WO2010054167A2 - Limited proteolysis of cd2ap and progression of renal disease - Google Patents
Limited proteolysis of cd2ap and progression of renal disease Download PDFInfo
- Publication number
- WO2010054167A2 WO2010054167A2 PCT/US2009/063511 US2009063511W WO2010054167A2 WO 2010054167 A2 WO2010054167 A2 WO 2010054167A2 US 2009063511 W US2009063511 W US 2009063511W WO 2010054167 A2 WO2010054167 A2 WO 2010054167A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cd2ap
- cathepsin
- seq
- expression
- activity
- Prior art date
Links
- 208000017169 kidney disease Diseases 0.000 title claims abstract description 47
- 230000017854 proteolysis Effects 0.000 title description 19
- 108091000120 Plakin Proteins 0.000 claims abstract description 303
- 102000030412 Plakin Human genes 0.000 claims abstract description 302
- 108090000624 Cathepsin L Proteins 0.000 claims abstract description 299
- 102000004172 Cathepsin L Human genes 0.000 claims abstract description 299
- 210000000557 podocyte Anatomy 0.000 claims abstract description 183
- 238000000034 method Methods 0.000 claims abstract description 103
- 230000014509 gene expression Effects 0.000 claims abstract description 89
- 230000015556 catabolic process Effects 0.000 claims abstract description 50
- 238000006731 degradation reaction Methods 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 46
- 238000001727 in vivo Methods 0.000 claims abstract description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 109
- 238000003776 cleavage reaction Methods 0.000 claims description 104
- 230000007017 scission Effects 0.000 claims description 104
- 201000001474 proteinuria Diseases 0.000 claims description 94
- 239000003795 chemical substances by application Substances 0.000 claims description 84
- 230000000694 effects Effects 0.000 claims description 70
- 201000010099 disease Diseases 0.000 claims description 68
- 102100035604 Synaptopodin Human genes 0.000 claims description 62
- 101710119889 Synaptopodin Proteins 0.000 claims description 62
- 210000004027 cell Anatomy 0.000 claims description 49
- 239000012634 fragment Substances 0.000 claims description 45
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 44
- 208000035475 disorder Diseases 0.000 claims description 41
- 230000006870 function Effects 0.000 claims description 40
- 150000007523 nucleic acids Chemical class 0.000 claims description 40
- 108010084457 Cathepsins Proteins 0.000 claims description 39
- 102000043859 Dynamin Human genes 0.000 claims description 35
- 102000039446 nucleic acids Human genes 0.000 claims description 35
- 108020004707 nucleic acids Proteins 0.000 claims description 35
- 102100030312 Dendrin Human genes 0.000 claims description 34
- 108010014851 dendrin Proteins 0.000 claims description 34
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 claims description 34
- 108700021058 Dynamin Proteins 0.000 claims description 33
- 150000001413 amino acids Chemical class 0.000 claims description 32
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 32
- 102000005600 Cathepsins Human genes 0.000 claims description 31
- 108091034117 Oligonucleotide Proteins 0.000 claims description 29
- 201000005206 focal segmental glomerulosclerosis Diseases 0.000 claims description 22
- 231100000854 focal segmental glomerulosclerosis Toxicity 0.000 claims description 22
- 210000003734 kidney Anatomy 0.000 claims description 22
- 239000003814 drug Substances 0.000 claims description 21
- 208000022461 Glomerular disease Diseases 0.000 claims description 19
- 231100000852 glomerular disease Toxicity 0.000 claims description 19
- 239000003112 inhibitor Substances 0.000 claims description 18
- 229920001184 polypeptide Polymers 0.000 claims description 18
- 102000004190 Enzymes Human genes 0.000 claims description 17
- 108090000790 Enzymes Proteins 0.000 claims description 17
- 239000000090 biomarker Substances 0.000 claims description 17
- 150000003384 small molecules Chemical class 0.000 claims description 16
- 206010018374 Glomerulonephritis minimal lesion Diseases 0.000 claims description 14
- 208000004883 Lipoid Nephrosis Diseases 0.000 claims description 14
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 14
- 230000006378 damage Effects 0.000 claims description 14
- 230000035772 mutation Effects 0.000 claims description 13
- 102000040430 polynucleotide Human genes 0.000 claims description 12
- 108091033319 polynucleotide Proteins 0.000 claims description 12
- 239000002157 polynucleotide Substances 0.000 claims description 12
- 201000008350 membranous glomerulonephritis Diseases 0.000 claims description 11
- 239000000074 antisense oligonucleotide Substances 0.000 claims description 10
- 238000012230 antisense oligonucleotides Methods 0.000 claims description 10
- 229940079593 drug Drugs 0.000 claims description 8
- 210000004900 c-terminal fragment Anatomy 0.000 claims description 7
- 238000003745 diagnosis Methods 0.000 claims description 7
- 208000015181 infectious disease Diseases 0.000 claims description 7
- 108091023037 Aptamer Proteins 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 230000003902 lesion Effects 0.000 claims description 6
- 206010018372 Glomerulonephritis membranous Diseases 0.000 claims description 5
- 208000010159 IgA glomerulonephritis Diseases 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 5
- 230000003436 cytoskeletal effect Effects 0.000 claims description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 5
- 231100000855 membranous nephropathy Toxicity 0.000 claims description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 4
- 206010020772 Hypertension Diseases 0.000 claims description 4
- 206010021263 IgA nephropathy Diseases 0.000 claims description 3
- 208000034578 Multiple myelomas Diseases 0.000 claims description 3
- 206010029164 Nephrotic syndrome Diseases 0.000 claims description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 3
- 101000713302 Rattus norvegicus Sodium-coupled neutral amino acid transporter 1 Proteins 0.000 claims description 3
- 208000002296 eclampsia Diseases 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 208000007056 sickle cell anemia Diseases 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- 208000024985 Alport syndrome Diseases 0.000 claims description 2
- 206010001939 Aminoaciduria Diseases 0.000 claims description 2
- 208000029147 Collagen-vascular disease Diseases 0.000 claims description 2
- 208000024720 Fabry Disease Diseases 0.000 claims description 2
- 208000026019 Fanconi renotubular syndrome Diseases 0.000 claims description 2
- 201000006328 Fanconi syndrome Diseases 0.000 claims description 2
- 206010018370 Glomerulonephritis membranoproliferative Diseases 0.000 claims description 2
- 208000032003 Glycogen storage disease due to glucose-6-phosphatase deficiency Diseases 0.000 claims description 2
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 claims description 2
- 208000004451 Membranoproliferative Glomerulonephritis Diseases 0.000 claims description 2
- 206010028629 Myoglobinuria Diseases 0.000 claims description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 claims description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 claims description 2
- 201000004541 glycogen storage disease I Diseases 0.000 claims description 2
- 201000001505 hemoglobinuria Diseases 0.000 claims description 2
- 208000003215 hereditary nephritis Diseases 0.000 claims description 2
- 230000001631 hypertensive effect Effects 0.000 claims description 2
- 201000006334 interstitial nephritis Diseases 0.000 claims description 2
- 201000009925 nephrosclerosis Diseases 0.000 claims description 2
- 230000002746 orthostatic effect Effects 0.000 claims description 2
- 230000001144 postural effect Effects 0.000 claims description 2
- 201000011461 pre-eclampsia Diseases 0.000 claims description 2
- 201000000306 sarcoidosis Diseases 0.000 claims description 2
- 210000003292 kidney cell Anatomy 0.000 claims 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims 3
- 238000012258 culturing Methods 0.000 claims 2
- 238000011282 treatment Methods 0.000 abstract description 26
- 108090000623 proteins and genes Proteins 0.000 description 117
- 102000004169 proteins and genes Human genes 0.000 description 80
- 150000001875 compounds Chemical class 0.000 description 79
- 235000018102 proteins Nutrition 0.000 description 71
- 241000699670 Mus sp. Species 0.000 description 53
- 239000002158 endotoxin Substances 0.000 description 42
- 229920006008 lipopolysaccharide Polymers 0.000 description 42
- 230000001086 cytosolic effect Effects 0.000 description 38
- -1 nucleoside phosphates Chemical class 0.000 description 33
- 102000007469 Actins Human genes 0.000 description 32
- 108010085238 Actins Proteins 0.000 description 32
- 239000000523 sample Substances 0.000 description 32
- 210000002966 serum Anatomy 0.000 description 32
- 201000008383 nephritis Diseases 0.000 description 30
- 108020004999 messenger RNA Proteins 0.000 description 27
- 238000003556 assay Methods 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 24
- 210000004899 c-terminal region Anatomy 0.000 description 24
- 230000001434 glomerular Effects 0.000 description 24
- 241000282414 Homo sapiens Species 0.000 description 23
- 238000012360 testing method Methods 0.000 description 23
- 238000009739 binding Methods 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- 241000699666 Mus <mouse, genus> Species 0.000 description 21
- 230000027455 binding Effects 0.000 description 21
- 210000004292 cytoskeleton Anatomy 0.000 description 21
- 241001465754 Metazoa Species 0.000 description 20
- 102000000395 SH3 domains Human genes 0.000 description 20
- 108050008861 SH3 domains Proteins 0.000 description 20
- 235000001014 amino acid Nutrition 0.000 description 20
- 230000002255 enzymatic effect Effects 0.000 description 20
- 210000004940 nucleus Anatomy 0.000 description 19
- 230000001225 therapeutic effect Effects 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 230000001404 mediated effect Effects 0.000 description 16
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 15
- 230000006907 apoptotic process Effects 0.000 description 15
- 229940088598 enzyme Drugs 0.000 description 15
- 230000000692 anti-sense effect Effects 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 230000000750 progressive effect Effects 0.000 description 14
- 102100023195 Nephrin Human genes 0.000 description 13
- 230000000295 complement effect Effects 0.000 description 13
- 230000005750 disease progression Effects 0.000 description 13
- 210000000585 glomerular basement membrane Anatomy 0.000 description 13
- 108010027531 nephrin Proteins 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 230000037361 pathway Effects 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 229940124597 therapeutic agent Drugs 0.000 description 12
- 108090000994 Catalytic RNA Proteins 0.000 description 11
- 102000053642 Catalytic RNA Human genes 0.000 description 11
- 230000003834 intracellular effect Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 108091092562 ribozyme Proteins 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 230000014616 translation Effects 0.000 description 11
- 102100027211 Albumin Human genes 0.000 description 10
- VYLJAYXZTOTZRR-BTPDVQIOSA-N CC(C)(O)[C@H]1CC[C@@]2(C)[C@H]1CC[C@]1(C)[C@@H]2CC[C@@H]2[C@@]3(C)CCCC(C)(C)[C@@H]3[C@@H](O)[C@H](O)[C@@]12C Chemical compound CC(C)(O)[C@H]1CC[C@@]2(C)[C@H]1CC[C@]1(C)[C@@H]2CC[C@@H]2[C@@]3(C)CCCC(C)(C)[C@@H]3[C@@H](O)[C@H](O)[C@@]12C VYLJAYXZTOTZRR-BTPDVQIOSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- VYLJAYXZTOTZRR-UHFFFAOYSA-N hopane-6alpha,7beta,22-triol Natural products C12CCC3C4(C)CCCC(C)(C)C4C(O)C(O)C3(C)C1(C)CCC1C2(C)CCC1C(C)(O)C VYLJAYXZTOTZRR-UHFFFAOYSA-N 0.000 description 10
- 238000003119 immunoblot Methods 0.000 description 10
- 238000003125 immunofluorescent labeling Methods 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 238000011813 knockout mouse model Methods 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 208000014674 injury Diseases 0.000 description 9
- 230000002132 lysosomal effect Effects 0.000 description 9
- 230000001575 pathological effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- 238000010186 staining Methods 0.000 description 9
- 108010088751 Albumins Proteins 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 8
- 210000000172 cytosol Anatomy 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 210000004379 membrane Anatomy 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 208000033679 diabetic kidney disease Diseases 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 210000003712 lysosome Anatomy 0.000 description 7
- 230000001868 lysosomic effect Effects 0.000 description 7
- 230000008520 organization Effects 0.000 description 7
- 230000026731 phosphorylation Effects 0.000 description 7
- 238000006366 phosphorylation reaction Methods 0.000 description 7
- 229940002612 prodrug Drugs 0.000 description 7
- 239000000651 prodrug Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 230000002485 urinary effect Effects 0.000 description 7
- 210000002700 urine Anatomy 0.000 description 7
- 229940094918 Cathepsin L inhibitor Drugs 0.000 description 6
- 102000011068 Cdc42 Human genes 0.000 description 6
- 108050001278 Cdc42 Proteins 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 102000007327 Protamines Human genes 0.000 description 6
- 108010007568 Protamines Proteins 0.000 description 6
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 6
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 239000002246 antineoplastic agent Substances 0.000 description 6
- 238000001574 biopsy Methods 0.000 description 6
- 238000004113 cell culture Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000001476 gene delivery Methods 0.000 description 6
- 206010061989 glomerulosclerosis Diseases 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229950008679 protamine sulfate Drugs 0.000 description 6
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 238000012353 t test Methods 0.000 description 6
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 239000012472 biological sample Substances 0.000 description 5
- 238000010382 chemical cross-linking Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000011862 kidney biopsy Methods 0.000 description 5
- 230000002688 persistence Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 238000007634 remodeling Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 102000004899 14-3-3 Proteins Human genes 0.000 description 4
- 102000004506 Blood Proteins Human genes 0.000 description 4
- 108010017384 Blood Proteins Proteins 0.000 description 4
- 101100356682 Caenorhabditis elegans rho-1 gene Proteins 0.000 description 4
- 108090000712 Cathepsin B Proteins 0.000 description 4
- 102000004225 Cathepsin B Human genes 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 102000005593 Endopeptidases Human genes 0.000 description 4
- 108010059378 Endopeptidases Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 108010043958 Peptoids Proteins 0.000 description 4
- 101150111584 RHOA gene Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 102000004504 Urokinase Plasminogen Activator Receptors Human genes 0.000 description 4
- 108010042352 Urokinase Plasminogen Activator Receptors Proteins 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 229940049706 benzodiazepine Drugs 0.000 description 4
- 125000003310 benzodiazepinyl group Chemical class N1N=C(C=CC2=C1C=CC=C2)* 0.000 description 4
- 210000001736 capillary Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000004064 dysfunction Effects 0.000 description 4
- 230000012202 endocytosis Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 230000024924 glomerular filtration Effects 0.000 description 4
- 201000006370 kidney failure Diseases 0.000 description 4
- 239000006210 lotion Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000000816 peptidomimetic Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000007423 screening assay Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 3
- 102100026346 Brain-specific angiogenesis inhibitor 1-associated protein 2 Human genes 0.000 description 3
- 101710094962 Brain-specific angiogenesis inhibitor 1-associated protein 2 Proteins 0.000 description 3
- 102000015833 Cystatin Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 108700024394 Exon Proteins 0.000 description 3
- 206010018364 Glomerulonephritis Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 101100225689 Mus musculus Enah gene Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 102100036037 Podocin Human genes 0.000 description 3
- 101710162479 Podocin Proteins 0.000 description 3
- 208000001647 Renal Insufficiency Diseases 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 241000251131 Sphyrna Species 0.000 description 3
- 102000003623 TRPC6 Human genes 0.000 description 3
- 108050001421 Transient receptor potential channel, canonical 6 Proteins 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 239000003899 bactericide agent Substances 0.000 description 3
- CAILNONEKASNSH-UHFFFAOYSA-N benzyl n-[1-[(4-fluoro-3-oxo-1-phenylbutan-2-yl)amino]-1-oxo-3-phenylpropan-2-yl]carbamate Chemical compound C=1C=CC=CC=1CC(NC(=O)OCC=1C=CC=CC=1)C(=O)NC(C(=O)CF)CC1=CC=CC=C1 CAILNONEKASNSH-UHFFFAOYSA-N 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 210000005056 cell body Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 208000020832 chronic kidney disease Diseases 0.000 description 3
- 238000000749 co-immunoprecipitation Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 108050004038 cystatin Proteins 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 229940127089 cytotoxic agent Drugs 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 208000028208 end stage renal disease Diseases 0.000 description 3
- 201000000523 end stage renal failure Diseases 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 238000012188 high-throughput screening assay Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 210000003632 microfilament Anatomy 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229930014626 natural product Natural products 0.000 description 3
- 238000013188 needle biopsy Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 230000002797 proteolythic effect Effects 0.000 description 3
- 210000000512 proximal kidney tubule Anatomy 0.000 description 3
- 229950010131 puromycin Drugs 0.000 description 3
- 230000008521 reorganization Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 210000003518 stress fiber Anatomy 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102000010825 Actinin Human genes 0.000 description 2
- 108010063503 Actinin Proteins 0.000 description 2
- 102100032959 Alpha-actinin-4 Human genes 0.000 description 2
- 101710115256 Alpha-actinin-4 Proteins 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108010070745 CD2-associated protein Proteins 0.000 description 2
- 102000004631 Calcineurin Human genes 0.000 description 2
- 108010042955 Calcineurin Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000005927 Cysteine Proteases Human genes 0.000 description 2
- 108010005843 Cysteine Proteases Proteins 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000723543 Homo sapiens 14-3-3 protein theta Proteins 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- 208000005777 Lupus Nephritis Diseases 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 102000002151 Microfilament Proteins Human genes 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010026552 Proteome Proteins 0.000 description 2
- 101710184528 Scaffolding protein Proteins 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 102000035181 adaptor proteins Human genes 0.000 description 2
- 108091005764 adaptor proteins Proteins 0.000 description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000001597 anti-proteinuria Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- QVDJMLQSYRSZKC-UPVQGACJSA-N benzyl n-[(2s)-1-[[(2s)-1-(4-hydroxyphenyl)-3-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]carbamate Chemical compound C1=CC(O)=CC=C1C[C@@H](C=O)NC(=O)[C@@H](NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 QVDJMLQSYRSZKC-UPVQGACJSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 230000007515 enzymatic degradation Effects 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- 239000000865 liniment Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 210000003584 mesangial cell Anatomy 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000001617 migratory effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 2
- 210000000885 nephron Anatomy 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 208000035139 partial with pericentral spikes epilepsy Diseases 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000002831 pharmacologic agent Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 108010028069 procathepsin B Proteins 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- XGWSRLSPWIEMLQ-RQLZCWDZSA-N (2S)-1-[(2S)-3-methyl-1-oxo-2-[[oxo-[(2S,3S)-3-[oxo(propylamino)methyl]-2-oxiranyl]methyl]amino]pentyl]-2-pyrrolidinecarboxylic acid methyl ester Chemical compound CCCNC(=O)[C@H]1O[C@@H]1C(=O)N[C@@H](C(C)CC)C(=O)N1[C@H](C(=O)OC)CCC1 XGWSRLSPWIEMLQ-RQLZCWDZSA-N 0.000 description 1
- CADQNXRGRFJSQY-UOWFLXDJSA-N (2r,3r,4r)-2-fluoro-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@@H](O)[C@@](O)(F)C=O CADQNXRGRFJSQY-UOWFLXDJSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- NLEBIOOXCVAHBD-YHBSTRCHSA-N (2r,3r,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-dodecoxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](OCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 NLEBIOOXCVAHBD-YHBSTRCHSA-N 0.000 description 1
- RFNNDNGXWCBNGK-VLJOUNFMSA-N (2s)-1-[(2s,3s)-2-[[(2s,3s)-3-ethoxycarbonyloxirane-2-carbonyl]amino]-3-methylpentanoyl]pyrrolidine-2-carboxylic acid Chemical compound CCOC(=O)[C@H]1O[C@@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@H](C(O)=O)CCC1 RFNNDNGXWCBNGK-VLJOUNFMSA-N 0.000 description 1
- MRXDGVXSWIXTQL-HYHFHBMOSA-N (2s)-2-[[(1s)-1-(2-amino-1,4,5,6-tetrahydropyrimidin-6-yl)-2-[[(2s)-4-methyl-1-oxo-1-[[(2s)-1-oxo-3-phenylpropan-2-yl]amino]pentan-2-yl]amino]-2-oxoethyl]carbamoylamino]-3-phenylpropanoic acid Chemical compound C([C@H](NC(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C=O)C1NC(N)=NCC1)C(O)=O)C1=CC=CC=C1 MRXDGVXSWIXTQL-HYHFHBMOSA-N 0.000 description 1
- YUXKOWPNKJSTPQ-AXWWPMSFSA-N (2s,3r)-2-amino-3-hydroxybutanoic acid;(2s)-2-amino-3-hydroxypropanoic acid Chemical compound OC[C@H](N)C(O)=O.C[C@@H](O)[C@H](N)C(O)=O YUXKOWPNKJSTPQ-AXWWPMSFSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- VOTJUWBJENROFB-UHFFFAOYSA-N 1-[3-[[3-(2,5-dioxo-3-sulfopyrrolidin-1-yl)oxy-3-oxopropyl]disulfanyl]propanoyloxy]-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCSSCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VOTJUWBJENROFB-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- 108700020469 14-3-3 Proteins 0.000 description 1
- 101710112812 14-3-3 protein Proteins 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- GUQQBLRVXOUDTN-XOHPMCGNSA-N 3-[dimethyl-[3-[[(4r)-4-[(3r,5s,7r,8r,9s,10s,12s,13r,14s,17r)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]propyl]azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CC(O)CS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 GUQQBLRVXOUDTN-XOHPMCGNSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- STRAHSCTRLRZNU-UHFFFAOYSA-N 4-(9h-carbazol-3-ylamino)phenol Chemical compound C1=CC(O)=CC=C1NC1=CC=C(NC=2C3=CC=CC=2)C3=C1 STRAHSCTRLRZNU-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000004373 Actin-related protein 2 Human genes 0.000 description 1
- 108090000963 Actin-related protein 2 Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000011690 Adiponectin Human genes 0.000 description 1
- 108010076365 Adiponectin Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 206010002660 Anoxia Diseases 0.000 description 1
- 241000976983 Anoxia Species 0.000 description 1
- 108010087765 Antipain Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 101100107610 Arabidopsis thaliana ABCF4 gene Proteins 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 102000004657 Calcium-Calmodulin-Dependent Protein Kinase Type 2 Human genes 0.000 description 1
- 108010003721 Calcium-Calmodulin-Dependent Protein Kinase Type 2 Proteins 0.000 description 1
- 229940121926 Calpain inhibitor Drugs 0.000 description 1
- 102100035037 Calpastatin Human genes 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000003908 Cathepsin D Human genes 0.000 description 1
- 108090000258 Cathepsin D Proteins 0.000 description 1
- 206010063209 Chronic allograft nephropathy Diseases 0.000 description 1
- OLVPQBGMUGIKIW-UHFFFAOYSA-N Chymostatin Natural products C=1C=CC=CC=1CC(C=O)NC(=O)C(C(C)CC)NC(=O)C(C1NC(N)=NCC1)NC(=O)NC(C(O)=O)CC1=CC=CC=C1 OLVPQBGMUGIKIW-UHFFFAOYSA-N 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010060737 Congenital nephrotic syndrome Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000222716 Crithidia Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 201000001200 Crouzon syndrome-acanthosis nigricans syndrome Diseases 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 108010020195 FLAG peptide Proteins 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 108091006010 FLAG-tagged proteins Proteins 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091006052 GFP-tagged proteins Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101000761460 Homo sapiens Protein CASP Proteins 0.000 description 1
- 101000688582 Homo sapiens SH3 domain-containing kinase-binding protein 1 Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010048612 Hydrothorax Diseases 0.000 description 1
- 208000034767 Hypoproteinaemia Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 102000010631 Kininogens Human genes 0.000 description 1
- 108010077861 Kininogens Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 102000009565 Lysosomal-Associated Membrane Protein 2 Human genes 0.000 description 1
- 108010009491 Lysosomal-Associated Membrane Protein 2 Proteins 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 108090000143 Mouse Proteins Proteins 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- DEFBCZWQLILOJF-UHFFFAOYSA-N NSC 23766 Chemical compound CCN(CC)CCCC(C)NC1=NC(C)=CC(NC=2C=C3C(N)=CC(C)=NC3=CC=2)=N1 DEFBCZWQLILOJF-UHFFFAOYSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010065673 Nephritic syndrome Diseases 0.000 description 1
- 208000013901 Nephropathies and tubular disease Diseases 0.000 description 1
- 102100023031 Neural Wiskott-Aldrich syndrome protein Human genes 0.000 description 1
- 108010009519 Neuronal Wiskott-Aldrich Syndrome Protein Proteins 0.000 description 1
- 102000005650 Notch Receptors Human genes 0.000 description 1
- 108010070047 Notch Receptors Proteins 0.000 description 1
- 206010061876 Obstruction Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000015094 Paraproteins Human genes 0.000 description 1
- 108010064255 Paraproteins Proteins 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000233872 Pneumocystis carinii Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101710118538 Protease Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108091078243 Rho family Proteins 0.000 description 1
- 102000042463 Rho family Human genes 0.000 description 1
- 102100024244 SH3 domain-containing kinase-binding protein 1 Human genes 0.000 description 1
- 101100068078 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GCN4 gene Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 description 1
- 108091032917 Transfer-messenger RNA Proteins 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 208000026723 Urinary tract disease Diseases 0.000 description 1
- 102000018614 Uromodulin Human genes 0.000 description 1
- 108010027007 Uromodulin Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 108091000387 actin binding proteins Proteins 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 210000002867 adherens junction Anatomy 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229960002478 aldosterone Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000007953 anoxia Effects 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- SDNYTAYICBFYFH-TUFLPTIASA-N antipain Chemical compound NC(N)=NCCC[C@@H](C=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 SDNYTAYICBFYFH-TUFLPTIASA-N 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CAILNONEKASNSH-ZEQRLZLVSA-N benzyl n-[(2s)-1-[[(2s)-4-fluoro-3-oxo-1-phenylbutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]carbamate Chemical compound C([C@@H](C(=O)CF)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)C1=CC=CC=C1 CAILNONEKASNSH-ZEQRLZLVSA-N 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 108010088135 benzyloxycarbonyl-leucyl-glucyl-tyrosine fluoromethyl ketone Proteins 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229940046731 calcineurin inhibitors Drugs 0.000 description 1
- 108010079785 calpain inhibitors Proteins 0.000 description 1
- 108010044208 calpastatin Proteins 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 229960002152 chlorhexidine acetate Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- 108010086192 chymostatin Proteins 0.000 description 1
- 210000002806 clathrin-coated vesicle Anatomy 0.000 description 1
- 230000006395 clathrin-mediated endocytosis Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- JVHIPYJQMFNCEK-UHFFFAOYSA-N cytochalasin Natural products N1C(=O)C2(C(C=CC(C)CC(C)CC=C3)OC(C)=O)C3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 JVHIPYJQMFNCEK-UHFFFAOYSA-N 0.000 description 1
- ZMAODHOXRBLOQO-UHFFFAOYSA-N cytochalasin-A Natural products N1C(=O)C23OC(=O)C=CC(=O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 ZMAODHOXRBLOQO-UHFFFAOYSA-N 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 210000003520 dendritic spine Anatomy 0.000 description 1
- 238000010217 densitometric analysis Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- RJBIAAZJODIFHR-UHFFFAOYSA-N dihydroxy-imino-sulfanyl-$l^{5}-phosphane Chemical compound NP(O)(O)=S RJBIAAZJODIFHR-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000002616 endonucleolytic effect Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000003366 endpoint assay Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 230000009483 enzymatic pathway Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 201000004954 familial nephrotic syndrome Diseases 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000005086 glomerual capillary Anatomy 0.000 description 1
- 210000001707 glomerular endothelial cell Anatomy 0.000 description 1
- 231100000853 glomerular lesion Toxicity 0.000 description 1
- 210000001282 glomerular podocyte Anatomy 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002446 heavy isotope labeling Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 230000036732 histological change Effects 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 210000002570 interstitial cell Anatomy 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 210000000231 kidney cortex Anatomy 0.000 description 1
- 210000001039 kidney glomerulus Anatomy 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002080 lysosomotropic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- YUMYYTORLYHUFW-MSKIIMLESA-N n-[(2s)-1-[[(e,3s)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]amino]-4-methyl-1-oxopentan-2-yl]morpholine-4-carboxamide Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H](CCC=1C=CC=CC=1)\C=C\S(=O)(=O)C=1C=CC=CC=1)C(=O)N1CCOCC1 YUMYYTORLYHUFW-MSKIIMLESA-N 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- YFCUZWYIPBUQBD-ZOWNYOTGSA-N n-[(3s)-7-amino-1-chloro-2-oxoheptan-3-yl]-4-methylbenzenesulfonamide;hydron;chloride Chemical compound Cl.CC1=CC=C(S(=O)(=O)N[C@@H](CCCCN)C(=O)CCl)C=C1 YFCUZWYIPBUQBD-ZOWNYOTGSA-N 0.000 description 1
- UMWKZHPREXJQGR-XOSAIJSUSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]decanamide Chemical compound CCCCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO UMWKZHPREXJQGR-XOSAIJSUSA-N 0.000 description 1
- SBWGZAXBCCNRTM-CTHBEMJXSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]octanamide Chemical compound CCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO SBWGZAXBCCNRTM-CTHBEMJXSA-N 0.000 description 1
- 210000004898 n-terminal fragment Anatomy 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 238000002439 negative-stain electron microscopy Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000003668 pericyte Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108010004099 phenylalanyl-glycyl-NHO-Bz Proteins 0.000 description 1
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 102000004401 podocalyxin Human genes 0.000 description 1
- 108090000917 podocalyxin Proteins 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000291 postprandial effect Effects 0.000 description 1
- 108010090651 preprocathepsin L Proteins 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 230000002046 pro-migratory effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 150000003147 proline derivatives Chemical class 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- MCSINKKTEDDPNK-UHFFFAOYSA-N propyl propionate Chemical compound CCCOC(=O)CC MCSINKKTEDDPNK-UHFFFAOYSA-N 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 239000011251 protective drug Substances 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 230000004063 proteosomal degradation Effects 0.000 description 1
- 210000001243 pseudopodia Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 210000004915 pus Anatomy 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000013878 renal filtration Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 201000004409 schistosomiasis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 230000010024 tubular injury Effects 0.000 description 1
- 208000037978 tubular injury Diseases 0.000 description 1
- 230000010245 tubular reabsorption Effects 0.000 description 1
- 238000013042 tunel staining Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000036325 urinary excretion Effects 0.000 description 1
- 108010064245 urinary gonadotropin fragment Proteins 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/4873—Cysteine endopeptidases (3.4.22), e.g. stem bromelain, papain, ficin, cathepsin H
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/23—Aspartic endopeptidases (3.4.23)
- C12Y304/23005—Cathepsin D (3.4.23.5)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
Definitions
- Embodiments of the invention comprise compositions which modulate expression, function, activity of cathepsin L in podocytes.
- Compositions which inhibit degradation and/or increase expression or activity of cytoskeletal adaptor protein (CD2AP) are also provided.
- Cathepsins are a family of enzymes that are part of the papain superfamily of cysteine proteases and include Cathepsins B, H, L, N and S. Cathepsins function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue. However, elevated levels of these enzymes in the body can result in pathological conditions leading to disease.
- cathepsins have been implicated as causative agents in various disease states, including but not limited to, infections by Pneumocystis carinii, Trypsanoma cruzi, Trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like.
- Embodiments of the invention are directed to compositions for the treatment renal diseases or disorders, such as for example, proteinuria.
- Figure IA is a graph showing cathepsin L (CatL) activity in soluble fractions from isolated glomeruli of normal and lipopolysaccharide (LPS) treated mice.
- Figure IB is an immunoblot of soluble and pelleted fractions of the glomeruli from wild type (WT) mice.
- Figure ID is a photograph showing the immunofluorescent labeling of WT and CatL KO mouse glomeruli against anti-N- CD2AP before and after LPS.
- Figure 2A is a scan of a photograph showing a silver stained gel of FLAG-CD2AP after cleavage with CatL at various pH.
- Figure 2B is a scan of a photograph showing an immunoblot of cleaved CD2AP fragments that are tagged with a N-terminal GFP.
- GFP-CD2AP is stable in the absence of CatL enzyme. Cleavage of CD2AP at pH 4.5 and 5.5 leads to complete digestion of the protein.
- CD2AP is cleaved into a stable 55 kD fragment ( ⁇ ) as detected with an anti-GFP antibody. The same fragment is detected with the CD2AP antiserum which is raised against the SH3 domains of CD2AP (anti-N-CD2AP).
- the CD2AP antiserum also detects a weak band corresponding to a 44 kD fragment (A, detected by the affinity of the antibody to the C-terminal SH3, anti-C-CD2AP).
- Figure 2C is a schematic representation showing the match of cleavage fragments with predicted CatL cleavage site QPLGS.
- Figure 2D is a blot showing that CatL cleaves CD2AP-FLAG yielding a 44 kD ( A) and a 32 kD (•) fragment.
- Figure 2E is a schematic representation showing that both fragments have corresponding predictions in the amino acid sequence of CD2AP (QPLGS and LSAAE).
- FIG 2F is a blot showing results from a cellular CatL cleavage assay: Wild type (WT) CatL (pre-pro CatL and short form) cleaves CD2AP in HEK293 cells. This cleavage can be prevented by the incubation of the cells with a specific CatL inhibitor. Short CatL (CatL Ml) is sufficient to cleave CD2AP yielding a 32 kD fragment (•). This cleavage is abrogated by a specific CatL inhibitor.
- Figure 2G is a blot showing that deletion of the CatL cleavage site LSAAE protects CD2AP from limited proteolysis into the 32 kD fragment (•).
- Figure 3A is a photograph of a native gel (left) and CD2AP multimerization after chemical crosslinking (right).
- Figure 3B is a projection histogram displaying the number of particles at particular ' ⁇ ', ' ⁇ ' Euler angles for the final round (top, left).
- Each circle represents a specific projection, and the grayscale is proportional to the number of particles belonging to that class.
- the scale ranges between 0 and 100 and has been truncated at the latter range.
- there are particles assigned to each class there is a clear preferential orientation where the molecule favors placing the face with the three SH3 domains in proximity to the carbon substrate. Examples of particles from the final round of refinement (top, right).
- Raw particle images are displayed on the left, class averages in the middle, and back projections form the final 3D map on the right.
- the angular rotation of the map projection, in degrees, is indicated to the left of the particles.
- the entire data set was divided randomly into two equal groups.
- the raw particles in each class were independently aligned with one another to generate new class averages, from which two new maps were generated.
- the figure plots the correlation between the two maps as resolution shells in Fourier space.
- a correlation coefficient of 0.5 has been used to establish the resolution of the refinement (dotted lines).
- Figures 3C-3E show surface-shaded, three-dimensional density map of recombinant CD2AP at ⁇ 21 A resolution oriented in various directions.
- Figure 3C shows a view of the map with the four-fold axis oriented in the y direction.
- the approximate locations of the CatL cleavage sites at positions 247 (between the second and third SH3 domains) and 352 (following the third SH3 domain) are indicated with asterisks.
- Figure 3D shows the same view as in Figure 3E but rotated about the four-fold axis.
- Figure 3E shows a view of the map with upper portion of the molecule rotated toward the viewer. Assignment of the coiled-coil domain is indicated with the legend C-C.
- Figures 3F-3H show segmentation and domain assignments in the CD2AP map.
- Figure 3F shows the structures of CD2AP and homologous domains positioned within the CD2AP map.
- the protein structures are 1) the N-terminal SH3 domain from CD2AP in yellow, 2) the second SH3 domain from CIN85 in blue, 3) the third SH3 domain from CD2AP in green, and 4) a tetrameric GCN4 mutant coiled-coil domain in red.
- Figure 3H shows the same fit as in Figure 3E in but with the upper portion of the molecule rotated toward the viewer.
- Figure 3F shows the segmentation of an individual subunit within the CD2AP map.
- the central core domains indicated with red (coiled- coil domain) and violet (proline-rich and nephrin binding domains), possess extensive contacts with their symmetry-related counterparts.
- Figures 31, 3J show the cathepsin L access to cleavage sites.
- the structure of human CatL has been modeled with its active site accessing the identified cleavage sites on CD2AP. Two molecules of CatL are shown, one at each site.
- Figures 31 and 3 J show ribbon and surface representations of CatL, respectively. CatL has unimpeded access to each of the sites (cathepsin L at positions 247 and 352 are depicted with green and cyan colors, respectively).
- Figure 3K is a representation of the C-terminal CD2AP core after CatL limited proteolysis (colored piece shows the CD2AP monomer after proteolysis). Segments corresponding to the arm domains have been computationally subtracted from the map.
- Figure 4A shows the co-immunoprecipitation of the slit diaphragm protein nephrin, synaptopodin as well as dendrin from HEK 293 cells that were transfected with N-terminal, C- terminal and full length CD2AP.
- Figure 4B shows the results from the double immunofluorescent labeling for dendrin and podocyte cell marker WT-I in wild type (WT) and CD2AP KO (5 weeks) mice.
- Figure 4C shows the dendrin staining in WT, CD2AP KO and CatL knockdown podocytes.
- Figure 4D shows the immunofluorescent staining of WT and CatL KO mouse glomeruli with dendrin (green) and 4',6-diamidino-2-phenylindole (DAPI, blue) before and 14 days after serum nephritis (SN) injection.
- Arrows indicate the podocytes with nuclear dendrin.
- Figure 4E shows the immunofluorescent staining of WT mouse glomeruli with CatL and synaptopodin before and 14 days after serum nephritis (SN) injection.
- Figure 4F specificities of N- and C-terminal CD2AP antibodies detected by the immunoblots of HEK293 cells which were transfected with N- terminal, C-terminal and full length CD2AP (CON: untransfected) (top panel).
- FIG. 5A shows the histology of glomeruli in WT and CatL KO mice 14 days after SN injection.
- Hematoxylin and Eosin (H&E) stainings (original magnification x400) demonstrate loss of podocytes (arrows) within WT mouse glomeruli 14 days after inducing SN compared with the control whereas glomeruli from CatL KO mice do not show significant differences.
- Figure 5B The methenamine silver stain (original magnification x400) shows the loss of capillary structure, crescent formation and matrix accumulation in WT glomerulus. The podocytes that cover these segments present hypertrophy and hyperplasia.
- HC hypercellularity
- FGS focal segmental glomerulosclerosis
- CRES crescent cell formation
- PodAP podocyte apoptosis
- Figure 6A shows immunofluorescent staining using N- and C-terminal CD2AP antibodies in kidney biopsies from patients with Minimal Change Disease and Focal Segmental Glomerulosclerosis. N-terminal CD2AP is reduced only in progressive disease (FSGS).
- Figure 6B shows the expression of FLAG-CD2AP and FLAG-CD2AP with mutated cathepsin L cleavage site (FLAG-CD2AP-CatMut) in kidney of serum nephritis wild type mice. Anti-FLAG immunoprecipitation showed a prominent band at 160 kD consistent with a CD2AP dimer. Incubation with N-terminal CD2AP antisera also showed monomeric CD2AP.
- Figure 6D Phenotypic analysis of wild type mice during serum nephritis that express full wild type CD2AP or the cathepsin L resistant form, CD2AP-CatMut.
- H&E staining shows less glomerular damage in mice expressing the cathepsin L cleavage mutant of CD2AP. Silver stain shows prominent crescents in glomeruli where CD2AP is degraded but not in glomeruli that express CD2AP-CatMut.
- Figure 7A shows immunofluorescent staining for CatL and CD2AP in glomeruli of puromycin (PAN) treated rats (CON: untreated; d: day).
- Figure 7B immunofluorescent labeling of mouse glomeruli after gene delivery of HA-tagged cathepsin L that encodes for pre-pro cathepsin L (CatL M55-110, long) or cytosolic cathepsin L (CatL Ml, short). Gene delivery of cytosolic and lysosomal forms of cathepsin L were performed into wild type mice.
- FIG. 7C shows an immunoblot for CD2AP in cultured podocytes that were exposed to LPS or PAN.
- FIG. 8 shows the phosphorus NMR spectra for untreated and LPS-treated wild type (WT) podocytes.
- Podocytes were cultured and treated with LPS.
- Eighty to hundred million cells were harvested and resuspended in 2-2.5 mL of phosphate-free RPMI medium (MP Biomedicals) with glutamine (Gibco) prior to assay.
- Phosphorous NMR spectra were acquired on a 14 Tesla Bruker Avance NMR spectrometer (Bruker Biospin) with a 10 mm broadband observe (BBO) NMR probe.
- Cell suspensions were placed in 10 mm (od) glass NMR tubes (Wilmad). Samples were maintained at a temperature of 37°C.
- Spectra were acquired with a recycle delay time of 2 sec and consisted of 1024 averages. Spectra were analyzed using the iNMR software package (Mestrelab Research). Intracellular pH (pHi) was calculated from the chemical shift difference (d) between the intracellular inorganic phosphate peak (Pi) and the primary phosphate of nucleoside phosphates (Pa) using equation 1. HftS) ⁇ * 1
- Figure 9 shows the assessment of clathrin-mediated endocytosis in HeLa cells after expression of N-terminal, C-terminal and full length CD2AP.
- Figure 1OB shows the expression levels of synaptopodin and dynamin in WT mice after serum nephritis (SN) injection.
- Figure 1 1 shows trichrome stain showing crescent formation (asterisk) in a WT glomerulus after serum nephritis (original magnification x400). Occasional podocyte bridging was observed in CatL KO mice with serum nephritis, 14 days (arrow).
- FIG 12 is a schematic representation of CatL mRNA containing several AUG codons and resulting proteins. After translation from the first AUG, CatL is processed to yield a 30-kDa lysosomal form, called single-chain CatL (black arrows). However, alternative translation initiation from a downstream AUG produces a CatL isoform devoid of the lysosomal targeting sequence (short CatL), which localizes to the cytoplasm (red arrow).
- FIGS 13A-13B CatL is important for the development of proteinuria in the LPS model.
- WT mice intraperitoneal injection of LPS leads to a T- and B-cell independent transient form of proteinuria through the activation of podocyte TLR-4 and induction of B7-1.
- Figure 13A Immunocytochemistry of mouse glomeruli using monoclonal anti-CatL antibody.
- WT LPS upregulate the expression of cytosolic CatL as compared to control mice receiving PBS (WT CON).
- LPS was also injected into CatL "7" mice (CatL " ' " LPS). Original magnification, *400.
- Figure 13B Electron micrographs of Fps showing effacement in LPS treated WT but not in CatL "7" mice.
- Figures 14A-14C CatL is mRNA and protein expression are elevated in human proteinuric kidney diseases.
- Figure 14B CatL labeling of normal human kidney.
- Figure 14C CatL labeling of a kidney biopsy from a patient with diabetic nephropathy, mildly reduced renal function, and nephrotic range proteinuria.
- FIG. 15A-15D CatL is induced in podocytes during FP effacement.
- Figure 15A In control mice, CatL expression is located mainly in lysosomes of primary podocyte processes (dashed arrow). Only few gold labeling is found in FP (solid arrows).
- Figure 15B LPS treatment induced FP effacement and induction of CatL in lysosomes of primary processes (dashed arrow) and in effaced podocyte FP (solid arrows); P: podocyte; GBM: glomerular basement membrane; END: endothelial cells; ERY: erythrocyte.
- FIGS 15C, 15D Schematic illustration of FP effacement and proteinuria as a podocyte enzymatic disease.
- synaptopodin and dynamin are involved in regulating podocyte F-actin.
- a small portion of CatL is in the cytosol and participates in a physiological turnover of synaptopodin and dynamin.
- the induction of cytosolic CatL causes proteolysis of synaptopodin and dynamin, thereby disrupting actin organization, causing podocyte FP effacement and proteinuria.
- Embodiments of the present invention relates to discoveries involving agents which modulate and/or inhibit the enzymatic activity of cathepsin L.
- Other agents include those which inhibit the degradation of CD2AP, and/or inhibit the rate of degradation of CD2AP.
- Embodiments include compositions which regulate the pH of podocytes, regulate cathepsin L activity, methods of use thereof and methods of delivery thereof.
- Embodiments further relate to the regulation of pathways by cathepsin L, by modulation of molecules on which cathepsin L interacts with directly or indirectly, e.g. CD2AP. Accordingly, the methods of the present invention can be used to treat disorders characterized by proteinuria.
- genes, gene names, and gene products disclosed herein are intended to correspond to homologs from any species for which the compositions and methods disclosed herein are applicable.
- the terms include, but are not limited to genes and gene products from humans and mice. It is understood that when a gene or gene product from a particular species is disclosed, this disclosure is intended to be exemplary only, and is not to be interpreted as a limitation unless the context in which it appears clearly indicates.
- the genes disclosed herein which in some embodiments relate to mammalian nucleic acid and amino acid sequences are intended to encompass homologous and/or orthologous genes and gene products from other animals including, but not limited to other mammals, fish, amphibians, reptiles, and birds. In preferred embodiments, the genes or nucleic acid sequences are human.
- the term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term "about” meaning within an acceptable error range for the particular value should be assumed.
- safe and effective amount refers to the quantity of a component which is sufficient to yield a desired therapeutic response without undue adverse side effects (such as toxicity, irritation, or allergic response) commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
- therapeutically effective amount is meant an amount of a compound of the present invention effective to yield the desired therapeutic response.
- the specific safe and effective amount or therapeutically effective amount will vary with such factors as the particular condition being treated, the physical condition of the patient, the type of mammal or animal being treated, the duration of the treatment, the nature of concurrent therapy (if any), and the specific formulations employed and the structure of the compounds or its derivatives.
- proteinuria refers to any amount of protein passing through a podocyte that has suffered podocyte damage or through a podocyte mediated barrier that normally would not allow for any protein passage.
- proteinuria refers to the presence of excessive amounts of serum protein in the urine. Proteinuria is a characteristic symptom of either renal (kidney), urinary, pancreatic distress, nephrotic syndromes (i.e., proteinuria larger than 3.5 grams per day), eclampsia, toxic lesions of kidneys, and it is frequently a symptom of diabetes mellitus. With severe proteinuria general hypoproteinemia can develop and it results in diminished oncotic pressure (ascites, edema, hydrothorax).
- the phrase "specifically binds to”, “is specific for” or “specifically immunoreactive with”, when referring to an antibody refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologies.
- the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample.
- Specific binding to a protein under such conditions may require an antibody that is selected for its specificity for a particular protein.
- aptamer or "selected nucleic acid binding species” shall include non-modified or chemically modified RNA or DNA.
- the method of selection may be by, but is not limited to, affinity chromatography and the method of amplification by reverse transcription (RT) or polymerase chain reaction (PCR).
- modulation means either an increase (stimulation) or a decrease (inhibition) in the expression, in vivo amounts of a gene. This includes any amounts in vivo, functions and the like as compared to normal controls. The term includes, for example, increased, enhanced, increased, agonized, promoted, decreased, reduced, suppressed blocked, or antagonized. Modulation can increase activity or amounts more than 1-fold, 2-fold, 3-fold, 5- fold, 10-fold, 100-fold, etc., over baseline values. Modulation can also decrease its activity or amounts below baseline values.
- variants when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to a wild type gene. This definition may also include, for example, "allelic,” “splice,” “species,” or “polymorphic” variants.
- a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing.
- the corresponding polypeptide may possess additional functional domains or an absence of domains.
- Species variants are polynucleotide sequences that vary from one species to another. Of particular utility in the invention are variants of wild type gene products.
- Variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes that give rise to variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
- polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
- Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) or single base mutations in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population with a propensity for a disease state, that is susceptibility versus resistance.
- Derivative polynucleotides include nucleic acids subjected to chemical modification, for example, replacement of hydrogen by an alkyl, acyl, or amino group.
- Derivatives e.g., derivative oligonucleotides, may comprise non-naturally-occurring portions, such as altered sugar moieties or inter-sugar linkages. Exemplary among these are phosphorothioate and other sulfur containing species which are known in the art.
- Derivative nucleic acids may also contain labels, including radionucleotides, enzymes, fluorescent agents, chemiluminescent agents, chromogenic agents, substrates, cofactors, inhibitors, magnetic particles, and the like.
- a “derivative" polypeptide or peptide is one that is modified, for example, by glycosylation, pegylation, phosphorylation, sulfation, reduction/alkylation, acylation, chemical coupling, or mild formalin treatment.
- a derivative may also be modified to contain a detectable label, either directly or indirectly, including, but not limited to, a radioisotope, fluorescent, and enzyme label.
- fragment or segment as applied to a nucleic acid sequence, gene or polypeptide, will ordinarily be at least about 5 contiguous nucleic acid bases (for nucleic acid sequence or gene) or amino acids (for polypeptides), typically at least about 10 contiguous nucleic acid bases or amino acids, more typically at least about 20 contiguous nucleic acid bases or amino acids, usually at least about 30 contiguous nucleic acid bases or amino acids, preferably at least about 40 contiguous nucleic acid bases or amino acids, more preferably at least about 50 contiguous nucleic acid bases or amino acids, and even more preferably at least about 60 to 80 or more contiguous nucleic acid bases or amino acids in length.
- “Overlapping fragments” as used herein, refer to contiguous nucleic acid or peptide fragments which begin at the amino terminal end of a nucleic acid or protein and end at the carboxy terminal end of the nucleic acid or protein. Each nucleic acid or peptide fragment has at least about one contiguous nucleic acid or amino acid position in common with the next nucleic acid or peptide fragment, more preferably at least about three contiguous nucleic acid bases or amino acid positions in common, most preferably at least about ten contiguous nucleic acid bases amino acid positions in common.
- biomolecule or “markers” are used interchangeably herein and refer to DNA, RNA (including mRNA, rRNA, tRNA and tmRNA), nucleotides, nucleosides, analogs, polynucleotides, peptides and any combinations thereof.
- “Expression/amount" of a gene, biomolecule, or biomarker in a first sample is at a level "greater than” the level in a second sample if the expression level/amount of the gene or biomarker in the first sample is at least about 1 time, 1.2 times, 1.5 times, 1.75 times, 2 times, 3 times , 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 20 times, 30 times, the expression level/amount of the gene or biomarker in the second sample or a normal sample.
- Expression levels/amounts can be determined based on any suitable criterion known in the art, including but not limited to mRNA, cDNA, proteins, protein fragments and/or gene copy.
- Expression levels/amounts can be determined qualitatively and/or quantitatively.
- the terms “detecting”, “detect”, “identifying”, “quantifying” includes assaying, quantitating, imaging or otherwise establishing the presence or absence of the transcriptomic biomarker, or combinations of biomolecules comprising the biomarker, and the like, or assaying for, imaging, ascertaining, establishing, or otherwise determining the prognosis and/or diagnosis of renal diseases, disorders or conditions.
- "Patient” or “subject” refers to mammals and includes human and veterinary subjects.
- a patient in need thereof refers to any patient that is affected with a disorder characterized by proteinuria.
- a patient in need thereof refers to any patient that may have, or is at risk of having a disorder characterized by proteinuria.
- test substance or “candidate therapeutic agent” or “agent” are used interchangeably herein, and the terms are meant to encompass any molecule, chemical entity, composition, drug, therapeutic agent, chemotherapeutic agent, or biological agent capable of preventing, ameliorating, or treating a disease or other medical condition.
- test substance or agent includes small molecule compounds, antisense reagents, siRNA reagents, antibodies, enzymes, peptides organic or inorganic molecules, natural or synthetic compounds and the like.
- a test substance or agent can be assayed in accordance with the methods of the invention at any stage during clinical trials, during pre-trial testing, or following FDA-approval.
- diagnostic means identifying the presence or nature of a pathologic condition. Diagnostic methods differ in their sensitivity and specificity.
- the "sensitivity” of a diagnostic assay is the percentage of diseased individuals who test positive (percent of "true positives”). Diseased individuals not detected by the assay are “false negatives.” Subjects who are not diseased and who test negative in the assay are termed “true negatives.”
- the "specificity” of a diagnostic assay is 1 minus the false positive rate, where the "false positive” rate is defined as the proportion of those without the disease who test positive. While a particular diagnostic method may not provide a definitive diagnosis of a condition, it suffices if the method provides a positive indication that aids in diagnosis.
- Diagnosing refers to classifying a disease or a symptom, determining a severity of the disease, monitoring disease progression, forecasting an outcome of a disease and/or prospects of recovery.
- the term “detecting” may also optionally encompass any of the above. Diagnosis of a disease according to the present invention can be effected by determining a level of a polynucleotide or a polypeptide of the present invention in a biological sample obtained from the subject, wherein the level determined can be correlated with predisposition to, or presence or absence of the disease.
- a "biological sample obtained from the subject” may also optionally comprise a sample that has not been physically removed from the subject, as described in greater detail below.
- a therapeutically effective amount of a compound means an amount sufficient to produce a therapeutically (e.g., clinically) desirable result.
- the compositions can be administered one from one or more times per day to one or more times per week; including once every other day.
- the skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present.
- treatment of a subject with a therapeutically effective amount of the compounds of the invention can include a single treatment or a series of treatments.
- sample refers to a biological sample, such as, for example; one or more cells, tissues, or fluids (including, without limitation, plasma, serum, whole blood, cerebrospinal fluid, lymph, tears, urine, saliva, milk, pus, and tissue exudates and secretions) isolated from an individual or from cell culture constituents, as well as samples obtained from, for example, a laboratory procedure.
- a biological sample such as, for example; one or more cells, tissues, or fluids (including, without limitation, plasma, serum, whole blood, cerebrospinal fluid, lymph, tears, urine, saliva, milk, pus, and tissue exudates and secretions) isolated from an individual or from cell culture constituents, as well as samples obtained from, for example, a laboratory procedure.
- a biological sample may comprise chromosomes isolated from cells (e.g., a spread of metaphase chromosomes), organelles or membranes isolated from cells, whole cells or tissues, nucleic acid such as genomic DNA in solution or bound to a solid support such as for Southern analysis, RNA in solution or bound to a solid support such as for Northern analysis, cDNA in solution or bound to a solid support, oligonucleotides in solution or bound to a solid support, polypeptides or peptides in solution or bound to a solid support, a tissue, a tissue print and the like.
- nucleic acid such as genomic DNA in solution or bound to a solid support such as for Southern analysis, RNA in solution or bound to a solid support such as for Northern analysis, cDNA in solution or bound to a solid support, oligonucleotides in solution or bound to a solid support, polypeptides or peptides in solution or bound to a solid support, a tissue, a tissue print and the like.
- tissue or fluid collection methods can be utilized to collect the biological sample from the subject in order to determine the level of DNA, RNA and/or polypeptide of the variant of interest in the subject. Examples include, but are not limited to, fine needle biopsy, needle biopsy, core needle biopsy and surgical biopsy (e.g., brain biopsy), and lavage. Regardless of the procedure employed, once a biopsy/sample is obtained the level of the variant can be determined and a diagnosis can thus be made.
- Proteinuria can be primarily caused by alterations of structural proteins involved in the cellular mechanism of filtration.
- the pathophysiological causes of proteinuria can be divided in the following major groups: (1) genetically determined disturbances of the structures which form the "glomerular filtration unit" like the glomerular basement membrane, the podocytes, or the slit diaphragm, (2) inflammatory processes, either directly caused by autoimmune processes or indirectly induced by microbes, (3) damage of the glomeruli caused by agents, or (4) as the final result of progressive tubulointerstitial injury finally resulting in the loss of function of the entire nephron.
- the central metabolism of a cell can determine its short- and long-term structure and function.
- the metabolism i.e., the transportation of nutrients into the cells, the overall substrate utilization and production, synthesis and accumulation of intracellular metabolites, etc.
- Diabetes mellitus is a metabolic disease that also affects podocytes, key cells that regulate glomerular filtration.
- a pathological role for a cytoplasmic variant of cathepsin L enzyme as the biological instigator of kidney filter dysfunction (proteinuria) and progression of renal disease through cleavage of different types of critical podocyte target proteins.
- Podocytes are highly differentiated cells that reside in the kidney glomeruli. Their foot processes (FP) and interposed slit diaphragm (SD) form the final barrier to protein loss.
- Podocyte injury is typically associated with FP effacement and urinary protein loss.
- urinary protein excretion is less than 150 mg/day and consists mainly of filtered plasma proteins (60%) and tubular Tamm-Horsfall proteins (40%).
- the main plasma protein in the urine is albumin, constituting about 20% of daily protein excretion.
- the daily amount of urinary albumin is less than 20 mg (13.8 mg/min).
- Proteinuria usually reflects an increase in glomerular permeability for albumin and other plasma macromolecules.
- a 24-h urine collection containing more than 150 mg of protein is considered pathological.
- There are several basic types of proteinuria for example, glomerular, tubular, overflow, and exercise-induced. Glomerular proteinuria is the most common form (around 90%).
- Low molecular weight molecules such as ⁇ 2 -microglobulin, amino acids, and immunoglobulin light chains, have a molecular weight of about 25 kDa (albumin is 69 kDa). These smaller proteins are readily filtered across the glomerular filtration barrier and then fully reabsorbed by the proximal tubule. A variety of diseases that affect tubular and interstitial cell integrity impair the tubular reabsorption of these molecules. Some forms of glomerular diseases are also accompanied by tubular injury and tubular proteinuria.
- Pathological processes such as multiple myeloma with a production of paraproteins, can result in increased excretion of low molecular weight proteins into the urine, a process termed overflow proteinuria.
- proteinuria results from the amount of filtered proteins exceeding the reabsorptive capacity of the proximal tubule.
- Dynamic exercise can also result in increased urinary excretion of proteins, predominantly of plasma origin, during and following physical exercise.
- a number of terms have been used to describe this phenomenon — post-exercise proteinuria, athletic pseudonephritis, exercise proteinuria, or exercise-induced proteinuria. Maximal rates of proteinuria occur approximately 30 min after exercise, with a resolution toward resting levels within 24-48 h.
- proteinuria The magnitude of proteinuria varies from near normal to heavy (47 g/day), with the greatest levels up to 100 times that of rest observed after high-intensity exercise, such as a marathon. It is noteworthy that post-exercise proteinuria is transient in nature and not associated with any particular renal disease, raising the intriguing possibility that at least some forms of proteinuria (e.g., post-exercise, post-prandial, infection- associated) may reflect a normal, physiological response of the human body.
- proteinuria can result from enzymatic cleavage of essential regulators of podocyte actin dynamics by cytosolic cathepsin L (CatL).
- LPS or various other proximal signals induce the expression of B7-1 and CatL in podocytes, which cause proteinuria through the increased degradation of synaptopodin and dynamin.
- LPS or other proximal signals can also activate Cdc42 and Racl though uPAR:b3 integrin signaling, through the loss of synaptopodin-mediated inhibition of Cdc42 signaling or through Nef:Src-mediated activation of Racl .
- CsA and E64 safeguard against proteinuria by stabilizing synaptopodin and dynamin steady-state protein levels in podocytes, FP(4)-Mito by blocking Cdcd42:IRSp53:Mena signaling, cycloRGDfV by blocking uPAR:b3 integrin signaling, NSC23766 by blocking Racl and Epleronone by blocking aldosterone signaling.
- CD2AP is a scaffolding protein containing three N-terminal SH3 domains. In the kidney, it is strongly expressed in glomerular podocytes, cells that regulate renal filtration. Homozygous CD2AP mutation or haplo- insufficiency of the human CD2AP gene confer susceptibility to glomerular disease and mice lacking CD2AP develop progressive kidney failure.
- the structural organization of CD2AP at 21 A resolution reveals a tetrameric structure that exposes two cathepsin L cleavage sites.
- CD2AP is processed into a 32 kD C-terminal, structurally competent core protein that lacks SH3 domains and permits the release of the slit diaphragm protein dendrin, that in turn translocates to the podocyte nucleus to promote podocyte apoptosis.
- Enzymatic remodeling of CD2AP by cytosolic cathepsin L occurs in human and murine progressive kidney disease.
- Cathepsin L knockout mice with serum nephritis and wild type mice expressing cleaving resistant CD2AP are protected from nuclear dendrin and glomerular disease progression.
- the data herein show that the proteolytic regulation of CD2AP constitutes a critical factor for renal disease progression.
- a composition modulates expression and/or activity of cathepsin L.
- the agent can be any agent that modulates expression of cathepsin L or the activity of cathepsin L, such as for example, antisense oligonucleotides, antibodies, small molecules, and the like.
- an agent modulates the degradation of CD2AP.
- the agent can be an antibody, for example, which inhibits access of cathepsin and any other enzyme involved in the degradation of CD2AP to their specific cleavage sites.
- a composition may comprise both agents which inhibit cathepsin L expression and/or activity and an agent which inhibits CD2AP degradation.
- an agent comprises a mutant CD2AP molecule which is resistant to cathepsin L enzymatic degradation.
- the examples which follow identify cathepsin L cleavage sites present in CD2AP.
- amino acid sequences susceptible to cathepsin L activity comprise: ELRKE (SEQ ID NO: 1), ELAKA (SEQ ID NO: 2), LPGRF (SEQ ID NO: 3), AFVAR (SEQ ID NO: 4), LSAAE (SEQ ID NO: 5), ELGKE (SEQ ID NO: 6), QPLGS (SEQ ID NO: 7), KIRGI (SEQ ID NO: 8), APGSV (SEQ ID NO: 9), LIVGV (SEQ ID NO: 10), EIIRV (SEQ ID NO: 1 1), mutants, derivatives, variants or combinations thereof.
- a blocking agent specific for one or more of these sites inhibit degradation of CD2AP by inhibiting access of the cathepsin enzyme.
- a mutant CD2AP molecule comprises at least one nucleic acid or amino acid mutation in the enzyme cleavage sites.
- the agent modulates or inhibits cathepsin L activity by about 5% as compared to a normal control, preferably by about 10%, preferably by about 50%, preferably by about 80%, 90%, 100%. Modulation of the activity of cathepsin L and stabilizes potential cleavage targets of the enzyme, thus protecting podocyte function and treating proteinuria.
- the agent modulates or inhibits the degradation and/or rate of degradation of CD2AP molecules as compared to normal controls by about 5%, preferably by about 50%, preferably by about 80%, 90%, 100%.
- agents which modulate cathepsin-L activity and/or expression comprise oligonucleotides, polynucleotides, peptides, polypeptides, antibodies, aptamers, small molecules, organic molecules, inorganic molecules or combinations thereof.
- the composition comprises one or more agents which modulate CD2AP degradation or rate of degradation and/or cathepsin L activity, function or expression.
- one agent directly inhibits cathepsin L activity.
- an agent directly inhibits CD2AP degradation and/or rate of degradation and a second agent which directly targets cathepsin L, by, for example, binding to it, such as an antibody, an antisense oligonucleotide which inhibits cathepsin L expression, an agent which targets another molecule in the cathepsin L synthesis pathway, or molecules in pathways which are targeted by cathepsin L, such as for example, dynamin, CD2AP, synaptopodin, etc.
- a composition comprises two agents whereby both modulate CD2AP degradation.
- a method of treating a disease or disorder associated with pathological cathepsin L expression and/or activity comprises administering to a patient in need thereof, an effective amount of an agent which modulates cathepsin L activity, function and/or expression in vivo for treating the disorders.
- an agent which modulates cathepsin L activity, function and/or expression for treating the disorders.
- a podocyte disease or disorder such as proteinuria.
- a method of treating a disease or disorder associated with pathological CD2AP degradation comprises administering to a patient in need thereof, an effective amount of an agent which modulates CD2AP degradation in vivo for treating the disorders.
- a method of treating a disease or disorder associated with pathological CD2AP degradation comprises administering to a patient in need thereof, an effective amount of an agent which modulates CD2AP expression, activity and/or function in vivo for treating the disorders.
- the agent can be a vector expression CD2AP molecules, an agent which targets CD2AP nucleic acids which increase in vivo production of CD2AP, a vector expressing a mutant form of CD2AP which is resistant to cleavage by cathepsin and other enzymes and the like.
- a combination of agents which modulate CD2AP expression, function and/or activity and/or modulate CD2AP degradation are administered to a patient, for example, in the treatment of a disease or disorder characterized by proteinuria and/or podocyte diseases or disorders.
- a disease or disorder characterized by proteinuria comprising: glomerular diseases, membranous glomerulonephritis, focal segmental glomerulonephritis, minimal change disease, nephrotic syndromes, pre-eclampsia, eclampsia, kidney lesions, collagen vascular diseases, stress, strenuous exercise, benign orthostatic (postural) proteinuria, focal segmental glomerulosclerosis (FSGS), IgA nephropathy, IgM nephropathy, membranoproliferative glomerulonephritis, membranous nephropathy, sarcoidosis, Alport's syndrome, diabetes mellitus, kidney damage due to drugs, Fabry's disease, infections, aminoaciduria, Fanconi syndrome, hypertensive nephrosclerosis, interstitial nephritis, Sickle cell disease, hemoglobinuria, multiple myeloma, my
- modulation of CD2AP expression, function, activity, or degradation is modulated by an agent in the treatment of podocyte-related disorders or diseases.
- podocyte disease(s) andpodocyte disorder(s) are interchangeable and mean any disease, disorder, syndrome, anomaly, pathology, or abnormal condition of the podocytes or of the structure or function of their constituent parts.
- a method of treating a podocyte disease or disorder associated with pathological cathepsin L expression and/or activity comprises administering to a patient in need thereof, an effective amount of an agent which modulates cathepsin L activity, function and/or expression in vivo for treating the podocyte diseases or disorders.
- Such disorders or diseases include but are not limited to loss of podocytes (podocytopenia), podocyte mutation, an increase in foot process width, or a decrease in slit diaphragm length.
- the podocyte-related disease or disorder can be effacement or a diminution of podocyte density.
- the diminution of podocyte density could be due to a decrease in a podocyte number, for example, due to apoptosis, detachment, lack of proliferation, DNA damage or hypertrophy.
- the podocyte-related disease or disorder can be due to a podocyte injury.
- the podocyte injury can be due to mechanical stress such as high blood pressure, hypertension, or ischemia, lack of oxygen supply, a toxic substance, an endocrinologic disorder, an infection, a contrast agent, a mechanical trauma, a cytotoxic agent (cis-platinum, adriamycin, puromycin), calcineurin inhibitors, an inflammation (e.g., due to an infection, a trauma, anoxia, obstruction, or ischemia), radiation, an infection (e.g., bacterial, fungal, or viral), a dysfunction of the immune system (e.g., an autoimmune disease, a systemic disease, or IgA nephropathy), a genetic disorder, a medication (e.g., anti-bacterial agent, anti-viral agent, antifungal agent, immunosuppressive agent, anti-inflammatory agent, analgesic or anticancer agent), an organ failure,
- a medication e.g
- ischemia can be sickle-cell anemia, thrombosis, transplantation, obstruction, shock or blood loss.
- the genetic disorders may include congenital nephritic syndrome of the Finnish type, the fetal membranous nephropathy or mutations in podocyte-specific proteins, such as ⁇ -actin-4, podocin and TRPC6.
- the podocyte-related disease or disorder can be an abnormal expression or function of slit diaphragm proteins such as podocin, nephrin, CD2AP, cell membrane proteins such as TRPC6, and proteins involved in organization of the cytoskeleton such as synaptopodin, actin binding proteins, lamb-families and collagens.
- the podocyte-related disease or disorder can be related to a disturbance of the GBM, to a disturbance of the mesangial cell function, and to deposition of antigen-antibody complexes and anti-podocyte antibodies.
- the podocyte-related disease or disorder can be tubular atrophy.
- the podocyte-related disease or disorder comprises proteinuria, such as microalbumiuria or macroalbumiuria.
- proteinuria such as microalbumiuria or macroalbumiuria.
- one or more agents which modulate CD2AP expression, function, activity, degradation, rate of degradation and/or inhibiting expression or activity of cathepsin L can be combined with one or more other chemotherapeutic compounds which are used to treat any of the podocyte diseases or disorders.
- the kidney glomerulus is a highly specialized vascular bed that ensures the selective ultrafiltration of plasma so that the essential proteins are retained in the blood.
- the glomerular basement membrane (GBM) provides the primary structural support for the glomerular tuft.
- the basic unit of the glomerular tuft is a single capillary.
- the fenestrated glomerular endothelial cells and mesangial cells are located inside the GBM, whereas podocytes are attached to the outer aspect of the GBM.
- the glomerular capillaries function as the filtration barrier.
- the filtration barrier is characterized by distinct charge and size selectivity, thereby ensuring that albumin and other plasma proteins are retained in the circulation.
- Proteinuria occurs when the permeability of the glomerular barrier is increased.
- Human monogenetic studies show that mutations affecting podocyte proteins, including ⁇ -actinin-4, CD2AP, nephrin, PLCEl, podocin, and TRPC6, lead to renal disease owing to disruption of the filtration barrier and rearrangement of the podocyte actin cytoskeleton.
- Additional proteins regulating the podocyte actin cytoskeleton such as Rho GDIa, podocalyxin, FATl, 22 Nckl/2 and synaptopodin, are also of importance for sustained function of the glomerular filtration barrier.
- the glomerular filter is the primary barrier for albumin and that the glomerular sieving coefficient for albumin is extremely low.
- Podocytes are Pericyte-Like Cells with an Actin-Based Contractile Apparatus: Differentiated podocytes are mesenchymal-like cells that arise from epithelial precursors during renal development. Similar to pericytes, podocytes never embrace a capillary in total.10 Podocytes consist of three morphologically and functionally different segments: a cell body, major processes, and foot processes (FPs). From the cell body, major processes arise that split into FP. FPs contain an actin-based cytoskeleton that is linked to the GBM. Podocyte FPs form a highly branched interdigitating network with FPs of neighboring podocytes connected by the slit diaphragm (SD).
- SD slit diaphragm
- the SD is a modified adherens junction that covers the 30-50nm wide filtration slits, thereby establishing the final barrier to urinary protein loss.
- the extracellular portion of the SD is made up of rod-like units that are connected in the center to a linear bar, forming a zipper-like pattern, with pores about the same size as or smaller than albumin.
- the function of podocytes is largely based on their complex cell architecture, in particular on the maintenance of the normal FP structure with their highly ordered parallel contractile actin filament bundles.
- FPs are functionally defined by three membrane domains: the apical membrane domain, the SD, and the basal membrane domain or sole plate that is associated with the GBM. All three domains are physically and functionally linked to the FP actin cytoskeleton. Proteins regulating the plasticity of the podocyte actin cytoskeleton are therefore of critical importance for sustained function of the glomerular filter.
- nephrin is connected to the actin cytoskeleton through several adapter proteins and has a pivotal part in the regulation of podocyte actin dynamics.
- a signaling pathway couples nephrin to the actin cytoskeleton through the adaptor protein Nek. After nephrin phosphorylation by Fyn, Nek binds to phospho-nephrin and Nek binds to N-WASP. This in turn leads to the activation of the Arp2/3 complex, a major regulator of actin dynamics.
- Podocyte Dysfunction is the Common Thread in Proteinuric Diseases: Podocytes can be injured in many forms of human and experimental glomerular disease, including minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy, diabetic nephropathy, and lupus nephritis. Characteristic changes are actin cytoskeleton reorganization of the involved FP, which typically leads to FP effacement and SD disruption. Interference with any of the three FP domains changes the actin cytoskeleton from parallel contractile bundles into a dense network with FP effacement (reflected by the simplification of the FP structure and loss of the normal interdigitating pattern) and proteinuria.
- MCD minimal change disease
- FSGS focal segmental glomerulosclerosis
- membranous glomerulopathy diabetic nephropathy
- lupus nephritis Characteristic changes are actin cytoskeleton reorganization of the involved FP, which
- Causes of FP effacement and proteinuria include the following: (i) changes in SD structure or function, (ii) interference with the GBM or the podocyte-GBM interaction, (iii) dysfunction of the podocyte actin cytoskeleton, (iv) modulation of the negative surface charge of podocytes, and (v) activation of CatL-mediated proteolysis (see below).
- the loss of podocyte ultimately leads to glomerulosclerosis and end-stage renal failure.
- Patients with MCD or membranous glomerulopathy can present over years with nephrotic-range proteinuria without progressing to end-stage renal failure.
- the role of proteinuria in the progression of kidney failure probably depends on the type and the route of protein loss; that is, protein loss across the filtration barrier versus misdirected filtration into the periglomerular interstitium.
- CatL is a member to the cathepsin family of cysteine proteases, which are involved primarily in protein breakdown in the lysosome. As shown herein, the onset of proteinuria represents a migratory event in podocyte FP that is caused by the activation of CatL.
- a cytoplasmic variant of CatL in podocytes is required for the development of proteinuria in mice through a mechanism that involves the cleavage of the large GTPase dynamin and synaptopodin.
- the clinical relevance of these findings was underscored by the observation that increased podocyte CatL expression was found in a variety of human proteinuric kidney diseases, including MCD, membranous glomerulopathy, FSGS, and diabetic nephropathy. Together these results support the notion that CatL-mediated proteolysis may have a key function in the development of many forms of proteinuria.
- LPS lipopolysaccharide
- LPS causes proteinuria by selectively targeting podocytes because podocyte-specific overexpression of CatL-resistant dynamin or synaptopodin is sufficient to safeguard against proteinuria.
- Key effectors of the LPS-induced proteinuria have been detected in podocytes in vivo in animals and in biopsies from patients with proteinuric kidneys diseases, including B7-1, CatL,60 and urokinase plasminogen activator receptor (uPAR). Although there is no report about cytosolic variant of cathepsin L in the proximal tubule, CatL is highly expressed in the tubular lysosomes.
- RhoA The Rho family of small GTPases (RhoA, Racl, and Cdc42) controls signal- transduction pathways that influence many aspects of cell behavior, including actin dynamics. At the leading edge, Racl and Cdc42 promote cell motility through the formation of lamellipodia and filopodia, respectively. On the contrary, RhoA promotes the formation of contractile actin- myosin containing stress fibers in the cell body and at the rear.
- Agents A wide variety of agents can be used to target cathepsins, especially cathepsin L.
- agents may be designed to target cathepsins by having an in vivo activity which reduces the expression and/or activity of cathepsin L.
- the agents target the calcineurin-CatL pathways, such as for example, the calcineurin-CatL pathway-dependent versus independent pathways, leading to proteinuria and/or progressive kidney disease.
- the agents are novel calcineurin (synaptopodin) and CatL substrates (dynamin, synaptopodin), and/or inhibit cytosolic CatL.
- the agents are selective, antiproteinuric, and/or podocyte-protective drugs.
- one or more agents are administered as part of a preventative or treatment regimen, either at the same time or at various times apart as determined by the attending medical practitioner.
- CatL is a potent endoprotease primarily responsible for final protein breakdown within lysosomal compartments.
- a secreted form of CatL is involved in the degradation of extracellular matrix (ECM) in vivo and in vitro. Both the lysosomal and secreted forms of CatL have been implicated in cancer cell biology and metastasis.
- ECM extracellular matrix
- a CatL inhibitor E64 can reduce experimental proteinuria in a rat glomerulonephritis model. The onset of experimental proteinuria is accompanied by an increased motility of podocytes, which was abrogated in CatL "A podocytes.
- CatL a few intracellular podocyte proteins such as CD2AP declined, but only in the presence of CatL.
- PAN and Lipopolysaccharide LPS, another proteinuric stimulus
- LPS Lipopolysaccharide
- a shorter CatL variant arises by translation from an alternate downstream AUG site and locates in the nucleus of fibroblasts where it can cleave the transcription factor CDP/Cux or serve in Histone H3 processing during mouse embryonic stem cell differentiation. This obviously broke with a dogma that CatL can only be active in the acidic pH of the lysosome.
- CatL cleaves a variety of proteins very efficiently due to the denaturing conditions and low pH of the lysosome
- short CatL exhibits a remarkable substrate specificity that allows a very specific enzymatic activity at cytosolic or nuclear pH.
- two substrates of cytosolic CatL have been described in podocytes: dynamin and synaptopodin. Both proteins contribute to the functional F- actin in normal podocyte FPs and allow their effacement after their enzymatic processing by CatL.
- CatL is significantly induced in at least two rodent models of proteinuria, i.e. the LPS mouse model ( Figure 13A) and the rat PAN model. Stainings in cultured podocytes treated with LPS or PAN revealed a vast increase of CatL enzyme in the cytosol. Enzymatic activity assays determined that cytosolic CatL is enzymatically active and can cleave its targets dynamin and synaptopodin. The significance of CatL induction is further underscored by the finding that CatL knockout mice are protected from LPS induced FP effacement and proteinuria ( Figures 13A, 13B).
- Cathepsin L proteolyzes dynamin and synaptopodin The computer algorithm PEPS (Prediction of Endopeptidase Proteolytic Sites) has served to identify possible CatL substrates. Since PEPS does not take into account the condition of the environment, i.e. the pH of the compartment (lysososome vs cytosol), it is necessary to experimentally confirm the cleavage prediction using purified proteins. Using this algorithm, the first identified cleavage target in podocytes was the large GTPase dynamin. Dynamin is essential for the formation of clathrin- coated vesicles at the plasma membrane during endocytosis and has also been implicated in the regulation of actin dynamics in certain cell types.
- PEPS Prediction of Endopeptidase Proteolytic Sites
- Dynamin is specifically cleaved in podocytes by CatL during LPS- or PAN- induced proteinuria in animal models and gene delivery of mutant dynamin forms resistant to cleavage by CatL protected mice from LPS-induced proteinuria.
- Intact dynamin is required for proper podocyte structure and function. Expression of dominant- negative dynamin mutants in podocytes caused proteinuria in vivo and led to a loss of actin stress fibers in vitro. The role of dynamin in maintaining podocyte integrity does not depend on its function in endocytosis, but rather on its ability to stabilize F-actin organization in the FPs.
- Synaptopodin is another major cleavage target for cytoplasmic CatL.
- Synaptopodin is the founding member of a unique class of proline-rich, actin-associated proteins that are expressed in highly dynamic cell compartements, such as the dendritic spine apparatus of neurons and podocyte FPs.
- Synaptopodin binds to ⁇ -actinin and regulates the actin-bundling activity of ⁇ -actinin.
- Synaptopodin-deficient ⁇ synp ⁇ ⁇ ⁇ ) mice display impaired recovery from protamine sulfate-induced podocyte FP effacement and LPS-induced proteinuria. Similarly, synp ⁇ ⁇ ' ⁇ podocytes show impaired actin filament reformation in vitro.
- Synaptopodin is specifically proteolyzed at two cleavage sites by cytosolic CatL.
- In vivo gene delivery or the podocyte-specific transgenic expression of a synaptopodin mutant that lacks these cleavage sites protected mice from LPS-induced proteinuria, suggesting that CatL-mediated cleavage of synaptopodin is required for the induction of FP effacement by LPS.
- Stabilized synaptopodin protein levels also help to maintain dynamin levels.
- the main deleterious action of CatL in podocytes stems from a novel CatL form that is active in the cytoplasm of podocytes ( Figure 15A-15D) and that is highly target selective.
- Embodiments of the invention are also directed to CatL inhibitors that localize to the cytosol of a podocyte and specifically inhibit the disease-causing CatL variant.
- podocyte FP effacement can be caused by the translation of a novel CatL variant in the cytosol of podocyte FPs.
- CatL is induced in many proteinuric diseases. So far two major cleavage targets have been described: Dynamin and synaptopodin. Both proteins are regulators of podocyte cytoskeletal function. Additional targets are being investigated. The unraveling of these pathways not only greatly enhances our understanding of the pathophysiology of glomerular diseases but also enables the development of specific therapies for proteinuric syndromes by directly targeting components of these enzymatic cascades in podocytes.
- the agents may regulate cathepsin L based on the cDNA or regulatory regions of cathepsin L.
- DNA-based agents such as antisense inhibitors and ribozymes, can be utilized to target both the introns and exons of the cathepsin genes as well as at the RNA level.
- the agents may target cathepsin L based on the amino acid sequences including the propieces and/or three-dimensional protein structures of cathepsin L.
- Protein- based agents such as human antibody, non-human monoclonal antibody and humanized antibody, can be used to specifically target different epitopes on cathepsin L.
- Peptides or peptidomimetics can serve as high affinity inhibitors to specifically bind to the active site of a particular cathepsin, thereby inhibiting the in vivo activity of the cathepsin.
- Small molecules may also be employed to target cathepsin, especially those having high selectivity toward cathepsin L.
- agents may also be used which competitively inhibit cathepsin L by competing with the natural substrates of cathepsins for binding with the enzymes.
- one of the agents can be a are protease inhibitor, specific for cathepsin L.
- Inhibitors of cathepsins include cathepsin L, B, and D inhibitors, antisense to cathepsin, siRNA, and antisense-peptide sequences.
- cathepsin inhibitors include but are not limited to epoxysuccinyl peptide derivatives [E-64, E-64a, E-64b, E-64c, E-64d, CA- 074, CA-074 Me, CA-030, CA-028, etc.], peptidyl aldehyde derivatives [leupeptin, antipain, chymostatin, Ac-LVK-CHO 5 Z-Phe-Tyr-CHO, Z-Phe-Tyr(OtBu)-COCHO • H 2 O, 1- Naphthalenesulfonyl-Ile-Trp-CHO, Z-Phe-Leu-COCHO • H 2 O, etc.], peptidyl semicarbazone derivatives, peptidyl methylketone derivatives, peptidyl trifluoromethylketone derivatives [Biotin-Phe-Ala-fluoromethyl ketone, Z-Leu-Leu- fiuoromethyl ketone minimum, Z-
- the invention provides methods for inhibiting at least one enzymatic activity of cathepsin L.
- the cathepsin L inhibitors comprise: Z- Phe-Phe-FMK, H-Arg-Lys-Leu-Trp-NH 2 , N-(I- Naphthalenylsulfonyl)-ile-Trp-aldehyde, Z-Phe- Tyr(tBu)-diazomethylketone, or Z- Phe-Tyr-aldehyde .
- Nucleic acid-based agents such as antisense molecules and ribozymes can be utilized to target both the introns and exons of the cathepsin genes as well as at the RNA level to inhibit gene expression thereof, thereby inhibiting the activity of the targeted cathepsin.
- triple helix molecules may also be utilized in inhibiting the cathepsin gene activity.
- Such molecules may be designed to reduce or inhibit either the wild type cathepsin gene, or if appropriate, the mutant cathepsin gene activity. Techniques for the production and use of such molecules are well known to those of skill in the art, and are succinctly described below.
- CD2AP genes are modulated by targeting nucleic acid sequences involved in the expression and/or activity of CD2AP molecules.
- regulatory regions would be a target to increase the expression of CD2AP.
- Antisense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation.
- Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required.
- a sequence "complementary" to a portion of an RNA means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed.
- the ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be).
- One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- Oligonucleotides that are complementary to the 5' end of the message should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. Wagner (1994) Nature 372:333-335. For example, oligonucleotides complementary to either the 5'- or 3 '-untranslated, non-coding regions of the human or mouse gene of cathepsin L could be used in an antisense approach to inhibit translation of endogenous cathepsin L mRNA.
- the antisense approach can be used to target negative regulators of CD2AP expression and/or function.
- Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon.
- Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention.
- antisense nucleic acids are preferably at least six nucleotides in length, and are more preferably oligonucleotides ranging from 6 to about 50 nucleotides in length.
- the oligonucleotide is at least 10 nucleotides, preferably at least 17 nucleotides, more preferably at least 25 nucleotides and most preferably at least 50 nucleotides.
- antisense molecules may be designed to target the translated region, i.e., the cDNA of the cathepsin gene.
- the antisense RNA molecules targeting the full coding sequence or a portion of the mature murine cathepsin L may be utilized to inhibit expression of cathepsin L and thus reduce the activity of its enzymatic activity.
- a full length or partial cathepsin L cDNA can be subcloned into a pcDNA-3 expression vector in reversed orientation and such a construct can be transfected into cells to produce antisense polyRNA to block endogenous transcripts of a cathepsin, such as cathepsin L, and thus inhibit the cathepsin's expression.
- In vitro studies may be performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide.
- control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
- the oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
- the oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc.
- the oligonucleotide may include other appended groups such as peptides, or agents facilitating transport across the cell membrane (See, e.g., Letsinger (1989) Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556) or the blood-brain barrier, hybridization-triggered cleavage agents.
- the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
- the antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group consisting of, but not being limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5- carboxymethylaminomet- hyluracil, dihydrouracil, ⁇ -D-galactosylqueosine, inosine, N6- isopentenyladenine, 1 -methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5- methylaminomethyluracil, 5-methoxyaminomethyl-2
- the antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group consisting of, but not being limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
- the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
- Ribozyme molecules designed to catalytically cleave target gene mRNA transcripts can also be used to prevent translation of target gene mRNA and, therefore, expression of target gene product. See, e.g. Sarver et al. (1990) Science 2W-XXXl-YIlS.
- Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA.
- the mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event.
- the composition of ribozyme molecules should include one or more sequences complementary to the target gene mRNA, and should include the well known catalytic sequence responsible for mRNA cleavage.
- ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs
- the use of hammerhead ribozymes is preferred.
- Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art.
- Endogenous cathepsin gene expression can also be reduced by inactivating or "knocking out" the targeted cathepsin gene or its promoter using targeted homologous recombination. Smithies et al. (1985) Nature 317:230-234; Thomas and Capecchi, (1987) Cell 51 :503-512; and Thompson e? ⁇ /. (1989) Cell 5:313-321.
- endogenous cathepsin gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the cathepsin gene (i.e., the target gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene in target cells in the body.
- deoxyribonucleotide sequences complementary to the regulatory region of the cathepsin gene i.e., the target gene promoter and/or enhancers
- Nucleic acid molecules to be used in triplex helix formation for the inhibition of transcription should be single stranded and composed of deoxynucleotides.
- the base composition of these oligonucleotides must be designed to promote triple helix formation via Ho ⁇ gsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex.
- Nucleotide sequences may be pyrimidine- based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix.
- the pyrimidine-rich molecules provide base complementarity to a purine- rich region of a single strand of the duplex in a parallel orientation to that strand.
- nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.
- a biomarker for the diagnosis of a disease or disorder characterized by proteinuria and/or identification of individuals at risk of developing a disease or disorder characterized by proteinuria comprising: cathepsin-L, system N glutamine transporter (SNAT3), dynamin, synaptopodin or cytoskeletal regulator protein synaptopodin, cytoskeletal adaptor protein (CD2AP), variants, mutants or fragments thereof.
- the biomarkers can be increased or decreased in expression relative to each other.
- the panel of biomarker expression profiles are compared to normal controls.
- the intra-cellular localization changes with the progression of disease.
- a fragment of CD2AP comprises p32 C-terminal fragment.
- cathepsin-L cleaves the CD2AP, there is an increase in N-terminal CD2AP fragments and p32 fragments.
- the p32 cannot bind to dendrin, which is then trafficked to the podocyte nuclei.
- dendrin localization is altered during the disease progression.
- the identification of an individual at risk of developing disease or disorder characterized by proteinuria detects at least one biomarker or fragments thereof.
- the progression of disease or disorder characterized by proteinuria is correlated to an increase in cathepsin-L and/or system N glutamine transporter (SNAT3) expression and/or an increase in p32 CD2AP C-terminal fragment expression and/or dendrin in podocyte nuclei.
- SNAT3 system N glutamine transporter
- modulators i.e., candidate or test compounds or agents (e.g., proteins, peptides, peptidomimetics, peptoids, small molecules, analogues or other drugs) which modulate CD2AP expression, function degradation and/or act directly on cathepsin L activity or expression or synthesis pathways thereof.
- modulators i.e., candidate or test compounds or agents (e.g., proteins, peptides, peptidomimetics, peptoids, small molecules, analogues or other drugs) which modulate CD2AP expression, function degradation and/or act directly on cathepsin L activity or expression or synthesis pathways thereof.
- Compounds thus identified can be used to modulate the activity of target gene products, prolong the half-life of a protein or peptide, regulate cell division, etc, in a therapeutic protocol, to elaborate the biological function of the target gene product, or to identify compounds that disrupt normal target gene interactions.
- a high-throughput screening assay is used to screen a diverse library of member compounds.
- the "compounds” or “candidate therapeutic agents” or “candidate agents” can be any organic, inorganic, small molecule, protein, antibody, aptamer, nucleic acid molecule, or synthetic compound.
- the candidate agents modulate cathepsin enzymes, precursors or molecules involved in the pathways.
- the enzyme is cathepsin L.
- These enzymes can be involved in various biochemical pathways such as synthetic pathways, breakdown pathways, e.g. ubiquitin, enzymatic pathways, protein trafficking pathways, metabolic pathways, signal transduction pathways, and the like.
- the high throughput assays identifies candidate agents that target and modulate the pathways involved in the pathological expression or activity of cathepsin L
- the candidate agents would be useful in developing and identifying novel agents for the treatment of podocyte diseases or disorders, such as, for example, proteinuria.
- the invention provides assays for screening candidate or test compounds which modulate the degradation, rate of degradation, activity, expression and/or function of CD2AP.
- an agent binds to CD2AP and inhibits cleavage or degradation of CD2AP.
- the invention provides assays for screening candidate or test compounds that bind to or modulate an activity of cathepsin L protein or polypeptide or a biologically active portion thereof, mutants or fragments, or fusion proteins thereof.
- Candidate agents include numerous chemical classes, though typically they are organic compounds including small organic compounds, nucleic acids including oligonucleotides, and peptides. Small organic compounds suitably may have e.g. a molecular weight of more than about 40 or 50 yet less than about 2,500. Candidate agents may comprise functional chemical groups that interact with proteins and/or DNA.
- test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckermann, R. N. et al. (1994) J. Med. Chem. 37:2678- 85); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the one-bead one-compound library method; and synthetic library methods using affinity chromatography selection.
- the biological library and peptoid library approaches are limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
- the candidate therapeutic agent comprises, proteins, peptides, organic molecules, inorganic molecules, nucleic acid molecules, and the like. These molecules can be natural, e.g. from plants, fungus, bacteria etc., or can be synthesized or synthetic.
- a prototype compound may be believed to have therapeutic activity on the basis of any information available to the artisan.
- a prototype compound may be believed to have therapeutic activity on the basis of information contained in the Physician's Desk Reference.
- a compound may be believed to have therapeutic activity on the basis of experience of a clinician, structure of the compound, structural activity relationship data, EC 50 , assay data, IC 50 assay data, animal or clinical studies, or any other basis, or combination of such bases.
- a therapeutically-active compound is a compound that has therapeutic activity, including for example, the ability of a compound to induce a specified response when administered to a subject or tested in vitro.
- Therapeutic activity includes treatment of a disease or condition, including both prophylactic and ameliorative treatment. Treatment of a disease or condition can include improvement of a disease or condition by any amount, including prevention, amelioration, and elimination of the disease or condition.
- Therapeutic activity may be conducted against any disease or condition, including in a preferred embodiment against any disease or disorder associated with proteinuria. In order to determine therapeutic activity any method by which therapeutic activity of a compound may be evaluated can be used. For example, both in vivo and in vitro methods can be used, including for example, clinical evaluation, EC 50 , and IC 50 assays, and dose response curves.
- Candidate compounds for use with an assay of the present invention or identified by assays of the present invention as useful pharmacological agents can be pharmacological agents already known in the art or variations thereof or can be compounds previously unknown to have any pharmacological activity.
- the candidate compounds can be naturally occurring or designed in the laboratory.
- Candidate compounds can comprise a single diastereomer, more than one diastereomer, or a single enantiomer, or more than one enantiomer.
- Candidate compounds can be isolated, from microorganisms, animals or plants, for example, and can be produced recombinantly, or synthesized by chemical methods known in the art.
- candidate compounds of the present invention can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound” library method, and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to polypeptide libraries.
- the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds and are preferred approaches in the present invention. See Lam, Anticancer Drug Des. 12: 145-167 (1997).
- the present invention provides a method of identifying a candidate compound as a suitable prodrug.
- a suitable prodrug includes any prodrug that may be identified by the methods of the present invention. Any method apparent to the artisan may be used to identify a candidate compound as a suitable prodrug.
- the present invention provides methods of screening candidate compounds for suitability as therapeutic agents. Screening for suitability of therapeutic agents may include assessment of one, some or many criteria relating to the compound that may affect the ability of the compound as a therapeutic agent. Factors such as, for example, efficacy, safety, efficiency, retention, localization, tissue selectivity, degradation, or intracellular persistence may be considered.
- a method of screening candidate compounds for suitability as therapeutic agents is provided, where the method comprises providing a candidate compound identified as a suitable prodrug, determining the therapeutic activity of the candidate compound, and determining the intracellular persistence of the candidate compound. Intracellular persistence can be measured by any technique apparent to the skilled artisan, such as for example by radioactive tracer, heavy isotope labeling, or LCMS.
- intracellular persistence of the candidate compound is evaluated.
- the agents are evaluated for their ability to modulate the intracellular pH may comprise, for example, evaluation of intracellular pH over a period of time in response to a candidate therapeutic agent.
- the intra-podocyte pH in the presence or absence of the candidate therapeutic compound in human tissue is determined. Any technique known to the art worker for determining intracellular pH may be used in the present invention. See, also, the experimental details in the examples section which follows.
- a further aspect of the present invention relates to methods of inhibiting the activity of a condition or disease associated with proteinuria comprising the step of treating a sample or subject believed to have a disease or condition with a prodrug identified by a compound of the invention.
- Compositions of the invention act as identifiers for prodrugs that have therapeutic activity against a disease or condition.
- compositions of the invention act as identifiers for drugs that show therapeutic activity against conditions including for example associated with proteinuria.
- a screening assay is a cell-based assay in which the activity of cathepsin L is measured against an increase or decrease of pH values in the cells. Determining the ability of the test compound to modulate the pH and determining cathepsin L activity, by various methods, including for example, fluorescence, protein assays, blots and the like.
- the cell for example, can be of mammalian origin, e.g., human.
- the screening assay is a high-throughput screening assay.
- the ability of a compound to modulate CD2AP degradation, expression, function etc., and/or modulate cathepsin L expression and/or activity can be evaluated as described in detail in the Examples which follow.
- soluble and/or membrane-bound forms of isolated proteins, mutants or biologically active portions thereof can be used in the assays if desired.
- membrane-bound forms of the protein it may be desirable to utilize a solubilizing agent.
- non-ionic detergents such as n- oct
- Cell-free assays can also be used and involve preparing a reaction mixture which includes cathepsin L, CD2AP and the test compound under conditions and time periods to allow the measurement of the cathepsin L activity over time, CD2AP degradation rates, increases in CD2AP activity, etc, over a range of values and concentrations of test agents.
- the enzymatic activity can be also be detected, e.g., using fluorescence energy transfer (FET) (see, for example, Lakowicz et al., U.S. Pat. No. 5,631,169; Stavrianopoulos, et al, U.S. Pat. No. 4,868,103).
- FET fluorescence energy transfer
- a fluorophore label on the first, 'donor' molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, 'acceptor' molecule, which in turn is able to fluoresce due to the absorbed energy.
- the 'donor' protein molecule may simply utilize the natural fluorescent energy of tryptophan residues.
- Labels are chosen that emit different wavelengths of light, such that the 'acceptor' molecule label may be differentiated from that of the 'donor'. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the 'acceptor' molecule label in the assay should be maximal.
- a FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).
- determining the ability of the enzyme e.g. cathepsin L
- a target molecule CD2AP
- determining the ability of the enzyme can be accomplished using realtime Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander, S. and Urbaniczky, C. (1991) Anal. Chem. 63:2338-2345 and Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705).
- BiA Biomolecular Interaction Analysis
- the target product or the test substance is anchored onto a solid phase.
- the target product/test compound complexes anchored on the solid phase can be detected at the end of the reaction.
- the target product can be anchored onto a solid surface, and the test compound, (which is not anchored), can be labeled, either directly or indirectly, with detectable labels discussed herein.
- Candidate agents may be obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides. Alternatively, libraries of natural compounds in the form of e.g. bacterial, fungal and animal extracts are available or readily produced.
- a combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks,” such as reagents.
- a linear combinatorial chemical library such as a polypeptide library
- a linear combinatorial chemical library is formed by combining a set of chemical building blocks (amino acids) in a large number of combinations, and potentially in every possible way, for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.
- a “library” may comprise from 2 to 50,000,000 diverse member compounds.
- a library comprises at least 48 diverse compounds, preferably 96 or more diverse compounds, more preferably 384 or more diverse compounds, more preferably, 10,000 or more diverse compounds, preferably more than 100,000 diverse members and most preferably more than 1,000,000 diverse member compounds.
- “diverse” it is meant that greater than 50% of the compounds in a library have chemical structures that are not identical to any other member of the library.
- greater than 75% of the compounds in a library have chemical structures that are not identical to any other member of the collection, more preferably greater than 90% and most preferably greater than about 99%.
- chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to, peptoids (PCT Publication No. WO 91/19735); encoded peptides (PCT Publication WO 93/20242); random bio-oligomers (PCT Publication No. WO 92/00091); benzodiazepines (U.S. Pat. No. 5,288,514); diversomers, such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al, Proc. Nat. Acad. Sci.
- Small molecule test compounds can initially be members of an organic or inorganic chemical library.
- small molecules refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons.
- the small molecules can be natural products or members of a combinatorial chemistry library.
- a set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity.
- Combinatorial techniques suitable for synthesizing small molecules are known in the art, e.g., as exemplified by Obrecht and Villalgordo, Solid-Supported Combinatorial and Parallel Synthesis of Small- Molecular- Weight Compound Libraries, Pergamon-EIsevier Science Limited (1998), and include those such as the "split and pool” or “parallel” synthesis techniques, solid-phase and solution- phase techniques, and encoding techniques (see, for example, Czarnik, Curr. Opin. Chem. Bio., 1 :60 (1997). In addition, a number of small molecule libraries are commercially available.
- sampling of sample materials may be accomplished with a plurality of steps, which include withdrawing a sample from a sample container and delivering at least a portion of the withdrawn sample to test platform. Sampling may also include additional steps, particularly and preferably, sample preparation steps. In one approach, only one sample is withdrawn into the auto-sampler probe at a time and only one sample resides in the probe at one time. In other embodiments, multiple samples may be drawn into the auto-sampler probe separated by solvents. In still other embodiments, multiple probes may be used in parallel for auto sampling. [00154] In the general case, sampling can be effected manually, in a semi-automatic manner or in an automatic manner.
- a sample can be withdrawn from a sample container manually, for example, with a pipette or with a syringe-type manual probe, and then manually delivered to a loading port or an injection port of a characterization system.
- some aspect of the protocol is effected automatically (e.g., delivery), but some other aspect requires manual intervention (e.g., withdrawal of samples from a process control line).
- the sample(s) are withdrawn from a sample container and delivered to the characterization system, in a fully automated manner - for example, with an auto-sampler.
- auto-sampling may be done using a microprocessor controlling an automated system (e.g., a robot arm).
- the microprocessor is user-programmable to accommodate libraries of samples having varying arrangements of samples (e.g., square arrays with "n-rows” by “n-columns,” rectangular arrays with “n-rows” by “m-columns,” round arrays, triangular arrays with “r-” by “r-” by “r-” equilateral sides, triangular arrays with "r-base” by "s-” by “s-” isosceles sides, etc., where n, m, r, and s are integers).
- Automated sampling of sample materials optionally may be effected with an auto- sampler having a heated injection probe (tip).
- An example of one such auto sampler is disclosed in U.S. Pat. No. 6,175,409 Bl (incorporated by reference).
- one or more systems, methods or both are used to identify a plurality of sample materials.
- manual or semi-automated systems and methods are possible, preferably an automated system or method is employed.
- a variety of robotic or automatic systems are available for automatically or programmably providing predetermined motions for handling, contacting, dispensing, or otherwise manipulating materials in solid, fluid liquid or gas form according to a predetermined protocol.
- Such systems may be adapted or augmented to include a variety of hardware, software or both to assist the systems in determining mechanical properties of materials.
- Hardware and software for augmenting the robotic systems may include, but are not limited to, sensors, transducers, data acquisition and manipulation hardware, data acquisition and manipulation software and the like.
- the automated system includes a suitable protocol design and execution software that can be programmed with information such as synthesis, composition, location information or other information related to a library of materials positioned with respect to a substrate.
- the protocol design and execution software is typically in communication with robot control software for controlling a robot or other automated apparatus or system.
- the protocol design and execution software is also in communication with data acquisition hardware/software for collecting data from response measuring hardware. Once the data is collected in the database, analytical software may be used to analyze the data, and more specifically, to determine properties of the candidate drugs, or the data may be analyzed manually.
- Computer software products of the invention typically include computer readable medium having computer-executable instructions for performing the logic steps of the method of the invention.
- Suitable computer readable medium include floppy disk, CD-ROM/DVD/DVD-ROM, hard-disk drive, flash memory, ROM/RAM, magnetic tapes and etc.
- the computer executable instructions may be written in a suitable computer language or combination of several languages.
- the present invention may also make use of various computer program products and software for a variety of purposes, such as probe design, management of data, analysis, and instrument operation. See, U.S. Pat. Nos. 5,593,839, 5,795,716, 5,733,729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,91 1 and 6,308,170.
- the present invention relates to embodiments that include methods for providing genetic information over networks such as the Internet.
- compositions or agents identified by the methods described herein may be administered to animals including human beings in any suitable formulation.
- the compositions for modulating protein degradation may be formulated in pharmaceutically acceptable carriers or diluents such as physiological saline or a buffered salt solution.
- Suitable carriers and diluents can be selected on the basis of mode and route of administration and standard pharmaceutical practice.
- a description of exemplary pharmaceutically acceptable carriers and diluents, as well as pharmaceutical formulations, can be found in Remington's Pharmaceutical Sciences, a standard text in this field, and in USP/NF.
- Other substances may be added to the compositions to stabilize and/or preserve the compositions.
- compositions of the invention may be administered to animals by any conventional technique.
- the compositions may be administered directly to a target site by, for example, surgical delivery to an internal or external target site, or by catheter to a site accessible by a blood vessel.
- Other methods of delivery e.g., liposomal delivery or diffusion from a device impregnated with the composition, are known in the art.
- the compositions may be administered in a single bolus, multiple injections, or by continuous infusion (e.g., intravenously).
- the compositions are preferably formulated in a sterilized pyrogen-free form.
- the compounds can be administered with one or more therapies.
- the chemotherapeutic agents may be administered under a metronomic regimen.
- metronomic therapy refers to the administration of continuous low-doses of a therapeutic agent.
- Dosage, toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
- Compounds that exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- IC50 i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms
- levels in plasma may be measured, for example, by high performance liquid chromatography.
- a therapeutically effective amount of a compound means an amount sufficient to produce a therapeutically (e.g., clinically) desirable result.
- the compositions can be administered one from one or more times per day to one or more times per week; including once every other day.
- the skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present.
- treatment of a subject with a therapeutically effective amount of the compounds of the invention can include a single treatment or a series of treatments.
- compositions While it is possible for a composition to be administered alone, it is preferable to present it as a pharmaceutical formulation.
- the active ingredient may comprise, for topical administration, from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w but preferably not in excess of 5% w/w and more preferably from 0.1% to 1% w/w of the formulation.
- the topical formulations of the present invention comprise an active ingredient together with one or more acceptable carrier(s) therefor and optionally any other therapeutic ingredients(s).
- the carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
- Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of where treatment is required, such as liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear, or nose.
- Drops according to the present invention may comprise sterile aqueous or oily solutions or suspensions and may be prepared by dissolving the active ingredient in a suitable aqueous solution of a bactericidal and/or fungicidal agent and/or any other suitable preservative, and preferably including a surface active agent. The resulting solution may then be clarified and sterilized by filtration and transferred to the container by an aseptic technique.
- bactericidal and fungicidal agents suitable for inclusion in the drops are phenylmercuric nitrate or acetate (0.002%), benzalkonium chloride (0.01%) and chlorhexidine acetate (0.01%).
- Suitable solvents for the preparation of an oily solution include glycerol, diluted alcohol and propylene glycol.
- Lotions according to the present invention include those suitable for application to the skin or eye.
- An eye lotion may comprise a sterile aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops.
- Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
- Creams, ointments or pastes according to the present invention are semi-solid formulations of the active ingredient for external application. They may be made by mixing the active ingredient in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy basis.
- the basis may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a metallic soap; a mucilage; an oil of natural origin such as almond, corn, arachis, castor or olive oil; wool fat or its derivatives, or a fatty acid such as stearic or oleic acid together with an alcohol such as propylene glycol or macrogels.
- the formulation may incorporate any suitable surface active agent such as an anionic, cationic or non-ionic surface active such as sorbitan esters or polyoxyethylene derivatives thereof.
- Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
- Antibodies The following primary antibodies were used: mouse anti-actin (Sigma), mouse anti-dynamin (Hudy 1 ; Upstate Biotechnology), mouse anti-GAPDH (Abeam), rat anti- LAMP2 (Developmental Studies Hybridoma Bank), FITC-conjugated phalloidin (Sigma), rabbit anti-WTl (Santa Cruz Biotechnology) rabbit anti-alpha-actinin-431, rabbit anti-cathepsin L32, rabbit anti-CD2AP28, rabbit anti-dendrin and mouse anti-synaptopodin. [00178] Computing the scores of endopeptidase cleavage sites.
- Cathepsin L activity assay Subcellular sites of cathepsin L and cathepsin B activity in glomerular extracts were visualized by a fluorogenic substrate, CV-(FR) 2 , which emits light upon cleavage by cathepsin L or cathepsin B (Biomol). Cathepsin L inhibitor Z-FF-FMK (Calbiochem) which does not inhibit cathepsin B was used for specific inhibition of cathepsin L.
- In vivo gene delivery Cathepsin L plasmids encoding short and long cathepsin L, were introduced into mice (n >10, each construct) using the TransYT in vivo gene delivery system (Mirus).
- FLAG-tagged encoding wild type and cathepsin L cleavage resistant CD2AP plasmids were delivered twice by tail vein injection on day 8 and 10 after serum nephritis induction. Expression of plasmids were monitored in kidney cortex slices by immunoblot.
- FLAG-CD2AP was expressed in HEK293T cells, immobilized on anti-FLAG M2 agarose (Sigma) and eluted with FLAG-peptide (Sigma).
- CD2AP Proteolytic processing ofCD2AP by cathepsin L.
- CD2AP was diluted in buffer containing 200 mM NaCl, 10 mM HEPES pH 7.0, 2 mM EGTA, 1 mM MgCl 2 , and 1 mM DTT.
- 20 ⁇ M cathepsin L inhibitor Z-FF-FMK was added.
- the reaction was initiated by addition of 0.5 ⁇ l of purified cathepsin L (specific activity 4.13 U/mg of protein from Sigma), and samples were placed at 37°C in the water bath for 10 to 30 min. Total assay volume was 20 ⁇ l.
- the reaction was terminated with addition of E-64d inhibitor (Sigma) and sample buffer. For Western blot analysis, 5 ⁇ l of the samples was run on 10% SDS-PAGE.
- Chemical crosslinking and Native PAGE were performed according to standard protocols with the DTSSP crosslinking reagent (Pierce). Native PAGE was performed with the NativePAGE system (Invitrogen) according to the manufacturer's instructions.
- Electron Microscopy and Image Reconstruction Aliquots ( ⁇ 5 ⁇ l of 50 ⁇ g/ml protein) were allowed to adhere for 2-5 min to carbon-coated copper grids and then stained with 2% uranyl acetate. Images were recorded under minimum electron dose conditions using a CMlO electron microscope (Philips Electron Optics). Images were recorded on Kodak 4489 film at a nominal magnification of 52,000 using 100 kV electrons. Micrographs were digitized with a Coolscan 9000 scanner (Nikon) at 8 bits per pixel and 6.35 ⁇ m per pixel, subsequently averaged to 12.7 ⁇ m per pixel.
- the optical density for each negative was adjusted to give a mean value of -127 over the total range of 0 to 255.
- Image processing was performed with the EMAN suite. A total of 5996 particles were selected from 25 micrographs. The CTF for each micrograph was manually determined with the EMAN program ctfit and phase corrections applied to the selected particles.
- Initial models were generated using the EMAN routine startcsym, which conducts a symmetry search of the particles for four-fold and mirror symmetry, representing top and side views, respectively. These orthogonal projections are subsequently aligned with a common-lines algorithm and back-projected to generate a 3D structure. Models were subjected to refinement with C4 symmetry imposed with an angular increment of 6°.
- the isosurface for the final model was determined from the molecular weight of the tetramer (300 kD) which encloses a volume of 370,000 A3 using a protein partial specific volume of 0.74 crrrVg. Atomic coordinates for the SH3 domain and tetrameric coiled-coil domain were visually fitted within the EM map.
- CD2AP is a scaffolding protein required for homeostasis of podocytes. Homozygous CD2AP mutation or haploinsufficiency of the human CD2AP gene predispose to renal disease and mice lacking CD2AP develop progressive kidney failure. Similarly, mice with bigenic haploinsufficiency of synaptopodin and CD2AP develop disease consistent with progressive renal failure. CD2AP carries a special weight in the maintenance of podocyte structure and function.
- CD2AP as a cleavage target of cathepsin L and the structure of CD2AP at 21 A resolution was characterize as a cuboid tetrameric multi-adapter that exposed two accessible cathepsin L cleavage sites.
- the limited remodeling of CD2AP by cytoplasmic cathepsin L leaves behind a C-terminal core fragment that is structurally competent but can no longer bind dendrin, a protein which promotes podocyte apoptosis in the presence of transforming growth factor- ⁇ (TGF- ⁇ ) once it enters the nucleus.
- TGF- ⁇ transforming growth factor- ⁇
- Cathepsin L controls the proteolysis of dynamin and synaptopodin, events that are contributing to the development of podocyte FP effacement and proteinuria.
- the identification of the structure of CD2AP and its role as a cathepsin L substrate unraveled important aspects of kidney disease progression. It provides insights into the mechanisms of kidney disease pathogenesis and progression.
- CD2AP is proteolyzed by cathepsin L:
- the computer algorithm PEPS served to identify that cathepsin L cleavage targets dynamin and synaptopodin.
- a reduction of CD2AP staining was noted at cell-cell junctions in cultured podocytes that express high levels of cathepsin L but not in podocytes that lack cathepsin L.
- the PEPS-algorithm was applied to potentially identify cathepsin L cleavage sites within the CD2AP amino acid sequence. Eleven putative cathepsin L sites within the CD2AP mouse and human protein sequence (Table 1) were identified.
- PEPS endopeptidase cleavage sites
- a cathepsin L PEPS score of 0.02 denotes a 80% likelihood to be cleaved (based on the mouse proteome); a score of 0.04 denotes a chance for cleavage of 99% (the fit is not linear).
- PEPS scores ranging from 0.022 to 0.0319) implicate a likelihood for cleavage of approximately 90%.
- glomeruli were isolated from control mice and animals that were injected with low-dose lipopolysaccharide (LPS), a treatment causing high levels of cytosolic cathepsin L in podocytes.
- LPS low-dose lipopolysaccharide
- the tissue samples were further processed to obtain cytosolic and membrane-bound glomerular extracts ( Figure IA).
- a fluorescent enzymatic assay showed strong cathepsin L activity in the LPS treated cytosolic extract of glomeruli that could be inhibited by co-incubation with a specific cathepsin L inhibitor.
- the same fractions had a much lower activity of cytosolic cathepsin L without prior treatment of the animals with LPS.
- CD2AP reduction was also observed in cultured podocytes that were either treated with LPS or PAN, both conditions with high levels of cytosolic cathepsin L. All together, these data strongly evidence that cytosolic cathepsin L proteolyses CD2AP in vivo.
- Cathepsin L processes CD2AP into a C-terminal 32 kD fragment (p32): CD2AP protein was purified from transfected mammalian cells (HEK 293) and in vitro cleavage assays using were performed using purified cathepsin L enzyme at various pH ranging from acidic (lysosomal) to neutral pH 7.0 ( Figure 2A). pH 7.0 was determined as the pH that is present in the podocyte cytosol under normal and LPS conditions using Nuclear Magnetic Resonance Spectroscopy analysis. Cathepsin L cleaved CD2AP strongly at acidic pH, a finding that is in line with its potent role in lysosomes where cleavage occurs on random targets and nonspecifically.
- cleavage assays performed at neutral conditions yielded a stable 32 kD CD2AP fragment (p32) that was detectable by silver stain following electrophoretic separation of the cleaved CD2AP protein fragments.
- p32 increased with incubation time of CD2AP with cathepsin L at pH 7.0.
- GFP- and FLAG-tagged fusion proteins were generated that were exposed to cathepsin L ( Figures 2B- 2E).
- N-terminal tagged GFP-CD2AP fusion protein (98 kD) was expressed in HEK 293 cells, purified and subjected to cleavage assays with cathepsin L enzyme (Figure 2B). Cleavage of CD2AP at pH 4.5 and 5.5 led to the complete digestion of the protein. However, at pH 7.0, a CD2AP cleavage fragment was identified consistent with the predicted major cathepsin L cleavage site QPLGS (Table 1, Figure 2C). At neutral pH, CD2AP was cleaved into a stable 55 kD fragment as detected with an anti-GFP antibody. The same fragment was detected with the CD2AP antiserum raised against the SH3 domains of CD2AP.
- the CD2AP antiserum also reacted with a N-terminal 44 kD fragment (explained by the affinity of the antibody to the third SH3 domain).
- the anti-GFP antibody as well as the anti-CD2AP antibody could not detect C-terminal p32 (compare with Figure 5E).
- Additional cathepsin L cleavage experiments were performed using a C-terminal FLAG-tagged CD2AP (71 kD) expressed in HEK 293 cells and immobilized on FLAG beads before digestion with cathepsin L enzyme (Figure 2D).
- CD2AP-FLAG expressing HEK293 cells were co-transfected with WT cathepsin L mRNA which generates cytosolic and lysosomal cathepsin L protein and a cathepsin L construct that contains a deletion of the first AUG site and thus encodes selectively for the cytosolic form of cathepsin L.
- the experiments were performed in the presence or absence of a specific cathepsin L inhibitor ( Figure 2F). WT cathepsin L led to cleavage of CD2AP yielding p32.
- CD2AP is a tetramer that exposes cleavage sites QPLGS and LSAAE: Cytosolic cathepsin L mediated cleaving of dynamin and synaptopodin are protected from cleavage through higher order assembly of dynamin or through serine-threonine phosphorylation dependent binding of 14-3-3 protein to synaptopodin that in turn blocks cleavage sites from the exposure to cathepsin L. Higher molecular complexes of approximately 300 kD were identified when purified CD2AP was separated in native gels or after chemical cross-linking (Figure 3A).
- the resulting structural map reveals a cubic-like molecule with four of the faces related by the rotational symmetry ( Figures 3C-3E).
- the structure is not very compact and stain has penetrated throughout to reveal clearly identifiable domains ( Figures 3F-3H).
- the overall organization consists of a central core, broad at one end but tapering to a straight cylinder coincident with the fourfold axis at the other.
- the central core is surrounded by four symmetry related motifs each containing three globular domains.
- the individual domains within the structure were assigned by performing comparison of the map density with known homologous structures. In the case of CD2AP, this helped to identify the three N-terminal SH3 domains and the extreme C-terminal coiled-coil domain ( Figures 3F-3H).
- Dendrin is found in the nucleus ofCD2AP null mice and podocytes: Dendrin is a slit diaphragm protein that promotes TGF- ⁇ induced podocyte apoptosis through relocating from the cell periphery to the nucleus. Furthermore, CD2AP "7" podocytes are more susceptible to TGF- ⁇ mediated apoptosis and CD2AP ⁇ / ⁇ mice are born with normal podocyte FP. However, these mice display elevated levels of glomerular TGF- ⁇ and develop severe progressive glomerular disease starting approximately at 4 weeks of age 12. The disease in these mice is characterized by massive podocyte apoptosis and glomerular sclerosis within 7 weeks.
- Cathepsin L proteolyses CD2AP in a progressive model of renal disease If lack of CD2AP allows dendrin to enter the nucleus in progressive renal disease occurring in CD2AP knockout mice ( Figure 9B), it was hypothesized that a similar finding in a progressive kidney disease model where p32 is generated, would be found. Based on this hypothesis, the serum nephritis mouse model was utilized in which injection of an antibody that reacts with the glomerular basement membrane causes features of advancing glomerular disease such as crescents and podocyte apoptosis. Moreover, this model displays nuclear relocation of dendrin in podocytes.
- Cathepsin L was induced in podocytes during serum nephritis in wild type mice as shown by double labeling with synaptopodin but was not detected in cathepsin L knockout mice ( Figure 4E). It was next analyzed if there was a loss of the N-terminal SH3 domains and an unchanged expression of C-terminal CD2AP that included p32 in glomeruli of wild type mice.
- this data shows that serum nephritis is associated with cytosolic cathepsin L induction in podocytes that leads to proteolysis of CD2AP N-terminus but stable C-terminal fragment (p32) and the release of dendrin to the podocyte nucleus.
- cleavage resistant CD2AP directly impacted on the severity of renal disease progression.
- Animals that expressed protected CD2AP developed significantly lower levels for podocyte apoptosis, crescent formation, glomerular sclerosis and glomerular hypercel hilarity ( Figure 6D, 6E). All together, the absence of cathepsin L ( Figures 5A-5C) or the stable expression of CD2AP ( Figure 6A-6E) during serum nephritis alters the severity of renal disease progression.
- Both cleavage events can be inhibited by changes in target protein assembly; self-assembling into higher order dynamin complexes in the case of dynamin and phosphorylation dependent binding of 14-3-3 proteins to cover synaptopodin cleavage sites in the case of synaptopodin.
- the cleavage of these proteins results in the characteristic rearrangement of the podocyte actin cytoskeleton and the development of proteinuria. While these events can underlie the loss of barrier function, the cleavage of CD2AP helps to explain why loss of podocyte structure and function is often followed by podocyte depletion and progression of renal disease.
- CD2AP(p32) The enzymatic remodeling of CD2AP leads to a C-terminal fragment of CD2AP(p32) that is still capable to maintain some of its binding interactions and functions on the podocyte cytoskeleton and endocytosis but permits the release of its binding partner dendrin that can now travel to the podocyte nucleus to promote apoptosis and thus renal disease progression.
- the impact of this event becomes evident in the mouse serum nephritis model as well as by findings from the CD2AP "7" mouse. Both animals display nuclear relocation of dendrin and both animal models have progressive renal disease.
- Full length CD2AP executing its SH3 binding adapter capabilities is required for sustained podocyte survival even in the presence of proteinuria.
- Single particle image analysis was used to generate a 3-D map of the cuboid CD2AP tetramer.
- Many of the computer-modeled cleavage sites are inaccessible due to tetramerization of CD2AP but the two sites QPLGS and LSAAE. Both sites are located at the SH3 arms of CD2AP that allows access by cathepsin L and thus provide starting points for cathepsin L remodeling of CD2AP. It is interesting that the deletion of the LSAAE site is sufficient to inhibit the enzymatic processing suggesting that cleavage at this site may occur first.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Diabetes (AREA)
- Virology (AREA)
- Toxicology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Analytical Chemistry (AREA)
Abstract
Compositions which specifically block cathepsin L function in podocytes, compositions which protect cytoskeletal adaptor protein (CD2AP) for degradation, compositions which modulate expression or function of cytoskeletal adaptor protein (CD2AP), protect against renal diseases or disorders. Methods of treatment in vivo involve use of one or more compositions.
Description
LIMTΓED PROTEOLYSIS OF CD2AP AM) PROGRESSION OF RENAL DISEASE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims the priority of U.S. provisional patent application No. 61/111,869 filed November 6, 2008 which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0002] Embodiments of the invention comprise compositions which modulate expression, function, activity of cathepsin L in podocytes. Compositions which inhibit degradation and/or increase expression or activity of cytoskeletal adaptor protein (CD2AP) are also provided.
BACKGROUND
[0003] Cathepsins are a family of enzymes that are part of the papain superfamily of cysteine proteases and include Cathepsins B, H, L, N and S. Cathepsins function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue. However, elevated levels of these enzymes in the body can result in pathological conditions leading to disease. Thus, cathepsins have been implicated as causative agents in various disease states, including but not limited to, infections by Pneumocystis carinii, Trypsanoma cruzi, Trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like.
SUMMARY
[0004] This Summary is provided to present a summary of the invention to briefly indicate the nature and substance of the invention. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
[0005] Embodiments of the invention are directed to compositions for the treatment renal diseases or disorders, such as for example, proteinuria.
[0006] Other aspects are described infra.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Figure IA is a graph showing cathepsin L (CatL) activity in soluble fractions from isolated glomeruli of normal and lipopolysaccharide (LPS) treated mice. Figure IB is an immunoblot of soluble and pelleted fractions of the glomeruli from wild type (WT) mice. Figure 1C is an immunoblot for anti-N-CD2AP with glomeruli from LPS-treated WT and CatL KO mice. Blots were processed with Image J software (rsb.info.nih.gov/ij) to quantify the intensities of the bands (Ratio: CD2AP/GAPDH; *P<0.0001, t test, n=5). Figure ID is a photograph showing the immunofluorescent labeling of WT and CatL KO mouse glomeruli against anti-N- CD2AP before and after LPS.
[0008] Figure 2A is a scan of a photograph showing a silver stained gel of FLAG-CD2AP after cleavage with CatL at various pH. Figure 2B is a scan of a photograph showing an immunoblot of cleaved CD2AP fragments that are tagged with a N-terminal GFP. GFP-CD2AP is stable in the absence of CatL enzyme. Cleavage of CD2AP at pH 4.5 and 5.5 leads to complete digestion of the protein. At pH 7.0, CD2AP is cleaved into a stable 55 kD fragment (■) as detected with an anti-GFP antibody. The same fragment is detected with the CD2AP antiserum which is raised against the SH3 domains of CD2AP (anti-N-CD2AP). The CD2AP antiserum also detects a weak band corresponding to a 44 kD fragment (A, detected by the affinity of the antibody to the C-terminal SH3, anti-C-CD2AP). Figure 2C is a schematic representation showing the match of cleavage fragments with predicted CatL cleavage site QPLGS. Figure 2D is a blot showing that CatL cleaves CD2AP-FLAG yielding a 44 kD ( A) and a 32 kD (•) fragment. Figure 2E is a schematic representation showing that both fragments have corresponding predictions in the amino acid sequence of CD2AP (QPLGS and LSAAE). Figure 2F is a blot showing results from a cellular CatL cleavage assay: Wild type (WT) CatL (pre-pro CatL and short form) cleaves CD2AP in HEK293 cells. This cleavage can be prevented by the incubation of the cells with a specific CatL inhibitor. Short CatL (CatL Ml) is sufficient to cleave CD2AP yielding a 32 kD fragment (•). This cleavage is abrogated by a specific CatL inhibitor. Figure 2G is a blot showing that deletion of the CatL cleavage site LSAAE protects CD2AP from limited proteolysis into the 32 kD fragment (•).
[0009] Figure 3A is a photograph of a native gel (left) and CD2AP multimerization after chemical crosslinking (right). Figure 3B is a projection histogram displaying the number of
particles at particular 'Φ', 'Θ' Euler angles for the final round (top, left). Each circle represents a specific projection, and the grayscale is proportional to the number of particles belonging to that class. The scale ranges between 0 and 100 and has been truncated at the latter range. Although there are particles assigned to each class, there is a clear preferential orientation where the molecule favors placing the face with the three SH3 domains in proximity to the carbon substrate. Examples of particles from the final round of refinement (top, right). Raw particle images are displayed on the left, class averages in the middle, and back projections form the final 3D map on the right. The angular rotation of the map projection, in degrees, is indicated to the left of the particles. Fourier shell correlation to determine resolution of the final map (bottom). The entire data set was divided randomly into two equal groups. The raw particles in each class were independently aligned with one another to generate new class averages, from which two new maps were generated. The figure plots the correlation between the two maps as resolution shells in Fourier space. A correlation coefficient of 0.5 has been used to establish the resolution of the refinement (dotted lines). Figures 3C-3E show surface-shaded, three-dimensional density map of recombinant CD2AP at ~21 A resolution oriented in various directions. Figure 3C shows a view of the map with the four-fold axis oriented in the y direction. The approximate locations of the CatL cleavage sites at positions 247 (between the second and third SH3 domains) and 352 (following the third SH3 domain) are indicated with asterisks. Figure 3D shows the same view as in Figure 3E but rotated about the four-fold axis. Figure 3E shows a view of the map with upper portion of the molecule rotated toward the viewer. Assignment of the coiled-coil domain is indicated with the legend C-C. Figures 3F-3H show segmentation and domain assignments in the CD2AP map. Figure 3F shows the structures of CD2AP and homologous domains positioned within the CD2AP map. The protein structures, represented with ribbon diagrams, are 1) the N-terminal SH3 domain from CD2AP in yellow, 2) the second SH3 domain from CIN85 in blue, 3) the third SH3 domain from CD2AP in green, and 4) a tetrameric GCN4 mutant coiled-coil domain in red. Figure 3H shows the same fit as in Figure 3E in but with the upper portion of the molecule rotated toward the viewer. Figure 3F shows the segmentation of an individual subunit within the CD2AP map. The central core domains, indicated with red (coiled- coil domain) and violet (proline-rich and nephrin binding domains), possess extensive contacts with their symmetry-related counterparts. Figures 31, 3J show the cathepsin L access to cleavage sites. The structure of human CatL has been modeled with its active site accessing the identified
cleavage sites on CD2AP. Two molecules of CatL are shown, one at each site. Figures 31 and 3 J show ribbon and surface representations of CatL, respectively. CatL has unimpeded access to each of the sites (cathepsin L at positions 247 and 352 are depicted with green and cyan colors, respectively). Figure 3K is a representation of the C-terminal CD2AP core after CatL limited proteolysis (colored piece shows the CD2AP monomer after proteolysis). Segments corresponding to the arm domains have been computationally subtracted from the map.
[0010] Figure 4A shows the co-immunoprecipitation of the slit diaphragm protein nephrin, synaptopodin as well as dendrin from HEK 293 cells that were transfected with N-terminal, C- terminal and full length CD2AP. Figure 4B shows the results from the double immunofluorescent labeling for dendrin and podocyte cell marker WT-I in wild type (WT) and CD2AP KO (5 weeks) mice. Figure 4C shows the dendrin staining in WT, CD2AP KO and CatL knockdown podocytes. Figure 4D shows the immunofluorescent staining of WT and CatL KO mouse glomeruli with dendrin (green) and 4',6-diamidino-2-phenylindole (DAPI, blue) before and 14 days after serum nephritis (SN) injection. Arrows indicate the podocytes with nuclear dendrin. The quantitative analysis (right) showed that 35.0±8.6% WT, SN cells displayed nuclear dendrin versus 12.3±3.8% WT, CON cells (*P=0.0004, t test, n=10) and 16.0±2.9% CatL KO, SN cells (**P=0.0008, t test, n=10). Figure 4E shows the immunofluorescent staining of WT mouse glomeruli with CatL and synaptopodin before and 14 days after serum nephritis (SN) injection. Figure 4F: specificities of N- and C-terminal CD2AP antibodies detected by the immunoblots of HEK293 cells which were transfected with N- terminal, C-terminal and full length CD2AP (CON: untransfected) (top panel). Immunofluorescent staining of WT and CatL KO mouse glomeruli with N-terminal (bottom, left panel) and C-terminal CD2AP (bottom, right panel) before and 14 days after SN injection. CD2AP KO mouse glomeruli were stained as control. Staining intensities were quantified for each glomerulus using Image J software (*P<0.0001, t test, n=10).
[0011] Figure 5A shows the histology of glomeruli in WT and CatL KO mice 14 days after SN injection. Hematoxylin and Eosin (H&E) stainings (original magnification x400) demonstrate loss of podocytes (arrows) within WT mouse glomeruli 14 days after inducing SN compared with the control whereas glomeruli from CatL KO mice do not show significant differences. Figure 5B: The methenamine silver stain (original magnification x400) shows the loss of capillary structure, crescent formation and matrix accumulation in WT glomerulus. The
podocytes that cover these segments present hypertrophy and hyperplasia. Figure 5C: Histopathologic injury scores for kidneys from WT and CatL KO mice injected with SN. Abnormal glomerular architecture was commonly observed in WT mice characterized by hypercellularity (HC), focal segmental glomerulosclerosis (FSGS), crescent cell formation (CRES), and podocyte apoptosis (PodAP) (all *P, **P, ***P <0.0001, t test, n=30).
[0012] Figure 6A shows immunofluorescent staining using N- and C-terminal CD2AP antibodies in kidney biopsies from patients with Minimal Change Disease and Focal Segmental Glomerulosclerosis. N-terminal CD2AP is reduced only in progressive disease (FSGS). Figure 6B shows the expression of FLAG-CD2AP and FLAG-CD2AP with mutated cathepsin L cleavage site (FLAG-CD2AP-CatMut) in kidney of serum nephritis wild type mice. Anti-FLAG immunoprecipitation showed a prominent band at 160 kD consistent with a CD2AP dimer. Incubation with N-terminal CD2AP antisera also showed monomeric CD2AP. Figure 6C shows decreased expression of wild type CD2AP but not of cathepsin L cleavage resistant CD2AP (CD2AP-CatMut) during serum nephritis in podocytes using double immunofluorescent labeling during serum nephritis in podocytes using double immunofluorescent labeling with synaptopodin. N-CD2AP staining intensities were quantified for both glomerulus using Image J software (*P<0.0001, t test, n=10). Figure 6D: Phenotypic analysis of wild type mice during serum nephritis that express full wild type CD2AP or the cathepsin L resistant form, CD2AP-CatMut. H&E staining shows less glomerular damage in mice expressing the cathepsin L cleavage mutant of CD2AP. Silver stain shows prominent crescents in glomeruli where CD2AP is degraded but not in glomeruli that express CD2AP-CatMut. Figure 6E: Semi-quantitative scores of serum nephritis wild type mice that have received wild type CD2AP or cleavage resistant CD2AP (refer to Figure 5C for the histological lesions located along the x-axis; all *P, **P, ***P; ****/> <0.0001, nest, n=30).
[0013] Figure 7A: shows immunofluorescent staining for CatL and CD2AP in glomeruli of puromycin (PAN) treated rats (CON: untreated; d: day). Figure 7B: immunofluorescent labeling of mouse glomeruli after gene delivery of HA-tagged cathepsin L that encodes for pre-pro cathepsin L (CatL M55-110, long) or cytosolic cathepsin L (CatL Ml, short). Gene delivery of cytosolic and lysosomal forms of cathepsin L were performed into wild type mice. Reduction of CD2AP staining was found in glomeruli of animals expressing cytosolic cathepsin L but not in
podocytes overexpressing lysosomal cathepsin L (arrows; CON: untransfected). Figure 7C: shows an immunoblot for CD2AP in cultured podocytes that were exposed to LPS or PAN.
[0014] Figure 8 shows the phosphorus NMR spectra for untreated and LPS-treated wild type (WT) podocytes. Podocytes were cultured and treated with LPS. Eighty to hundred million cells were harvested and resuspended in 2-2.5 mL of phosphate-free RPMI medium (MP Biomedicals) with glutamine (Gibco) prior to assay. Phosphorous NMR spectra were acquired on a 14 Tesla Bruker Avance NMR spectrometer (Bruker Biospin) with a 10 mm broadband observe (BBO) NMR probe. Cell suspensions were placed in 10 mm (od) glass NMR tubes (Wilmad). Samples were maintained at a temperature of 37°C. Spectra were acquired with a recycle delay time of 2 sec and consisted of 1024 averages. Spectra were analyzed using the iNMR software package (Mestrelab Research). Intracellular pH (pHi) was calculated from the chemical shift difference (d) between the intracellular inorganic phosphate peak (Pi) and the primary phosphate of nucleoside phosphates (Pa) using equation 1. HftS) ε*1
[0015] A reference sample containing 2.2 mM disodium phosphate (RPMI-1640 medium, Gibco) and 10 mM ATP (Sigma) was used to calibrate the pHi equation. The pH was varied from 6-8 and the dependence of the chemical shift difference (d) between the inorganic phosphate peak and the alpha-phosphate peak of ATP (Pa) were fit to obtain the constants of equation 1.
[0016] Figure 9 shows the assessment of clathrin-mediated endocytosis in HeLa cells after expression of N-terminal, C-terminal and full length CD2AP.
[0017] Figure 1OA shows the urinary albuminxreatinine ratio (ALB/CREA) in wild type (WT) and CatL KO mice 7 and 14 days after serum nephritis (SN) injection. Significant increases in ALB/CREA ratios was observed in both WT and CatL KO mice 14 days after SN injection when compared to the controls (both *P, **P <0.0001, / test, n=5). Figure 1OB shows the expression levels of synaptopodin and dynamin in WT mice after serum nephritis (SN) injection.
[0018] Figure 1 1 shows trichrome stain showing crescent formation (asterisk) in a WT glomerulus after serum nephritis (original magnification x400). Occasional podocyte bridging was observed in CatL KO mice with serum nephritis, 14 days (arrow).
[0019] Figure 12 is a schematic representation of CatL mRNA containing several AUG codons and resulting proteins. After translation from the first AUG, CatL is processed to yield a 30-kDa lysosomal form, called single-chain CatL (black arrows). However, alternative translation initiation from a downstream AUG produces a CatL isoform devoid of the lysosomal targeting sequence (short CatL), which localizes to the cytoplasm (red arrow).
[0020] Figures 13A-13B: CatL is important for the development of proteinuria in the LPS model. In WT mice, intraperitoneal injection of LPS leads to a T- and B-cell independent transient form of proteinuria through the activation of podocyte TLR-4 and induction of B7-1. Figure 13A: Immunocytochemistry of mouse glomeruli using monoclonal anti-CatL antibody. WT mice receiving LPS (WT LPS) upregulate the expression of cytosolic CatL as compared to control mice receiving PBS (WT CON). LPS was also injected into CatL"7" mice (CatL"'" LPS). Original magnification, *400. Figure 13B: Electron micrographs of Fps showing effacement in LPS treated WT but not in CatL"7" mice.
[0021] Figures 14A-14C: CatL is mRNA and protein expression are elevated in human proteinuric kidney diseases. Figure 14A: Quantitative rt-PCR of microdissected glomeruli from human biopsies of patients with acquired proteinuric diseases: minimal change disease (MCD; n = 7), membranous glomerulonephritis (MGN; n = 9), focal segmental glomerulosclerosis (FSGS; n = 7), and diabetic nephropathy (DN; n = 10). **P < 0.01 for comparison with healthy controls (CON; n = 8). Figure 14B: CatL labeling of normal human kidney. Figure 14C: CatL labeling of a kidney biopsy from a patient with diabetic nephropathy, mildly reduced renal function, and nephrotic range proteinuria.
[0022] Figure 15A-15D: CatL is induced in podocytes during FP effacement. Figure 15A: In control mice, CatL expression is located mainly in lysosomes of primary podocyte processes (dashed arrow). Only few gold labeling is found in FP (solid arrows). Figure 15B: LPS treatment induced FP effacement and induction of CatL in lysosomes of primary processes (dashed arrow) and in effaced podocyte FP (solid arrows); P: podocyte; GBM: glomerular basement membrane; END: endothelial cells; ERY: erythrocyte. Figures 15C, 15D: Schematic
illustration of FP effacement and proteinuria as a podocyte enzymatic disease. Under normal conditions, synaptopodin and dynamin are involved in regulating podocyte F-actin. A small portion of CatL is in the cytosol and participates in a physiological turnover of synaptopodin and dynamin. The induction of cytosolic CatL causes proteolysis of synaptopodin and dynamin, thereby disrupting actin organization, causing podocyte FP effacement and proteinuria.
DETAILED DESCRIPTION
[0023] Embodiments of the present invention relates to discoveries involving agents which modulate and/or inhibit the enzymatic activity of cathepsin L. Other agents include those which inhibit the degradation of CD2AP, and/or inhibit the rate of degradation of CD2AP. Embodiments include compositions which regulate the pH of podocytes, regulate cathepsin L activity, methods of use thereof and methods of delivery thereof. Embodiments further relate to the regulation of pathways by cathepsin L, by modulation of molecules on which cathepsin L interacts with directly or indirectly, e.g. CD2AP. Accordingly, the methods of the present invention can be used to treat disorders characterized by proteinuria.
[0024] Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
[0025] All genes, gene names, and gene products disclosed herein are intended to correspond to homologs from any species for which the compositions and methods disclosed herein are applicable. Thus, the terms include, but are not limited to genes and gene products from humans and mice. It is understood that when a gene or gene product from a particular species is disclosed, this disclosure is intended to be exemplary only, and is not to be interpreted as a limitation unless the context in which it appears clearly indicates. Thus, for example, for the genes disclosed herein, which in some embodiments relate to mammalian nucleic acid and amino
acid sequences are intended to encompass homologous and/or orthologous genes and gene products from other animals including, but not limited to other mammals, fish, amphibians, reptiles, and birds. In preferred embodiments, the genes or nucleic acid sequences are human.
Definitions
[0026] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising."
[0027] The term "about" or "approximately" means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, "about" can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, "about" can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term "about" meaning within an acceptable error range for the particular value should be assumed.
[0028] As used herein, the term "safe and effective amount" or "therapeutic amount" refers to the quantity of a component which is sufficient to yield a desired therapeutic response without undue adverse side effects (such as toxicity, irritation, or allergic response) commensurate with a reasonable benefit/risk ratio when used in the manner of this invention. By "therapeutically effective amount" is meant an amount of a compound of the present invention effective to yield the desired therapeutic response. The specific safe and effective amount or therapeutically effective amount will vary with such factors as the particular condition being treated, the physical condition of the patient, the type of mammal or animal being treated, the duration of the treatment, the nature of concurrent therapy (if any), and the specific formulations employed and the structure of the compounds or its derivatives.
[0029] As used herein "proteinuria" refers to any amount of protein passing through a podocyte that has suffered podocyte damage or through a podocyte mediated barrier that normally would not allow for any protein passage. In an in vivo system the term "proteinuria" refers to the presence of excessive amounts of serum protein in the urine. Proteinuria is a characteristic symptom of either renal (kidney), urinary, pancreatic distress, nephrotic syndromes (i.e., proteinuria larger than 3.5 grams per day), eclampsia, toxic lesions of kidneys, and it is frequently a symptom of diabetes mellitus. With severe proteinuria general hypoproteinemia can develop and it results in diminished oncotic pressure (ascites, edema, hydrothorax).
[0030] The phrase "specifically binds to", "is specific for" or "specifically immunoreactive with", when referring to an antibody refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologies. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to a protein under such conditions may require an antibody that is selected for its specificity for a particular protein.
[0031] As used herein, the term "aptamer" or "selected nucleic acid binding species" shall include non-modified or chemically modified RNA or DNA. The method of selection may be by, but is not limited to, affinity chromatography and the method of amplification by reverse transcription (RT) or polymerase chain reaction (PCR).
[0032] As used herein, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression, in vivo amounts of a gene. This includes any amounts in vivo, functions and the like as compared to normal controls. The term includes, for example, increased, enhanced, increased, agonized, promoted, decreased, reduced, suppressed blocked, or antagonized. Modulation can increase activity or amounts more than 1-fold, 2-fold, 3-fold, 5- fold, 10-fold, 100-fold, etc., over baseline values. Modulation can also decrease its activity or amounts below baseline values.
[0033] The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to a wild type gene. This definition may also include, for example, "allelic," "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The
corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. Of particular utility in the invention are variants of wild type gene products. Variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes that give rise to variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
[0034] The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) or single base mutations in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population with a propensity for a disease state, that is susceptibility versus resistance.
[0035] Derivative polynucleotides include nucleic acids subjected to chemical modification, for example, replacement of hydrogen by an alkyl, acyl, or amino group. Derivatives, e.g., derivative oligonucleotides, may comprise non-naturally-occurring portions, such as altered sugar moieties or inter-sugar linkages. Exemplary among these are phosphorothioate and other sulfur containing species which are known in the art. Derivative nucleic acids may also contain labels, including radionucleotides, enzymes, fluorescent agents, chemiluminescent agents, chromogenic agents, substrates, cofactors, inhibitors, magnetic particles, and the like.
[0036] A "derivative" polypeptide or peptide is one that is modified, for example, by glycosylation, pegylation, phosphorylation, sulfation, reduction/alkylation, acylation, chemical coupling, or mild formalin treatment. A derivative may also be modified to contain a detectable label, either directly or indirectly, including, but not limited to, a radioisotope, fluorescent, and enzyme label.
[0037] As used herein, the term "fragment or segment", as applied to a nucleic acid sequence, gene or polypeptide, will ordinarily be at least about 5 contiguous nucleic acid bases (for nucleic acid sequence or gene) or amino acids (for polypeptides), typically at least about 10 contiguous
nucleic acid bases or amino acids, more typically at least about 20 contiguous nucleic acid bases or amino acids, usually at least about 30 contiguous nucleic acid bases or amino acids, preferably at least about 40 contiguous nucleic acid bases or amino acids, more preferably at least about 50 contiguous nucleic acid bases or amino acids, and even more preferably at least about 60 to 80 or more contiguous nucleic acid bases or amino acids in length. "Overlapping fragments" as used herein, refer to contiguous nucleic acid or peptide fragments which begin at the amino terminal end of a nucleic acid or protein and end at the carboxy terminal end of the nucleic acid or protein. Each nucleic acid or peptide fragment has at least about one contiguous nucleic acid or amino acid position in common with the next nucleic acid or peptide fragment, more preferably at least about three contiguous nucleic acid bases or amino acid positions in common, most preferably at least about ten contiguous nucleic acid bases amino acid positions in common. [0038] The terms "biomolecule" or "markers" are used interchangeably herein and refer to DNA, RNA (including mRNA, rRNA, tRNA and tmRNA), nucleotides, nucleosides, analogs, polynucleotides, peptides and any combinations thereof.
[0039] "Expression/amount" of a gene, biomolecule, or biomarker in a first sample is at a level "greater than" the level in a second sample if the expression level/amount of the gene or biomarker in the first sample is at least about 1 time, 1.2 times, 1.5 times, 1.75 times, 2 times, 3 times , 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 20 times, 30 times, the expression level/amount of the gene or biomarker in the second sample or a normal sample. Expression levels/amounts can be determined based on any suitable criterion known in the art, including but not limited to mRNA, cDNA, proteins, protein fragments and/or gene copy. Expression levels/amounts can be determined qualitatively and/or quantitatively. [0040] The terms "detecting", "detect", "identifying", "quantifying" includes assaying, quantitating, imaging or otherwise establishing the presence or absence of the transcriptomic biomarker, or combinations of biomolecules comprising the biomarker, and the like, or assaying for, imaging, ascertaining, establishing, or otherwise determining the prognosis and/or diagnosis of renal diseases, disorders or conditions. [0041] "Patient" or "subject" refers to mammals and includes human and veterinary subjects.
[0042] As used herein "a patient in need thereof refers to any patient that is affected with a disorder characterized by proteinuria. In one aspect of the invention "a patient in need thereof refers to any patient that may have, or is at risk of having a disorder characterized by proteinuria.
[0043] As used herein, the term "test substance" or "candidate therapeutic agent" or "agent" are used interchangeably herein, and the terms are meant to encompass any molecule, chemical entity, composition, drug, therapeutic agent, chemotherapeutic agent, or biological agent capable of preventing, ameliorating, or treating a disease or other medical condition. The term includes small molecule compounds, antisense reagents, siRNA reagents, antibodies, enzymes, peptides organic or inorganic molecules, natural or synthetic compounds and the like. A test substance or agent can be assayed in accordance with the methods of the invention at any stage during clinical trials, during pre-trial testing, or following FDA-approval.
[0044] As used herein the phrase "diagnostic" means identifying the presence or nature of a pathologic condition. Diagnostic methods differ in their sensitivity and specificity. The "sensitivity" of a diagnostic assay is the percentage of diseased individuals who test positive (percent of "true positives"). Diseased individuals not detected by the assay are "false negatives." Subjects who are not diseased and who test negative in the assay are termed "true negatives." The "specificity" of a diagnostic assay is 1 minus the false positive rate, where the "false positive" rate is defined as the proportion of those without the disease who test positive. While a particular diagnostic method may not provide a definitive diagnosis of a condition, it suffices if the method provides a positive indication that aids in diagnosis.
[0045] As used herein the phrase "diagnosing" refers to classifying a disease or a symptom, determining a severity of the disease, monitoring disease progression, forecasting an outcome of a disease and/or prospects of recovery. The term "detecting" may also optionally encompass any of the above. Diagnosis of a disease according to the present invention can be effected by determining a level of a polynucleotide or a polypeptide of the present invention in a biological sample obtained from the subject, wherein the level determined can be correlated with predisposition to, or presence or absence of the disease. It should be noted that a "biological sample obtained from the subject" may also optionally comprise a sample that has not been physically removed from the subject, as described in greater detail below.
[0046] As defined herein, a therapeutically effective amount of a compound (i.e., an effective dosage) means an amount sufficient to produce a therapeutically (e.g., clinically) desirable result. The compositions can be administered one from one or more times per day to one or more times per week; including once every other day. The skilled artisan will appreciate that certain factors
can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the compounds of the invention can include a single treatment or a series of treatments.
[0047] The term "sample" is meant to be interpreted in its broadest sense. A "sample" refers to a biological sample, such as, for example; one or more cells, tissues, or fluids (including, without limitation, plasma, serum, whole blood, cerebrospinal fluid, lymph, tears, urine, saliva, milk, pus, and tissue exudates and secretions) isolated from an individual or from cell culture constituents, as well as samples obtained from, for example, a laboratory procedure. A biological sample may comprise chromosomes isolated from cells (e.g., a spread of metaphase chromosomes), organelles or membranes isolated from cells, whole cells or tissues, nucleic acid such as genomic DNA in solution or bound to a solid support such as for Southern analysis, RNA in solution or bound to a solid support such as for Northern analysis, cDNA in solution or bound to a solid support, oligonucleotides in solution or bound to a solid support, polypeptides or peptides in solution or bound to a solid support, a tissue, a tissue print and the like.
[0048] Numerous well known tissue or fluid collection methods can be utilized to collect the biological sample from the subject in order to determine the level of DNA, RNA and/or polypeptide of the variant of interest in the subject. Examples include, but are not limited to, fine needle biopsy, needle biopsy, core needle biopsy and surgical biopsy (e.g., brain biopsy), and lavage. Regardless of the procedure employed, once a biopsy/sample is obtained the level of the variant can be determined and a diagnosis can thus be made.
Compositions
[0049] Proteinuria can be primarily caused by alterations of structural proteins involved in the cellular mechanism of filtration. The pathophysiological causes of proteinuria can be divided in the following major groups: (1) genetically determined disturbances of the structures which form the "glomerular filtration unit" like the glomerular basement membrane, the podocytes, or the slit diaphragm, (2) inflammatory processes, either directly caused by autoimmune processes or indirectly induced by microbes, (3) damage of the glomeruli caused by agents, or (4) as the
final result of progressive tubulointerstitial injury finally resulting in the loss of function of the entire nephron.
[0050] The central metabolism of a cell can determine its short- and long-term structure and function. When a disease state arises, the metabolism (i.e., the transportation of nutrients into the cells, the overall substrate utilization and production, synthesis and accumulation of intracellular metabolites, etc.) is altered in a way that may permit the cell to adapt under the changing physiologic constraints. Diabetes mellitus is a metabolic disease that also affects podocytes, key cells that regulate glomerular filtration. A pathological role for a cytoplasmic variant of cathepsin L enzyme as the biological instigator of kidney filter dysfunction (proteinuria) and progression of renal disease through cleavage of different types of critical podocyte target proteins. Podocytes are highly differentiated cells that reside in the kidney glomeruli. Their foot processes (FP) and interposed slit diaphragm (SD) form the final barrier to protein loss. Podocyte injury is typically associated with FP effacement and urinary protein loss.
[0051] In a healthy person, urinary protein excretion is less than 150 mg/day and consists mainly of filtered plasma proteins (60%) and tubular Tamm-Horsfall proteins (40%). The main plasma protein in the urine is albumin, constituting about 20% of daily protein excretion. In healthy subjects, the daily amount of urinary albumin is less than 20 mg (13.8 mg/min). Proteinuria usually reflects an increase in glomerular permeability for albumin and other plasma macromolecules. A 24-h urine collection containing more than 150 mg of protein is considered pathological. There are several basic types of proteinuria; for example, glomerular, tubular, overflow, and exercise-induced. Glomerular proteinuria is the most common form (around 90%). Low molecular weight molecules, such as β2 -microglobulin, amino acids, and immunoglobulin light chains, have a molecular weight of about 25 kDa (albumin is 69 kDa). These smaller proteins are readily filtered across the glomerular filtration barrier and then fully reabsorbed by the proximal tubule. A variety of diseases that affect tubular and interstitial cell integrity impair the tubular reabsorption of these molecules. Some forms of glomerular diseases are also accompanied by tubular injury and tubular proteinuria.
[0052] Pathological processes, such as multiple myeloma with a production of paraproteins, can result in increased excretion of low molecular weight proteins into the urine, a process termed overflow proteinuria. In this scenario, proteinuria results from the amount of filtered
proteins exceeding the reabsorptive capacity of the proximal tubule. Dynamic exercise can also result in increased urinary excretion of proteins, predominantly of plasma origin, during and following physical exercise. A number of terms have been used to describe this phenomenon — post-exercise proteinuria, athletic pseudonephritis, exercise proteinuria, or exercise-induced proteinuria. Maximal rates of proteinuria occur approximately 30 min after exercise, with a resolution toward resting levels within 24-48 h. The magnitude of proteinuria varies from near normal to heavy (47 g/day), with the greatest levels up to 100 times that of rest observed after high-intensity exercise, such as a marathon. It is noteworthy that post-exercise proteinuria is transient in nature and not associated with any particular renal disease, raising the intriguing possibility that at least some forms of proteinuria (e.g., post-exercise, post-prandial, infection- associated) may reflect a normal, physiological response of the human body. The work described herein, inter alia, proteinuria can result from enzymatic cleavage of essential regulators of podocyte actin dynamics by cytosolic cathepsin L (CatL).
[0053] Phosphorylation of synaptopodin by PKA or CaMKII promotes 14-3-3 binding, which protects synaptopodin against CatL-mediated cleavage, thereby stabilizing synaptopodin steady-state levels. Synaptopodin suppresses IRSp53:Mena-mediated filopodia by blocking the binding of Cdc42 and Mena to IRSp53 and induces stress fibers by competitive blocking the Smurf-1 -mediated ubiquitination of RhoA. Synaptopodin also prevents the CatL-mediated degradation of dynamin. Synaptopodin stabilizes the kidney filter by blocking the reorganization of the podocyte actin cytoskeleton into a migratory phenotype. Dephosphorylation of synaptopodin by calcineurin abrogates the interaction with 14-3-3. This renders the CatL cleavage sites of synaptopodin accessible and promotes the degradation of synaptopodin. LPS or various other proximal signals induce the expression of B7-1 and CatL in podocytes, which cause proteinuria through the increased degradation of synaptopodin and dynamin. In parallel, LPS or other proximal signals can also activate Cdc42 and Racl though uPAR:b3 integrin signaling, through the loss of synaptopodin-mediated inhibition of Cdc42 signaling or through Nef:Src-mediated activation of Racl . As a consequence, the podocyte actin cytoskeleton shifts from a stationary to a motile phenotype, thereby causing foot process effacement and proteinuria. CsA and E64 safeguard against proteinuria by stabilizing synaptopodin and dynamin steady-state protein levels in podocytes, FP(4)-Mito by blocking Cdcd42:IRSp53:Mena signaling,
cycloRGDfV by blocking uPAR:b3 integrin signaling, NSC23766 by blocking Racl and Epleronone by blocking aldosterone signaling.
[0054] The enzymatic regulation of CD2AP in podocytes was characterized herein, and cathepsin L mediated remodeling of CD2AP as responsible event for the progression of renal disease towards end-stage renal failure were identified. CD2AP is a scaffolding protein containing three N-terminal SH3 domains. In the kidney, it is strongly expressed in glomerular podocytes, cells that regulate renal filtration. Homozygous CD2AP mutation or haplo- insufficiency of the human CD2AP gene confer susceptibility to glomerular disease and mice lacking CD2AP develop progressive kidney failure. The structural organization of CD2AP at 21 A resolution reveals a tetrameric structure that exposes two cathepsin L cleavage sites. CD2AP is processed into a 32 kD C-terminal, structurally competent core protein that lacks SH3 domains and permits the release of the slit diaphragm protein dendrin, that in turn translocates to the podocyte nucleus to promote podocyte apoptosis. Enzymatic remodeling of CD2AP by cytosolic cathepsin L occurs in human and murine progressive kidney disease. Cathepsin L knockout mice with serum nephritis and wild type mice expressing cleaving resistant CD2AP are protected from nuclear dendrin and glomerular disease progression. The data herein show that the proteolytic regulation of CD2AP constitutes a critical factor for renal disease progression.
[0055] Thus, in a preferred embodiment, a composition modulates expression and/or activity of cathepsin L. The agent can be any agent that modulates expression of cathepsin L or the activity of cathepsin L, such as for example, antisense oligonucleotides, antibodies, small molecules, and the like.
[0056] In an other preferred embodiment, an agent modulates the degradation of CD2AP. The agent can be an antibody, for example, which inhibits access of cathepsin and any other enzyme involved in the degradation of CD2AP to their specific cleavage sites. Thus, a composition may comprise both agents which inhibit cathepsin L expression and/or activity and an agent which inhibits CD2AP degradation.
[0057] In another preferred embodiment, an agent comprises a mutant CD2AP molecule which is resistant to cathepsin L enzymatic degradation. The examples which follow identify cathepsin L cleavage sites present in CD2AP. For example, amino acid sequences susceptible to cathepsin L activity comprise: ELRKE (SEQ ID NO: 1), ELAKA (SEQ ID NO: 2), LPGRF
(SEQ ID NO: 3), AFVAR (SEQ ID NO: 4), LSAAE (SEQ ID NO: 5), ELGKE (SEQ ID NO: 6), QPLGS (SEQ ID NO: 7), KIRGI (SEQ ID NO: 8), APGSV (SEQ ID NO: 9), LIVGV (SEQ ID NO: 10), EIIRV (SEQ ID NO: 1 1), mutants, derivatives, variants or combinations thereof.
[0058] In a preferred embodiment, a blocking agent specific for one or more of these sites inhibit degradation of CD2AP by inhibiting access of the cathepsin enzyme.
[0059] In another preferred embodiment, a mutant CD2AP molecule comprises at least one nucleic acid or amino acid mutation in the enzyme cleavage sites.
[0060] In a preferred embodiment, the agent modulates or inhibits cathepsin L activity by about 5% as compared to a normal control, preferably by about 10%, preferably by about 50%, preferably by about 80%, 90%, 100%. Modulation of the activity of cathepsin L and stabilizes potential cleavage targets of the enzyme, thus protecting podocyte function and treating proteinuria.
[0061] In another preferred embodiment, the agent modulates or inhibits the degradation and/or rate of degradation of CD2AP molecules as compared to normal controls by about 5%, preferably by about 50%, preferably by about 80%, 90%, 100%.
[0062] In another preferred embodiment, agents which modulate cathepsin-L activity and/or expression comprise oligonucleotides, polynucleotides, peptides, polypeptides, antibodies, aptamers, small molecules, organic molecules, inorganic molecules or combinations thereof.
[0063] In another preferred embodiment, the composition comprises one or more agents which modulate CD2AP degradation or rate of degradation and/or cathepsin L activity, function or expression. For example, one agent directly inhibits cathepsin L activity. In another example, an agent directly inhibits CD2AP degradation and/or rate of degradation and a second agent which directly targets cathepsin L, by, for example, binding to it, such as an antibody, an antisense oligonucleotide which inhibits cathepsin L expression, an agent which targets another molecule in the cathepsin L synthesis pathway, or molecules in pathways which are targeted by cathepsin L, such as for example, dynamin, CD2AP, synaptopodin, etc. In another example, a composition comprises two agents whereby both modulate CD2AP degradation.
[0064] In another preferred embodiment, a method of treating a disease or disorder associated with pathological cathepsin L expression and/or activity comprises administering to a
patient in need thereof, an effective amount of an agent which modulates cathepsin L activity, function and/or expression in vivo for treating the disorders. For example a podocyte disease or disorder such as proteinuria.
[0065] In another preferred embodiment, a method of treating a disease or disorder associated with pathological CD2AP degradation comprises administering to a patient in need thereof, an effective amount of an agent which modulates CD2AP degradation in vivo for treating the disorders.
[0066] In another preferred embodiment, a method of treating a disease or disorder associated with pathological CD2AP degradation comprises administering to a patient in need thereof, an effective amount of an agent which modulates CD2AP expression, activity and/or function in vivo for treating the disorders. For example, the agent can be a vector expression CD2AP molecules, an agent which targets CD2AP nucleic acids which increase in vivo production of CD2AP, a vector expressing a mutant form of CD2AP which is resistant to cleavage by cathepsin and other enzymes and the like.
[0067] In another preferred embodiment, a combination of agents which modulate CD2AP expression, function and/or activity and/or modulate CD2AP degradation are administered to a patient, for example, in the treatment of a disease or disorder characterized by proteinuria and/or podocyte diseases or disorders.
[0068] In a preferred embodiment, a disease or disorder characterized by proteinuria comprising: glomerular diseases, membranous glomerulonephritis, focal segmental glomerulonephritis, minimal change disease, nephrotic syndromes, pre-eclampsia, eclampsia, kidney lesions, collagen vascular diseases, stress, strenuous exercise, benign orthostatic (postural) proteinuria, focal segmental glomerulosclerosis (FSGS), IgA nephropathy, IgM nephropathy, membranoproliferative glomerulonephritis, membranous nephropathy, sarcoidosis, Alport's syndrome, diabetes mellitus, kidney damage due to drugs, Fabry's disease, infections, aminoaciduria, Fanconi syndrome, hypertensive nephrosclerosis, interstitial nephritis, Sickle cell disease, hemoglobinuria, multiple myeloma, myoglobinuria, cancer, Wegener's Granulomatosis or Glycogen Storage Disease Type 1.
[0069] In another preferred embodiment, modulation of CD2AP expression, function, activity, or degradation is modulated by an agent in the treatment of podocyte-related disorders
or diseases. For the purposes of this invention, the terms "podocyte disease(s)" and "podocyte disorder(s)" are interchangeable and mean any disease, disorder, syndrome, anomaly, pathology, or abnormal condition of the podocytes or of the structure or function of their constituent parts.
[0070] In another preferred embodiment, a method of treating a podocyte disease or disorder associated with pathological cathepsin L expression and/or activity comprises administering to a patient in need thereof, an effective amount of an agent which modulates cathepsin L activity, function and/or expression in vivo for treating the podocyte diseases or disorders.
[0071] Such disorders or diseases include but are not limited to loss of podocytes (podocytopenia), podocyte mutation, an increase in foot process width, or a decrease in slit diaphragm length. In one aspect, the podocyte-related disease or disorder can be effacement or a diminution of podocyte density. In one aspect, the diminution of podocyte density could be due to a decrease in a podocyte number, for example, due to apoptosis, detachment, lack of proliferation, DNA damage or hypertrophy.
[0072] In one embodiment, the podocyte-related disease or disorder can be due to a podocyte injury. In one aspect, the podocyte injury can be due to mechanical stress such as high blood pressure, hypertension, or ischemia, lack of oxygen supply, a toxic substance, an endocrinologic disorder, an infection, a contrast agent, a mechanical trauma, a cytotoxic agent (cis-platinum, adriamycin, puromycin), calcineurin inhibitors, an inflammation (e.g., due to an infection, a trauma, anoxia, obstruction, or ischemia), radiation, an infection (e.g., bacterial, fungal, or viral), a dysfunction of the immune system (e.g., an autoimmune disease, a systemic disease, or IgA nephropathy), a genetic disorder, a medication (e.g., anti-bacterial agent, anti-viral agent, antifungal agent, immunosuppressive agent, anti-inflammatory agent, analgesic or anticancer agent), an organ failure, an organ transplantation, or uropathy. In one aspect, ischemia can be sickle-cell anemia, thrombosis, transplantation, obstruction, shock or blood loss. In on aspect, the genetic disorders may include congenital nephritic syndrome of the Finnish type, the fetal membranous nephropathy or mutations in podocyte-specific proteins, such as α-actin-4, podocin and TRPC6.
[0073] In one aspect, the podocyte-related disease or disorder can be an abnormal expression or function of slit diaphragm proteins such as podocin, nephrin, CD2AP, cell membrane proteins such as TRPC6, and proteins involved in organization of the cytoskeleton such as synaptopodin, actin binding proteins, lamb-families and collagens. In another aspect, the podocyte-related
disease or disorder can be related to a disturbance of the GBM, to a disturbance of the mesangial cell function, and to deposition of antigen-antibody complexes and anti-podocyte antibodies. In another aspect, the podocyte-related disease or disorder can be tubular atrophy.
[0074] In a preferred embodiment, the podocyte-related disease or disorder comprises proteinuria, such as microalbumiuria or macroalbumiuria. Thus, in some preferred embodiments, one or more agents which modulate CD2AP expression, function, activity, degradation, rate of degradation and/or inhibiting expression or activity of cathepsin L can be combined with one or more other chemotherapeutic compounds which are used to treat any of the podocyte diseases or disorders.
[0075] Constituents of the Kidney Filtration Barrier. The kidney glomerulus is a highly specialized vascular bed that ensures the selective ultrafiltration of plasma so that the essential proteins are retained in the blood. The glomerular basement membrane (GBM) provides the primary structural support for the glomerular tuft. The basic unit of the glomerular tuft is a single capillary. The fenestrated glomerular endothelial cells and mesangial cells are located inside the GBM, whereas podocytes are attached to the outer aspect of the GBM. The glomerular capillaries function as the filtration barrier. The filtration barrier is characterized by distinct charge and size selectivity, thereby ensuring that albumin and other plasma proteins are retained in the circulation. Proteinuria occurs when the permeability of the glomerular barrier is increased. Human monogenetic studies show that mutations affecting podocyte proteins, including α-actinin-4, CD2AP, nephrin, PLCEl, podocin, and TRPC6, lead to renal disease owing to disruption of the filtration barrier and rearrangement of the podocyte actin cytoskeleton. Additional proteins regulating the podocyte actin cytoskeleton, such as Rho GDIa, podocalyxin, FATl, 22 Nckl/2 and synaptopodin, are also of importance for sustained function of the glomerular filtration barrier. The glomerular filter is the primary barrier for albumin and that the glomerular sieving coefficient for albumin is extremely low.
[0076] Podocytes are Pericyte-Like Cells with an Actin-Based Contractile Apparatus: Differentiated podocytes are mesenchymal-like cells that arise from epithelial precursors during renal development. Similar to pericytes, podocytes never embrace a capillary in total.10 Podocytes consist of three morphologically and functionally different segments: a cell body, major processes, and foot processes (FPs). From the cell body, major processes arise that split
into FP. FPs contain an actin-based cytoskeleton that is linked to the GBM. Podocyte FPs form a highly branched interdigitating network with FPs of neighboring podocytes connected by the slit diaphragm (SD). The SD is a modified adherens junction that covers the 30-50nm wide filtration slits, thereby establishing the final barrier to urinary protein loss. The extracellular portion of the SD is made up of rod-like units that are connected in the center to a linear bar, forming a zipper-like pattern, with pores about the same size as or smaller than albumin. The function of podocytes is largely based on their complex cell architecture, in particular on the maintenance of the normal FP structure with their highly ordered parallel contractile actin filament bundles. FPs are functionally defined by three membrane domains: the apical membrane domain, the SD, and the basal membrane domain or sole plate that is associated with the GBM. All three domains are physically and functionally linked to the FP actin cytoskeleton. Proteins regulating the plasticity of the podocyte actin cytoskeleton are therefore of critical importance for sustained function of the glomerular filter.
[0077] Signal Transduction at the SD Regulates Podocyte Actin Dynamics: At the SD, multiple membrane proteins are present that are connected to the actin cytoskeleton through a variety of adaptor and effector proteins that may function as a key sensor and regulator of the permanent changes in FP shape and length. Changes in podocyte FP dynamics need to be precisely coordinated with FPs of neighboring podocytes, thereby preserving the integrity of the filtration barrier during FP movements, with functional coupling of opposing FPs and signaling cascades on both sides of the SD. Mutations in the NPHSl gene encoding for the SD protein nephrin have been identified as the cause of congenital nephrotic syndrome of the Finnish type. It is noteworthy that nephrin is connected to the actin cytoskeleton through several adapter proteins and has a pivotal part in the regulation of podocyte actin dynamics. A signaling pathway couples nephrin to the actin cytoskeleton through the adaptor protein Nek. After nephrin phosphorylation by Fyn, Nek binds to phospho-nephrin and Nek binds to N-WASP. This in turn leads to the activation of the Arp2/3 complex, a major regulator of actin dynamics.
[0078] Podocyte Dysfunction is the Common Thread in Proteinuric Diseases: Podocytes can be injured in many forms of human and experimental glomerular disease, including minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy, diabetic nephropathy, and lupus nephritis. Characteristic changes are actin cytoskeleton reorganization of the involved FP, which typically leads to FP effacement and SD
disruption. Interference with any of the three FP domains changes the actin cytoskeleton from parallel contractile bundles into a dense network with FP effacement (reflected by the simplification of the FP structure and loss of the normal interdigitating pattern) and proteinuria. Causes of FP effacement and proteinuria include the following: (i) changes in SD structure or function, (ii) interference with the GBM or the podocyte-GBM interaction, (iii) dysfunction of the podocyte actin cytoskeleton, (iv) modulation of the negative surface charge of podocytes, and (v) activation of CatL-mediated proteolysis (see below).
[0079] In addition, disturbances in the transcriptional regulation of podocyte function, modulation of vascular endothelial growth factor, transforming growth factor-β, adiponectin, notch, or aPKClambda signaling can also contribute to the pathogenesis of FP effacement and proteinuria. The early structural changes in podocyte morphology, such as FP effacement and SD disruption, are fully reversible. From a clinical point of view it is important to recognize that persistent podocyte injury harbors great risk to severe and progressive glomerular damage. The persistence of podocyte injury can cause podocyte cell death (through apoptosis or necrosis) or podocyte detachment from the GBM. Through a series of ensuing changes that have been reviewed in detail elsewhere, the loss of podocyte ultimately leads to glomerulosclerosis and end-stage renal failure. Patients with MCD or membranous glomerulopathy can present over years with nephrotic-range proteinuria without progressing to end-stage renal failure. Thus, the role of proteinuria in the progression of kidney failure probably depends on the type and the route of protein loss; that is, protein loss across the filtration barrier versus misdirected filtration into the periglomerular interstitium.
[0080] Increased FP Motility and the Onset of Proteinuria: The podocyte FP actin cytoskeleton is highly dynamic, although the underlying mechanisms remained ill defined. Testaments to a dynamic FP regulation are experiments that used perfusion of rat kidneys with the polycation protamine sulfate (PS). This treatment causes FP effacement and SD disruption within 15 min and tyrosine phosphorylation of nephrin. The reperfusion with heparin for another 15 min can reverse PS-induced FP effacement and nephrin phosphorylation. PS-induced FP effacement involves the active reorganization of actin filaments, and disruption of the actin cytoskeleton by cytochalasin can prevent PS-induced FP effacement.
[0081] The Role of the Cytosolic CatL andB7-l in the Pathogenesis of Proteinuria: CatL is a member to the cathepsin family of cysteine proteases, which are involved primarily in protein breakdown in the lysosome. As shown herein, the onset of proteinuria represents a migratory event in podocyte FP that is caused by the activation of CatL. Subsequently, as shown herein, a cytoplasmic variant of CatL in podocytes is required for the development of proteinuria in mice through a mechanism that involves the cleavage of the large GTPase dynamin and synaptopodin. The clinical relevance of these findings was underscored by the observation that increased podocyte CatL expression was found in a variety of human proteinuric kidney diseases, including MCD, membranous glomerulopathy, FSGS, and diabetic nephropathy. Together these results support the notion that CatL-mediated proteolysis may have a key function in the development of many forms of proteinuria.
[0082] The lipopolysaccharide (LPS) model of proteinuria also helped identifying an unanticipated role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. It is noteworthy that the expression of B7-1 in podocytes is correlated with the severity of human lupus nephritis, and mice lacking B7-1 are protected from LPS-induced proteinuria, suggesting a functional link between podocyte B7-1 expression and proteinuria. Functionally, LPS signaling through Toll-like receptor-4 reorganized the actin cytoskeleton of cultured podocytes. These findings also suggest a function for B7-1 in danger signaling by podocytes. LPS causes proteinuria by selectively targeting podocytes because podocyte-specific overexpression of CatL-resistant dynamin or synaptopodin is sufficient to safeguard against proteinuria. Key effectors of the LPS-induced proteinuria have been detected in podocytes in vivo in animals and in biopsies from patients with proteinuric kidneys diseases, including B7-1, CatL,60 and urokinase plasminogen activator receptor (uPAR). Although there is no report about cytosolic variant of cathepsin L in the proximal tubule, CatL is highly expressed in the tubular lysosomes.
[0083] Activation of Promigratory Cdc42 and Racl in Podocytes Causes FP Effacement and Proteinuria: The Rho family of small GTPases (RhoA, Racl, and Cdc42) controls signal- transduction pathways that influence many aspects of cell behavior, including actin dynamics. At the leading edge, Racl and Cdc42 promote cell motility through the formation of lamellipodia and filopodia, respectively. On the contrary, RhoA promotes the formation of contractile actin- myosin containing stress fibers in the cell body and at the rear.
[0084] Agents: A wide variety of agents can be used to target cathepsins, especially cathepsin L. These agents may be designed to target cathepsins by having an in vivo activity which reduces the expression and/or activity of cathepsin L. In some preferred embodiments, the agents target the calcineurin-CatL pathways, such as for example, the calcineurin-CatL pathway-dependent versus independent pathways, leading to proteinuria and/or progressive kidney disease. In some embodiments, the agents are novel calcineurin (synaptopodin) and CatL substrates (dynamin, synaptopodin), and/or inhibit cytosolic CatL. In embodiments, the agents are selective, antiproteinuric, and/or podocyte-protective drugs. In other embodiments, one or more agents are administered as part of a preventative or treatment regimen, either at the same time or at various times apart as determined by the attending medical practitioner.
[0085] As shown in the examples section which follows, the role of podocyte cathepsin L is a key enzyme in acquired proteinuria. CatL is a potent endoprotease primarily responsible for final protein breakdown within lysosomal compartments. In addition, a secreted form of CatL is involved in the degradation of extracellular matrix (ECM) in vivo and in vitro. Both the lysosomal and secreted forms of CatL have been implicated in cancer cell biology and metastasis. A CatL inhibitor E64 can reduce experimental proteinuria in a rat glomerulonephritis model. The onset of experimental proteinuria is accompanied by an increased motility of podocytes, which was abrogated in CatL"A podocytes. Expression of a few intracellular podocyte proteins such as CD2AP declined, but only in the presence of CatL. In a subsequent study, we found that PAN and Lipopolysaccharide (LPS, another proteinuric stimulus) specifically induce a short cytosoplasmic variant of CatL devoid of the lysosomal targeting sequence (Figure 12). A shorter CatL variant arises by translation from an alternate downstream AUG site and locates in the nucleus of fibroblasts where it can cleave the transcription factor CDP/Cux or serve in Histone H3 processing during mouse embryonic stem cell differentiation. This obviously broke with a dogma that CatL can only be active in the acidic pH of the lysosome. Whereas conventional CatL cleaves a variety of proteins very efficiently due to the denaturing conditions and low pH of the lysosome, short CatL exhibits a remarkable substrate specificity that allows a very specific enzymatic activity at cytosolic or nuclear pH. So far, two substrates of cytosolic CatL have been described in podocytes: dynamin and synaptopodin. Both proteins contribute to the functional F-
actin in normal podocyte FPs and allow their effacement after their enzymatic processing by CatL.
[0086] CatL is significantly induced in at least two rodent models of proteinuria, i.e. the LPS mouse model (Figure 13A) and the rat PAN model. Stainings in cultured podocytes treated with LPS or PAN revealed a vast increase of CatL enzyme in the cytosol. Enzymatic activity assays determined that cytosolic CatL is enzymatically active and can cleave its targets dynamin and synaptopodin. The significance of CatL induction is further underscored by the finding that CatL knockout mice are protected from LPS induced FP effacement and proteinuria (Figures 13A, 13B). Human data stems from isolated glomeruli of explanted renal allografts with chronic allograft nephropathy and microdissected glomeruli from kidney biopsies of patients with three types of glomerular disease, membranous nephropathy (MN), focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy (DNP) (Figure 14A). All these cases revealed a two-fold or greater induction of CatL mRNA as measured by real-time RT-PCR. Increased CatL protein is found in podocytes of patients with DNP [15] (Figure 14B, 14C).
[0087] Cathepsin L proteolyzes dynamin and synaptopodin: The computer algorithm PEPS (Prediction of Endopeptidase Proteolytic Sites) has served to identify possible CatL substrates. Since PEPS does not take into account the condition of the environment, i.e. the pH of the compartment (lysososome vs cytosol), it is necessary to experimentally confirm the cleavage prediction using purified proteins. Using this algorithm, the first identified cleavage target in podocytes was the large GTPase dynamin. Dynamin is essential for the formation of clathrin- coated vesicles at the plasma membrane during endocytosis and has also been implicated in the regulation of actin dynamics in certain cell types. Dynamin is specifically cleaved in podocytes by CatL during LPS- or PAN- induced proteinuria in animal models and gene delivery of mutant dynamin forms resistant to cleavage by CatL protected mice from LPS-induced proteinuria. Intact dynamin is required for proper podocyte structure and function. Expression of dominant- negative dynamin mutants in podocytes caused proteinuria in vivo and led to a loss of actin stress fibers in vitro. The role of dynamin in maintaining podocyte integrity does not depend on its function in endocytosis, but rather on its ability to stabilize F-actin organization in the FPs.
[0088] Synaptopodin is another major cleavage target for cytoplasmic CatL. Synaptopodin is the founding member of a unique class of proline-rich, actin-associated proteins that are
expressed in highly dynamic cell compartements, such as the dendritic spine apparatus of neurons and podocyte FPs. Synaptopodin binds to α-actinin and regulates the actin-bundling activity of α-actinin. Synaptopodin-deficient {synpό~ ~) mice display impaired recovery from protamine sulfate-induced podocyte FP effacement and LPS-induced proteinuria. Similarly, synpό~'~ podocytes show impaired actin filament reformation in vitro. Synaptopodin is specifically proteolyzed at two cleavage sites by cytosolic CatL. In vivo gene delivery or the podocyte-specific transgenic expression of a synaptopodin mutant that lacks these cleavage sites protected mice from LPS-induced proteinuria, suggesting that CatL-mediated cleavage of synaptopodin is required for the induction of FP effacement by LPS. Stabilized synaptopodin protein levels also help to maintain dynamin levels.
[0089] The main deleterious action of CatL in podocytes stems from a novel CatL form that is active in the cytoplasm of podocytes (Figure 15A-15D) and that is highly target selective. Embodiments of the invention are also directed to CatL inhibitors that localize to the cytosol of a podocyte and specifically inhibit the disease-causing CatL variant.
[0090] In summary, podocyte FP effacement can be caused by the translation of a novel CatL variant in the cytosol of podocyte FPs. CatL is induced in many proteinuric diseases. So far two major cleavage targets have been described: Dynamin and synaptopodin. Both proteins are regulators of podocyte cytoskeletal function. Additional targets are being investigated. The unraveling of these pathways not only greatly enhances our understanding of the pathophysiology of glomerular diseases but also enables the development of specific therapies for proteinuric syndromes by directly targeting components of these enzymatic cascades in podocytes.
[0091] In other preferred embodiments, the agents may regulate cathepsin L based on the cDNA or regulatory regions of cathepsin L. For example, DNA-based agents, such as antisense inhibitors and ribozymes, can be utilized to target both the introns and exons of the cathepsin genes as well as at the RNA level.
[0092] Alternatively, the agents may target cathepsin L based on the amino acid sequences including the propieces and/or three-dimensional protein structures of cathepsin L. Protein- based agents, such as human antibody, non-human monoclonal antibody and humanized antibody, can be used to specifically target different epitopes on cathepsin L. Peptides or
peptidomimetics can serve as high affinity inhibitors to specifically bind to the active site of a particular cathepsin, thereby inhibiting the in vivo activity of the cathepsin. Small molecules may also be employed to target cathepsin, especially those having high selectivity toward cathepsin L.
[0093] In addition to targeting cathepsin L, agents may also be used which competitively inhibit cathepsin L by competing with the natural substrates of cathepsins for binding with the enzymes.
[0094] In another embodiment, one of the agents can be a are protease inhibitor, specific for cathepsin L. Inhibitors of cathepsins include cathepsin L, B, and D inhibitors, antisense to cathepsin, siRNA, and antisense-peptide sequences. Examples of cathepsin inhibitors include but are not limited to epoxysuccinyl peptide derivatives [E-64, E-64a, E-64b, E-64c, E-64d, CA- 074, CA-074 Me, CA-030, CA-028, etc.], peptidyl aldehyde derivatives [leupeptin, antipain, chymostatin, Ac-LVK-CHO5 Z-Phe-Tyr-CHO, Z-Phe-Tyr(OtBu)-COCHO • H2O, 1- Naphthalenesulfonyl-Ile-Trp-CHO, Z-Phe-Leu-COCHO • H2O, etc.], peptidyl semicarbazone derivatives, peptidyl methylketone derivatives, peptidyl trifluoromethylketone derivatives [Biotin-Phe-Ala-fluoromethyl ketone, Z-Leu-Leu-Leu- fiuoromethyl ketone minimum, Z-Phe- Phe-fluoromethyl ketone, N-Methoxysuccinyl- Phe-HOMO-Phe-fluoromethyl ketone, Z-Leu- Leu-Tyr-fluoromethyl ketone, Leupeptin trifluoroacetate, ketone, etc.], peptidyl halomethylketone derivatives [TLCK, etc.], bis(acylamino)ketone [l,3-Bis(CBZ-Leu-NH)-2- propanone, etc.], peptidyl diazomethanes [Z-Phe-Ala-CHN2, Z-Phe-Thr(OBzl)-CHN2, Z-Phe- Tyr (O-t-But)- CHN2, Z-Leu-Leu-Tyr-CHN2, etc.], peptidyl acyloxymethyl ketones, peptidyl methylsulfonium salts, peptidyl vinyl sulfones [LHVS, etc.], peptidyl nitriles, disulfides [5,5'- dithiobis[2-nitrobenzoic acid], cysteamines, 2,2'-dipyridyl disulfide, etc.], non- covalent inhibitors [N-(4-Biphenylacetyl)-S-methylcysteine-(D)-Arg-Phe-b- phenethylamide, etc.], thiol alkylating agents [maleimides, etc,], azapeptides, azobenzenes, O-acylhydroxamates [Z-Phe-Gly- NHO-Bz, Z-FG-NHO-BzOME, etc.], lysosomotropic agents [chloroquine, ammonium chloride, etc.], and inhibitors based on Cystatins [Cystatins A, B, C, stefins, kininogens, Procathepsin B Fragment 26-50, Procathepsin B Fragment 36-50, etc.].
[0095] In another embodiment, the invention provides methods for inhibiting at least one enzymatic activity of cathepsin L. In one embodiment the cathepsin L inhibitors comprise: Z-
Phe-Phe-FMK, H-Arg-Lys-Leu-Trp-NH2, N-(I- Naphthalenylsulfonyl)-ile-Trp-aldehyde, Z-Phe- Tyr(tBu)-diazomethylketone, or Z- Phe-Tyr-aldehyde .
[0096] Nucleic Acid-based Agents: Nucleic acid-based agents such as antisense molecules and ribozymes can be utilized to target both the introns and exons of the cathepsin genes as well as at the RNA level to inhibit gene expression thereof, thereby inhibiting the activity of the targeted cathepsin. Further, triple helix molecules may also be utilized in inhibiting the cathepsin gene activity. Such molecules may be designed to reduce or inhibit either the wild type cathepsin gene, or if appropriate, the mutant cathepsin gene activity. Techniques for the production and use of such molecules are well known to those of skill in the art, and are succinctly described below.
[0097] In another preferred embodiment, CD2AP genes are modulated by targeting nucleic acid sequences involved in the expression and/or activity of CD2AP molecules. For example, regulatory regions would be a target to increase the expression of CD2AP.
[0098] Antisense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required.
[0099] A sequence "complementary" to a portion of an RNA, as referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
[00100] Oligonucleotides that are complementary to the 5' end of the message, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated
sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. Wagner (1994) Nature 372:333-335. For example, oligonucleotides complementary to either the 5'- or 3 '-untranslated, non-coding regions of the human or mouse gene of cathepsin L could be used in an antisense approach to inhibit translation of endogenous cathepsin L mRNA.
[00101] In another preferred embodiment, the antisense approach can be used to target negative regulators of CD2AP expression and/or function.
[00102] Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of target gene mRNA, antisense nucleic acids are preferably at least six nucleotides in length, and are more preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, preferably at least 17 nucleotides, more preferably at least 25 nucleotides and most preferably at least 50 nucleotides.
[00103] Alternatively, antisense molecules may be designed to target the translated region, i.e., the cDNA of the cathepsin gene. For example, the antisense RNA molecules targeting the full coding sequence or a portion of the mature murine cathepsin L (Kirschke et al. (2000) Euro. J. Cancer 36:787-795) may be utilized to inhibit expression of cathepsin L and thus reduce the activity of its enzymatic activity. In addition, a full length or partial cathepsin L cDNA can be subcloned into a pcDNA-3 expression vector in reversed orientation and such a construct can be transfected into cells to produce antisense polyRNA to block endogenous transcripts of a cathepsin, such as cathepsin L, and thus inhibit the cathepsin's expression.
[00104] In vitro studies may be performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs
from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
[00105] The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides, or agents facilitating transport across the cell membrane (See, e.g., Letsinger (1989) Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556) or the blood-brain barrier, hybridization-triggered cleavage agents. See, e.g., Krol (1988) Bio Techniques 6:958-976 or intercalating agents. See, e.g., Zon (1988) Pharm. Res. 5:539-549. The oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
[00106] The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group consisting of, but not being limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5- carboxymethylaminomet- hyluracil, dihydrouracil, β-D-galactosylqueosine, inosine, N6- isopentenyladenine, 1 -methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5- methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, β-D-mannosylqueosine, 5'- methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopenten- yladenine, uracil-5- oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6- diaminopurine.
[00107] The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group consisting of, but not being limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
[00108] In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a
phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
[00109] Ribozyme molecules designed to catalytically cleave target gene mRNA transcripts can also be used to prevent translation of target gene mRNA and, therefore, expression of target gene product. See, e.g. Sarver et al. (1990) Science 2W-XXXl-YIlS.
[00110] Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules should include one or more sequences complementary to the target gene mRNA, and should include the well known catalytic sequence responsible for mRNA cleavage.
[00111] While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art.
[00112] Endogenous cathepsin gene expression can also be reduced by inactivating or "knocking out" the targeted cathepsin gene or its promoter using targeted homologous recombination. Smithies et al. (1985) Nature 317:230-234; Thomas and Capecchi, (1987) Cell 51 :503-512; and Thompson e? α/. (1989) Cell 5:313-321.
[00113] Alternatively, endogenous cathepsin gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the cathepsin gene (i.e., the target gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene in target cells in the body. See generally, Helene (1991) Anticancer Drug Des. 6:569-584; Helene et al. (1992) Ann. KY. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14:807-815.
[00114] Nucleic acid molecules to be used in triplex helix formation for the inhibition of transcription should be single stranded and composed of deoxynucleotides. The base
composition of these oligonucleotides must be designed to promote triple helix formation via Hoδgsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine- based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine- rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.
Biomarkers
[00115] In a preferred embodiment, a biomarker for the diagnosis of a disease or disorder characterized by proteinuria and/or identification of individuals at risk of developing a disease or disorder characterized by proteinuria comprising: cathepsin-L, system N glutamine transporter (SNAT3), dynamin, synaptopodin or cytoskeletal regulator protein synaptopodin, cytoskeletal adaptor protein (CD2AP), variants, mutants or fragments thereof.
[00116] The biomarkers can be increased or decreased in expression relative to each other. The panel of biomarker expression profiles are compared to normal controls. In other instances, the intra-cellular localization changes with the progression of disease. For example, a fragment of CD2AP comprises p32 C-terminal fragment. As cathepsin-L cleaves the CD2AP, there is an increase in N-terminal CD2AP fragments and p32 fragments. The p32 cannot bind to dendrin, which is then trafficked to the podocyte nuclei. Thus, dendrin localization is altered during the disease progression.
[00117] In another preferred embodiment, the identification of an individual at risk of developing disease or disorder characterized by proteinuria detects at least one biomarker or fragments thereof.
[00118] In another preferred embodiment, the progression of disease or disorder characterized by proteinuria is correlated to an increase in cathepsin-L and/or system N glutamine transporter
(SNAT3) expression and/or an increase in p32 CD2AP C-terminal fragment expression and/or dendrin in podocyte nuclei.
Candidate Therapeutic Agents:
[00119] In a preferred embodiment, methods (also referred to herein as "screening assays") are provided for identifying modulators, i.e., candidate or test compounds or agents (e.g., proteins, peptides, peptidomimetics, peptoids, small molecules, analogues or other drugs) which modulate CD2AP expression, function degradation and/or act directly on cathepsin L activity or expression or synthesis pathways thereof. Compounds thus identified can be used to modulate the activity of target gene products, prolong the half-life of a protein or peptide, regulate cell division, etc, in a therapeutic protocol, to elaborate the biological function of the target gene product, or to identify compounds that disrupt normal target gene interactions.
[00120] In another preferred embodiment, a high-throughput screening assay (HTS) screening assay is used to screen a diverse library of member compounds. The "compounds" or "candidate therapeutic agents" or "candidate agents" can be any organic, inorganic, small molecule, protein, antibody, aptamer, nucleic acid molecule, or synthetic compound.
[00121] In another preferred embodiment, the candidate agents modulate cathepsin enzymes, precursors or molecules involved in the pathways. Preferably, the enzyme is cathepsin L. These enzymes can be involved in various biochemical pathways such as synthetic pathways, breakdown pathways, e.g. ubiquitin, enzymatic pathways, protein trafficking pathways, metabolic pathways, signal transduction pathways, and the like.
[00122] In another preferred embodiment, the high throughput assays identifies candidate agents that target and modulate the pathways involved in the pathological expression or activity of cathepsin L The candidate agents would be useful in developing and identifying novel agents for the treatment of podocyte diseases or disorders, such as, for example, proteinuria.
[00123] In one embodiment, the invention provides assays for screening candidate or test compounds which modulate the degradation, rate of degradation, activity, expression and/or function of CD2AP. In some embodiments, an agent binds to CD2AP and inhibits cleavage or degradation of CD2AP.
[00124] In another embodiment, the invention provides assays for screening candidate or test compounds that bind to or modulate an activity of cathepsin L protein or polypeptide or a biologically active portion thereof, mutants or fragments, or fusion proteins thereof.
[00125] Candidate agents include numerous chemical classes, though typically they are organic compounds including small organic compounds, nucleic acids including oligonucleotides, and peptides. Small organic compounds suitably may have e.g. a molecular weight of more than about 40 or 50 yet less than about 2,500. Candidate agents may comprise functional chemical groups that interact with proteins and/or DNA.
[00126] The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckermann, R. N. et al. (1994) J. Med. Chem. 37:2678- 85); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the one-bead one-compound library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
[00127] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91 :11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261 :1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061 ; and Gallop et al. (1994) J. Med. Chem. 37:1233.
[00128] Libraries of compounds may be presented in solution (e.g., Houghten (1992) Biotechniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner U.S. Pat. No. 5,223,409), plasmids (Cull et al. (1992) Proc Nat 'I Acad Sci USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390; Devlin (1990) Science 249:404-406; Cwirla et al.
(1990) Proc. Natl. Acad. Sci. 87:6378-6382; Felici (1991) J. MoI. Biol. 222:301-310; Ladner supra.).
[00129] In another preferred embodiment, the candidate therapeutic agent comprises, proteins, peptides, organic molecules, inorganic molecules, nucleic acid molecules, and the like. These molecules can be natural, e.g. from plants, fungus, bacteria etc., or can be synthesized or synthetic.
[00130] A prototype compound may be believed to have therapeutic activity on the basis of any information available to the artisan. For example, a prototype compound may be believed to have therapeutic activity on the basis of information contained in the Physician's Desk Reference. In addition, by way of non-limiting example, a compound may be believed to have therapeutic activity on the basis of experience of a clinician, structure of the compound, structural activity relationship data, EC50, assay data, IC50 assay data, animal or clinical studies, or any other basis, or combination of such bases.
[00131] A therapeutically-active compound is a compound that has therapeutic activity, including for example, the ability of a compound to induce a specified response when administered to a subject or tested in vitro. Therapeutic activity includes treatment of a disease or condition, including both prophylactic and ameliorative treatment. Treatment of a disease or condition can include improvement of a disease or condition by any amount, including prevention, amelioration, and elimination of the disease or condition. Therapeutic activity may be conducted against any disease or condition, including in a preferred embodiment against any disease or disorder associated with proteinuria. In order to determine therapeutic activity any method by which therapeutic activity of a compound may be evaluated can be used. For example, both in vivo and in vitro methods can be used, including for example, clinical evaluation, EC50, and IC50 assays, and dose response curves.
[00132] Candidate compounds for use with an assay of the present invention or identified by assays of the present invention as useful pharmacological agents can be pharmacological agents already known in the art or variations thereof or can be compounds previously unknown to have any pharmacological activity. The candidate compounds can be naturally occurring or designed in the laboratory. Candidate compounds can comprise a single diastereomer, more than one diastereomer, or a single enantiomer, or more than one enantiomer.
[00133] Candidate compounds can be isolated, from microorganisms, animals or plants, for example, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, candidate compounds of the present invention can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound" library method, and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries. The other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds and are preferred approaches in the present invention. See Lam, Anticancer Drug Des. 12: 145-167 (1997).
[00134] In an embodiment, the present invention provides a method of identifying a candidate compound as a suitable prodrug. A suitable prodrug includes any prodrug that may be identified by the methods of the present invention. Any method apparent to the artisan may be used to identify a candidate compound as a suitable prodrug.
[00135] In another aspect, the present invention provides methods of screening candidate compounds for suitability as therapeutic agents. Screening for suitability of therapeutic agents may include assessment of one, some or many criteria relating to the compound that may affect the ability of the compound as a therapeutic agent. Factors such as, for example, efficacy, safety, efficiency, retention, localization, tissue selectivity, degradation, or intracellular persistence may be considered. In an embodiment, a method of screening candidate compounds for suitability as therapeutic agents is provided, where the method comprises providing a candidate compound identified as a suitable prodrug, determining the therapeutic activity of the candidate compound, and determining the intracellular persistence of the candidate compound. Intracellular persistence can be measured by any technique apparent to the skilled artisan, such as for example by radioactive tracer, heavy isotope labeling, or LCMS.
[00136] In screening compounds for suitability as therapeutic agents, intracellular persistence of the candidate compound is evaluated. In a preferred embodiment, the agents are evaluated for their ability to modulate the intracellular pH may comprise, for example, evaluation of intracellular pH over a period of time in response to a candidate therapeutic agent. In a preferred embodiment, the intra-podocyte pH in the presence or absence of the candidate therapeutic
compound in human tissue is determined. Any technique known to the art worker for determining intracellular pH may be used in the present invention. See, also, the experimental details in the examples section which follows.
[00137] A further aspect of the present invention relates to methods of inhibiting the activity of a condition or disease associated with proteinuria comprising the step of treating a sample or subject believed to have a disease or condition with a prodrug identified by a compound of the invention. Compositions of the invention act as identifiers for prodrugs that have therapeutic activity against a disease or condition. In a preferred aspect, compositions of the invention act as identifiers for drugs that show therapeutic activity against conditions including for example associated with proteinuria.
[00138] In one embodiment, a screening assay is a cell-based assay in which the activity of cathepsin L is measured against an increase or decrease of pH values in the cells. Determining the ability of the test compound to modulate the pH and determining cathepsin L activity, by various methods, including for example, fluorescence, protein assays, blots and the like. The cell, for example, can be of mammalian origin, e.g., human.
[00139] In another preferred embodiment, the screening assay is a high-throughput screening assay. The ability of a compound to modulate CD2AP degradation, expression, function etc., and/or modulate cathepsin L expression and/or activity can be evaluated as described in detail in the Examples which follow.
[00140] In another preferred embodiment, soluble and/or membrane-bound forms of isolated proteins, mutants or biologically active portions thereof, can be used in the assays if desired. When membrane-bound forms of the protein are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n- octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, TRITON™ X-100, TRITON™ X-1 14, THESIT™, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-l-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-l -propane sulfonate (CHAPSO), or N-dodecyl=N,N-dimethyl-3-ammonio-l -propane sulfonate.
[00141] Cell-free assays can also be used and involve preparing a reaction mixture which includes cathepsin L, CD2AP and the test compound under conditions and time periods to allow
the measurement of the cathepsin L activity over time, CD2AP degradation rates, increases in CD2AP activity, etc, over a range of values and concentrations of test agents.
[00142] The enzymatic activity can be also be detected, e.g., using fluorescence energy transfer (FET) (see, for example, Lakowicz et al., U.S. Pat. No. 5,631,169; Stavrianopoulos, et al, U.S. Pat. No. 4,868,103). A fluorophore label on the first, 'donor' molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, 'acceptor' molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the 'donor' protein molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the 'acceptor' molecule label may be differentiated from that of the 'donor'. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the 'acceptor' molecule label in the assay should be maximal. A FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).
[00143] In another embodiment, determining the ability of the enzyme ( e.g. cathepsin L) to bind or "dock" to its binding site on a target molecule (CD2AP) can be accomplished using realtime Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander, S. and Urbaniczky, C. (1991) Anal. Chem. 63:2338-2345 and Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705). "Surface plasmon resonance" or "BIA" detects biospecific interactions in real time, without labeling any of the interactants (e.g., BLAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal which can be used as an indication of real-time reactions between biological molecules.
[00144] In one embodiment, the target product or the test substance is anchored onto a solid phase. The target product/test compound complexes anchored on the solid phase can be detected at the end of the reaction. Preferably, the target product can be anchored onto a solid surface, and the test compound, (which is not anchored), can be labeled, either directly or indirectly, with detectable labels discussed herein.
[00145] Candidate agents may be obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides. Alternatively, libraries of natural compounds in the form of e.g. bacterial, fungal and animal extracts are available or readily produced.
[00146] Chemical Libraries: Developments in combinatorial chemistry allow the rapid and economical synthesis of hundreds to thousands of discrete compounds. These compounds are typically arrayed in moderate-sized libraries of small molecules designed for efficient screening. Combinatorial methods can be used to generate unbiased libraries suitable for the identification of novel compounds. In addition, smaller, less diverse libraries can be generated that are descended from a single parent compound with a previously determined biological activity. In either case, the lack of efficient screening systems to specifically target therapeutically relevant biological molecules produced by combinational chemistry such as inhibitors of important enzymes hampers the optimal use of these resources.
[00147] A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks," such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide library, is formed by combining a set of chemical building blocks (amino acids) in a large number of combinations, and potentially in every possible way, for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.
[00148] A "library" may comprise from 2 to 50,000,000 diverse member compounds. Preferably, a library comprises at least 48 diverse compounds, preferably 96 or more diverse compounds, more preferably 384 or more diverse compounds, more preferably, 10,000 or more diverse compounds, preferably more than 100,000 diverse members and most preferably more than 1,000,000 diverse member compounds. By "diverse" it is meant that greater than 50% of the compounds in a library have chemical structures that are not identical to any other member of the library. Preferably, greater than 75% of the compounds in a library have chemical structures
that are not identical to any other member of the collection, more preferably greater than 90% and most preferably greater than about 99%.
[00149] The preparation of combinatorial chemical libraries is well known to those of skill in the art. For reviews, see Thompson et al., Synthesis and application of small molecule libraries, Chem Rev 96:555-600, 1996; Kenan et al., Exploring molecular diversity with combinatorial shape libraries, Trends Biochem Sci 19:57-64, 1994; Janda, Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries, Proc Natl Acad Sci USA. 91 :10779-85, 1994; Lebl et al, One-bead-one-structure combinatorial libraries, Biopolymers 37:177-98, 1995; Eichler et al., Peptide, peptidomimetic, and organic synthetic combinatorial libraries, Med Res Rev. 15:481-96, 1995; Chabala, Solid-phase combinatorial chemistry and novel tagging methods for identifying leads, Curr Opin Biotechnol. 6:632-9, 1995; Dolle, Discovery of enzyme inhibitors through combinatorial chemistry, MoI Divers. 2:223-36, 1997; Fauchere et al, Peptide and nonpeptide lead discovery using robotically synthesized soluble libraries, Can J. Physiol Pharmacol. 75:683-9, 1997; Eichler et al., Generation and utilization of synthetic combinatorial libraries, MoI Med Today 1 : 174-80, 1995; and Kay et al., Identification of enzyme inhibitors from phage-displayed combinatorial peptide libraries, Comb Chem High Throughput Screen 4:535-43, 2001.
[00150] Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to, peptoids (PCT Publication No. WO 91/19735); encoded peptides (PCT Publication WO 93/20242); random bio-oligomers (PCT Publication No. WO 92/00091); benzodiazepines (U.S. Pat. No. 5,288,514); diversomers, such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al, Proc. Nat. Acad. Sci. USA, 90:6909-6913 (1993)); vinylogous polypeptides (Hagihara, et al, J. Amer. Chem. Soc. 114:6568 (1992)); nonpeptidal peptidomimetics with β-D-glucose scaffolding (Hirschmann, et al, J. Amer. Chem. Soc, 1 14:9217-9218 (1992)); analogous organic syntheses of small compound libraries (Chen, et al, J. Amer. Chem. Soc, 1 16:2661 (1994)); oligocarbamates (Cho, et al, Science, 261 :1303 (1993)); and/or peptidyl phosphonates (Campbell, et al, J. Org. Chem. 59:658 (1994)); nucleic acid libraries (see, Ausubel, Berger and Sambrook, all supra); peptide nucleic acid libraries (see, e.g., U.S. Pat. No. 5,539,083); antibody libraries (see, e.g., Vaughn, et al, Nature Biotechnology, 14(3):309-314 (1996) and PCT/US96/10287); carbohydrate libraries (see, e.g., Liang, et al, Science, 274:1520-1522 (1996) and U.S. Pat. No. 5,593,853); small organic molecule libraries
(see, e.g., benzodiazepines, Baum C&E News, January 18, page 33 (1993); isoprenoids (U.S. Pat. No. 5,569,588); thiazolidinones and metathiazanones (U.S. Pat. No. 5,549,974); pyrrolidines (U.S. Pat. Nos. 5,525,735 and 5,519,134); morpholino compounds (U.S. Pat. No. 5,506,337); benzodiazepines (U.S. Pat. No. 5,288,514); and the like.
[00151] Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem. Tech, Louisville Ky., Symphony, Rainin, Woburn, Mass., 433A Applied Biosystems, Foster City, Calif., 9050 Plus, Millipore, Bedford, Mass.). In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, Mo., ChemStar, Ltd., Moscow, RU, 3D Pharmaceuticals, Exton, Pa., Martek Bio sciences, Columbia, Md., etc.).
[00152] Small Molecules: Small molecule test compounds can initially be members of an organic or inorganic chemical library. As used herein, "small molecules" refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. The small molecules can be natural products or members of a combinatorial chemistry library. A set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity. Combinatorial techniques suitable for synthesizing small molecules are known in the art, e.g., as exemplified by Obrecht and Villalgordo, Solid-Supported Combinatorial and Parallel Synthesis of Small- Molecular- Weight Compound Libraries, Pergamon-EIsevier Science Limited (1998), and include those such as the "split and pool" or "parallel" synthesis techniques, solid-phase and solution- phase techniques, and encoding techniques (see, for example, Czarnik, Curr. Opin. Chem. Bio., 1 :60 (1997). In addition, a number of small molecule libraries are commercially available.
[00153] The whole procedure can be fully automated. For example, sampling of sample materials may be accomplished with a plurality of steps, which include withdrawing a sample from a sample container and delivering at least a portion of the withdrawn sample to test platform. Sampling may also include additional steps, particularly and preferably, sample preparation steps. In one approach, only one sample is withdrawn into the auto-sampler probe at a time and only one sample resides in the probe at one time. In other embodiments, multiple samples may be drawn into the auto-sampler probe separated by solvents. In still other embodiments, multiple probes may be used in parallel for auto sampling.
[00154] In the general case, sampling can be effected manually, in a semi-automatic manner or in an automatic manner. A sample can be withdrawn from a sample container manually, for example, with a pipette or with a syringe-type manual probe, and then manually delivered to a loading port or an injection port of a characterization system. In a semi-automatic protocol, some aspect of the protocol is effected automatically (e.g., delivery), but some other aspect requires manual intervention (e.g., withdrawal of samples from a process control line). Preferably, however, the sample(s) are withdrawn from a sample container and delivered to the characterization system, in a fully automated manner - for example, with an auto-sampler.
[00155] In one embodiment, auto-sampling may be done using a microprocessor controlling an automated system (e.g., a robot arm). Preferably, the microprocessor is user-programmable to accommodate libraries of samples having varying arrangements of samples (e.g., square arrays with "n-rows" by "n-columns," rectangular arrays with "n-rows" by "m-columns," round arrays, triangular arrays with "r-" by "r-" by "r-" equilateral sides, triangular arrays with "r-base" by "s-" by "s-" isosceles sides, etc., where n, m, r, and s are integers).
[00156] Automated sampling of sample materials optionally may be effected with an auto- sampler having a heated injection probe (tip). An example of one such auto sampler is disclosed in U.S. Pat. No. 6,175,409 Bl (incorporated by reference).
[00157] According to the present invention, one or more systems, methods or both are used to identify a plurality of sample materials. Though manual or semi-automated systems and methods are possible, preferably an automated system or method is employed. A variety of robotic or automatic systems are available for automatically or programmably providing predetermined motions for handling, contacting, dispensing, or otherwise manipulating materials in solid, fluid liquid or gas form according to a predetermined protocol. Such systems may be adapted or augmented to include a variety of hardware, software or both to assist the systems in determining mechanical properties of materials. Hardware and software for augmenting the robotic systems may include, but are not limited to, sensors, transducers, data acquisition and manipulation hardware, data acquisition and manipulation software and the like. Exemplary robotic systems are commercially available from CAVRO Scientific Instruments (e.g., Model NO. RSP9652) or BioDot (Microdrop Model 3000).
[00158] Generally, the automated system includes a suitable protocol design and execution software that can be programmed with information such as synthesis, composition, location information or other information related to a library of materials positioned with respect to a substrate. The protocol design and execution software is typically in communication with robot control software for controlling a robot or other automated apparatus or system. The protocol design and execution software is also in communication with data acquisition hardware/software for collecting data from response measuring hardware. Once the data is collected in the database, analytical software may be used to analyze the data, and more specifically, to determine properties of the candidate drugs, or the data may be analyzed manually.
[00159] Data and Analysis: The practice of the present invention may also employ conventional biology methods, software and systems. Computer software products of the invention typically include computer readable medium having computer-executable instructions for performing the logic steps of the method of the invention. Suitable computer readable medium include floppy disk, CD-ROM/DVD/DVD-ROM, hard-disk drive, flash memory, ROM/RAM, magnetic tapes and etc. The computer executable instructions may be written in a suitable computer language or combination of several languages. Basic computational biology methods are described in, for example Setubal and Meidanis et ah, Introduction to Computational Biology Methods (PWS Publishing Company, Boston, 1997); Salzberg, Searles, Kasif, (Ed.), Computational Methods in Molecular Biology, (Elsevier, Amsterdam, 1998); Rashidi and Buehler, Bioinformatics Basics: Application in Biological Science and Medicine (CRC Press, London, 2000) and Ouelette and Bzevanis Bioinformatics: A Practical Guide for Analysis of Gene and Proteins (Wiley & Sons, Inc., 2nd ed., 2001). See U.S. Pat. No. 6,420,108.
[00160] The present invention may also make use of various computer program products and software for a variety of purposes, such as probe design, management of data, analysis, and instrument operation. See, U.S. Pat. Nos. 5,593,839, 5,795,716, 5,733,729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,91 1 and 6,308,170.
[00161] Additionally, the present invention relates to embodiments that include methods for providing genetic information over networks such as the Internet.
Administration of Compositions to Patients
[00162] The compositions or agents identified by the methods described herein may be administered to animals including human beings in any suitable formulation. For example, the compositions for modulating protein degradation may be formulated in pharmaceutically acceptable carriers or diluents such as physiological saline or a buffered salt solution. Suitable carriers and diluents can be selected on the basis of mode and route of administration and standard pharmaceutical practice. A description of exemplary pharmaceutically acceptable carriers and diluents, as well as pharmaceutical formulations, can be found in Remington's Pharmaceutical Sciences, a standard text in this field, and in USP/NF. Other substances may be added to the compositions to stabilize and/or preserve the compositions.
[00163] The compositions of the invention may be administered to animals by any conventional technique. The compositions may be administered directly to a target site by, for example, surgical delivery to an internal or external target site, or by catheter to a site accessible by a blood vessel. Other methods of delivery, e.g., liposomal delivery or diffusion from a device impregnated with the composition, are known in the art. The compositions may be administered in a single bolus, multiple injections, or by continuous infusion (e.g., intravenously). For parenteral administration, the compositions are preferably formulated in a sterilized pyrogen-free form.
[00164] The compounds can be administered with one or more therapies. The chemotherapeutic agents may be administered under a metronomic regimen. As used herein, "metronomic" therapy refers to the administration of continuous low-doses of a therapeutic agent.
[00165] Dosage, toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
[00166] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
[00167] As defined herein, a therapeutically effective amount of a compound (i.e., an effective dosage) means an amount sufficient to produce a therapeutically (e.g., clinically) desirable result. The compositions can be administered one from one or more times per day to one or more times per week; including once every other day. The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the compounds of the invention can include a single treatment or a series of treatments.
Formulations
[00168] While it is possible for a composition to be administered alone, it is preferable to present it as a pharmaceutical formulation. The active ingredient may comprise, for topical administration, from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w but preferably not in excess of 5% w/w and more preferably from 0.1% to 1% w/w of the formulation. The topical formulations of the present invention, comprise an active ingredient together with one or more acceptable carrier(s) therefor and optionally any other therapeutic ingredients(s). The carrier(s) must be "acceptable" in the
sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
[00169] Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of where treatment is required, such as liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear, or nose. Drops according to the present invention may comprise sterile aqueous or oily solutions or suspensions and may be prepared by dissolving the active ingredient in a suitable aqueous solution of a bactericidal and/or fungicidal agent and/or any other suitable preservative, and preferably including a surface active agent. The resulting solution may then be clarified and sterilized by filtration and transferred to the container by an aseptic technique. Examples of bactericidal and fungicidal agents suitable for inclusion in the drops are phenylmercuric nitrate or acetate (0.002%), benzalkonium chloride (0.01%) and chlorhexidine acetate (0.01%). Suitable solvents for the preparation of an oily solution include glycerol, diluted alcohol and propylene glycol.
[00170] Lotions according to the present invention include those suitable for application to the skin or eye. An eye lotion may comprise a sterile aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops. Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
[00171] Creams, ointments or pastes according to the present invention are semi-solid formulations of the active ingredient for external application. They may be made by mixing the active ingredient in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy basis. The basis may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a metallic soap; a mucilage; an oil of natural origin such as almond, corn, arachis, castor or olive oil; wool fat or its derivatives, or a fatty acid such as stearic or oleic acid together with an alcohol such as propylene glycol or macrogels. The formulation may incorporate any suitable surface active agent such as an anionic, cationic or non-ionic surface active such as sorbitan esters or polyoxyethylene derivatives thereof. Suspending agents such as natural gums,
cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
[00172] While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments.
[00173] All documents mentioned herein are incorporated herein by reference. All publications and patent documents cited in this application are incorporated by reference for all purposes to the same extent as if each individual publication or patent document were so individually denoted. By their citation of various references in this document, Applicants do not admit any particular reference is "prior art" to their invention. Embodiments of inventive compositions and methods are illustrated in the following examples.
EXAMPLES
[00174] The following non-limiting Examples serve to illustrate selected embodiments of the invention. It will be appreciated that variations in proportions and alternatives in elements of the components shown will be apparent to those skilled in the art and are within the scope of embodiments of the present invention.
Example 1: CD2AP Proteolysis and Progression of Kidney Disease [00175] Methods
[00176] Cell culture and transient transfection. Mouse podocytes were cultured as described previously (Mundel, P. et al. Exp. Cell Res. 236, 248-258 (1997)). HEK293 cells were maintained and transfected as previously reported (Reiser, J. et al. Nat. Genet. 37, 739-744 (2005)).
[00177] Antibodies. The following primary antibodies were used: mouse anti-actin (Sigma), mouse anti-dynamin (Hudy 1 ; Upstate Biotechnology), mouse anti-GAPDH (Abeam), rat anti- LAMP2 (Developmental Studies Hybridoma Bank), FITC-conjugated phalloidin (Sigma), rabbit anti-WTl (Santa Cruz Biotechnology) rabbit anti-alpha-actinin-431, rabbit anti-cathepsin L32, rabbit anti-CD2AP28, rabbit anti-dendrin and mouse anti-synaptopodin.
[00178] Computing the scores of endopeptidase cleavage sites. To assess the susceptibility of CD2AP for cleavage by cathepsin L in silico, the 'Prediction of Endopeptidase Substrates' (PEPS) bioinformatics tool was utilized (Lohmϋller, T. et al. Biol. Chem. 384, 899-909 (2003)). A score above the threshold of 0.01 estimates protein sequences to be within 100 peptide motifs (out of 10000).
[00179] Immunohistochemistrγ and immunoblotting. Immunocytochemical analysis of cultured podocytes was performed as described previously (Mundel, P. et al. Exp. Cell Res. 236, 248-258 (1997)). SDS-PAGE and Western blotting were done with the modification that used Invitrogen's blot module (XCeIl Sure-Lock Tank), gels (4-12% NuPAGE Bis-Tris), running (MES or MOPS) and transfer buffers.
[00180] Coimmunoprecipitation studies. Recombinant mouse FLAG-dendrin were expressed with GFP-tagged CD2AP variants (full-length CD2AP, CD2AP-NH, CD2AP-COOH) in HEK293 cells. FLAG fusion proteins were immunoprecipitated from cell lysates using anti- FLAG-M2 beads (Sigma) and analyzed eluates by immunoblotting using antibodies to FLAG (Sigma) or GFP (Invitrogen).
[00181] Deletion ofCD2AP cleavage site LSAAE. Deletion of the cathepsin L cleavage site LSAAE from the CD2AP amino acid sequence was done using the QuickChange II Site Directed Mutagenesis kit (Stratagene) according to the manufacturer's instructions.
[00182] Isolation and processing of glomeruli. Glomeruli were isolated from kidneys of 8-12 weeks old LPS- and PBS-treated (control) mice using a sequential sieve technique with mesh sizes of 180, 100, and 71 μm. The fraction collected from the 71-μm sieve was maintained for soup/pellet fractionation. Isolated glomeruli were homogenized in buffer containing 20 mM HEPES pH 7.5, 100 mM NaCl, 1 mM MgCl2, 1 mM PMSF, protease inhibitors (Roche), calpain inhibitor (Calbiochem), and E-64d (Calbiochem) using Dounce homogenizer. Subsequently, cytosol was centrifuged for 10 min at 4,600 g. Proteins were solubilized by 1% Triton X-100, 1 hour at 4°C, before it was spun at 70,000 g for 1 hour.
[00183] Cathepsin L activity assay. Subcellular sites of cathepsin L and cathepsin B activity in glomerular extracts were visualized by a fluorogenic substrate, CV-(FR)2, which emits light upon cleavage by cathepsin L or cathepsin B (Biomol). Cathepsin L inhibitor Z-FF-FMK (Calbiochem) which does not inhibit cathepsin B was used for specific inhibition of cathepsin L.
[00184] In vivo gene delivery. Cathepsin L plasmids encoding short and long cathepsin L, were introduced into mice (n >10, each construct) using the TransYT in vivo gene delivery system (Mirus). For serum nephritis experiments, FLAG-tagged encoding wild type and cathepsin L cleavage resistant CD2AP plasmids were delivered twice by tail vein injection on day 8 and 10 after serum nephritis induction. Expression of plasmids were monitored in kidney cortex slices by immunoblot.
[00185] Purification of CD2 'AP protein. FLAG-CD2AP was expressed in HEK293T cells, immobilized on anti-FLAG M2 agarose (Sigma) and eluted with FLAG-peptide (Sigma).
[00186] Proteolytic processing ofCD2AP by cathepsin L. CD2AP was diluted in buffer containing 200 mM NaCl, 10 mM HEPES pH 7.0, 2 mM EGTA, 1 mM MgCl2, and 1 mM DTT. When indicated, 20 μM cathepsin L inhibitor Z-FF-FMK was added. The reaction was initiated by addition of 0.5 μl of purified cathepsin L (specific activity 4.13 U/mg of protein from Sigma), and samples were placed at 37°C in the water bath for 10 to 30 min. Total assay volume was 20 μl. The reaction was terminated with addition of E-64d inhibitor (Sigma) and sample buffer. For Western blot analysis, 5 μl of the samples was run on 10% SDS-PAGE.
[00187] Chemical Crosslinking and Native PAGE. Chemical crosslinking was performed according to standard protocols with the DTSSP crosslinking reagent (Pierce). Native PAGE was performed with the NativePAGE system (Invitrogen) according to the manufacturer's instructions.
[00188] Electron Microscopy and Image Reconstruction. Aliquots (~5 μl of 50 μg/ml protein) were allowed to adhere for 2-5 min to carbon-coated copper grids and then stained with 2% uranyl acetate. Images were recorded under minimum electron dose conditions using a CMlO electron microscope (Philips Electron Optics). Images were recorded on Kodak 4489 film at a nominal magnification of 52,000 using 100 kV electrons. Micrographs were digitized with a Coolscan 9000 scanner (Nikon) at 8 bits per pixel and 6.35 μm per pixel, subsequently averaged to 12.7 μm per pixel. The optical density for each negative was adjusted to give a mean value of -127 over the total range of 0 to 255. Image processing was performed with the EMAN suite. A total of 5996 particles were selected from 25 micrographs. The CTF for each micrograph was manually determined with the EMAN program ctfit and phase corrections applied to the selected particles. Initial models were generated using the EMAN routine startcsym, which conducts a
symmetry search of the particles for four-fold and mirror symmetry, representing top and side views, respectively. These orthogonal projections are subsequently aligned with a common-lines algorithm and back-projected to generate a 3D structure. Models were subjected to refinement with C4 symmetry imposed with an angular increment of 6°. The isosurface for the final model was determined from the molecular weight of the tetramer (300 kD) which encloses a volume of 370,000 A3 using a protein partial specific volume of 0.74 crrrVg. Atomic coordinates for the SH3 domain and tetrameric coiled-coil domain were visually fitted within the EM map.
[00189] Animal model of experimental glomerulonephritis. Serum nephritis was induced as described previously (Monkawa, T. et al. Nephron Exp. Nephrol. 102, e8-el8 (2006)). Injection of anti-GBM serum on day 0 and 1 induced glomerulonephritis in wild type and cathepsin L KO mice (both C57B16), aged 8-14 weeks with a sheep antibody reactive to rabbit glomeruli (12.5 mg/20 g body wt intraperitoneal injection per day for two consecutive days). Mice were sacrificed at day 14 (n=5 in each group).
[00190] Mouse phenotyping. Freshly harvested kidneys were fixed in 4% PFA (Electron Microscopy Sciences) solution. They were then embedded in paraffin and 2 micron sections cut and stained with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) reagent or methenamine-silver stain. The sections were examined in a blinded manner and scored for glomerular and other renal changes. Glomerular lesion scores were assigned on a 4 point scale based on the number of glomeruli involved and the severity of the lesions (1, 1 score; 2, 2-3 scores; 3, 3 and above scores; 4, 3 and above with confluency). Overall lesion scores included focal hypercellularity, glomerulosclerosis (FSGS), crescent formation, and podocyte apoptosis. Thirty glomeruli in each kidney were examined. Urine microalbumin was assessed by the densitometric analysis of the Bis-Tris gels loaded with the standard BSA (Bio-Rad Laboratories) and the urine samples. The urinary creatinine measurement was carried out using a colorimetric end-point assay with a commercial kit (Cayman Chemical).
[00191] Human kidney biopsy staining. Human glomerular biopsies (Control, Minimal Change Disease, and Focal Segmental Glomerulosclerosis) were stained with N- and C-terminal CD2AP antibodies following standard protocols.
[00192] Statistical analysis. Statistical analysis was performed by Student's t-test with the level of significance set at P<0.05. Data are reported as mean values +/- standard error of the means.
[00193] Results:
[00194] In this study, the identification of the cytoskeletal adaptor protein CD2AP as a cleavage target for cytoplasmic cathepsin L is described. CD2AP is a scaffolding protein required for homeostasis of podocytes. Homozygous CD2AP mutation or haploinsufficiency of the human CD2AP gene predispose to renal disease and mice lacking CD2AP develop progressive kidney failure. Similarly, mice with bigenic haploinsufficiency of synaptopodin and CD2AP develop disease consistent with progressive renal failure. CD2AP carries a special weight in the maintenance of podocyte structure and function. This example, identified CD2AP as a cleavage target of cathepsin L and the structure of CD2AP at 21 A resolution was characterize as a cuboid tetrameric multi-adapter that exposed two accessible cathepsin L cleavage sites. The limited remodeling of CD2AP by cytoplasmic cathepsin L leaves behind a C-terminal core fragment that is structurally competent but can no longer bind dendrin, a protein which promotes podocyte apoptosis in the presence of transforming growth factor-β (TGF-β) once it enters the nucleus. Cathepsin L controls the proteolysis of dynamin and synaptopodin, events that are contributing to the development of podocyte FP effacement and proteinuria. The identification of the structure of CD2AP and its role as a cathepsin L substrate unraveled important aspects of kidney disease progression. It provides insights into the mechanisms of kidney disease pathogenesis and progression.
[0100] CD2AP is proteolyzed by cathepsin L: The computer algorithm PEPS served to identify that cathepsin L cleavage targets dynamin and synaptopodin. A reduction of CD2AP staining was noted at cell-cell junctions in cultured podocytes that express high levels of cathepsin L but not in podocytes that lack cathepsin L. The PEPS-algorithm was applied to potentially identify cathepsin L cleavage sites within the CD2AP amino acid sequence. Eleven putative cathepsin L sites within the CD2AP mouse and human protein sequence (Table 1) were identified.
[0101] Table 1A
Cleavage Starting Prediction sequence amino acid score
EIiRV 23 0,02462
LIVGV 128 0,02502
APGSV 199 0,02700
KlRGI 208 0,02242
QPLGS 247 0,03190
ELGKE 311 0,02756
LSAAE 352 0,02280
AFVAR 462 0,02214
LPGRF 499 0,02796
ELAKA 585 0,02200
ELRKE 606 0,02589
A Cathepsin L cleavage sites on CD2AP amino acid sequence which was identified by the computer-based prediction of endopeptidase cleavage sites (PEPS) algorithm. PEPS yielded a total of 11 putative cleavage sites with CD2AP. The PEPS prediction score is the sum of the amino acid scores in a block of 5 consecutive amino acids of the test protein in the cleavage matrix (P4-PT or P3-P2'). The PEPS algorithm screens over the protein sequence and gives the sum score for any peptide of 5 amino acids within a protein sequence. These PEPS sum scores are further compared the scores to all other 5 amino acid peptides in the proteome: A cathepsin L PEPS score of 0.02 denotes a 80% likelihood to be cleaved (based on the mouse proteome); a score of 0.04 denotes a chance for cleavage of 99% (the fit is not linear). Hence the multiple potential cathepsin L cleavage sites in CD2AP (PEPS scores ranging from 0.022 to 0.0319) implicate a likelihood for cleavage of approximately 90%.
[0102] To test the significance of this prediction, glomeruli were isolated from control mice and animals that were injected with low-dose lipopolysaccharide (LPS), a treatment causing high levels of cytosolic cathepsin L in podocytes. The tissue samples were further processed to obtain cytosolic and membrane-bound glomerular extracts (Figure IA). A fluorescent enzymatic assay showed strong cathepsin L activity in the LPS treated cytosolic extract of glomeruli that could be inhibited by co-incubation with a specific cathepsin L inhibitor. In contrast, the same fractions had a much lower activity of cytosolic cathepsin L without prior treatment of the animals with LPS. These glomerular protein fractions were utilized in immunoblots for the cathepsin L target proteins dynamin and synaptopodin as well as for CD2AP using an anti-serum against CD2AP that recognized the N-terminal SH3 domains of CD2AP (Figure IB, Figure 5E). All target proteins were found to be reduced in the cytosolic fraction but not in the membrane bound fraction. By comparison, α-actinin-4 was not reduced in the cytosolic as well as the pelleted
glomerular fraction. To further prove that reduction of CD2AP stems from cathepsin L, cathepsin L knockout mice were utilized in the analysis of glomerular lysates for CD2AP levels. A significant reduction of CD2AP was found after LPS treatment but did not see this effect in glomeruli in which cathepsin L was absent (Figure 1C). Immunostaining was also carried out in glomeruli during transiently high levels of cathepsin L, e.g. after LPS treatment (Figure ID), puromycin treatment and after gene transfer of cytosolic cathepsin L into podocytes. Following LPS injection, CD2AP protein staining was decreased after 24 hours in wild type mice but not in cathepsin L knockout mice evidencing proteolysis of CD2AP (Figure ID). CD2AP reduction was also observed in cultured podocytes that were either treated with LPS or PAN, both conditions with high levels of cytosolic cathepsin L. All together, these data strongly evidence that cytosolic cathepsin L proteolyses CD2AP in vivo.
[0103] Cathepsin L processes CD2AP into a C-terminal 32 kD fragment (p32): CD2AP protein was purified from transfected mammalian cells (HEK 293) and in vitro cleavage assays using were performed using purified cathepsin L enzyme at various pH ranging from acidic (lysosomal) to neutral pH 7.0 (Figure 2A). pH 7.0 was determined as the pH that is present in the podocyte cytosol under normal and LPS conditions using Nuclear Magnetic Resonance Spectroscopy analysis. Cathepsin L cleaved CD2AP strongly at acidic pH, a finding that is in line with its potent role in lysosomes where cleavage occurs on random targets and nonspecifically. By contrast, cleavage assays performed at neutral conditions (pH 7.0) yielded a stable 32 kD CD2AP fragment (p32) that was detectable by silver stain following electrophoretic separation of the cleaved CD2AP protein fragments. Of note, p32 increased with incubation time of CD2AP with cathepsin L at pH 7.0. To better characterize the cleavage of CD2AP, GFP- and FLAG-tagged fusion proteins were generated that were exposed to cathepsin L (Figures 2B- 2E). An N-terminal tagged GFP-CD2AP fusion protein (98 kD) was expressed in HEK 293 cells, purified and subjected to cleavage assays with cathepsin L enzyme (Figure 2B). Cleavage of CD2AP at pH 4.5 and 5.5 led to the complete digestion of the protein. However, at pH 7.0, a CD2AP cleavage fragment was identified consistent with the predicted major cathepsin L cleavage site QPLGS (Table 1, Figure 2C). At neutral pH, CD2AP was cleaved into a stable 55 kD fragment as detected with an anti-GFP antibody. The same fragment was detected with the CD2AP antiserum raised against the SH3 domains of CD2AP. The CD2AP antiserum also reacted with a N-terminal 44 kD fragment (explained by the affinity of the antibody to the third
SH3 domain). Of note, the anti-GFP antibody as well as the anti-CD2AP antibody could not detect C-terminal p32 (compare with Figure 5E). Additional cathepsin L cleavage experiments were performed using a C-terminal FLAG-tagged CD2AP (71 kD) expressed in HEK 293 cells and immobilized on FLAG beads before digestion with cathepsin L enzyme (Figure 2D). This experiment yielded a C-terminal 44 kD fragment of CD2AP, which could be detected by CD2AP antiserum (raised against the three SH3 domains) and by anti-FLAG antibody. The anti-CD2AP antiserum also detected a band at 27 kD. These fragments were again consistent with the CD2AP cleavage site QPLGS (Figure 2E). The anti-FLAG antibody also detected a strong band corresponding to p32 fragment which could be matched to the secondary CD2AP cleavage site LSAAE (Figure 2E). In summary, these data provide evidence for the p32 C-terminal fragment of CD2AP to be a stable cleavage product of CD2AP in podocytes at physiological cytosolic pH 7.0.
[0104] Next, it was investigated whether cytosolic cathepsin L in cells is sufficient to process CD2AP. CD2AP-FLAG expressing HEK293 cells were co-transfected with WT cathepsin L mRNA which generates cytosolic and lysosomal cathepsin L protein and a cathepsin L construct that contains a deletion of the first AUG site and thus encodes selectively for the cytosolic form of cathepsin L. The experiments were performed in the presence or absence of a specific cathepsin L inhibitor (Figure 2F). WT cathepsin L led to cleavage of CD2AP yielding p32. The generation of p32 could be prevented by co-incubation of transfected HEK 293 cells with a specific cathepsin L inhibitor. More importantly, transfection of cytosolic cathepsin L alone was sufficient to cleave CD2AP resulting in the production of p32 (Figure 2F). This cleavage was cathepsin L dependent since it could be blocked by the addition of cathepsin L inhibitor. The stable p32 fragment was identified in the cleavage assays at neutral pH (Figure 2A). In addition, this fragment was generated in HEK 293 cells using cytosolic cathepsin L. Therefore, this fragment was regarded as an end-product generated through cytosolic cathepsin L cleavage. Next the LSAAE cleavage site in the CD2AP protein was deleted. In absence of this cleavage site, the characteristic p32 fragment was no longer observed after enzymatic digest with cathepsin L enzyme (Figure 2G) indicating that removal of the LSAAE site in CD2AP protected from cathepsin L mediated enzymatic processing of CD2AP into p32.
[0105] CD2AP is a tetramer that exposes cleavage sites QPLGS and LSAAE: Cytosolic cathepsin L mediated cleaving of dynamin and synaptopodin are protected from cleavage
through higher order assembly of dynamin or through serine-threonine phosphorylation dependent binding of 14-3-3 protein to synaptopodin that in turn blocks cleavage sites from the exposure to cathepsin L. Higher molecular complexes of approximately 300 kD were identified when purified CD2AP was separated in native gels or after chemical cross-linking (Figure 3A). This led to next experiment which would characterize CD2AP protein multimers by electron microscope to gain insights into its structure that may help for a better understanding of the enzymatic susceptibility of CD2AP. Visual inspection of negatively stained micrographs of purified CD2AP revealed dispersed, roughly spherical molecular complexes with overall dimensions compatible with a tetrameric organization. Three dimensional image reconstruction of the particles using the EMAN processing suite was undertaken with four-fold rotational symmetry imposed during the refinement (Figure 3B). A Fourier shell correlation computed between maps generated from a split data set indicate that the map has a resolution of 21 A using the 50% correlation criterion (Figure 3B). The resulting structural map reveals a cubic-like molecule with four of the faces related by the rotational symmetry (Figures 3C-3E). The structure is not very compact and stain has penetrated throughout to reveal clearly identifiable domains (Figures 3F-3H). The overall organization consists of a central core, broad at one end but tapering to a straight cylinder coincident with the fourfold axis at the other. The central core is surrounded by four symmetry related motifs each containing three globular domains. The individual domains within the structure were assigned by performing comparison of the map density with known homologous structures. In the case of CD2AP, this helped to identify the three N-terminal SH3 domains and the extreme C-terminal coiled-coil domain (Figures 3F-3H). Both experimentally confirmed cathepsin L cleavage sites QPLGS and LSAAE were exposed at the connecting area of the SH3 domains with the CD2AP core (Figure 3C, asterisks). Cathepsin L enzyme fits well into the pockets of the CD2AP-SH3 domains (Figures 31, 3J) to process CD2AP into a structurally competent protein core that lacks the SH3 domains (Figure 3K).
[0106] Function of the C-terminal CD2AP fragment (p32): Next the consequences of CD2AP proteolysis into p32 were explored. While major changes were not observed in endocytosis in the presence of p32, the known interactions that CD2AP undergoes with the actin organizing protein synaptopodin, the slit diaphragm protein nephrin and dendrin were analyzed, that under physiological conditions inhibits podocyte apoptosis through interaction with CD2AP at cell-cell junctions. During glomerular injury such as in serum nephritis, dendrin can
translocate to the nucleus in podocytes to promote apoptosis. To investigate whether p32 can still bind to synaptopodin, nephrin and dendrin, co-immunoprecipitation studies were performed with GFP and FLAG-tagged protein combinations expressed in HEK293 cells (Figure 4A). Both N- and p32 fragments of CD2AP were still able to bind synaptopodin and the slit diaphragm molecule nephrin evidencing that the generated CD2AP fragments may at least partially maintain podocyte cytoskeletal function. However, while N-terminal and full length CD2AP still bind dendrin, the p32 fragment of CD2AP was incapable to undergo this interaction.
[0107] Dendrin is found in the nucleus ofCD2AP null mice and podocytes: Dendrin is a slit diaphragm protein that promotes TGF-β induced podocyte apoptosis through relocating from the cell periphery to the nucleus. Furthermore, CD2AP"7" podocytes are more susceptible to TGF-β mediated apoptosis and CD2AP~/~ mice are born with normal podocyte FP. However, these mice display elevated levels of glomerular TGF-β and develop severe progressive glomerular disease starting approximately at 4 weeks of age 12. The disease in these mice is characterized by massive podocyte apoptosis and glomerular sclerosis within 7 weeks. It was hypothesized that dendrin that cannot be bound by CD2AP will be present in the nucleus of podocytes and compared the localization of CD2AP in WT and CD2AP~ ~ podocytes in vivo. In 5 weeks old WT mice, dendrin was found in podocytes following a classical capillary loop pattern outside nuclei as shown by double labeling with WT-I (Figure 4B). In contrast, 5 weeks old CD2AP"7" mice that were developing severe glomerular disease, showed dendrin labeling in podocyte nuclei overlapping with the expression of WT-I (Figure 4B). Also studied was the expression of dendrin in WT, CD2AP~;~ and Cathepsin L knockdown cultured podocytes (Figure 4C). While dendrin was absent from WT and cathepsin L knockdown nuclei, yet was mainly located at the plasma membrane and in the cytoplasm, dendrin was found in the nuclei of CD2AP~'~ podocytes (Figure 4C). In sum, the data evidences that the absence of CD2AP or the limited proteolysis of CD2AP into p32 releases dendrin and allows its transfer to the nucleus.
[0108] Cathepsin L proteolyses CD2AP in a progressive model of renal disease: If lack of CD2AP allows dendrin to enter the nucleus in progressive renal disease occurring in CD2AP knockout mice (Figure 9B), it was hypothesized that a similar finding in a progressive kidney disease model where p32 is generated, would be found. Based on this hypothesis, the serum nephritis mouse model was utilized in which injection of an antibody that reacts with the glomerular basement membrane causes features of advancing glomerular disease such as
crescents and podocyte apoptosis. Moreover, this model displays nuclear relocation of dendrin in podocytes. After induction of serum nephritis, we found a significant relocation of dendrin into podocyte nuclei of wild type mice (P=0.0008 vs. CatL KO, SN), a response that was largely absent in cathepsin L knockout mice (Figure 4D).
[0109] Cathepsin L was induced in podocytes during serum nephritis in wild type mice as shown by double labeling with synaptopodin but was not detected in cathepsin L knockout mice (Figure 4E). It was next analyzed if there was a loss of the N-terminal SH3 domains and an unchanged expression of C-terminal CD2AP that included p32 in glomeruli of wild type mice. Using two different antibodies for CD2AP, 1) anti-CD2AP N-terminal (recognizes SH3 domains) and 2) anti-CD2AP C-terminus (recognizes p32), it was found that N-terminal CD2AP was significantly reduced during serum nephritis in wild type mice but not in cathepsin L knockout mice (Figure 4F). In addition, there was no reduction in C-terminal CD2AP staining consistent with a stable C-terminal CD2AP (Figure 4F). The specificity for the antibodies was proven by immunoblot from HEK 293 cell lysates that express GFP-tagged CD2AP fragments (Figure 4F). In summary, this data shows that serum nephritis is associated with cytosolic cathepsin L induction in podocytes that leads to proteolysis of CD2AP N-terminus but stable C-terminal fragment (p32) and the release of dendrin to the podocyte nucleus.
[0110] Reduction of renal disease progression in mice lacking cathepsin L: The absence of cathepsin L ensures significantly higher expression of CD2AP during serum nephritis (Figure 4F). Both, wild type and cathepsin L knockout mice developed strong and comparable levels of proteinuria in response to the anti-GBM antibody (Figure 4A). Interestingly, the expression of the cathepsin L cleavage targets synaptopodin and dynamin remained the same in wild type mice after induction of serum nephritis suggesting that development of proteinuria is independent of cathepsin L during serum nephritis (Figure 4B). In contrast, detailed analysis of the kidney histology revealed significant differences in markers for renal disease progression. Podocyte apoptosis, crescent formation, glomerular sclerosis and glomerular hypercellularity were analyzed. Significantly more apoptotic podocyte nuclei were found in wild type mice with serum nephritis when compared to cathepsin L deficient animals with serum nephritis (Figure 5A, insert). The same observation was supported by glomerular TUNEL staining. In addition, some glomeruli showed prominent crescent formation (Figure 5B) which did not occur in cathepsin L knockout mice. All histological changes were semi-quantitated by analyzing glomeruli from
different sections of the kidney (Figure 5C). In conclusion, both wild type and cathepsin L knockout animals developed glomerular disease and comparable amounts of proteinuria but only wild type animals developed features of renal disease progression evidencing that the stability of CD2AP is directly related to the course of renal disease.
[0111] Expression of cleavage resistant CD2AP halts renal disease progression: The absence of cathepsin L protected the expression of CD2AP and modified the degree of renal disease progression. The presence of N- and C-terminal CD2AP was analyzed in human kidney biopsies from patients with non-progressive glomerular disease (Minimal Change Disease, MCD) as well as from patients with progressive glomerular disease (Focal Segmental Glomerulosclerosis, FSGS), (Figure 6A). While strong expression of N- and C-terminal CD2AP was found in normal and MCD glomeruli, a strong reduction of N-terminal CD2AP was observed in patients with FSGS. In contrast, the expression of C-terminal CD2AP was preserved arguing for a N-terminal degradation and presence of a C-terminal CD2AP fragment (Figure 6A). To further analyze the effects of stable CD2AP on the course of progressive kidney disease, wild type CD2AP and CD2AP that is cleavage resistant against cathepsin L (FLAG-CD2AP-CatMut, Figure 6B; Figure 2G) were expressed. Equal expression of the two plasmids that both carry a FLAG tag, was monitored. The group of animals that received wild type CD2AP showed a significant reduction of N-terminal CD2AP but not the animals that expressed cleavage resistant CD2AP after serum nephritis (Figure 6C). The expression of cleavage resistant CD2AP directly impacted on the severity of renal disease progression. Animals that expressed protected CD2AP developed significantly lower levels for podocyte apoptosis, crescent formation, glomerular sclerosis and glomerular hypercel hilarity (Figure 6D, 6E). All together, the absence of cathepsin L (Figures 5A-5C) or the stable expression of CD2AP (Figure 6A-6E) during serum nephritis alters the severity of renal disease progression.
[0112] Discussion: The data herein, provides an explanation for the importance of cathepsin L and CD2AP in the regulation of kidney podocyte survival and mechanistically links progression of renal disease with an enzymatic disease process within podocytes. How might these new findings being reconciled with earlier findings? Cathepsin L in the cytosol cleaves two important regulators of the podocyte actin cytoskeleton: 1) dynamin and 2) synaptopodin. In the case of dynamin, a N-terminal fragment is generated that possesses dominant-negative capabilities reorganizing the podocyte actin cytoskeleton. Synaptopodin proteolysis leads in turn
to proteasomal degradation of RhoA. Both cleavage events can be inhibited by changes in target protein assembly; self-assembling into higher order dynamin complexes in the case of dynamin and phosphorylation dependent binding of 14-3-3 proteins to cover synaptopodin cleavage sites in the case of synaptopodin. The cleavage of these proteins results in the characteristic rearrangement of the podocyte actin cytoskeleton and the development of proteinuria. While these events can underlie the loss of barrier function, the cleavage of CD2AP helps to explain why loss of podocyte structure and function is often followed by podocyte depletion and progression of renal disease. In keeping with the hypothesis that bigenous heterozygosity for synaptopodin and CD2AP promotes the development of glomerulosclerosis in mice, this can also occur in acquired glomerular diseases via a cathepsin L-mediated enzymatic process. In essence, the genetic reduction (human haploinsufficiency) or absence of CD2AP (knockout) or the proteolysis of CD2AP in acquired diseases by cathepsin L provide situations in which the consequence will be loss of renal function. The data herein also identifies cathepsin L as instigator for both, proteinuria (e.g. through cleavage of dynamin and synaptopodin) and progression of renal disease through modification of CD2AP. This model suits well to explain the reversibility of glomerular disease such as Minimal Change Disease, where cathepsin L is induced but in smaller amounts than in FSGS or diabetic nephropathy4 and thus is associated with a stable CD2AP and the propensity to recover ad integrum. While dynamin, synaptopodin and CD2AP are cleavage targets of cytosolic cathepsin L, variances in susceptibility of the target proteins towards cathepsin L need to be defined in more detail to understand why not all proteinuric diseases with high cathepsin L progress and why not all glomerular diseases require cathepsin L for the development of proteinuria. Clearly, more future studies will be conducted to clarify these issues.
[0113] The enzymatic remodeling of CD2AP leads to a C-terminal fragment of CD2AP(p32) that is still capable to maintain some of its binding interactions and functions on the podocyte cytoskeleton and endocytosis but permits the release of its binding partner dendrin that can now travel to the podocyte nucleus to promote apoptosis and thus renal disease progression. The impact of this event becomes evident in the mouse serum nephritis model as well as by findings from the CD2AP"7" mouse. Both animals display nuclear relocation of dendrin and both animal models have progressive renal disease. Full length CD2AP executing its SH3 binding adapter capabilities is required for sustained podocyte survival even in the presence of proteinuria.
[0114] PEPS-computer simulation predicted eleven cathepsin L cleavage sites in CD2AP amino acid sequence but only two were experimentally confirmed. Although PEPS is based on cleavage sites within native proteins, it does no further adjustment for secondary or tertiary protein structures that may sterically hinder the access of the protease to the cleavage site in a candidate substrate such as CD2AP. Hence, experimental validation of the putative cleavage sites is required. Thus, the experiments conducted herein included both structural and biochemical studies. Negative stain electron microscopy of purified CD2AP revealed uniform particles with a size and morphology suggesting a tetrameric organization, verified with chemical crosslinking. Single particle image analysis was used to generate a 3-D map of the cuboid CD2AP tetramer. Many of the computer-modeled cleavage sites are inaccessible due to tetramerization of CD2AP but the two sites QPLGS and LSAAE. Both sites are located at the SH3 arms of CD2AP that allows access by cathepsin L and thus provide starting points for cathepsin L remodeling of CD2AP. It is interesting that the deletion of the LSAAE site is sufficient to inhibit the enzymatic processing suggesting that cleavage at this site may occur first.
[0115] While synaptopodin is known to bind to the SH3 domains of CD2AP, it was surprising to see that it retains binding capacity to p32. This is best explained through a cryptic binding site that allows synaptopodin binding to p32 fragment of CD2AP. In contrast, this binding site is not sufficient to maintain dendrin binding. While these structural studies are necessary to better define the cleavage process and its consequences, they also help to better define the role of CD2AP in the hereditary form of FSGS in families with CD2AP mutation. A C-terminal stop mutation will lead to a deformation of the length of the CD2AP coiled-coil domain and will inhibit actin binding to CD2AP. The structure of CD2AP will also provide starting points to better understand its function in cytoskeletal regulation in general, e.g. in T-cell polarity as well as identify possible other tissues where CD2AP might be regulated by proteolysis.
[0116] While cathepsin L has been identified to be causative for LPS and PAN-mediated proteinuria, serum nephritis is a glomerular disease that does not require cathepsin L for proteinuria yet for the progression of renal disease. It is intriguing that stabilization of CD2AP by removing cathepsin L or protecting CD2AP alters the course of a glomerular disease shifting progression into a more benign phenotype. This finding will allow for the development of
additional strategies for renal protection that are in addition to anti-proteinuric modalities focusing on podocyte survival.
[0117] Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
[0118] The Abstract of the disclosure will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the following claims.
Claims
1. A method of treating renal diseases or disorders, comprising administering to a patient in need thereof, an effective amount of an agent which inhibits cytoskeletal adaptor protein (CD2AP) degradation and/or modulates expression or activity of CD2AP and/or modulates cathepsin-L expression or activity in vivo and, treating renal diseases or disorders.
2. The method of claim 1, wherein the renal diseases or disorders comprising: podocyte diseases or disorders, proteinuria, glomerular diseases, membranous glomerulonephritis, focal segmental glomerulonephritis, minimal change disease, nephrotic syndromes, pre-eclampsia, eclampsia, kidney lesions, collagen vascular diseases, stress, strenuous exercise, benign orthostatic (postural) proteinuria, focal segmental glomerulosclerosis (FSGS), IgA nephropathy, IgM nephropathy, membranoproliferative glomerulonephritis, membranous nephropathy, sarcoidosis, Alport's syndrome, diabetes mellitus, kidney damage due to drugs, Fabry's disease, infections, aminoaciduria, Fanconi syndrome, hypertensive nephrosclerosis, interstitial nephritis, Sickle cell disease, hemoglobinuria, multiple myeloma, myoglobinuria, Wegener's Granulomatosis or Glycogen Storage Disease Type 1.
3. The method of claim 1, wherein an inhibitor of cathepsin L comprises : nucleic acids, cathepsin L mutants, CD2AP mutants, oligonucleotides, polynucleotides, peptides, polypeptides, antibodies, small molecules, organic or inorganic molecules.
4. The method of claim 3, wherein a CD2AP mutant is resistant to degradation by cathepsin L, or other enzyme.
5. The method of claim 3, wherein a CD2AP mutant comprises mutations in amino acid sequences susceptible to cathepsin L activity comprising: ELRXE (SEQ ID NO: 1), ELAKA (SEQ ID NO: 2), LPGRP (SEQ ID NO: 3), AFVAR (SEQ ID NO: 4), LSAAE (SEQ ID NO: 5), ELGKE (SEQ ID NO: 6), QPLGS (SEQ ID NO: 7), KIRGI (SEQ ID NO: 8), APGSV (SEQ ID NO: 9), LIVGV (SEQ ID NO: 10), EIIRV (SEQ ID NO: 1 1), mutants, derivatives, variants or combinations thereof.
6. The method of claim 1, wherein an antibody specific for cathepsin L cytoskeletal adaptor protein (CD2AP) cleavage sites block or inhibit cathepsin L degradation of CD2AP.
7. The method of claim 1, wherein an agent for modulating expression, function and/or activity of CD2AP in vivo, comprising at least one of: antibody, aptamer, antisense oligonucleotide, polynucleotides, enzymes, peptides, polypeptides, organic or inorganic molecules.
8. A method of identifying agents which modulate cathepsin-L expression, function and/or activity in vivo comprising: culturing a kidney cell or kidney cell line; contacting said cells with one or more agents; measuring the cathepsin-L activity in podocytes; and, identifying agents which modulate the cathepsin-L expression, function and/or activity in vivo.
9. The agent of claim 8, wherein the agent decreases cathepsin L activity or expression in vivo and/or inhibits cytoskeletal adaptor protein (CD2AP) degradation as compared to normal controls.
10. A method of identifying agents which modulate cytoskeletal adaptor protein (CD2AP) degradation, expression, function and/or activity comprising: culturing a kidney cell or kidney cell line; contacting said cells with one or more agents; measuring the cytoskeletal adaptor protein (CD2AP) degradation, expression, function, or activity; and, identifying agents which modulate cytoskeletal adaptor protein (CD2AP) degradation, expression, function and/or activity.
11. The method of claim 10, wherein the cytoskeletal adaptor protein (CD2AP) degradation is inhibited by an agent by at least 10% as compared to a normal control.
12. The method of claim 10, wherein the cytoskeletal adaptor protein (CD2AP) degradation is inhibited by an agent by at least about 50% as compared to a normal control.
13. The method of claim 10, wherein the cytoskeletal adaptor protein (CD2AP) degradation is inhibited by an agent by 100% as compared to a control.
14. The method of claim 10, wherein the agent further inhibits rate of degradation of cytoskeletal adaptor protein (CD2AP) as compared to a normal control.
15. The method of claim 10, wherein the agent increases CD2AP expression, function and/or activity by at least about 1 fold as compared to a normal control.
16. The method of claim 10, wherein the agent increases CD2AP expression, function and/or activity by at least about 5 fold as compared to a normal control.
17. The method of claim 10, wherein the agent increases CD2AP expression, function and/or activity up to 1000 fold as compared to a normal control.
18. A cathepsin resistant cytoskeletal adaptor protein (CD2AP) molecule comprising a mutation at one or more amino acids in a cathepsin L cleavage site.
19. • The cathepsin resistant CD2AP molecule of claim 18, wherein the cathepsin cleavage site comprises the amino acid sequences set forth as ELRKE (SEQ ID NO: 1), ELAKA (SEQ ID NO: 2), LPGRF (SEQ ID NO: 3), AFVAR (SEQ ID NO: 4), LSAAE (SEQ ID NO: 5), ELGKE (SEQ ID NO: 6), QPLGS (SEQ ID NO: 7), KIRGI (SEQ ID NO: 8), APGSV (SEQ ID NO: 9), LIVGV (SEQ ID NO: 10), EIIRV (SEQ ID NO: 11), mutants, derivatives, variants or combinations thereof.
20. The cathepsin resistant CD2AP molecule of claim 18, wherein a cathepsin cleavage site mutant comprises a sequence similarity to SEQ ID NOS: 1 to 1 1 of between about 5% to 99.99% sequence similarity.
21. The cathepsin resistant CD2AP molecule of claim 18, wherein a cathepsin cleavage site mutant comprises an amino acid sequence of between about 1 amino acid to about 15 amino acids.
22. The cathepsin resistant CD2AP molecule of claim 18, wherein the CD2AP molecule lacks one or more amino acids in the sequences set forth as SEQ ID NOS: 1 to 11.
23. A composition comprising a pharmaceutical composition and/or one or more cathepsin L inhibitors and/or agents which inhibit cytoskeletal adaptor protein (CD2AP) degradation, in a therapeutically effective amount.
24. A composition comprising an agent which increases expression, function, and/or activity of cytoskeletal adaptor protein (CD2AP), in a therapeutically effective amount.
25. A vector expressing a cytoskeletal adaptor protein (CD2AP) cathepsin L resistant molecule.
26. A biomarker for the diagnosis of a disease or disorder characterized by proteinuria and/or identification of individuals at risk of developing a disease or disorder characterized by proteinuria comprising: cathepsin-L, dynamin, synaptopodin or cytoskeletal regulator protein synaptopodin, cytoskeletal adaptor protein (CD2AP), variants, mutants or fragments thereof.
27. The biomarker of claim 26, wherein a fragment of CD2AP comprises p32 C-terminal fragment.
28. The biomarker of claim 26, wherein expression of dendrin is increased in podocyte nuclei.
29. The biomarker of claim 26, wherein the identification of an individual at risk of developing disease or disorder characterized by proteinuria detects at least one biomarker or fragments thereof.
30. The biomarker of claim 26, wherein the progression of disease or disorder characterized by proteinuria is correlated to an increase in cathepsin-L and/or system N glutamine transporter (SNAT3) expression.
31. The biomarker of claim 26, wherein the progression of disease or disorder characterized by proteinuria is correlated to an increase in p32 CD2AP C-terminal fragment expression and/or dendrin in podocyte nuclei.
32. An antibody or aptamer specific for CD2AP, mutants, variants, fragments, derivatives or analogs thereof.
33. The antibody or aptamer of claim 32, wherein at least one antibody specifically binds to ELRKE (SEQ ID NO: 1), ELAKA (SEQ ID NO: 2), LPGRF (SEQ ID NO: 3), AFVAR (SEQ ID NO: 4), LSAAE (SEQ ID NO: 5), ELGKE (SEQ ID NO: 6), QPLGS (SEQ ID NO: 7), KIRGI (SEQ ID NO: 8), APGSV (SEQ ID NO: 9), LIVGV (SEQ ID NO: 10), EIIRV (SEQ ID NO: 11), mutants, derivatives, variants or combinations thereof.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09825459A EP2352502A4 (en) | 2008-11-06 | 2009-11-06 | Limited proteolysis of cd2ap and progression of renal disease |
US13/127,839 US20110236397A1 (en) | 2008-11-06 | 2009-11-06 | Limited proteolysis of cd2ap and progression of renal disease |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11186908P | 2008-11-06 | 2008-11-06 | |
US61/111,869 | 2008-11-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010054167A2 true WO2010054167A2 (en) | 2010-05-14 |
WO2010054167A3 WO2010054167A3 (en) | 2010-07-01 |
Family
ID=42153574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/063511 WO2010054167A2 (en) | 2008-11-06 | 2009-11-06 | Limited proteolysis of cd2ap and progression of renal disease |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110236397A1 (en) |
EP (1) | EP2352502A4 (en) |
WO (1) | WO2010054167A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012012725A2 (en) | 2010-07-23 | 2012-01-26 | President And Fellows Of Harvard College | Methods of detecting diseases or conditions using phagocytic cells |
WO2012012704A2 (en) | 2010-07-23 | 2012-01-26 | President And Fellows Of Harvard College | Methods of detecting kidney-associated diseases or conditions |
WO2012054321A2 (en) * | 2010-10-19 | 2012-04-26 | University Of Miami | Assays, methods and kits for predicting renal disease and personalized treatment strategies |
WO2013053916A1 (en) * | 2011-10-14 | 2013-04-18 | Pronota N.V. | Procathepsin l and cathepsin l as biomarkers for ischemia |
CN107245502A (en) * | 2017-06-14 | 2017-10-13 | 中国科学院武汉病毒研究所 | CD 2-binding protein (CD 2 AP) and its interacting protein |
US10195227B2 (en) | 2012-04-13 | 2019-02-05 | L&F Research Llc | Method of using cyclodextrin |
US10494675B2 (en) | 2013-03-09 | 2019-12-03 | Cell Mdx, Llc | Methods of detecting cancer |
US10626464B2 (en) | 2014-09-11 | 2020-04-21 | Cell Mdx, Llc | Methods of detecting prostate cancer |
US10934589B2 (en) | 2008-01-18 | 2021-03-02 | President And Fellows Of Harvard College | Methods of detecting signatures of disease or conditions in bodily fluids |
US10961578B2 (en) | 2010-07-23 | 2021-03-30 | President And Fellows Of Harvard College | Methods of detecting prenatal or pregnancy-related diseases or conditions |
US11111537B2 (en) | 2010-07-23 | 2021-09-07 | President And Fellows Of Harvard College | Methods of detecting autoimmune or immune-related diseases or conditions |
US11585814B2 (en) | 2013-03-09 | 2023-02-21 | Immunis.Ai, Inc. | Methods of detecting prostate cancer |
EP4303584A2 (en) | 2010-07-23 | 2024-01-10 | President and Fellows of Harvard College | Methods for detecting signatures of disease or conditions in bodily fluids |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2884988A4 (en) * | 2012-08-17 | 2016-04-20 | Father Flanagan S Boys Home Doing Business As Boy Town Nat Res Hospital | Rac1 inhibitors for the treatment of alport glomerular disease |
US9719981B2 (en) | 2012-08-17 | 2017-08-01 | Father Flanagan's Boys' Home | RAC1 inhibitors for the treatment of alport glomerular disease |
GB201410507D0 (en) * | 2014-06-12 | 2014-07-30 | Univ Bath | Drug delivery enhancement agents |
US20240000930A1 (en) | 2020-12-09 | 2024-01-04 | Siwa Corporation | Methods and compositions for treating kidney diseases |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7670817B2 (en) * | 2005-11-08 | 2010-03-02 | The General Hospital Corporation | Dynamin mediated diseases and associated methods and products |
WO2007125723A1 (en) * | 2006-04-28 | 2007-11-08 | Osaka University | Glomerular slit protein inducer |
US20080255181A1 (en) * | 2006-12-15 | 2008-10-16 | University Of Heidelberg | Methods for treating podocyte-related disorders |
-
2009
- 2009-11-06 WO PCT/US2009/063511 patent/WO2010054167A2/en active Application Filing
- 2009-11-06 EP EP09825459A patent/EP2352502A4/en not_active Withdrawn
- 2009-11-06 US US13/127,839 patent/US20110236397A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of EP2352502A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11001894B2 (en) | 2008-01-18 | 2021-05-11 | President And Fellows Of Harvard College | Methods of detecting signatures of disease or conditions in bodily fluids |
US10934589B2 (en) | 2008-01-18 | 2021-03-02 | President And Fellows Of Harvard College | Methods of detecting signatures of disease or conditions in bodily fluids |
US10934588B2 (en) | 2008-01-18 | 2021-03-02 | President And Fellows Of Harvard College | Methods of detecting signatures of disease or conditions in bodily fluids |
WO2012012704A2 (en) | 2010-07-23 | 2012-01-26 | President And Fellows Of Harvard College | Methods of detecting kidney-associated diseases or conditions |
US10961578B2 (en) | 2010-07-23 | 2021-03-30 | President And Fellows Of Harvard College | Methods of detecting prenatal or pregnancy-related diseases or conditions |
EP4303584A2 (en) | 2010-07-23 | 2024-01-10 | President and Fellows of Harvard College | Methods for detecting signatures of disease or conditions in bodily fluids |
WO2012012725A2 (en) | 2010-07-23 | 2012-01-26 | President And Fellows Of Harvard College | Methods of detecting diseases or conditions using phagocytic cells |
US11111537B2 (en) | 2010-07-23 | 2021-09-07 | President And Fellows Of Harvard College | Methods of detecting autoimmune or immune-related diseases or conditions |
WO2012054321A3 (en) * | 2010-10-19 | 2012-08-02 | University Of Miami | Assays, methods and kits for predicting renal disease and personalized treatment strategies |
US10183038B2 (en) | 2010-10-19 | 2019-01-22 | L&F Research Llc | Method for preventing and treating renal disease |
US10765697B2 (en) | 2010-10-19 | 2020-09-08 | L & F Research LLC | Method and treating renal disease |
WO2012054321A2 (en) * | 2010-10-19 | 2012-04-26 | University Of Miami | Assays, methods and kits for predicting renal disease and personalized treatment strategies |
WO2013053916A1 (en) * | 2011-10-14 | 2013-04-18 | Pronota N.V. | Procathepsin l and cathepsin l as biomarkers for ischemia |
US10980828B2 (en) | 2012-04-13 | 2021-04-20 | L & F Research LLC | Method of using cyclodextrin |
US10195227B2 (en) | 2012-04-13 | 2019-02-05 | L&F Research Llc | Method of using cyclodextrin |
US10494675B2 (en) | 2013-03-09 | 2019-12-03 | Cell Mdx, Llc | Methods of detecting cancer |
US11585814B2 (en) | 2013-03-09 | 2023-02-21 | Immunis.Ai, Inc. | Methods of detecting prostate cancer |
US12037645B2 (en) | 2013-03-09 | 2024-07-16 | Immunis.Ai, Inc. | Methods of detecting cancer |
US10626464B2 (en) | 2014-09-11 | 2020-04-21 | Cell Mdx, Llc | Methods of detecting prostate cancer |
CN107245502B (en) * | 2017-06-14 | 2020-11-03 | 中国科学院武汉病毒研究所 | CD 2-binding protein (CD2AP) and its interacting protein |
CN107245502A (en) * | 2017-06-14 | 2017-10-13 | 中国科学院武汉病毒研究所 | CD 2-binding protein (CD 2 AP) and its interacting protein |
Also Published As
Publication number | Publication date |
---|---|
US20110236397A1 (en) | 2011-09-29 |
EP2352502A4 (en) | 2012-12-26 |
WO2010054167A3 (en) | 2010-07-01 |
EP2352502A2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110236397A1 (en) | Limited proteolysis of cd2ap and progression of renal disease | |
EP2352503B1 (en) | Role of soluble upar in the pathogenesis of proteinuric kidney disease | |
Meyer-Schwesinger | The ubiquitin–proteasome system in kidney physiology and disease | |
Xu et al. | Progerin accumulation in nucleus pulposus cells impairs mitochondrial function and induces intervertebral disc degeneration and therapeutic effects of sulforaphane | |
Wang et al. | TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import | |
US8841259B2 (en) | Compositions and methods for treating vascular permeability | |
Sever et al. | Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease | |
Yu et al. | PRICKLE3 linked to ATPase biogenesis manifested Leber’s hereditary optic neuropathy | |
Golubnitschaja et al. | What are the biomarkers for glaucoma? | |
US20080220056A1 (en) | Treatment for liver disease | |
JP7098529B2 (en) | A method for treating Fabry disease in a patient having a G9331A mutation in the GLA gene. | |
Kong et al. | Fragmentation of kidney epithelial cell primary cilia occurs by cisplatin and these cilia fragments are excreted into the urine | |
WO2011057172A1 (en) | Podocyte specific assays and uses thereof | |
KR20010080267A (en) | Method for monitoring proteasome inhibitor drug action | |
US9205135B2 (en) | Podocyte pH modulation and uses thereof | |
Ye et al. | p53 deacetylation alleviates calcium oxalate deposition-induced renal fibrosis by inhibiting ferroptosis | |
Nguyen et al. | Quantitative proteomics reveal an altered pattern of protein expression in brain tissue from mice lacking GPR37 and GPR37L1 | |
Vishnudas et al. | Ku70 regulates Bax-mediated pathogenesis in laminin-α2-deficient human muscle cells and mouse models of congenital muscular dystrophy | |
US9541546B2 (en) | Method of promoting excitatory synapse formation with an anti-Ephexin5 phospho-Y361 antibody | |
US20220370463A1 (en) | Stabilized c-fms intracellular fragments (ficd) promote osteoclast differentiation and arthritic bone erosion | |
Sahajpal et al. | Deranged metabolic profile and identification of biomarkers in the vitreous humour of patients with proliferative diabetic retinopathy | |
CN112957471A (en) | Application of deubiquitinase USP42 as drug target in preparation of drugs | |
Zhang et al. | BRAWNIN: A sORF-encoded Peptide Essential for Vertebrate Mitochondrial Complex III Assembly | |
Parente et al. | Reversal of pathologic changes in fibroblasts from Niemann-Pick type C disease patients by inhibition of bromodomain and extraterminal proteins | |
Yang et al. | An artificial peptide inhibits autophagy through calcineurin-TFEB pathway |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09825459 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13127839 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009825459 Country of ref document: EP |