に本発明の第7の実施例を説明する。図18は、本発明の第7の実施例を説明するための図である。本実施例は、上記各実施例に示した構成の半導体装置(LSI)において、パス遅延測定を複数サイクルに渡って実行した結果に基づき、パス遅延分布を作成する。
Next, a seventh embodiment of the present invention will be described. FIG. 18 is a diagram for explaining a seventh embodiment of the present invention. In this embodiment, a path delay distribution is created based on a result of performing path delay measurement over a plurality of cycles in the semiconductor device (LSI) having the configuration shown in each of the above embodiments.
パス遅延分布は、通常、半導体装置の1サイクルにおける活性化パス数とその遅延量を示すものである。本発明を利用して取得できる遅延情報は、1サイクルにおいて、1パスである。すなわち、例えば図1に示すように、複数のFFへの複数の入力パスのうち選択回路3で選択された1つパスの遅延を1つの遅延測定回路4が測定する。このため、本実施例では、複数サイクルでのパス遅延分布を作成する。なお、半導体装置が、遅延測定回路4(図1参照)をN個備えている場合には、1サイクルで、Nパスを、並列に測定することできる。
The path delay distribution usually indicates the number of activation paths and the delay amount in one cycle of the semiconductor device. Delay information that can be acquired using the present invention is one path in one cycle. That is, for example, as shown in FIG. 1, one delay measurement circuit 4 measures the delay of one path selected by the selection circuit 3 among a plurality of input paths to a plurality of FFs. For this reason, in this embodiment, a path delay distribution in a plurality of cycles is created. If the semiconductor device includes N delay measuring circuits 4 (see FIG. 1), N paths can be measured in parallel in one cycle.
本実施例においては、半導体装置は、作成したパスの遅延分布情報より、様々な特徴量を抽出する。そして、抽出した特徴量を基に、半導体装置(LSI)の動作を制御する。この結果、半導体装置(LSI)を最適な状態で動作させることを可能としている。
In the present embodiment, the semiconductor device extracts various feature amounts from the delay distribution information of the created path. Then, the operation of the semiconductor device (LSI) is controlled based on the extracted feature amount. As a result, the semiconductor device (LSI) can be operated in an optimum state.
図18を参照して、本実施例の具体的な流れを説明する。遅延分布情報の作成の基データとなるパス遅延測定では、半導体装置の任意のパスの終端となるFF(図1の2)を選択する信号選択フェーズ(S41)を繰り返しながら、選択されたFFへの入力パスの遅延を測定する遅延測定フェーズ(S42)を実行する。なお、S41~S42の処理は、図8のS21~S26と同等の処理を示している。
The specific flow of the present embodiment will be described with reference to FIG. In the path delay measurement, which is the base data for creating the delay distribution information, the signal selection phase (S41) for selecting the FF (2 in FIG. 1) that terminates the arbitrary path of the semiconductor device is repeated to the selected FF. The delay measurement phase (S42) for measuring the delay of the input path is executed. Note that the processing of S41 to S42 shows the same processing as S21 to S26 of FIG.
パスの選択と遅延測定で取得したパス遅延情報を、命令セット(半導体装置のCPUの命令セット)毎や、固定サイクル毎、等の所定の条件を設け、遅延分布情報を作成する(S43)。
Predetermined conditions such as each instruction set (instruction set of the CPU of the semiconductor device) and each fixed cycle are set for the path delay information acquired by path selection and delay measurement, and delay distribution information is created (S43).
次に、作成した遅延分布情報を用いて、統計解析やクリティカルパス遅延探索等を実行し、統計情報の特徴量を抽出する(S44)。
Next, using the created delay distribution information, statistical analysis, critical path delay search, and the like are executed to extract feature values of the statistical information (S44).
抽出した特徴量を半導体装置(LSI)の動作に反映させる制御を行うことで、半導体装置(LSI)を最適な状態で動作させる(S45)。本実施例において、遅延分布情報の取得、特徴量の抽出、動作の制御は、半導体装置(LSI)内で行われるが、本発明はかかる構成に制限されるものではない。例えば半導体装置(LSI)が、内部の遅延測定回路4(図1等参照)で取得したパス遅延情報を他の装置(他の半導体装置、コントローラ、あるいは、テスタ等)に送信し、他の装置で遅延分布情報の取得、特徴量の抽出を行い、当該半導体装置(LSI)の動作を制御するようにしてもよいことは勿論である。当該半導体装置(LSI)の動作パラメータの設定等は、半導体装置(LSI)内の不揮発性記憶素子(ヒューズ、配線の断等)に書き込みか、あるいは書き換え可能な不揮発性記憶素子に設定するようにしてもよい。
The semiconductor device (LSI) is operated in an optimal state by performing control to reflect the extracted feature amount in the operation of the semiconductor device (LSI) (S45). In this embodiment, acquisition of delay distribution information, extraction of feature values, and control of operations are performed in a semiconductor device (LSI), but the present invention is not limited to such a configuration. For example, a semiconductor device (LSI) transmits path delay information acquired by an internal delay measurement circuit 4 (see FIG. 1 and the like) to another device (another semiconductor device, a controller, a tester, or the like), and the other device Of course, the delay distribution information may be acquired and the feature amount may be extracted to control the operation of the semiconductor device (LSI). The operation parameters of the semiconductor device (LSI) are set in a nonvolatile memory element (fuse, wire breakage, etc.) in the semiconductor device (LSI) or in a rewritable nonvolatile memory element. May be.
これらの一連の動作は、半導体装置(LSI)の製造後の出荷テストの時だけでなく、半導体装置(LSI)出荷後の実製品に組み込まれた状態で半導体装置(LSI)の実動作を邪魔することなく行うことが出来る。このため、半導体装置(LSI)の長寿命動作、低電力動作、高信頼性動作など様々な効果を得ることができる。
A series of these operations interferes with the actual operation of the semiconductor device (LSI) not only at the time of the shipping test after the manufacture of the semiconductor device (LSI) but also in the state where it is incorporated in the actual product after the shipment of the semiconductor device (LSI). Can be done without. Therefore, various effects such as long life operation, low power operation, and high reliability operation of the semiconductor device (LSI) can be obtained.
次に本発明の第8の実施例を説明する。図19は、本発明の第8の実施例を説明する図である。図19には、遅延分布情報から抽出される特徴量の例と半導体装置(LSI)の動作の例が示されている。なお、図19のステップS41、S42、S43は、図18の各ステップと同一である。
Next, an eighth embodiment of the present invention will be described. FIG. 19 is a diagram for explaining an eighth embodiment of the present invention. FIG. 19 shows an example of the feature amount extracted from the delay distribution information and an example of the operation of the semiconductor device (LSI). Note that steps S41, S42, and S43 in FIG. 19 are the same as the steps in FIG.
本実施例では、ステップS43で作成した遅延分布情報から、
・劣化の程度、
・測定したパス数より抽出できる活性化率、
・活性化率より抽出される電流消費量、
・最長パスより抽出される最高動作速度、
・統計解析より抽出される分布の平均や分散、
等の少なくとも1つを特徴量として抽出する。 In this embodiment, from the delay distribution information created in step S43,
・ Degree of deterioration,
・ Activation rate that can be extracted from the number of measured paths,
・ Current consumption extracted from the activation rate,
-Maximum operating speed extracted from the longest path,
・ Average and variance of distribution extracted from statistical analysis
Are extracted as feature quantities.
・劣化の程度、
・測定したパス数より抽出できる活性化率、
・活性化率より抽出される電流消費量、
・最長パスより抽出される最高動作速度、
・統計解析より抽出される分布の平均や分散、
等の少なくとも1つを特徴量として抽出する。 In this embodiment, from the delay distribution information created in step S43,
・ Degree of deterioration,
・ Activation rate that can be extracted from the number of measured paths,
・ Current consumption extracted from the activation rate,
-Maximum operating speed extracted from the longest path,
・ Average and variance of distribution extracted from statistical analysis
Are extracted as feature quantities.
そして、抽出した特徴量を、LSI動作時における、
・電源電圧、
・動作温度、
・動作周波数、
・命令スケジューリング
等の少なくとも1つに反映させることで、LSIの最適動作を実現することが出来る。 Then, the extracted feature amount is used during LSI operation.
·Power-supply voltage,
・ Operating temperature,
・ Operating frequency,
-Optimum operation of the LSI can be realized by reflecting it in at least one of instruction scheduling and the like.
・電源電圧、
・動作温度、
・動作周波数、
・命令スケジューリング
等の少なくとも1つに反映させることで、LSIの最適動作を実現することが出来る。 Then, the extracted feature amount is used during LSI operation.
·Power-supply voltage,
・ Operating temperature,
・ Operating frequency,
-Optimum operation of the LSI can be realized by reflecting it in at least one of instruction scheduling and the like.
なお、抽出する特徴量としては、例えば劣化量1つであってもよいし複数であっても良い。また、図19には、劣化、活性化率、電流消費、最高動作速度、分布の平均、分布の分散の各特徴量が、電源電圧の制御(動作温度、動作周波数、命令スケジューリング)に用いられる例が示されているが、電源電圧の制御には、いずれか1つの特徴量を用いて制御してもよいことは勿論である。
It should be noted that the feature amount to be extracted may be one deterioration amount or a plurality of deterioration amounts, for example. Further, in FIG. 19, characteristic values of deterioration, activation rate, current consumption, maximum operating speed, distribution average, and distribution dispersion are used for power supply voltage control (operating temperature, operating frequency, instruction scheduling). Although an example is shown, it goes without saying that any one feature amount may be used to control the power supply voltage.
次に本発明の第9の実施例を説明する。図20は、本発明の第9の実施例を説明する図であり、図19を参照して説明した特徴量として、電流消費を抽出する場合の例が示されている。すなわち、本実施例では、図19のステップS43で取得した遅延分布情報より、電流消費の傾向を抽出する。
Next, a ninth embodiment of the present invention will be described. FIG. 20 is a diagram for explaining a ninth embodiment of the present invention, and shows an example in which current consumption is extracted as the feature amount explained with reference to FIG. That is, in this embodiment, the current consumption tendency is extracted from the delay distribution information acquired in step S43 of FIG.
具体的には、例えば半導体装置(LSI)製品出荷後の環境(例えば実機搭載環境下)で、半導体装置(LSI)内のCPUで順次実行される複数の連続した命令列(図20(A)の命令列B、E、A・・・)にそれぞれ対応して、選択回路3(例えば図1参照)と遅延測定回路4(例えば図1参照)で連続して取得したパス遅延情報より、それぞれ遅延分布情報を作成する(図20(B)参照)。
Specifically, for example, in an environment after shipment of a semiconductor device (LSI) product (for example, in an environment where an actual device is mounted), a plurality of consecutive instruction sequences sequentially executed by a CPU in the semiconductor device (LSI) (FIG. 20A) Corresponding to the instruction sequences B, E, A,..., Respectively, from the path delay information obtained successively by the selection circuit 3 (for example, see FIG. 1) and the delay measurement circuit 4 (for example, see FIG. 1), respectively. Delay distribution information is created (see FIG. 20B).
なお、遅延測定回路(例えば図1の4)が1つの場合、1サイクルで1パスの遅延情報が取得されるため、本実施例では、複数サイクルでのパス遅延分布(遅延とパス数との対応)を作成する。図20(B)の遅延分布において、横軸は遅延(時間)、縦軸はパス数であり、ある遅延のパスが何本あるかがわかる(縦軸は遅延情報の取得回数でもよい)。遅延の最小から最大までの範囲のパス数の合計が総パス数となる。なお、半導体装置(LSI)内のCPUで実行される命令は、製品出荷時のテストでは、テスタ側から与えてもよい(命令をランダムに与えてもよい)。製品出荷後の環境下では、不図示のメモリに格納されたプログラムに従い半導体装置(LSI)内のCPUで実行される命令となる。
In addition, when there is one delay measurement circuit (for example, 4 in FIG. 1), delay information of one path is acquired in one cycle. Therefore, in this embodiment, the path delay distribution (the delay and the number of paths) in a plurality of cycles is acquired. ). In the delay distribution of FIG. 20B, the horizontal axis represents delay (time), the vertical axis represents the number of paths, and it can be seen how many paths have a certain delay (the vertical axis may represent the number of times delay information is acquired). The total number of paths in the range from the minimum to the maximum delay is the total number of paths. Note that an instruction executed by the CPU in the semiconductor device (LSI) may be given from the tester side in a test at the time of product shipment (an instruction may be given at random). Under an environment after product shipment, the instructions are executed by the CPU in the semiconductor device (LSI) in accordance with a program stored in a memory (not shown).
半導体装置(LSI)内のCPUで順次実行される命令に対応して取得した複数のパスの遅延分布情報より、それぞれの遅延分布に対応する活性化パスの総数を抽出する(図20(C)参照)。図20(C)に示すように、活性化パスの総数の時間の推移が取得され、電流値の時間推移(傾向)が抽出される。
The total number of activation paths corresponding to each delay distribution is extracted from the delay distribution information of a plurality of paths acquired corresponding to instructions sequentially executed by the CPU in the semiconductor device (LSI) (FIG. 20C). reference). As shown in FIG. 20C, the time transition of the total number of activation paths is acquired, and the time transition (trend) of the current value is extracted.
遅延測定(図19のステップS42)では、選択されたパスが活性化した場合は、遅延測定回路(例えば図1の4)により、システムクロックサイクルよりも小さな遅延値が取得され(図10参照)、パスが活性化しない場合(信号が活性化レベルに遷移しない場合)には、システムクロックサイクルよりも大きな遅延値が取得できるため、容易に活性化パスを判断することができる。時間の異なる複数の遅延分布情報より、この活性化パスの本数を抽出する。この結果、LSIの電流消費を知ることが出来る。これは、一般的に回路の活性化率と消費電流との間には相関があることを利用している(図20(C)の電流値と活性化パス数は時間と同相で時間変化している)。
In the delay measurement (step S42 in FIG. 19), when the selected path is activated, a delay value smaller than the system clock cycle is acquired by the delay measurement circuit (for example, 4 in FIG. 1) (see FIG. 10). When the path is not activated (when the signal does not transition to the activation level), a delay value larger than the system clock cycle can be obtained, so that the activation path can be easily determined. The number of activation paths is extracted from a plurality of pieces of delay distribution information having different times. As a result, the current consumption of the LSI can be known. This utilizes the fact that there is generally a correlation between the activation rate of the circuit and the current consumption (the current value and the number of activation paths in FIG. 20C change in time in the same phase as the time. ing).
抽出した電流消費量に基づき、例えば半導体装置(LSI)で実行される命令をスケジュール制御して消費電流(電力)を削減する等、半導体装置(LSI)の動作に反映させることができる。
Based on the extracted current consumption, it is possible to reflect on the operation of the semiconductor device (LSI), for example, schedule control of instructions executed in the semiconductor device (LSI) to reduce current consumption (power).
なお、活性化パスの総数を抽出するにあたり、活性化したパスの遅延量を重み付けした値を抽出することにより、より正確な電流消費量を見積もることも可能である。例えば負荷容量の大きなパスの遅延は一般に大きくなり、この負荷を例えば電源振幅で充放電するための電流消費も増大する。この場合、例えば遅延が大(負荷容量が大)の1本のパスに対して該遅延量に対応した重み係数w(w>1)を乗じ1本の当該パスをw本とすることで電流消費量に応じた活性化パス総数を抽出するようにしてもよい。
In extracting the total number of activated paths, it is possible to estimate the current consumption more accurately by extracting a value obtained by weighting the delay amount of the activated paths. For example, a delay of a path having a large load capacity is generally increased, and current consumption for charging / discharging the load with, for example, a power supply amplitude is also increased. In this case, for example, a single path having a large delay (a large load capacity) is multiplied by a weighting factor w (w> 1) corresponding to the delay amount, so that one path becomes w. You may make it extract the activation path total number according to consumption.
次に本発明の第10の実施例を説明する。図21は、本発明の第10の実施例を説明する図である。本実施例においては、図19のステップS43で取得した遅延分布情報から抽出される特徴量として、劣化の傾向を抽出する。具体的には、半導体装置(LSI)出荷後の環境(実機搭載環境)で、半導体装置(LSI)内のCPUでランダム(あるいは順次)実行される命令に関して、予め定められたある命令(例えば図21(A)の命令列A)に着目し、当該命令におけるパス遅延情報に基づき、遅延分布情報を作成する。なお、遅延測定回路(例えば図1の4)が1つの場合、1サイクルで1パスの遅延情報が取得されるため、本実施例では、同一命令に対して、複数サイクルでのパス遅延分布を作成する。
Next, a tenth embodiment of the present invention will be described. FIG. 21 is a diagram for explaining a tenth embodiment of the present invention. In the present embodiment, the deterioration tendency is extracted as the feature amount extracted from the delay distribution information acquired in step S43 of FIG. Specifically, with respect to an instruction that is randomly (or sequentially) executed by a CPU in the semiconductor device (LSI) in an environment (shipment environment) after the semiconductor device (LSI) is shipped, a predetermined instruction (for example, FIG. Paying attention to the instruction sequence A) of 21 (A), delay distribution information is created based on the path delay information in the instruction. When there is one delay measurement circuit (for example, 4 in FIG. 1), delay information of one path is acquired in one cycle. In this embodiment, path delay distributions in a plurality of cycles are obtained for the same instruction. create.
次に、取得したパスの遅延分布(同一命令の実行による同一オペレーション時の遅延分布)をそれぞれ統計処理する(図21(B)参照)。図21(B)には、パスの遅延分布の一例(横軸:遅延、縦軸:パス数)が示されている。
Next, statistical processing is performed on each of the acquired path delay distributions (delay distributions during the same operation by executing the same instruction) (see FIG. 21B). FIG. 21B shows an example of path delay distribution (horizontal axis: delay, vertical axis: number of paths).
この遅延分布から、統計情報として、例えば、中央値(median)、平均値(mean)や、最大値(maximum)、分散(variance)、標準偏差(standard deviation)等を求める。このとき、取得したパス遅延分布は同じ命令実行時での遅延情報分布であることから、理論的には、同じ分布が得られるはずである。しかし、実際には、劣化の影響で、わずかに分布の形状が異なることが考えられる。最大遅延はクリティカルパスの遅延に対応する。なお、統計情報の導出は、半導体装置(LSI)内のCPU等で行うようにしてもよい。
From this delay distribution, for example, a median value, a mean value, a maximum value, a variance, a standard deviation, and the like are obtained as statistical information. At this time, since the acquired path delay distribution is a delay information distribution at the time of execution of the same instruction, the same distribution should theoretically be obtained. However, in reality, the shape of the distribution may be slightly different due to the influence of deterioration. The maximum delay corresponds to the critical path delay. The statistical information may be derived by a CPU or the like in the semiconductor device (LSI).
本実施例では、このわずかな分布の変化を統計的な解析を用いて抽出する。一般的に、劣化の場合、半導体装置(LSI)全体における遅延が増加する。このため、パス全体の遅延の傾向を示す中央値や標準偏差を、取得した時間に応じてプロットする(図21(C)の中央値、標準偏差を時間推移)。この結果、劣化の進行の傾向を得ることができる。なお、同一命令の実行による同一オペレーション時のパス遅延分布(図21(B))の取得と統計情報抽出の一連の処理を、所定の時間間隔(例えば時間、日、週、月単位、あるいは年単位のいずれか)、間をおいて行うことで、図21(C)に示すような、遅延特性(中央値、標準偏差、クリティカルパス遅延)の経時変化(経年劣化)の様子(傾向)がモニタされる。この劣化のモニタは、製品出荷後の実機搭載環境下等において、半導体装置(LSI)の実動作を邪魔することなく行うことが可能とされる。
In this embodiment, this slight change in distribution is extracted using statistical analysis. Generally, in the case of deterioration, the delay in the entire semiconductor device (LSI) increases. For this reason, the median and standard deviation indicating the delay tendency of the entire path are plotted according to the acquired time (the median and standard deviation in FIG. 21C are time-varying). As a result, a tendency of progress of deterioration can be obtained. It should be noted that a series of processing of path delay distribution (FIG. 21B) and statistical information extraction at the same operation by executing the same instruction is performed at a predetermined time interval (for example, hourly, daily, weekly, monthly or yearly). (Any one of the units), the state (trend) of the change over time (aging) of the delay characteristics (median, standard deviation, critical path delay) as shown in FIG. Monitored. This deterioration monitoring can be performed without interfering with the actual operation of the semiconductor device (LSI) in an actual machine mounting environment after product shipment.
なお、劣化以外の特徴量についても、同様にして、半導体装置(LSI)を通常動作さえながら、経時(経年)変化をモニタすることができる。モニタされた半導体装置(LSI)の経年変化に対応して半導体装置(LSI)の動作の対策が適宜講じられる。
Note that, with respect to feature quantities other than deterioration, it is possible to monitor changes over time (aging) while the semiconductor device (LSI) is operating normally. Countermeasures for the operation of the semiconductor device (LSI) are appropriately taken corresponding to the secular change of the monitored semiconductor device (LSI).
なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
It should be noted that the disclosures of the above patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
以下、本発明で開示した内容を付記としてまとめて記載する。
Hereinafter, the contents disclosed in the present invention will be collectively described as additional notes.
複数のフリップフロップと、
前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって入力パスを選択する選択回路と、
前記選択回路で選択された入力パスの信号の遅延を測定する遅延測定回路と、
を備える、ことを特徴とする半導体装置。 Multiple flip-flops,
A selection circuit that selects an input path according to a selection signal from a plurality of input paths to the plurality of flip-flops;
A delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
A semiconductor device comprising:
前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって入力パスを選択する選択回路と、
前記選択回路で選択された入力パスの信号の遅延を測定する遅延測定回路と、
を備える、ことを特徴とする半導体装置。 Multiple flip-flops,
A selection circuit that selects an input path according to a selection signal from a plurality of input paths to the plurality of flip-flops;
A delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
A semiconductor device comprising:
前記フリップフロップへの入力パスが、前記フリップフロップへの入力端子の近傍又は前記フリップフロップの内部で分岐されて、前記選択回路の複数の入力端子のうち前記フリップフロップに対応する入力端子に接続されている、ことを特徴とする付記1記載の半導体装置。
An input path to the flip-flop is branched in the vicinity of the input terminal to the flip-flop or inside the flip-flop, and is connected to an input terminal corresponding to the flip-flop among a plurality of input terminals of the selection circuit. 2. The semiconductor device according to appendix 1, wherein:
前記入力パスの信号は、前記選択回路から時分割で前記遅延測定回路に供給される、ことを特徴とする付記1又は2記載の半導体装置。
The semiconductor device according to appendix 1 or 2, wherein the signal of the input path is supplied from the selection circuit to the delay measurement circuit in a time division manner.
前記複数のフリップフロップのそれぞれに対応させて配置された複数の選択素子を備え、
前記選択素子は、前記選択素子に入力される制御信号に基づき、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスの中から1つのパスを選択し、
選択したパスの信号を前記選択回路の対応する入力端子に供給する、ことを特徴とする付記1乃至3のいずれか一に記載の半導体装置。 A plurality of selection elements arranged corresponding to each of the plurality of flip-flops;
The selection element selects one path from among branch paths of a plurality of input paths to the flip-flop based on a control signal input to the selection element,
The semiconductor device according to any one ofappendices 1 to 3, wherein a signal of a selected path is supplied to a corresponding input terminal of the selection circuit.
前記選択素子は、前記選択素子に入力される制御信号に基づき、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスの中から1つのパスを選択し、
選択したパスの信号を前記選択回路の対応する入力端子に供給する、ことを特徴とする付記1乃至3のいずれか一に記載の半導体装置。 A plurality of selection elements arranged corresponding to each of the plurality of flip-flops;
The selection element selects one path from among branch paths of a plurality of input paths to the flip-flop based on a control signal input to the selection element,
The semiconductor device according to any one of
前記選択素子は、前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の対応する入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする付記4記載の半導体装置。 The selection element inputs signals of a data input path and a clock input path to the flip-flop,
The selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element. 5. The semiconductor device according toappendix 4, wherein
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の対応する入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする付記4記載の半導体装置。 The selection element inputs signals of a data input path and a clock input path to the flip-flop,
The selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element. 5. The semiconductor device according to
前記選択回路は、前記選択信号に基づき、前記複数のフリップフロップに対応する複数の前記選択素子を択一選択し、選択された1つの選択素子からのデータ信号とクロック信号を前記遅延測定回路に時分割で出力する、ことを特徴とする付記5記載の半導体装置。
The selection circuit selects one of the plurality of selection elements corresponding to the plurality of flip-flops based on the selection signal, and a data signal and a clock signal from the selected one selection element are supplied to the delay measurement circuit. 6. The semiconductor device according to appendix 5, wherein the output is performed in a time division manner.
前記複数の選択素子は、それぞれに入力される制御信号に基づき、前記複数の選択素子のうちの1つが択一的に動作する構成とされている、ことを特徴とする付記4乃至6のいずれか一に記載の半導体装置。
Any one of Supplementary notes 4 to 6, wherein the plurality of selection elements are configured to selectively operate one of the plurality of selection elements based on a control signal input to each of the plurality of selection elements. A semiconductor device according to claim 1.
前記選択素子は、前記フリップフロップへの入力パスから前記選択回路の入力端子へのパスの分岐点と前記選択回路の入力端子との間に配設される、ことを特徴とする付記4乃至7のいずれか一に記載の半導体装置。
The selection elements are arranged between a branch point of a path from an input path to the flip-flop to an input terminal of the selection circuit and an input terminal of the selection circuit. The semiconductor device according to any one of the above.
前記選択素子は、前記フリップフロップの近傍又は内部に配設される、ことを特徴とする付記8に記載の半導体装置。
The semiconductor device according to appendix 8, wherein the selection element is disposed in the vicinity of or inside the flip-flop.
前記遅延測定回路は、前記フリップフロップへのデータ入力パスとクロック入力パスの信号の遷移時間を、時分割で測定し、測定した遷移時間の差分より、遅延量を算出する、ことを特徴とする付記5乃至9のいずれか一に記載の半導体装置。
The delay measuring circuit is characterized in that the signal transition time of the data input path and the clock input path to the flip-flop is measured in a time-sharing manner, and a delay amount is calculated from a difference between the measured transition times. The semiconductor device according to any one of appendices 5 to 9.
前記遅延測定回路は、クロック信号の有効エッジの遅延測定結果と、さらに前記有効エッジよりも時間的に前のデータ信号のエッジの遅延測定結果の差分より、遅延量を算出する、ことを特徴とする付記10記載の半導体装置。
The delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge. The semiconductor device according to appendix 10.
前記複数の入力パスのうち同一の入力パスを複数回、前記遅延測定回路で遅延測定することでジッターの測定が行われる、ことを特徴とする付記1乃至11のいずれか一に記載の半導体装置。
12. The semiconductor device according to any one of appendices 1 to 11, wherein a jitter is measured by measuring a delay of the same input path among the plurality of input paths a plurality of times by the delay measurement circuit. .
前記複数のフリップフロップのそれぞれに対応させて配置された複数の処理回路を備え、
前記処理回路は、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスを入力し、複数の前記入力パスの論理演算を行い、論理演算結果を、前記選択回路の前記フリップフロップに対応する入力端子に供給する、ことを特徴とする付記1乃至3のいずれか一に記載の半導体装置。 A plurality of processing circuits arranged corresponding to each of the plurality of flip-flops;
The processing circuit inputs respective branch paths of a plurality of input paths to the flip-flop, performs a logical operation of the plurality of input paths, and outputs a logical operation result corresponding to the flip-flop of theselection circuit 4. The semiconductor device according to claim 1, wherein the semiconductor device is supplied to a terminal.
前記処理回路は、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスを入力し、複数の前記入力パスの論理演算を行い、論理演算結果を、前記選択回路の前記フリップフロップに対応する入力端子に供給する、ことを特徴とする付記1乃至3のいずれか一に記載の半導体装置。 A plurality of processing circuits arranged corresponding to each of the plurality of flip-flops;
The processing circuit inputs respective branch paths of a plurality of input paths to the flip-flop, performs a logical operation of the plurality of input paths, and outputs a logical operation result corresponding to the flip-flop of the
前記処理回路が、クロック入力とデータ入力を入力とする2入力排他的論理和回路を備えている、ことを特徴とする付記13記載の半導体装置。
14. The semiconductor device according to appendix 13, wherein the processing circuit includes a 2-input exclusive OR circuit having a clock input and a data input as inputs.
前記遅延測定回路の出力値を保持するレジスタを有する、ことを特徴とする付記1乃至12のいずれか一に記載の半導体装置。
13. The semiconductor device according to any one of appendices 1 to 12, further comprising a register that holds an output value of the delay measurement circuit.
前記複数のフリップフロップのうち、複数のクリティカルパスを構成するフリップフロップの入力が選択される、ことを特徴とする付記1乃至15のいずれか一に記載の半導体装置。
The semiconductor device according to any one of appendices 1 to 15, wherein among the plurality of flip-flops, inputs of flip-flops constituting a plurality of critical paths are selected.
複数のフリップフロップと、
前記複数のフリップフロップにそれぞれ対応させて配置される複数の選択素子と、
を備え、前記選択素子は、対応する前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、入力される制御信号に応じて、前記フリップフロップへのデータ信号とクロック信号を時分割で出力し、
前記複数の選択素子の中から選択信号にしたがって1つを選択する選択回路と、
前記選択回路で選択された前記選択素子より時分割で出力されるデータ信号とクロック信号の遅延を測定する遅延測定回路と、
を備える、ことを特徴とする半導体装置。 Multiple flip-flops,
A plurality of selection elements arranged corresponding to the plurality of flip-flops, and
And the selection element inputs a data input path and a clock input path signal to the corresponding flip-flop, and time-divides the data signal and the clock signal to the flip-flop according to the input control signal. Output with
A selection circuit that selects one of the plurality of selection elements according to a selection signal;
A delay measurement circuit for measuring a delay between a data signal and a clock signal output in a time-sharing manner from the selection element selected by the selection circuit;
A semiconductor device comprising:
前記複数のフリップフロップにそれぞれ対応させて配置される複数の選択素子と、
を備え、前記選択素子は、対応する前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、入力される制御信号に応じて、前記フリップフロップへのデータ信号とクロック信号を時分割で出力し、
前記複数の選択素子の中から選択信号にしたがって1つを選択する選択回路と、
前記選択回路で選択された前記選択素子より時分割で出力されるデータ信号とクロック信号の遅延を測定する遅延測定回路と、
を備える、ことを特徴とする半導体装置。 Multiple flip-flops,
A plurality of selection elements arranged corresponding to the plurality of flip-flops, and
And the selection element inputs a data input path and a clock input path signal to the corresponding flip-flop, and time-divides the data signal and the clock signal to the flip-flop according to the input control signal. Output with
A selection circuit that selects one of the plurality of selection elements according to a selection signal;
A delay measurement circuit for measuring a delay between a data signal and a clock signal output in a time-sharing manner from the selection element selected by the selection circuit;
A semiconductor device comprising:
前記選択素子は、前記フリップフロップへの入力パスから前記選択回路の入力端子へのパスの分岐点と前記選択回路の入力端子との間に配設される、ことを特徴とする付記17に記載の半導体装置。
Item 18. The supplementary note 17, wherein the selection element is disposed between a branch point of a path from an input path to the flip-flop to an input terminal of the selection circuit and an input terminal of the selection circuit. Semiconductor device.
前記選択素子は、前記フリップフロップの近傍又は内部に配設される、ことを特徴とする付記18に記載の半導体装置。
Item 19. The semiconductor device according to appendix 18, wherein the selection element is disposed in the vicinity of or inside the flip-flop.
前記遅延測定回路は、クロック信号の有効エッジの遅延測定結果と、さらに前記有効エッジよりも時間的に前のデータ信号のエッジの遅延測定結果の差分より、遅延量を算出する、ことを特徴とする付記17記載の半導体装置。
The delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge. The semiconductor device according to appendix 17.
半導体装置の主機能を担うコア回路と、
前記コア回路の内部信号を入力し遅延測定を行う遅延測定回路と、
前記コア回路に電源を供給する電源制御回路と、
前記遅延測定回路の遅延測定結果を記憶する記憶素子と、
前記記憶素子の値を入力し前記電源制御回路へ制御信号を出力する制御素子と、
を備え、
前記コア回路は、複数のフリップフロップを備え、
前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって入力パスを選択する選択回路を、前記コア回路内部又は外部に備え、
前記遅延測定回路は、前記選択回路の出力信号の遅延測定を行う、ことを特徴する半導体装置。 A core circuit responsible for the main function of the semiconductor device;
A delay measuring circuit that inputs an internal signal of the core circuit and performs delay measurement;
A power supply control circuit for supplying power to the core circuit;
A storage element for storing a delay measurement result of the delay measurement circuit;
A control element that inputs a value of the storage element and outputs a control signal to the power supply control circuit;
With
The core circuit includes a plurality of flip-flops,
A selection circuit that selects an input path according to a selection signal from among a plurality of input paths to the plurality of flip-flops, provided inside or outside the core circuit,
The semiconductor device characterized in that the delay measurement circuit measures a delay of an output signal of the selection circuit.
前記コア回路の内部信号を入力し遅延測定を行う遅延測定回路と、
前記コア回路に電源を供給する電源制御回路と、
前記遅延測定回路の遅延測定結果を記憶する記憶素子と、
前記記憶素子の値を入力し前記電源制御回路へ制御信号を出力する制御素子と、
を備え、
前記コア回路は、複数のフリップフロップを備え、
前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって入力パスを選択する選択回路を、前記コア回路内部又は外部に備え、
前記遅延測定回路は、前記選択回路の出力信号の遅延測定を行う、ことを特徴する半導体装置。 A core circuit responsible for the main function of the semiconductor device;
A delay measuring circuit that inputs an internal signal of the core circuit and performs delay measurement;
A power supply control circuit for supplying power to the core circuit;
A storage element for storing a delay measurement result of the delay measurement circuit;
A control element that inputs a value of the storage element and outputs a control signal to the power supply control circuit;
With
The core circuit includes a plurality of flip-flops,
A selection circuit that selects an input path according to a selection signal from among a plurality of input paths to the plurality of flip-flops, provided inside or outside the core circuit,
The semiconductor device characterized in that the delay measurement circuit measures a delay of an output signal of the selection circuit.
前記制御素子が、前記記憶素子からの出力を入力とし遅延が可変に設定される遅延可変レプリカ回路と、
前記遅延可変レプリカ回路の周波数と前記コア回路のクロック周波数を比較する周波数比較回路と、
を備えている、ことを特徴とする付記21記載の半導体装置。 A delay variable replica circuit in which the control element has an output from the storage element as an input and a delay is set variably;
A frequency comparison circuit for comparing the frequency of the delay variable replica circuit and the clock frequency of the core circuit;
The semiconductor device according toappendix 21, characterized by comprising:
前記遅延可変レプリカ回路の周波数と前記コア回路のクロック周波数を比較する周波数比較回路と、
を備えている、ことを特徴とする付記21記載の半導体装置。 A delay variable replica circuit in which the control element has an output from the storage element as an input and a delay is set variably;
A frequency comparison circuit for comparing the frequency of the delay variable replica circuit and the clock frequency of the core circuit;
The semiconductor device according to
前記遅延可変レプリカ回路は、前記遅延測定回路で得られた遅延情報に基づき、前記コア回路のクリティカルパスの遅延特性と同じ遅延特性となるように設定される、ことを特徴とする付記22記載の半導体装置。
23. The supplementary note 22, wherein the variable delay replica circuit is set to have the same delay characteristic as that of a critical path of the core circuit based on delay information obtained by the delay measurement circuit. Semiconductor device.
前記フリップフロップへの入力パスが、前記フリップフロップへの入力端子の近傍又は前記フリップフロップの内部で分岐されて、前記選択回路の複数の入力端子のうち前記フリップフロップに対応する入力端子に接続されている、ことを特徴とする付記21乃至23のいずれか一に記載の半導体装置。
An input path to the flip-flop is branched in the vicinity of the input terminal to the flip-flop or inside the flip-flop, and is connected to an input terminal corresponding to the flip-flop among a plurality of input terminals of the selection circuit. 24. The semiconductor device according to any one of appendices 21 to 23, wherein:
前記入力パスの信号は、前記選択回路から時分割で前記遅延測定回路に供給される、ことを特徴とする付記21乃至24のいずれか一に記載の半導体装置。
25. The semiconductor device according to any one of appendices 21 to 24, wherein the signal of the input path is supplied from the selection circuit to the delay measurement circuit in a time division manner.
前記フリップフロップのそれぞれに対応させて配置された選択素子を備え、
前記選択素子は、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスの中から、前記選択素子に入力される制御信号に基づき、1つの入力パスを選択し、
選択したパスの信号を前記選択回路の対応する入力端子に供給する、ことを特徴とする付記21乃至25のいずれか一に記載の半導体装置。 Comprising a selection element arranged corresponding to each of the flip-flops;
The selection element selects one input path based on a control signal input to the selection element from among branch paths of a plurality of input paths to the flip-flop,
26. The semiconductor device according to any one ofappendices 21 to 25, wherein a signal of a selected path is supplied to a corresponding input terminal of the selection circuit.
前記選択素子は、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスの中から、前記選択素子に入力される制御信号に基づき、1つの入力パスを選択し、
選択したパスの信号を前記選択回路の対応する入力端子に供給する、ことを特徴とする付記21乃至25のいずれか一に記載の半導体装置。 Comprising a selection element arranged corresponding to each of the flip-flops;
The selection element selects one input path based on a control signal input to the selection element from among branch paths of a plurality of input paths to the flip-flop,
26. The semiconductor device according to any one of
前記選択素子は、前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の対応する入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする付記26記載の半導体装置。 The selection element inputs signals of a data input path and a clock input path to the flip-flop,
The selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element. 27. The semiconductor device according to appendix 26, wherein
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の対応する入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする付記26記載の半導体装置。 The selection element inputs signals of a data input path and a clock input path to the flip-flop,
The selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element. 27. The semiconductor device according to appendix 26, wherein
前記選択回路は、前記選択信号に基づき、前記複数のフリップフロップに対応する複数の前記選択素子を択一選択し、選択された1つの選択素子からのデータ信号とクロック信号を前記遅延測定回路に時分割で出力する、ことを特徴とする付記27記載の半導体装置。
The selection circuit selects one of the plurality of selection elements corresponding to the plurality of flip-flops based on the selection signal, and a data signal and a clock signal from the selected one selection element are supplied to the delay measurement circuit. 28. The semiconductor device according to appendix 27, wherein output is performed in a time division manner.
前記複数の選択素子は、それぞれに入力される制御信号に基づき、前記複数の選択素子のうちの1つの選択素子が択一的に動作する構成とされている、ことを特徴とする付記28記載の半導体装置。
29. The supplementary note 28, wherein the plurality of selection elements are configured such that one selection element of the plurality of selection elements operates alternatively based on a control signal input to each of the plurality of selection elements. Semiconductor device.
前記遅延測定回路は、前記フリップフロップへのデータ入力パスとクロック入力パスの信号の遷移時間を、時分割で測定し、測定した遷移時間の差分より、遅延量を算出する、ことを特徴とする付記27乃至29のいずれか一に記載の半導体装置。
The delay measuring circuit is characterized in that the signal transition time of the data input path and the clock input path to the flip-flop is measured in a time-sharing manner, and a delay amount is calculated from a difference between the measured transition times. The semiconductor device according to any one of appendices 27 to 29.
前記遅延測定回路は、クロック信号の有効エッジの遅延測定結果と、さらに前記有効エッジよりも時間的に前のデータ信号のエッジの遅延測定結果の差分より、遅延量を算出する、ことを特徴とする付記30記載の半導体装置。
The delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge. The semiconductor device according to appendix 30.
前記フリップフロップのそれぞれに対応させて配置された処理回路を備え、
前記処理回路は、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスを入力し、複数の前記入力パスの論理演算を行い、論理演算結果を、前記選択回路の前記フリップフロップに対応する入力端子に供給する、ことを特徴とする付記21乃至25のいずれか一に記載の半導体装置。 A processing circuit arranged corresponding to each of the flip-flops;
The processing circuit inputs respective branch paths of a plurality of input paths to the flip-flop, performs a logical operation of the plurality of input paths, and outputs a logical operation result corresponding to the flip-flop of the selection circuit 26. The semiconductor device according to any one ofappendices 21 to 25, wherein the semiconductor device is supplied to a terminal.
前記処理回路は、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスを入力し、複数の前記入力パスの論理演算を行い、論理演算結果を、前記選択回路の前記フリップフロップに対応する入力端子に供給する、ことを特徴とする付記21乃至25のいずれか一に記載の半導体装置。 A processing circuit arranged corresponding to each of the flip-flops;
The processing circuit inputs respective branch paths of a plurality of input paths to the flip-flop, performs a logical operation of the plurality of input paths, and outputs a logical operation result corresponding to the flip-flop of the selection circuit 26. The semiconductor device according to any one of
複数のフリップフロップを含む半導体装置による遅延測定方法であって、
選択回路が、前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって1つのパスを選択して出力し、
遅延測定回路が、前記選択されたパスの信号の遅延を測定する、
ことを特徴とする遅延測定方法。 A delay measurement method using a semiconductor device including a plurality of flip-flops,
A selection circuit that selects and outputs one path from a plurality of input paths to the plurality of flip-flops according to a selection signal;
A delay measurement circuit measures a delay of the signal of the selected path;
A delay measuring method.
選択回路が、前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって1つのパスを選択して出力し、
遅延測定回路が、前記選択されたパスの信号の遅延を測定する、
ことを特徴とする遅延測定方法。 A delay measurement method using a semiconductor device including a plurality of flip-flops,
A selection circuit that selects and outputs one path from a plurality of input paths to the plurality of flip-flops according to a selection signal;
A delay measurement circuit measures a delay of the signal of the selected path;
A delay measuring method.
前記フリップフロップに対応させて配置された選択素子が、前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする付記33記載の遅延測定方法。 A selection element arranged corresponding to the flip-flop inputs a data input path and a clock input path signal to the flip-flop,
The selection element propagates a data signal and a clock signal to the flip-flop in a time division manner in a path between the output of the selection element and the input terminal of the selection circuit according to a control signal input to the selection element. 34. The delay measuring method according toappendix 33, wherein
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする付記33記載の遅延測定方法。 A selection element arranged corresponding to the flip-flop inputs a data input path and a clock input path signal to the flip-flop,
The selection element propagates a data signal and a clock signal to the flip-flop in a time division manner in a path between the output of the selection element and the input terminal of the selection circuit according to a control signal input to the selection element. 34. The delay measuring method according to
付記1乃至付記20のいずれか一に記載の半導体装置において、
測定したパスの遅延より遅延分布情報を作成する、ことを特徴とする遅延測定方法。 In the semiconductor device according to any one ofappendices 1 to 20,
A delay measurement method characterized in that delay distribution information is created from measured path delays.
測定したパスの遅延より遅延分布情報を作成する、ことを特徴とする遅延測定方法。 In the semiconductor device according to any one of
A delay measurement method characterized in that delay distribution information is created from measured path delays.
1サイクルで、半導体装置の全パス数よりも少ない数のパスの遅延を測定し、
複数サイクルに渡り、測定した遅延を用いて遅延分布情報を作成する、ことを特徴とする付記35記載の遅延測定方法。 Measure the delay of a number of paths less than the total number of paths in the semiconductor device in one cycle,
36. The delay measurement method according to appendix 35, wherein the delay distribution information is created using the measured delay over a plurality of cycles.
複数サイクルに渡り、測定した遅延を用いて遅延分布情報を作成する、ことを特徴とする付記35記載の遅延測定方法。 Measure the delay of a number of paths less than the total number of paths in the semiconductor device in one cycle,
36. The delay measurement method according to appendix 35, wherein the delay distribution information is created using the measured delay over a plurality of cycles.
付記35記載の遅延測定方法により作成された前記遅延分布情報より特徴量を抽出し、前記特徴量を基に、前記半導体装置の動作を調整する、ことを特徴とする制御方法。
A control method, wherein a feature amount is extracted from the delay distribution information created by the delay measurement method according to attachment 35, and an operation of the semiconductor device is adjusted based on the feature amount.
付記35記載の遅延測定方法により作成された前記遅延分布情報より、活性化したパス数を算出し、半導体装置の電流消費もしくは電力消費の変化を得る、ことを特徴とする制御方法。
A control method characterized in that the number of activated paths is calculated from the delay distribution information created by the delay measurement method according to appendix 35 to obtain a change in current consumption or power consumption of the semiconductor device.
付記35記載の遅延測定方法により作成された前記遅延分布情報より、平均値、中央値、分散の少なくとも1つを算出し、経年劣化の傾向を得る、ことを特徴とする制御方法。
A control method characterized in that at least one of an average value, a median value, and a variance is calculated from the delay distribution information created by the delay measurement method according to attachment 35, and a tendency of aging deterioration is obtained.
付記35記載の遅延測定方法により作成された前記遅延分布情報より、分布情報より、最長遅延を算出し、半導体装置の最高動作速度を得る、ことを特徴とする制御方法。
A control method characterized in that, from the delay distribution information created by the delay measurement method according to attachment 35, the longest delay is calculated from the distribution information to obtain the maximum operating speed of the semiconductor device.
複数のフリップフロップと、
前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって入力パスを選択する選択回路と、
前記選択回路で選択された入力パスの信号の遅延を測定する遅延測定回路と、
を備え、
前記遅延測定回路で測定された遅延より、パスの遅延分布情報を作成する、ことを特徴とする半導体装置。 Multiple flip-flops,
A selection circuit that selects an input path according to a selection signal from a plurality of input paths to the plurality of flip-flops;
A delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
With
A semiconductor device characterized in that path delay distribution information is created from the delay measured by the delay measuring circuit.
前記複数のフリップフロップへの複数の入力パスの中から選択信号にしたがって入力パスを選択する選択回路と、
前記選択回路で選択された入力パスの信号の遅延を測定する遅延測定回路と、
を備え、
前記遅延測定回路で測定された遅延より、パスの遅延分布情報を作成する、ことを特徴とする半導体装置。 Multiple flip-flops,
A selection circuit that selects an input path according to a selection signal from a plurality of input paths to the plurality of flip-flops;
A delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
With
A semiconductor device characterized in that path delay distribution information is created from the delay measured by the delay measuring circuit.
前記遅延分布情報から特徴量を抽出し、前記特徴量を基に、前記半導体装置の動作を調整する、ことを特徴とする付記41記載の半導体装置。
42. The semiconductor device according to appendix 41, wherein a feature amount is extracted from the delay distribution information, and an operation of the semiconductor device is adjusted based on the feature amount.
1 論理回路
2 FF
3 選択回路(セレクタ)
4 遅延測定回路
5 遅延測定用FF
6 制御素子
7 選択素子(マルチプレクサ)
8 処理回路
10 コア回路
11 データ処理回路
12 遅延素子
21 設定記憶素子
22 制御素子
23、31 電源制御回路
32 周波数比較回路
33 遅延可変レプリカ回路
34 設定レジスタ
41 遅延素子
42 フリップフロップ
43 データ処理回路 1logic circuit 2 FF
3 Selection circuit (selector)
4 Delaymeasurement circuit 5 Delay measurement FF
6Control element 7 Selection element (multiplexer)
8 processingcircuit 10 core circuit 11 data processing circuit 12 delay element 21 setting storage element 22 control element 23, 31 power supply control circuit 32 frequency comparison circuit 33 variable delay replica circuit 34 setting register 41 delay element 42 flip-flop 43 data processing circuit
2 FF
3 選択回路(セレクタ)
4 遅延測定回路
5 遅延測定用FF
6 制御素子
7 選択素子(マルチプレクサ)
8 処理回路
10 コア回路
11 データ処理回路
12 遅延素子
21 設定記憶素子
22 制御素子
23、31 電源制御回路
32 周波数比較回路
33 遅延可変レプリカ回路
34 設定レジスタ
41 遅延素子
42 フリップフロップ
43 データ処理回路 1
3 Selection circuit (selector)
4 Delay
6
8 processing
Claims (14)
- 複数のフリップフロップと、
前記複数のフリップフロップへの複数の入力パスの中から、入力される選択信号にしたがって、入力パスを選択する選択回路と、
前記選択回路で選択された入力パスの信号の遅延を測定する遅延測定回路と、
を備える、ことを特徴とする半導体装置。 Multiple flip-flops,
A selection circuit that selects an input path from a plurality of input paths to the plurality of flip-flops according to an input selection signal;
A delay measuring circuit for measuring a delay of a signal of an input path selected by the selection circuit;
A semiconductor device comprising: - 前記フリップフロップへの入力パスは、前記フリップフロップへの入力端子の近傍又は前記フリップフロップの内部で分岐され前記選択回路の対応する入力端子に接続される、ことを特徴とする請求項1記載の半導体装置。 The input path to the flip-flop is branched in the vicinity of the input terminal to the flip-flop or inside the flip-flop and connected to the corresponding input terminal of the selection circuit. Semiconductor device.
- 前記入力パスの信号は、前記選択回路から時分割で前記遅延測定回路に供給される、ことを特徴とする請求項1又は2記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the signal of the input path is supplied from the selection circuit to the delay measurement circuit in a time division manner.
- 前記複数のフリップフロップのそれぞれに対応させて配置された複数の選択素子を備え、
前記選択素子は、前記選択素子に入力される制御信号に基づき、前記フリップフロップへの複数の入力パスのそれぞれの分岐パスの中から1つのパスを選択し、
選択したパスの信号を前記選択回路の対応する入力端子に供給する、ことを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。 A plurality of selection elements arranged corresponding to each of the plurality of flip-flops;
The selection element selects one path from among branch paths of a plurality of input paths to the flip-flop based on a control signal input to the selection element,
4. The semiconductor device according to claim 1, wherein a signal of a selected path is supplied to a corresponding input terminal of the selection circuit. 5. - 前記選択素子は、前記フリップフロップへのデータ入力パスとクロック入力パスの信号を入力し、
前記選択素子は、前記選択素子に入力される制御信号に応じて、前記選択素子の出力と前記選択回路の対応する入力端子間のパスに、前記フリップフロップへのデータ信号とクロック信号を時分割で伝播させる、ことを特徴とする請求項4記載の半導体装置。 The selection element inputs signals of a data input path and a clock input path to the flip-flop,
The selection element time-divides a data signal and a clock signal to the flip-flop into a path between the output of the selection element and a corresponding input terminal of the selection circuit according to a control signal input to the selection element. 5. The semiconductor device according to claim 4, wherein - 前記選択回路は、前記選択信号に基づき、前記複数のフリップフロップにそれぞれ対応する複数の前記選択素子を択一選択し、選択された1つの選択素子からのデータ信号とクロック信号を前記遅延測定回路に時分割で出力する、ことを特徴とする請求項5記載の半導体装置。 The selection circuit selects one of the plurality of selection elements respectively corresponding to the plurality of flip-flops based on the selection signal, and the delay measurement circuit receives a data signal and a clock signal from the selected one selection element. 6. The semiconductor device according to claim 5, wherein output is performed in a time division manner.
- 前記複数の選択素子は、それぞれに入力される制御信号に基づき、前記複数の選択素子のうちの1つが択一的に動作する構成とされている、ことを特徴とする請求項4乃至6のいずれか1項に記載の半導体装置。 The plurality of selection elements are configured to selectively operate one of the plurality of selection elements based on a control signal input to each of the plurality of selection elements. The semiconductor device according to any one of the above.
- 前記選択素子は、前記フリップフロップへの入力パスから前記選択回路の入力端子へのパスの分岐点と前記選択回路の入力端子との間に配設される、ことを特徴とする請求項4乃至7のいずれか1項に記載の半導体装置。 The selection element is disposed between a branch point of a path from an input path to the flip-flop to an input terminal of the selection circuit and an input terminal of the selection circuit. 8. The semiconductor device according to any one of 7 above.
- 前記選択素子は、前記フリップフロップの近傍又は内部に配設される、ことを特徴とする請求項8に記載の半導体装置。 The semiconductor device according to claim 8, wherein the selection element is disposed in the vicinity of or inside the flip-flop.
- 前記遅延測定回路は、前記フリップフロップへのデータ入力パスとクロック入力パスの信号の遷移時間を、時分割で測定し、測定した遷移時間の差分より、遅延量を算出する、ことを特徴とする請求項5乃至9のいずれか1項に記載の半導体装置。 The delay measuring circuit is characterized in that the signal transition time of the data input path and the clock input path to the flip-flop is measured in a time-sharing manner, and a delay amount is calculated from a difference between the measured transition times. The semiconductor device according to claim 5.
- 前記遅延測定回路は、クロック信号の有効エッジの遅延測定結果と、さらに前記有効エッジよりも時間的に前のデータ信号のエッジの遅延測定結果の差分より、遅延量を算出する、ことを特徴とする請求項10記載の半導体装置。 The delay measuring circuit calculates a delay amount from a difference between a delay measurement result of a valid edge of a clock signal and a delay measurement result of an edge of a data signal temporally prior to the valid edge. The semiconductor device according to claim 10.
- 前記複数の入力パスのうち同一の入力パスを複数回、前記遅延測定回路で遅延測定することでジッターの測定が行われる、ことを特徴とする請求項1乃至11のいずれか1項に記載の半導体装置。 The jitter is measured by measuring the delay of the same input path among the plurality of input paths a plurality of times by the delay measuring circuit. Semiconductor device.
- 前記複数のフリップフロップのうち、複数のクリティカルパスを構成するフリップフロップの入力が選択される、ことを特徴とする請求項1乃至12のいずれか1項に記載の半導体装置。 13. The semiconductor device according to claim 1, wherein inputs of flip-flops constituting a plurality of critical paths are selected from the plurality of flip-flops.
- 前記遅延測定回路で測定された遅延より、パスの遅延分布情報を作成する、ことを特徴とする請求項1記載の半導体装置。 2. The semiconductor device according to claim 1, wherein path delay distribution information is created from the delay measured by the delay measuring circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010545789A JPWO2010079823A1 (en) | 2009-01-09 | 2010-01-08 | Semiconductor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-004046 | 2009-01-09 | ||
JP2009004046 | 2009-01-09 | ||
JP2009281886 | 2009-12-11 | ||
JP2009-281886 | 2009-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010079823A1 true WO2010079823A1 (en) | 2010-07-15 |
Family
ID=42316588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050146 WO2010079823A1 (en) | 2009-01-09 | 2010-01-08 | Semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010079823A1 (en) |
WO (1) | WO2010079823A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011247783A (en) * | 2010-05-27 | 2011-12-08 | Advantest Corp | Testing circuit and signal processing circuit |
WO2016173390A1 (en) * | 2015-04-27 | 2016-11-03 | 席玉林 | Combined spring compensation suspension device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005214732A (en) * | 2004-01-28 | 2005-08-11 | Sony Corp | Critical path evaluation method and delay-condition measurement circuit, and lsi manufacturing method |
JP2005340426A (en) * | 2004-05-26 | 2005-12-08 | Sony Corp | Semiconductor device |
JP2008064717A (en) * | 2006-09-11 | 2008-03-21 | Sharp Corp | Delay measuring circuit in semiconductor integrated circuit |
-
2010
- 2010-01-08 JP JP2010545789A patent/JPWO2010079823A1/en not_active Withdrawn
- 2010-01-08 WO PCT/JP2010/050146 patent/WO2010079823A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005214732A (en) * | 2004-01-28 | 2005-08-11 | Sony Corp | Critical path evaluation method and delay-condition measurement circuit, and lsi manufacturing method |
JP2005340426A (en) * | 2004-05-26 | 2005-12-08 | Sony Corp | Semiconductor device |
JP2008064717A (en) * | 2006-09-11 | 2008-03-21 | Sharp Corp | Delay measuring circuit in semiconductor integrated circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011247783A (en) * | 2010-05-27 | 2011-12-08 | Advantest Corp | Testing circuit and signal processing circuit |
WO2016173390A1 (en) * | 2015-04-27 | 2016-11-03 | 席玉林 | Combined spring compensation suspension device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010079823A1 (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8810297B2 (en) | Circuit device, frequency changing circuit, method of testing circuit device, and method of controlling frequency changing circuit | |
US5878055A (en) | Method and apparatus for verifying a single phase clocking system including testing for latch early mode | |
CN101102111B (en) | Semiconductor device including A/D converter | |
US9075110B2 (en) | Fault detection system, acquisition apparatus, fault detection method, program, and non-transitory computer-readable medium | |
JP5314491B2 (en) | Test apparatus, test method, and device | |
EP2041589B1 (en) | On-chip test circuit for an embedded comparator | |
JP7521054B2 (en) | Semiconductor Integrated Circuit | |
US20160349318A1 (en) | Dynamic Clock Chain Bypass | |
JP4417955B2 (en) | Test method by event format for timing related defect verification of integrated circuits | |
JP4394789B2 (en) | Semiconductor device testing method and semiconductor device testing equipment | |
JP5202456B2 (en) | Test apparatus and test method | |
JP5381001B2 (en) | Semiconductor integrated circuit and method for testing semiconductor integrated circuit | |
WO2010079823A1 (en) | Semiconductor device | |
US6574579B1 (en) | Waveform generating device | |
US20110234282A1 (en) | Method And Circuit For Testing And Characterizing High Speed Signals Using An ON-Chip Oscilloscope | |
JP5179861B2 (en) | Semiconductor device | |
US20100033189A1 (en) | Semiconductor integrated circuit and test method using the same | |
US20060041806A1 (en) | Testing method for semiconductor device and testing circuit for semiconductor device | |
JP5243340B2 (en) | Test apparatus and test method | |
US10018671B2 (en) | Reducing power requirements and switching during logic built-in-self-test and scan test | |
JP2012255693A (en) | Semiconductor integrated circuit and control method thereof | |
JP6469598B2 (en) | Integrated circuit | |
US8539327B2 (en) | Semiconductor integrated circuit for testing logic circuit | |
JP2012177646A (en) | Semiconductor integrated circuit and test method of semiconductor integrated circuit | |
JP6530288B2 (en) | Semiconductor device and test method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10729243 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010545789 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10729243 Country of ref document: EP Kind code of ref document: A1 |