WO2009064652A1 - Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof - Google Patents
Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof Download PDFInfo
- Publication number
- WO2009064652A1 WO2009064652A1 PCT/US2008/082590 US2008082590W WO2009064652A1 WO 2009064652 A1 WO2009064652 A1 WO 2009064652A1 US 2008082590 W US2008082590 W US 2008082590W WO 2009064652 A1 WO2009064652 A1 WO 2009064652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- dna
- soybean
- mon87701
- complement
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present invention relates to transgenic soybean event MON87701 and plant parts and seed thereof.
- the event exhibits resistance to insect infestation from insects in the order of Lepidoptera.
- the present invention also relates to methods for detecting the presence of said soybean event in a biological sample, and provides nucleotide sequences that are unique to the event.
- Soybean is an important crop and is a primary food source in many areas of the world.
- the methods of biotechnology have been applied to soybean for improvement of agronomic traits and the quality of the product.
- One such agronomic trait is insect resistance.
- a method for detecting a particular plant would be helpful when complying with regulations requiring the pre-market approval and labeling of foods derived from the recombinant crop plants.
- Transgenic crops expressing B. thuringiensis ⁇ -endotoxins enable growers to significantly reduce the time and cost associated with applying chemical insecticides as well as increase crop yields in transgenic plants grown under heavy insect pressure as compared to greatly reduced yields in non-transgenic commercial plant varieties.
- insects may evolve resistance to B. thuringiensis ⁇ -endotoxins expressed in transgenic plants. Such resistance, should it become widespread, would clearly limit the commercial value of germplasm containing genes encoding some B. thuringiensis ⁇ -endotoxins.
- the present invention is related to the transgenic soybean plant designated MON87701 having seed deposited with American Type Culture Collection (ATCC) with Accession No. PTA-8194.
- Another aspect of the invention is the progeny plants, or seeds, or parts of the plants and seeds of the soybean event MON87701.
- the plant parts include, but are not limited to pollen, ovule, flowers, shoots, roots, stems, leaves, pods, seeds and meristematic tissues.
- the soybean plant MON87701 is particularly resistant to insects in the Lepidoptera family such as Velvetbean caterpillar (Anticarsia gemmatalis), Soybean looper ⁇ Pseudoplusia includens), Soybean axil borer (Epinotia aporema), Yellow Bear Moth (Spilosoma virginic ⁇ ), Corn earworm (Helicoverpa zed), Fall armyworm ⁇ Spodoptera frugiperda) and Sunflower looper (Rachiplusia nu) amongst others, all of which are agriculturally important insect pests, looio]
- the present invention is also related to the DNA construct of soybean plant MON87701 and the detection of the transgene/genomic insertion region in soybean MON87701 and progeny thereof.
- compositions and methods are provided for detecting the presence of the transgene/genomic insertion region from a novel soybean plant designated MON87701.
- DNA sequences are provided that comprise at least one junction sequence of MON87701 selected from the group consisting of SEQ ID NO: 1 ([A] corresponding to positions 5748 through 5767 of SEQ ID NO:6 [F], Figure 2) and SEQ ID NO:2 ([B] - A -
- the junction sequence is a nucleotide sequence that spans the point at which heterologous DNA inserted into the genome is linked to the soybean cell genomic DNA. Detection of this sequence in a biological sample containing soybean DNA is diagnostic for the presence of the soybean event MON87701 DNA in said sample.
- a soybean event MON87701 and soybean seed comprising these DNA molecules is an aspect of this invention.
- DNA sequences that comprise novel transgene/genomic insertion region SEQ ID NO:3 [C], SEQ ID NO:4 [D] and SEQ ID NO:5 [E] or SEQ ID NO:1 [A], SEQ ID NO:2 [B] and SEQ ID NO:5 [E] (see Figure 2) from soybean event MON87701 are also aspects of this invention.
- the soybean plant and seed comprising these molecules are further aspects of this invention.
- two DNA molecules are provided for use in a DNA detection method.
- the DNA molecules are of sufficient length of contiguous nucleotides of SEQ ID NO: 3 or SEQ ID NO: 5 or its complement to function as DNA primers or probes diagnostic for DNA extracted from soybean plant MON87701 or progeny thereof.
- the first DNA molecule comprises 11 or more contiguous polynucleotides of any portion of the transgene region of SEQ ID NO:3 or SEQ ID NO:5, or complement thereof, and a second DNA molecule of similar length of any portion of a 5' flanking soybean genomic DNA region of SEQ ID NO: 3 or complement thereof, where these DNA molecules when used together are useful as DNA primers in a DNA amplification method that produces an amplicon.
- the amplicon produced using these DNA primers in the DNA amplification method is diagnostic for soybean event MON87701 when the amplicon contains SEQ ID NO: 1.
- Any amplicon produced by DNA primers homologous or complementary to any portion of SEQ ID NO:3 and SEQ ID NO:5, and any amplicon that comprises SEQ ID NO: 1 is an aspect of the invention.
- DNA molecules are provided for use in a DNA detection method.
- the DNA molecules are of sufficient length of contiguous nucleotides of SEQ ID NO:4 or SEQ ID NO: 5 or its complement to function as DNA primers or probes diagnostic for DNA extracted from soybean plant MON87701 or progeny thereof.
- the first DNA molecule comprises 11 or more contiguous polynucleotides of any portion of the transgene region of the DNA molecule of SEQ ID NO:4 or SEQ ID NO:5, or complement thereof, and a second DNA molecule of similar length of any portion of a 3' flanking soybean genomic DNA of SEQ ID NO:4 or complement thereof, where these DNA molecules when used together are useful as DNA primers in a DNA amplification method.
- the amplicon produced using these DNA primers in the DNA amplification method is diagnostic for soybean event MON87701 when the amplicon contains SEQ ID NO:2.
- any amplicons produced by DNA primers homologous or complementary to any portion of SEQ ID NO:4 and SEQ ID NO:5, and any amplicon that comprises SEQ ID NO:2 is an aspect of the invention.
- two DNA molecules are provided for use in a DNA detection method.
- the DNA molecules are of sufficient length of contiguous nucleotides of SEQ ID NO:6 or its complement to function as DNA primers or probes diagnostic for DNA extracted from soybean plant MON87701 or progeny thereof..
- an amplicon is produced that comprises SEQ ID NO:1 and/or SEQ ID NO:2.
- the amplicon produced is diagnostic for soybean event MON87701.
- any amplicons produced by DNA primers homologous or complementary to any portion of SEQ ID NO: 6, and any amplicon that comprises SEQ ID NO:1 and/or SEQ ID NO: 2 is an aspect of the invention. toon] According to another aspect of the invention, methods of detecting the presence of DNA corresponding to the soybean event MON87701 in a biological sample are provided.
- Such methods comprise: (a) contacting the biological sample with a primer set that, when used in a nucleic acid amplification reaction with genomic DNA from soybean event MON87701, produces an amplicon that is diagnostic for soybean event MON87701; (b) performing a nucleic acid amplification reaction, thereby producing the amplicon; and (c) detecting the amplicon wherein said amplicon comprises SEQ ID NO: 1 and/or SEQ ID NO:2, wherein detection of such amplicon is indicative of presence of the DNA corresponding to the soybean event MON87701.
- methods of detecting the presence of a DNA corresponding to the MON87701 event in a biological sample comprise: (a) contacting the biological sample with a probe that hybridizes under stringent hybridization conditions with genomic DNA from soybean event MON87701 and does not hybridize under the stringent hybridization conditions with a control soybean plant; (b) subjecting the biological sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the soybean event MON87701 DNA, wherein detection of such hybridization in indicative of presence of the DNA corresponding to the MON87701 event.
- the probe is selected from the group consisting of SEQ ID NO: 1 , SEQ ID NO:2 and complement thereof.
- a biological sample can comprise any organic material derived from soybean cells or tissue, including stems, roots, leaves, flowers or flower parts, seed or seed pods, and the like, that contains a detectable amount of a nucleotide sequence corresponding to such organic material.
- a biological sample derived from soybean event MON87701 comprises the transgene/genome insertion regions of the present invention, and particularly those as set forth in the Sequence Listing as shown in SEQ ID NO: 1 through SEQ ID NO:6, and the complements thereof.
- Kits for the detection of soybean event MON87701 are provided which use primers designed from SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 or SEQ ID NO:6.
- An amplicon produced using said kit is diagnostic for MON87701 when the amplicon (1) contains either nucleotide sequences set forth as SEQ ID NO:1 or SEQ ID NO:2 or (2) contains both SEQ ID NO: 1 and SEQ ID NO:2.
- the kit can be provided as a means for specifically detecting only the present event MON87701 DNA in a biological sample, or the kit can be provided as a means for detecting a multiplicity of different transgenic events from any number of different biological samples.
- the kit may provide probes or primers in the form of a micro array, or any sort of array which provides the user of said kit with the ability to distinguish differences between transgenic and non-transgenic samples, zygosity of transgenic events, and even the presence or absence of events, whether approved or unapproved for commercialization. Detection or scoring of the presence or absence of certain events using such kits can be by fluorometric, colorimetric, isotopic, or luminescent means.
- genomic DNA when isolated from the soybean plant, or seed, or product comprises a DNA molecule incorporating SEQ ID NO:1 and/or SEQ ID NO:2.
- the genomic DNA thereof comprises a DNA molecule consisting essentially of the nucleotide sequence of SEQ ID NO:3 from about positions 1 to 5757, the nucleotide sequence of SEQ ID NO: 5 from about positions 1 to 6426 and the nucleotide sequence of SEQ ID NO:4 from about positions 379 to 261 1 (the contig of which is presented as SEQ ID NO:6).
- a further aspect of the invention is a soybean plant, or seed, or product derived from the plant or seed of MON87701, wherein the genomic DNA comprises a DNA molecule consisting essentially of the nucleotide sequence of SEQ ID NO:6 from about positions 1 to 14,416.
- Another aspect of the invention is a soybean plant, or seed, or product derived from the plant or seed of MON87701, in which the genomic DNA when isolated from the soybean plant, or seed, or product produces an amplicon in a DNA amplification method, wherein said amplicon comprises SEQ ID NO: 1 and/or SEQ ID NO:2.
- Another aspect of the invention is a method of producing an insect resistant soybean plant. This method comprises: (a) crossing the soybean plant of MON87701 with another soybean plant; (b) obtaining at least one progeny plant derived from the cross of (a); and (c) selecting progeny that comprises nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO:2.
- Said selection includes subjecting the at least one progeny plant obtained from (b) to a nucleic acid amplification reaction, wherein progeny that produces an amplicon comprising at least one nucleotide sequence of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 or SEQ ID NO:6 is selected, or subjecting the at least one progeny plant obtained from (b) to a nucleic acid hybridization reaction, wherein progeny hybridizing to a probe that hybridizes under stringent conditions with one or more DNA sequence selected from SEQ ID NO: 1 and SEQ ID NO:2 is selected.
- the progeny so-selected is an insect resistant soybean plant.
- Another aspect of the invention is a method for protecting a soybean plant from insect infestation.
- This method comprises providing in the diet of a Lepidopteran pest of soybean an insecticidally effective amount of cell(s) or tissue(s) of the soybean plant MON87701.
- the Lepidopteran pest is selected from the group consisting of Anticarsia, Pseudoplusia, Epinotia, Spilosoma, Helicoverpa, Spodoptera and Rachiplusia.
- Another aspect of the invention is commodity product derived from a soybean plant, or seed, or seed progeny of MON87701.
- Such commodity products include, but are not limited to, whole or processed soy seeds, animal protein feed, vegetable oil, meal, flour, nontoxic plastics, printing inks, lubricants, waxes, hydraulic fluids, electric transformer fluids, solvents, cosmetics, hair care products, soymilk, soy nut butter, natto, tempeh, soy protein concentrate, soy protein isolates, texturized soy protein concentrate, hydrolyzed soy protein, whipped topping, cooking oil, salad oil, shortening, lecithin, edible whole soybeans (raw, roasted, or as edamame), soymilk, soy yogurt, soy cheese, tofu, yuba and biodiesel.
- Another aspect of the invention is a method of determining zygosity of the progeny of soybean event MON87701.
- the method comprises (a) contacting a soybean sample with the primer pair SQ3443 (SEQ ID NO: 12) and SQ3445 (SEQ ED NO: 13), that when used in a nucleic acid amplification reaction with genomic DNA from soybean event MON87701, produces an amplicon from the combination of primers SQ3443 and SQ3445 that is diagnostic for soybean event MON87701; (b) performing a nucleic acid amplification reaction; (c) detecting a first amplicon produced; (d) contacting the same sample with the primer pair SQ3445 (SEQ ID NO: 13) and SQ3446 (SEQ ID NO: 14), that when used in a nucleic acid amplification reaction with genomic DNA from soybean plants produces an amplicon from the combination of primers SQ3445 and SQ3446 that is diagnostic of the wild-type soybean genomic DNA homologous to the soybean genomic region
- Another aspect of the invention is a method of determining zygosity of the progeny of soybean event MON87701 further using probes labeled with fluorophore(s).
- Such method comprises (a) contacting a soybean sample with the primer pair SQ3443 (SEQ ID NO: 12), SQ3445 (SEQ ID NO: 13), and the probe 6FAMTM-labeled PBl 111 (SEQ ID NO: 15), that when used in a nucleic acid amplification reaction with genomic DNA from soybean event MON87701, produces an amplicon that is diagnostic for soybean event MON87701, releasing a fluorescent signal from the combination of primers SQ3443 and SQ3445 and probe 6FAMTM- labeled PBl 1 11; (b) performing a nucleic acid amplification reaction; (c) detecting a first amplicon produced; (d) contacting the same sample with the primer pair SQ3445 (SEQ ID NO: 13) and SQ3446 (SEQ ID NO: 14
- Figure 1 illustrates the map of binary transformation vector, pMON53570 that was used to generate soybean plant MON87701.
- FIG. 2 illustrates organization of the transgenic insert in the genome of soybean event MON87701 :
- [A] corresponds to the relative position of SEQ ID NO: 1 which forms the junction between SEQ ID NO: 3 and SEQ ID NO:5;
- [B] corresponds to the relative position of SEQ ID NO:2 which forms the junction between SEQ ID NO:4 and SEQ ID NO:5;
- [C] corresponds to the relative position of SEQ ID NO:3, the soybean genome sequence flanking the arbitrarily assigned/designated 5' end of the expression cassette integrated into the genome in event MON87701 ;
- [D] corresponds to the relative position of SEQ ID NO:4, the soybean genome sequence flanking the arbitrarily assigned/designated 3' end of the expression cassette integrated into the genome in event MON87701;
- [E] represents the various elements comprising SEQ ID NO: 5 and is the sequence of the expression cassette inserted into the genome of the event MON87701;
- [F] represents the contiguous sequence comprising, as represented in the
- SEQ ID NO: 1 A 20 nucleotide sequence representing the junction between the soybean genomic DNA and the integrated expression cassette (see Figure 2). This sequence corresponds to positions 5748 to 5767 of SEQ ID NO:6.
- SEQ ID NO: 1 ([A]) is a nucleotide sequence corresponding to positions 5748 through 5757 of SEQ ID NO:3 ([C]) and the integrated right border of the TIC 107 expression cassette corresponding to positions 1 through 10 of SEQ ID NO:5 ([E]).
- SEQ ID NO:1 also corresponds to positions 5748 to 5767 of the 5' flanking sequence, SEQ ID NO:3 ([C]).
- SEQ ID NO:2 - A 20 nucleotide sequence representing the junction between the integrated expression cassette and the soybean genomic DNA (see Figure 2). This sequence corresponds to positions 12174 to 12193 of SEQ ID NO:6 ([F]).
- SEQ ID NO:2 ([B]) is a nucleotide sequence corresponding positions 6417 through 6426 of SEQ ID NO:5 ([E]) and the 3' flanking sequence corresponding to positions 379 through 388 of SEQ ED NO:4 ([D]).
- SEQ ID NO:2 ([B]) also corresponds to positions 369 to 388 of the 3' flanking sequence
- MON87701 up to and including a region of transformation DNA (T-DNA) insertion.
- MON87701 up to and including a region of T-DNA insertion.
- SEQ ID NO: 5 ([E] of Figure 2) - The sequence of the integrated TIC 107 expression cassette, including right and left border sequence after integration.
- SEQ ID NO: 6 ([F] of Figure 2) - A 14,416 bp nucleotide sequence representing the contig of the 5' sequence flanking the inserted DNA of MON87701 (SEQ ID NO:3), the sequence of the integrated expression cassette (SEQ ID NO:5) and the 3' sequence flanking the inserted DNA of MON87701 (SEQ ID NO: 4).
- SEQ ID NO:8 The sequence of the TIC 107 encoding DNA, including nucleotides encoding the chloroplast transit peptide.
- SEQ ID NO: 9 - Primer SQl 135 used to identify MON87701 events.
- Primer SQl 135 is complimentary to the 5' region of the inserted expression cassette, close to the right T-DNA insertion border corresponding to positions 5790 to 5766 of SEQ ID NO:6 and positions 33 to 9 of SEQ ID NO:5.
- SEQ ID NO: 10 - Primer SQl 136 used to identify MON87701 events.
- Primer SQl 136 corresponds to a 5' region flanking the inserted expression cassette close to the right T-DNA insertion border corresponding to positions 5705 to 5732 of SEQ ID NO:6 and positions 5705 to 5732 of SEQ ID NO:3.
- a PCR amplicon of about 86 bp produced using the combination of primers SQl 135 and SQl 136 is positive for the presence of the event MON87701.
- SEQ ID NO: 11 - Probe PB63 used to identify MON87701 events. This probe is a
- 6FAMTM-labeled synthetic oligonucleotide whose sequence is complimentary to positions 5763 to 5748 of SEQ ID NO:6. Release of a fluorescent signal in an amplification reaction using primers SQl 135 and SQl 136 in combination with 6FAMTM-labeled probe PB63 is diagnostic of event MON87701.
- SEQ ID NO: 12 - Primer SQ3443 used to determine zygosity of MON87701 events.
- Primer SQ3443 corresponds to a region of the inserted expression cassette, close to the left T-
- DNA border corresponding to positions 12145 to 12168 of SEQ ID NO:6 and to positions 6388 to 6411 of SEQ ID NO:5.
- SEQ ID NO: 13 - Primer SQ3445 used to determine zygosity of MON87701 events.
- Primer SQ3445 is complimentary to the 3' region flanking the inserted expression cassette, close to the left T-DNA corresponding to positions 12215 to 12188 of SEQ ID NO:6 and to positions
- SEQ ID NO: 14 - Primer SQ3446 used to determine zygosity of MON87701 events.
- Primer SQ3446 corresponds to a region of the wild-type genomic DNA wherein insertion of the expression cassette for MON87701 occurred. Detection of a PCR amplicon using primer
- SQ3445 and SQ3446 with or without VICTM-labeled probe PBl 1 12 is positive for the presence of the wild-type allele.
- SEQ ID NO:15 Probe PBl 111 used to determine zygosity of MON87701 events.
- This probe is a 6FAMTM-labeled synthetic oligonucleotide whose sequence corresponds to positions
- SQ3445 causes the release of a fluorescent signal using probe PBI l 1 1, which is positive for the presence of event MON87701 in a zygosity assay for MON87701 event.
- SEQ ID NO: 16 - Probe PBl 112 used to determine zygosity of MON87701 events.
- This probe is a VICTM-labeled synthetic oligonucloetide whose sequence corresponds to a region of the wild-type genomic DNA immediately following the region of homology to primer SQ3446 at the point of insertion of the expression cassette for event MON87701.
- a PCR amplicon produced using primers SQ3445 and SQ3446 causes the release of a fluorescent signal using probe PBl 112, which is positive for the presence of the wild-type allele in a zygosity assay for MON87701 event.
- Heterozygosity of the MON87701 event is demonstrated by the fluorescent detection of two different amplicons using probes PBl 111 and PBl 1 12 in an amplification reaction using primers SQ3443, SQ3445 and SQ3446.
- soybean means Glycine max and includes all plant varieties that can be bred with soybean, including wild soybean species as well as those plants belonging to Glycine soja that permit breeding between species.
- glyphosate refers to N-phosphonomethylglycine and its salts.
- N- phosphonomethylglycine is a well-known herbicide that has activity on a broad spectrum of plant species.
- a "commodity product” refers to any product which is comprised of material derived from soybean or soybean oil and is sold to consumers. Processed soybeans are the largest source of protein feed and vegetable oil in the world.
- the soybean plant MON87701 can be used to manufacture commodities typically acquired from soy. Soybeans of MON87701 can be processed into meal, flour, as well as be used as a protein source in animal feeds for both terrestrial and aquatic animals. Soybeans and soybean oils from MON87701 can be used in the manufacture of many different products, not limited to, nontoxic plastics, printing inks, lubricants, waxes, hydraulic fluids, electric transformer fluids, solvents, cosmetics, and hair care products.
- Soybeans and soybean oils of MON87701 are suitable for use in a variety of soyfoods made from whole soybeans, such as soymilk, soy nut butter, natto, and tempeh, and soyfoods made from processed soybeans and soybean oil, including soybean meal, soy flour, soy protein concentrate, soy protein isolates, texturized soy protein concentrate, hydrolyzed soy protein, whipped topping, cooking oil, salad oil, shortening, and lecithin.
- Whole soybeans are also edible, and are typically sold to consumers raw, roasted, or as edamame.
- Soymilk which is typically produced by soaking and grinding whole soybeans, may be consumed without other processing, spray-dried, or processed to form soy yogurt, soy cheese, tofu, or yuba.
- Soybean Oils of MON87701 can be used to make biodiesel.
- the use of biodiesel in conventional diesel engines results in substantial reductions of pollutants such as sulfates, carbon monoxide, and particulates compared to petroleum diesel fuel, and use in school buses can greatly reduce exposure to toxic diesel exhaust.
- Biodiesel is typically obtained by extracting, filtering and refining soybean oil to remove free fats and phospholipids, and then transesterifying the oil with methanol to form methyl esters of the fatty acids (see for example US Patent No.
- the resultant soy methyl esters are commonly referred to as "biodiesel.”
- the oil derived from MON87701 may also be used as a diesel fuel without the formation of methyl esters, such as, for example, by mixing acetals with the oil (see for example US Patent No. 6,013,1 14).
- the seeds of MON87701 used to make said oils can be identified by the methods of the present invention. It is expected that purified oil from MON87701 event seeds or mixtures of seeds some or all of which are MON87701 will have relatively no DNA available for testing. However, the seeds from which the oils are extracted can be characterized with the method of the present invention to identify the presence of the MON87701 event within the population of seeds used to make said oils.
- plant waste from the process used to make said oils can be used in the methods of the present invention to identify the presence of MON87701 events within a mixture of seeds processed to make said oils.
- plant debris left after making a commodity product, or left behind following harvest of the soybean seed can be characterized by the methods of the present invention to identify MON87701 events within the raw materials used to make said commodity products.
- a transgenic "event” is produced by transformation of plant cells with heterologous DNA, i.e., a nucleic acid construct that includes a transgene of interest, regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location.
- heterologous DNA i.e., a nucleic acid construct that includes a transgene of interest
- regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant and selection of a particular plant characterized by insertion into a particular genome location.
- the term “event” refers to the original transformant and progeny of the transformant that include the heterologous DNA.
- the term “event” also refers to progeny produced by a sexual outcross between the transformant and another variety that include the heterologous DNA.
- the inserted DNA and flanking DNA from the transformed parent is present in the progeny of the cross at the same chromosomal location.
- the term "event” also refers to DNA from the original transformant comprising the inserted DNA and flanking genomic sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (e.g., the original transformant and progeny resulting from selfing) and a parental line that does not contain the inserted DNA.
- the present invention relates to the event MON87701 DNA, plant cells, tissues, seeds and processed products derived from MON87701.
- transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes.
- Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several references, e.g., Fehr, in Breeding Methods for Cultivar Development, Wilcox J. ed., American Society of Agronomy, Madison WI (1987).
- an "isolated DNA molecule” it is intended that the DNA molecule be one that is present, alone or in combination with other compositions, but not within its natural environment.
- a coding sequence, intron sequence, untranslated leader sequence, promoter sequence, transcriptional termination sequence, and the like, that are naturally found within the DNA of a soybean genome are not considered to be isolated from the soybean genome so long as they are within the soybean genome.
- each of these components, and subparts of these components would be “isolated” within the scope of this disclosure so long as the structures and components are not within the soybean genome.
- nucleotide sequence encoding a Bacillus thuringiensis insecticidal protein or any insecticidal variant of that protein would be an isolated nucleotide sequence so long as the nucleotide sequence was not within the DNA of the Bacillus thuringiensis bacterium from which the structure was first observed.
- An artificial nucleotide sequence encoding the same amino acid sequence or a substantially identical amino acid sequence that the native B. thuringiensis nucleotide sequence encodes would be considered to be isolated for the purposes of this disclosure.
- any transgenic nucleotide sequence i.e., the nucleotide sequence of the DNA inserted into the genome of the cells of the soybean plant event MON87701 would be considered to be an isolated nucleotide sequence whether it is present within the plasmid used to transform soybean cells from which the MON87701 event arose, within the genome of the event MON87701, present in detectable amounts in tissues, progeny, biological samples or commodity products derived from the event MON87701.
- junction sequences as set forth at SEQ ID NO: 1 and SEQ ID NO:2, and nucleotide sequences derived from event MON87701 that also contain these junction sequences are considered to be isolated or isolatable, whether these sequences are present within the genome of the cells of event MON87701 or present in detectable amounts in tissues, progeny, biological samples or commodity products derived from the event MON87701.
- a “probe” is an isolated nucleic acid to which is attached a conventional detectable label or reporter molecule, e.g., a radioactive isotope, ligand, chemilluminescent agent, or enzyme.
- a conventional detectable label or reporter molecule e.g., a radioactive isotope, ligand, chemilluminescent agent, or enzyme.
- Such a probe is complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of genomic DNA from soybean event MON87701 whether from a soybean plant or from a sample that includes DNA from the event.
- Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and such binding can be used to detect the presence of that target DNA sequence.
- Primer pairs of the present invention refer to their use for amplification of a target nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other conventional nucleic acid amplification methods.
- PCR polymerase chain reaction
- Probes and primers are generally 11 nucleotides or more in length, preferably 18 nucleotides or more, more preferably 24 nucleotides or more, and most preferably 30 nucleotides or more. Such probes and primers hybridize specifically to a target sequence under high stringency hybridization conditions. Preferably, probes and primers according to the present invention have complete sequence similarity with the target sequence, although probes differing from the target sequence and that retain the ability to hybridize to target sequences may be designed by conventional methods.
- Primers and probes based on the flanking DNA and insert sequences disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed sequences by conventional methods, e.g., by re-cloning and sequencing such sequences.
- nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample.
- Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.
- a nucleic acid molecule is said to be the "complement" of another nucleic acid molecule if they exhibit complete complementarity.
- molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
- Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency” conditions.
- the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency” conditions.
- a "substantially homologous sequence” is a nucleic acid sequence that will specifically hybridize to the complement of the nucleic acid sequence to which it is being compared under high stringency conditions.
- Appropriate stringency conditions which promote DNA hybridization for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45 0 C, followed by a wash of 2.0 x SSC at 50 0 C, are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50 0 C to a high stringency of about 0.2 x SSC at 5O 0 C.
- the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22 0 C, to high stringency conditions at about 65 0 C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.
- a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NO: 1 and 2 or complements thereof or fragments of either under moderately stringent conditions, for example at about 2.0 x SSC and about 65 0 C.
- a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NO: 1 and SEQ ID NO:2 or complements or fragments of either under high stringency conditions.
- a preferred marker nucleic acid molecule of the present invention has the nucleic acid sequence set forth in SEQ ID NO:1 and SEQ ID NO:2 or complements thereof or fragments of either.
- a preferred marker nucleic acid molecule of the present invention shares 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100% sequence identity with the nucleic acid sequence set forth in SEQ ID NO:1 and SEQ ID NO:2 or complement thereof or fragments of either.
- a preferred marker nucleic acid molecule of the present invention shares 95% 96%, 97%, 98%, 99% and 100% sequence identity with the sequence set forth in SEQ ID NO:1 and SEQ ID NO: 2 or complement thereof or fragments of either.
- SEQ ID NO:1 and SEQ ID NO:2 may be used as markers in plant breeding methods to identify the progeny of genetic crosses similar to the methods described for simple sequence repeat DNA marker analysis, in "DNA markers: Protocols, applications, and overviews: (1997) 173-185, Cregan, et al., eds., Wiley-Liss NY"; all of which is herein incorporated by reference.
- the hybridization of the probe to the target DNA molecule can be detected by any number of methods known to those skilled in the art, these can include, but are not limited to, fluorescent tags, radioactive tags, antibody based tags, and chemilluminescent tags.
- stringent conditions are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon, in a DNA thermal amplification reaction.
- the term "specific for (a target sequence)" indicates that a probe or primer hybridizes under stringent hybridization conditions only to the target sequence in a sample comprising the target sequence.
- amplified DNA refers to the product of nucleic acid amplification of a target nucleic acid sequence that is part of a nucleic acid template.
- DNA extracted from a soybean plant tissue sample may be subjected to nucleic acid amplification method using a primer pair that includes a primer derived from flanking sequence in the genome of the plant adjacent to the insertion site of inserted heterologous DNA, and a second primer derived from the inserted heterologous DNA to produce an amplicon that is diagnostic for the presence of the event DNA.
- the amplicon is of a length and has a sequence that is also diagnostic for the event.
- the amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair, preferably plus about fifty nucleotide base pairs, more preferably plus about two hundred-fifty nucleotide base pairs, and even more preferably plus about four hundred-fifty nucleotide base pairs.
- a primer pair can be derived from flanking sequence on both sides of the inserted DNA so as to produce an amplicon that includes the entire insert nucleotide sequence.
- a member of a primer pair derived from the plant genomic sequence may be located a distance from the inserted DNA molecule, this distance can range from one nucleotide base pair up to about twenty thousand nucleotide base pairs.
- the use of the term "amplicon” specifically excludes primer dimers that may be formed in the DNA thermal amplification reaction.
- Nucleic acid amplification can be accomplished by any of the various nucleic acid amplification methods known in the art, including the polymerase chain reaction (PCR). A variety of amplification methods are known in the art and are described, inter alia, in U.S. Patent Nos. 4,683,195 and 4,683,202 and in PCR Protocols: A Guide to Methods and Applications, ed.
- PCR amplification methods have been developed to amplify up to 22 kb of genomic DNA and up to 42 kb of bacteriophage DNA (Cheng et al., Proc. Natl. Acad. Sci. USA 91 :5695-5699, 1994). These methods as well as other methods known in the art of DNA amplification may be used in the practice of the present invention.
- sequence of the heterologous DNA insert or flanking sequence from soybean event MON87701 with seed samples deposited as ATCC PTA-8194 can be verified (and corrected if necessary) by amplifying such sequences from the event using primers derived from the sequences provided herein followed by standard DNA sequencing of the PCR amplicon or of the cloned DNA.
- the amplicon produced by these methods may be detected by a plurality of techniques.
- One such method is Genetic Bit Analysis (Nikiforov, et al. Nucleic Acid Res. 22:4167-4175, 1994) where a DNA oligonucleotide is designed which overlaps both the adjacent flanking genomic DNA sequence and the inserted DNA sequence.
- the oligonucleotide is immobilized in wells of a microwell plate.
- a single-stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labelled ddNTPs specific for the expected next base.
- Readout may be fluorescent or ELISA-based. A signal indicates presence of the insert/flanking sequence due to successful amplification, hybridization, and single base extension.
- Another method is the Pyrosequencing technique as described by Winge (Innov. Pharma. Tech. 00: 18-24, 2000).
- an oligonucleotide is designed that overlaps the adjacent genomic DNA and insert DNA junction.
- the oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking genomic sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin.
- dNTPs are added individually and the incorporation results in a light signal which is measured.
- a light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension.
- Fluorescence Polarization as described by Chen, et al., (Genome Res. 9:492-498, 1999) is a method that can be used to detect the amplicon of the present invention.
- an oligonucleotide is designed which overlaps the genomic flanking and inserted DNA junction.
- the oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking genomic DNA sequence) and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP.
- Incorporation can be measured as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single base extension.
- TAQMAN® PE Applied Biosystems, Foster City, CA
- a FRET oligonucleotide probe is designed which overlaps the genomic flanking and insert DNA junction.
- the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs.
- Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety away from the quenching moiety on the FRET probe.
- a fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.
- Molecular Beacons have been described for use in sequence detection as described in Tyangi, et al. (Nature Biotech.14:303-308, 1996). Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking genomic and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity.
- the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs.
- DNA detection kits can be developed using the compositions disclosed herein and the methods well known in the art of DNA detection.
- the kits are useful for the identification of soybean event MON87701 DNA in a sample and can be applied to methods for breeding soybean plants containing the appropriate event DNA.
- the kits may contain DNA primers or probes that are homologous or complementary to SEQ ID NO: 1 through SEQ ID NO:6 or DNA primers or probes homologous or complementary to DNA sequence of the genetic elements contained in the transgene insert. These DNA sequences can be used as primers in DNA amplification reactions or as probes in a DNA hybridization method.
- the sequences of the genomic DNA and transgene genetic elements contained in MON87701 soybean genome as illustrated in Figure 2 consists of a portion of the right border region (RB) from Agrobacterium tumefaciens, a promoter sequence derived from the Arabidopsis ribulose 1,5-bisphosphate carboxylase small subunit gene (herein referred to as P-RbcS4 located at positions 155 to 1850 on SEQ ID NO: 5) is operably linked to an untranslated leader sequence derived from the Arabidopsis ribulose 1,5-bisphosphate carboxylase small subunit gene (herein referred to as L- RbcS4 located at positions 1851 to 1877 on SEQ ED NO:5) operably connected to the insect toxin coding sequence, TIC 107, which is comprised of a chloroplast transit peptide derived from transit peptide sequence of the Arabidopsis ribulose 1,5-bisphosphate carboxylase small subunit gene and an insect toxin derived from Cry
- DNA molecules useful as primers in DNA amplification methods can be derived from the sequences of the genetic elements of the transgene insert contained in the MON87701 event. These primer molecules can be used as part of a primer set that also includes a DNA primer molecule derived from the genome flanking the transgene insert of event MON87701 as presented in SEQ ID NO:3 from bases 1 through 5747 and SEQ ID NO:4 from bases 389 through 261 1.
- the soybean plant MON87701 was produced by an Agrobacterium mediated transformation process of an inbred soybean line with the plasmid construct pMON53570 (as shown in Figure 1). The transformation method used is similar to that described in US Patent 5,914,451.
- the plasmid construct pMON53570 contains the linked plant expression cassettes with the regulatory genetic elements necessary for expression of the TIC 107 protein in soybean plant cells. Soybean cells were regenerated into intact soybean plants and individual plants were selected from the population of plants that showed integrity of the plant expression cassettes and resistance to Lepidopteran insect larvae feeding damage as well as a loss of the unlinked glyphosate resistance selection cassette.
- a soybean plant that contains in its genome the linked plant expression cassettes of pMON53570 is an aspect of the present invention.
- the plasmid DNA inserted into the genome of soybean plant MON87701 was characterized by detailed molecular analyses. These analyses included: the insert number (number of integration sites within the soybean genome), the copy number (the number of copies of the T-DNA within one locus), and the integrity of the inserted gene cassettes. DNA molecular probes were used that included the intact TIC 107 coding region and its respective regulatory elements, the promoters, introns, and polyadenylation sequences of the plant expression cassettes, and the plasmid pMON53570 backbone DNA region.
- the data show that MON87701 contains a single T-DNA insertion with one copy of the TIC 107 expression cassette. No additional elements from the transformation vector pMON53570, linked or unlinked to intact gene cassettes, were detected in the genome of MON87701. Finally, Inverse PCR and DNA sequence analyses were performed to determine the 5' and 3' insert-to-plant genome junctions, confirm the organization of the elements within the insert ( Figure 2), and determine the complete DNA sequence of the insert in soybean plant MON87701 (SEQ ID NO:5). 10077]
- the present invention is directed to a DNA molecule comprising a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO:2, or complement thereof.
- the DNA molecule preferably comprises a nucleotide sequence of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6 or complement thereof. Still preferably, the DNA molecule consists essentially of the nucleotide sequence of SEQ ID NO:3 from positions 1 to 5757, the nucleotide sequence of SEQ ID NO:5 from positions 1 to 6426, and the nucleotide sequence of SEQ ID NO:4 from positions 379 to 2611, or complement thereof, or essentially of the nucleotide sequence of SEQ ID NO: 6 or complement thereof.
- the present invention is also directed to a soybean plant, or parts thereof, or seed that comprises the DNA molecule.
- a composition derived from the soybean plant, or parts thereof, of the present invention is also provided.
- Such composition comprises a detectable amount of the DNA molecule and is a commodity product selected from soybean meal, soy flour, soy protein concentrate, soy protein isolates, texturized soy protein concentrate, hydrolyzed soy protein, soybean oil and whipped topping.
- the present invention is further directed to a method of producing an insect resistant soybean plant. This method comprises: (a) crossing the soybean plant of MON87701 with another soybean plant; (b) obtaining at least one progeny plant derived from the cross of (a); and (c) selecting progeny that comprises nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO:2.
- Said selection includes subjecting the at least one progeny plant obtained from (b) to a nucleic acid amplification reaction, wherein progeny that produces an amplicon comprising at least one nucleotide sequence of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 or SEQ ID NO:6 is selected, or subjecting the at least one progeny plant obtained from (b) to a nucleic acid hybridization reaction, wherein progeny hybridizing to a probe that hybridizes under stringent conditions with one or more DNA sequence selected from SEQ ID NO: 1 and SEQ ID NO:2 is selected.
- the progeny so-selected is an insect resistant soybean plant.
- the present invention is still further directed to a method for protecting a soybean plant from insect infestation.
- This method comprises providing in the diet of a Lepidopteran pest of soybean an insecticidally effective amount of cell(s) or tissue(s) of the soybean plant MON87701.
- the Lepidopteran pest is selected from the group consisting of Anticarsia, Pseudoplusia, Epinotia, Spilosoma, Helicoverpa, Spodoptera and Rachiplusia.
- DNA molecules comprising a first DNA molecule and a second DNA molecule, wherein the DNA molecules are of sufficient length of contiguous nucleotides of SEQ ID NO:3 or SEQ ID NO:5 or its complement; or SEQ ID NO:4 or SEQ ID NO:5 or its complement; or SEQ ID NO:6 or its complement; to function as DNA primers or probes diagnostic for DNA extracted from soybean plant MON87701 or progeny thereof.
- the first DNA molecule of the pair comprises 11 or more contiguous nucleotides of any portion of the transgene region of SEQ ID NO:3 or SEQ ID NO:5, or complement thereof
- the second DNA molecule of the pair comprises a similar length of a 5' flanking soybean genomic DNA region of SEQ ID NO:3, or complement thereof.
- a specific example is that the first DNA molecule comprises SEQ ID NO: 9 and the second DNA molecule comprises SEQ ID NO: 10.
- the first DNA molecule of the pair comprises 11 or more contiguous nucleotides of any portion of the transgene region of SEQ ID NO:4 or SEQ ID NO:5, or complement thereof, and the second DNA molecule of the pair comprises a similar length of a 3' flanking soybean genomic DNA region of SEQ ID NO:4, or complement thereof.
- the first DNA molecule comprises SEQ ID NO: 12 and the second DNA molecule comprises SEQ ID NO: 13.
- the present invention is further directed to a method of detecting the presence of a DNA molecule selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6 in a biological sample.
- This method comprises: (a) contacting the biological sample with a DNA primer pair comprising DNA primer molecules of sufficient length of contiguous nucleotides of SEQ ID NO:3 or its complement, SEQ ID NO:4 or its complement, SEQ ID NO: 5 or its complement, or SEQ ED NO: 6 or its complement, to function as DNA primers or probes diagnostic for DNA extracted from soybean plant MON87701 or progeny thereof; (b) providing a nucleic acid amplification reaction condition; (c) performing the nucleic acid amplification reaction, thereby producing a DNA amplicon molecule; and (d) detecting the DNA amplicon molecule so produced. Detection of an amplicon comprising at least one of SEQ ID NO: 1 , SEQ ID NO:2 and
- the biological sample can comprise any organic material derived from soybean cells or tissue, including stems, roots, leaves, flowers or flower parts, seed or seed pods, and the like, that contains a detectable amount of a nucleotide sequence corresponding to such organic material.
- a biological sample derived from soybean event MON87701 comprises the transgene/genome insertion regions of the present invention, and particularly those as set forth in the Sequence Listing as shown in SEQ ID NO: 1 through SEQ ID NO:6, and the complements thereof.
- the biological sample suitable for the present invention can be soybean meal, soy flour, soy protein concentrate, soy protein isolates, texturized soy protein concentrate, hydrolyzed soy protein and whipped topping.
- the sample being tested can be a DNA sample extracted from a soybean plant.
- the present invention is still further directed to a method of detecting the presence of a DNA molecule selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6 in a biological sample.
- Such method comprises: (a) contacting the biological sample with a DNA probe that hybridizes under stringent conditions with said DNA molecule, and does not hybridize under the stringent conditions with a biological sample not containing the DNA molecule; (b) subjecting the biological sample and DNA probe to stringent hybridization conditions; and (c) detecting hybridization of the DNA probe to the biological sample. Detection of hybridization is indicative of the presence of the DNA molecule in the biological sample.
- the biological sample being tested can be a DNA sample extracted from a soybean plant.
- the probes used in the above detection method can comprise SEQ ID NO: 1 or SEQ ID NO:2 or complement thereof, or comprise SEQ ID NO:11 or SEQ ID NO: 15. Specific examples of such probe include SEQ ID NO: 1 1 or SEQ ID NO: 15. Such probe can further be labeled with at least one fluorophore.
- the present invention is still further directed to a DNA detection kit comprising: at least one DNA molecule of sufficient length of contiguous nucleotides homologous or complementary to SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, or SEQ ID NO:6 to function as a DNA primer or probe specific for soybean event MON87701 and/or its progeny.
- the at least one DNA molecule can comprise SEQ ID NO: 1, SEQ ID NO:2, or complement thereof.
- a specific example of such DNA molecule is SEQ ID NO: 1, SEQ ID NO:2, or complement thereof.
- the present invention is still further directed to a method of determining zygosity of DNA of a soybean plant genome comprising soybean event MON87701 in a soybean sample.
- This method comprises: (a) contacting the sample with a first primer pair of SEQ ID NO: 12 and SEQ ID NO: 13, that when used together in a nucleic acid amplification reaction with soybean event MON87701 DNA, produces an amplicon that is diagnostic for soybean event MON87701 ; (b) performing a nucleic acid amplification reaction; (c) detecting a first amplicon so produced; (d) contacting the sample with a second primer pair of SEQ ID NO: 13 and SEQ ID NO: 14, that when used together in a nucleic acid amplification reaction with soybean genomic DNA other than soybean event MON87701 DNA, produces an amplicon that is diagnostic for soybean genomic DNA other than soybean event MON87701 DNA; (e) performing a nucleic acid amplification reaction; and (f) detecting a second amplicon so produced.
- Detection of both the amplicon that is diagnostic for soybean event MON87701 and the amplicon that is diagnostic for soybean genomic DNA other than soybean event MON87701 DNA indicates that the sample is heterozygous for soybean event MON87701 DNA.
- the first primer pair is further used together with probe of SEQ ID NO: 15, and/or the second primer pair is further used with probe of SEQ ID NO:16.
- Example 1 Transformation of Soybean A5547 with pMON53570 and event selection
- the transgenic soybean plant MON87701 was generated by an Agrobacterium-mediated transformation of soybean cells with a DNA fragment derived from pMON53570 ( Figure 1).
- the binary plant transformation vector, pMON53570 contains two plant transformation cassettes or T-DNAs. Each cassette is flanked by right border and left border sequences at the 5' and 3' ends of the transformation cassette, respectively.
- An expression cassette, presented as SEQ ID NO:7, is used for the expression of an insect toxin.
- the expression cassette is comprised of a promoter and leader sequence derived from the Arabidopsis ribulose 1,5- bisphosphate carboxylase small subunit gene (P-RbcS4, Krebbers et al., (1988) Plant MoI. Biol. 11 : 745-759) which is cloned directly upstream of the insect toxin coding sequence, TIC107, which in turn is cloned directly upstream of a terminator sequence derived from the Glycine max 7S alpha' beta conglycinin storage protein gene (T-Sphas, see for example, Schuler et al., (1982) Nucleic Acids Res. 10: 8225-8244).
- the insect toxin coding sequence, TIC107 is presented as SEQ ID NO:8.
- the nucleic acid sequence set forth as SEQ ID NO:8 is a synthetic or artificial sequence encoding an insecticidal toxin derived from CrylAc (US Patent 5,880,275) with a chloroplast transit peptide coding sequence derived from the Arabidopsis ribulose 1,5- bisphosphate carboxylase small subunit gene cloned directly upstream of the insect toxin coding sequence.
- the plant transformation vector, pMON53570 was mobilized into disarmed Agrobacterium tumefaciens strain ABI by electroporation and selected on spectinomycin and chloramphenicol.
- Explants from Asgrow soybean variety A5547 were transformed with pMON53570 using a method similar to that described in US Patent 5,914,451. Soybean explants and induced A. tumefaciens containing pMON53570 were mixed within 14 hours from the time of initiation of seed germination and wounding by sonication. Following wounding, explants were placed in culture for two to five days after which, they were transferred to selection media containing glyphosate for transformed plant cell selection and antibiotics.
- DNAs were resuspended in 0.5 ml of TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). This method can be modified by one skilled in the art to extract DNA from any tissue of soybean, including, but not limited to seed.
- TE Tris-HCl pH 8.0, 1 mM EDTA
- An aliquot of DNA was digested with restriction endonucleases selected based upon restriction analysis of the T-DNA. After self-ligation of restriction fragments, PCR was performed using primers designed from the T-DNA sequence that would amplify sequences extending away from the 5' and 3' ends of the T-DNA.
- PCR products were separated by agarose gel electrophoresis and purified using a QIAGEN gel purification kit (Qiagen, Valencia, CA). The subsequent products were sequenced directly using standard sequencing protocols.
- the 5' flanking sequence which extends into the right border sequence of the TIC 107 expression cassette T-DNA is presented as SEQ ID NO:3 ([C], see Figure 2).
- the 3' flanking sequence which extends into the left border sequence of the TIC 107 expression cassette T-DNA is presented as SEQ ID NO:4 ([D], see Figure 2).
- SEQ ID NO:7 The portion of the TIC107 expression cassette DNA (SEQ ID NO:7) that was fully integrated into the A5547 genomic DNA is presented as SEQ ID NO:5 ([E], see Figure 2).
- Isolated sequences were compared to the T-DNA sequence to identify the flanking sequence and the co-isolated T-DNA fragment. Confirmation of the presence of the expression cassette was achieved by PCR with primers designed based upon the deduced flanking sequence data and the known T-DNA sequence.
- the A5547 wild type sequence corresponding to the same region in which the T-DNA was integrated in the transformed line was isolated using primers designed from the flanking sequences in MON87701.
- the PCR reactions were performed using the Elongase amplification system (Invitrogen, Carlsbad, CA).
- the flanking sequences in MON87701 and the A5547 wild type sequence were analyzed against multiple nucleotide and protein databases.
- flanking sequence and wild type sequences were used to design primers for TAQMAN® endpoint assays used to identify the events and determine zygosity as described in example 3.
- Example 3 Event specific endpoint TAQMAN® and Zygosity assays.
- the methods used to identify event MON87701 in a sample are described in an event specific endpoint TAQMAN® PCR for which examples of conditions are described in Table 1 and Table 2.
- the DNA primers used in the endpoint assay are primers SQl 135 (SEQ ID NO.9), SQl 136 (SEQ ID NO: 10) and 6FAMTM labeled primer PB63 (SEQ ID NO: 11).
- 6FAMTM is a fluorescent dye product of Applied Biosystems (Foster City, CA) attached to the DNA primer.
- the 5'exonuclease activity of Taq DNA polymerase cleaves the probe from the 5 '-end, between the fluorophore and quencher. When hybridized to the target DNA strand, quencher and fluorophore are separated enough to produce a fluorescent signal, thus releasing fluorescence.
- the controls for this analysis should include a positive control from soybean containing event MON87701 DNA, a negative control from non-transgenic soybean and a negative control that contains no template DNA.
- RO plants demonstrating the presence of the TIC 107 expression cassette were allowed to develop into fully mature plants.
- the RO plants were evaluated for the occurrence of linkage between the TIC 107 expression cassette and the glyphosate resistance expression cassette using Southern analysis with a DNA restriction enzyme known to not cut into both cassettes and the region between each cassette in the plasmid, Pad.
- Probes designed based upon the sequences of the glyphosate resistance cassette, the TIC 107 cassette and the origin of replication (OR-Ec. oriV- RK2) which resides in between the two expression cassettes in pMON53570 were used to probe Southern blots to determine linkage.
- the RO plants were also evaluated for copy number of the TIC 107 expression cassette using a combination of Southern analysis and endpoint TAQMAN®. RO plants demonstrating an unlinked relationship between the Glyphosate resistance cassette and the TIC 107 expression cassette were allowed to self pollinate and produce Fl progeny. [00105] Fl plants were assayed for the absence of the glyphosate resistance cassette due to segregation occurring in the Fl population from unlinked self-pollinated RO transformed events. A non-lethal application of glyphosate was applied to the Fl individuals. Those plants in which the resistance cassette was lost due to segregation demonstrated damage from the application of glyphosate. These plants were allowed to recover and develop normally. Zygosity assays for the TIC 107 expression cassette were performed upon Fl plants using a TAQMAN® endpoint assay as described below.
- the methods used to determine zygosity for event MON87701 in a sample are described in an event specific zygosity endpoint TAQMAN PCR for which examples of conditions are described in Table 3 and Table 4.
- the DNA primers used in the zygosity assay are primers SQ3443 (SEQ ID NO: 12), SQ3445 (SEQ ID NO: 13), SQ3446 (SEQ ID NO: 14), 6FAMTM- labeled primer PB 1111 (SEQ ID NO: 15) and VICTM-labeled primer PBl 112 (SEQ ID NO: 16).
- 6FAMTM and VICTM are fluorescent dye products of Applied Biosystems (Foster City, CA) attached to the DNA primers.
- the 5'exonuclease activity of Taq DNA polymerase cleaves the probe from the 5 '-end, between the fluorophore and quencher.
- quencher and fluorophore are separated enough to produce a fluorescent signal, thus releasing fluorescence.
- SQ3443 (SEQ ID NO: 12) and SQ3445 (SEQ ID NO:13) when used in these reaction methods with PBl 111 (SEQ ID NO: 15) produce a DNA amplicon that is diagnostic for event MON87701 DNA.
- the controls for this analysis should include a positive control from soybean containing event MON87701 DNA, a negative control from non-transgenic soybean and a negative control that contains no template DNA.
- SQ3445 SEQ ID NO: 13
- SQ3446 SEQ ID NO: 14
- PBl 112 SEQ ID NO: 16
- Heterozygosity is determined by the presence of both amplicons demonstrated by the liberation of fluorescent signal from both probes PBl 1 1 1 and PBl 112.
- Example 4 Identification of event MON87701 in any MON87701 breeding event [00113) The following example describes how one may identify the MON87701 event within progeny of any breeding event using MON87701 soybean.
- An amplicon diagnostic for soybean event MON87701 comprises at least one junction sequence, SEQ ID NO: 1 or SEQ ID NO:2 ([A] and [B], respectively as illustrated in Figure T).
- SEQ ID NO:1 ([A] of Figure T) is a nucleotide sequence corresponding to the junction of the 5' flanking sequence (positions 5748 through 5757 of SEQ ID NO:3 [C], see Figure 2) and the integrated right border of the TIC 107 expression cassette (positions 1 through 10 of SEQ ID NO: 5 [E], see figure 2).
- SEQ ID NO: 1 also corresponds to positions 5748 to 5767 of the 5' flanking sequence, SEQ ID NO:3 ([C], see Figure T).
- SEQ ID NO:2 ([B], see Figure T) is a nucleotide sequence corresponding to the junction of the integrated left border of the TIC 107 expression cassette (positions 6417 through 6426 of SEQ ID NO:5 [E], see Figure T) and the 3' flanking sequence (positions 379 through 388 of SEQ ID NO:4 [D], see Figure T).
- SEQ ID NO:2 ([C], see Figure T) also corresponds to positions 369 to 388 of the 3' flanking sequence, SEQ ID NO:4 ([D], see Figure T).
- Event primer pairs that will produce a diagnostic amplicon for MON87701 include primer pairs based upon the flanking sequences and the inserted TIC 107 expression cassette.
- a forward primer based upon the TIC 107 inserted expression cassette SEQ ID NO:5 from positions 10 through 6416 and a reverse primer based upon the 3' flanking sequence, SEQ ID NO:4 from bases 389 through 2611.
- primers which produce amplicons of a limited size range, preferably between 200 to 1000 bases. Smaller sized amplicons in general are more reliably produced in PCR reactions, allow for shorter cycle times, and can be easily separated and visualized on agarose gels or adapted for use in endpoint TAQMAN®-like assays.
- amplicons produced using said primer pairs can be cloned into vectors, propagated, isolated and sequenced or can be sequenced directly with methods well established in the art.
- Any primer pair derived from the combination of SEQ ID NO: 3 and SEQ ID NO: 5 or the combination of SEQ ID NO:4 and SEQ ID NO: 5 that are useful in a DNA amplification method to produce an amplicon diagnostic for MON87701 or progeny thereof is an aspect of the present invention.
- Any single isolated DNA polynucleotide primer molecule comprising at least 11 contiguous nucleotides of SEQ ID NO:3, or its complement that is useful in a DNA amplification method to produce an amplicon diagnostic for MON87701 or progeny thereof is an aspect of the present invention.
- Any single isolated DNA polynucleotide primer molecule comprising at least 11 contiguous nucleotides of SEQ ID NO:4, or its complement that is useful in a DNA amplification method to produce an amplicon diagnostic for MON87701 or progeny thereof is an aspect of the present invention.
- Any single isolated DNA polynucleotide primer molecule comprising at least 1 1 contiguous nucleotides of SEQ ID NO: 5, or its complement that is useful in a DNA amplification method to produce an amplicon diagnostic for MON87701 or progeny thereof is an aspect of the present invention.
- 100116] An example of the amplification conditions for this analysis is illustrated in Table 5 and Table 6.
- a diagnostic amplicon comprises a DNA molecule homologous or complementary to at least one transgene/genomic junction DNA (SEQ ID NO: 1 or SEQ ID NO:2), or a substantial portion thereof.
- An analysis for event MON87701 plant tissue sample should include a positive tissue control from event MON87701, a negative control from a soybean plant that is not event MON87701, for example, but not limited to A5547, and a negative control that contains no soybean genomic DNA.
- a primer pair that will amplify an endogenous soybean DNA molecule will serve as an internal control for the DNA amplification conditions. Additional primer sequences can be selected from SEQ ID NO:3, SEQ ID NO:4, or SEQ ID NO:5 by those skilled in the art of DNA amplification methods, and conditions selected for the production of an amplicon by the methods shown in Table 5 and Table 6 may differ, but result in an amplicon diagnostic for event MON87701 DNA.
- DNA primer sequences with modifications to the methods of Table 5 and Table 6 are within the scope of the invention.
- the amplicon produced by at least one DNA primer sequence derived from SEQ ID NO:3, SEQ ID NO:4, or SEQ ID NO:5 that is diagnostic for MON87701 is an aspect of the invention.
- DNA detection kits that contain at least one DNA primer derived from SEQ ED NO:3, SEQ ID NO:4, or SEQ ID NO:5, that when used in a DNA amplification method, produces a diagnostic amplicon for MON87701 or its progeny is an aspect of the invention.
- a soybean plant or seed, wherein its genome will produce an amplicon diagnostic for MON87701 when tested in a DNA amplification method is an aspect of the invention.
- the assay for the MON87701 amplicon can be performed by using an Applied Biosystems GeneAmp PCR System 9700 or Stratagene Robocycler, or MJ Engine, or Perkin-Elmer 9700, or Eppendorf Mastercycler Gradient thermocycler or any other amplification system that can be used to produce an amplicon diagnostic of MON87701 as shown in Table 6.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Pest Control & Pesticides (AREA)
- Insects & Arthropods (AREA)
- Botany (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR122017018105-0A BR122017018105B1 (en) | 2007-11-15 | 2008-11-06 | GENOMIC DNA MOLECULE FROM GENOMIC SOYBEAN |
MX2010005352A MX2010005352A (en) | 2007-11-15 | 2008-11-06 | Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof. |
BRPI0820373-3A BRPI0820373B1 (en) | 2007-11-15 | 2008-11-06 | METHOD OF PRODUCING AN INSECT-RESISTANT SOYBEAN PLANT, COMPOSITIONS DERIVED FROM CELLS OF SUCH PLANT, METHOD OF PROTECTING A SOYBEAN PLANT FROM INSECT INFESTATION, DNA MOLECULES, METHODS OF DETECTING THE PRESENCE OF SUCH MOLECULES AND OF DETERMINING ZYGOZITY OF SUCH PLANTS AND DNA DETECTION KIT |
EP08849165A EP2209897A1 (en) | 2007-11-15 | 2008-11-06 | Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof |
CN200880116188.9A CN101861392B (en) | 2007-11-15 | 2008-11-06 | Corresponding to the soybean plants of transgenic event MON87701 and seed and detection method thereof |
AU2008321220A AU2008321220A1 (en) | 2007-11-15 | 2008-11-06 | Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98834907P | 2007-11-15 | 2007-11-15 | |
US60/988,349 | 2007-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009064652A1 true WO2009064652A1 (en) | 2009-05-22 |
Family
ID=40279105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/082590 WO2009064652A1 (en) | 2007-11-15 | 2008-11-06 | Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof |
Country Status (14)
Country | Link |
---|---|
US (2) | US8049071B2 (en) |
EP (1) | EP2209897A1 (en) |
CN (1) | CN101861392B (en) |
AR (3) | AR069330A1 (en) |
AU (1) | AU2008321220A1 (en) |
BR (2) | BRPI0820373B1 (en) |
CL (1) | CL2008003369A1 (en) |
CO (1) | CO6280551A2 (en) |
MX (1) | MX2010005352A (en) |
PA (1) | PA8803901A1 (en) |
PE (2) | PE20091023A1 (en) |
TW (1) | TWI604056B (en) |
UY (2) | UY31467A1 (en) |
WO (1) | WO2009064652A1 (en) |
Cited By (297)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
WO2012072696A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
WO2012072489A1 (en) | 2010-11-29 | 2012-06-07 | Bayer Cropscience Ag | Alpha,beta-unsaturated imines |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
WO2012126938A2 (en) | 2011-03-23 | 2012-09-27 | Bayer Cropscience Ag | Active compound combinations |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012171914A1 (en) | 2011-06-14 | 2012-12-20 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013110591A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compounds combination containing fluopyram bacillus and biologically control agent |
WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
CN103270173A (en) * | 2010-10-12 | 2013-08-28 | 孟山都技术公司 | Soybean plant and seed corresponding to transgenic event Mon87712 and methods for detection thereof |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
WO2014019983A1 (en) | 2012-07-31 | 2014-02-06 | Bayer Cropscience Ag | Compositions comprising a pesticidal terpene mixture and an insecticide |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
EP2719280A1 (en) | 2012-10-11 | 2014-04-16 | Bayer CropScience AG | Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014086764A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086759A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086753A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086758A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086748A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086750A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086747A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086749A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014124369A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and a fungicide |
WO2014124379A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and an insecticide |
WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014170327A1 (en) * | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for combating pests |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
EP2885970A1 (en) | 2013-12-21 | 2015-06-24 | Bayer CropScience AG | Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
WO2016001121A1 (en) * | 2014-07-01 | 2016-01-07 | Bayer Cropscience Aktiengesellschaft | Method for improved utilization of the production potential of transgenic plants |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
EP2997825A1 (en) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
EP3008187A4 (en) * | 2013-06-14 | 2017-02-01 | Monsanto Technology LLC | Soybean transgenic event mon87751 and methods for detection and use thereof |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
EP3205210A1 (en) | 2012-05-30 | 2017-08-16 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase |
EP3243387A2 (en) | 2012-05-30 | 2017-11-15 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
RU2644249C2 (en) * | 2011-10-18 | 2018-02-08 | ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи | Materials and methods for detecting the gene of ariloxyalcanoadyoxygenase (aad-12) in plants |
EP3281526A1 (en) | 2012-05-30 | 2018-02-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3292764A2 (en) | 2012-05-30 | 2018-03-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii |
EP3300603A2 (en) | 2012-05-30 | 2018-04-04 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3318128A2 (en) | 2012-05-30 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018119364A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm5 and methods and kits for identifying such event in biological samples |
WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
WO2018119361A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm4 and methods and kits for identifying such event in biological samples |
WO2018114393A1 (en) | 2016-12-19 | 2018-06-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
EP3360418A1 (en) | 2012-05-30 | 2018-08-15 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3363289A2 (en) | 2012-05-30 | 2018-08-22 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
WO2018153730A1 (en) | 2017-02-21 | 2018-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2018184970A1 (en) | 2017-04-07 | 2018-10-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018188962A1 (en) | 2017-04-11 | 2018-10-18 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
WO2018202491A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2018202487A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for combating phytopathogenic fungi |
WO2018219797A1 (en) | 2017-06-02 | 2018-12-06 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018234139A1 (en) | 2017-06-19 | 2018-12-27 | Basf Se | 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi |
WO2019007889A1 (en) * | 2017-07-06 | 2019-01-10 | Bayer Aktiengesellschaft | Method for improved utilization of the production potential of transgenic plants |
WO2019025250A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019038042A1 (en) | 2017-08-21 | 2019-02-28 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019052932A1 (en) | 2017-09-18 | 2019-03-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019068811A1 (en) | 2017-10-06 | 2019-04-11 | Bayer Aktiengesellschaft | Compositions comprising fluopyram and tioxazafen |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2019101511A1 (en) | 2017-11-23 | 2019-05-31 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019121143A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Substituted cyclopropyl derivatives |
WO2019137995A1 (en) | 2018-01-11 | 2019-07-18 | Basf Se | Novel pyridazine compounds for controlling invertebrate pests |
WO2019145221A1 (en) | 2018-01-29 | 2019-08-01 | BASF Agro B.V. | New agrochemical formulations |
WO2019154663A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019154665A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019166257A1 (en) | 2018-03-01 | 2019-09-06 | BASF Agro B.V. | Fungicidal compositions of mefentrifluconazole |
WO2019219464A1 (en) | 2018-05-15 | 2019-11-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019224092A1 (en) | 2018-05-22 | 2019-11-28 | Basf Se | Pesticidally active c15-derivatives of ginkgolides |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
EP3613736A1 (en) | 2018-08-22 | 2020-02-26 | Basf Se | Substituted glutarimide derivatives |
EP3628158A1 (en) | 2018-09-28 | 2020-04-01 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
EP3643705A1 (en) | 2018-10-24 | 2020-04-29 | Basf Se | Pesticidal compounds |
WO2020083662A1 (en) | 2018-10-23 | 2020-04-30 | Basf Se | Tricyclic pesticidal compounds |
EP3670501A1 (en) | 2018-12-17 | 2020-06-24 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2020144308A1 (en) | 2019-01-11 | 2020-07-16 | Basf Se | Crystalline forms of 1-(1,2-dimethylpropyl)-n-ethyl-5-methyl-n-pyridazin-4-yl-pyrazole-4-carboxamide |
EP3696177A1 (en) | 2019-02-12 | 2020-08-19 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
WO2020231751A1 (en) | 2019-05-10 | 2020-11-19 | Bayer Cropscience Lp | Active compound combinations |
WO2020239517A1 (en) | 2019-05-29 | 2020-12-03 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2020244969A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Pyridine derivatives and their use as fungicides |
WO2020244970A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | New carbocyclic pyridine carboxamides |
WO2020244968A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Fungicidal n-(pyrid-3-yl)carboxamides |
EP3766879A1 (en) | 2019-07-19 | 2021-01-20 | Basf Se | Pesticidal pyrazole derivatives |
EP3769623A1 (en) | 2019-07-22 | 2021-01-27 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013721A1 (en) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituted pyrazoles and triazoles as pest control agents |
WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
WO2021063736A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | Bicyclic pyridine derivatives |
WO2021063735A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | New bicyclic pyridine derivatives |
WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021089673A1 (en) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
US11066424B2 (en) | 2018-08-18 | 2021-07-20 | Boragen, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
WO2021213978A1 (en) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents |
EP3903584A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv |
EP3903582A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii |
EP3903581A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i |
EP3903583A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii |
WO2021219513A1 (en) | 2020-04-28 | 2021-11-04 | Basf Se | Pesticidal compounds |
WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
EP3909950A1 (en) | 2020-05-13 | 2021-11-17 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
WO2021249800A1 (en) | 2020-06-10 | 2021-12-16 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2022002818A1 (en) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
EP3939961A1 (en) | 2020-07-16 | 2022-01-19 | Basf Se | Strobilurin type compounds and their use for combating phytopathogenic fungi |
WO2022017836A1 (en) | 2020-07-20 | 2022-01-27 | BASF Agro B.V. | Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol |
EP3945089A1 (en) | 2020-07-31 | 2022-02-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v |
WO2022033991A1 (en) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituted triazoles as pest control agents |
EP3960727A1 (en) | 2020-08-28 | 2022-03-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi |
WO2022043559A2 (en) | 2020-08-31 | 2022-03-03 | Basf Se | Yield improvement |
WO2022053453A1 (en) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azole carboxamide as pest control agents |
EP3970494A1 (en) | 2020-09-21 | 2022-03-23 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii |
WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
EP3974414A1 (en) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituted pyrazoles and triazoles as pesticides |
WO2022089969A1 (en) | 2020-10-27 | 2022-05-05 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022090069A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Compositions comprising mefenpyr-diethyl |
WO2022090071A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Use of mefenpyr-diethyl for controlling phytopathogenic fungi |
WO2022106304A1 (en) | 2020-11-23 | 2022-05-27 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
WO2022128524A1 (en) | 2020-12-14 | 2022-06-23 | Basf Se | Sulfoximine pesticides |
WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
EP4036083A1 (en) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituted heterocycles as pesticides |
EP4043444A1 (en) | 2021-02-11 | 2022-08-17 | Basf Se | Substituted isoxazoline derivatives |
WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
US11425906B2 (en) | 2010-12-03 | 2022-08-30 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022233758A1 (en) | 2021-05-03 | 2022-11-10 | Basf Se | Additives for enhancing the pesticidal effectiveness of pesticidal microorganisms |
WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
WO2022238391A1 (en) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents |
EP4091451A1 (en) | 2021-05-17 | 2022-11-23 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022243109A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted quinolines as fungicides |
WO2022243107A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022243111A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022263285A1 (en) | 2021-06-14 | 2022-12-22 | Basf Se | Yield improvement by gene combinations |
WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
EP4119547A1 (en) | 2021-07-12 | 2023-01-18 | Basf Se | Triazole compounds for the control of invertebrate pests |
WO2023011957A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-quinolyl)-quinazoline |
WO2023011958A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-pirydyl)-quinazoline |
WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
EP4140986A1 (en) | 2021-08-23 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
EP4140995A1 (en) | 2021-08-27 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
EP4144739A1 (en) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellated pyrazoles as parasiticides |
WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
EP4151631A1 (en) | 2021-09-20 | 2023-03-22 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023072670A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x |
WO2023072671A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix |
WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
EP4194453A1 (en) | 2021-12-08 | 2023-06-14 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
EP4198033A1 (en) | 2021-12-14 | 2023-06-21 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
EP4198023A1 (en) | 2021-12-16 | 2023-06-21 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
WO2023148036A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in soybean |
WO2023156270A1 (en) | 2022-02-18 | 2023-08-24 | Basf Se | Coumarin synthesis and uses thereof |
WO2023156402A1 (en) | 2022-02-17 | 2023-08-24 | Basf Se | Pesticidally active thiosemicarbazone compounds |
EP4238971A1 (en) | 2022-03-02 | 2023-09-06 | Basf Se | Substituted isoxazoline derivatives |
WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
US11834466B2 (en) | 2017-11-30 | 2023-12-05 | 5Metis, Inc. | Benzoxaborole compounds and formulations thereof |
EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
WO2024028243A1 (en) | 2022-08-02 | 2024-02-08 | Basf Se | Pyrazolo pesticidal compounds |
WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024033374A1 (en) | 2022-08-11 | 2024-02-15 | Syngenta Crop Protection Ag | Novel arylcarboxamide or arylthioamide compounds |
WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
EP4342885A1 (en) | 2022-09-20 | 2024-03-27 | Basf Se | N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides |
WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068838A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Fungicidal compositions |
WO2024068837A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Agricultural methods |
WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
EP4361126A1 (en) | 2022-10-24 | 2024-05-01 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv |
WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
WO2024104822A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted tetrahydrobenzodiazepine as fungicides |
WO2024104818A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104815A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104823A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | New substituted tetrahydrobenzoxazepine |
EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
EP4389210A1 (en) | 2022-12-21 | 2024-06-26 | Basf Se | Heteroaryl compounds for the control of invertebrate pests |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
WO2024165343A1 (en) | 2023-02-08 | 2024-08-15 | Basf Se | New substituted quinoline compounds for combatitng phytopathogenic fungi |
WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
WO2024194038A1 (en) | 2023-03-17 | 2024-09-26 | Basf Se | Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi |
EP4455137A1 (en) | 2023-04-24 | 2024-10-30 | Basf Se | Pyrimidine compounds for the control of invertebrate pests |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8049071B2 (en) | 2007-11-15 | 2011-11-01 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof |
RU2624025C2 (en) | 2009-09-17 | 2017-06-30 | МОНСАНТО ТЕКНОЛОДЖИ ЭлЭлСи | Coi mon 87708 transgenic object and methods for its application |
JP2013511293A (en) | 2009-11-23 | 2013-04-04 | バイエル・クロップサイエンス・エヌ・ヴェー | Excellent event EE-GM3 and methods and kits for identifying such events in biological samples |
CN106399482B (en) * | 2009-11-23 | 2021-04-27 | 拜尔作物科学股份有限公司 | Herbicide tolerant soybean plants and methods for identifying same |
CA2854327A1 (en) | 2011-11-02 | 2013-05-10 | University Of North Texas | Mtnip regulated plants with significantly increased size and biomass |
AR090417A1 (en) * | 2012-02-01 | 2014-11-12 | Dow Agrosciences Llc | GLIFOSATO RESISTANT PLANTS AND ASSOCIATED METHODS |
EP2676536A1 (en) | 2012-06-22 | 2013-12-25 | AIT Austrian Institute of Technology GmbH | Method for producing plant seed containing endophytic micro-organisms |
AR091548A1 (en) * | 2012-06-25 | 2015-02-11 | Dow Agrosciences Llc | SOFT EVENT PDAB9582.816.15.1 INSECT RESISTANT AND HERBICIDE TOLERANT |
US10231397B2 (en) * | 2013-01-29 | 2019-03-19 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing EIN2 |
AU2013377774A1 (en) | 2013-02-05 | 2015-09-17 | University Of Saskatchewan | Endophytic microbial symbionts in plant prenatal care |
BR112015032423B1 (en) | 2013-06-26 | 2021-11-16 | Symbiota, Inc | SYNTHETIC COMBINATION AND METHOD |
US10136646B2 (en) | 2013-06-26 | 2018-11-27 | Indigo Ag, Inc. | Agricultural endophyte-plant compositions, and methods of use |
EP3659414A1 (en) | 2013-09-04 | 2020-06-03 | Indigo Ag, Inc. | Agricultural endophyte-plant compositions, and methods of use |
US10113177B2 (en) * | 2013-10-14 | 2018-10-30 | Koch Biological Solutions, Llc | Yield improvement in plants |
WO2015069557A2 (en) * | 2013-11-05 | 2015-05-14 | Mendel Biotechnology, Inc. | Resource use efficiency improvement in plants |
MX368885B (en) | 2013-11-06 | 2019-10-21 | Texas A & M Univ Sys | Fungal endophytes for improved crop yields and protection from pests. |
WO2015100432A2 (en) | 2013-12-24 | 2015-07-02 | Symbiota, Inc. | Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds |
EP3086646A4 (en) | 2013-12-24 | 2017-08-09 | Indigo AG, Inc. | Plants containing beneficial endophytes |
US9364005B2 (en) | 2014-06-26 | 2016-06-14 | Ait Austrian Institute Of Technology Gmbh | Plant-endophyte combinations and uses therefor |
US10462990B2 (en) | 2014-06-20 | 2019-11-05 | The Flinders University Of South Australia | Inoculants and methods for use thereof |
US10212911B2 (en) | 2014-06-26 | 2019-02-26 | Indigo Agriculture, Inc. | Endophytes, associated compositions, and methods of use thereof |
EP3240391A4 (en) | 2014-12-30 | 2018-07-11 | Indigo Agriculture, Inc. | Seed endophytes across cultivars and species, associated compositions, and methods of use thereof |
CA2984509A1 (en) | 2015-05-01 | 2016-11-10 | Indigo Agriculture, Inc. | Designed complex endophyte compositions and methods for improved plant traits |
BR112017023549A2 (en) | 2015-05-01 | 2018-07-24 | Indigo Agriculture Inc | isolated complex endophyte compositions and methods for improving plant characteristics. |
RU2017146713A (en) | 2015-06-08 | 2019-07-15 | Индиго Аг, Инк. | ENDOPHITE COMPOSITIONS WITH STREPTOMYCES AND METHODS FOR IMPROVING AGRONOMIC CHARACTERISTICS IN PLANTS |
CN105087558B (en) * | 2015-07-29 | 2017-08-25 | 黑龙江省农业科学院农产品质量安全研究所 | The detection kit and detection method of genetically engineered soybean |
CN105063207B (en) * | 2015-08-10 | 2018-01-12 | 吉林省农业科学院 | Genetically engineered soybean MON87705 LAMP detection primer group, kit and detection method |
CN105039555B (en) * | 2015-08-10 | 2018-03-30 | 吉林省农业科学院 | Genetically engineered soybean MON87701 LAMP detection primer group, kit and detection method |
CN105506071B (en) * | 2015-10-27 | 2019-03-12 | 上海速创诊断产品有限公司 | LAMP detection primer group, LAMP detection kit and the detection method of transgenic pest-resistant soybean MON87701 and its derived varieties |
AU2016378742A1 (en) | 2015-12-21 | 2018-07-12 | Indigo Ag, Inc. | Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance |
CN106399302A (en) * | 2016-06-24 | 2017-02-15 | 汕头出入境检验检疫局检验检疫技术中心 | Duplex fluorescent PCR method for efficiently detecting specific genes of transgenic soybean MON87701 strain and transgenic soybean MON87708 strain simultaneously |
CN106497966B (en) * | 2016-10-12 | 2020-01-10 | 北京大北农科技集团股份有限公司 | Use of insecticidal proteins |
US10624351B2 (en) | 2016-12-01 | 2020-04-21 | Indigo Ag, Inc. | Modulated nutritional quality traits in seeds |
US11572361B2 (en) | 2016-12-22 | 2023-02-07 | Syngenta Participations Ag | Polymorphs |
GB201622007D0 (en) | 2016-12-22 | 2017-02-08 | And See Cambridge Display Tech Ltd Syngenta Participations Ag | Polymorphs |
EP3558006A1 (en) | 2016-12-23 | 2019-10-30 | The Texas A&M University System | Fungal endophytes for improved crop yields and protection from pests |
EP3589116A1 (en) | 2017-03-01 | 2020-01-08 | Indigo AG, Inc. | Endophyte compositions and methods for improvement of plant traits |
EP3589128A1 (en) | 2017-03-01 | 2020-01-08 | Indigo AG, Inc. | Endophyte compositions and methods for improvement of plant traits |
UY37623A (en) | 2017-03-03 | 2018-09-28 | Syngenta Participations Ag | DERIVATIVES OF OXADIAZOL THIOPHEN FUNGICIDES |
MX2019011239A (en) | 2017-03-31 | 2019-10-21 | Syngenta Participations Ag | Fungicidal compositions. |
BR112019020134B1 (en) | 2017-03-31 | 2023-05-09 | Syngenta Participations Ag | FUNGICIDAL COMPOSITIONS |
US20210101874A1 (en) | 2017-04-03 | 2021-04-08 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2018184986A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2018184988A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
BR112019020756B1 (en) | 2017-04-05 | 2023-11-28 | Syngenta Participations Ag | COMPOUNDS DERIVED FROM OXADIAZOLE MICROBICIDES, AGROCHEMICAL COMPOSITION COMPRISING THE SAME, METHOD FOR CONTROLLING OR PREVENTING INFESTATION OF USEFUL PLANTS BY PHYTOPATHOGENIC MICROORGANISMS AND USE OF THESE COMPOUNDS |
BR112019021019B1 (en) | 2017-04-05 | 2023-12-05 | Syngenta Participations Ag | Microbiocidal oxadiazole-derived compounds, agricultural composition, method for controlling or preventing infestation of useful plants by phytopathogenic microorganisms and use of an oxadiazole-derived compound |
WO2018184982A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
BR112019020739B1 (en) | 2017-04-05 | 2023-12-19 | Syngenta Participations Ag | COMPOUNDS DERIVED FROM OXADIAZOLE MICROBIOCIDES AND THEIR USE, AGROCHEMICAL COMPOSITION, METHOD TO CONTROL OR PREVENT INFESTATION OF USEFUL PLANTS BY PHYTOPATHOGENIC MICROORGANISMS |
WO2018185211A1 (en) | 2017-04-06 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
BR112019022446B1 (en) | 2017-04-27 | 2024-01-16 | The Flinders University Of South Australia | COMPOSITIONS OF STREPTOMYCES BACTERIAL INOCULANTS AND METHOD FOR CONTROLLING FUNGAL ROOT DISEASE IN WHEAT OR CANOLA |
WO2018219773A1 (en) | 2017-06-02 | 2018-12-06 | Syngenta Participations Ag | Fungicidal compositions |
EP3630753A1 (en) | 2017-06-02 | 2020-04-08 | Syngenta Participations AG | Microbiocidal oxadiazole derivatives |
US11154058B2 (en) | 2017-06-14 | 2021-10-26 | Syngenta Participations Ag | Fungicidal compositions |
CN107177687A (en) * | 2017-06-22 | 2017-09-19 | 中华人民共和国黄埔出入境检验检疫局 | Transgene cotton MON88701 strain specificities real-time fluorescent PCR testing primer, probe, method and kit |
CN110799035A (en) | 2017-06-28 | 2020-02-14 | 先正达参股股份有限公司 | Fungicidal compositions |
WO2019011929A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2019011926A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2019011923A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2019011928A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2019012011A1 (en) | 2017-07-12 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2019012001A1 (en) | 2017-07-12 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
BR112020000463A2 (en) | 2017-07-13 | 2020-07-21 | Syngenta Participations Ag | microbiocidal oxadiazole derivatives |
US11263707B2 (en) | 2017-08-08 | 2022-03-01 | Indigo Ag, Inc. | Machine learning in agricultural planting, growing, and harvesting contexts |
EP3684167A2 (en) | 2017-09-18 | 2020-07-29 | Indigo AG, Inc. | Markers of plant health |
WO2019057958A1 (en) | 2017-09-22 | 2019-03-28 | Technische Universität Graz | Polymeric particles containing microorganisms |
UY37913A (en) | 2017-10-05 | 2019-05-31 | Syngenta Participations Ag | PICOLINAMIDE DERIVATIVES FUNGICIDES THAT CARRY A QUATERNARY TERMINAL GROUP |
UY37912A (en) | 2017-10-05 | 2019-05-31 | Syngenta Participations Ag | PICOLINAMIDE DERIVATIVES FUNGICIDES THAT CONTAIN HETEROARILO OR HETEROARILOXI TERMINAL GROUPS |
CN111344279B (en) | 2017-11-15 | 2023-07-07 | 先正达参股股份有限公司 | Microbiocidal picolinamide derivatives |
US20190276840A1 (en) * | 2018-03-09 | 2019-09-12 | James A. Baum | Methods and compositions for making and using compatible insecticidal proteins |
CN112020503A (en) | 2018-04-26 | 2020-12-01 | 先正达参股股份有限公司 | Microbicidal oxadiazole derivatives |
WO2020002331A1 (en) | 2018-06-29 | 2020-01-02 | Syngenta Crop Protection Ag | Microbiocidal oxadiazole derivatives |
EP3818058A1 (en) | 2018-07-02 | 2021-05-12 | Syngenta Crop Protection AG | 3-(2-thienyl)-5-(trifluoromethyl)-1,2,4-oxadiazole derivatives as agrochemical fungicides |
WO2020016180A1 (en) | 2018-07-16 | 2020-01-23 | Syngenta Crop Protection Ag | Microbiocidal oxadiazole derivatives |
CA3057917A1 (en) | 2018-10-16 | 2020-04-16 | Monsanto Technology Llc | Brassica event mon94100 and methods of use thereof |
CN113195462A (en) | 2018-10-17 | 2021-07-30 | 先正达农作物保护股份公司 | Microbicidal oxadiazole derivatives |
AR116628A1 (en) | 2018-10-18 | 2021-05-26 | Syngenta Crop Protection Ag | MICROBIOCIDAL COMPOUNDS |
WO2020165403A1 (en) | 2019-02-15 | 2020-08-20 | Syngenta Crop Protection Ag | Phenyl substituted thiazole derivatives as microbiocidal compounds |
AU2020223846A1 (en) | 2019-02-20 | 2021-08-19 | Syngenta Crop Protection Ag | Use of spiropidion |
GB201903942D0 (en) | 2019-03-22 | 2019-05-08 | Syngenta Crop Protection Ag | Microbiocidal compounds |
WO2020208095A1 (en) | 2019-04-10 | 2020-10-15 | Syngenta Crop Protection Ag | Microbiocidal picolinamide derivatives |
BR112021020240A2 (en) | 2019-04-10 | 2021-12-07 | Syngenta Crop Protection Ag | Fungicide compositions |
CN110373488A (en) * | 2019-06-12 | 2019-10-25 | 中国检验检疫科学研究院 | It is a kind of detect transgene component DNA standard sample and its application |
US20220264877A1 (en) | 2019-07-05 | 2022-08-25 | Syngenta Crop Protection Ag | Microbiocidal picolinamide derivatives |
GB201910037D0 (en) | 2019-07-12 | 2019-08-28 | Syngenta Crop Protection Ag | Microbiocidal compounds |
UY39115A (en) | 2020-03-05 | 2021-10-29 | Syngenta Crop Protection Ag | FUNGICIDE MIXTURES OF ARYL METHOXYACRYLATE DERIVATIVES |
JP2023516197A (en) | 2020-03-05 | 2023-04-18 | シンジェンタ クロップ プロテクション アクチェンゲゼルシャフト | Bactericidal composition |
GB202006399D0 (en) | 2020-04-30 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal compounds |
GB202006386D0 (en) | 2020-04-30 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal Compounds |
GB202006480D0 (en) | 2020-05-01 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal compounds |
GB202006606D0 (en) | 2020-05-05 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal compounds |
BR112023001804A2 (en) * | 2020-07-31 | 2023-02-23 | Inari Agriculture Tech Inc | TRANSGENIC MAIZE PLANT CELL, TRANSGENIC MAIZE PLANT PART, TRANSGENIC MAIZE PLANT, METHOD FOR OBTAINING A BULK POPULATION OF INDOGAMIC SEEDS, METHOD FOR OBTAINING A HYBRID MAIZE SEED, DNA MOLECULE, TRANSGENIC MAIZE PLANT PRODUCT PROCESSED, BIOLOGICAL SAMPLE, NUCLEIC ACID MOLECULE ADAPTED FOR DETECTION OF GENOMIC DNA, METHOD FOR DETECTING A CORN PLANT CELL COMPRISING THE INIR6 TRANSGENIC LOCIE, METHOD FOR EXCISION OF THE INIR6 TRANSGENIC LOCIE FROM THE CORN PLANT CELL GENOME |
US20240011043A1 (en) | 2020-07-31 | 2024-01-11 | Inari Agriculture Technology, Inc. | Generation of plants with improved transgenic loci by genome editing |
GB202014840D0 (en) | 2020-09-21 | 2020-11-04 | Syngenta Crop Protection Ag | Microbiocidal compounds |
AR124281A1 (en) | 2020-11-27 | 2023-03-15 | Syngenta Crop Protection Ag | PESTICIDE COMPOSITIONS |
WO2022117650A1 (en) | 2020-12-02 | 2022-06-09 | Syngenta Crop Protection Ag | Fungicidal compositions |
UY39544A (en) | 2020-12-02 | 2022-06-30 | Syngenta Crop Protection Ag | FUNGICIDE COMPOSITIONS COMPRISING A MIXTURE OF COMPONENTS (A) AND (B) AS ACTIVE PRINCIPLES |
AR125089A1 (en) | 2021-03-19 | 2023-06-07 | Syngenta Crop Protection Ag | PESTICIDE COMPOSITIONS |
CN117222314A (en) | 2021-05-04 | 2023-12-12 | 先正达农作物保护股份公司 | Use of clethodim for insect control |
US20240306639A1 (en) | 2021-07-02 | 2024-09-19 | Syngenta Crop Protection Ag | Use of fluazifop-p-butyl for insect control |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0385962A1 (en) * | 1989-02-24 | 1990-09-05 | Monsanto Company | Synthetic plant genes and method for preparation |
WO2002040677A2 (en) * | 2000-11-20 | 2002-05-23 | Monsanto Technology Llc | Cotton event pv-ghbk04 (531) and compositions and methods for detection thereof |
WO2002100163A2 (en) * | 2001-06-11 | 2002-12-19 | Monsanto Technology Llc | Cotton event moni5985 and compositions and methods for detection |
US6893826B1 (en) * | 2000-11-17 | 2005-05-17 | Monsanto Technology Llc | Cotton event PV-GHBK04 (757) and compositions and methods for detection thereof |
WO2006130436A2 (en) * | 2005-05-27 | 2006-12-07 | Monsanto Technology Llc | Soybean event mon89788 and methods for detection thereof |
US20070061919A1 (en) * | 1999-09-15 | 2007-03-15 | Monsanto Technology Llc | Lepidopteran-active bacillus thuringiensis delta-endotoxin polynucleotides, compositions, and methods of use |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6063756A (en) * | 1996-09-24 | 2000-05-16 | Monsanto Company | Bacillus thuringiensis cryET33 and cryET34 compositions and uses therefor |
US6287776B1 (en) | 1998-02-02 | 2001-09-11 | Signature Bioscience, Inc. | Method for detecting and classifying nucleic acid hybridization |
BR122013026754B1 (en) * | 2000-06-22 | 2018-02-27 | Monsanto Company | DNA Molecule And Processes To Produce A Corn Plant Tolerant For Glyphosate Herbicide Application |
US7157281B2 (en) | 2003-12-11 | 2007-01-02 | Monsanto Technology Llc | High lysine maize compositions and event LY038 maize plants |
US7951995B2 (en) | 2006-06-28 | 2011-05-31 | Pioneer Hi-Bred International, Inc. | Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof |
US7928296B2 (en) | 2006-10-30 | 2011-04-19 | Pioneer Hi-Bred International, Inc. | Maize event DP-098140-6 and compositions and methods for the identification and/or detection thereof |
BR122017006111B8 (en) | 2006-10-31 | 2022-12-06 | Du Pont | METHODS TO CONTROL WEEDS |
US8049071B2 (en) | 2007-11-15 | 2011-11-01 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof |
-
2008
- 2008-11-06 US US12/265,860 patent/US8049071B2/en active Active
- 2008-11-06 BR BRPI0820373-3A patent/BRPI0820373B1/en active IP Right Grant
- 2008-11-06 EP EP08849165A patent/EP2209897A1/en not_active Withdrawn
- 2008-11-06 WO PCT/US2008/082590 patent/WO2009064652A1/en active Application Filing
- 2008-11-06 BR BR122017018105-0A patent/BR122017018105B1/en active IP Right Grant
- 2008-11-06 MX MX2010005352A patent/MX2010005352A/en active IP Right Grant
- 2008-11-06 CN CN200880116188.9A patent/CN101861392B/en active Active
- 2008-11-06 AU AU2008321220A patent/AU2008321220A1/en not_active Abandoned
- 2008-11-12 PE PE2008001914A patent/PE20091023A1/en active IP Right Grant
- 2008-11-12 PE PE2013001544A patent/PE20140488A1/en active IP Right Grant
- 2008-11-12 CL CL2008003369A patent/CL2008003369A1/en unknown
- 2008-11-13 PA PA20088803901A patent/PA8803901A1/en unknown
- 2008-11-13 UY UY31467A patent/UY31467A1/en unknown
- 2008-11-14 TW TW097144305A patent/TWI604056B/en not_active IP Right Cessation
- 2008-11-14 AR ARP080104982A patent/AR069330A1/en active IP Right Grant
-
2010
- 2010-06-10 CO CO10070011A patent/CO6280551A2/en not_active Application Discontinuation
-
2011
- 2011-10-31 US US13/286,215 patent/US8455198B2/en active Active
-
2014
- 2014-01-16 AR ARP140100155A patent/AR094498A2/en unknown
-
2017
- 2017-03-20 AR ARP170100688A patent/AR107929A2/en unknown
-
2018
- 2018-01-30 UY UY37586A patent/UY37586A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0385962A1 (en) * | 1989-02-24 | 1990-09-05 | Monsanto Company | Synthetic plant genes and method for preparation |
US20070061919A1 (en) * | 1999-09-15 | 2007-03-15 | Monsanto Technology Llc | Lepidopteran-active bacillus thuringiensis delta-endotoxin polynucleotides, compositions, and methods of use |
US6893826B1 (en) * | 2000-11-17 | 2005-05-17 | Monsanto Technology Llc | Cotton event PV-GHBK04 (757) and compositions and methods for detection thereof |
WO2002040677A2 (en) * | 2000-11-20 | 2002-05-23 | Monsanto Technology Llc | Cotton event pv-ghbk04 (531) and compositions and methods for detection thereof |
WO2002100163A2 (en) * | 2001-06-11 | 2002-12-19 | Monsanto Technology Llc | Cotton event moni5985 and compositions and methods for detection |
WO2006130436A2 (en) * | 2005-05-27 | 2006-12-07 | Monsanto Technology Llc | Soybean event mon89788 and methods for detection thereof |
Non-Patent Citations (7)
Title |
---|
HOLCK ASKILD ET AL: "5'-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize", EUROPEAN FOOD RESEARCH AND TECHNOLOGY, vol. 214, no. 5, May 2002 (2002-05-01), pages 449 - 453, XP002512733, ISSN: 1438-2377 * |
MACRAE TED C ET AL: "Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera", JOURNAL OF ECONOMIC ENTOMOLOGY, ENTOMOLOGICAL SOCIETY OF AMERICA, LANDHAM, MD, US, vol. 98, no. 2, 1 April 2005 (2005-04-01), pages 577 - 587, XP001538794, ISSN: 0022-0493 * |
MIKLOS JOHN A ET AL: "Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests", CROP SCIENCE, vol. 47, no. 1, January 2007 (2007-01-01), pages 148 - 157, XP002512729, ISSN: 0011-183X * |
PAN ET AL: "Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3'-transgene integration sequence", JOURNAL OF CEREAL SCIENCE, ACADEMIC PRESS LTD, XX, vol. 43, no. 2, 1 March 2006 (2006-03-01), pages 250 - 257, XP005265859, ISSN: 0733-5210 * |
YANG LITAO ET AL: "Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5 '-transgene integration sequence", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 53, no. 24, 1 November 2005 (2005-11-01), pages 9312 - 9318, XP002389695, ISSN: 0021-8561 * |
YANG LITAO ET AL: "Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 55, no. 1, January 2007 (2007-01-01), pages 15 - 24, XP002512732, ISSN: 0021-8561 * |
YANG LITAO ET AL: "Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531", TRANSGENIC RESEARCH, vol. 14, no. 6, December 2005 (2005-12-01), pages 817 - 831, XP002512731, ISSN: 0962-8819 * |
Cited By (344)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9493786B2 (en) | 2010-10-12 | 2016-11-15 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic event MON87712 comprising a B-box zinc finger protein 32, and methods for detection thereof |
US10604765B2 (en) | 2010-10-12 | 2020-03-31 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic even MON87712 and methods for detection thereof |
US10696976B2 (en) | 2010-10-12 | 2020-06-30 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic event MON87712 and methods for detection thereof |
US10053704B2 (en) | 2010-10-12 | 2018-08-21 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic event MON87712 and methods for detection thereof |
CN103270173B (en) * | 2010-10-12 | 2017-11-21 | 孟山都技术公司 | Bean plant and seed and its detection method corresponding to transgenic event MON87712 |
CN103270173A (en) * | 2010-10-12 | 2013-08-28 | 孟山都技术公司 | Soybean plant and seed corresponding to transgenic event Mon87712 and methods for detection thereof |
WO2012072489A1 (en) | 2010-11-29 | 2012-06-07 | Bayer Cropscience Ag | Alpha,beta-unsaturated imines |
US9055743B2 (en) | 2010-11-29 | 2015-06-16 | Bayer Intellectual Property Gmbh | Alpha, beta-unsaturated imines |
EP3103338A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3103339A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
EP3103340A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3103334A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3092900A1 (en) | 2010-12-01 | 2016-11-16 | Bayer Intellectual Property GmbH | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
WO2012072696A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
US11425906B2 (en) | 2010-12-03 | 2022-08-30 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US11819022B2 (en) | 2010-12-03 | 2023-11-21 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
EP3292760A1 (en) | 2011-03-23 | 2018-03-14 | Bayer Intellectual Property GmbH | Active compound combinations |
EP3292761A1 (en) | 2011-03-23 | 2018-03-14 | Bayer Intellectual Property GmbH | Active compound combinations |
EP3295797A1 (en) | 2011-03-23 | 2018-03-21 | Bayer Intellectual Property GmbH | Active compound combinations |
WO2012126938A2 (en) | 2011-03-23 | 2012-09-27 | Bayer Cropscience Ag | Active compound combinations |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2997825A1 (en) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
WO2012171914A1 (en) | 2011-06-14 | 2012-12-20 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
US9241493B2 (en) | 2011-06-14 | 2016-01-26 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
US9670496B2 (en) | 2011-08-22 | 2017-06-06 | Bayer Cropscience N.V. | Methods and means to modify a plant genome |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
US10538774B2 (en) | 2011-08-22 | 2020-01-21 | Basf Agricultural Solutions Seed, Us Llc | Methods and means to modify a plant genome |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
RU2644249C2 (en) * | 2011-10-18 | 2018-02-08 | ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи | Materials and methods for detecting the gene of ariloxyalcanoadyoxygenase (aad-12) in plants |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013110591A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compounds combination containing fluopyram bacillus and biologically control agent |
WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
EP3318128A2 (en) | 2012-05-30 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3243387A2 (en) | 2012-05-30 | 2017-11-15 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
EP3300603A2 (en) | 2012-05-30 | 2018-04-04 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3363289A2 (en) | 2012-05-30 | 2018-08-22 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
EP3292764A2 (en) | 2012-05-30 | 2018-03-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii |
EP3409120A1 (en) | 2012-05-30 | 2018-12-05 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3360418A1 (en) | 2012-05-30 | 2018-08-15 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3281526A1 (en) | 2012-05-30 | 2018-02-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3488700A1 (en) | 2012-05-30 | 2019-05-29 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
EP3205210A1 (en) | 2012-05-30 | 2017-08-16 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase |
EP3424322A1 (en) | 2012-07-31 | 2019-01-09 | Bayer CropScience Aktiengesellschaft | Compositions comprising a pesticidal terpene mixture and an insecticide |
WO2014019983A1 (en) | 2012-07-31 | 2014-02-06 | Bayer Cropscience Ag | Compositions comprising a pesticidal terpene mixture and an insecticide |
EP3683307A2 (en) | 2012-09-14 | 2020-07-22 | BASF Agricultural Solutions Seed US LLC | Hppd variants and methods of use |
EP3173477A1 (en) | 2012-09-14 | 2017-05-31 | Bayer Cropscience LP | Hppd variants and methods of use |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2014056956A1 (en) | 2012-10-11 | 2014-04-17 | Bayer Cropscience Ag | Use of n-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
EP2719280A1 (en) | 2012-10-11 | 2014-04-16 | Bayer CropScience AG | Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014079789A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Active compound combinations |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
WO2014086750A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086749A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086764A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086759A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086753A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
WO2014086747A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
WO2014086758A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
WO2014086748A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
EP3318129A1 (en) | 2012-12-03 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Method for pest control by applying a combination of paecilomyces lilacinus and fluopyram |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
WO2014124379A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and an insecticide |
WO2014124369A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and a fungicide |
WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
WO2014124361A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and another biological control agent |
WO2014124373A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and an insecticide |
EP3626828A2 (en) | 2013-03-07 | 2020-03-25 | BASF Agricultural Solutions Seed US LLC | Toxin genes and methods for their use |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014170327A1 (en) * | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for combating pests |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
US20160029631A1 (en) * | 2013-04-19 | 2016-02-04 | Bayer Cropscience Aktiengesellschaft | Method for combating pests |
CN105120664A (en) * | 2013-04-19 | 2015-12-02 | 拜耳作物科学股份公司 | Method for combating pests |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
EP3008187A4 (en) * | 2013-06-14 | 2017-02-01 | Monsanto Technology LLC | Soybean transgenic event mon87751 and methods for detection and use thereof |
EP3296403A1 (en) * | 2013-06-14 | 2018-03-21 | Monsanto Technology LLC | Soybean transgenic event mon87751 and methods for detection and use thereof |
US11236399B2 (en) | 2013-06-14 | 2022-02-01 | Monsanto Technology Llc | Soybean transgenic event MON87751 and methods for detection and use thereof |
US9719145B2 (en) | 2013-06-14 | 2017-08-01 | Monsanto Technology Llc | Soybean transgenic event MON87751 and methods for detection and use thereof |
US11767568B2 (en) | 2013-06-14 | 2023-09-26 | Monsanto Technology Llc | Soybean transgenic event MON87751 and methods for detection and use thereof |
US10584391B2 (en) | 2013-06-14 | 2020-03-10 | Monsanto Technology Llc | Soybean transgenic event MON87751 and methods for detection and use thereof |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
EP2885970A1 (en) | 2013-12-21 | 2015-06-24 | Bayer CropScience AG | Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
WO2016001121A1 (en) * | 2014-07-01 | 2016-01-07 | Bayer Cropscience Aktiengesellschaft | Method for improved utilization of the production potential of transgenic plants |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
WO2016193073A1 (en) | 2015-05-29 | 2016-12-08 | Bayer Cropscience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018114393A1 (en) | 2016-12-19 | 2018-06-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
WO2018119364A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm5 and methods and kits for identifying such event in biological samples |
WO2018119361A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm4 and methods and kits for identifying such event in biological samples |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
WO2018153730A1 (en) | 2017-02-21 | 2018-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2018184970A1 (en) | 2017-04-07 | 2018-10-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018188962A1 (en) | 2017-04-11 | 2018-10-18 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
WO2018202487A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for combating phytopathogenic fungi |
WO2018202491A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2018219797A1 (en) | 2017-06-02 | 2018-12-06 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2018234139A1 (en) | 2017-06-19 | 2018-12-27 | Basf Se | 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi |
WO2019007889A1 (en) * | 2017-07-06 | 2019-01-10 | Bayer Aktiengesellschaft | Method for improved utilization of the production potential of transgenic plants |
WO2019025250A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019038042A1 (en) | 2017-08-21 | 2019-02-28 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019052932A1 (en) | 2017-09-18 | 2019-03-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019068811A1 (en) | 2017-10-06 | 2019-04-11 | Bayer Aktiengesellschaft | Compositions comprising fluopyram and tioxazafen |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2019101511A1 (en) | 2017-11-23 | 2019-05-31 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
US11834466B2 (en) | 2017-11-30 | 2023-12-05 | 5Metis, Inc. | Benzoxaborole compounds and formulations thereof |
WO2019121143A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Substituted cyclopropyl derivatives |
WO2019137995A1 (en) | 2018-01-11 | 2019-07-18 | Basf Se | Novel pyridazine compounds for controlling invertebrate pests |
WO2019145221A1 (en) | 2018-01-29 | 2019-08-01 | BASF Agro B.V. | New agrochemical formulations |
WO2019154665A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019154663A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
WO2019166257A1 (en) | 2018-03-01 | 2019-09-06 | BASF Agro B.V. | Fungicidal compositions of mefentrifluconazole |
WO2019219464A1 (en) | 2018-05-15 | 2019-11-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019224092A1 (en) | 2018-05-22 | 2019-11-28 | Basf Se | Pesticidally active c15-derivatives of ginkgolides |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
US12098159B2 (en) | 2018-08-18 | 2024-09-24 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
US11236115B2 (en) | 2018-08-18 | 2022-02-01 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
US11560393B2 (en) | 2018-08-18 | 2023-01-24 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
US11066424B2 (en) | 2018-08-18 | 2021-07-20 | Boragen, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
EP3613736A1 (en) | 2018-08-22 | 2020-02-26 | Basf Se | Substituted glutarimide derivatives |
WO2020064480A1 (en) | 2018-09-28 | 2020-04-02 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
EP3628158A1 (en) | 2018-09-28 | 2020-04-01 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
WO2020083662A1 (en) | 2018-10-23 | 2020-04-30 | Basf Se | Tricyclic pesticidal compounds |
WO2020083733A1 (en) | 2018-10-24 | 2020-04-30 | Basf Se | Pesticidal compounds |
EP3643705A1 (en) | 2018-10-24 | 2020-04-29 | Basf Se | Pesticidal compounds |
EP3670501A1 (en) | 2018-12-17 | 2020-06-24 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2020144308A1 (en) | 2019-01-11 | 2020-07-16 | Basf Se | Crystalline forms of 1-(1,2-dimethylpropyl)-n-ethyl-5-methyl-n-pyridazin-4-yl-pyrazole-4-carboxamide |
EP3696177A1 (en) | 2019-02-12 | 2020-08-19 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2020231751A1 (en) | 2019-05-10 | 2020-11-19 | Bayer Cropscience Lp | Active compound combinations |
WO2020239517A1 (en) | 2019-05-29 | 2020-12-03 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2020244968A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Fungicidal n-(pyrid-3-yl)carboxamides |
WO2020244970A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | New carbocyclic pyridine carboxamides |
WO2020244969A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Pyridine derivatives and their use as fungicides |
WO2021013561A1 (en) | 2019-07-19 | 2021-01-28 | Basf Se | Pesticidal pyrazole and triazole derivatives |
EP3766879A1 (en) | 2019-07-19 | 2021-01-20 | Basf Se | Pesticidal pyrazole derivatives |
WO2021013721A1 (en) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituted pyrazoles and triazoles as pest control agents |
EP3769623A1 (en) | 2019-07-22 | 2021-01-27 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021063736A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | Bicyclic pyridine derivatives |
WO2021063735A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | New bicyclic pyridine derivatives |
WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021089673A1 (en) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021213978A1 (en) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents |
WO2021219513A1 (en) | 2020-04-28 | 2021-11-04 | Basf Se | Pesticidal compounds |
EP3903583A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii |
EP3903581A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i |
EP3903582A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii |
EP3903584A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv |
WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
EP3909950A1 (en) | 2020-05-13 | 2021-11-17 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
WO2021249800A1 (en) | 2020-06-10 | 2021-12-16 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
WO2021259997A1 (en) | 2020-06-25 | 2021-12-30 | Bayer Animal Health Gmbh | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2022002818A1 (en) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
EP3939961A1 (en) | 2020-07-16 | 2022-01-19 | Basf Se | Strobilurin type compounds and their use for combating phytopathogenic fungi |
WO2022017836A1 (en) | 2020-07-20 | 2022-01-27 | BASF Agro B.V. | Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol |
EP3945089A1 (en) | 2020-07-31 | 2022-02-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v |
WO2022033991A1 (en) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituted triazoles as pest control agents |
EP3960727A1 (en) | 2020-08-28 | 2022-03-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi |
WO2022043559A2 (en) | 2020-08-31 | 2022-03-03 | Basf Se | Yield improvement |
WO2022053453A1 (en) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azole carboxamide as pest control agents |
WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
EP3970494A1 (en) | 2020-09-21 | 2022-03-23 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii |
EP3974414A1 (en) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituted pyrazoles and triazoles as pesticides |
WO2022089969A1 (en) | 2020-10-27 | 2022-05-05 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022090069A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Compositions comprising mefenpyr-diethyl |
WO2022090071A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Use of mefenpyr-diethyl for controlling phytopathogenic fungi |
WO2022106304A1 (en) | 2020-11-23 | 2022-05-27 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022128524A1 (en) | 2020-12-14 | 2022-06-23 | Basf Se | Sulfoximine pesticides |
EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
EP4036083A1 (en) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituted heterocycles as pesticides |
WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
EP4043444A1 (en) | 2021-02-11 | 2022-08-17 | Basf Se | Substituted isoxazoline derivatives |
WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022233758A1 (en) | 2021-05-03 | 2022-11-10 | Basf Se | Additives for enhancing the pesticidal effectiveness of pesticidal microorganisms |
WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
WO2022238391A1 (en) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents |
EP4091451A1 (en) | 2021-05-17 | 2022-11-23 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
WO2022243109A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted quinolines as fungicides |
WO2022243107A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022243111A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
WO2022263285A1 (en) | 2021-06-14 | 2022-12-22 | Basf Se | Yield improvement by gene combinations |
WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
EP4119547A1 (en) | 2021-07-12 | 2023-01-18 | Basf Se | Triazole compounds for the control of invertebrate pests |
WO2023011958A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-pirydyl)-quinazoline |
WO2023011957A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-quinolyl)-quinazoline |
WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
EP4140986A1 (en) | 2021-08-23 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
EP4140995A1 (en) | 2021-08-27 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
EP4144739A1 (en) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellated pyrazoles as parasiticides |
EP4151631A1 (en) | 2021-09-20 | 2023-03-22 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023072671A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix |
WO2023072670A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x |
WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
EP4194453A1 (en) | 2021-12-08 | 2023-06-14 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
EP4198033A1 (en) | 2021-12-14 | 2023-06-21 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
EP4198023A1 (en) | 2021-12-16 | 2023-06-21 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023110932A1 (en) | 2021-12-16 | 2023-06-22 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2023148036A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in soybean |
WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
WO2023156402A1 (en) | 2022-02-17 | 2023-08-24 | Basf Se | Pesticidally active thiosemicarbazone compounds |
WO2023156270A1 (en) | 2022-02-18 | 2023-08-24 | Basf Se | Coumarin synthesis and uses thereof |
WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
EP4238971A1 (en) | 2022-03-02 | 2023-09-06 | Basf Se | Substituted isoxazoline derivatives |
WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
WO2024028243A1 (en) | 2022-08-02 | 2024-02-08 | Basf Se | Pyrazolo pesticidal compounds |
WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024033374A1 (en) | 2022-08-11 | 2024-02-15 | Syngenta Crop Protection Ag | Novel arylcarboxamide or arylthioamide compounds |
WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
EP4342885A1 (en) | 2022-09-20 | 2024-03-27 | Basf Se | N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides |
WO2024068837A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Agricultural methods |
WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068838A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Fungicidal compositions |
WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
EP4361126A1 (en) | 2022-10-24 | 2024-05-01 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv |
WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
WO2024104823A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | New substituted tetrahydrobenzoxazepine |
WO2024104822A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted tetrahydrobenzodiazepine as fungicides |
WO2024104818A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
WO2024104815A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024126688A1 (en) | 2022-12-15 | 2024-06-20 | Kimitec Biogroup S.L | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
EP4389210A1 (en) | 2022-12-21 | 2024-06-26 | Basf Se | Heteroaryl compounds for the control of invertebrate pests |
WO2024165343A1 (en) | 2023-02-08 | 2024-08-15 | Basf Se | New substituted quinoline compounds for combatitng phytopathogenic fungi |
WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
WO2024194038A1 (en) | 2023-03-17 | 2024-09-26 | Basf Se | Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi |
EP4455137A1 (en) | 2023-04-24 | 2024-10-30 | Basf Se | Pyrimidine compounds for the control of invertebrate pests |
Also Published As
Publication number | Publication date |
---|---|
US20090130071A1 (en) | 2009-05-21 |
US20120149015A1 (en) | 2012-06-14 |
PA8803901A1 (en) | 2009-06-23 |
AU2008321220A1 (en) | 2009-05-22 |
AR107929A2 (en) | 2018-06-28 |
CN101861392A (en) | 2010-10-13 |
PE20091023A1 (en) | 2009-08-15 |
BRPI0820373B1 (en) | 2024-01-02 |
US8049071B2 (en) | 2011-11-01 |
US8455198B2 (en) | 2013-06-04 |
CN101861392B (en) | 2016-01-20 |
PE20140488A1 (en) | 2014-05-15 |
BR122017018105B1 (en) | 2024-01-23 |
UY31467A1 (en) | 2009-07-17 |
TW200936766A (en) | 2009-09-01 |
CL2008003369A1 (en) | 2010-01-04 |
CO6280551A2 (en) | 2011-05-20 |
MX2010005352A (en) | 2010-07-02 |
AR069330A1 (en) | 2010-01-13 |
UY37586A (en) | 2019-08-30 |
EP2209897A1 (en) | 2010-07-28 |
BRPI0820373A2 (en) | 2014-10-14 |
AR094498A2 (en) | 2015-08-05 |
TWI604056B (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8455198B2 (en) | Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof | |
US20200354738A1 (en) | Soybean plant and seed corresponding to transgenic event mon87712 and methods for detection thereof | |
US10344292B2 (en) | Soybean transgenic event MON87705 and methods for detection thereof | |
US8999411B2 (en) | Soybean plant and seed corresponding to transgenic event MON87769 and methods for detection thereof | |
EP2021476B1 (en) | Corn plant and seed corresponding to transgenic event mon89034 and methods for detection and use thereof | |
US8618360B2 (en) | Rice transgenic event 17314 and methods of use thereof | |
US8618359B2 (en) | Rice transgenic event 17053 and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880116188.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08849165 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008321220 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008849165 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/005352 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008321220 Country of ref document: AU Date of ref document: 20081106 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10070011 Country of ref document: CO |
|
ENP | Entry into the national phase |
Ref document number: PI0820373 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100514 |