WO2009111263A1 - Corn plant event mon87460 and compositions and methods for detection thereof - Google Patents
Corn plant event mon87460 and compositions and methods for detection thereof Download PDFInfo
- Publication number
- WO2009111263A1 WO2009111263A1 PCT/US2009/035288 US2009035288W WO2009111263A1 WO 2009111263 A1 WO2009111263 A1 WO 2009111263A1 US 2009035288 W US2009035288 W US 2009035288W WO 2009111263 A1 WO2009111263 A1 WO 2009111263A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- corn
- dna
- mon87460
- plant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- transgenic cells, seeds, and plants which include recombinant DNA expressing a cold shock protein that imparts improved stress tolerance and/or yield to plants.
- the disclosure also includes methods of making, using and detecting such cells, seeds and plants.
- the present invention relates to stress tolerant corn plants designated as MON87460, and methods and compositions for detecting the presence of MON87460 DNA in a sample.
- Transgenic plants with improved agronomic traits such as yield, environmental stress tolerance, pest resistance, herbicide tolerance, improved seed compositions, and the like are desired by both farmers and seed producers.
- agronomic traits such as yield, environmental stress tolerance, pest resistance, herbicide tolerance, improved seed compositions, and the like are desired by both farmers and seed producers.
- compositions and methods related to transgenic water deficit stress tolerant corn plants designated MON87460, and progeny and populations thereof are provided herein.
- this invention provides the transgenic corn plants designated MON87460 and seed of said plant as deposited with a shipment mailed on January 31, 2008 with American Type Culture Collection (ATCC) and assigned Accession No. PTA-8910.
- Another aspect of the invention comprises progeny plants, or seeds, or regenerable parts of the plants and seeds of the plant MON87460.
- Progeny plants, or seeds, or regenerable parts of the plants and seeds comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO:7, or
- SEQ ID NO: 24 are also provided herein.
- Another aspect of the invention provides polynucleotides comprising a transgene/genomic junction region from com plant MON87460.
- Polynucleotides are provided that comprise at least one transgene/genomic junction nucleic acid molecule selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:4, SEQ ID NO:25, and complements thereof, wherein the junction molecule spans the transgene insertion site.
- a corn seed and plant material thereof comprising any one of SEQ ID NO: 1 through SEQ ID NO:4 or SEQ ID NO:25, is an aspect of this invention.
- the present invention is also directed to a nucleus of a corn cell of event MON87460, wherein said nucleus comprises a chromosome having a heterologous polynucleotide insert that provides for improved water deficit tolerance, wherein said heterologous polynucleotide comprises any one of SEQ ID NO: 1 through SEQ ID NO:4.
- a chromosome wherein the heterologous polynucleotide comprises a truncated rice actin promoter for expression of a cspB gene, and wherein said truncated rice actin promoter is adjacent to corn genomic sequence of SEQ ID NO:5.
- a corn chromosome comprising SEQ ID NO:1 and a heterologous transgenic insert comprising a truncated rice actin promoter that is operably linked to a cspB gene is provided.
- a 5' terminus of the heterologous transgenic insert can overlap a 3' terminus of SEQ ID NO:1 in certain embodiments.
- the corn chromosome can comprise SEQ ID NO: 7 or SEQ ID NO:24.
- a chromosome of the invention is located within a corn cell that also contains a second unlinked heterologous polynucleotide for expression of a glyphosate resistant 5 -enolpyruvylshikimate-3 -phosphate synthase (CP4 EPSPS) protein. Plants or seed comprising any of the corn chromosomes of the invention are also provided.
- CP4 EPSPS glyphosate resistant 5 -enolpyruvylshikimate-3 -phosphate synthase
- a processed food or feed commodity prepared from a corn seed having a chromosome comprising SEQ ID NO:1 and a heterologous transgenic insert comprising a truncated rice actin promoter that is operably linked to a cspB gene, where the processed food or feed commodity comprises a detectable amount of a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO:2, or a complement thereof.
- the food or the feed commodity comprises corn meal, corn flour, corn gluten, corn oil and corn starch.
- the polynucleotide can comprise a nucleotide sequence of SEQ ID NO: 3, SEQ ID NO: 4, or a complement thereof.
- the polynucleotide can further comprise a nucleotide sequence contained in SEQ ID NO: 5, SEQ ID NO:6, SEQ ID NO:7, or SEQ ID NO:24.
- a pair of nucleotide primers are used in a DNA detection method, wherein the primer pair when used in a nucleic acid amplification method produces an amplicon that contains any one of SEQ ID NO:1 through SEQ ID NO:4. Detection of any one of SEQ ID NO:1 through SEQ ID NO:4 in an amplicon produced in this manner is diagnostic for the presence of nucleic acids from corn plant MON87460 in the sample analyzed in the detection method.
- Such methods comprise: (a) contacting the sample comprising MON87460 genomic DNA with a DNA primer pair; and (b) performing a nucleic acid amplification reaction, thereby producing an amplicon; and (c) detecting the amplicon, wherein the amplicon comprises SEQ ID NO:1 through SEQ ID NO:4.
- methods of detecting the presence of DNA corresponding specifically to the corn plant MON87460 DNA in a sample comprising: (a) contacting the sample comprising MON87460 DNA with a DNA probe comprising any one of SEQ ID NO:1 through SEQ ID NO:4, or DNA molecules substantially homologous to SEQ ID NO:1 through SEQ ID NO:4 that hybridize under stringent hybridization conditions with genomic DNA from corn plant MON87460 and do not hybridize under stringent hybridization conditions with non-MON87460 corn plant DNA; (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the corn plant MON87460 DNA.
- methods of producing water deficit stress tolerant corn plants comprise the step of crossing a first parental homozygous corn plant of event MON87460 with a second parental homozygous corn plant that lacks the water deficit stress tolerance trait, thereby producing water deficit stress tolerant hybrid progeny plants.
- a method of producing a drought tolerant corn plant comprising crossing a drought tolerant first parent corn plant comprising a SEQ ID NO: 1 and a heterologous transgenic insert comprising a truncated rice actin promoter that is operably linked to a cspB gene, and a second parent corn plant, thereby producing a plurality of drought tolerant progeny plants is provided.
- the insert can comprise SEQ ID NO:7 or SEQ ID NO:24.
- Another aspect of the invention is a method of determining the zygosity of the progeny of corn event MON87460 using DNA amplification reactions and two primer sets.
- a first primer set is used for amplification of MON87460 corn DNA and a second primer set is used for amplification of native corn sequence encompassing the transgene insertion site in MON87460 genomic DNA.
- the template for amplification is a corn plant homozygous for the MON87460 DNA an amplicon is produced only from the first primer set.
- the template for amplification is a corn plant heterozygous for the MON87460 DNA, amplicons are produced only from both the first primer set and the second primer set.
- hybrid corn seed comprising in its genome any one of SEQ ID NO: 1 through SEQ ID NO:4 wherein at least one parent in the cross used to create said hybrid seed is MON87460.
- Figure 1 provides aplasmid map of pMON73608.
- Figure 2 illustrates the genomic organization of the transgene insert in corn plant
- Figure 3 provides sequence (SEQ ID NO:24) of the transgene and genomic DNA junction region of MON87460. Corn genomic flanking DNA sequence is shown in small letters. Transgene sequence inserted from pMON73608 is shown in capital letters.
- a transgenic corn plant herein referred to as "MON87460", or “CspB-Zm Event MON87460” is tolerant to water deficit stress as the result of expression of a cspB protein from E. coli in cells of said transgenic plant.
- Use of the water deficit stress tolerant corn will provide major benefits to corn growers, for example providing 5-10% higher crop yields in western dry-land acres where the average yearly rainfall is insufficient to support an agriculturally effective yield from wild-type corn plants.
- MON87460 corn plants provide the benefit of drought insurance in central, eastern & southern corn belt by providing higher crop yields under drought conditions as compared to wild-type corn plants. Corn growers will also benefit from irrigation cost savings in regions where corn is typically grown under irrigation.
- water deficit means a period when water available to a plant is not replenished at the rate at which it is consumed by the plant.
- a long period of water deficit is colloquially called drought which can result in loss of a crop, even a crop enabled with the chromosomes of this invention.
- Lack of rain or irrigation may not produce immediate water stress if there is an available reservoir of ground water for the growth rate of plants. Plants grown in soil with ample groundwater can survive days without rain or irrigation without adverse affects on yield. Plants grown in dry soil are likely to suffer adverse affects with minimal periods of water deficit. Severe water stress can cause wilt and plant death; moderate drought can cause reduced yield, stunted growth or retarded development.
- Plants can recover from some periods of water stress without significantly affecting yield. However, water stress at the time of pollination can have an irreversible effect in lowering yield. Thus, a useful period in the life cycle of corn for observing water stress tolerance is the late vegetative stage of growth before tasseling. The testing of water stress tolerance is often done through the comparison to control plants. For instance, plants of this invention can survive water deficit with a higher yield than control plants. In the laboratory and in field trials drought can be simulated by giving plants of this invention and control plants less water than an optimally- watered control plant and measuring differences in traits.
- the corn plant MON87460 was produced by Agrobacterium mediated transformation of an inbred corn line with the vector pMON73608 ( Figure 1).
- This vector contains the cspB coding region regulated by the rice actin promoter, the rice actin intron, and the tr7 3' polyadenylation sequence, and an nptll coding region regulated by the CaMV 35S promoter, and the NOS 3' polyadenylation sequence.
- Events generated from the vector pMON73608 were characterized by detailed molecular analyses.
- a transgenic event in a plant occurs when recombinant DNA is inserted into a location in a chromosome in the nucleus. It is statistically improbable that any two separate transgenic events would be the same. Plants reproduced from a specific event will generally have consistency in trait. Not all transgenic events will provide transgenic plant seed, plants, or nuclei of this invention because of a variety of factors such as the location, copy number and integrity of the recombinant DNA in the chromosome, unintended insertion of other DNA, etc. As a result a desired transgenic event is identified by screening the transformed plant or its progeny seed for enhanced water deficit tolerance.
- transgene expression there may also be differences in spatial or temporal patterns of expression, for example, differences in the relative expression of a transgene in various plant tissues, that may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct.
- a plant that has desired levels or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual crossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well adapted to local growing conditions and market demands.
- Probes generated by transformation with pMON73608 were screened for insert number (number of integration sites within the corn genome), copy number (the number of copies of the T-DNA within one locus), the integrity of the inserted cassettes and the absence of backbone sequence using Southern blot analyses. Probes included the intact cspB and nptll coding regions and their respective promoters, introns, and polyadenylation sequences and the vector plasmid backbone. From approximately 140 initial transformants, events were selected based on copy number and backbone analysis for phenotypic analysis to identify plants having an improved phenotype from expression of cspB.
- results of a greenhouse based test for water- deficit tolerance identified a number of independent transformants having water deficit tolerance.
- Field testing of 22 selected transformants for water deficit tolerance under field growth conditions resulted in the identification of 10 improved events that were further tested for water-deficit tolerance and yield improvement and stability.
- Results of these further analyses identified MON87460 as having superior improved phenotypes.
- Extensive molecular characterization of MON87460 demonstrated that the event contains a single T-DNA insertion with one copy of both the cspB and nptll cassettes.
- Northern blot analysis confirmed that the expected size transcripts for both cspB and nptll are generated in MON87460.
- the data also surprisingly demonstrate that the Agrobacterium right border fragment is not present in MON87460 and that a truncation of the rice actin promoter regulating expression of the cspB gene has occurred such that only 108 bp (of 844 bp present in pMON73608) of the promoter DNA is present.
- MON87460 is advantageous to be able to detect the presence of transgene/genomic DNA of MON87460 in order to determine whether progeny of a sexual cross contain the transgene/genomic DNA of interest.
- a method for detecting MON87460 is useful when complying with regulations requiring the pre-market approval and labeling of foods derived from the recombinant crop plants. It is possible to detect the presence of a transgene by any well-known nucleic acid detection methods such as the polymerase chain reaction (PCR) or DNA hybridization using polynucleotide probes.
- PCR polymerase chain reaction
- DNA primer and probe molecules that are specific to the genetic elements, such as promoters, leaders, introns, coding regions, 3' transcription terminators, marker genes, etc, that are the components of the transgenes of a DNA construct. Such methods may not be useful for discriminating between different transgenic events, particularly those produced using the same transgene DNA construct unless the sequence of genomic DNA adjacent to the inserted transgene DNA is known.
- the present invention provides sequences and assays for detection of the novel transgene/genomic DNA border junctions of MON87460.
- nucleic acid sequences in the text of this specification are given, when read from left to right, in the 5' to 3' direction. Nucleic acid sequences may be provided as DNA or as RNA, as specified; disclosure of one necessarily defines the other, as is known to one of ordinary skill in the art. Furthermore, disclosure herein of a given nucleic acid sequence necessarily defines its complementary sequence, as is known to one of ordinary skill in the art.
- a transgenic "event” is produced by transformation of plant cells with heterologous DNA, i.e., a nucleic acid construct that includes a transgene of interest, regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location.
- Transgenic progeny having the same nucleus with either heterozygous or homozygous chromosomes for the recombinant DNA are said to represent the same transgenic event.
- the heterologous DNA and flanking genomic sequence adjacent to the inserted DNA will be transferred to progeny when the event is used in a breeding program and the enhanced trait resulting from incorporation of the heterologous DNA into the plant genome will be maintained in progeny that receive the heterologous DNA.
- the term "event” also refers to the presence of DNA from the original transformant, comprising the inserted DNA and flanking genomic sequence immediately adjacent to the inserted DNA, in a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (e.g., the original transformant and progeny resulting from selling) and a parental line that does not contain the inserted DNA.
- the term "progeny” denotes the offspring of any generation of a parent plant prepared in accordance with the present invention.
- a transgenic “event” may thus be of any generation.
- the term “event” refers to the original transformant and progeny of the transformant that include the heterologous DNA.
- the term “event” also refers to progeny produced by a sexual outcross between the transformant and another variety that include the heterologous DNA. Even after repeated back-crossing to a recurrent parent, the inserted DNA and flanking DNA from the transformed parent is present in the progeny of the cross at the same chromosomal location.
- the present invention relates to the event MON87460 DNA, plant cells, tissues, seeds and processed products derived from MON87460.
- MON87460 corn plants may be self- pollinated to produce inbred lines that are homozygous for the MON87460 polynucleotides. The homozygous seed may be grown to produce homozygous progeny MON87460 event corn plants useful for crossing with other inbred corn plants to produce heterozygous hybrid corn seed.
- MON87460 hybrid corn seed can be grown to hybrid corn plants that exhibit water deficit tolerance and enhanced yield under stress conditions as compared to control plants.
- Products that may be derived from MON87460 include foodstuffs and commodities produced from corn event MON87460.
- Such foodstuffs and commodities are expected to contain polynucleotides that, if detected in sufficient levels are diagnostic for the presence of corn event MON87460 materials within such commodities and foodstuffs.
- Examples of such foodstuffs and commodities include but are not limited to corn oil, corn meal, corn flour, corn gluten, corn cakes, corn starch, and any other foodstuff intended for consumption as a food source by an animal or otherwise, intended as a bulking agent, or intended as a component in a makeup composition for cosmetic use, etc.
- MON87460 event corn plants that express cspB protein and a glyphosate resistant 5-enolpyruvylshikimate-3- phosphate synthase (CP4 EPSPS) protein (US Patent 5,633,435) from Agrobacterium sp. strain CP4 that confers plant tolerance to glyphosate.
- CP4 EPSPS 5-enolpyruvylshikimate-3- phosphate synthase
- Glyphosate refers to N- phosphonomethylglycine and its salts. N-phosphonomethylglycine is a well-known herbicide that has activity on a broad spectrum of plant species. Glyphosate is the active ingredient of Roundup® (Monsanto Co.), a safe herbicide having a desirably short half-life in the environment. Glyphosate is the active ingredient of Roundup® herbicide (Monsanto Co.). Treatments with "glyphosate herbicide” refer to treatments with the Roundup®, Roundup Ultra®, Roundup Pro® herbicide or any other herbicide formulation containing glyphosate.
- Examples of commercial formulations of glyphosate include, without restriction, those sold by Monsanto Company as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP® ULTRAMAX, ROUNDUP® WEATHERMAX, ROUNDUP® CT, ROUNDUP® EXTRA, ROUNDUP® BIACTIVE, ROUNDUP® BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD® herbicides, all of which contain glyphosate as its isopropylammonium salt; those sold by Monsanto Company as ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; that sold by Monsanto Company as ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and that sold by Syngenta Crop Protection as TOUCHDOWN® herbicide, which contains glyphosate as its trimethylsulfonium salt.
- Glyphosate When applied to a plant surface, glyphosate moves systemically through the plant. Glyphosate is phytotoxic due to its inhibition of the shikimic acid pathway, which provides a precursor for the synthesis of aromatic amino acids. Glyphosate inhibits the enzyme 5- enolpyruvyl-3-phosphoshikimate synthase (EPSPS) found in plants. Glyphosate tolerance can be achieved by the expression of bacterial EPSPS variants and plant EPSPS variants that have lower affinity for glyphosate and therefore retain their catalytic activity in the presence of glyphosate (U.S. Patent Nos. 5,633,435, 5,094,945, 4,535,060, and 6,040,497).
- EPSPS 5- enolpyruvyl-3-phosphoshikimate synthase
- an "isolated DNA molecule” it is intended that the DNA molecule be one that is present, alone or in combination with other compositions, but not within its natural environment.
- a coding sequence, intron sequence, untranslated leader sequence, promoter sequence, transcriptional termination sequence, and the like, that are naturally found within the DNA of a corn genome are not considered to be isolated from the corn genome so long as they are within the corn genome.
- each of these components, and subparts of these components would be “isolated” within the scope of this disclosure so long as the structures and components are not within the corn genome.
- any transgenic nucleotide sequence i.e., the nucleotide sequence of the DNA inserted into the genome of the cells of the corn plant event MON87460 would be considered to be an isolated nucleotide sequence whether it is present within the plasmid used to transform corn cells from which the MON87460 event arose, within the genome of the event MON87460, present in detectable amounts in tissues, progeny, biological samples or commodity products derived from the event MON87460.
- the nucleotide sequence or any fragment derived therefrom would be considered to be isolated or isolatable if the DNA molecule can be extracted from cells, or tissues, or homogenate from a plant or seed or plant organ; or can be produced as an amplicon from extracted DNA or RNA from cells, or tissues, or homogenate from a plant or seed or plant organ, any of which is derived from such materials derived from the event MON87460.
- junction sequences as set forth at SEQ ID NO:1 and SEQ ID NO:2, and nucleotide sequences derived from event MON87460 that also contain these junction sequences are considered to be isolated or isolatable, whether these sequences are present within the genome of the cells of event MON87460 or present in detectable amounts in tissues, progeny, biological samples or commodity products derived from the event MON87460.
- a transgene/genomic junction is the point at which heterologous DNA from a transformation vector that is inserted into the genome is linked to the corn plant genomic DNA.
- a junction polynucleotide spans the transgene/genomic junction, and is novel in any particular transgenic plant event.
- detection of a junction polynucleotide in a biological sample is diagnostic for the presence of a specific plant event.
- the presence of SEQ ID NO:1 through SEQ ID NO:4 junction polynucleotides in a sample is diagnostic for the presence of MON87460 DNA in a sample.
- a "probe” is a polynucleotide to which is attached a conventional detectable label or reporter molecule, e.g., a radioactive isotope, ligand, chemiluminescent agent, or enzyme. Probes are complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of genomic DNA from MON87460, whether from a MON87460 plant or from a sample that includes MON87460 DNA. Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids, but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence.
- DNA primers are isolated polynucleotides that are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a polymerase, e.g., a DNA polymerase.
- a DNA primer pair or a DNA primer set of the present invention refer to two DNA primers useful for amplification of a target nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other conventional polynucleotide amplification methods.
- PCR polymerase chain reaction
- DNA probes and DNA primers are generally 11 polynucleotides or more in length, often 18 polynucleotides or more, 24 polynucleotides or more, or 30 polynucleotides or more. Such probes and primers are selected to be of sufficient length to hybridize specifically to a target sequence under high stringency hybridization conditions. Preferably, probes and primers according to the present invention have complete sequence similarity with the target sequence, although probes differing from the target sequence that retain the ability to hybridize to target sequences may be designed by conventional methods.
- PCR DNA primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, ⁇ 1991, Whitehead Institute for Biomedical Research, Cambridge, MA).
- the nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA molecule. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic plant in a sample.
- Polynucleic acid molecules, also referred to as nucleic acid segments, or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances.
- two polynucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti- parallel, double-stranded nucleic acid structure.
- a nucleic acid molecule is said to be the "complement” of another nucleic acid molecule if they exhibit complete complementarity.
- molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
- Two molecules are said to be "minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions.
- the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency” conditions.
- Conventional stringency conditions are described by Sambrook et a , 1989, and by Haymes et a , In: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985), Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure.
- a substantially homologous sequence is a nucleic acid sequence that will specifically hybridize to the complement of the nucleic acid sequence to which it is being compared under high stringency conditions.
- Appropriate stringency conditions that promote DNA hybridization for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C, are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.
- the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50°C to a high stringency of about 0.2 x SSC at 50 0 C.
- the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.
- a polynucleotide of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NO: 1 - 7 or complements or fragments thereof under moderately stringent conditions, for example at about 2.0 x SSC and about 65°C.
- a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NOs: 1 - 7 or complements or fragments thereof under high stringency conditions.
- amplified DNA refers to the polynucleotides that are synthesized using amplification techniques, such as PCR.
- amplicon as used herein specifically excludes primer dimers that may be formed in a DNA amplification reaction.
- stringent conditions are conditions that permit the primer pair to hybridize only to the target nucleic acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon, in a DNA thermal amplification reaction.
- specific for (a target sequence) indicates that a probe or primer hybridizes under stringent hybridization conditions only to the target sequence in a sample comprising the target sequence.
- a member of a primer pair derived from the plant genomic sequence adjacent to the transgene insert DNA is located a distance from the inserted DNA sequence, this distance can range from one nucleotide base pair up to about twenty thousand nucleotide base pairs.
- a member of a primer pair derived from the transgene insert DNA is located a distance from the plant genomic sequence junction, this distance can range from one nucleotide base pair up to about the full length of the transgene insert.
- the amplicon may range in length from the combined length of the primer pair plus one nucleotide base pair, but is preferably about fifty nucleotide base pairs or longer, for example, up to 500 or even 1000 nucleotides in length.
- a primer pair can be derived from genomic sequence on both sides of the inserted heterologous DNA so as to produce an amplicon that includes the entire insert polynucleotide sequence (e.g., a forward primer isolated from SEQ ID NO: 5 and a reverse primer isolated from SEQ ID NO: 6 that amplifies a DNA molecule comprising the pMON73608 DNA fragment that was inserted into the MON87460 genome, the insert comprising about 3309 nucleotides (SEQ ID NO:7), shown as capital letters in Figure 3.
- DNA that is extracted from a corn plant tissue sample is subjected to a polynucleotide amplification method using a primer pair that includes a first primer derived from DNA sequence in the genome of the MON87460 plant adjacent to the insertion site of the inserted heterologous DNA (transgene DNA), and a second primer derived from the inserted heterologous DNA to produce an amplicon that is diagnostic for the presence of the MON87460 plant DNA.
- the diagnostic amplicon is of a specific length depending on the location of the primers, and comprises a specific junction polynucleotide sequence that is diagnostic for the specific plant event genomic DNA.
- the presence of the junction polynucleotide sequence in an amplicon can be determined, for example, by sequencing the amplicon DNA or by hybridization with a specific probe.
- the DNA sequence of the amplicon diagnostic for the presence of the MON87460 comprises SEQ ID NO:1 or SEQ ID NO:2.
- an amplicon diagnostic for the presence of the MON87460 is 68 nt in length and comprises SEQ ID NO:2, and may be detected by hybridization with a labeled probe comprising any one of SEQ ID NO:2, SEQ ID NO: 10 or SEQ ID NO: 16.
- Polynucleotide amplification can be accomplished by any of the various amplification methods known in the art, including the polymerase chain reaction (PCR). Amplification methods are known in the art and are described, inter alia, in U.S. Patent Nos. 4,683,195 and 4,683,202 and in PCR Protocols: A Guide to Methods and Applications, ed. Innis et al. , Academic Press, San Diego, 1990. PCR amplification methods have been developed to amplify up to 22 kb (kilobase) of genomic DNA and up to 42 kb of bacteriophage DNA (Cheng et al, Proc. Natl. Acad. Sci. USA 91:5695-5699, 1994).
- PCR polymerase chain reaction
- the sequence of the heterologous DNA insert or flanking genomic DNA sequence from MON87460 can be verified (and corrected if necessary) by amplifying such DNA molecules from the MON87460 seed or plants grown from the seed deposited with the ATCC having accession no. PTA-8910, using primers derived from the sequences provided herein, followed by standard DNA sequencing of the PCR amplicon or cloned DNA fragments thereof.
- DNA detection kits that are based on DNA amplification methods contain DNA primer molecules that hybridize specifically to a target DNA and amplify a diagnostic amplicon under the appropriate reaction conditions.
- Any length amplicon produced from MON87460 DNA wherein the amplicon comprises SEQ ID NO:1 or SEQ ID NO:2 is an aspect of the invention.
- the skilled artisan will recognize that the first and second DNA primer molecules are not required to consist only of DNA but may also be comprised exclusively of RNA, a mixture of DNA and RNA, or a combination of DNA, RNA, or other nucleotides or analogues thereof that do not act as templates for one or more polymerases.
- a probe or a primer as set forth herein shall be at least from about 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 consecutive nucleotides in length and selected from the group of nucleotides as set forth in SEQ ID NO: 1 and SEQ ID NO: 3 (arbitrarily designated 5' junction), SEQ ID NO:2 and SEQ ID NO:4 (arbitrarily designated 3' junction), SEQ ID NO:5 (arbitrarily designated 5' flanking sequence), SEQ ID NO:6 (arbitrarily designated 3' flanking sequence), and SEQ ID NO:7 (inserted transgene sequence). Probes and primers at least from about 21 to about 50 or more consecutive nucleotides in length are possible when selected from the group of nucleotides as set forth in SEQ ID NO:5 through SEQ ID NO:7.
- the kit may provide an agarose gel based detection method or any number of methods of detecting the diagnostic amplicon that are known in the art.
- a kit that contains DNA primers that are homologous or complementary to any portion of the corn genomic region of SEQ ID NO:5 or SEQ ID NO:6 and to any portion of the transgene insert region of SEQ ID NO: 7 is an object of the invention.
- SEQ ID NO:8 and SEQ ID NO:9 that amplify a diagnostic amplicon homologous to a portion of the 5' transgene/genome region of MON87460, wherein the amplicon comprises SEQ ID NO:2.
- Other DNA molecules useful as DNA primers can be selected from the disclosed transgene/genomic DNA sequence of MON87460 by those skilled in the art of DNA amplification.
- the diagnostic amplicon produced by these methods may be detected by a plurality of techniques.
- One such method is Genetic Bit Analysis (Nikiforov, et al. Nucleic Acid Res. 22:4167-4175, 1994) where a DNA oligonucleotide is designed that overlaps both the adjacent flanking genomic DNA sequence and the inserted DNA sequence.
- the oligonucleotide is immobilized in wells of a microtiter plate.
- a single- stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labelled dideoxynucleotide triphosphates (ddNTPs) specific for the expected next base.
- Readout may be fluorescent or ELIS A-based. A signal indicates presence of the transgene/genomic sequence due to successful amplification, hybridization, and single base extension.
- Another method is the Pyrosequencing technique as described by Winge (Innov. Pharma. Tech. 00:18-24, 2000).
- an oligonucleotide is designed that overlaps the adjacent genomic DNA and insert DNA junction.
- the oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking genomic sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin.
- DNTPs are added individually and the incorporation results in a light signal that is measured.
- a light signal indicates the presence of the transgene/genomic sequence due to successful amplification, hybridization, and single or multi-base extension.
- Fluorescence Polarization as described by Chen, et al, (Genome Res. 9:492-498, 1999) is a method that can be used to detect the amplicon of the present invention.
- an oligonucleotide is designed that overlaps the genomic flanking and inserted DNA junction.
- the oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking genomic DNA sequence) and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP.
- Incorporation can be measured as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene/genomic sequence due to successful amplification, hybridization, and single base extension.
- Taqman® PE Applied Biosystems, Foster City, CA
- FRET fluorescence resonance energy transfer
- Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety, such as 6FAMTM and VICTM, away from the quenching dye, such as TAMRA (tetramethyl-6-carboxyrhodamine) for conventional probes, or non-fluorescent minor groove binding compounds for MGB probes.
- the polymerase cleaves bound probe during PCR, separating the fluorophore and quencher to the extent that FRET cannot occur, and a fluorescent signal indicates the presence of the transgene/genomic sequence.
- FRET oligonucleotide probe is designed that overlaps the flanking genomic and insert DNA junction.
- the unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity.
- the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs.
- hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties.
- a fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.
- DNA detection kits can be developed using the compositions disclosed herein and the methods well known in the art of DNA detection. The kits are useful for identification of corn plant MON87460 DNA in a sample and can be applied to methods for breeding corn plants containing MON87460 DNA.
- a kit contains DNA molecules that are useful as primers or probes and that are homologous or complementary to at least a portion of SEQ ID NO:1 - 7.
- the DNA molecules can be used in DNA amplification methods (PCR) or as probes in nucleic acid hybridization methods such as Southern analysis and northern analysis.
- PCR DNA amplification methods
- nucleic acid hybridization methods such as Southern analysis and northern analysis.
- a preferred polynucleotide of the present invention that is diagnostic for the presence of MON87460 DNA has the sequence set forth in SEQ ID NO:1 through SEQ ID NO:4, or SEQ ID NO:25.
- SEQ ID NO:1 through SEQ ID NO:4 and larger genomic/transgene junction polynucleotides, such as those in SEQ ID NO: 5-7 may also be used as markers in plant breeding methods to identify the progeny of genetic crosses similar to the methods described for simple sequence repeat DNA marker analysis, in "DNA markers: Protocols, applications, and overviews: (1997) 173-185, Cregan, et ah, eds., Wiley-Liss NY.
- the hybridization of the probe to the target DNA molecule can be detected by any number of methods known to those skilled in the art, these can include, but are not limited to, fluorescent tags, radioactive tags, antibody based tags, and chemiluminescent tags.
- a preferred marker nucleic acid molecule of the present invention shares between 80% and 100% or 90% and 100% sequence identity with a nucleic acid sequence set forth in SEQ ID NO:1 through SEQ ID NO:7 or complements thereof or fragments of either. In a further aspect of the present invention, a preferred marker nucleic acid molecule of the present invention shares between 95% and 100% sequence identity with a sequence set forth in SEQ ID NO:1 through SEQ ID NO: 7 or complements thereof or fragments of either.
- Water deficit tolerant corn plants that lack a selectable marker gene or lack an intact selectable marker gene also provided herein.
- Such plants can be obtained by methods that comprise exposing a corn chromosome comprising a heterologous transgene insert that confers water deficit tolerance and a selectable marker gene to one or more recombination-inducing agents and selecting a corn plant comprising a heterologous transgene insert that confers water deficit tolerance where the selectable marker gene has been either completely or partially eliminated or where the selectable marker gene has been disrupted.
- Heterologous transgene inserts that confer water deficit tolerance and contain a selectable marker include, but are not limited to, inserts comprising SEQ ID NO:7 or inserts comprising SEQ ID NO:1, a truncated rice actin promoter that is operably linked to a cspB gene, a selectable marker gene, and SEQ ID NO:2.
- Corn chromosomes that comprising a heterologous transgene insert that confers water deficit tolerance and a selectable marker gene also include, but are not limited to, a corn chromosome that comprises SEQ ID NO:24, a corn chromosome of a corn plant having been deposited under ATCC Accession No.
- Heterologous transgene inserts that confer water deficit tolerance include, but are not limited to, inserts comprising SEQ ID NO:1 and a truncated rice actin promoter that is operably linked to a cspB gene as well as inserts comprising SEQ ID NO: 1 and a truncated rice actin promoter that is operably linked to a cspB gene where a 5' terminus of the insert overlaps a 3' terminus of SEQ ID NO: 1.
- operably linked refers to the joining of nucleic acid sequences such that one sequence can provide a required function to a linked sequence.
- operably linked means that the promoter is connected to a sequence of interest such that the transcription of that sequence of interest is controlled and regulated by that promoter.
- sequence of interest encodes a protein and when expression of that protein is desired, “operably linked” means that the promoter is linked to the sequence in such a way that the resulting transcript will be efficiently translated.
- the linkage of the promoter to the coding sequence is a transcriptional fusion and expression of the encoded protein is desired, the linkage is made so that the first translational initiation codon in the resulting transcript is the initiation codon of the coding sequence.
- the linkage of the promoter to the coding sequence is a translational fusion and expression of the encoded protein is desired, the linkage is made so that the first translational initiation codon contained in the 5' untranslated sequence associated with the promoter and is linked such that the resulting translation product is in frame with the translational open reading frame that encodes the protein desired.
- Nucleic acid sequences that can be operably linked include, but are not limited to, sequences that provide gene expression functions (i.e., gene expression elements such as promoters, 5' untranslated regions, introns, protein coding regions, 3' untranslated regions, polyadenylation sites, and/or transcriptional terminators), sequences that provide DNA transfer and/or integration functions (i.e., T-DNA border sequences, site specific recombinase recognition sites, integrase recognition sites), sequences that provide for selective functions (i.e., antibiotic resistance markers, biosynthetic genes), sequences that provide scoreable marker functions (i.e., reporter genes), sequences that facilitate in vitro or in vivo manipulations of the sequences (i.e., polylinker sequences, target sequences for site specific recombinases) and sequences that provide replication functions (i.e., bacterial origins of replication, autonomous replication sequences, centromeric sequences).
- gene expression functions i.e., gene expression elements such
- Recombination inducing agents can comprise ionizing radiation and/or any compound, protein, and/or a nucleic acid that provides for elimination or modification of a polynucleotide sequence.
- Recombination inducing agents thus include, but are not limited to, agents that provide for homologous recombination, non-homologous recombination, site- specific recombination, and/or genomic modifications.
- Genomic modifications provided by recombination inducing agents thus include, but are not limited to, insertions, deletions, inversions, and/or nucleotide substitutions.
- Recombination agents can be native or engineered.
- Site specific recombinases include, but are not limited to, a Cre- recombinase, a FLP recombinase, a Flippase and the like.
- Recombination-inducing agents also include, but are not limited to nucleases. Nucleases that can be used include, but are not limited to, meganucleases and zinc- finger nucleases.
- recombination-inducing agents include, but are not limited to, homologous replacement sequences and non-homologous replacement sequences.
- recombination-inducing reagents can comprise a nuclease and a homologous or non-homologous replacement sequence.
- a cre-recombinase capable of excising the selectable marker located between the lox sites of SEQ ID NO:24 can be used. Cre-mediated elimination of sequences flanked by lox sites in plants has been disclosed (U.S. Patent No. 5,658,772).
- Elimination or disruption of a selectable marker gene, a portion thereof, or other sequence can be effected by inducing a double stranded break in the target sequence, providing a homologous replacement sequence that lacks the selectable marker gene or a portion thereof, and recovering plants where the replacement sequence has integrated in place of the originally resident sequences.
- a homologous replacement sequence can comprise homologous sequences at both ends of the double stranded break that are provide for homologous recombination and substitution of the resident sequence in the chromosome with the replacement sequence.
- Targeted double-strand break-induced homologous recombination in crop plants such as tobacco and maize has been disclosed (Wright et al., Plant J.
- a meganuclease that catalyzes at least one site specific double stranded break in the selectable marker gene can be used.
- Meganucleases have been shown to be amenable to genetic modification such that they can be evolved or engineered (WO/06097853A1, WO/06097784A1, WO/04067736A2) or rationally designed (U.S. 20070117128A1) to cut within a recognition sequence that exactly matches or is closely related to specific target sequence. In these cases, given a reasonably sized target such as a selectable marker gene sequence, one can select or design a nuclease that will cut within the target selectable marker gene sequence.
- a zinc finger nuclease that that catalyzes at least one site specific double stranded break in the selectable marker gene can be used.
- Such zinc-finger nucleases, the ability to engineer specific zinc-finger nucleases, and their use in providing for homologous recombination in plants have also been disclosed (WO 03/080809, WO 05/014791, WO 07014275, WO 08/021207).
- Elimination or disruption of a selectable marker gene, a portion thereof, or other sequence can also be effected by inducing a double stranded break in the target sequence, providing a non-homologous replacement sequence that lacks the selectable marker gene or a portion thereof, and recovering plants where the non-homologous replacement sequence has integrated in the target sequence.
- a non-homologous replacement sequence can comprise single stranded sequences at both ends that are complementary to single stranded sequences at both ends of the double stranded break to provide for nonhomologous end joining of the replacement sequence and double stranded break.
- Methods for de novo generation of a corn plant that is substantially equivalent to a corn plant of event MON87460 and resultant plants are also provided herein. Such methods can comprise use of recombination-inducing agents.
- Corn plants that are substantially equivalent to a corn plant of event MON87460 include, but are not limited to, corn plants comprising a chromosome having a heterologous transgenic insert comprising a promoter that is operably linked to a cspB gene, where the transgenic insert is present at the same or substantially the same chromosomal location or chromosomal integration site as in MON87460.
- Promoters that can be operably linked to a cspB gene include, but are not limited to, rice actin promoters, including truncated rice actin promoters, a maize RS81 promoter, a maize RS324 promoter, a maize A3 promoter, viral promoters, and the like.
- rice actin promoters including truncated rice actin promoters, a maize RS81 promoter, a maize RS324 promoter, a maize A3 promoter, viral promoters, and the like.
- a genetically-modified corn plant which contains a promoter operably linked to a cspB gene can be produced by: i) introducing into a corn plant cell a homologous replacement sequence comprising a promoter that is operably linked to a cspB gene and flanking sequences that are substantially identical to a target sequence and a nuclease that cleaves the target sequence; and ii) selecting for a corn cell or corn plant where the homologous replacement sequence has integrated into the target sequence.
- corn chromosomal target sequences disclosed herein have been found to be favorable sites for transgene insertion, methods for obtaining plants with insertions of one or more transgenes that confer traits other than water deficit tolerance or transgenes that comprise genes other than cspB that confer water deficit tolerance into target sites disclosed herein are also provided.
- the availability of recombination-inducing agents and various homologous replacement sequences also provides for water deficit tolerant corn plants that comprise one or more additional gene(s) integrated into the same chromosomal location as the heterologous transgene insert that confers water deficit tolerance.
- an additional gene or genes can be a gene or genes that work in concert with the resident heterologous transgene insert that confers water deficit tolerance to provide additional water deficit tolerance.
- an additional gene or genes can be a gene or genes that provide a distinct and useful trait other than water deficit tolerance.
- one or more genes that confer one or more traits include, but are not limited to, genes that confer herbicide resistance, pest resistance, improved yield under water sufficient conditions, improved seed oil, improved seed starch, improved seed protein, and/or improved nitrogen utilization.
- Such plants can be obtained by methods that comprise exposing a corn chromosome comprising a heterologous transgene insert that confers water deficit tolerance to a homologous replacement sequence comprising one or more additional genes and selecting a corn plant comprising a heterologous transgene insert that confers water deficit tolerance and one or more additional genes.
- the insertion of the homologous replacement sequence can be facilitated by use of an additional recombination-inducing agent.
- Additional recombination-inducing agents used include thus include, but are not limited to, a meganuclease, a zinc-finger nuclease, or other agent that induces a double-stranded break at a desired site of double-strand break-induced homologous recombination.
- Heterologous transgene inserts that confer water deficit tolerance include, but are not limited to, inserts comprising SEQ ID NO: 1 and a truncated rice actin promoter that is operably linked to a cspB gene as well as inserts comprising SEQ ID NO:1 and a truncated rice actin promoter that is operably linked to a cspB gene where a 5' terminus of the insert overlaps a 3 ' terminus of SEQ ID NO: 1.
- the homologous replacement sequence comprises a sequence that provides for replacement of a selectable marker gene that is in a resident heterologous transgene insert with one or more additional genes.
- Heterologous transgene inserts that confer water deficit tolerance and contain a selectable marker include, but are not limited to, inserts comprising SEQ ID NO:7 or inserts comprising SEQ ID NO:1 and a truncated rice actin promoter that is operably linked to a cspB gene.
- Corn chromosomes that comprise a heterologous transgene insert that confers water deficit tolerance and a selectable marker gene also include, but are not limited to, a corn chromosome that comprises SEQ ID NO:24, a corn chromosome of corn plant having been deposited under ATCC Accession No. PTA-8910, and progeny thereof.
- an additional gene or gene can also be inserted into SEQ ID NO:5 and/or SEQ ID NO:6.
- any of the aforementioned additional gene or genes can be integrated into a chromosome comprising SEQ ID NO: 1 and a truncated rice actin promoter that is operably linked to a cspB gene and one or more lox sites by site specific recombination.
- Site specific recombination systems used for this purpose include, but are not limited, to FLP recombinase/FRT, ere recombinase/lox, and combinations thereof.
- the use of site-specific recombination systems in plants and other eukaryotic organisms has been disclosed (U.S. Patent No. 5,801,030, U.S. Patent No. 5,658,772, and U.S. Patent No.
- lox site specific recombination sites in corn chromosomes comprising SEQ ID NO:7 or SEQ ID NO:24 and a corn chromosome of a corn plant having been deposited under ATCC Accession No. PTA-8910, and progeny thereof, thus provides for site specific integration of additional genes into these corn chromosomes.
- the selectable marker sequence which is flanked by the lox sites in the corn chromosomes is first excised by cre-recombinase, leaving a single lox site in the chromosome.
- Additional genes can then be introduced on a circular DNA molecule comprising the additional genes and an operably linked lox site and integrated into the corn chromosome at the single lox site that was left in the chromosome.
- Exemplary schemes for creating circular DNA molecules and site - specific integration of genes into chromosomes have been disclosed (Vergunst et al., Nucleic Acid Res. 26(11), 279, 1998).
- Introduction of site-specific recombination sites other than lox at the chromosomal location of the SEQ ID NO:24 insertion and insertion of additional genes at those recombination sites is also provided herein.
- This vector contains the cspB coding region regulated by the rice actin promoter, the rice actin intron, and the tr7 3' polyadenylation sequence, and the nptll coding region regulated by the 35S CaMV promoter, and the NOS 3' polyadenylation sequence.
- OR ⁇ Ec.oriV-RK2-l:l:6 7527- -7923 the broad host range plasmid RK2 [0069JLH59 callus was initiated from immature embryos. Immature embryos, 1.5 mm to 2.0 mm, were excised from developing maize plants and cultured with the embryonic axis side down on callus initiation medium for 8-21 days.
- Agrobacterium was prepared via standard methods and 50 to 100 pieces of callus were transferred to a Petri dish containing about 15 ml of Agrobactericm suspension at 0.1 to 1.0 x 109 cfu/ml. Callus pieces, 2 mm to 8 mm in diameter, were incubated for about 30 minutes at room temperature with the Agrobacterium suspension, followed by removal of the liquid by aspiration. About 50 uL of sterile distilled water was added to filter paper in a 60 x 20 mm Petri dish. Fifteen to 20 pieces of inoculated callus were transferred to each filter paper and the plate sealed. The callus and Agrobacterium were co- cultured for about 3 days at 23 0 C in the dark.
- CaIIi were transferred from filter paper to medium callus initiation medium containing carbenicillin and cultured in the dark at 27°C to 28°C for 2-5 days. Selection was initiated by transferring callus to callus initiation medium containing silver nitrate, carbenicillin and mg/L paromomycin. After 2 weeks culture in the dark at 27°C to 28°C, callus was transferred to medium containing higher levels of paromomycin. Callus was subcultured after two weeks to fresh medium and further cultured for two weeks in the dark at 27°C to 28 0 C. Callus was then transferred to again to medium with higher levels of paromomycin. After 2-3 weeks culture in the dark at 27°C to 28°C, paromomycin resistant callus was identified.
- Plants were regenerated (RO plants) from transformed callus, transferred to soil and grown in the greenhouse. RO plants were screened by PCR for presence of the cspB and nptll coding regions, and Southern analysis was conducted to determine insert copy. Taqman analysis was used to determine presence or absence of vector backbone sequences. Transgenic events that were positive for the presence of both cspB and nptll genes, negative for the presence of vector backbone sequences and had one or two inserts (integration sites within the corn genome) were selected for physiological analysis for drought tolerance. The positive events were grown in the greenhouse to maturity and selfed. Homozygous, heterozygous, and non-transgenic seed from multiple transgenic events obtained by genomic insertions of the T- DNA of pMON73608 were collected from the selfed positive plants.
- Example 2 Greenhouse Screening for Water Deficit Stress Tolerance
- Transgenic heterozygous corn plants were grown from the heterozygous seed from transgenic events transformed with pMON73608 (Example 1) and screened for water deficit stress tolerance as compared to control plants by a high-throughput method of greenhouse screening in which water is withheld to create a "drought treatment".
- Water use efficiency is measured by plant growth rate, e.g., at least a 10% improvement, in height and biomass during a drought treatment, as compared to control plants.
- the hydration status of the shoot tissues following the drought is also measured.
- Plant Initial Height (SIH) is plant height after 3 weeks of growth under optimum conditions.
- Sp Wilt Height (SWH) is plant height at the end of a 6 day drought.
- Relative water content is a measurement of how much (%) of the plant is water at harvest.
- RWC (SWM-SDM)/(STM-SDM)xlOO.
- Fully watered corn plants are about 98% RWC.
- Typically, in a wilt screen the plants are about 60% RWC. Plants with higher RWC at the end of a drought are considered to be healthier plants and more fit for post-drought recovery and growth.
- Transgenic heterozygous corn plants from multiple transgenic events comprising T- DNA of pMON73608, including MON87460, exhibited enhanced water deficit stress tolerance as compared to control plants.
- Example 3 Improved Field Performance of MON87460 Corn Plants under Water Deficit
- Example 4 Improved Yield of MON87460 Corn Plants under Limited- Water Treatment
- Water-limited treatment was applied by reducing irrigation for a 14 day period during the late vegetative stage of development, immediately prior to flowering. The treatment resulted in a net reduction of approximately 49.2 cm 3 of water relative to a well-watered regime. This was achieved by omitting two of three 24.6 cm 3 applications of water during the stress period.
- the treatment reduced the relative growth rate during the treatment by approximately 50% of well-watered rates and similarly reduced the average end of season grain yield by 50%.
- Each trial location was designed as a 4-factor group unbalanced block design, and planted with 3 replications per location. Within each replication, the genotypes were randomized as the 1 st factor, and constructs, events, and gene-positive vs. gene-negative plots were randomized as the 2 nd , 3 rd , and 4 th factors, respectively.
- the design placed the positive and negative entries for each selection in adjacent 2 row plots. Final population density reflected local planting practices and ranged from 65 to 76 plants per 2 row plot. Plots were 21 feet long and row spacing ranged from 30 to 40 inches wide, reflecting local planting practices.
- MON87460 event also demonstrated significant improvements in leaf growth, chlorophyll content and photosynthetic rates, providing evidence that these improvements in vegetative productivity translate into improvements in reproductive performance and grain yield, and identifying MON87460 as the top performer among the multiple independent transgenic events tested in greenhouse or field studies.
- [0084JMON87460 was characterized by detailed molecular analyses, including screens for insert number (number of integration sites within the corn genome), copy number (the number of copies of the T-DNA within one locus), the integrity of the inserted cassettes and the absence of backbone sequence.
- the supernatant was transferred to new tubes and combined with 4 ml cold isopropanol. Samples were centrifuged at 3500 rpm for 15 minutes and the supernatant discarded. The pellet was resuspended in 2 ml T50E10 buffer with 0.1 mg/ml RNAse and incubated at 65°C for 20 minutes. To precipitate the DNA, 3 ml isopropanol/4.4M ammonium acetate (7:1) were added to each tube and inverted to mix. Samples were centrifuged at 3500 rpm for 15 minutes and the supernatant was discarded. The pellets were rinsed with 0.5-1.0 ml 80% EtOH then transferred to microcentrifuge tubes.
- each probe was labeled with -100 ⁇ Ci of 32 P-dCTP (Amersham catalog # AA0075) using random priming (Radprime® DNA labeling System, Invitrogen). Radiolabeled probes were purified using a Sephadex G-50 column (Roche). Samples were loaded onto 0.8% TAE gels and run 14-18 hours at 30-35V. After electrophoresis, the gels were stained in 1.5 ⁇ g/ml ethidium bromide for 10-15 minutes and then photographed.
- the gels were then placed in depurination solution (0.125 N HCl) for 10-15 minutes followed by a denaturing solution (0.5M NaOH, 1.5 M NaCl) for 30-40 minutes and then a neutralizing solution (0.5M Tris-HCl pH 7.0, 1.5 M NaCl) for 30-40 minutes.
- the gels were then transferred to a 2OX SSC solution for 5-15 minutes.
- Capillary transfer of DNA (Southern, 1975) onto Hybond-N nylon membrane (Amersham) was facilitated overnight using a TurboblotterTM (Schleicher & Schuell) with 2OX SSC transfer buffer.
- DNA was covalently cross-linked to the membrane with a UV Stratalinker® 1800 (Stratagene) using the auto- crosslink setting and stored at 4 0 C until required.
- Membranes were incubated for 1-4 hours at 60-65 0 C in prehybridization buffer (25OmM Na2HPO4-7H20 pH 7.2, 7% SDS, and 0.1 mg/ml tRNA).
- prehybridization buffer 25OmM Na2HPO4-7H20 pH 7.2, 7% SDS, and 0.1 mg/ml tRNA.
- the 32 P-labeled probe was added to fresh prehybridization buffer and hybridized overnight at 60-65 0 C.
- Membranes were washed 3 times in an aqueous solution of 0.1% SDS and 0.1X SSC for 15-20 minutes.
- RNA from corn event MON87460 and wild type leaf tissue from greenhouse grown plants was isolated from one gram tissue samples using a ToTALLY RNATM Kit (Ambion catalog # 1910). Samples containing 5, 10, 25 and 50 ⁇ g MON87460 and wild type RNA were prepared and run on a 1.0% agarose gel at 120V for approximately 2 hours. Following electrophoresis, the gels were then rinsed in deionized H2O blotted to nylon membranes. The gels were allowed to transfer overnight. The blots were covalently cross-linked and placed at 4°C for short-term storage. Prior to prehybridization, the blots were pre-rinsed in 1OX SSC for 2 minutes.
- cspB and nptll probe templates were labeled with -50 ⁇ Ci of 3 2 P-dCTP using random priming (Radprime® DNA labeling System, Invitrogen).
- Denatured cspB and nptll radiolabeled probes were then added to separate tubes containing 5 ml preheated hybridization buffer. The buffer containing each probe was then mixed and added to the appropriate hybridization bottle and hybridized overnight.
- the blots were removed from the bottle and placed in low stringency wash buffer (2X SSC, 0.1% SDS) in a glass tray and placed on a shaker for 10 minutes at room temperature. The blots were placed on blotting paper and then in fresh hybridization bottles with 25 ml of low stringency pre-warmed wash buffer (65 0 C). The blots were washed at 65 0 C, two times in low stringency wash buffer for 15 minutes and once at 65°C, in high stringency wash buffer (0.5X SSC, 0.1% SDS) for 15 minutes.
- low stringency wash buffer 2X SSC, 0.1% SDS
- MON87460 genomic DNA was digested with Mfel and purified using the QIAEX® II Gel Extraction Kit (Qiagen), to ensure the purification of fragments greater than 10 kb. This digested and purified genomic DNA was used for ligation into the Lambda DASH® U/EcoRl Vector Kit (Stratagene). Approximately 2.5 x 10 5 colonies were screened using 32 P -labeled Ract intron and cspB probes.
- Purified DNA from a pure bacteriophage lambda clone was used as template in sequencing reactions to confirm the T- DNA nucleotide sequence of the MON87460 insert and corn genomic DNA flanking the 5' and 3' ends of the MON87460 insert.
- [0094JPCR was performed on genomic DNA from the nontransgenic corn line used in transformation using primers that hybridize to the 5' and 3' flanking regions of the MON87460 insert. Multiple primer combinations were performed with each combination consisting of a primer that hybridizes to the 5' and 3' flanking region, respectively. The PCR analysis was performed using ⁇ 50 ng of genomic DNA template in a 50 ⁇ l reaction volume. Resulting amplicons were then sequenced. Analysis of the wild type allele showed that a 22 bp deletion of corn genomic DNA (SEQ ID NO:23) occurred upon integration of the MON87460 T-DNA into the corn chromosome.
- MON87460 Event Polynucleotides The detection of MON87460 event in progeny resulting from breeding with a MON87460 line may be accomplished by extraction of genomic DNA from corn plant tissues and analysis for MON87460 specific polynucleotides. Of particular interest for identification of MON87460 polynucleotides is the use of PCR to amplify genomic DNA comprising transgene/genomic junction sequences.
- An amplicon diagnostic for MON87460 comprises at least one junction sequence, SEQ ID NO: 1 or SEQ ID NO: 2 ( Figure 2).
- SEQ ID NO: 1 corresponds to the junction of the arbitrarily designated 5' flanking sequence (positions 1051 through 1060 of SEQ ID NO: 5) and the 5' region of the truncated rice actin promoter (positions 1-10 of SEQ ID NO:7) in the cspB expression construct.
- SEQ ID NO: 2 corresponds to the junction of the integrated left border from pMON73608 (positions 3300 through 3309 of SEQ ID NO: 7) and the arbitrarily designated 3' flanking sequence (positions 1 through 10 of SEQ ID NO: 6).
- Event primer pairs that will produce a diagnostic amplicon for MON87460 include primer pairs based upon the flanking sequences and the inserted DNA from pMON73608.
- SEQ ID NO: 7 a forward primer based upon inserted transgene sequence
- SEQ ID NO: 6 are prepared.
- primer pairs may also be designed to produce an amplicon comprising polynucleotides complementary to at least 11 nucleotides of SEQ ID NO:1 or SEQ ID NO:2, in which case the forward and reverse sequences are based upon sequences complementary to those in SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7.
- Primers are designed which produce amplicons having between 50 and 1000 bases. Amplification conditions are as illustrated in Table 4 and Table 5 below and include a positive tissue control from event MON87460, a negative control from a corn plant that is not event MON87460, and a negative control that contains no corn genomic DNA.
- a primer pair that will amplify an endogenous corn DNA molecule, such as from the ADH gene, may be used as an internal control for the DNA amplification conditions.
- Corn plant DNA for use in DNA amplification reactions may be isolated from any suitable corn plant tissue, and is preferably isolated from newly formed leaf tissue from plants ⁇ 1 month old for reactions as described herein.
- Leaf tissue is harvested using a standard 7mm hole punch, to collect tissue equivalent to an approximately 1 centimeter wide and 1 inch long leaf tear.
- Tissue samples are lyophilized and dried tissue is ground by adding 4-6 3mm zirconia-silica beads to each tissue sample in a polypropylene tube and shaking in a paint shaker.
- Homogenized tissue samples are mixed in a 96-well plate with 395 ul of pre- warmed SDS extraction buffer (0.1M Tris pH 8, 10 mM EDTA, 1.0 M NaCl, 1% SDS), vortexed briefly and incubated at 65 0 C for 45 minutes. 135 ul of cold potassium acetate (5M) is added. Samples are mixed by vortexing and the plate is spun at 3300 rpm for 20 minutes. 100 ul of supernatant is transferred to a fresh 96-well plate containing 100 ul isopropanol and samples are vortexed to mix. The plate is spun at 3300 rpm for 20 minutes and the supernatant discarded. Plates are drained upside down for 1 minute.
- SDS extraction buffer 0.1M Tris pH 8, 10 mM EDTA, 1.0 M NaCl, 1% SDS
- 5M cold potassium acetate
- the assay for the MON87460 amplicon can be performed using an Applied Biosystems GeneAmp PCR System 9700, Stratagene Robocycler, MJ Engine, Perkin-Elmer 9700 or Eppendorf Mastercycler Gradient thermocycler or any other amplification system that can be used to produce an amplicon diagnostic of MON87460.
- Table 4 Corn MON87460 Event Specific PCR
- Amplicons produced using the designed primer pairs are shown to contain MON87460 polynucleotides by hybridization to probes specific for MON87460 junction sequences SEQ ID NO:1 or SEQ ID NO:2, or by isolation and DNA sequence analysis.
- a MON87460 event-specific endpoint TaqMan PCR reaction is described herein.
- Endpoint Taqman the signal corresponding to a particular amplification is quantified using a fluorescent detection system after the reaction cycling is complete.
- the use of three site-specific hybridizations two PCR primers and a fluorescently labeled probe) for signal generation provides a highly specific assay.
- the probe anneals to specific nucleotides between the forward and reverse primers.
- taq polymerase degrades the probe releasing the fluor from the quencher so that a signal is emitted.
- the signal is read after the reactions are complete.
- Polynucleotide primers used in the endpoint assay are primers SQ 10443 (SEQ ID NO: 8), SQ10445 (SEQ ID NO: 9) and the probe used to detect the MON87460 amplicon is 6FAMTM labeled MGBNFQ (minor groove binding, non fluorescent quencher) probe PB3814 (SEQ ID NO: 10).
- An internal corn DNA primer may also be used to confirm integrity of the template DNA.
- amplification of alcohol dehydrogenase may be accomplished using primers SQ5263 (SEQ ID NO:11) and SQ5264 (SEQ ID NO: 12) and detected with VICTM (reporter fluorochrome) and TAMRATM (quencher fluorochrome) probe PB2033 (SEQ ID NO: 13).
- VICTM reporter fluorochrome
- TAMRATM quencher fluorochrome
- 6FAMTM, VICTM and TAMRATM are fluorescent dye products of Applied Biosystems (Foster City, CA) attached to the DNA probes.
- Taq DNA polymerase cleaves probes that specifically hybridize to the amplified DNA and releases the fluorophore. The separation of fluorophore and quencher allows fluorescence to occur which is diagnostic under these conditions for the presence of MON87460 polynucleotides.
- SQ10443 SEQ ID NO: 8 and SQ10445 (SEQ ID NO: 9) when used as described in Table 2 below produce a 68 nt DNA amplicon (SEQ ID NO:20) that is diagnostic for event MON87460 DNA and detected by hybridization to a polynucleotide probe, such as PB3814.
- This assay has been optimized for use in 96-well or 384-well format using an Applied Biosystems GeneAmp PCR System 9700 or MJ Research DNA Engine PTC-225. Other methods and apparatus may be known to those skilled in the art and used to produce amplicons that identify the event MON87460 DNA. Adjustments to cycling parameters may be needed to ensure that ramp speeds are equivalent.
- Corn leaf tissue samples are used in the below analysis, and should be thoroughly ground to produce a homogenous sample.
- Corn leaf DNA is isolated as described in Example 6. The concentration of the leaf DNA to be tested is preferably within the range of 5-10 ng per PCR reaction.
- Control DNA should be extracted using the same method as for extraction of the samples to be analyzed. Controls for this analysis should include a positive control from corn known to contain event MON87460 DNA, a negative control from non-transgenic corn and a negative control that contains no template DNA.
- PCR reactions using an Applied Biosystems GeneAmp PCR System 9700 or MJ Research DNA Engine PTC-225 thermal cycler, cycling parameters as described in Table 3 below are used. When running the PCR in the Perkin-Elmer 9700, the thermocycler is run with the ramp speed set at maximum. Table 6.
- a specific assay is described to detect the presence and zygosity (homozygous or hemiozygous) of MON87460 transgenic event in genomic DNA extracted from corn leaf tissue as described in Example 6. Determining zygosity for event MON87460 in a sample was done using an event-specific zygosity endpoint TaqMan PCR for which examples of conditions are described in Table 8 and Table 9.
- the DNA primers and probes used in the zygosity assay are primers SQ21105 (SEQ ID NO: 14) and SQ21106 (SEQ ID NO: 15), and 6FAMTM labeled MGB (minor groove binding) probe PB3771 (SEQ ID NO: 16) for detection of MON87460 junction polynucleotides, and primers SQ21195 (SEQ ID NO: 17 and SQ21196 (SEQ ID NO:18), and VIC TM labeled MGB probe PB10223 (SEQ ID NO:19) for detection of wild-type corn DNA at the insertion site.
- SQ21105 SEQ ID NO: 14
- SQ21106 SEQ ID NO: 15
- PB3771 SEQ ID NO:16
- SQ21195 SEQ ID NO: 17 and SQ21196 (SEQ ID NO:18
- PB2512 SEQ ID NO: 12
- SEQ ID NO: 22 145 nt DNA amplicon
- the probe for this reaction is specific to the 22 bp deletion of genomic DNA (SEQ ID NO:23) that occurred at the MON87460 insertion site.
- Heterozygosity is determined by the presence of both amplicons as demonstrated by the liberation of fluorescent signal from both probes PB3771 and PB 10223. Homozygous corn plant genetic material is identified by liberation of only the 6FAMTM signal from PB3771. Controls for this analysis should include a positive control from corn plant samples homozygous and hemizygous for event MON87460 DNA, a negative control from non-transgenic corn, and a negative control that contains no template DNA.
- thermocycler When running the PCR in the MJ Engine, the thermocycler should be run in the calculated mode. When running the PCR in the Perkin-Elmer 9700, the thermocycler is run with the ramp speed set at maximum.
- CspB expressing event MON87460
- MON87460 CspB expressing event
- Yield performance of MON87460 was evaluated in three elite hybrid genetic backgrounds at 5 replicated locations across central California and western Kansas where two distinct limiting-water treatments were applied.
- the late vegetative treatment was applied to the trials by reducing irrigation for a 14 day period during the late vegetative stage of development, immediately prior to flowering.
- the treatment reduced the relative growth rate during the treatment by approximately 50% of well- watered rates and similarly reduced the average end of season grain yield by 50%.
- a grain fill treatment was achieved by initiating the water-limiting conditions at a later stage, relative to the vegetative treatment, depleting the soil moisture profile on or around flowering and achieving maximal stress during the grain fill period. This treatment resulted in an approximate 25% reduction in plant heights and a 30- 40% reduction in grain yield as a result of the stress imposition.
- Three hybrids expressing the CspB event were evaluated using 20 replications of data across 5 locations for each stress treatment window.
- each trial location was designed as a 3 factor group unbalanced block design, and planted with 4 replications per location. Within each replication, the genotypes were randomized as the 1 st factor, and events, and gene-positive vs. gene-negative plots were randomized as the 2 nd , and 3 rd factors, respectively. The design placed the positive and negative entries for each selection in adjacent 2 row plots. Final population density reflected local planting practices and ranged from 65 to 76 plants per 2 row plot. Plots were 21 feet long and row spacing ranged from 30 to 40 inches wide, reflecting local planting practices. [00112] Analysis of the yield data was performed using Version 9.1.3 of SAS/STAT software (SAS Institute Inc., 2003).
- Yield benefits in these experiments ranged from 11% to as much at 21% across yield values that averaged 6.4 to 8.5 t/Ha.
- the transgenic CspB event consistently out-yielded the non-transgenic controls by at least 0.5 t/Ha across 12 out of 15 reproductive stress treatments and 13 out of 15 vegetative stress treatments.
- MON87460 provides water stress tolerance by using water more efficiently than negative controls by delivering improved growth rates and grain yields under water stress conditions while using equivalent or less water.
- MON87460 event plants are crossed with a herbicide tolerant corn plant expressing a glyphosate resistant 5-enol-pyruvylshikimate-3 -phosphate synthase (EPSPS) gene to generate improved plants having both water deficit tolerance and herbicide tolerance.
- EPSPS 5-enol-pyruvylshikimate-3 -phosphate synthase
- Crossing is conducted with two homozygous inbred lines, one of MON87460 and one of PV-ZMGT32(nk603) to produce hybrid seed for commercial planting of a corn crop having water deficit and herbicide tolerance.
- ZMGT32(nk603) is generated using a recurrent parent backcrossing breeding method to produce a fixed line homozygous for both traits.
- the inbred line developed in this manner exhibits water deficit tolerance and herbicide tolerance traits.
- the inbred line is crossed with a second inbred line, which may be an elite wild type line or a transgenic event line demonstrating one or more improved traits, to produce hybrid seed for planting to produce an improved corn crop.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Tires In General (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Pretreatment Of Seeds And Plants (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09716827.2A EP2247736B1 (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof |
US12/919,845 US8450561B2 (en) | 2008-02-29 | 2009-02-26 | Corn plant event MON87460 and compositions and methods for detection thereof |
BR122018010813-4A BR122018010813B1 (en) | 2008-02-29 | 2009-02-26 | CHROMOSOME, PROCESSED FOOD OR PROCESSED CORN FOOD PRODUCT, METHODS FOR DETECTING THE PRESENCE OF SEQUENCES IN A CORN TISSUE SAMPLE AND FOR OBTAINING A WATER DEFICIT TOLERANT CORN PLANT LACKING A SELECTABLE MARKER GENE AND POLYNUCLEOTIDE |
CN200980109620.6A CN101978065B (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof |
MX2010009534A MX2010009534A (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof. |
DK09716827.2T DK2247736T3 (en) | 2008-02-29 | 2009-02-26 | MAZE PLANT EVENT MON87460 AND COMPOSITIONS AND METHODS FOR DETECTING THEREOF |
CA2716625A CA2716625C (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof |
BRPI0908267A BRPI0908267B8 (en) | 2008-02-29 | 2009-02-26 | Production method of a drought tolerant maize plant |
MX2013011474A MX341747B (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof. |
PL09716827T PL2247736T3 (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof |
ES09716827T ES2414657T3 (en) | 2008-02-29 | 2009-02-26 | MON87460 corn plant event and compositions and procedures for its detection |
SI200930628T SI2247736T1 (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof |
AP2010005402A AP2967A (en) | 2008-02-29 | 2009-02-26 | Zea mays plant event MON87460 and compositions andmethods for detection thereof |
US13/866,651 US9228197B2 (en) | 2008-02-29 | 2013-04-19 | Corn plant event MON87460 and compositions and methods for detection thereof |
HRP20130703AT HRP20130703T1 (en) | 2008-02-29 | 2013-07-24 | Corn plant event mon87460 and compositions and methods for detection thereof |
US14/968,235 US10100328B2 (en) | 2008-02-29 | 2015-12-14 | Corn plant event MON87460 and compositions and methods for detection thereof |
US16/138,596 US10428345B2 (en) | 2008-02-29 | 2018-09-21 | Corn plant event MON87460 and compositions and methods for detection thereof |
US16/550,761 US10851385B2 (en) | 2008-02-29 | 2019-08-26 | Corn plant event MON87460 and compositions and methods for detection thereof |
US17/086,577 US12134774B2 (en) | 2020-11-02 | Corn plant event MON87460 and compositions and methods for detection thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3256808P | 2008-02-29 | 2008-02-29 | |
US61/032,568 | 2008-02-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/919,845 A-371-Of-International US8450561B2 (en) | 2008-02-29 | 2009-02-26 | Corn plant event MON87460 and compositions and methods for detection thereof |
US13/866,651 Division US9228197B2 (en) | 2008-02-29 | 2013-04-19 | Corn plant event MON87460 and compositions and methods for detection thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009111263A1 true WO2009111263A1 (en) | 2009-09-11 |
WO2009111263A9 WO2009111263A9 (en) | 2010-01-28 |
Family
ID=40929516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/035288 WO2009111263A1 (en) | 2008-02-29 | 2009-02-26 | Corn plant event mon87460 and compositions and methods for detection thereof |
Country Status (18)
Country | Link |
---|---|
US (5) | US8450561B2 (en) |
EP (2) | EP2602325B1 (en) |
CN (2) | CN101978065B (en) |
AP (1) | AP2967A (en) |
AR (1) | AR070495A1 (en) |
BR (2) | BR122018010813B1 (en) |
CA (1) | CA2716625C (en) |
CL (1) | CL2009000440A1 (en) |
DK (2) | DK2247736T3 (en) |
ES (2) | ES2414657T3 (en) |
HR (2) | HRP20130703T1 (en) |
HU (1) | HUE029544T2 (en) |
MX (2) | MX341747B (en) |
PE (1) | PE20091558A1 (en) |
PL (2) | PL2247736T3 (en) |
SI (2) | SI2247736T1 (en) |
TW (1) | TW200940715A (en) |
WO (1) | WO2009111263A1 (en) |
Cited By (288)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011154158A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2012072489A1 (en) | 2010-11-29 | 2012-06-07 | Bayer Cropscience Ag | Alpha,beta-unsaturated imines |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
WO2012072696A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
WO2012126938A2 (en) | 2011-03-23 | 2012-09-27 | Bayer Cropscience Ag | Active compound combinations |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2525649A2 (en) * | 2010-01-22 | 2012-11-28 | Dow AgroSciences, LLC | Excision of transgenes in genetically modified organisms |
WO2012171914A1 (en) | 2011-06-14 | 2012-12-20 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
CN102892903A (en) * | 2010-05-12 | 2013-01-23 | 农业基因遗传学有限公司 | Use of brown midrib-3 gene specific markers in maize for trait introgression |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
US8450561B2 (en) | 2008-02-29 | 2013-05-28 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013110591A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compounds combination containing fluopyram bacillus and biologically control agent |
WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
WO2014019983A1 (en) | 2012-07-31 | 2014-02-06 | Bayer Cropscience Ag | Compositions comprising a pesticidal terpene mixture and an insecticide |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
EP2719280A1 (en) | 2012-10-11 | 2014-04-16 | Bayer CropScience AG | Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014086749A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086750A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086748A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086759A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086758A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086747A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086753A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086764A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014124379A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and an insecticide |
WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
WO2014134611A1 (en) * | 2013-03-01 | 2014-09-04 | The Penn State Research Foundation | Methods for improving drought tolerance in plants |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
EP2885970A1 (en) | 2013-12-21 | 2015-06-24 | Bayer CropScience AG | Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
US9206137B2 (en) | 2010-11-15 | 2015-12-08 | Bayer Intellectual Property Gmbh | N-Aryl pyrazole(thio)carboxamides |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
EP2997825A1 (en) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
WO2016075303A1 (en) * | 2014-11-14 | 2016-05-19 | Basf Plant Science Company Gmbh | Brassica events lbflfk and lbfdau and methods for detection thereof |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
EP3205210A1 (en) | 2012-05-30 | 2017-08-16 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase |
EP3243387A2 (en) | 2012-05-30 | 2017-11-15 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
EP3281526A1 (en) | 2012-05-30 | 2018-02-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3292764A2 (en) | 2012-05-30 | 2018-03-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii |
EP3300603A2 (en) | 2012-05-30 | 2018-04-04 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3318128A2 (en) | 2012-05-30 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018114393A1 (en) | 2016-12-19 | 2018-06-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
EP3360418A1 (en) | 2012-05-30 | 2018-08-15 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3363289A2 (en) | 2012-05-30 | 2018-08-22 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
WO2018153730A1 (en) | 2017-02-21 | 2018-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2018184970A1 (en) | 2017-04-07 | 2018-10-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018188962A1 (en) | 2017-04-11 | 2018-10-18 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
WO2018202491A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2018202487A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for combating phytopathogenic fungi |
WO2018219797A1 (en) | 2017-06-02 | 2018-12-06 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
CN109002604A (en) * | 2018-07-12 | 2018-12-14 | 山东省农业科学院科技信息研究所 | A kind of soil moisture content prediction technique based on Bayes's maximum entropy |
WO2018234139A1 (en) | 2017-06-19 | 2018-12-27 | Basf Se | 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi |
WO2019025250A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019038042A1 (en) | 2017-08-21 | 2019-02-28 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019052932A1 (en) | 2017-09-18 | 2019-03-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019068811A1 (en) | 2017-10-06 | 2019-04-11 | Bayer Aktiengesellschaft | Compositions comprising fluopyram and tioxazafen |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2019101511A1 (en) | 2017-11-23 | 2019-05-31 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019121143A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Substituted cyclopropyl derivatives |
WO2019137995A1 (en) | 2018-01-11 | 2019-07-18 | Basf Se | Novel pyridazine compounds for controlling invertebrate pests |
WO2019145221A1 (en) | 2018-01-29 | 2019-08-01 | BASF Agro B.V. | New agrochemical formulations |
WO2019154663A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019154665A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019166257A1 (en) | 2018-03-01 | 2019-09-06 | BASF Agro B.V. | Fungicidal compositions of mefentrifluconazole |
WO2019219464A1 (en) | 2018-05-15 | 2019-11-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019224092A1 (en) | 2018-05-22 | 2019-11-28 | Basf Se | Pesticidally active c15-derivatives of ginkgolides |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
EP3613736A1 (en) | 2018-08-22 | 2020-02-26 | Basf Se | Substituted glutarimide derivatives |
EP3628158A1 (en) | 2018-09-28 | 2020-04-01 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
EP3643705A1 (en) | 2018-10-24 | 2020-04-29 | Basf Se | Pesticidal compounds |
WO2020083662A1 (en) | 2018-10-23 | 2020-04-30 | Basf Se | Tricyclic pesticidal compounds |
EP3670501A1 (en) | 2018-12-17 | 2020-06-24 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2020144308A1 (en) | 2019-01-11 | 2020-07-16 | Basf Se | Crystalline forms of 1-(1,2-dimethylpropyl)-n-ethyl-5-methyl-n-pyridazin-4-yl-pyrazole-4-carboxamide |
EP3696177A1 (en) | 2019-02-12 | 2020-08-19 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
WO2020231751A1 (en) | 2019-05-10 | 2020-11-19 | Bayer Cropscience Lp | Active compound combinations |
WO2020239517A1 (en) | 2019-05-29 | 2020-12-03 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2020244969A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Pyridine derivatives and their use as fungicides |
WO2020244970A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | New carbocyclic pyridine carboxamides |
WO2020244968A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Fungicidal n-(pyrid-3-yl)carboxamides |
EP3766879A1 (en) | 2019-07-19 | 2021-01-20 | Basf Se | Pesticidal pyrazole derivatives |
EP3769623A1 (en) | 2019-07-22 | 2021-01-27 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2021013721A1 (en) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituted pyrazoles and triazoles as pest control agents |
WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
WO2021063735A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | New bicyclic pyridine derivatives |
WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021063736A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | Bicyclic pyridine derivatives |
WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021089673A1 (en) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
US11066424B2 (en) | 2018-08-18 | 2021-07-20 | Boragen, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
WO2021213978A1 (en) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents |
EP3903582A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii |
EP3903583A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii |
EP3903584A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv |
EP3903581A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i |
WO2021219513A1 (en) | 2020-04-28 | 2021-11-04 | Basf Se | Pesticidal compounds |
WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
EP3909950A1 (en) | 2020-05-13 | 2021-11-17 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021249800A1 (en) | 2020-06-10 | 2021-12-16 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2022002818A1 (en) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
EP3939961A1 (en) | 2020-07-16 | 2022-01-19 | Basf Se | Strobilurin type compounds and their use for combating phytopathogenic fungi |
WO2022017836A1 (en) | 2020-07-20 | 2022-01-27 | BASF Agro B.V. | Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol |
EP3945089A1 (en) | 2020-07-31 | 2022-02-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v |
WO2022033991A1 (en) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituted triazoles as pest control agents |
EP3960727A1 (en) | 2020-08-28 | 2022-03-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi |
WO2022053453A1 (en) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azole carboxamide as pest control agents |
EP3970494A1 (en) | 2020-09-21 | 2022-03-23 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii |
WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
EP3974414A1 (en) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituted pyrazoles and triazoles as pesticides |
WO2022090069A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Compositions comprising mefenpyr-diethyl |
WO2022089969A1 (en) | 2020-10-27 | 2022-05-05 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022090071A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Use of mefenpyr-diethyl for controlling phytopathogenic fungi |
WO2022106304A1 (en) | 2020-11-23 | 2022-05-27 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
WO2022128524A1 (en) | 2020-12-14 | 2022-06-23 | Basf Se | Sulfoximine pesticides |
WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
EP4036083A1 (en) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituted heterocycles as pesticides |
EP4043444A1 (en) | 2021-02-11 | 2022-08-17 | Basf Se | Substituted isoxazoline derivatives |
WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
WO2022233758A1 (en) | 2021-05-03 | 2022-11-10 | Basf Se | Additives for enhancing the pesticidal effectiveness of pesticidal microorganisms |
WO2022238391A1 (en) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents |
EP4091451A1 (en) | 2021-05-17 | 2022-11-23 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022243111A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022243109A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted quinolines as fungicides |
WO2022243107A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
EP4119547A1 (en) | 2021-07-12 | 2023-01-18 | Basf Se | Triazole compounds for the control of invertebrate pests |
WO2023011957A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-quinolyl)-quinazoline |
WO2023011958A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-pirydyl)-quinazoline |
WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
EP4140995A1 (en) | 2021-08-27 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
EP4140986A1 (en) | 2021-08-23 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
EP4144739A1 (en) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellated pyrazoles as parasiticides |
WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
EP4151631A1 (en) | 2021-09-20 | 2023-03-22 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023072670A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x |
WO2023072671A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix |
WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
EP4194453A1 (en) | 2021-12-08 | 2023-06-14 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
EP4198023A1 (en) | 2021-12-16 | 2023-06-21 | Basf Se | Pesticidally active thiosemicarbazone compounds |
EP4198033A1 (en) | 2021-12-14 | 2023-06-21 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
WO2023148030A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in corn |
WO2023156402A1 (en) | 2022-02-17 | 2023-08-24 | Basf Se | Pesticidally active thiosemicarbazone compounds |
EP4238971A1 (en) | 2022-03-02 | 2023-09-06 | Basf Se | Substituted isoxazoline derivatives |
WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
US11834466B2 (en) | 2017-11-30 | 2023-12-05 | 5Metis, Inc. | Benzoxaborole compounds and formulations thereof |
EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2024028243A1 (en) | 2022-08-02 | 2024-02-08 | Basf Se | Pyrazolo pesticidal compounds |
WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
EP4342885A1 (en) | 2022-09-20 | 2024-03-27 | Basf Se | N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides |
WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
EP4361126A1 (en) | 2022-10-24 | 2024-05-01 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv |
WO2024104815A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104823A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | New substituted tetrahydrobenzoxazepine |
WO2024104818A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104822A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted tetrahydrobenzodiazepine as fungicides |
EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
EP4389210A1 (en) | 2022-12-21 | 2024-06-26 | Basf Se | Heteroaryl compounds for the control of invertebrate pests |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
WO2024165343A1 (en) | 2023-02-08 | 2024-08-15 | Basf Se | New substituted quinoline compounds for combatitng phytopathogenic fungi |
WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
WO2024194038A1 (en) | 2023-03-17 | 2024-09-26 | Basf Se | Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi |
EP4455137A1 (en) | 2023-04-24 | 2024-10-30 | Basf Se | Pyrimidine compounds for the control of invertebrate pests |
US12134774B2 (en) | 2020-11-02 | 2024-11-05 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE030099T2 (en) | 2003-09-29 | 2017-04-28 | Monsanto Technology Llc | Methods for enhancing stress tolerance in plants and compositions thereof |
EP2321412A4 (en) * | 2008-08-15 | 2012-04-25 | Monsanto Technology Llc | Stress tolerant transgenic crop plants |
AU2013274542B2 (en) | 2012-06-12 | 2017-03-30 | Syngenta Participations Ag | Methods and compositions for determination of vector backbone in a nucleic acid sample |
BR112016007562A2 (en) | 2013-10-09 | 2017-09-12 | Monsanto Technology Llc | interference with repression of gene expression hd-zip transcription factor to produce plants with enhanced traits |
WO2015053998A1 (en) | 2013-10-09 | 2015-04-16 | Monsanto Technology Llc | Transgenic corn event mon87403 and methods for detection thereof |
WO2016089920A1 (en) * | 2014-12-01 | 2016-06-09 | The Broad Institute, Inc. | Method for in situ determination of nucleic acid proximity |
CN108575733A (en) * | 2018-05-22 | 2018-09-28 | 广西壮族自治区农业科学院玉米研究所 | A kind of breeding method of the glutinous recessive gene corn inbred line new lines of sweet tea |
CN110551842B (en) * | 2019-09-04 | 2022-10-11 | 中国农业科学院油料作物研究所 | Method for identifying genotype of corn transformant MIR604 based on insertion site genome sequence establishment |
CN110512023B (en) * | 2019-09-04 | 2022-10-11 | 中国农业科学院油料作物研究所 | Method for identifying soybean transformant MON89788 genotype established based on insertion site genome sequence |
US11214811B1 (en) | 2020-07-31 | 2022-01-04 | Inari Agriculture Technology, Inc. | INIR6 transgenic maize |
US11369073B2 (en) | 2020-07-31 | 2022-06-28 | Inari Agriculture Technology, Inc. | INIR12 transgenic maize |
US11359210B2 (en) | 2020-07-31 | 2022-06-14 | Inari Agriculture Technology, Inc. | INIR12 transgenic maize |
US20240011043A1 (en) | 2020-07-31 | 2024-01-11 | Inari Agriculture Technology, Inc. | Generation of plants with improved transgenic loci by genome editing |
US11242534B1 (en) | 2020-07-31 | 2022-02-08 | Inari Agriculture Technology, Inc. | INHT31 transgenic soybean |
US11326177B2 (en) | 2020-07-31 | 2022-05-10 | Inari Agriculture Technology, Inc. | INIR12 transgenic maize |
CN113201531B (en) * | 2021-04-27 | 2023-06-27 | 隆平生物技术(海南)有限公司 | Transgenic corn event LW2-1 and detection method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005033318A2 (en) * | 2003-09-29 | 2005-04-14 | Monsanto Technology Llc | Methods for enhancing stress tolerance in plants and methods thereof |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US5094945A (en) | 1983-01-05 | 1992-03-10 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US5658772A (en) | 1989-12-22 | 1997-08-19 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in plant cells |
US5633435A (en) | 1990-08-31 | 1997-05-27 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5801030A (en) | 1995-09-01 | 1998-09-01 | Genvec, Inc. | Methods and vectors for site-specific recombination |
MX205414B (en) | 1996-05-08 | 2001-12-07 | Univ Mexico Nacional Autonoma | METHOD OF INCREASING TREHALOSE IN ORGANISMS BY TRANSFORMATION OF SELAGINELLA LEPIDOPHYLIA TREHALOSE-6-PHOSPHATE SINTASE/PHOSPHATASE cDNA. |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
AU745960C (en) | 1997-11-18 | 2003-09-18 | Pioneer Hi-Bred International, Inc. | A novel method for the integration of foreign DNA into eukaryoticgenomes |
US6572830B1 (en) | 1998-10-09 | 2003-06-03 | Motorola, Inc. | Integrated multilayered microfludic devices and methods for making the same |
BR122013026754B1 (en) | 2000-06-22 | 2018-02-27 | Monsanto Company | DNA Molecule And Processes To Produce A Corn Plant Tolerant For Glyphosate Herbicide Application |
JP2002262885A (en) | 2001-03-14 | 2002-09-17 | Ajinomoto Co Inc | Method for imparting stress resistance to plant |
EP1504092B2 (en) | 2002-03-21 | 2014-06-25 | Sangamo BioSciences, Inc. | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
CA2514417A1 (en) | 2003-01-28 | 2004-08-12 | Cellectis | Custom-made meganuclease and use thereof |
US7410800B2 (en) * | 2003-05-05 | 2008-08-12 | Monsanto Technology Llc | Transgenic plants with increased glycine-betaine |
CA2528843A1 (en) | 2003-05-20 | 2005-02-24 | Investigen, Inc. | System for detecting polynucleotides |
EP2927318B1 (en) | 2003-08-08 | 2020-05-20 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted cleavage and recombination |
US8212113B2 (en) * | 2003-12-15 | 2012-07-03 | Monsanto Technology Llc | Corn plant Mon88017 and compositions and methods for detection thereof |
JP2008511008A (en) | 2004-08-24 | 2008-04-10 | ナノミックス・インコーポレーテッド | Nanotube sensor device for DNA detection |
US20060068398A1 (en) | 2004-09-24 | 2006-03-30 | Cepheid | Universal and target specific reagent beads for nucleic acid amplification |
US7112731B2 (en) | 2005-01-31 | 2006-09-26 | Pioneer Hi-Bred International, Inc. | Hybrid maize 35A30 |
WO2006097784A1 (en) | 2005-03-15 | 2006-09-21 | Cellectis | I-crei meganuclease variants with modified specificity, method of preparation and uses thereof |
US20110158974A1 (en) | 2005-03-15 | 2011-06-30 | Cellectis | Heterodimeric Meganucleases and Use Thereof |
SG10201508995QA (en) | 2005-07-26 | 2015-11-27 | Sangamo Biosciences Inc | Targeted integration and expression of exogenous nucleic acid sequences |
ES2539616T3 (en) | 2005-10-18 | 2015-07-02 | Precision Biosciences | Rationally designed meganuclease with impaired dimer formation affinity |
US9428756B2 (en) | 2006-08-11 | 2016-08-30 | Dow Agrosciences Llc | Zinc finger nuclease-mediated homologous recombination |
PL2247736T3 (en) * | 2008-02-29 | 2013-10-31 | Monsanto Technology Llc | Corn plant event mon87460 and compositions and methods for detection thereof |
-
2009
- 2009-02-26 PL PL09716827T patent/PL2247736T3/en unknown
- 2009-02-26 BR BR122018010813-4A patent/BR122018010813B1/en active IP Right Grant
- 2009-02-26 BR BRPI0908267A patent/BRPI0908267B8/en active IP Right Grant
- 2009-02-26 ES ES09716827T patent/ES2414657T3/en active Active
- 2009-02-26 PE PE2009000295A patent/PE20091558A1/en not_active Application Discontinuation
- 2009-02-26 TW TW098106245A patent/TW200940715A/en unknown
- 2009-02-26 EP EP13158396.5A patent/EP2602325B1/en active Active
- 2009-02-26 MX MX2013011474A patent/MX341747B/en unknown
- 2009-02-26 CA CA2716625A patent/CA2716625C/en active Active
- 2009-02-26 CN CN200980109620.6A patent/CN101978065B/en active Active
- 2009-02-26 CN CN201210028702.1A patent/CN102586236B/en active Active
- 2009-02-26 AR ARP090100669A patent/AR070495A1/en active IP Right Grant
- 2009-02-26 EP EP09716827.2A patent/EP2247736B1/en active Active
- 2009-02-26 SI SI200930628T patent/SI2247736T1/en unknown
- 2009-02-26 SI SI200931511A patent/SI2602325T1/en unknown
- 2009-02-26 ES ES13158396.5T patent/ES2590177T3/en active Active
- 2009-02-26 US US12/919,845 patent/US8450561B2/en active Active
- 2009-02-26 DK DK09716827.2T patent/DK2247736T3/en active
- 2009-02-26 PL PL13158396T patent/PL2602325T3/en unknown
- 2009-02-26 CL CL2009000440A patent/CL2009000440A1/en unknown
- 2009-02-26 MX MX2010009534A patent/MX2010009534A/en active IP Right Grant
- 2009-02-26 WO PCT/US2009/035288 patent/WO2009111263A1/en active Application Filing
- 2009-02-26 AP AP2010005402A patent/AP2967A/en active
- 2009-02-26 HU HUE13158396A patent/HUE029544T2/en unknown
- 2009-02-26 DK DK13158396.5T patent/DK2602325T3/en active
-
2013
- 2013-04-19 US US13/866,651 patent/US9228197B2/en active Active
- 2013-07-24 HR HRP20130703AT patent/HRP20130703T1/en unknown
-
2015
- 2015-12-14 US US14/968,235 patent/US10100328B2/en active Active
-
2016
- 2016-09-07 HR HRP20161155TT patent/HRP20161155T8/en unknown
-
2018
- 2018-09-21 US US16/138,596 patent/US10428345B2/en active Active
-
2019
- 2019-08-26 US US16/550,761 patent/US10851385B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005033318A2 (en) * | 2003-09-29 | 2005-04-14 | Monsanto Technology Llc | Methods for enhancing stress tolerance in plants and methods thereof |
Non-Patent Citations (1)
Title |
---|
CASTIGLIONI PAOLO ET AL: "Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions", June 2008, PLANT PHYSIOLOGY (ROCKVILLE), VOL. 147, NR. 2, PAGE(S) 446-455, ISSN: 0032-0889, XP002540748 * |
Cited By (343)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10851385B2 (en) | 2008-02-29 | 2020-12-01 | Monanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
US9228197B2 (en) | 2008-02-29 | 2016-01-05 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
US10428345B2 (en) | 2008-02-29 | 2019-10-01 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
US10100328B2 (en) | 2008-02-29 | 2018-10-16 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
US8450561B2 (en) | 2008-02-29 | 2013-05-28 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
JP2013517774A (en) * | 2010-01-22 | 2013-05-20 | ダウ アグロサイエンシィズ エルエルシー | Transgene excision in genetically modified organisms |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9695432B2 (en) | 2010-01-22 | 2017-07-04 | Dow Agrosciences Llc | Excision of transgenes in genetically modified organisms |
EP2525649A2 (en) * | 2010-01-22 | 2012-11-28 | Dow AgroSciences, LLC | Excision of transgenes in genetically modified organisms |
EP2525649A4 (en) * | 2010-01-22 | 2013-07-31 | Dow Agrosciences Llc | Excision of transgenes in genetically modified organisms |
EP2569448A2 (en) * | 2010-05-12 | 2013-03-20 | Agrigenetics, Inc. | Use of brown midrib-3 gene specific markers in maize for trait introgression |
EP2569448A4 (en) * | 2010-05-12 | 2013-09-25 | Agrigenetics Inc | Use of brown midrib-3 gene specific markers in maize for trait introgression |
CN102892903A (en) * | 2010-05-12 | 2013-01-23 | 农业基因遗传学有限公司 | Use of brown midrib-3 gene specific markers in maize for trait introgression |
US9222141B2 (en) | 2010-05-12 | 2015-12-29 | Agrigenetics, Inc. | Use of brown midrib-3 gene specific markers in maize for trait introgression |
US9593317B2 (en) | 2010-06-09 | 2017-03-14 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2011154158A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
US9206137B2 (en) | 2010-11-15 | 2015-12-08 | Bayer Intellectual Property Gmbh | N-Aryl pyrazole(thio)carboxamides |
US9055743B2 (en) | 2010-11-29 | 2015-06-16 | Bayer Intellectual Property Gmbh | Alpha, beta-unsaturated imines |
WO2012072489A1 (en) | 2010-11-29 | 2012-06-07 | Bayer Cropscience Ag | Alpha,beta-unsaturated imines |
EP3103338A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3092900A1 (en) | 2010-12-01 | 2016-11-16 | Bayer Intellectual Property GmbH | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
WO2012072696A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
EP3103340A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3103339A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3103334A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
EP3292760A1 (en) | 2011-03-23 | 2018-03-14 | Bayer Intellectual Property GmbH | Active compound combinations |
EP3292761A1 (en) | 2011-03-23 | 2018-03-14 | Bayer Intellectual Property GmbH | Active compound combinations |
WO2012126938A2 (en) | 2011-03-23 | 2012-09-27 | Bayer Cropscience Ag | Active compound combinations |
EP3295797A1 (en) | 2011-03-23 | 2018-03-21 | Bayer Intellectual Property GmbH | Active compound combinations |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2997825A1 (en) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
WO2012171914A1 (en) | 2011-06-14 | 2012-12-20 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
US9241493B2 (en) | 2011-06-14 | 2016-01-26 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
US9670496B2 (en) | 2011-08-22 | 2017-06-06 | Bayer Cropscience N.V. | Methods and means to modify a plant genome |
US10538774B2 (en) | 2011-08-22 | 2020-01-21 | Basf Agricultural Solutions Seed, Us Llc | Methods and means to modify a plant genome |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013110591A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compounds combination containing fluopyram bacillus and biologically control agent |
WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
EP3300603A2 (en) | 2012-05-30 | 2018-04-04 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3205210A1 (en) | 2012-05-30 | 2017-08-16 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase |
EP3243387A2 (en) | 2012-05-30 | 2017-11-15 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
EP3281526A1 (en) | 2012-05-30 | 2018-02-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3318128A2 (en) | 2012-05-30 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3360418A1 (en) | 2012-05-30 | 2018-08-15 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3363289A2 (en) | 2012-05-30 | 2018-08-22 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
EP3409120A1 (en) | 2012-05-30 | 2018-12-05 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3292764A2 (en) | 2012-05-30 | 2018-03-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii |
EP3488700A1 (en) | 2012-05-30 | 2019-05-29 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
WO2014019983A1 (en) | 2012-07-31 | 2014-02-06 | Bayer Cropscience Ag | Compositions comprising a pesticidal terpene mixture and an insecticide |
EP3424322A1 (en) | 2012-07-31 | 2019-01-09 | Bayer CropScience Aktiengesellschaft | Compositions comprising a pesticidal terpene mixture and an insecticide |
EP3173477A1 (en) | 2012-09-14 | 2017-05-31 | Bayer Cropscience LP | Hppd variants and methods of use |
EP3683307A2 (en) | 2012-09-14 | 2020-07-22 | BASF Agricultural Solutions Seed US LLC | Hppd variants and methods of use |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2014056956A1 (en) | 2012-10-11 | 2014-04-17 | Bayer Cropscience Ag | Use of n-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
EP2719280A1 (en) | 2012-10-11 | 2014-04-16 | Bayer CropScience AG | Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
WO2014079789A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Active compound combinations |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
WO2014086749A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086747A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
EP3318129A1 (en) | 2012-12-03 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Method for pest control by applying a combination of paecilomyces lilacinus and fluopyram |
WO2014086750A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086753A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086764A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086758A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086759A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086748A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014124373A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and an insecticide |
WO2014124379A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and an insecticide |
WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
WO2014124361A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and another biological control agent |
WO2014124369A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and a fungicide |
WO2014134611A1 (en) * | 2013-03-01 | 2014-09-04 | The Penn State Research Foundation | Methods for improving drought tolerance in plants |
EP3626828A2 (en) | 2013-03-07 | 2020-03-25 | BASF Agricultural Solutions Seed US LLC | Toxin genes and methods for their use |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
EP2885970A1 (en) | 2013-12-21 | 2015-06-24 | Bayer CropScience AG | Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
CN107580629A (en) * | 2014-11-14 | 2018-01-12 | 巴斯夫植物科学有限公司 | Btassica event LBFLFK and LBFDAU and its detection method |
US10760089B2 (en) | 2014-11-14 | 2020-09-01 | Basf Plant Science Company Gmbh | Materials and methods for increasing the tocopherol content in seed oil |
WO2016075303A1 (en) * | 2014-11-14 | 2016-05-19 | Basf Plant Science Company Gmbh | Brassica events lbflfk and lbfdau and methods for detection thereof |
US11033593B2 (en) | 2014-11-14 | 2021-06-15 | Basf Plant Science Company Gmbh | Brassica events LBFLFK and LBFDAU and methods for detection thereof |
US11813302B2 (en) | 2014-11-14 | 2023-11-14 | Basf Plant Science Company Gmbh | Brassica events LBFLFK and LBFDAU and methods for detection thereof |
US10829775B2 (en) | 2014-11-14 | 2020-11-10 | Basf Plant Science Company Gmbh | Materials and methods for increasing the tocopherol content in seed oil |
CN107580629B (en) * | 2014-11-14 | 2021-10-29 | 巴斯夫植物科学有限公司 | Brassica events LBFLFK and LBFDAU and methods for detection thereof |
US11260095B2 (en) | 2014-11-14 | 2022-03-01 | Basf Plant Science Company Gmbh | Modification of plant lipids containing PUFAs |
US11484560B2 (en) | 2014-11-14 | 2022-11-01 | Basf Plant Science Company Gmbh | Stabilising fatty acid compositions |
US11613761B1 (en) | 2014-11-14 | 2023-03-28 | Bioriginal Food & Science Corporation | Materials and methods for PUFA production, and PUFA-containing compositions |
US11771728B2 (en) | 2014-11-14 | 2023-10-03 | Basf Plant Science Company Gmbh | Materials and methods for increasing the tocopherol content in seed oil |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
WO2016193073A1 (en) | 2015-05-29 | 2016-12-08 | Bayer Cropscience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018114393A1 (en) | 2016-12-19 | 2018-06-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018153730A1 (en) | 2017-02-21 | 2018-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2018184970A1 (en) | 2017-04-07 | 2018-10-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018188962A1 (en) | 2017-04-11 | 2018-10-18 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
WO2018202487A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for combating phytopathogenic fungi |
WO2018202491A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2018219797A1 (en) | 2017-06-02 | 2018-12-06 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018234139A1 (en) | 2017-06-19 | 2018-12-27 | Basf Se | 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi |
WO2019025250A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019038042A1 (en) | 2017-08-21 | 2019-02-28 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019052932A1 (en) | 2017-09-18 | 2019-03-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019068811A1 (en) | 2017-10-06 | 2019-04-11 | Bayer Aktiengesellschaft | Compositions comprising fluopyram and tioxazafen |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019101511A1 (en) | 2017-11-23 | 2019-05-31 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
US11834466B2 (en) | 2017-11-30 | 2023-12-05 | 5Metis, Inc. | Benzoxaborole compounds and formulations thereof |
WO2019121143A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Substituted cyclopropyl derivatives |
WO2019137995A1 (en) | 2018-01-11 | 2019-07-18 | Basf Se | Novel pyridazine compounds for controlling invertebrate pests |
WO2019145221A1 (en) | 2018-01-29 | 2019-08-01 | BASF Agro B.V. | New agrochemical formulations |
WO2019154665A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019154663A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019166257A1 (en) | 2018-03-01 | 2019-09-06 | BASF Agro B.V. | Fungicidal compositions of mefentrifluconazole |
WO2019219464A1 (en) | 2018-05-15 | 2019-11-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019224092A1 (en) | 2018-05-22 | 2019-11-28 | Basf Se | Pesticidally active c15-derivatives of ginkgolides |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
CN109002604A (en) * | 2018-07-12 | 2018-12-14 | 山东省农业科学院科技信息研究所 | A kind of soil moisture content prediction technique based on Bayes's maximum entropy |
US11560393B2 (en) | 2018-08-18 | 2023-01-24 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
US11066424B2 (en) | 2018-08-18 | 2021-07-20 | Boragen, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
US11236115B2 (en) | 2018-08-18 | 2022-02-01 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
US12098159B2 (en) | 2018-08-18 | 2024-09-24 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
EP3613736A1 (en) | 2018-08-22 | 2020-02-26 | Basf Se | Substituted glutarimide derivatives |
WO2020064480A1 (en) | 2018-09-28 | 2020-04-02 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
EP3628158A1 (en) | 2018-09-28 | 2020-04-01 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
WO2020083662A1 (en) | 2018-10-23 | 2020-04-30 | Basf Se | Tricyclic pesticidal compounds |
EP3643705A1 (en) | 2018-10-24 | 2020-04-29 | Basf Se | Pesticidal compounds |
WO2020083733A1 (en) | 2018-10-24 | 2020-04-30 | Basf Se | Pesticidal compounds |
EP3670501A1 (en) | 2018-12-17 | 2020-06-24 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2020144308A1 (en) | 2019-01-11 | 2020-07-16 | Basf Se | Crystalline forms of 1-(1,2-dimethylpropyl)-n-ethyl-5-methyl-n-pyridazin-4-yl-pyrazole-4-carboxamide |
EP3696177A1 (en) | 2019-02-12 | 2020-08-19 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2020231751A1 (en) | 2019-05-10 | 2020-11-19 | Bayer Cropscience Lp | Active compound combinations |
WO2020239517A1 (en) | 2019-05-29 | 2020-12-03 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2020244969A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Pyridine derivatives and their use as fungicides |
WO2020244970A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | New carbocyclic pyridine carboxamides |
WO2020244968A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Fungicidal n-(pyrid-3-yl)carboxamides |
WO2021013561A1 (en) | 2019-07-19 | 2021-01-28 | Basf Se | Pesticidal pyrazole and triazole derivatives |
EP3766879A1 (en) | 2019-07-19 | 2021-01-20 | Basf Se | Pesticidal pyrazole derivatives |
EP3769623A1 (en) | 2019-07-22 | 2021-01-27 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2021013721A1 (en) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituted pyrazoles and triazoles as pest control agents |
WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
WO2021063736A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | Bicyclic pyridine derivatives |
WO2021063735A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | New bicyclic pyridine derivatives |
WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021089673A1 (en) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021213978A1 (en) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents |
EP3903584A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv |
EP3903582A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii |
EP3903583A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii |
EP3903581A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i |
WO2021219513A1 (en) | 2020-04-28 | 2021-11-04 | Basf Se | Pesticidal compounds |
WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
EP3909950A1 (en) | 2020-05-13 | 2021-11-17 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
WO2021249800A1 (en) | 2020-06-10 | 2021-12-16 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2021259997A1 (en) | 2020-06-25 | 2021-12-30 | Bayer Animal Health Gmbh | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2022002818A1 (en) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
EP3939961A1 (en) | 2020-07-16 | 2022-01-19 | Basf Se | Strobilurin type compounds and their use for combating phytopathogenic fungi |
WO2022017836A1 (en) | 2020-07-20 | 2022-01-27 | BASF Agro B.V. | Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol |
EP3945089A1 (en) | 2020-07-31 | 2022-02-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v |
WO2022033991A1 (en) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituted triazoles as pest control agents |
EP3960727A1 (en) | 2020-08-28 | 2022-03-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi |
WO2022053453A1 (en) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azole carboxamide as pest control agents |
WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
EP3970494A1 (en) | 2020-09-21 | 2022-03-23 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii |
EP3974414A1 (en) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituted pyrazoles and triazoles as pesticides |
WO2022089969A1 (en) | 2020-10-27 | 2022-05-05 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022090071A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Use of mefenpyr-diethyl for controlling phytopathogenic fungi |
WO2022090069A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Compositions comprising mefenpyr-diethyl |
US12134774B2 (en) | 2020-11-02 | 2024-11-05 | Monsanto Technology Llc | Corn plant event MON87460 and compositions and methods for detection thereof |
WO2022106304A1 (en) | 2020-11-23 | 2022-05-27 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022128524A1 (en) | 2020-12-14 | 2022-06-23 | Basf Se | Sulfoximine pesticides |
EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
EP4036083A1 (en) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituted heterocycles as pesticides |
WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
EP4043444A1 (en) | 2021-02-11 | 2022-08-17 | Basf Se | Substituted isoxazoline derivatives |
WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022233758A1 (en) | 2021-05-03 | 2022-11-10 | Basf Se | Additives for enhancing the pesticidal effectiveness of pesticidal microorganisms |
WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
WO2022238391A1 (en) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents |
EP4091451A1 (en) | 2021-05-17 | 2022-11-23 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022243111A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022243107A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022243109A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted quinolines as fungicides |
WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
EP4119547A1 (en) | 2021-07-12 | 2023-01-18 | Basf Se | Triazole compounds for the control of invertebrate pests |
WO2023011957A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-quinolyl)-quinazoline |
WO2023011958A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-pirydyl)-quinazoline |
WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
EP4140986A1 (en) | 2021-08-23 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
EP4140995A1 (en) | 2021-08-27 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
EP4144739A1 (en) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellated pyrazoles as parasiticides |
WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
EP4151631A1 (en) | 2021-09-20 | 2023-03-22 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023072670A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x |
WO2023072671A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix |
WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
EP4194453A1 (en) | 2021-12-08 | 2023-06-14 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
EP4198033A1 (en) | 2021-12-14 | 2023-06-21 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
EP4198023A1 (en) | 2021-12-16 | 2023-06-21 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023110932A1 (en) | 2021-12-16 | 2023-06-22 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
WO2023148030A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in corn |
WO2023156402A1 (en) | 2022-02-17 | 2023-08-24 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
EP4238971A1 (en) | 2022-03-02 | 2023-09-06 | Basf Se | Substituted isoxazoline derivatives |
WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024028243A1 (en) | 2022-08-02 | 2024-02-08 | Basf Se | Pyrazolo pesticidal compounds |
WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
EP4342885A1 (en) | 2022-09-20 | 2024-03-27 | Basf Se | N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides |
WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
EP4361126A1 (en) | 2022-10-24 | 2024-05-01 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv |
WO2024104815A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104818A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104822A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted tetrahydrobenzodiazepine as fungicides |
WO2024104823A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | New substituted tetrahydrobenzoxazepine |
EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024126688A1 (en) | 2022-12-15 | 2024-06-20 | Kimitec Biogroup S.L | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
EP4389210A1 (en) | 2022-12-21 | 2024-06-26 | Basf Se | Heteroaryl compounds for the control of invertebrate pests |
WO2024165343A1 (en) | 2023-02-08 | 2024-08-15 | Basf Se | New substituted quinoline compounds for combatitng phytopathogenic fungi |
WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
WO2024194038A1 (en) | 2023-03-17 | 2024-09-26 | Basf Se | Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi |
EP4455137A1 (en) | 2023-04-24 | 2024-10-30 | Basf Se | Pyrimidine compounds for the control of invertebrate pests |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10851385B2 (en) | Corn plant event MON87460 and compositions and methods for detection thereof | |
EP3502127B1 (en) | Transgenic corn event mon87403 and methods for detection thereof | |
US7705216B2 (en) | Corn event PV-ZMIR13 (MON863) plants and compositions and methods for detection thereof | |
JP4903051B2 (en) | Corn plant MON88017 and composition and detection method thereof | |
AU2019255192B2 (en) | Genes, constructs and maize event DP-202216-6 | |
US12134774B2 (en) | Corn plant event MON87460 and compositions and methods for detection thereof | |
US20230279508A1 (en) | Transgenic corn event zm_bcs216090 and methods for detection and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980109620.6 Country of ref document: CN Ref document number: P201090059 Country of ref document: ES |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09716827 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2716625 Country of ref document: CA Ref document number: 6004/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/009534 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009716827 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12919845 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0908267 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100830 |