Nothing Special   »   [go: up one dir, main page]

WO2009128349A1 - カーボンナノチューブ配向集合体の製造装置及び製造方法 - Google Patents

カーボンナノチューブ配向集合体の製造装置及び製造方法 Download PDF

Info

Publication number
WO2009128349A1
WO2009128349A1 PCT/JP2009/056878 JP2009056878W WO2009128349A1 WO 2009128349 A1 WO2009128349 A1 WO 2009128349A1 JP 2009056878 W JP2009056878 W JP 2009056878W WO 2009128349 A1 WO2009128349 A1 WO 2009128349A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
unit
gas
growth
aligned
Prior art date
Application number
PCT/JP2009/056878
Other languages
English (en)
French (fr)
Inventor
明慶 渋谷
敬一 川田
荒川 公平
賢治 畠
湯村 守雄
Original Assignee
日本ゼオン株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 独立行政法人産業技術総合研究所 filed Critical 日本ゼオン株式会社
Priority to US12/679,869 priority Critical patent/US7897209B2/en
Priority to CN200980100516.0A priority patent/CN102741161B/zh
Priority to JP2010508170A priority patent/JP4581146B2/ja
Priority to EP09731859.6A priority patent/EP2263974B1/en
Priority to KR1020117011866A priority patent/KR101460398B1/ko
Publication of WO2009128349A1 publication Critical patent/WO2009128349A1/ja
Priority to US13/011,644 priority patent/US20110116995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0066Orienting nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes

Definitions

  • the present invention relates to an apparatus for manufacturing an aligned carbon nanotube assembly, and relates to an apparatus and a method for manufacturing an aligned carbon nanotube assembly that can significantly improve manufacturing efficiency without quality deterioration during continuous manufacturing.
  • a carbon nanotube (hereinafter also referred to as CNT) is a carbon structure having a structure in which a carbon sheet formed by arranging carbon atoms in a hexagonal shape in a plane is closed in a cylindrical shape.
  • CNTs are multi-layered or single-layered, and all of them are in terms of mechanical strength, optical properties, electrical properties, thermal properties, molecular adsorption functions, etc., from electronic device materials, optical element materials, conductive materials. Development as functional materials such as functional materials is expected.
  • single-walled CNTs have electrical characteristics (very high current density), thermal characteristics (thermal conductivity comparable to diamond), optical characteristics (light emission in the optical communication band wavelength region), hydrogen storage capacity, and metals.
  • electrical characteristics very high current density
  • thermal characteristics thermal conductivity comparable to diamond
  • optical characteristics light emission in the optical communication band wavelength region
  • hydrogen storage capacity and metals.
  • metals In addition to being excellent in various properties such as catalyst supporting ability, and having both properties of a semiconductor and a metal, it has attracted attention as a material for nanoelectronic devices, nanooptical elements, energy storage bodies, and the like.
  • a bundle, a film, or a mass of aggregates in which a plurality of CNTs are aligned in a specific direction are formed. It is desirable to exhibit any optical functionality. Moreover, it is desirable that the length (height) of the CNT aggregate is much larger. If such an aligned CNT aggregate is created, the application field of CNT is expected to expand dramatically.
  • a chemical vapor deposition method (hereinafter also referred to as a CVD method) is known (refer to Patent Document 1).
  • This method is characterized by contacting a gas containing carbon (hereinafter referred to as a raw material gas) with catalyst metal fine particles in a high temperature atmosphere of about 500 ° C. to 1000 ° C. It is possible to produce CNTs in various forms such as the types of compounds and reaction conditions, and has attracted attention as being suitable for producing CNTs in large quantities.
  • this CVD method can produce both single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT), and by using a substrate carrying a catalyst, a large number of CNTs oriented perpendicular to the substrate surface. It has the advantage that it can be manufactured.
  • the CNT synthesis process in the CVD method may be divided into two processes, a formation process and a growth process.
  • the metal catalyst supported on the substrate in the formation process is reduced by being exposed to high-temperature hydrogen gas (hereinafter referred to as a reducing gas), and in the subsequent growth process, the source gas containing the catalyst activator is used.
  • CNT is grown by contacting with a catalyst.
  • the synthesis is generally performed in a low carbon concentration atmosphere in which the volume fraction of the source gas during CVD is suppressed to about 0.1 to 1%. Since the supply amount of source gas is proportional to the production amount of CNT, synthesis in an atmosphere with a carbon concentration as high as possible directly leads to an improvement in production efficiency.
  • Non-patent document 1 a catalyst activation material such as water is brought into contact with the catalyst together with a raw material gas to thereby significantly increase the activity and life of the catalyst (hereinafter referred to as super growth method.
  • the catalyst activator is considered to have an effect of removing the carbon-based impurities covering the catalyst fine particles to clean the catalyst background, and it is considered that the activity of the catalyst is remarkably improved and the life is extended. Therefore, the catalytic activity is not lost even in a high carbon concentration environment where the catalyst is normally deactivated (the volume fraction of the source gas during CVD is about 2 to 20%), and the production efficiency of CNTs is significantly improved. Has succeeded.
  • the CNT synthesized by applying the super-growth method to the substrate carrying the catalyst has a high specific surface area and forms an aggregate in which each CNT is aligned in a regular direction. In addition, it has a feature that the bulk density is low (hereinafter referred to as an aligned CNT aggregate).
  • a CNT aggregate is a one-dimensional elongated flexible material with a very high aspect ratio, and because of the strong van der Waals force, it is disordered, non-oriented and has a small specific surface area. Easy to configure. And since it is extremely difficult to reconstruct the orientation of the aggregate once disordered and non-oriented, it was difficult to produce a CNT aggregate having a high specific surface area orientation with molding processability. .
  • the super-growth method makes it possible to produce aligned CNT aggregates that have a high specific surface area, have orientation properties, and can be processed into various shapes and shapes. It is considered that it can be applied to various applications such as capacitor electrodes and directional heat transfer and heat dissipation materials.
  • such air heating cleaning is effective when the furnace wall is made of quartz, but cannot be performed due to a problem when it is made of a metal such as a heat-resistant alloy. This is because air heating cleaning oxidizes the furnace wall surface and causes generation of metal oxide scale. In particular, the oxidation resistance of a heat-resistant alloy that has been carburized once is significantly reduced. Since the growth process condition of the super-growth method is a high carbon environment, the surface of the furnace wall is more easily carburized and its oxidation resistance is significantly reduced. When air-cleaning is performed on the carburized furnace wall, carbon by-products such as amorphous carbon and graphite are gasified and removed, but the furnace wall surface is oxidized and the scale of the metal oxide becomes the furnace wall surface.
  • Quartz is stable at high temperatures and emits less impurities, so it is often used as a wall material for CNT synthesis furnaces, but its processing accuracy and flexibility are not high, and it is easily damaged by impact. Has the disadvantages.
  • Increasing the size of the synthesis furnace is an effective way to further improve the production efficiency of CNTs, but quartz has the problems described above, so it is very difficult to increase the size of the apparatus. It is.
  • a metal is used as the wall material, air heating cleaning cannot be applied, and thus the problem of reduction in the production amount and quality deterioration of the aligned CNT aggregate during continuous production cannot be solved.
  • the present invention has been devised to eliminate such disadvantages of the prior art, and its main purpose is to prevent a decrease in the production amount and quality of the aligned CNT aggregate in continuous production, as well as an apparatus.
  • An object of the present invention is to provide a manufacturing apparatus and a manufacturing method capable of improving the manufacturing efficiency of the aligned CNT aggregate by facilitating the enlargement.
  • an apparatus for producing an aligned carbon nanotube assembly as an exemplary aspect of the present invention includes an aligned carbon nanotube assembly that grows an aligned carbon nanotube assembly on a substrate having a catalyst on the surface.
  • a growth unit that realizes a growth step of growing at least one of the source gases to grow the aligned carbon nanotube aggregate, and a transport unit that transports the substrate from at least the formation unit to the growth unit, To do.
  • the furnace space of each unit may be spatially connected by a connecting portion, and may have gas mixing prevention means for preventing gas from being mixed into the furnace space of each unit.
  • the gas mixing prevention means may be a means for keeping the number concentration of carbon atoms in the reducing gas environment in the formation unit at 5 ⁇ 10 22 atoms / m 3 or less.
  • At least one of the device parts exposed to the reducing gas or the raw material gas may be composed of a heat-resistant alloy.
  • the growth unit may include a catalyst activation material addition unit.
  • the apparatus for producing an aligned carbon nanotube assembly may include a cooling unit.
  • a method for producing an aligned carbon nanotube assembly wherein the aligned carbon nanotube assembly is grown on a substrate having a catalyst on the surface, A formation unit that realizes a formation process that heats at least one of the catalyst and the reducing gas, and a surrounding environment of the catalyst as a source gas environment and at least one of the catalyst and the source gas
  • the formation unit in the formation unit and the growth step in the growth unit are performed using a growth unit that realizes the growth step of growing the aligned carbon nanotube aggregate by heating.
  • the number concentration of carbon atoms in the reducing gas environment may be maintained at 5 ⁇ 10 22 atoms / m 3 or less.
  • the source gas environment may be a high carbon concentration environment and may contain a catalyst activation material.
  • the device parts exposed to the reducing gas or the raw material gas is made of a heat-resistant alloy, it is easy to increase the capacity of the manufacturing device, and has a great effect on promoting mass production of CNTs. Can be played.
  • the aligned CNT aggregate produced in the present invention refers to a structure in which a large number of CNTs grown from a substrate are aligned in a specific direction.
  • the preferred specific surface area of the aligned CNT aggregate is 600 m 2 / g or more when the CNT is mainly unopened, and 1300 m 2 / g or more when the CNT is mainly opened.
  • An unopened one with a specific surface area of 600 m 2 / g or more, or an open one with 1300 m 2 / g or more has few impurities such as metals or carbon impurities (for example, several tens percent (about 40%) of the weight) The following is preferable.
  • the weight density is 0.002 g / cm 3 to 0.2 g / cm 3 .
  • the CNTs constituting the aligned CNT aggregate are weakly linked, so that it is easy to uniformly disperse the aligned CNT aggregate in a solvent or the like. become. That is, by setting the weight density to 0.2 g / cm 3 or less, it becomes easy to obtain a homogeneous dispersion. Further, when the weight density is 0.002 g / cm 3 or more, the integrity of the aligned CNT aggregate is improved, and the handling becomes easy by making the dispersion difficult.
  • the height (length) of the aligned CNT aggregate is preferably in the range of 10 ⁇ m to 10 cm.
  • the orientation is improved.
  • generation can be performed in a short time, so that adhesion of carbon-based impurities can be suppressed and the specific surface area can be improved.
  • the base material is a member capable of supporting a carbon nanotube catalyst on the surface thereof, and any material can be used as long as it has a proven track record in producing CNTs and can maintain its shape even at a high temperature of 400 ° C. or higher. .
  • Materials include iron, nickel, chromium, molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, gallium, germanium, arsenic, indium, Examples include metals such as phosphorus and antimony, and alloys and oxides containing these metals, or nonmetals such as silicon, quartz, glass, mica, graphite, and diamond, and ceramics.
  • the metal material is preferable because it is low in cost compared to silicon and ceramic, and in particular, Fe—Cr (iron-chromium) alloy, Fe—Ni (iron-nickel) alloy, Fe—Cr—Ni (iron-chromium—). Nickel) alloys and the like are preferred.
  • the substrate may be in the form of a thin film, block, or powder in addition to the flat plate, but is particularly advantageous in the case of producing a large amount of the surface area with respect to the volume.
  • a carburization preventing layer may be formed on at least one of the front surface and the back surface of the base material. Of course, it is desirable that a carburizing prevention layer is formed on both the front and back surfaces.
  • This carburizing prevention layer is a protective layer for preventing the base material from being carburized and deformed in the carbon nanotube production process.
  • the carburizing prevention layer is preferably made of a metal or a ceramic material, and particularly preferably a ceramic material having a high carburizing prevention effect.
  • the metal include copper and aluminum.
  • the ceramic material include aluminum oxide, silicon oxide, zirconium oxide, magnesium oxide, titanium oxide, silica alumina, chromium oxide, boron oxide, calcium oxide, zinc oxide and other oxides, and nitrides such as aluminum nitride and silicon nitride.
  • aluminum oxide and silicon oxide are preferable because they have a high effect of preventing carburization.
  • a catalyst is supported on the base material or the carburizing prevention layer. Any catalyst can be used as long as it has a proven record in the production of CNTs so far.
  • Any catalyst can be used as long as it has a proven record in the production of CNTs so far.
  • iron-molybdenum thin film, alumina-iron thin film, alumina-cobalt thin film, alumina-iron-molybdenum thin film, aluminum-iron thin film, aluminum-iron-molybdenum thin film and the like can be exemplified.
  • the catalyst can be used in an amount that has a proven track record in the production of CNTs so far.
  • the film thickness is preferably 0.1 nm or more and 100 nm or less. 0.5 nm or more and 5 nm or less is more preferable, and 0.8 nm or more and 2 nm or less is particularly preferable.
  • the formation of the catalyst on the substrate surface may be performed by either a wet process or a dry process. Specifically, a sputtering vapor deposition method or a liquid coating / firing method in which metal fine particles are dispersed in an appropriate solvent can be applied.
  • the catalyst can be formed into an arbitrary shape by using patterning using well-known photolithography, nanoimprinting, or the like.
  • the shape of the aligned CNT aggregate such as a thin film, a column, a prism, and other complicated shapes depending on the patterning of the catalyst formed on the substrate and the CNT growth time.
  • a thin-film aligned CNT aggregate has an extremely small thickness (height) dimension compared to its length and width dimension, but the length and width dimension can be arbitrarily controlled by patterning the catalyst.
  • the thickness dimension can be arbitrarily controlled by the growth time of each CNT constituting the aligned CNT aggregate.
  • the reducing gas is generally a gas that is gaseous at the growth temperature and has at least one of the effects of reducing the catalyst, promoting atomization suitable for the growth of the CNT of the catalyst, and improving the activity of the catalyst.
  • Any suitable gas can be used as long as it has a proven record in the production of conventional CNTs.
  • it is a gas having a reducing property, such as hydrogen gas, ammonia, water vapor, and a mixed gas thereof. Can be applied.
  • a mixed gas obtained by mixing hydrogen gas with an inert gas such as helium gas, argon gas, or nitrogen gas may be used.
  • the reducing gas is generally used in the formation process, but may be appropriately used in the growth process.
  • the raw material used for the production of CNTs in the present invention an appropriate material can be used as long as it has a proven record in the production of CNTs so far.
  • it is a gas having a raw carbon source at the growth temperature. is there.
  • hydrocarbons such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptanepropylene, and acetylene are preferable.
  • lower alcohols such as methanol and ethanol, and oxygen-containing compounds having a low carbon number such as acetone and carbon monoxide may be used. Mixtures of these can also be used.
  • the source gas may be diluted with an inert gas.
  • the inert gas may be any gas that is inert at the temperature at which the CNT grows and does not react with the growing CNT.
  • examples thereof include helium, argon, hydrogen, nitrogen, neon, krypton, carbon dioxide, and chlorine, and mixed gas thereof, and nitrogen, helium, argon, hydrogen, and mixed gas thereof are particularly preferable. .
  • a catalyst activator may be added. By adding the catalyst activator, the production efficiency and purity of the carbon nanotube can be further improved.
  • the catalyst activator used here is generally a substance containing oxygen and may be any substance that does not cause great damage to the CNT at the growth temperature.
  • hydrogen sulfide, oxygen, ozone, acidic Gas, nitrogen oxides, carbon monoxide, and carbon dioxide-containing oxygen-containing compounds, or alcohols such as ethanol and methanol, ethers such as tetrahydrofuran, ketones such as acetone, aldehydes, and esters Nitric oxide and mixtures thereof are effective.
  • ethers such as water, oxygen, carbon dioxide, carbon monoxide, and tetrahydrofuran are preferable, and water is particularly suitable.
  • the amount of the catalyst activator added it is usually fine.
  • the range is 10 ppm to 10000 ppm, preferably 50 ppm to 1000 ppm, and more preferably 100 ppm to 700 ppm.
  • the mechanism of the function of the catalyst activator is presumed as follows at present. In the CNT growth process, if secondary carbon generated amorphous carbon or graphite adheres to the catalyst, the catalyst is deactivated and CNT growth is inhibited. However, in the presence of a catalyst activator, it is gasified by oxidizing amorphous carbon, graphite, etc. to carbon monoxide or carbon dioxide, etc., so that the catalyst is cleaned, increasing the activity of the catalyst and extending the active life It is considered that (catalyst activation action) is expressed.
  • the addition of the catalyst activator increases the activity of the catalyst and extends the life.
  • the growth of CNTs completed in about 2 minutes at most is continued for several tens of minutes by addition, and the growth rate is increased 100 times or more, and further 1000 times.
  • an aligned CNT aggregate whose height is remarkably increased is obtained.
  • the high carbon concentration environment means a growth atmosphere in which the ratio of the raw material gas to the total flow rate is about 2 to 20%.
  • the chemical vapor deposition method that does not use a catalyst activator, if the carbon concentration is increased, carbon-based impurities generated during the CNT synthesis process cover the catalyst fine particles, the catalyst is easily deactivated, and CNT cannot be efficiently grown.
  • the synthesis is performed in a growth atmosphere (low carbon concentration environment) in which the ratio of the source gas to the total flow rate is about 0.1 to 1%.
  • the catalytic activity is remarkably improved. Therefore, even in a high carbon concentration environment, the catalyst does not lose its activity, and CNT can be grown for a long time and the growth rate is remarkably improved.
  • a larger amount of carbon contamination adheres to the furnace wall or the like than in a low carbon concentration environment.
  • Internal furnace pressure 10 2 Pa or more and 10 7 Pa (100 atm) or less are preferable, and 10 4 Pa or more and 3 ⁇ 10 5 Pa (3 atmospheric pressure) or less are more preferable.
  • reaction temperature The reaction temperature for growing CNTs is appropriately determined in consideration of the metal catalyst, raw material carbon source, reaction pressure, etc., but a catalyst activator is added to eliminate by-products that cause catalyst deactivation.
  • a catalyst activator is added to eliminate by-products that cause catalyst deactivation.
  • the catalyst activator when water is used as the catalyst activator, it is preferably 400 ° C. to 1000 ° C. Below 400 ° C, the effect of the catalyst activator is not expressed, and above 1000 ° C, the catalyst activator reacts with CNT.
  • the temperature is more preferably 400 ° C. to 1100 ° C. or less. Below 400 ° C., the effect of the catalyst activator does not appear, and above 1100 ° C., the catalyst activator reacts with CNT.
  • the formation step is a step of heating at least one of the catalyst and the reducing gas while setting the ambient environment of the catalyst supported on the base material as the reducing gas environment.
  • This step at least one of the effects of reducing the catalyst, promoting atomization in a state suitable for the growth of the catalyst CNT, and improving the activity of the catalyst appears.
  • the catalyst is an alumina-iron thin film
  • the iron catalyst is reduced into fine particles, and a large number of nanometer-sized iron fine particles are formed on the alumina layer.
  • the catalyst is prepared as a catalyst suitable for the production of the aligned CNT aggregate.
  • the growth process means that the surrounding environment of the catalyst that has become suitable for the production of the aligned CNT aggregate by the formation process is used as a raw material gas environment, and at least one of the catalyst and the raw material gas is heated to thereby align the aligned CNT assembly. It is a process of growing the body.
  • the production apparatus of the present invention is generally composed of an inlet purge unit, a formation unit, a growth unit, a transport unit, a gas mixing prevention means, a connection unit, a cooling unit, and an outlet purge unit. Each configuration will be described below.
  • the inlet purge section is a set of apparatuses for preventing external air from being mixed into the apparatus furnace from the substrate inlet. It has a function of replacing the surrounding environment of the substrate conveyed into the apparatus with a purge gas.
  • a furnace or a chamber for holding the purge gas, an injection unit for injecting the purge gas, and the like can be mentioned.
  • the purge gas is preferably an inert gas, and nitrogen is particularly preferable from the viewpoints of safety, cost, purgeability, and the like.
  • the substrate inlet is always open, such as a belt conveyor type, it is preferable to use a gas curtain device that injects purge gas in a shower shape from above and below as the purge gas injection unit to prevent external air from entering from the device inlet.
  • the formation unit is a set of apparatuses for realizing the formation process, and the environment around the catalyst formed on the surface of the substrate is set as a reducing gas environment, and at least one of the catalyst and the reducing gas is heated. It has a function.
  • a formation furnace for holding the reducing gas a reducing gas injection unit for injecting the reducing gas, a heater for heating at least one of the catalyst and the reducing gas, and the like can be mentioned. Any heater can be used as long as it can be heated, and the heating temperature is preferably in the range of 400 ° C. to 1100 ° C. Examples of the heater include a resistance heater, an infrared heater, and an electromagnetic induction heater.
  • the growth unit is a set of devices for realizing the growth process.
  • the environment surrounding the catalyst which is in a state suitable for the production of the aligned CNT aggregate by the formation process, is used as the raw material gas environment, and the catalyst and the raw material. It has a function of growing an aligned CNT aggregate by heating at least one of the gases.
  • Specific examples include a growth furnace for maintaining a source gas environment, a source gas injection unit for injecting source gas, a heater for heating at least one of a catalyst and source gas, and the like. Any heater can be used as long as it can be heated, and the heating temperature is preferably in the range of 400 ° C. to 1100 ° C. Examples of the heater include a resistance heater, an infrared heater, and an electromagnetic induction heater. Furthermore, it is good to have a catalyst activator addition part.
  • the catalyst activator adding part is a set of devices for adding the catalyst activator to the raw material gas or for directly adding the catalyst activator to the ambient environment of the catalyst in the growth furnace space.
  • the means for supplying the catalyst activator is not particularly limited.
  • a supply using a bubbler a supply obtained by vaporizing a solution containing the catalyst activator, a supply as a gas, and a solid catalyst activator are used. Examples include liquefied / vaporized supply, and a supply system using various devices such as a vaporizer, a mixer, a stirrer, a diluter, a sprayer, a pump, and a compressor can be constructed.
  • a catalyst activation material concentration measuring device may be provided in a catalyst activation material supply pipe or the like. By performing feedback control using this output value, it is possible to supply a stable catalyst activation material with little change over time.
  • the transport unit is a set of apparatuses necessary for transporting a substrate from at least the formation unit to the growth unit.
  • a robot arm in a multi-chamber system a robot arm driving device, and the like, a mesh belt in a belt conveyor system, a driving device using an electric motor with a speed reducer, and the like can be given.
  • the gas mixing prevention means is a set of devices for realizing a function of preventing gas from being mixed into the furnace space of each unit, which is installed at a connection portion where the inside of each unit is spatially connected to each other. That is.
  • a gate valve device that mechanically cuts off the spatial connection of each unit
  • a gas curtain device that cuts off by inert gas injection, a connection part and / or each unit during a time other than during the movement of the substrate from unit to unit
  • An exhaust device that exhausts the gas in the vicinity of the connecting portion to the outside of the system can be used.
  • the gas mixing prevention means needs to function so as to keep the number concentration of carbon atoms in the reducing gas environment in the formation furnace at 5 ⁇ 10 22 atoms / m 3 or less, more preferably at 1 ⁇ 10 22 atoms / m 3 or less. .
  • the exhaust amount Q of the plurality of exhaust units cannot be determined independently of each other. It is necessary to adjust the gas supply amount (reducing gas flow rate, raw material gas flow rate, cooling gas flow rate, etc.) of the entire apparatus.
  • the necessary condition for satisfying the gas mixing prevention can be expressed by the following equation.
  • D is the diffusion coefficient of the gas to be prevented from mixing
  • S is the cross-sectional area of the boundary to prevent gas mixing
  • L is the length of the exhaust part (furnace length direction).
  • Formation furnace of raw material gas by means of preventing gas mixing so as to keep the concentration of carbon atoms in the reducing gas environment in the formation furnace at 5 ⁇ 10 22 atoms / m 3 or less, more preferably at 1 ⁇ 10 22 atoms / m 3 or less. It is good to prevent the inside.
  • N A is calculated by the following formula (1).
  • the production amount and quality of CNTs can be kept good.
  • effects such as reduction of the catalyst, promotion of atomization suitable for the growth of the CNT of the catalyst, and improvement of the activity of the catalyst in the formation process. Can be satisfactorily exhibited, and as a result, the production amount and quality of CNTs in the growth process can be kept good.
  • a furnace or a chamber that can block the environment around the base material and the outside air and pass the base material from unit to unit can be used.
  • the cooling unit is a set of devices necessary for cooling the substrate on which the aligned CNT aggregate has grown. It has a function to realize oxidation prevention and cooling of the aligned CNT aggregate, catalyst and substrate after the growth process.
  • a cooling furnace for holding an inert gas a water-cooled cooling pipe arranged so as to surround the cooling furnace space in the case of a water cooling type, and an injection unit that injects an inert gas into the cooling furnace space in the case of an air cooling type Etc.
  • the outlet purge section is a set of apparatuses for preventing external air from being mixed into the apparatus furnace from the substrate outlet. It has a function to make the surrounding environment of the substrate a purge gas environment. Specifically, a furnace or a chamber for maintaining a purge gas environment, an injection unit for injecting purge gas, and the like can be given.
  • the purge gas is preferably an inert gas, and nitrogen is particularly preferable from the viewpoints of safety, cost, purgeability, and the like.
  • the base material outlet is always open, such as a belt conveyor type, it is preferable to use a gas curtain device that injects purge gas in a shower shape from above and below as the purge gas injection unit to prevent external air from entering from the device outlet.
  • a shower head provided with a plurality of ejection holes provided at a position facing the catalyst formation surface of the substrate may be used as an injection part for the reducing gas, the raw material gas, and the catalyst activation material.
  • the position facing each other is provided such that the angle between each ejection hole and the normal line of the substrate is 0 or more and less than 90 °. That is, the direction of the gas flow ejected from the ejection holes provided in the shower head is set to be substantially orthogonal to the substrate.
  • the reducing gas can be uniformly sprayed on the substrate, and the catalyst can be efficiently reduced.
  • the uniformity of the aligned CNT aggregates grown on the substrate can be improved, and the amount of reducing gas consumed can be reduced.
  • the raw material gas can be uniformly dispersed on the substrate, and the raw material gas can be consumed efficiently.
  • the uniformity of the aligned CNT aggregates grown on the substrate can be improved, and the consumption of the raw material gas can be reduced.
  • the catalyst activation material can be uniformly dispersed on the substrate, and the activity of the catalyst is increased and the life is extended. It can be continued. This is the same even when a catalyst activator is added to the raw material gas and a shower head is used as an injection section.
  • the apparatus parts exposed to the reducing gas or the raw material gas include a formation unit, a growth unit, a transport unit, a gas mixing prevention means, and a part of a connection part.
  • apparatus parts such as a formation furnace, a reducing gas injection part, a growth furnace, a raw material gas injection part, a mesh belt, an exhaust part of a gas mixing prevention means, and a furnace of a connection part, can be mentioned.
  • Examples of the material of the device parts exposed to the reducing gas or the raw material gas include materials that can withstand high temperatures, such as quartz, heat-resistant ceramics, heat-resistant alloys, and the like. Is preferable.
  • Examples of the heat-resistant alloy include heat-resistant steel, stainless steel, nickel-base alloy and the like. A steel whose main component is Fe and whose other alloy concentration is 50% or less is generally called heat-resistant steel. Further, steel containing Fe as a main component and other alloy concentration of 50% or less and containing Cr of about 12% or more is generally called stainless steel.
  • As a nickel base alloy the alloy which added Mo, Cr, Fe, etc. to Ni is mentioned. Specifically, SUS310, Inconel 600, Inconel 601, Inconel 625, Incoloy 800, MC alloy, Haynes 230 alloy and the like are preferable from the viewpoints of heat resistance, mechanical strength, chemical stability, and low cost.
  • the material is a heat-resistant alloy and the surface thereof is subjected to hot-dip aluminum plating, or the surface is polished so that the arithmetic average roughness Ra ⁇ 2 ⁇ m.
  • carbon stains attached to the wall surface or the like when CNTs are grown in a high carbon environment can be reduced. This is preferable because it can prevent a decrease in the production amount and quality of the aligned CNT aggregate.
  • the molten aluminum plating process refers to a process of forming an aluminum or aluminum alloy layer on the surface of a material to be plated by immersing a material to be plated in a molten aluminum bath.
  • An example of the processing method is as follows. After the surface of the material to be plated (base material) is washed (pretreatment), it is immersed in a molten aluminum bath at about 700 ° C. to cause diffusion of the molten aluminum into the surface of the base material. This is a process for forming an alloy and attaching aluminum to the alloy layer when it is pulled up from the bath. Further, after that, the surface alumina layer and the aluminum layer may be subjected to a low temperature thermal diffusion treatment to expose the underlying Fe—Al alloy layer.
  • polishing process As a polishing method for making the heat-resistant alloy an arithmetic average roughness Ra ⁇ 2 ⁇ m, mechanical polishing represented by buff polishing, chemical polishing using chemicals, electrolytic polishing in which an electric current is passed in an electrolytic solution, Examples thereof include composite electropolishing that combines mechanical polishing and electropolishing.
  • FIG. 1 shows an example of an aligned CNT aggregate production apparatus according to the present invention.
  • the formation unit 102, the growth unit 104, and the cooling unit 105 each include a formation furnace 102a, a growth furnace 104a, and a cooling furnace 105a, and the transport unit 107 includes a mesh belt 107a and a belt driving unit 107b. It is in the state connected spatially by the connection part.
  • the base material 111 is transported by the transport unit 107 in the order of formation, growth, and cooling in each furnace space.
  • an inlet purge unit 101 is provided at the apparatus inlet.
  • This inlet purge unit 101 sprays purge gas from above and below in the form of a shower to prevent external air from entering the apparatus furnace from the inlet.
  • the inlet purge unit 101 and the formation unit 102 are spatially connected by a connection unit, and an exhaust unit 103a serving as a gas mixing prevention unit is disposed.
  • the purge gas injected from the inlet purge unit 101 and the reducing gas injection unit 102b are injected.
  • the mixed gas with the reduced gas is exhausted. This prevents purge gas from entering the formation furnace space and reducing gas from entering the inlet purge section.
  • the formation unit 102 and the growth unit 104 are spatially connected by a connection part, and an exhaust part 103b of a gas mixing prevention means is arranged, so that the reducing gas in the formation furnace space and the raw material gas in the growth furnace space are mixed. The gas is exhausted. Thereby, mixing of the source gas into the formation furnace space and mixing of the reducing gas into the growth furnace space are prevented.
  • the growth unit 104 and the cooling unit 105 are spatially connected by a connection part, and an exhaust part 103c of gas mixing prevention means is disposed, and the source gas in the growth furnace space and the inert gas in the cooling furnace space The mixed gas is exhausted. Thereby, mixing of the source gas into the cooling furnace space and mixing of the inert gas into the growth furnace space are prevented.
  • the apparatus outlet is provided with an outlet purge section 106 having a structure substantially similar to that of the inlet purge section 101.
  • the outlet purge unit 106 injects purge gas from above and below in a shower shape, thereby preventing external air from being mixed into the cooling furnace from the outlet.
  • the transport unit 107 is of a belt conveyor type, and a substrate on which a catalyst is formed on the surface, for example, an electric motor with a speed reducer, is formed from the formation furnace space to the growth furnace space. It is conveyed by the mesh belt 107a driven by the belt driving unit 107b used.
  • the formation furnace space and the growth furnace space, and the growth furnace space and the cooling furnace space are spatially connected by a connecting portion so that the mesh belt 107a on which the substrate is placed can pass. Since the exhaust part of the above-mentioned gas mixing prevention means is provided at these boundaries, the mixing of gases is prevented.
  • FIG. 2 shows an example of an aligned CNT aggregate production apparatus according to the present invention.
  • the inlet purge unit 201 includes a chamber and an inert gas ejection unit (not shown), and the formation unit 202, the growth unit 204, and the cooling unit 205 include a formation furnace 202a, a growth furnace 204a, and a cooling furnace 205a, respectively.
  • the unit 207 includes a robot arm 207a.
  • the inlet purge unit 201, each unit, and the outlet purge unit 206 are spatially connected by a single connection unit 208, but each in-furnace gas environment can be partitioned by the gate valves 203 b to 203 f of the gas mixing prevention unit 203. It can be done.
  • the substrate 209 having the catalyst on the surface is conveyed in the order of the inlet purge unit 201, the formation unit 202, the growth unit 204, the cooling unit 205, and the outlet purge unit 206 by the robot arm 207a, and undergoes the steps of formation, growth, and cooling. To grow an aligned CNT aggregate on the substrate.
  • the inlet purge unit 201 is provided with a purge gas supply / exhaust unit (not shown), and the inlet of the base material is partitioned by a gate valve 203a.
  • a purge gas supply / exhaust unit not shown
  • the inlet gate valve 203a is closed and the inside of the chamber is replaced with a purge gas.
  • the gate valve 203b that separates the inlet purge unit 201 and the connection unit 208 is opened, and the base material 209 is conveyed into the connection unit 208 by the robot arm 207a.
  • the gate valve 203c that partitions the connecting portion 208 and the formation furnace 202a is opened, and the base material 209 is conveyed into the formation furnace 202a.
  • the gate valve 203c that partitions the connection portion 208 and the formation furnace 202a is closed to prevent the reducing gas from being mixed into the connection portion 208.
  • the gate valve 203c that partitions the connection portion 208 and the formation furnace 202a is opened, and the base material 209 is once transported into the connection portion 208, and then the gate valve 203c is closed to close the connection portion 208 and the growth furnace.
  • the gate valve 203d for partitioning 204a is opened, and the substrate 209 is conveyed into the growth furnace 204a.
  • the gate valve 203c and the gate valve 203d are not opened simultaneously. Thereby, mixing of the raw material gas into the formation furnace space is completely prevented.
  • the gate valve 203d that separates the connecting portion 208 and the growth furnace 204a is closed to prevent the raw material gas from being mixed into the connecting portion.
  • the gate valve 203d that partitions the connection portion 208 and the growth furnace 204a is opened, and the base material 209 is once transported into the connection portion 208, and then the gate valve 203d is closed to close the connection portion 208 and the cooling furnace.
  • the gate valve 203e for partitioning 205a is opened, and the base material 209 is conveyed into the cooling furnace 205a.
  • the base material 209 is once transported into the connection portion 208, and then the gate valve 203f that partitions the connection portion 208 and the outlet purge portion 206 is opened, and the base material 209 is transported into the outlet purge portion 206.
  • the outlet purge unit 206 is provided with a purge gas supply / exhaust unit (not shown), and the interior of the chamber is replaced with purge gas before the substrate is conveyed.
  • the gate valve 203f that partitions the connection portion 208 and the outlet purge portion 206 is closed, and then the gate valve 203g that partitions the outlet purge portion 206 and the outside of the apparatus is opened.
  • the base material 209 is carried out of the apparatus, but the gate valve 203f is closed to prevent the outside air from being mixed into the connecting portion 208.
  • the inlet purge unit 201 As described above, according to the CNT manufacturing apparatus according to the present invention, while the base material 209 having the catalyst on the surface is conveyed by the robot arm 207a, the inlet purge unit 201, formation unit 202, growth unit 204, cooling unit 205, And the outlet purge unit 206 sequentially. Meanwhile, the catalyst is reduced in the reducing gas environment in the formation unit 202, CNT grows on the surface of the base material in the raw material gas environment in the growth unit 204, is cooled in the cooling unit 205, and the production of CNT is completed.
  • reaction conditions such as source gas and heating temperature
  • the catalyst is formed on the surface of the base material by a film forming apparatus different from the manufacturing apparatus.
  • a catalyst film forming unit is provided upstream of the formation unit,
  • the manufacturing apparatus may be configured so that the base material passes through the catalyst film forming unit.
  • each unit is provided in the order of the formation unit, the growth unit, and the cooling unit, and each furnace space is spatially connected at the connection portion.
  • the formation process, the growth process, and the cooling process are performed.
  • a plurality of units that realize a process other than the process may be added somewhere, and the space in the furnace of each unit may be spatially connected at the connection portion.
  • the transport unit has been described with two systems, a belt conveyor system and a robot arm system, but the present invention is not limited to this, and for example, a turntable system, a lifting system, or the like may be used.
  • the arrangement of the formation unit, the growth unit, and the cooling unit has been described by two methods of a linear arrangement and an annular arrangement. You may arrange
  • the specific surface area is a value measured by the Brunauer, Emmett, and Teller method from an adsorption / desorption isotherm of liquid nitrogen measured at 77K.
  • the specific surface area was measured using a BET specific surface area measuring device (HM model-1210 manufactured by Mountec Co., Ltd.).
  • the G / D ratio is an index generally used for evaluating the quality of CNTs.
  • vibration modes called G band (near 1600 cm-1) and D band (near 1350 cm-1) are observed.
  • the G band is a vibration mode derived from a hexagonal lattice structure of graphite, which is a cylindrical surface of CNT
  • the D band is a vibration mode derived from a crystal defect. Therefore, the higher the peak intensity ratio (G / D ratio) between the G band and the D band, the lower the amount of defects and the higher the quality of the CNT.
  • Example 1 Hereinafter, a specific example will be given to describe a manufacturing apparatus for an aligned CNT aggregate according to the present invention in detail.
  • the manufacturing equipment diagram of this example is shown in FIG.
  • the manufacturing apparatus includes an inlet purge unit 101, a formation unit 102, a gas mixing prevention means 103, a growth unit 104, a cooling unit 105, an outlet purge unit 106, a transport unit 107, and connection units 108 to 110.
  • the materials of the furnace / injection unit of the formation / growth unit, the exhaust unit of the gas mixing prevention means, the mesh belt, and the connection unit were SUS310 subjected to aluminum plating.
  • the manufacturing conditions for the catalyst substrate are described below.
  • a 90 mm square and 0.3 mm thick Fe—Ni—Cr alloy YEF426 manufactured by Hitachi Metals, Ni 42%, Cr 6% was used as the substrate.
  • the surface roughness was measured using a laser microscope, the arithmetic average roughness Ra ⁇ 2.1 ⁇ m.
  • An alumina film having a thickness of 20 nm was formed on both the front and back surfaces of the substrate using a sputtering apparatus, and then an iron film (catalyst metal layer) having a thickness of 1.0 nm was formed only on the surface using a sputtering apparatus.
  • the catalyst substrate thus produced was placed on the mesh belt of the production apparatus, and the formation process, the growth process, and the cooling process were performed in this order while changing the mesh belt conveyance speed to produce an aligned CNT aggregate. .
  • the conditions of the inlet purge section, formation unit, gas mixing prevention means, growth unit, cooling unit, and outlet purge section of the manufacturing apparatus were set as follows.
  • Inlet purge unit 101 Purge gas: nitrogen 60000 sccm Formation unit 102 -Furnace temperature: 830 ° C ⁇ Reducing gas: nitrogen 11200 sccm, hydrogen 16800 sccm ⁇ Processing time: 28 minutes Gas mixing prevention means 103 ⁇ Exhaust part 3a displacement: 20 sLm ⁇ Exhaust part 3b displacement: 25 sLm ⁇ Exhaust part 3c displacement: 20 sLm Growth unit 104 -Furnace temperature: 830 ° C -Source gas: nitrogen 16040 sccm, ethylene 1800 sccm, Steam-containing nitrogen 160sccm (water content 16000ppmv) ⁇ Processing time: 11 minutes Cooling unit 105 ⁇ Cooling water temperature: 30 ° C ⁇ Inert gas: 10000sccm of nitrogen Cooling time: 30 minutes Outlet purge unit 106 ⁇ Purge gas: Nitrogen 50000sccm Continuous production was performed under the above conditions.
  • the properties of the aligned CNT aggregate produced by this example depend on the details of the production conditions, but as a typical value, density: 0.03 g / cm 3 , BET-specific surface area: 1100 m 2 / g, out of average The diameter was 2.9 nm, the half width was 2 nm, the carbon purity was 99.9%, and the Herman orientation coefficient was 0.7.
  • the results of continuous production are shown in Table 1.
  • reducing gas during continuous production was sampled from a gas sampling port installed in the vicinity of the reducing gas injection section, and component analysis was performed with an FTIR analyzer (Thermo Fisher Scientific Nicolet 6700 FT-IR). As a result, it was confirmed that the ethylene concentration in the formation furnace was suppressed to 50 ppmv by the gas mixing prevention means. In terms of the carbon atom number concentration, it is about 3 ⁇ 10 21 atoms / m 3 .
  • the apparatus according to the present invention can solve the problem of a decrease in production amount and quality deterioration of aligned CNT aggregates during continuous production.
  • Example 2 Hereinafter, a specific example will be given to describe a manufacturing apparatus for an aligned CNT aggregate according to the present invention in detail.
  • FIG. 2 shows a manufacturing apparatus diagram of this example.
  • the manufacturing apparatus includes an inlet purge unit 201, a formation unit 202, gate valves 203a to 203g, a growth unit 204, a cooling unit 205, an outlet purge unit 206, a transfer unit 207, and a connection unit 208.
  • the materials of the furnace and spraying unit, robot arm, and connecting unit of each unit of formation and growth were SUS310 subjected to aluminum plating.
  • the manufacturing conditions for the catalyst substrate are described below.
  • a 90 mm square and 0.3 mm thick Fe—Ni—Cr alloy YEF426 manufactured by Hitachi Metals, Ni 42%, Cr 6% was used as the substrate.
  • the surface roughness was measured using a laser microscope, the arithmetic average roughness Ra ⁇ 2.1 ⁇ m.
  • An alumina film having a thickness of 20 nm was formed on both the front and back surfaces of the substrate using a sputtering apparatus, and then an iron film (catalyst metal layer) having a thickness of 1.0 nm was formed only on the surface using a sputtering apparatus.
  • the catalyst substrate thus prepared was placed in the inlet purge section of the manufacturing apparatus and processed in the order of the formation process, the growth process, and the cooling process while being transported by the robot arm, thereby manufacturing an aligned CNT aggregate.
  • Inlet purge unit 201 Inert gas: Nitrogen 12000sccm ⁇ Gas replacement time: 5 minutes Formation unit 202 -Furnace temperature: 820 ° C ⁇ Reducing gas: nitrogen 300sccm, hydrogen 2700sccm Processing time: 10 minutes Growth unit 204 -Furnace temperature: 820 ° C ⁇ Raw material gas: Nitrogen 2674sccm, ethylene 300sccm Steam containing nitrogen 26sccm (water content 16000ppmv) ⁇ Processing time: 10 minutes Cooling unit 205 ⁇ Cooling water temperature: 30 ° C ⁇ Inert gas: Nitrogen 3000sccm Cooling time: 30 minutes Outlet purge unit 206 ⁇ Inert gas: Nitrogen 12000sccm Gas replacement time: 5 minutes Continuous production was performed under the above conditions. The results of continuous production are shown in Table 2.
  • the reducing gas during continuous production was sampled from the gas sampling port installed near the reducing gas injection section, and the component analysis was performed with the FTIR analyzer (Thermo Fisher Scientific Nicolet 6700 FT-IR). As a result, ethylene could not be detected.
  • the apparatus according to the present invention can solve the problem of a decrease in production amount and quality deterioration of aligned CNT aggregates during continuous production.
  • FIG. 1 The device of the present invention (FIG. 1) produced CNTs under the same conditions as in Example 1 except that only inert gas not containing hydrogen gas (supply speed 28000 sccm) was sent from the reducing gas injection section into the reduction furnace space. Tried. As a result, the growth of the aligned CNT aggregate was not observed on the base material only because the surface of the catalyst substrate was darkened.
  • FIG. 2 Aligned CNT aggregates were manufactured using an apparatus that sequentially performs a reduction process and a growth process in the same furnace without moving the substrate as shown in FIG.
  • This apparatus supplies a reaction furnace 304 (inner diameter 50 mm, heating length 360 mm) made of quartz for receiving the catalyst substrate 301, a heater 305 provided so as to surround the reaction furnace 304, and a reducing gas and a source gas.
  • the gas injection unit 303 connected to one end of the reaction furnace 304, the exhaust port 306 connected to the other end of the reaction furnace 304, and the substrate holder 302 made of quartz to which the catalyst substrate 301 is fixed.
  • a control device including a flow rate control valve and a pressure control valve is provided at an appropriate place in order to control the flow rates of the reducing gas and the raw material gas.
  • a reducing gas (total supply rate 4000 sccm) in which nitrogen (supply rate 400 sccm) and hydrogen (supply rate 3600 sccm) were mixed was injected from the gas injection unit 303 onto the catalyst substrate.
  • a 40 mm square catalyst substrate 301 produced in the same manner as in Example 1 was carried in, and a predetermined time (30 minutes) was passed while maintaining a state of 800 ° C. while feeding a reducing gas.
  • the experimental conditions were the same except that ethylene was intentionally mixed in the reducing gas using the same manufacturing apparatus and catalyst substrate as those in Verification Example 2.
  • FIG. 5 shows a graph showing the relationship between the production amount and the G / D ratio of the produced aligned CNT aggregate and the ethylene concentration in the reducing gas.
  • the production amount and G / D ratio of the aligned CNT aggregate were shown as relative values with the ethylene concentration of 0 ppm as 100%.
  • FIG. 5 shows a graph showing the relationship between the production amount and the G / D ratio of the produced aligned CNT aggregate and the ethylene concentration in the reducing gas.
  • the production amount and G / D ratio of the aligned CNT aggregate were shown as relative values with the ethylene concentration of 0 ppm as 100%.
  • the gas mixing prevention means to prevent the mixing of the raw material gas into the reducing gas so that the carbon atom number concentration in the reducing gas is 5 ⁇ 10 22 atoms / m 3 or less. Was shown to be necessary.
  • the present invention can be used suitably in the fields of electronic device materials, optical element materials, conductive materials and the like because the aligned CNT aggregate can be produced with high production efficiency without causing quality deterioration during continuous production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明のカーボンナノチューブ配向集合体の製造装置は、表面に触媒を有する基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造装置であって、触媒の周囲環境を還元ガス環境とすると共に触媒と還元ガスとの少なくとも一方を加熱するフォーメーション工程を実現するフォーメーションユニットと、触媒の周囲環境を原料ガス環境とすると共に触媒と原料ガスとの少なくとも一方を加熱してカーボンナノチューブ配向集合体を成長させる成長工程を実現する成長ユニットと、少なくともフォーメーションユニットから成長ユニットまで基材を搬送する搬送ユニットと、を有する。これにより、連続製造におけるCNT配向集合体の製造量の低下及び品質の劣化を防ぐと共に、装置大型化を容易にすることで、CNT配向集合体の製造効率を向上することのできる製造装置及び製造方法を提供する。

Description

カーボンナノチューブ配向集合体の製造装置及び製造方法
 本発明は、カーボンナノチューブ配向集合体の製造装置に関し、連続製造時における品質劣化を伴うことなく製造効率を著しく向上させることのできるカーボンナノチューブ配向集合体の製造装置及び製造方法に関するものである。
 カーボンナノチューブ(以下、CNTともいう)は、炭素原子が平面的に六角形状に配置されて構成された炭素シートが円筒状に閉じた構造を有する炭素構造体である。このCNTには、多層のものや単層のものがあるが、いずれもその力学的強度、光学特性、電気特性、熱特性、分子吸着機能等の面から、電子デバイス材料、光学素子材料、導電性材料等の機能性材料としての展開が期待されている。
 CNTの中でも単層CNTは、電気的特性(極めて高い電流密度)、熱的特性(ダイヤモンドに匹敵する熱伝導度)、光学特性(光通信帯波長域での発光)、水素貯蔵能、及び金属触媒担持能などの各種特性に優れている上、半導体と金属との両特性を備えているため、ナノ電子デバイス、ナノ光学素子、及びエネルギー貯蔵体などの材料として注目されている。
 これらの用途にCNTを有効利用する場合、複数本のCNTが特定の方向に配向して集まった束状、膜状、あるいは塊状の集合体をなし、そのCNT集合体が、電気・電子的、及び光学的などの機能性を発揮することが望ましい。また、CNT集合体は、その長さ(高さ)がより一層大きいことが望ましい。このような配向したCNT集合体が創製されれば、CNTの応用分野が飛躍的に拡大するものと予測される。
 このCNTの製造方法の一つに、化学気相成長法(以下、CVD法とも称する)が知られている(特許文献1などを参照されたい)。この方法は、約500℃~1000℃の高温雰囲気下で、炭素を含むガス(以下、原料ガスと称す)を触媒の金属微粒子と接触させることを特徴としており、触媒の種類や配置、あるいは炭素化合物の種類や反応条件といった態様を様々に変化させた中でのCNTの製造が可能であり、CNTを大量に製造するのに適したものとして注目されている。またこのCVD法は、単層カーボンナノチューブ(SWCNT)と多層カーボンナノチューブ(MWCNT)とのいずれも製造可能である上、触媒を担持した基板を用いることで、基板面に垂直に配向した多数のCNTを製造することができる、という利点を備えている。
 CVD法におけるCNT合成工程はフォーメーション工程と成長工程の2つの工程に分けて行われることもある。その場合、フォーメーション工程にて基板に担持された金属触媒は高温の水素ガス(以下、還元ガスと称す)に曝されることで還元され、その後の成長工程にて触媒賦活物質を含む原料ガスを触媒に接触させることでCNTを成長させる。このようなフォーメーション工程と成長工程とを実行するに際し、還元された触媒がフォーメーション工程と成長工程との間で外気に曝されないために、フォーメーション工程と成長工程とは同一炉内で行われる。
 通常のCVD法では、CNTの合成過程で発生する炭素系不純物が触媒微粒子を被覆し、触媒が容易に失活し、CNTが効率良く成長できない。そのため、CVD時の原料ガスの体積分率を0.1~1%程度に抑えた低炭素濃度雰囲気で合成を行うのが一般的である。原料ガスの供給量とCNTの製造量は比例するため、できるだけ高い炭素濃度雰囲気で合成を行うことが製造効率の向上に直結する。
 近年になって、CVD法において、原料ガスと共に水などの触媒賦活物質を触媒に接触させることにより、触媒の活性及び寿命を著しく増大させた技術(以下、スーパーグロース法と称す。非特許文献1を参照されたい)が提案されている。触媒賦活物質は触媒微粒子を覆った炭素系不純物を取り除いて触媒の地肌を清浄化する効果があると考えられおり、それによって、著しく触媒の活性が向上すると共に寿命が延びると考えられている。そのため、通常では触媒が失活してしまうような高炭素濃度環境(CVD時の原料ガスの体積分率を2~20%程度)でも触媒活性が失われず、CNTの製造効率を著しく向上することに成功している。触媒を担持した基板にスーパーグロース法を適用することで合成されるCNTは、比表面積が高く、一本一本のCNTが規則的な方向に配向して集まった集合体を形成していて、かつ嵩密度が低いという特徴を持っている(以下、CNT配向集合体と称す)。
 従来、CNT集合体は、非常にアスペクト比が高い一次元の細長い柔軟性がある物質であり、かつ強いファン・デア・ワールス力のために、無秩序・無配向でかつ比表面積の小さい集合体を構成し易い。そしていったん無秩序・無配向となった集合体の配向性を再構築することは、極めて困難であるため、成形加工性を有する高比表面積の配向性を持つCNT集合体の製造は困難であった。しかし、スーパーグロース法によって、比表面積が高く、配向性を持ち、かつ様々な形態・形状への成形加工性を持つCNT配向集合体の製造ができるようになり、物質・エネルギー貯蔵材料として、スーパーキャパシターの電極や指向性を持つ伝熱・放熱材料などの様々な用途に応用できると考えられている。
 従来、CVD法によるCNTの連続製造を実現させるための製造装置として、様々な提案がなされており、例えば、ベルトコンベアやターンテーブル等の搬送手段を用いて連続的に合成炉内へ基材を搬送する手法が知られている(特許文献2~4を参照されたい)。しかしながら、スーパーグロース法を用いて、CNT配向集合体を連続製造する場合には、従来の合成法にはなかった高炭素環境下及び/又は触媒賦活物質から由来する特有の技術課題が発生することが判明した。
日本国公開特許公報「特開2003-171108号公報(公開日:2003年6月17日)」 日本国公開特許公報「特開2006-16232号公報(公開日:2006年1月19日)」 日本国公開特許公報「特開2007-91556号公報(公開日:2007年4月12日)」 日本国公開特許公報「特開2007-92152号公報(公開日:2007年4月12日)」
Kenji Hata et al, Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, SCIENCE, 2004.11.19, VOl.30 6, p.1362-1364
 スーパーグロース法によるCNT配向集合体の製造を行うと、炉内壁面にアモルファスカーボンやグラファイト等のCNT以外の炭素系副生物(以下、炭素汚れ)がかなり大量に付着する。これはスーパーグロース法における原料ガス環境が高炭素濃度環境であることに由来しているが、この炭素汚れの付着は連続的に製造を行うことによってより顕著になる。連続製造によって炉内にある程度の量の炭素汚れが蓄積すると、CNT配向集合体の製造量低下及び品質劣化が生じるという問題が経験的に知られていた。
 従来、この問題は炉内に酸素含有ガス(空気)を導入して加熱し、炭素汚れをガス化することによって除去する方法(以後、空気加熱クリーニングと称す)によって解決されてきたが、この作業を行うことによって製造が中断されてしまい、製造効率が低下するという問題が発生していた。
 また、このような空気加熱クリーニングは、炉壁が石英で構成されている場合は有効であるが、耐熱合金などの金属で構成した場合には問題があって行うことができない。空気加熱クリーニングは炉壁表面を酸化し、金属酸化物スケールの発生を引き起こすからである。特に、一度浸炭された耐熱合金の耐酸化性は著しく低下する。スーパーグロース法の成長工程条件は高炭素環境なので、炉壁表面はさらに浸炭し易く、その耐酸化性は著しく低下する。浸炭された炉壁に対して空気加熱クリーニングを行うと、アモルファスカーボン及びグラファイト等の炭素系副生物はガス化され除去されるが、炉壁表面は酸化され、金属酸化物のスケールが炉壁表面に発生・剥離する。酸化された炉内で製造を行うと、酸化された壁面及び金属酸化物スケールに炭素が大量に付着するようになり、著しくCNT配向集合体の製造量低下及び品質劣化を招くことが判明している。
 石英は高温で安定であり、不純物の放出も少ないという性質を持つため、CNT合成炉の壁材としてよく用いられているが、加工の精度及び自由度が高くなく、また、衝撃により破損しやすいという欠点をもっている。CNTの製造効率をより一層向上させるには合成炉を大型化することが有効な方法の1つであるが、石英は上記のような問題を持っているため、装置の大型化が非常に困難である。しかしながら、壁材として金属を用いると空気加熱クリーニングが適用できないため、連続製造時におけるCNT配向集合体の製造量低下及び品質劣化の問題を解決することができない。
 炉内の炭素汚れがCNT配向集合体の製造量低下及び品質劣化を引き起こすメカニズムとして以下の2つを主な原因として推測している。
 1、フォーメーション工程における還元ガスと炭素汚れとの化学反応
フォーメーション工程と成長工程とが同一炉内で連続に繰り返し行われるので、成長工程において炉壁に付着した炭素汚れは、フォーメーション工程時においては還元ガスに曝されていることになる。800℃程度の高温下では炭素汚れと還元ガス中の水素とが化学反応を起こして炭化水素ガス(主にはメタンガス)を発生させる。炉壁に付着する炭素汚れが増加すると、それによって発生する炭化水素ガスの量も増加するのでCNT成長に必要な触媒の還元を阻害し出し、CNT配向集合体の製造量低下及び品質劣化を引き起こす。
 2、成長工程における触媒賦活物質と炭素汚れとの化学反応
 炉壁に付着した炭素汚れは、成長工程時においては触媒賦活物質と接触することになる。800℃程度の高温下では炭素汚れと触媒賦活物質が化学反応を起こして一酸化炭素及び二酸化炭素などの低炭素数の含酸素化合物を発生させる。炉壁に付着する炭素汚れが蓄積すると、それによって炭素汚れと化学反応をする触媒賦活物質の量も増加し、原料ガス環境のガス組成はCNT成長に最適な条件から外れてしまい、CNT配向集合体の製造量低下及び品質劣化を引き起こす。
 本発明は、このような従来技術の不都合を解消すべく案出されたものであり、その主な目的は、連続製造におけるCNT配向集合体の製造量の低下及び品質の劣化を防ぐと共に、装置大型化を容易にすることで、CNT配向集合体の製造効率を向上することのできる製造装置及び製造方法を提供することにある。
 このような目的を達成するために、本発明の例示的側面としてのカーボンナノチューブ配向集合体の製造装置は、表面に触媒を有する基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造装置であって、触媒の周囲環境を還元ガス環境とすると共に触媒及び還元ガスのうち少なくとも一方を加熱するフォーメーション工程を実現するフォーメーションユニットと、触媒の周囲環境を原料ガス環境とすると共に触媒及び原料ガスのうち少なくとも一方を加熱してカーボンナノチューブ配向集合体を成長させる成長工程を実現する成長ユニットと、少なくともフォーメーションユニットから成長ユニットまで基材を搬送する搬送ユニットと、を有することを特徴とする。
 ここで、各ユニットの炉内空間が接続部によって空間的に接続され、各ユニットの炉内空間内へガスが相互に混入することを防止するガス混入防止手段を有していてもよい。
 ガス混入防止手段が、フォーメーションユニット内の還元ガス環境中の炭素原子個数濃度が5×1022個/m以下に保つ手段であってもよい。
 そのカーボンナノチューブ配向集合体の製造装置において、還元ガスまたは原料ガスに曝される装置部品の少なくとも1つが、耐熱合金から構成されていてもよい。成長ユニットが、触媒賦活物質添加部を備えていてもよい。カーボンナノチューブ配向集合体の製造装置が、冷却ユニットを有してもよい。
 本発明の他の例示的側面としてのカーボンナノチューブ配向集合体の製造方法は、表面に触媒を有する基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造方法であって、触媒の周囲環境を還元ガス環境とすると共に触媒及び還元ガスのうち少なくとも一方を加熱するフォーメーション工程を実現するフォーメーションユニットと、触媒の周囲環境を原料ガス環境とすると共に触媒及び原料ガスのうち少なくとも一方を加熱してカーボンナノチューブ配向集合体を成長させる成長工程を実現する成長ユニットとを用い、フォーメーションユニットにおけるフォーメーション工程と、成長ユニットにおける成長工程とを、行うことを特徴とする。
 そのカーボンナノチューブ配向集合体の製造方法において、還元ガス環境中の炭素原子個数濃度が5×1022個/m以下に保たれていてもよい。原料ガス環境が高炭素濃度環境であり、且つ触媒賦活物質を含んでもよい。
 本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。
 フォーメーション工程を実現するユニットと成長工程を実現するユニットとをそれぞれ別々に設けることで、フォーメーション炉内壁に炭素汚れが付着することが防止されるので、連続製造においてもフォーメーション工程が阻害されず、CNT配向集合体の製造量の低下及び品質の劣化を防ぐことができる。また、フォーメーション炉内空間側へ原料ガスが混入すると、フォーメーション工程における触媒の還元が阻害される。よって、ガス混入防止手段によって還元ガス環境中の炭素原子個数濃度が5×1022個/m以下に保たれているので、フォーメーション工程における触媒の還元が阻害されず、CNT配向集合体の製造量及び品質が維持される。
 また、還元ガス又は原料ガスに曝される装置部品の少なくとも1つが耐熱合金から構成されていることによって、製造装置の大容量化が容易になり、CNTの量産化を推進する上に多大な効果を奏することができる。
 また、触媒の周囲環境に触媒賦活物質を添加することによって、触媒活性の維持とCNTの成長速度を向上させることと、連続製造時のCNT配向集合体の製造量の低下及び品質の劣化を防止することとを両立させることができる。
 また、成長工程の次工程として基材を冷却する冷却工程を実現する冷却ユニットを追加することによって、CNT、触媒、基材の酸化を防止し、CNT配向集合体の製造量の低下及び品質の劣化を防ぐことができる。
本発明の製造装置例1に係る製造装置の概略構成を示すブロック構成図である。 本発明の製造装置例2に係る製造装置の概略構成を示すブロック構成図である。 本発明の検証例2において用いた製造装置の概略構成を示すブロック図である。 本発明の検証例3に係る実験結果を示すグラフである。 本発明の検証例4に係る実験結果を示すグラフである。
 以下に本発明を実施するための最良の形態について詳細に説明する。
  (CNT配向集合体)
 本発明において製造されるCNT配向集合体とは、基材から成長した多数のCNTが特定の方向に配向した構造体をいう。CNT配向集合体の好ましい比表面積は、CNTが主として未開口のものにあっては、600m/g以上であり、CNTが主として開口したものにあっては、1300m/g以上である。比表面積が600m/g以上の未開口のもの、若しくは1300m/g以上の開口したものは、金属などの不純物、若しくは炭素不純物が少ないので(例えば、重量の数十パーセント(40%程度)以下)好ましい。
 重量密度は0.002g/cm~0.2g/cmである。重量密度が0.2g/cmに満たないと、CNT配向集合体を構成するCNT同士の結びつきが弱くなるので、CNT配向集合体を溶媒などに攪拌した際に、均質に分散させることが容易になる。つまり、重量密度を0.2g/cm以下とすることにより、均質な分散液を得ることが容易となる。また重量密度が0.002g/cm以上とすることにより、CNT配向集合体の一体性を向上させて、バラけ難くなることにより取扱いが容易になる。
 CNT配向集合体が配向性、及び高比表面積を示すためには、CNT配向集合体の高さ(長さ)は10μm以上、10cm以下の範囲にあることが好ましい。高さを10μm以上とすることによって、配向性が向上する。また高さを10cm以下とすることによって、生成を短時間で行うことができるので炭素系不純物の付着を抑制し、比表面積を向上させることができる。
  (基材)
 基材はその表面にカーボンナノチューブの触媒を担持することのできる部材であり、400℃以上の高温でも形状を維持できる、CNTの製造に実績のあるものであれば適宜のものを用いることができる。材質としては、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ガリウム、ゲルマニウム、砒素、インジウム、燐、及びアンチモンなどの金属、並びにこれらの金属を含む合金及び酸化物、又はシリコン、石英、ガラス、マイカ、グラファイト、及びダイヤモンドなどの非金属、並びにセラミックなどが挙げられる。金属材料はシリコン及びセラミックと比較して、低コストであるから好ましく、特に、Fe-Cr(鉄-クロム)合金、Fe-Ni(鉄-ニッケル)合金、Fe-Cr-Ni(鉄-クロム-ニッケル)合金等は好適である。
 基材の態様としては、平板状以外に、薄膜状、ブロック状、あるいは粉末状などでもよいが、特に体積の割に表面積を大きくとれる態様が大量に製造する場合において有利である。
  (浸炭防止層)
 この基材の表面及び裏面のうち少なくともいずれか一方には、浸炭防止層が形成してもよい。もちろん、表面及び裏面の両面に浸炭防止層が形成されていることが望ましい。この浸炭防止層は、カーボンナノチューブの生成工程において、基材が浸炭されて変形するのを防止するための保護層である。
 浸炭防止層は、金属又はセラミック材料によって構成されることが好ましく、特に浸炭防止効果の高いセラミック材料であることが好ましい。金属としては、銅及びアルミニウム等が挙げられる。セラミック材料としては、例えば、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化チタン、シリカアルミナ、酸化クロム、酸化ホウ素、酸化カルシウム、酸化亜鉛などの酸化物、窒化アルミニウム、窒化ケイ素などの窒化物が挙げられ、なかでも浸炭防止効果が高いことから、酸化アルミニウム、酸化ケイ素が好ましい。
  (触媒)
 基材、若しくは浸炭防止層上には、触媒が担持されている。触媒としてはこれまでのCNTの製造に実績のあるものであれば適宜のものを用いることができ、例えば、鉄、ニッケル、コバルト、モリブデン、及びこれらの塩化物、及び合金、またこれらが、さらにアムミニウム、アルミナ、チタニア、窒化チタン、酸化シリコンと複合化、また層状になっていてもよい。例えば、鉄-モリブデン薄膜、アルミナ-鉄薄膜、アルミナ-コバルト薄膜、及びアルミナ-鉄-モリブデン薄膜、アルミニウム-鉄薄膜、アルミニウム-鉄-モリブデン薄膜などを例示することができる。触媒の存在量としては、これまでのCNTの製造に実績のある量であればその範囲で使用することができ、例えば鉄を用いる場合、製膜厚さは、0.1nm以上100nm以下が好ましく、0.5nm以上5nm以下がさらに好ましく、0.8nm以上2nm以下が特に好ましい。
 基材表面への触媒の形成は、ウェットプロセス又はドライプロセスのいずれを適用してもよい。具体的には、スパッタリング蒸着法や、金属微粒子を適宜な溶媒に分散させた液体の塗布・焼成法などを適用することができる。また周知のフォトリソグラフィーやナノインプリンティング等を適用したパターニングを併用して触媒を任意の形状とすることもできる。
 本発明の製造方法においては、基板上に成膜する触媒のパターニング及びCNTの成長時間により、薄膜状、円柱状、角柱状、及びその他の複雑な形状をしたものなど、CNT配向集合体の形状を任意に制御することができる。特に薄膜状のCNT配向集合体は、その長さ及び幅寸法に比較して厚さ(高さ)寸法が極端に小さいが、長さ及び幅寸法は、触媒のパターニングによって任意に制御可能であり、厚さ寸法は、CNT配向集合体を構成する各CNTの成長時間によって任意に制御可能である。
  (還元ガス)
 還元ガスは、一般的には、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、触媒の活性向上の少なくとも一つの効果を持つ、成長温度において気体状のガスである。これまでのCNTの製造に実績のあるものであれば適宜のものを用いることができるが、典型的には還元性を有したガスであり、例えば水素ガス、アンモニア、水蒸気及びそれらの混合ガスを適用することができる。また、水素ガスをヘリウムガス、アルゴンガス、窒素ガス等の不活性ガスと混合した混合ガスでもよい。還元ガスは、一般的には、フォーメーション工程で用いるが、適宜成長工程に用いてもよい。
  (原料ガス)
 本発明においてCNTの生成に用いる原料としては、これまでのCNTの製造に実績のあるものであれば適宜のものを用いることができ、一般的には、成長温度において原料炭素源を有するガスである。なかでもメタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタンプロピレン、及びアセチレンなどの炭化水素が好適である。この他にも、メタノール、エタノールなどの低級アルコールや、アセトン、一酸化炭素などの低炭素数の含酸素化合物でもよい。これらの混合物も使用可能である。またこの原料ガスは、不活性ガスで希釈されていてもよい。
  (不活性ガス)
 不活性ガスとしては、CNTが成長する温度で不活性であり、成長するCNTと反応しないガスであればよく、これまでのCNTの製造に実績のあるものであれば適宜のものを用いることができるが、ヘリウム、アルゴン、水素、窒素、ネオン、クリプトン、二酸化炭素、及び塩素など、並びに、これらの混合ガスが例示でき、特に窒素、ヘリウム、アルゴン、水素、及びこれらの混合ガスが好適である。
  (触媒賦活物質)
 CNTの成長工程において、触媒賦活物質を添加してもよい。触媒賦活物質の添加によって、カーボンナノチューブの製造効率や純度をより一層改善することができる。ここで用いる触媒賦活物質としては、一般には酸素を含む物質であり、成長温度でCNTに多大なダメージを与えない物質であればよく、水の他に、例えば、硫化水素、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素、及び二酸化炭素などの低炭素数の含酸素化合物、あるいはエタノール、メタノールなどのアルコール類や、テトラヒドロフランなどのエーテル類、アセトンなどのケトン類、アルデヒドロ類、エステル類、酸化窒素、並びにこれらの混合物が有効である。この中でも、水、酸素、二酸化炭素、及び一酸化炭素、あるいはテトラヒドロフランなどのエーテル類が好ましく、特に水が好適である
 触媒賦活物質の添加量に格別な制限はないが、通常、微量でよく、例えば水の場合には、10ppm以上10000ppm以下、好ましくは50ppm以上1000ppm以下、さらに好ましくは100ppm以上700ppm以下の範囲とするとよい。
 触媒賦活物質の機能のメカニズムは、現時点では以下のように推測される。CNTの成長過程において、副次的に発生したアモルファスカーボンやグラファイトなどが触媒に付着すると触媒は失活してしまいCNTの成長が阻害される。しかし、触媒賦活物質が存在すると、アモルファスカーボンやグラファイトなどを一酸化炭素又は二酸化炭素などに酸化させることでガス化するため、触媒が清浄化され、触媒の活性を高め且つ活性寿命を延長させる作用(触媒賦活作用)が発現すると考えられている。
 この触媒賦活物質の添加により、触媒の活性が高められ且つ寿命が延長する。添加しない場合は高々2分間程度で終了したCNTの成長が添加することによって数十分間継続する上、成長速度は100倍以上、さらには1000倍にも増大する。この結果、その高さが著しく増大したCNT配向集合体が得られることになる。
  (高炭素濃度環境)
 高炭素濃度環境とは、全流量に対する原料ガスの割合が2~20%程度の成長雰囲気のことをいう。触媒賦活物質を用いない化学気相成長法では、炭素濃度を高くするとCNTの合成過程で発生する炭素系不純物が触媒微粒子を被覆し、触媒が容易に失活し、CNTが効率良く成長できないので、全流量に対する原料ガスの割合が0.1~1%程度の成長雰囲気(低炭素濃度環境)で合成を行う。
 触媒賦活物質存在下においては、触媒活性が著しく向上するため、高炭素濃度環境化においても、触媒は活性を失わず、長時間のCNTの成長が可能となると共に、成長速度が著しく向上する。しかしながら、高炭素濃度環境では低炭素濃度環境に比べ、炉壁などに炭素汚れが大量に付着する。
  (炉内圧力)
 10Pa以上、10Pa(100気圧)以下が好ましく、10Pa以上、3×10Pa(3大気圧)以下がさらに好ましい。
  (反応温度)
 CNTを成長させる反応温度は、金属触媒、原料炭素源、及び反応圧力などを考慮して適宜に定められるが、触媒失活の原因となる副次生成物を排除するために触媒賦活物質を添加する工程を含む場合は、その効果が十分に発現する温度範囲に設定することが望ましい。つまり、最も望ましい温度範囲としては、アモルファスカーボン及びグラファイトなどの副次生成物を触媒賦活物質が除去し得る温度を下限値とし、主生成物であるCNTが触媒賦活物質によって酸化されない温度を上限値とすることである。
 具体的には、触媒賦活物質として水を用いる場合は、好ましくは400℃~1000℃とすることである。400℃以下では触媒賦活物質の効果が発現せず、1000℃以上では、触媒賦活物質がCNTと反応してしまう。
 また触媒賦活物質として二酸化炭素を用いる場合は、400℃~1100℃以下とすることがより好ましい。400℃以下では触媒賦活物質の効果が発現せず、1100℃以上では、触媒賦活物質がCNTと反応してしまう。
  (フォーメーション工程)
 フォーメーション工程とは、基材に担持された触媒の周囲環境を還元ガス環境とすると共に、触媒及び還元ガスのうち少なくとも一方を加熱する工程である。この工程により、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、触媒の活性向上の少なくとも一つの効果が現れる。例えば、触媒がアルミナ-鉄薄膜である場合、鉄触媒は還元されて微粒子化し、アルミナ層上にナノメートルサイズの鉄微粒子が多数形成される。これにより触媒はCNT配向集合体の製造に好適な触媒に調製される。
  (成長工程)
 成長工程とは、フォーメーション工程によってCNT配向集合体の製造に好適な状態となった触媒の周囲環境を原料ガス環境とすると共に、触媒及び原料ガスのうち少なくとも一方を加熱することにより、CNT配向集合体を成長させる工程である。
  (冷却工程)
 成長工程後にCNT配向集合体、触媒、基材を不活性ガス下に冷却する工程。成長工程後のCNT配向集合体、触媒、基材は高温状態にあるため、酸素存在環境下に置かれると酸化してしまうおそれがある。それを防ぐために不活性ガス環境下でCNT配向集合体、触媒、基材を400℃以下、さらに好ましくは200℃以下に冷却する。
  (製造装置)
 本発明の製造装置は、大略、入口パージ部、フォーメーションユニット、成長ユニット、搬送ユニット、ガス混入防止手段、接続部、冷却ユニット、出口パージ部から構成されている。以下、各構成について説明する。
  (入口パージ部)
 入口パージ部とは基材入口から装置炉内へ外部空気が混入することを防止するための装置一式のことである。装置内に搬送された基材の周囲環境をパージガスで置換する機能を有する。例えば、パージガスを保持するための炉又はチャンバ、パージガスを噴射するための噴射部等が挙げられる。パージガスは不活性ガスが好ましく、特に安全性、コスト、パージ性等の点から窒素であることが好ましい。ベルトコンベア式など基材入口が常時開口している場合は、パージガス噴射部としてパージガスを上下からシャワー状に噴射するガスカーテン装置とし、装置入口から外部空気が混入することを防止することが好ましい。
  (フォーメーションユニット)
 フォーメーションユニットとは、フォーメーション工程を実現するための装置一式のことであり、基材の表面に形成された触媒の周囲環境を還元ガス環境とすると共に、触媒及び還元ガスのうち少なくとも一方を加熱する機能を有する。例えば、還元ガスを保持するためのフォーメーション炉、還元ガスを噴射するための還元ガス噴射部、触媒と還元ガスの少なくとも一方を加熱するためのヒーター等が挙げられる。ヒーターとしては加熱することができるものであれば何でもよく、加熱の温度としては400℃から1100℃の範囲が好ましく、例えば、抵抗加熱ヒーター、赤外線加熱ヒーター、電磁誘導式ヒーターなどが挙げられる。
  (成長ユニット)
 成長ユニットとは、成長工程を実現するための装置一式のことであり、フォーメーション工程によってCNT配向集合体の製造に好適な状態となった触媒の周囲環境を原料ガス環境とすると共に、触媒及び原料ガスのうち少なくとも一方を加熱することでCNT配向集合体を成長させる機能を有する。具体的には、原料ガス環境を保持するための成長炉、原料ガスを噴射するための原料ガス噴射部、触媒及び原料ガスのうち少なくとも一方を加熱するためのヒーター等が挙げられる。ヒーターとしては加熱することができるものであれば何でもよく、加熱の温度としては400℃から1100℃の範囲が好ましく、例えば、抵抗加熱ヒーター、赤外線加熱ヒーター、電磁誘導式ヒーターなどが挙げられる。更に触媒賦活物質添加部を備えているとよい。
  (触媒賦活物質添加部)
 触媒賦活物質添加部は触媒賦活物質を原料ガス中に添加する、あるいは成長炉内空間にある触媒の周囲環境に触媒賦活物質を直接添加するための装置一式のことである。触媒賦活物質の供給手段としては、特に限定されることはないが、例えば、バブラーによる供給、触媒賦活剤を含有した溶液を気化しての供給、気体そのままでの供給、及び固体触媒賦活剤を液化・気化しての供給などが挙げられ、気化器、混合器、攪拌器、希釈器、噴霧器、ポンプ、及びコンプレッサなどの各種の機器を用いた供給システムを構築することができる。さらには、触媒賦活物質の供給管などに触媒賦活物質濃度の計測装置を設けていてもよい。この出力値を用いてフィードバック制御することにより、経時変化の少ない安定な触媒賦活物質の供給を行うことができる。
  (搬送ユニット)
 搬送ユニットとは、少なくともフォーメーションユニットから成長ユニットまで基板を搬送するために必要な装置一式のことである。例えば、マルチチャンバ方式におけるロボットアーム、ロボットアーム駆動装置等、及び、ベルトコンベア方式におけるメッシュベルト、減速機付き電動モータを用いた駆動装置等などが挙げられる。
  (ガス混入防止手段)
 ガス混入防止手段とは各ユニットの内部が互いに空間的に接続される接続部に設置され、各ユニットの炉内空間内へガスが相互に混入することを防ぐ機能を実現するための装置一式のことである。例えば、基板のユニットからユニットへの移動中以外の時間は各ユニットの空間的接続を機械的に遮断するゲートバルブ装置、不活性ガス噴射によって遮断するガスカーテン装置、接続部及び/又は各ユニットの接続部近傍のガスを系外に排出する排気装置、などが挙げられる。
 ガス混入防止を確実に行うためには、シャッター及び/又はガスカーテンは排気装置と併用することが好ましい。また連続成長を効率的に行う観点から、基板のユニット-ユニット間搬送を途切れなく行うため、また機構の簡素化の観点からは、排気装置を単独で用いることがより好ましい。フォーメーション炉内還元ガス環境中の炭素原子個数濃度を5×1022個/m以下、より好ましくは1×1022個/m以下に保つように、ガス混入防止手段が機能する必要がある。
 排気装置によってガス混入防止を行う場合、複数ある排気部の各排気量Qは互いに独立に決定することはできない。装置全体のガス供給量(還元ガス流量、原料ガス流量、冷却ガス流量など)に応じて調整する必要がある。だたし、ガス混入防止を満たすための必要条件は以下の式のように示すことができる。
  Q≧4DS/L
 ここでDは混入を防止したいガスの拡散係数、Sはガス混入を防止する境界の断面積、Lは排気部の長さ(炉長方向)である。この条件式を満たし、かつ装置全体の給排気バランスを保つように各排気部の排気量は設定される。
  (炭素原子個数濃度)
 原料ガスがフォーメーション炉内空間に混入すると、CNTの成長に悪影響を及ぼす。フォーメーション炉内還元ガス環境中の炭素原子個数濃度を5×1022個/m以下、より好ましくは1×1022個/m以下に保つように、ガス混入防止手段により原料ガスのフォーメーション炉内への混入を防止すると良い。ここで炭素原子個数濃度は、還元ガス環境中の各ガス種(i=1、2、・・・)に対して、濃度(ppmv)をD、D・・・、標準状態での密度(g/m)をρ、ρ・・・、分子量をM、M・・・、ガス分子1つに含まれる炭素原子数をC、C・・・、アボガドロ数をNとして下記数式(1)で計算している。
Figure JPOXMLDOC01-appb-M000001
フォーメーション炉内還元ガス環境中の炭素原子個数濃度を5×1022個/m以下に保つことによって、CNTの製造量及び品質を良好に保つことができる。つまり、炭素原子個数濃度が5×1022個/m以下とすることによって、フォーメーション工程において、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、触媒の活性向上等の効果を良好に発揮し、ひいては、成長工程におけるCNTの製造量及び品質を良好に保つことができる。
  (接続部)
 各ユニットの炉内空間を空間的に接続し、基材がユニットからユニットへ搬送されるときに、基材が外気に曝されることを防ぐための装置一式のことである。例えば、基材周囲環境と外気とを遮断し、基材をユニットからユニットへ通過させることができる炉又はチャンバなどが挙げられる。
  (冷却ユニット)
 冷却ユニットとは、CNT配向集合体が成長した基材を冷却するために必要な装置一式のことである。成長工程後のCNT配向集合体、触媒、基材の酸化防止と冷却とを実現する機能を有する。例えば、不活性ガスを保持するための冷却炉、水冷式の場合は冷却炉内空間を囲むように配置した水冷冷却管、空冷式の場合は冷却炉内空間に不活性ガスを噴射する噴射部等が挙げられる。また、水冷方式と空冷方式を組み合わせてもよい。
  (出口パージ部)
 出口パージ部とは基材出口から装置炉内へ外部空気が混入することを防止するための装置一式のことである。基材の周囲環境をパージガス環境にする機能を有する。具体的には、パージガス環境を保持するための炉又はチャンバ、パージガスを噴射するための噴射部等が挙げられる。パージガスは不活性ガスが好ましく、特に安全性、コスト、パージ性等の点から窒素であることが好ましい。ベルトコンベア式など基材出口が常時開口している場合は、パージガス噴射部としてパージガスを上下からシャワー状に噴射するガスカーテン装置とし、装置出口から外部空気が混入することを防止することが好ましい。
  (還元ガス、原料ガス、触媒賦活物質の噴射部)
 還元ガス、原料ガス、触媒賦活物質の噴射部として、基材の触媒形成面を臨む位置に設けられた複数の噴出孔を備えるシャワーヘッドを用いてもよい。臨む位置とは、各噴出孔の、噴射軸線が基板の法線と成す角が0以上90°未満となるように設けられている。つまりシャワーヘッドに設けられた噴出孔から噴出するガス流の方向が、基板に概ね直交するようにされている。
 還元ガスの噴射部としてこのようなシャワーヘッドを用いると、還元ガスを基材上に均一に散布することができ、効率良く触媒を還元することができる。結果、基材上に成長するCNT配向集合体の均一性を高めることができ、かつ還元ガスの消費量を削減することもできる。
 原料ガスの噴射部としてこのようなシャワーヘッドを用いると、原料ガスを基板上に均一に散布することができ、効率良く原料ガスを消費することができる。結果、基材上に成長するCNT配向集合体の均一性を高めることができ、かつ原料ガスの消費量を削減することもできる。
 触媒賦活物質の噴射部としてこのようなシャワーヘッドを用いると、触媒賦活物質を基板上に均一に散布することができ、触媒の活性が高まると共に寿命が延長するので、配向CNTの成長を長時間継続させることが可能となる。これは触媒賦活物質を原料ガスに添加し、噴射部としてシャワーヘッドを用いた場合でも同様である。
  (還元ガス又は原料ガスに曝される装置部品)
 還元ガス又は原料ガスに曝される装置部品としては、フォーメーションユニット、成長ユニット、搬送ユニット、ガス混入防止手段、接続部の一部部品である。具体的には、フォーメーション炉、還元ガス噴射部、成長炉、原料ガス噴射部、メッシュベルト、ガス混入防止手段の排気部、接続部の炉等の装置部品が挙げられる。
  (還元ガス又は原料ガスに曝される装置部品の材質)
 還元ガス又は原料ガスに曝される装置部品の材質としては、高温に耐えられる材質、例えば、石英、耐熱セラミック、耐熱合金などが挙げられるが、耐熱合金が加工の精度と自由度、コストの点から好ましくい。耐熱合金としては、耐熱鋼、ステンレス鋼、ニッケル基合金等が挙げられる。Feを主成分として他の合金濃度が50%以下のものが耐熱鋼と一般に呼ばれる。また、Feを主成分として他の合金濃度が50%以下であり、Crを約12%以上含有する鋼は一般にステンレス鋼と呼ばれる。また、ニッケル基合金としては、NiにMo、Cr及びFe等を添加した合金が挙げられる。具体的には、SUS310、インコネル600、インコネル601、インコネル625、インコロイ800、MCアロイ、Haynes230アロイなどが耐熱性、機械的強度、化学的安定性、低コストなどの点から好ましい。
 炉内壁及び/又は炉内使用部品を金属で構成する際に、材質を耐熱合金とし、且つその表面を溶融アルミニウムめっき処理、若しくはその表面が算術平均粗さRa≦2μmとなるように研磨処理すると、高炭素環境下でCNTを成長させたときに壁面などに付着する炭素汚れを低減することができる。これによって、CNT配向集合体の製造量の低下及び品質の劣化を防ぐことができ好適である。
  (溶融アルミニウムめっき処理)
 溶融アルミニウムめっき処理とは、溶融アルミニウム浴中に被めっき材料を浸漬することによって被めっき材の表面にアルミニウム又はアルミニウム合金層を形成する処理をいう。処理方法の一例は次の通りである。被めっき材(母材)の表面を洗浄した(前処理)後、約700°C溶融アルミニウム浴中に浸漬させることによって、母材表面中へ溶融アルミニウムの拡散を起こさせ、母材とアルミの合金を生成し、浴より引上げ時にその合金層にアルミニウムを付着させる処理のことである。さらに、その後に、表層のアルミナ層並びにアルミ層を低温熱拡散処理し、その下のFe-Al合金層を露出させる処理を行ってもよい。
  (研磨処理)
 耐熱合金を算術平均粗さRa≦2μmにするための研磨処理方法としては、バフ研磨に代表される機械研磨、薬品を利用する化学研磨、電解液中にて電流を流しながら研磨する電解研磨、機械研磨と電解研磨を組み合わせた複合電解研磨などが挙げられる。
  (算術平均粗さ)
 算術平均粗さRaの定義は「JIS B 0601:2001」を参照されたい。
  (製造装置例1)
 図1に本発明に係るCNT配向集合体製造装置の一例を示す。フォーメーションユニット102、成長ユニット104、及び冷却ユニット105は、それぞれフォーメーション炉102a、成長炉104a、冷却炉105aを備え、搬送ユニット107はメッシュベルト107aとベルト駆動部107bとを備えている。接続部によって空間的に連結された状態になっている。基材111は搬送ユニット107によって各炉内空間をフォーメーション、成長、冷却の順に搬送されるようになっている。
 まず、装置入口には入口パージ部101が設けられている。この入口パージ部101はパージガスを上下からシャワー状に噴射することで、入口から装置炉内へ外部空気が混入することを防止している。
 入口パージ部101とフォーメーションユニット102とは接続部によって空間的に接続され、ガス混入防止手段の排気部103aが配置されており、入口パージ部101から噴射されたパージガスと還元ガス噴射部102bから噴射された還元ガスとの混合ガスが排気される。これによって、フォーメーション炉内空間へのパージガスの混入及び入口パージ部側への還元ガスの混入が防止される。
 フォーメーションユニット102と成長ユニット104とは接続部によって空間的に接続され、ガス混入防止手段の排気部103bが配置されており、フォーメーション炉内空間の還元ガスと成長炉内空間の原料ガスとの混合ガスを排気している。これにより、フォーメーション炉内空間への原料ガスの混入及び成長炉内空間への還元ガスの混入が防止される。
 成長ユニット104と冷却ユニット105とは接続部によって空間的に接続され、ガス混入防止手段の排気部103cが配置されており、成長炉内空間の原料ガスと冷却炉内空間の不活性ガスとの混合ガスを排気している。これにより、冷却炉内空間への原料ガスの混入及び成長炉内空間への不活性ガスの混入が防止される。
 装置出口には入口パージ部101とほぼ同様の構造をした出口パージ部106が設けられている。この出口パージ部106はパージガスを上下からシャワー状に噴射することで、出口から冷却炉内へ外部空気が混入することを防止している。
 搬送ユニット107は、ベルトコンベア式のものであり、フォーメーション炉内空間から成長炉内空間を経て冷却炉内空間へと、表面に触媒が形成された基材を、例えば減速機付き電動モータなどを用いたベルト駆動部107bで駆動されるメッシュベルト107aによって搬送する。そして基材を載置したメッシュベルト107aが通過し得るように、フォーメーション炉内空間と成長炉内空間、並びに成長炉内空間と冷却炉内空間とは接続部によって空間的に接続されているが、これらの境界には上述のガス混入防止手段の排気部が設けられているために互いにガスの混入は防止されている。
 以上のようにして、本発明によるCNT製造装置によれば、表面に触媒を有する基材が搬送ユニット107によって連続的に搬送されつつ、入口パージ部101、フォーメーションユニット102、成長ユニット104、冷却ユニット105、及び出口パージ部を順次通過していく。その間に、フォーメーションユニット102における還元ガス環境下で触媒が還元され、成長ユニット104における原料ガス環境下で基材の表面にCNTが成長し、冷却ユニット105において冷却される。
 図2に本発明に係るCNT配向集合体製造装置の一例を示す。入口パージ部201はチャンバと不活性ガス噴出部(非図示)とを備え、フォーメーションユニット202、成長ユニット204、及び冷却ユニット205は、それぞれフォーメーション炉202a、成長炉204a、冷却炉205aを備え、搬送ユニット207はロボットアーム207aを備えている。入口パージ部201、各ユニット及び出口パージ部206は1つの接続部208によって空間的に接続しているが、各炉内ガス環境はガス混入防止手段203の各ゲートバルブ203b~203fによって仕切ることができるようになっている。表面に触媒を有した基材209はロボットアーム207aによって入口パージ部201、フォーメーションユニット202、成長ユニット204、冷却ユニット205、出口パージ部206の順に搬送され、フォーメーション、成長、冷却の工程を経ることによって、その基材上にCNT配向集合体を成長させる。
 入口パージ部201にはパージガスの給排気部が設置されており(非図示)、基材の入口はゲートバルブ203aで仕切られているようになっている。入口パージ部201に基材209が設置されると入口ゲートバルブ203aは閉じてチャンバ内はパージガスで置換される。
 パージガス置換後、入口パージ部201と接続部208とを仕切るゲートバルブ203bが開き、ロボットアーム207aによって基材209は接続部208内へと搬送させる。
 接続部208とフォーメーション炉202aとを仕切っているゲートバルブ203cが開き、基材209はフォーメーション炉202a内へ搬送される。
 フォーメーション工程中、接続部208とフォーメーション炉202aとを仕切るゲートバルブ203cは閉じており、還元ガスが接続部208内へ混入することを防止している。
 フォーメーション工程終了後、接続部208とフォーメーション炉202aとを仕切っているゲートバルブ203cが開き、基材209は接続部208内へいったん搬送された後、ゲートバルブ203cが閉じて接続部208と成長炉204aとを仕切るゲートバルブ203dが開き、基材209は成長炉204a内へと搬送される。ゲートバルブ203cとゲートバルブ203dは同時に開くことがない。これにより、フォーメーション炉内空間への原料ガスの混入が完全に防止されている。
 成長工程中、接続部208と成長炉204aとを仕切るゲートバルブ203dは閉じており、原料ガスが接続部へ混入することを防止している。
 成長工程終了後、接続部208と成長炉204aとを仕切っているゲートバルブ203dが開き、基材209は接続部208内へいったん搬送された後、ゲートバルブ203dが閉じて接続部208と冷却炉205aとを仕切るゲートバルブ203eが開き、基材209は冷却炉205a内へと搬送される。
 冷却工程終了後、基材209は接続部208内へいったん搬送された後、接続部208と出口パージ部206とを仕切るゲートバルブ203fが開き、基材209は出口パージ部206内へと搬送される。
 出口パージ部206にはパージガスの給排気部が設置されており(非図示)、基材が搬送されてくる前に室内はパージガスで置換されている。基材209搬入後、接続部208と出口パージ部206とを仕切るゲートバルブ203fは閉じられ、続いて出口パージ部206と装置外部とを仕切るゲートバルブ203gが開けられる。これによって、基材209は装置外部へ搬出されるが、ゲートバルブ203fが閉じていることによって、接続部208内へ外気が混入することを防いでいる。
 以上のようにして、本発明によるCNT製造装置によれば、表面に触媒を有する基材209がロボットアーム207aによって搬送されながら、入口パージ部201、フォーメーションユニット202、成長ユニット204、冷却ユニット205、及び出口パージ部206を順次通過していく。その間に、フォーメーションユニット202における還元ガス環境下で触媒が還元され、成長ユニット204における原料ガス環境下で基材の表面にCNTが成長し、冷却ユニット205において冷却され、CNTの製造が終了する。
 以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。
 例えば、原料ガス、加熱温度等の反応条件を適宜に設定することにより、単層あるいは多層のCNTを選択的に製造することも可能であるし、両者を混在して製造することも可能である。
 また、本実施の形態においては、製造装置とは別の成膜装置によって基材表面への触媒の形成を行うものとしたが、フォーメーションユニットの上流側に触媒成膜ユニットを設け、フォーメーションユニットに先立って触媒成膜ユニットを基材が通過するように製造装置を構成してもよい。
 また、本実施の形態においては、フォーメーションユニット、成長ユニット、冷却ユニットの順に各ユニットを設けて、接続部にて各炉内空間を空間的に接続しているが、フォーメーション工程、成長工程、冷却工程以外の他の工程を実現するユニットをどこかに複数追加して、接続部にて各ユニットの炉内空間を空間的に接続してもよい。
 また、本実施の形態においては、搬送ユニットとして、ベルトコンベア方式とロボットアーム方式の2つの方式で説明したが、それに制限されるものではなく、例えばターンテーブル方式、昇降方式などにしてもよい。
 また、本実施の形態においては、フォーメーションユニット、成長ユニット、及び冷却ユニットの各ユニットの配置について、直線状配置と環状配置の2つの方式で説明したが、それに制限されるものではなく、例えば鉛直方向に順次配置するなどしてもよい。
 以下に実施例を挙げて、本発明の有効性について説明する。なお、CNTの品質評価は以下の方法によるものである。
  (比表面積測定)
 比表面積とは液体窒素の77Kでの吸脱着等温線を測定し、この吸脱着等温曲線からBrunauer,Emmett,Tellerの方法から計測した値のことである。比表面積は、BET比表面積測定装置((株)マウンテック製HM model-1210)を用いて測定した。
  (G/D比)
 G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm-1付近)とDバンド(1350cm-1付近)と呼ばれる振動モードが観測される。GバンドはCNTの円筒面であるグラファイトの六方格子構造由来の振動モードであり、Dバンドは結晶欠陥由来の振動モードである。よって、GバンドとDバンドのピーク強度比(G/D比)が高いものほど、欠陥量が少なく品質の高いCNTと評価できる。
 本実施例においては、顕微レーザラマンシステム(サーモフィッシャーサイエンティフィック(株)製Nicolet Almega XR)を用い、基材中心部付近のCNT配向集合体を一部剥離し、CNT配向集合体の基材から剥離された面にレーザを当てて、ラマンスペクトルを測定し、G/D比を求めた。
 〔実施例1〕
 以下に具体的な実施例を挙げて、本発明によるCNT配向集合体の製造装置について詳細に説明する。
 本実施例の製造装置図を図1に示す。製造装置は入口パージ部101、フォーメーションユニット102、ガス混入防止手段103、成長ユニット104、冷却ユニット105、出口パージ部106、搬送ユニット107、接続部108~110から構成した。フォーメーション/成長ユニットの炉及び噴射部、ガス混入防止手段の排気部、メッシュベルト、接続部の各材質はSUS310をアルミニウムめっき処理したものを使用した。
 触媒基板の製作条件を以下に説明する。基板として90mm角、厚さ0.3mmのFe-Ni-Cr合金YEF426(日立金属株式会社製、Ni42%、Cr6%)を使用した。レーザ顕微鏡を用いて表面粗さを測定したところ、算術平均粗さRa≒2.1μmであった。この基板の表裏両面にスパッタリング装置を用いて厚さ20nmのアルミナ膜を製膜し、次いで表面のみにスパッタリング装置を用いて厚さ1.0nmの鉄膜(触媒金属層)を製膜した。
 このようにして作製した触媒基板を製造装置のメッシュベルトに載置し、メッシュベルトの搬送速度を変更しながら、フォーメーション工程、成長工程、冷却工程の順に処理を行い、CNT配向集合体を製造した。
 製造装置の入口パージ部、フォーメーションユニット、ガス混入防止手段、成長ユニット、冷却ユニット、出口パージ部の各条件は以下のように設定した。
 入口パージ部101
  ・パージガス:窒素60000sccm
 フォーメーションユニット102
  ・炉内温度:830℃
  ・還元ガス:窒素11200sccm、水素16800sccm
  ・処理時間:28分
 ガス混入防止手段103
  ・排気部3a排気量:20sLm
  ・排気部3b排気量:25sLm
  ・排気部3c排気量:20sLm
 成長ユニット104
  ・炉内温度:830℃
  ・原料ガス:窒素16040sccm、エチレン1800sccm、
 水蒸気含有窒素160sccm(水分量16000ppmv)
  ・処理時間:11分
 冷却ユニット105
  ・冷却水温度:30℃
  ・不活性ガス:窒素10000sccm
  ・冷却時間:30分
 出口パージ部106
  ・パージガス:窒素50000sccm
 以上の条件で連続製造を行った。
 本実施例によって製造される、CNT配向集合体の特性は、製造条件の詳細に依存するが、典型値として、密度:0.03g/cm、BET-比表面積:1100m/g、平均外径:2.9nm、半値幅2nm、炭素純度99.9%、ヘルマンの配向係数0.7であった。連続製造の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 製造回数1回目と300回目を比較しても、CNT配向集合体の製造量低下及び品質劣化の現象を見ることはできない。
 また、還元ガス噴射部付近に設置したガスサンプリングポートから、連続製造中の還元ガスをサンプリングし、成分分析をFTIR分析装置(サーモフィッシャーサイエンティフィックNicolet 6700 FT-IR)で実施した。その結果、ガス混入防止手段によってフォーメーション炉内のエチレン濃度は50ppmvに抑えられていることが確認できた。炭素原子個数濃度に換算すると約3×1021個/mとなる。
 本発明の装置によれば連続製造時におけるCNT配向集合体の製造量低下及び品質劣化の問題を解決できることを示した。
 〔実施例2〕
 以下に具体的な実施例を挙げて、本発明によるCNT配向集合体の製造装置について詳細に説明する。
 本実施例の製造装置図を図2に示す。製造装置は入口パージ部201、フォーメーションユニット202、ゲートバルブ203a~203g、成長ユニット204、冷却ユニット205、出口パージ部206、搬送ユニット207、接続部208から構成した。フォーメーション、成長の各ユニットの炉及び噴射部、ロボットアーム、接続部の各材質はSUS310をアルミニウムめっき処理したものを使用した。
 触媒基板の製作条件を以下に説明する。基板として90mm角、厚さ0.3mmのFe-Ni-Cr合金YEF426(日立金属株式会社製、Ni42%、Cr6%)を使用した。レーザ顕微鏡を用いて表面粗さを測定したところ、算術平均粗さRa≒2.1μmであった。この基板の表裏両面にスパッタリング装置を用いて厚さ20nmのアルミナ膜を製膜し、次いで表面のみにスパッタリング装置を用いて厚さ1.0nmの鉄膜(触媒金属層)を製膜した。
 このようにして作製した触媒基板を製造装置の入口パージ部内に載置し、ロボットアームにて搬送しながら、フォーメーション工程、成長工程、冷却工程の順に処理を行い、CNT配向集合体を製造した。
 製造装置の入口パージ部、フォーメーションユニット、成長ユニット、冷却ユニット、出口パージ部の各条件は以下のように設定した。
 入口パージ部201
  ・不活性ガス:窒素12000sccm
  ・ガス置換時間:5分
 フォーメーションユニット202
  ・炉内温度:820℃
  ・還元ガス:窒素300sccm、水素2700sccm
  ・処理時間:10分
 成長ユニット204
  ・炉内温度:820℃
  ・原料ガス:窒素2674sccm、エチレン300sccm
 水蒸気含有窒素26sccm(水分量16000ppmv)
  ・処理時間:10分
 冷却ユニット205
  ・冷却水温度:30℃
  ・不活性ガス:窒素3000sccm
  ・冷却時間:30分
 出口パージ部206
  ・不活性ガス:窒素12000sccm
  ・ガス置換時間:5分
 以上の条件で連続製造を行った。連続製造の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 製造回数1回目と300回目を比較しても、CNT配向集合体の製造量低下及び品質劣化の現象を見ることはできない。
 また、還元ガス噴射部付近に設置したガスサンプリングポートから、連続製造中の還元ガスをサンプリングし、成分分析をFTIR分析装置(サーモフィッシャーサイエンティフィックNicolet 6700 FT-IR)で実施した。その結果、エチレンを検出することはできなかった。
 本発明の装置によれば連続製造時におけるCNT配向集合体の製造量低下及び品質劣化の問題を解決できることを示した。
 〔検証例1〕
 本発明装置(図1)により、水素ガスを含まない不活性ガスのみ(供給速度28000sccm)を還元ガス噴射部から還元炉内空間に送り込んだ他は、実施例1と同じ条件でCNTの製造を試みた。その結果、触媒基板表面が黒ずんだだけで基材上にCNT配向集合体の成長は認められなかった。
 これにより、CNT配向集合体の製造におけるフォーメーション工程の必要性を確認することができた。
 〔検証例2〕
 図3に示すような、基材を移動させずに同一炉内で還元工程と成長工程とを順次行うような装置にてCNT配向集合体の製造を行った。この装置は、触媒基板301を受容する石英からなる反応炉304(内径50mm、加熱長360mm)と、反応炉304を外囲するように設けられた加熱器305と、還元ガス及び原料ガスを供給すべく反応炉304の一端に接続されたガス噴射部303と、反応炉304の他端に接続された排気口306と、触媒基板301を固定する石英からなる基板ホルダー302から構成した。さらに図示していないが、還元ガス及び原料ガスの流量を制御するため、流量制御弁及び圧力制御弁などを含む制御装置を適所に付設した。
 反応炉内304を800℃に加熱すると共に、窒素(供給速度400sccm)と水素(供給速度3600sccm)とを混合した還元ガス(トータル供給速度4000sccm)を、ガス噴射部303から触媒基板上に噴射した。実施例1と同様に作製した40mm角の触媒基板301を搬入し、還元ガスを送り込みつつ800℃の状態を維持したまま所定時間(30分)経過させた。
 次に、ガス噴射部303からの還元ガスの供給を止め、エチレン(供給速度100sccm)と、触媒賦活物質としての水を含有した窒素(水分量7800ppmv;供給速度18sccm)と窒素(供給速度900sccm)との混合ガスをガス噴射部から送り込み、両者を触媒基板(基材)301の表面に所定時間(10分)吹きかけてCNT配向集合体を製造した。上述の作業の繰り返しによる連続製造の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 製造回数1回目と19回目を比較すると、明らかにCNT配向集合体の製造量低下及び品質劣化の現象を見ることができる。
 〔検証例3〕
 炉内の炭素汚れがCNT製造量低下及び品質劣化を引き起こすメカニズムに対する推測を裏付けるための実験を行った。検証例2に示した装置、触媒基板、製造条件で複数回CNT配向集合体の製造を行った後、フォーメーション工程における還元ガスをサンプリングし、FTIR分析装置(サーモフィッシャーサイエンティフィックNicolet 6700 FT-IR)によってガス成分分析した。結果の吸収スペクトルを図4に示す。還元ガス中には炭化水素ガス(特にメタンガス)由来のピークが確認され、特にメタンガスが大量に発生していることが判明した。
 〔検証例4〕
 次にフォーメーション炉内へ原料ガスが混入した場合の擬似実験として、還元ガス中に含まれるエチレン濃度を変更しながらCNT配向集合体を製造した。
 検証例2と同様の製造装置、触媒基板を用い、還元ガス中にエチレンを意図的に混合させる以外は、実験条件も同様にして行った。
 結果として、製造されたCNT配向集合体の製造量及びG/D比と還元ガス中のエチレン濃度との関係を示したグラフを図5に示す。CNT配向集合体の製造量及びG/D比はエチレン濃度0ppmの場合を100%とした相対値で示した。図4に示すように、還元ガス中のエチレン濃度が250ppmv(炭素原子個数濃度に換算して約1×1022個/m)では収量、G/D比共に約40%低下し、1000ppmv(炭素原子個数濃度に換算して約5×1022個/m)では、収量、G/D比共に約75%の低下となった。この結果から、ガス混入防止手段が還元ガス中の炭素原子個数濃度が5×1022個/m以下になるように原料ガスの還元ガスへの混入を防止することがCNT配向集合体の製造において必要であることが示された。
 本発明は、連続製造時における品質劣化を伴うことなく、高い製造効率でCNT配向集合体を製造できるので、電子デバイス材料、光学素子材料、導電性材料等の分野に好適に利用できる。
101,201:入口パージ部
102,202:フォーメーションユニット
102a,202a:フォーメーション炉
102b,202b:還元ガス噴射部
102c,202c:ヒーター
103,203:ガス混入防止手段
103a~103c:排気部
104,204:成長ユニット
104a,204a:成長炉
104b,204b:原料ガス噴射部
104c,204c:ヒーター
105,205:冷却ユニット
105a,205a:冷却炉
105b,205b:冷却ガス噴射部
105c,205c:水冷冷却管
106,206:出口パージ部
107,207:搬送ユニット
107a:メッシュベルト
107b:ベルト駆動部
108~110,208:接続部
111,209,301:触媒基板(基材)
203a~203g:ゲートバルブ
207a:ロボットアーム
302:基板ホルダー
303:ガス噴射部
304:反応炉
305:加熱器
306:排気口

Claims (9)

  1.  表面に触媒を有する基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造装置であって、
     前記触媒の周囲環境を還元ガス環境とすると共に前記触媒及び前記還元ガスのうち少なくとも一方を加熱するフォーメーション工程を実現するフォーメーションユニットと、
     前記触媒の周囲環境を原料ガス環境とすると共に前記触媒及び前記原料ガスのうち少なくとも一方を加熱して前記カーボンナノチューブ配向集合体を成長させる成長工程を実現する成長ユニットと、
     少なくとも前記フォーメーションユニットから前記成長ユニットまで前記基材を搬送する搬送ユニットと、を有することを特徴とする、カーボンナノチューブ配向集合体の製造装置。
  2.  各ユニットの炉内空間が接続部によって空間的に接続され、各ユニットの炉内空間内へガスが相互に混入することを防止するガス混入防止手段を有していることを特徴する、請求項1に記載のカーボンナノチューブ配向集合体の製造装置。
  3.  前記ガス混入防止手段が、前記フォーメーションユニット内の還元ガス環境中の炭素原子個数濃度が5×1022個/m以下に保つ手段であることを特徴する、請求項2に記載のカーボンナノチューブ配向集合体の製造装置。
  4.  前記還元ガス又は前記原料ガスに曝される装置部品の少なくとも1つが、耐熱合金から構成されていることを特徴する、請求項1乃至3のいずれか1項に記載のカーボンナノチューブ配向集合体の製造装置。
  5.  前記成長ユニットが触媒賦活物質添加部を備えていることを特徴する、請求項1乃至4のいずれか1項に記載のカーボンナノチューブ配向集合体の製造装置。
  6.  冷却ユニットを有することを特徴とする、請求項1乃至5のいずれか1項に記載のカーボンナノチューブ配向集合体の製造装置。
  7.  表面に触媒を有する基材上にカーボンナノチューブ配向集合体を成長させるカーボンナノチューブ配向集合体の製造方法であって、前記触媒の周囲環境を還元ガス環境とすると共に前記触媒及び前記還元ガスのうち少なくとも一方を加熱するフォーメーション工程を実現するフォーメーションユニットと、前記触媒の周囲環境を原料ガス環境とすると共に前記触媒及び前記原料ガスのうち少なくとも一方を加熱して前記カーボンナノチューブ配向集合体を成長させる成長工程を実現する成長ユニットとを用い、
    前記フォーメーションユニットにおける前記フォーメーション工程と、前記成長ユニットにおける前記成長工程とを、行うことを特徴とする、カーボンナノチューブ配向集合体の製造方法。
  8.  前記還元ガス環境中の炭素原子個数濃度が5×1022個/m以下に保たれていることを特徴とする請求項7に記載のカーボンナノチューブ配向集合体の製造方法。
  9.  前記原料ガス環境が高炭素濃度環境であり、かつ触媒賦活物質を含むことを特徴とする請求項7又は8に記載のカーボンナノチューブ配向集合体の製造方法。
PCT/JP2009/056878 2008-04-16 2009-04-02 カーボンナノチューブ配向集合体の製造装置及び製造方法 WO2009128349A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/679,869 US7897209B2 (en) 2008-04-16 2009-04-02 Apparatus and method for producing aligned carbon-nanotube aggregates
CN200980100516.0A CN102741161B (zh) 2008-04-16 2009-04-02 碳纳米管定向集合体的制造装置及其制造方法
JP2010508170A JP4581146B2 (ja) 2008-04-16 2009-04-02 カーボンナノチューブ配向集合体の製造装置及び製造方法
EP09731859.6A EP2263974B1 (en) 2008-04-16 2009-04-02 Equipment and method for producing orientated carbon nano-tube aggregates
KR1020117011866A KR101460398B1 (ko) 2008-04-16 2009-04-02 카본 나노튜브 배향 집합체의 제조 장치 및 제조 방법
US13/011,644 US20110116995A1 (en) 2008-04-16 2011-01-21 Apparatus and method for producing aligned carbon-nanotube aggregates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008107327 2008-04-16
JP2008-107327 2008-04-16
JP2009-029129 2009-02-10
JP2009029129 2009-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/011,644 Division US20110116995A1 (en) 2008-04-16 2011-01-21 Apparatus and method for producing aligned carbon-nanotube aggregates

Publications (1)

Publication Number Publication Date
WO2009128349A1 true WO2009128349A1 (ja) 2009-10-22

Family

ID=41199047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056878 WO2009128349A1 (ja) 2008-04-16 2009-04-02 カーボンナノチューブ配向集合体の製造装置及び製造方法

Country Status (6)

Country Link
US (2) US7897209B2 (ja)
EP (1) EP2263974B1 (ja)
JP (2) JP4581146B2 (ja)
KR (2) KR101073768B1 (ja)
CN (1) CN102741161B (ja)
WO (1) WO2009128349A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076885A1 (ja) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体、およびその製造方法
JP2010192581A (ja) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology 電磁波放射体・電磁波吸収体
WO2011108492A1 (ja) * 2010-03-01 2011-09-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
JP2012126599A (ja) * 2010-12-15 2012-07-05 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法
WO2012165514A1 (ja) 2011-05-31 2012-12-06 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
JP2012250862A (ja) * 2011-05-31 2012-12-20 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法及び製造装置
US20130011328A1 (en) * 2010-01-22 2013-01-10 Bayer Intellectual Property Gmbh Preparation of cnts
KR101221979B1 (ko) 2010-08-19 2013-01-15 고려대학교 산학협력단 수퍼캐패시터용 탄소나노튜브 제조 방법 및 이를 포함하는 수퍼캐패시터
JP2014526430A (ja) * 2011-09-16 2014-10-06 エンパイア テクノロジー ディベロップメント エルエルシー グラフェン欠陥の修正
JPWO2013027797A1 (ja) * 2011-08-24 2015-03-19 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
EP2397440A4 (en) * 2009-02-10 2015-07-15 Zeon Corp SUPPORT MATERIAL FOR THE PRODUCTION OF AN ORIENTED CARBON NANOTUBE AGGREGATE AND PROCESS FOR PRODUCING AN ORIENTED CARBON NANOTUBE AGGREGATE
WO2018163957A1 (ja) * 2017-03-09 2018-09-13 大陽日酸株式会社 カーボンナノチューブ、炭素系微細構造物、及びカーボンナノチューブ付き基材、並びにそれらの製造方法
JP2018145080A (ja) * 2017-03-09 2018-09-20 大陽日酸株式会社 カーボンナノチューブの製造方法、カーボンナノチューブ、及び配向カーボンナノチューブ付き基材
JP2018184319A (ja) * 2017-04-26 2018-11-22 大陽日酸株式会社 炭素系微細構造物、及び炭素系微細構造物の製造方法
JP2019031706A (ja) * 2017-08-08 2019-02-28 株式会社アルバック 炭素ナノ構造体成長用のcvd装置及び炭素ナノ構造体の製造方法
WO2021172077A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 カーボンナノチューブ集合体の製造方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG175115A1 (en) 2009-04-17 2011-11-28 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US10526628B2 (en) 2010-10-06 2020-01-07 United States Of America As Represented By The Secretary Of The Army Enzyme-mediated assimilation of DNA-functionalized single-walled carbon nanotubes (SWNTs)
JP5791157B2 (ja) * 2010-12-15 2015-10-07 国立研究開発法人産業技術総合研究所 合成炉
EP2653444A4 (en) 2010-12-15 2018-01-24 National Institute of Advanced Industrial Science And Technology Carbon nanotube assembly, carbon nanotube assembly having three-dimensional shape, carbon nanotube molding produced using the carbon nanotube assembly, composition, and carbon nanotube dispersion
US8760851B2 (en) 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
US9214709B2 (en) 2010-12-21 2015-12-15 CastCAP Systems Corporation Battery-capacitor hybrid energy storage system for high temperature applications
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
CA2838558C (en) 2011-05-24 2022-08-30 Fastcap Systems Corporation Power system for high temperature applications with rechargeable energy storage
WO2012170749A2 (en) 2011-06-07 2012-12-13 Fastcap Systems Corporation Energy storage media for ultracapacitors
IL287733B2 (en) 2011-07-08 2023-04-01 Fastcap Systems Corp A device for storing energy at high temperatures
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US9017634B2 (en) 2011-08-19 2015-04-28 Fastcap Systems Corporation In-line manufacture of carbon nanotubes
WO2013039156A1 (ja) 2011-09-14 2013-03-21 株式会社フジクラ カーボンナノファイバ形成用構造体、カーボンナノファイバ構造体及びその製造方法並びにカーボンナノファイバ電極
US20130071565A1 (en) * 2011-09-19 2013-03-21 Applied Nanostructured Solutions, Llc Apparatuses and Methods for Large-Scale Production of Hybrid Fibers Containing Carbon Nanostructures and Related Materials
CN108868747A (zh) 2011-11-03 2018-11-23 快帽系统公司 生产测井仪
FR2985739B1 (fr) * 2012-01-12 2014-02-28 Centre Nat Rech Scient Renforcement de l'adhesion ou de la fixation de nanotubes de carbone a la surface d'un materiau par une couche de carbone
JP2013205052A (ja) * 2012-03-27 2013-10-07 Yazaki Corp 気体サンプル室及びガス濃度測定装置
CN104271498B (zh) 2012-04-16 2017-10-24 赛尔斯通股份有限公司 用非铁催化剂来还原碳氧化物的方法和结构
NO2749379T3 (ja) 2012-04-16 2018-07-28
JP2015514669A (ja) 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー 二酸化炭素を還元することによって固体炭素を生成するための方法
EP2838844A4 (en) 2012-04-16 2015-10-28 Seerstone Llc METHOD FOR TREATING A GAS CLEARANCE CONTAINING CARBON OXIDES
JP6242858B2 (ja) 2012-04-16 2017-12-06 シーアストーン リミテッド ライアビリティ カンパニー 炭素を捕捉および隔離するため、ならびに廃ガスストリーム中の酸化炭素の質量を低減するための方法およびシステム
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
MX2015000580A (es) 2012-07-13 2015-08-20 Seerstone Llc Metodos y sistemas para formar productos de carbono solido y amoniaco.
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
MX2015006893A (es) 2012-11-29 2016-01-25 Seerstone Llc Reactores y metodos para producir materiales de carbono solido.
CN103011133B (zh) * 2013-01-09 2015-01-07 华北电力大学 一种低成本的碳纳米管阵列的制备方法
KR20150110513A (ko) * 2013-01-17 2015-10-02 사우디 베이식 인더스트리즈 코포레이션 이산화탄소로부터 탄소 나노튜브의 제조
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
US9206672B2 (en) 2013-03-15 2015-12-08 Fastcap Systems Corporation Inertial energy generator for supplying power to a downhole tool
EP3129321B1 (en) 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
EP3129133B1 (en) 2013-03-15 2024-10-09 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
US9499904B2 (en) * 2013-06-27 2016-11-22 Zeon Corporation Method of manufacturing carbon nanotubes
KR20160057393A (ko) * 2013-09-30 2016-05-23 니폰 제온 가부시키가이샤 탄소 나노구조체의 제조 방법 및 카본 나노튜브
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
CN103673590A (zh) * 2013-12-06 2014-03-26 湖北大清捷能环保窑炉有限公司 一种蜂窝式scr脱硝催化剂煅烧炉和scr脱硝催化剂的干燥方法
WO2015095858A2 (en) 2013-12-20 2015-06-25 Fastcap Systems Corporation Electromagnetic telemetry device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
GB201412656D0 (en) * 2014-07-16 2014-08-27 Imp Innovations Ltd Process
EP3204955B1 (en) 2014-10-09 2022-01-05 Fastcap Systems Corporation Nanostructured electrode for energy storage device
KR102668693B1 (ko) 2015-01-27 2024-05-27 패스트캡 시스템즈 코포레이션 넓은 온도 범위 울트라커패시터
CN105070619B (zh) * 2015-07-17 2017-05-03 兰州空间技术物理研究所 一种铁基金属合金衬底上碳纳米管阵列阴极的制备方法
JP6754573B2 (ja) * 2016-01-05 2020-09-16 リンテック株式会社 引出装置
JP6685727B2 (ja) * 2016-01-05 2020-04-22 リンテック株式会社 引出装置および引出方法
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CA3045460A1 (en) 2016-12-02 2018-06-07 Fastcap Systems Corporation Composite electrode
CN112567068B (zh) * 2018-04-30 2023-03-28 艾克斯特朗欧洲公司 用于以含碳层对基底覆层的设备
FI129565B (en) * 2019-04-24 2022-04-29 Canatu Oy Equipment and method for oriented deposition
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
US10981794B1 (en) * 2020-03-24 2021-04-20 Yazaki Corporation Stable aqueous dispersion of carbon
EP4108632A1 (en) * 2021-06-24 2022-12-28 Aida AS Device, in particular pe cvd apparatus for continuous production of high_performance carbon thread
CN114803540B (zh) * 2022-06-01 2023-03-24 詹亚鹏 一种基于机器人装炉系统工作站的无人车间
CN116395673B (zh) * 2023-03-07 2023-09-15 青岛昊鑫新能源科技有限公司 一种碳纳米管生产反应器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220674A (ja) * 1999-12-02 2001-08-14 Ricoh Co Ltd カーボンナノチューブ及びその作製方法、電子放出源
JP2003171108A (ja) 2001-12-03 2003-06-17 Ricoh Co Ltd カーボンナノチューブの作製方法
JP2003238125A (ja) * 2002-02-13 2003-08-27 Toray Ind Inc カーボンナノチューブの連続製造方法および製造装置
JP2006016232A (ja) 2004-06-30 2006-01-19 Hitachi Zosen Corp カーボンナノチューブの連続製造方法およびその装置
JP2007092152A (ja) 2005-09-30 2007-04-12 Hitachi Zosen Corp 連続熱cvd装置
JP2007091556A (ja) 2005-09-30 2007-04-12 Hitachi Zosen Corp カーボン系薄膜の連続製造装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747119A (en) * 1993-02-05 1998-05-05 Kabushiki Kaisha Toshiba Vapor deposition method and apparatus
US5810928A (en) * 1994-11-21 1998-09-22 Mitsubishi Corporation Method of measuring gas component concentrations of special material gases for semiconductor, a semiconductor equipment, and an apparatus for supplying special material gases for semiconductor
US6352592B1 (en) * 1998-01-16 2002-03-05 Silicon Valley Group, Thermal Systems Llc Free floating shield and semiconductor processing system
EP1149932A3 (en) * 2000-01-26 2003-09-10 Iljin Nanotech Co., Ltd. Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
JP2001288572A (ja) * 2000-01-31 2001-10-19 Canon Inc 堆積膜形成装置および堆積膜形成方法
US6423565B1 (en) * 2000-05-30 2002-07-23 Kurt L. Barth Apparatus and processes for the massproduction of photovotaic modules
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
AUPR421701A0 (en) * 2001-04-04 2001-05-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
US7250148B2 (en) 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
CN1290763C (zh) * 2002-11-29 2006-12-20 清华大学 一种生产碳纳米管的方法
FI121334B (fi) * 2004-03-09 2010-10-15 Canatu Oy Menetelmä ja laitteisto hiilinanoputkien valmistamiseksi
US20050238810A1 (en) 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US7780821B2 (en) * 2004-08-02 2010-08-24 Seagate Technology Llc Multi-chamber processing with simultaneous workpiece transport and gas delivery
CN1288076C (zh) * 2004-10-26 2006-12-06 中国科学院长春应用化学研究所 一种碳纳米管材料的制备方法
TWI465391B (zh) * 2004-11-10 2014-12-21 尼康股份有限公司 Carbon nanotube aggregate and manufacturing method thereof
CN1323029C (zh) * 2004-12-10 2007-06-27 中国科学院长春应用化学研究所 燃烧聚烯烃合成碳纳米管的方法
JP5443756B2 (ja) * 2005-06-28 2014-03-19 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ カーボンナノチューブを成長および収集するための方法
JP2007112677A (ja) * 2005-10-21 2007-05-10 Takao Kamiyama ナノカーボンの連続製造装置及びその連続製造方法
JP4811712B2 (ja) * 2005-11-25 2011-11-09 独立行政法人産業技術総合研究所 カーボンナノチューブ・バルク構造体及びその製造方法
CN100434360C (zh) * 2005-12-09 2008-11-19 中国科学院理化技术研究所 多壁碳纳米管、栗子状碳纳米管集合体和碳纳米管球的制备方法
JP4973208B2 (ja) * 2006-03-29 2012-07-11 東レ株式会社 気相反応装置
US20080175993A1 (en) * 2006-10-13 2008-07-24 Jalal Ashjaee Reel-to-reel reaction of a precursor film to form solar cell absorber
US8182608B2 (en) * 2007-09-26 2012-05-22 Eastman Kodak Company Deposition system for thin film formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220674A (ja) * 1999-12-02 2001-08-14 Ricoh Co Ltd カーボンナノチューブ及びその作製方法、電子放出源
JP2003171108A (ja) 2001-12-03 2003-06-17 Ricoh Co Ltd カーボンナノチューブの作製方法
JP2003238125A (ja) * 2002-02-13 2003-08-27 Toray Ind Inc カーボンナノチューブの連続製造方法および製造装置
JP2006016232A (ja) 2004-06-30 2006-01-19 Hitachi Zosen Corp カーボンナノチューブの連続製造方法およびその装置
JP2007092152A (ja) 2005-09-30 2007-04-12 Hitachi Zosen Corp 連続熱cvd装置
JP2007091556A (ja) 2005-09-30 2007-04-12 Hitachi Zosen Corp カーボン系薄膜の連続製造装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HATA, K. ET AL.: "Water-assisted highly efficient synthesis of impurity-free Single-walled carbon nanotubes", SCIENCE, vol. 30, no. 6, 19 November 2004 (2004-11-19), pages 1362 - 1364
MOTOO YUMURA ET AL.: "Tanso Carbon Nanotube no Ryosanka Gijutsu no Shinten", ELECTROCHEMISTRY, 2007, pages 370 - 373 *
See also references of EP2263974A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803687B2 (ja) * 2008-12-30 2011-10-26 独立行政法人産業技術総合研究所 単層カーボンナノチューブ配向集合体の製造方法
WO2010076885A1 (ja) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体、およびその製造方法
JP2014185077A (ja) * 2008-12-30 2014-10-02 National Institute Of Advanced Industrial & Technology 粉体状単層カーボンナノチューブ配向集合体
EP2397440A4 (en) * 2009-02-10 2015-07-15 Zeon Corp SUPPORT MATERIAL FOR THE PRODUCTION OF AN ORIENTED CARBON NANOTUBE AGGREGATE AND PROCESS FOR PRODUCING AN ORIENTED CARBON NANOTUBE AGGREGATE
JP2010192581A (ja) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology 電磁波放射体・電磁波吸収体
US20130011328A1 (en) * 2010-01-22 2013-01-10 Bayer Intellectual Property Gmbh Preparation of cnts
JP5747333B2 (ja) * 2010-03-01 2015-07-15 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
WO2011108492A1 (ja) * 2010-03-01 2011-09-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
US9045344B2 (en) 2010-03-01 2015-06-02 Zeon Corporation Method for producing aligned carbon nanotube aggregate
KR101221979B1 (ko) 2010-08-19 2013-01-15 고려대학교 산학협력단 수퍼캐패시터용 탄소나노튜브 제조 방법 및 이를 포함하는 수퍼캐패시터
JP2012126599A (ja) * 2010-12-15 2012-07-05 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法
JP2012250862A (ja) * 2011-05-31 2012-12-20 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法及び製造装置
CN103562131A (zh) * 2011-05-31 2014-02-05 日本瑞翁株式会社 取向碳纳米管集合体的制造装置及制造方法
WO2012165514A1 (ja) 2011-05-31 2012-12-06 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
JPWO2013027797A1 (ja) * 2011-08-24 2015-03-19 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置及び製造方法
US10046969B2 (en) 2011-08-24 2018-08-14 Zeon Corporation Device for manufacturing and method for manufacturing oriented carbon nanotube aggregates
US9011968B2 (en) 2011-09-16 2015-04-21 Empire Technology Development Llc Alteration of graphene defects
JP2014526430A (ja) * 2011-09-16 2014-10-06 エンパイア テクノロジー ディベロップメント エルエルシー グラフェン欠陥の修正
US9938151B2 (en) 2011-09-16 2018-04-10 Empire Technology Development Llc Alteration of graphene defects
WO2018163957A1 (ja) * 2017-03-09 2018-09-13 大陽日酸株式会社 カーボンナノチューブ、炭素系微細構造物、及びカーボンナノチューブ付き基材、並びにそれらの製造方法
JP2018145080A (ja) * 2017-03-09 2018-09-20 大陽日酸株式会社 カーボンナノチューブの製造方法、カーボンナノチューブ、及び配向カーボンナノチューブ付き基材
JP2018184319A (ja) * 2017-04-26 2018-11-22 大陽日酸株式会社 炭素系微細構造物、及び炭素系微細構造物の製造方法
JP7015641B2 (ja) 2017-04-26 2022-02-15 大陽日酸株式会社 炭素系微細構造物、及び炭素系微細構造物の製造方法
JP2019031706A (ja) * 2017-08-08 2019-02-28 株式会社アルバック 炭素ナノ構造体成長用のcvd装置及び炭素ナノ構造体の製造方法
WO2021172077A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 カーボンナノチューブ集合体の製造方法

Also Published As

Publication number Publication date
CN102741161B (zh) 2014-06-25
KR101073768B1 (ko) 2011-10-13
EP2263974A4 (en) 2010-12-22
US20110116995A1 (en) 2011-05-19
KR20110063590A (ko) 2011-06-10
JPWO2009128349A1 (ja) 2011-08-04
EP2263974B1 (en) 2014-06-18
JP2010248073A (ja) 2010-11-04
KR20100091943A (ko) 2010-08-19
US7897209B2 (en) 2011-03-01
KR101460398B1 (ko) 2014-11-12
US20100196600A1 (en) 2010-08-05
JP4581146B2 (ja) 2010-11-17
EP2263974A1 (en) 2010-12-22
CN102741161A (zh) 2012-10-17
JP5471959B2 (ja) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4581146B2 (ja) カーボンナノチューブ配向集合体の製造装置及び製造方法
JP5574265B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP5649225B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP5590603B2 (ja) カーボンナノチューブ配向集合体の製造装置
JP5574264B2 (ja) カーボンナノチューブ配向集合体生産用基材及びカーボンナノチューブ配向集合体の製造方法
JP5995108B2 (ja) カーボンナノチューブ配向集合体の製造装置及び製造方法
JP5622101B2 (ja) カーボンナノチューブ配向集合体の製造方法
JP5505785B2 (ja) カーボンナノチューブ配向集合体の製造装置
WO2012165514A1 (ja) カーボンナノチューブ配向集合体の製造装置及び製造方法
JP5700819B2 (ja) カーボンナノチューブ配向集合体の製造方法
JP2012126598A (ja) 噴出装置、カーボンナノチューブ配向集合体の製造装置及び製造方法
JP2012218953A (ja) カーボンナノチューブ配向集合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100516.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508170

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107006379

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12679869

Country of ref document: US

Ref document number: 2009731859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE