Nothing Special   »   [go: up one dir, main page]

WO2009059901A2 - Heat shielding additives - Google Patents

Heat shielding additives Download PDF

Info

Publication number
WO2009059901A2
WO2009059901A2 PCT/EP2008/064347 EP2008064347W WO2009059901A2 WO 2009059901 A2 WO2009059901 A2 WO 2009059901A2 EP 2008064347 W EP2008064347 W EP 2008064347W WO 2009059901 A2 WO2009059901 A2 WO 2009059901A2
Authority
WO
WIPO (PCT)
Prior art keywords
tert
hydrogen
tungsten
butyl
composition
Prior art date
Application number
PCT/EP2008/064347
Other languages
French (fr)
Other versions
WO2009059901A3 (en
Inventor
Marc Mamak
Francesca Peri
Original Assignee
Basf Se
Ciba S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2008/060550 external-priority patent/WO2009024497A1/en
Application filed by Basf Se, Ciba S.P.A. filed Critical Basf Se
Priority to JP2010532541A priority Critical patent/JP5634871B2/en
Priority to US12/739,166 priority patent/US8168711B2/en
Priority to CN200880114781.XA priority patent/CN101848865B/en
Priority to EP08847970A priority patent/EP2217533B1/en
Priority to BRPI0818911A priority patent/BRPI0818911A8/en
Publication of WO2009059901A2 publication Critical patent/WO2009059901A2/en
Publication of WO2009059901A3 publication Critical patent/WO2009059901A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • C08K5/58Organo-tin compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • B29C66/73366General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light both parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0616VLDPE, i.e. very low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0641MDPE, i.e. medium density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like

Definitions

  • the present application pertains to certain particles of the tungsten/tungsten oxide series, a method for their preparation, compositions containing these particles, and the use of the particles as IR absorbers and/or heat shielding additives.
  • Tungsten suboxide powders (e.g. WO 2 7) are commercially available as fine powders (5-20 microns) e.g. from Osram Sylvania.
  • Tungsten suboxides and tungstates are known as infrared shielding material.
  • the publications EP 1 676 890 and US2007/0187653 disclose an infrared shielding nanoparticle dispersion comprising tungsten trioxide having reduced oxygen. The preparation of some further tungstates is described in WO07/092030.
  • the present invention mainly provides a particle composition comprising a) 25 - 70 parts by weight, especially 30 - 55 parts by weight, of a hydrogen tungsten bronze, b) 20 - 70 parts by weight, especially 30 - 60 parts by weight, of a binary tungsten oxide, and c) 1 - 30 parts by weight, especially 2 - 20 parts by weight, of tungsten metal.
  • a major fraction e.g.
  • the hydrogen tungsten bronze is of cubic crystal structure.
  • the most preferred tungsten bronze phase generally is the one described by Wiseman, J. Solid State Chem. 6, 374 (1973), of space group lm-3, except that no restriction to deuterium is necessary for use in the present invention, and the material thus may contain any hydrogen isotope, usually natural hydrogen.
  • the binary tungsten oxide in the present composition in its overall composition usually conforms to the formula WO 3-y , where y ranges from 0 to 1 , for example from 0.01 to 0.55, preferably from 0 to 0.33, especially from 0 to 0.1.
  • binary tungsten oxides are widely known, examples are the phases WO 3 , WO 2 9 2 (also known as W 25 O 73 ), WO 283 (i.e. W 24 O 68 ), WO 28 (i.e. W 5 Oi 4 ), WO 272 (i.e. W 18 O 49 ), WO 2625 (i.e. W 32 O 84 ), WO 2 .
  • Some further preferred binary tungsten oxide phases include: WO 3 in its monoclinic form, P2-
  • WO 2 g 2 in its monoclinic form, P2-
  • the particle composition of the invention may comprise components a-c each as separate particles or, preferably, the majority of particles, or all of them, are containing each of these components.
  • Components a-c together usually make up 95 - 100 % b.w. of the total powder composition; the remainders, if any, usually are organic polymers, other tungsten compounds and/or water.
  • the (primary) particles are usually nanoparticles from the size range 1 nm to 800 nm, e.g. 90% b.w. of the particles are within that range, especially within the diameter range 5 to 300 nm; aggregates, if formed, e.g. in a dispersion, usually may be converted into primary particles, e.g. dispersions thereof, by well known techniques.
  • Preferred powders are those wherein at least 80 % b.w. of the particles have their smallest and their largest diameters from the range 5 to 300 nm.
  • the particles embedded in their matrix are able to absorb relevant IR radiation (especially NIR, e.g. in the band from 800 to 2500 nm).
  • the shape may be freely selected, e.g. from spheres, flakes and nanorods.
  • the invention further pertains to a process for the preparation of a hydrogen tungsten bronze, especially a hydrogen tungsten bronze composition comprising components a-c as defined above, which process comprises contacting an ammonium tungstate with hydrogen or a hydrogen releasing, reducing gas, at a temperature of 2500 K or more.
  • Preferred ammonium tungstates for use in this process include ammonium monotungstate, ammonium paratungstates such as hexatungstate and dodekatungstate, and ammonium metatungstate, as well as their hydrates; an example is Suitable gases for reduction and hydrogen release include, for example, ammonia or volatile hydrocarnons like ethane or propane; these may be used in place of hydrogen or as a mixture with hydrogen.
  • the contacting is preferably effected in a plasma, especially where hydrogen and/or the hydrogen releasing gas is used in mixture with a noble gas.
  • the plasma torch is preferably an induction plasma torch.
  • the preferred induction plasma torches for use in the process of the present invention are available from Tekna Plasma Systems, Inc. of Sherbrooke, Quebec, Canada. Boulos et al., US-A-5,200,595, is hereby incorporated by reference for its teachings relative to the construction and operation of plasma induction torches.
  • the present particle composition brings about the advantage of good dispersability in the polymer, good heat shielding properties of the polymer composition thus obtainable, and good transparency, low haze.
  • the resulting polymer compositions generally show low discoloration and good colour stability upon aging (low yellowing).
  • the particles may be incorporated e.g. by an additive blending technique using a mixer, kneader or extruder, into coating or plastic compositions, e.g. thermoplastic polymer materials in form of films or sheets.
  • the particles may be used to obtain transparent or translucent, especially transparent, materials having highly effective IR absorption/heat shielding properties, and/or to improve the heat absorption efficacy of the material.
  • the present powder compositions advantageously are used as an additive in the following polymer matrices: - A -
  • Polymers of monoolefins and diolefins for example polypropylene, polyisobutylene, po- lybut-1-ene, poly-4-methylpent-1-ene, polyvinylcyclohexane, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).
  • HDPE high density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultrahigh molecular weight polyethylene
  • MDPE medium density polyethylene
  • Polyolefins i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table.
  • These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either ⁇ - or ⁇ -coordinated.
  • These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(lll) chloride, alumina or silicon oxide.
  • These catalysts may be soluble or insoluble in the polymerisation medium.
  • the catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, Na and/or Ilia of the Periodic Table.
  • the activators may be modified conveniently with further ester, ether, amine or silyl ether groups.
  • These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • Copolymers of monoolefins and diolefins with each other or with other vinyl monomers for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, ethylene/vinylcyclohexane copolymers, ethylene/cycloolefin copolymers (e.g.
  • ethylene/norbornene like COC ethylene/1 -olefins copolymers, where the 1 -olefin is generated in-situ; propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/vi- nylcyclohexene copolymers, ethylene/alkyl acrylate copolymers, ethyl en e/a Iky I methacrylate copolymers, ethylene/vinyl acetate copolymers or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1 ) above, for example polypropylene/ethy- lene-propy
  • Hydrocarbon resins for example C 5 -C 9
  • hydrogenated modifications thereof e.g. tackifiers
  • mixtures of polyalkylenes and starch
  • Homopolymers and copolymers from 1.) - 4.) may have any stereostructure including syndio- tactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included.
  • Polystyrene poly(p-methylstyrene), poly( ⁇ -methylstyrene).
  • Homopolymers and copolymers may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included. 6a.
  • Copolymers including aforementioned vinyl aromatic monomers and comonomers selected from ethylene, propylene, dienes, nitriles, acids, maleic anhydrides, maleimides, vinyl acetate and vinyl chloride or acrylic derivatives and mixtures thereof, for example styrene/bu- tadiene, styrene/acrylonitrile, styrene/ethylene (interpolymers), styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/butadiene/alkyl methacrylate, styrene/maleic anhydride, styrene/acrylonitrile/methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene/pro- pylene/diene terpolymer; and block copoly
  • Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6. especially including polycyclohexylethylene (PCHE) prepared by hydrogenating atactic polystyrene, often referred to as polyvinylcyclohexane (PVCH).
  • PCHE polycyclohexylethylene
  • PVCH polyvinylcyclohexane
  • Homopolymers and copolymers may have any stereostructure including syndiotactic, isotac- tic, hemi-isotactic or atactic; where atactic polymers are preferred.
  • Stereoblock polymers are also included.
  • Graft copolymers of vinyl aromatic monomers such as styrene or ⁇ -methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acry- lonitrile copolymers; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and maleimide on polybutadiene; styrene and alkyl acrylates or methacrylates on polybutadiene; styrene and acrylonitrile on ethylene/propylene/diene terpoly
  • Halogen-containing polymers such as polychloroprene, chlorinated rubbers, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or sulfo- chlorinated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, especially polymers of halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, as well as copolymers thereof such as vinyl chloride/vinylidene chloride, vinyl chloride/vinyl acetate or vinylidene chloride/vinyl acetate copolymers.
  • Polymers derived from ⁇ , ⁇ -unsatu rated acids and derivatives thereof such as polyacry- lates and polymethacrylates; polymethyl methacrylates, polyacrylamides and polyacryloni- triles, impact-modified with butyl acrylate.
  • Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers for example acrylonitrile/ butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/alkoxyalkyl acrylate or acrylonitrile/vinyl halide copolymers or acrylonitrile/ alkyl methacrylate/butadiene terpolymers.
  • Polymers derived from unsaturated alcohols and amines or the acyl derivatives or ace- tals thereof for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in 1 ) above.
  • Polyacetals such as polyoxymethylene and those polyoxymethylenes which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS.
  • Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, polyamide 11 , polyamide 12, aromatic polyamides starting from m-xylene diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic or/and terephthalic acid and with or without an ela- stomer as modifier, for example poly-2,4,4,-trimethylhexamethylene terephthalamide or poly- m-phenylene isophthalamide; and also block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polyt
  • Polyureas Polyureas, polyimides, polyamide-imides, polyetherimides, polyesterimides, polyhydan- toins and polybenzimidazoles.
  • Polyesters derived from dicarboxylic acids and diols and/or from hydroxycarboxylic acids or the corresponding lactones or lactides for example polyethylene terephthalate, polybuty- lene terephthalate, poly-1 ,4-dimethylolcyclohexane terephthalate, polyalkylene naphthalate and polyhydroxybenzoates as well as copolyether esters derived from hydroxyl-terminated polyethers, and also polyesters modified with polycarbonates or MBS.
  • Copolyesters may comprise, for example - but are not limited to - polybutylenesuccinate/terephtalate, polybuty- leneadipate/terephthalate, polytetramethyleneadipate/terephthalate, polybutylensuccinate/- adipate, polybutylensuccinate/carbonate, poly-3-hydroxybutyrate/octanoate copolymer, poly- 3-hydroxybutyrate/hexanoate/decanoate terpolymer.
  • aliphatic polyesters may comprise, for example - but are not limited to - the class of poly(hydroxyalkanoates), in par- ticular, poly(propiolactone), poly(butyrolactone), poly(pivalolactone), poly(valerolactone) and poly(caprolactone), polyethylenesuccinate, polypropylenesuccinate, polybutylenesuccinate, polyhexamethylenesuccinate, polyethyleneadipate, polypropyleneadipate, polybutyleneadi- pate, polyhexamethyleneadipate, polyethyleneoxalate, polypropyleneoxalate, polybutylene- oxalate, polyhexamethyleneoxalate, polyethylenesebacate, polypropylenesebacate, polybu- tylenesebacate and polylactic acid (PLA) as well as corresponding polyesters modified with polycarbonates or MBS.
  • PPA polylactic acid
  • polylactic acid designates a homo-polymer of preferably poly-L-lactide and any of its blends or alloys with other polymers; a co-polymer of lactic acid or lactide with other monomers, such as hydroxy-carboxylic acids, like for example glycolic acid, 3-hydroxy-butyric acid, 4-hydroxy-butyric acid, 4-hydroxy-valeric acid, 5-hydr- oxy-valeric acid, 6-hydroxy-caproic acid and cyclic forms thereof; the terms "lactic acid” or "lactide” include L-lactic acid, D-lactic acid, mixtures and dimers thereof, i.e. L-lactide, D-lac- tide, meso-lacide and any mixtures thereof.
  • Unsaturated polyester resins derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols and vinyl compounds as crosslinking agents, and also halogen-containing modifications thereof of low flammability.
  • Crosslinkable acrylic resins derived from substituted acrylates for example epoxy acry- lates, urethane acrylates or polyester acrylates.
  • Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, e.g. products of diglycidyl ethers of bisphenol A and bisphenol F, which are crosslinked with customary hardeners such as anhydrides or amines, with or without accelerators.
  • Natural polymers such as cellulose, rubber, gelatin and chemically modified homologous derivatives thereof, for example cellulose acetates, cellulose propionates and cellulose butyrates, or the cellulose ethers such as methyl cellulose; as well as rosins and their derivatives.
  • Blends of the aforementioned polymers for example PP/EPDM, PoIy- amide/EPDM or ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA,
  • PC/PBT PC/PBT, PVC/CPE, PVC/acrylates, POM/thermoplastic PUR, PC/thermoplastic PUR, POM/acrylate, POM/MBS, PPO/HIPS, PPO/PA 6.6 and copolymers, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS or PBT/PET/PC.
  • the amount of light transmitted through the present materials i.e. degree of translucency or transparency, mainly depends on well known parameters such as the particle loading, further additives used, haze level of the polymer matrix, and thickness of the material.
  • the present materials usually are at least 80 %, or rather more than 90 % translucent in each part of the visible range (400 - 800 nm); preferred materials have good transparency, and especially are selected from clear- transparent sheets and films of thickness less than 10 mm (e.g. 0.01 to 5 mm).
  • Preferred materials further share one or more of the following advantageous properties: a full solar radiation transmittance (340-1800 nm) of less than 60 %, a haze of less than 10 %, - an electromagnetic shielding in the range 10 - 2000 MHz of less than 2 dB, and a full visible light transmittance (400 - 800 nm) of more than 75 %.
  • the present particles advantageously are used as an additive in the following plastic matrices (especially in the case of transparent and translucent polymer products): - Polycarbonate (PC) or a coating or coextruded layer on polycarbonate, polyesters, acrylics, halogenated polymers such as polyvinylchloride (PVC), polyolefins, aromatic homopolymers and copolymers derived from vinyl aromatic monomers and graft copolymers thereof such as acrylnitril-butadiene-styrene terpolymer (ABS), containing these polymers as major component or in essentially pure form (e.g.
  • PC Polycarbonate
  • PC polycarbonate
  • ABS acrylnitril-butadiene-styrene terpolymer
  • a polymer selected from PC polymethylmethacrylate (PMMA), polyethyleneterephthalate (PET, PET-G), PVC, transparent ABS, polyvinylidene fluoride (PVDF), styrene-acrylnitril copolymer (SAN), polypropylene (PP), polyethylene (PE) including blends, alloys, co-polymers.
  • PC polymethylmethacrylate
  • PET polyethyleneterephthalate
  • PET-G PET-G
  • PVC polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • SAN polypropylene
  • PE polyethylene
  • PE polyethylene
  • Incorporation into the polymer matrix leads to plastic articles which may be highly transparent; they may be colorless (e.g. for clear glazings or films) or colored, e.g. by addition of a pigment or mixture of pigments, e.g. for applications wherein suitable light filtering or sun screening is desired, or in the case of coloured coatings.
  • the present oxide or nitride materials allow high loading, giving access to high heat shielding effects. Preferable loadings are from 0.01 to 15%, especially 0.1 to 5% by weight of the final polymer composition.
  • the present particles may further be functionalized at their surface before incorporation using known methods, e.g. silanization, use of thiols, amines, phosphines, stearates, etc.
  • present particle and/or powder compositions are combined with one or more further additives, e.g. selected from the following materials:
  • Alkylated monophenols for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-di- methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-bu- tyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-( ⁇ -methylcyclohexyl)-4,6-dimethyl- phenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-meth- oxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1 '-methylunde
  • Alkylthiomethylphenols for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctyl- thiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4- nonylphenol.
  • Alkylthiomethylphenols for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctyl- thiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4- nonylphenol.
  • Hydroquinones and alkylated hydroquinones for example 2,6-di-tert-butyl-4-methoxy- phenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octade- cyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-bu- tyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis(3,5-di-tert-butyl-4-hy- droxyphenyl) adipate.
  • Tocopherols for example ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and mixtures thereof (vitamin E).
  • Hydroxylated thiodiphenyl ethers for example 2,2'-thiobis(6-tert-butyl-4-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-2- methylphenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)- disulfide.
  • 2,2'-thiobis(6-tert-butyl-4-methylphenol 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-2- methylphenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6
  • Alkylidenebisphenols for example 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'- methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-( ⁇ -methylcyclohexyl)- phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4- methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butyl- phenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-( ⁇ -methylben- zyl)-4-nonylphenol], 2,2'-methylenebis[6-( ⁇ , ⁇ -dimethyl
  • Hydroxybenzylated malonates for example dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hy- droxybenzyl)malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, di- dodecylmercaptoethyl-2,2-bis (3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1 ,1 ,3,3-te- tramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.
  • dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hy- droxybenzyl)malonate di-octadecyl-2-(3-tert-butyl-4-
  • Aromatic hydroxybenzyl compounds for example 1 ,3,5-tris(3,5-di-tert-butyl-4-hydroxy- benzyl)-2,4,6-trimethylbenzene, 1 ,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetrame- thylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
  • Triazine compounds for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxy- anilino)-1 ,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1 ,3,5-tri- azine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,3,5-triazine, 2,4,6-tris- (3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,2,3-triazine, 1 ,3,5-tris(3,5-di-tert-butyl-4-hydroxyben- zyl)isocyanurate, 1 ,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl
  • Benzylphosphonat.es for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphospho- nate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl3,5-di-tert-butyl-4-hy- droxybenzylphosphonate, dioctadecyl- ⁇ -tert-butyl ⁇ -hydroxy-S-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
  • Acylaminophenols for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N- (3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.
  • esters of ⁇ -(3,5-di-tert-butyl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1 ,6-hexanediol, 1 ,9- nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethy- lene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hy- droxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylol- propane, 4-hydroxy
  • esters of ⁇ -(5-tert-butyl-4-hvdroxy-3-methylphenyl)propionic acid with mono- or poly- hydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1 ,6-hexanedi- ol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis- (hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethyl- olpropane, 4-hydroxymethyl-1
  • esters of ⁇ -(3,5-dicvclohexyl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)ox- amide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hy- droxymethyl-1-phospha-2,6,7-triox
  • esters of 3,5-di-tert-butyl-4-hvdroxyphenyl acetic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)ox- amide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hy- droxymethyl-1 -phospha-2,6,7-trioxabicyclo
  • antioxidants for example N,N'-di-isopropyl-p-phenylenediamine, N,N'-di-sec-bu- tyl-p-phenylenediamine, N,N'-bis(1 ,4-dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3- methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicy- clohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p- phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenyl
  • 2-(2'-Hvdroxyphenyl)benzotriazoles for example 2-(2'-hydroxy-5'-methylphenyl)-benzo- triazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-tert-butyl-2'-hydroxyphe- nyl)benzotriazole, 2-(2'-hydroxy-5'-(1 ,1 ,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3',5'-di- tert-butyl-2'-hydroxyphenyl)-5-chloro-benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-methylphe- nyl)-5-chloro-benzotriazole, 2-(3'-sec-butyl-5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(3'
  • azol-2-ylphenyl 2-[2'-hydroxy-3'-( ⁇ , ⁇ -dimethylbenzyl)-5'-(1 ,1 ,3,3-tetramethylbutyl)-phenyl]- benzotriazole; 2-[2'-hydroxy-3'-(1 ,1 ,3,3-tetramethylbutyl)-5'-( ⁇ , ⁇ -dimethylbenzyl)-phenyl]ben- zotriazole.
  • 2-Hvdroxybenzophenones for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyl- oxy, 4-dodecyloxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-hydroxy-4,4'-dimethoxy derivatives.
  • Esters of substituted and unsubstituted benzoic acids for example 4-tert-butyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylben- zoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzo- ate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxyben- zoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • Acrylates for example ethyl ⁇ -cyano- ⁇ , ⁇ -diphenylacrylate, isooctyl ⁇ -cyano- ⁇ , ⁇ -diphe- nylacrylate, methyl ⁇ -carbomethoxycinnamate, methyl ⁇ -cyano- ⁇ -methyl-p-methoxycinna- mate, butyl ⁇ -cyano- ⁇ -methyl-p-methoxy-cinnamate, methyl ⁇ -carbomethoxy-p-methoxycin- namate, N-( ⁇ -carbomethoxy- ⁇ -cyanovinyl)-2-methylindoline, neopentyl tetra( ⁇ -cyano- ⁇ , ⁇ -di- phenylacrylate.
  • Nickel compounds for example nickel complexes of 2,2'-thio-bis[4-(1 ,1 ,3,3-tetramethyl- butyl)phenol], such as the 1 :1 or 1 :2 complex, with or without additional ligands such as n- butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert- butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphe- nylundecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands.
  • additional ligands such as n- butylamine, triethanolamine or N-cyclohexyldi
  • Sterically hindered amines for example bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1 ,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1 -octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1 ,2,2,6,6-pentamethyl-4- piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-(2- hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tert- oc
  • Oxamides for example 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-dioctyloxy- 5,5'-di-tert-butoxanilide, 2,2'-didodecyloxy-5,5'-di-tert-butoxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • Metal deactivators for example N,N'-diphenyloxamide, N-salicylal-N'-salicyloyl hydrazine, N,N'-bis(salicyloyl)hydrazine, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1 ,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N'-diacetyladipoyl dihydrazide, N,N'-bis(salicyl- oyl)oxalyl dihydrazide, N,N'-bis(salicyloyl)thiopropionyl dihydrazide.
  • Phosphites and phosphonites for example triphenyl phosphite, diphenylalkyl phosphites, phenyldialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearylpentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,4-di- cumylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphos
  • Tris(2,4-di-tert-butylphenyl) phosphite (lrgafos ® 168, Ciba Specialty Chemicals Inc.), tris(no- nylphenyl) phosphite, 5.
  • Hydroxylamines for example N,N-dibenzylhydroxylamine, N,N-diethylhydroxylamine, N, N- dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-ditetradecylhydroxylamine, N, N- dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-octadecylhydrox- ylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.
  • Nitrones for example, N-benzyl-alpha-phenylnitrone, N-ethyl-alpha-methylnitrone, N-octyl- alpha-heptylnitrone, N-lauryl-alpha-undecylnitrone, N-tetradecyl-alpha-tridecylnnitrone, N- hexadecyl-alpha-pentadecylnitrone, N-octadecyl-alpha-heptadecylnitrone, N-hexadecyl-al- pha-heptadecylnitrone, N-ocatadecyl-alpha-pentadecylnitrone, N-heptadecyl-alpha-hepta- decylnitrone, N-octadecyl-alpha-hexadecylnitrone, nitrone derived from N
  • Thiosynergists for example dilauryl thiodipropionate, dimistryl thiodipropionate, distearyl thiodipropionate or distearyl disulfide.
  • Peroxide scavengers for example esters of ⁇ -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercapto- benzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis( ⁇ - dodecylmercapto)propionate.
  • esters of ⁇ -thiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl esters
  • mercaptobenzimidazole or the zinc salt of 2-mercapto- benzimidazole zinc dibutyldithiocarbamate
  • dioctadecyl disulfide pentaerythritol tetrakis( ⁇ - dodecyl
  • Polyamide stabilizers for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.
  • Basic co-stabilizers for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.
  • Basic co-stabilizers for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ric
  • Nucleating agents for example inorganic substances, such as talcum, metal oxides, such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds, such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds, such as ionic copolymers (ionomers).
  • inorganic substances such as talcum, metal oxides, such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals
  • organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate
  • polymeric compounds such as ionic copolymers (
  • Fillers and reinforcing agents for example calcium carbonate, silicates, glass fibres, glass beads, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers.
  • additives for example plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents and blowing agents.
  • One or more of these further additives are usually contained in an amount of 0.01 to about 10 % of the composition, often in a concentration level of about 0.1 to 5 % by weight of the final composition.
  • antioxidants e.g. phenolic antioxidants and/or phosph(on)ites listed above
  • Clarifiers/nucleating agents may be added to provide or improve transparency, especially in polyolefin compositions.
  • light stabilizers such as UV absorbers and/or sterically hindered amines (HALS).
  • Zinc oxide in particular is a well known plastic additive that absorbs strongly UV radiation, improving plastic durability.
  • Plastic materials, especially films of the present invention, containing polymers and nanoparticles as described above, advantageously may be used in technical application fields such as architectural glazing, glazing in building and construction, automotive glazing, transportation glazing, agricultural films and structures.
  • the materials may be solid sheets, monolithic sheets, twin-wall sheets, multi-wall sheets, flat sheets, corrugated sheets, films, oriented or mono- or biaxially oriented films, lamination films, capstock films.
  • Specific application fields include wintergarden and veranda buildings, facades, skylights, pool covers and enclosures, roof structures, vaults, walkways, shelters, signage, interior and exterior design elements, sun shades, side window, rear window, panorama roof, greenhouses.
  • Main applications are heat-shielding, light management, heat management, energy management, solar control; also of importance are laser welding, security features, marking, tracers, heat transfer.
  • compositions of the invention preferably are unplasticized. Compositions of the invention do not require any further metals or metallic particles and usually do not contain such components. Of special technical interest are rigid, transparent compositions, such as plates or sheets, for automotive or architectural glazings, or translucent or transparent polyolefin or polyolefin copolymer films, especially for agricultural applications.
  • additives of the invention and optional further components may be added to the polymer material individually or mixed with one another. If desired, the individual components can be mixed with one another before incorporation into the polymer for example by dry blending, compaction or in the melt.
  • the incorporation of the additives of the invention and optional further components into the polymer is carried out by known methods such as dry blending in the form of a powder, or wet mixing in the form of solutions, dispersions or suspensions for example in an inert solvent, water or oil.
  • the additives of the invention and optional further additives may be incorporated, for example, before or after molding or also by applying the dissolved or dispersed additve or additive mixture to the polymer material, with or without subsequent evaporation of the solvent or the suspension/dispersion agent. They may be added directly into the processing apparatus (e.g. extruders, internal mixers, etc), e.g. as a dry mixture or powder or as solution or dispersion or suspension or melt.
  • the incorporation can be carried out in any heatable container equipped with a stirrer, e.g. in a closed apparatus such as a kneader, mixer or stirred vessel.
  • a stirrer e.g. in a closed apparatus such as a kneader, mixer or stirred vessel.
  • the incorporation is preferably carried out in an extruder or in a kneader. It is immaterial whether processing takes place in an inert atmosphere or in the presence of oxygen.
  • the addition of the additive or additive blend to the polymer can be carried out in all customary mixing machines in which the polymer is melted and mixed with the additives. Suitable machines are known to those skilled in the art. They are predominantly mixers, kneaders and extruders.
  • the process is preferably carried out in an extruder by introducing the additive during processing.
  • Particularly preferred processing machines are single-screw extruders, contrarotating and corotating twin-screw extruders, planetary-gear extruders, ring extruders or cokneaders. It is also possible to use processing machines provided with at least one gas removal compartment to which a vacuum can be applied.
  • the screw length is 1 - 60 screw diameters, preferably 20-48 screw diameters.
  • the rotational speed of the screw is preferably 1 - 800 rotations per minute (rpm), very particularly preferably 25 - 400 rpm.
  • the maximum throughput is dependent on the screw diameter, the rotational speed and the driving force.
  • the process of the present invention can also be carried out at a level lower than maximum throughput by varying the parameters mentioned or employing weighing machines delivering dosage amounts.
  • the additives of the invention and optional further additives can also be added to the polymer in the form of a masterbatch ("concentrate") which contains the components in a concentration of, for example, about 5 % to about 80% and preferably 5 % to about 40 % by weight incorporated in a polymer and/or dispersed in a suitable solvent.
  • concentration a masterbatch
  • the polymer must not be necessarily of identical structure than the polymer where the additives are added finally.
  • the polymer can be used in the form of powder, granules, solutions, suspensions or in the form of latices.
  • Incorporation can take place prior to or during the shaping operation, or by applying the dissolved or dispersed compound to the polymer, with or without subsequent evaporation of the solvent. In the case of elastomers, these can also be stabilized as latices.
  • a further possibility for incorporating the additives of the invention into polymers is to add them before, during or directly after the polymerization of the corresponding monomers or prior to crosslinking. In this context the additive of the invention can be added as it is or else in encapsulated form (for example in waxes, oils or polymers).
  • the materials containing the additives of the invention described herein can be used for the production of moldings, rotomolded articles, injection molded articles, blow molded articles, films, tapes, mono-filaments, fibers, nonwovens, profiles, adhesives or putties, surface coatings and the like.
  • the present matrix material may also be a coating material or a cured coating comprising as component (a) a suitable binder.
  • the binder (component (A)) can in principle be any binder which is customary in industry, for example those described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A18, pp. 368-426, VCH, Weinheim 1991. In general, it is a film-forming binder based on a thermoplastic or thermosetting resin, predominantly on a thermosetting resin. Examples thereof are alkyd, acrylic, polyester, phenolic, melamine, epoxy and polyurethane resins and mixtures thereof.
  • Component (A) can be a cold-curable or hot-curable binder; the addition of a curing catalyst may be advantageous.
  • Suitable catalysts which accelerate curing of the binder are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A18, p.469, VCH Verlagsgesellschaft, Weinheim 1991.
  • component (A) is a binder comprising a functional acrylate resin and a crosslinking agent.
  • coating compositions containing specific binders are: 1. paints based on cold- or hot-crosslinkable alkyd, acrylate, polyester, epoxy or melamine resins or mixtures of such resins, if desired with addition of a curing catalyst;
  • polyurethane paints based on aliphatic or aromatic urethanes or polyurethanes and hydroxyl-containing acrylate, polyester or polyether resins;
  • polyurethane paints based on aliphatic or aromatic urethaneacrylates or polyurethaneacrylates having free amino groups within the urethane structure and melamine resins or polyether resins, if necessary with curing catalyst;
  • UV-curable systems based on oligomeric urethane acrylates and/or acrylatacrylaten, if desired in combination with other oligomers or monomers;
  • Coating systems based on siloxanes are also possible, e.g. systems described in WO 98/56852, WO 98/56853, DE-A-2914427, or DE-A-4338361.
  • the coating composition according to the invention preferably comprises as component (C) a light stabilizer of the sterically hindered amine type, the 2-(2-hydroxyphenyl)-1 ,3,5-triazine and/or 2-hydroxyphenyl-2H-benzotriazole type, for example as mentioned in the above list in sections 2.1 , 2.6 and 2.8.
  • component (C) a light stabilizer of the sterically hindered amine type, the 2-(2-hydroxyphenyl)-1 ,3,5-triazine and/or 2-hydroxyphenyl-2H-benzotriazole type, for example as mentioned in the above list in sections 2.1 , 2.6 and 2.8.
  • light stabilizers of the 2-(2-hydroxyphenyl)-1 ,3,5-triazine type advantageously to be added can be found e.g.
  • the coating composition can also comprise further components, examples being solvents, pigments, dyes, plasticizers, stabilizers, rheologic or thixotropic agents, drying catalysts and/or levelling agents.
  • solvents examples being solvents, pigments, dyes, plasticizers, stabilizers, rheologic or thixotropic agents, drying catalysts and/or levelling agents. Examples of possible components are described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A18, pp. 429-471 , VCH, Weinheim 1991.
  • Possible drying catalysts or curing catalysts are, for example, free (organic) acids or bases, or (organic) blocked acids or bases which may be deblocked by thermal treatment or irradiation, organometallic compounds, amines, amino-containing resins and/or phosphines.
  • organometallic compounds are metal carboxylates, especially those of the metals Pb, Mn, Co, Zn, Zr or Cu, or metal chelates, especially those of the metals Al, Ti , Zr or Hf, or organometallic compounds such as organotin compounds.
  • metal carboxylates are the stearates of Pb, Mn or Zn, the octoates of Co, Zn or Cu, the naphthenates of Mn and Co or the corresponding linoleates, resinates or tallates.
  • metal chelates are the aluminium, titanium or zirconium chelates of acetylacetone, ethyl acetylacetate, salicylaldehyde, salicylaldoxime, o-hydroxyacetophenone or ethyl trifluoroacetylacetate, and the alkoxides of these metals.
  • organotin compounds are dibutyltin oxide, dibutyltin dilaurate or dibutyltin dioctoate.
  • amines are, in particular, tertiary amines, for example tributylamine, triethanolamine, N-methyldiethanolamine, N-dimethylethanolamine, N-ethylmorpholine,
  • N-methylmorpholine or diazabicyclooctane triethylenediamine
  • salts thereof Further examples are quaternary ammonium salts, for example trimethylbenzylammonium chloride.
  • Amino-containing resins are simultaneously binder and curing catalyst. Examples thereof are amino-containing acrylate copolymers.
  • the curing catalyst used can also be a phosphine, for example triphenylphosphine.
  • novel coating compositions can also be radiation-curable coating compositions.
  • the binder essentially comprises monomeric or oligomeric compounds containing ethylenically unsaturated bonds (prepolymers), which after application are cured by actinic radiation, i.e. converted into a crosslinked, high molecular weight form.
  • the system is UV-curing, it generally contains at least one photoinitiator as well.
  • novel stabilizers can also be employed without the addition of sterically hindered amines.
  • the coating compositions according to the invention can be applied to any desired substrates, for example to metal, wood, plastic or ceramic materials. They are preferably used as topcoat in the finishing of automobiles. If the topcoat comprises two layers, of which the lower layer is pigmented and the upper layer is not pigmented, the novel coating composition can be used for either the upper or the lower layer or for both layers, but preferably for the upper layer.
  • novel coating compositions can be applied to the substrates by the customary methods, for example by brushing, spraying, pouring, dipping or electrophoresis; see also Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A18, pp. 491-500.
  • the coatings can be cured at room temperature or by heating.
  • the coatings are preferably cured at 50 - 15O 0 C, and in the case of powder coatings or coil coatings even at higher temperatures.
  • the coatings obtained in accordance with the invention have excellent resistance to the damaging effects of light, oxygen and heat; particular mention should be made of the good light stability and weathering resistance of the coatings thus obtained, for example paints.
  • the coating compositions can comprise an organic solvent or solvent mixture in which the binder is soluble.
  • the coating composition can otherwise be an aqueous solution or dispersion.
  • the vehicle can also be a mixture of organic solvent and water.
  • the coating composition may be a high-solids paint or can be solvent-free (e.g. a powder coating material). Powder coatings are, for example, those described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., A18, pages 438-444.
  • the powder coating material may also have the form of a powder-slurry (dispersion of the powder preferably in water).
  • the pigments can be inorganic, organic or metallic pigments.
  • the novel coating compositions preferably contain no pigments and are used as a clearcoat.
  • the present matrix material may also be an inorganic polymer composition or organic/inorganic polymer hybrid system, e.g. a sol-gel coating.
  • examples are metal oxide systems based on metal alkoxides such as Si, Ti, Xr, Al alkoxides, or hybrid coatings based on a mixture of resin + metal alkoxide; examples for such systems and their preparation are given in section [0169] of US20070187653, or EP-A-1676890 col. 18, lines 9-16, which passages are hereby incorporated by reference.
  • the invention relates to the use of a blend comprising hydrogen tungsten bronze as defined above and in addition a dithiolen metal complex of the formula I or Il as disclosed in the European Patent application EP 07 100657.1 to increase the heat- input amount of near infrared radiation.
  • the invention relates to the use of a blend comprising hydrogen tungsten bronze as defined above and in addition at least one organic IR absorber selected from quinone-diimmonium salt, aminium salt, polymethines such as cyanine squaraine, croconaine; phthalocyanine, naphthalocyanine and quaterrylene-bisimide or in addition at least one anorganic IR absorber selected from lanthane hexaboride, indium tin oxide (ITO) antimony tin oxide such as Minatec 230 A-IR available from Merck, or Lazerflair® pigments available from Merck.
  • organic IR absorber selected from quinone-diimmonium salt, aminium salt, polymethines such as cyanine squaraine, croconaine; phthalocyanine, naphthalocyanine and quaterrylene-bisimide or in addition at least one anorganic IR absorber selected from lanthane hex
  • organic IR absorbers are alkylated triphenyl phosphorothionates, for example as sold under the trade name Ciba® Irgalube® 21 1 or Carbon Black, for example as sold under the trade names Ciba® Microsol® Black 2B or Ciba® Microsol® Black C-E2.
  • inorganic IR absorbers are oxides, hydroxides, sulfides, sulfates and phosphates of metals such as copper, bismuth, iron, nickel, tin, zinc, manganese, zirconium, tungsten, lanthanum, and antimony, including antimony(V) oxide doped mica and tin(IV) oxide doped mica.
  • novel mixtures comprises tungsten trioxide (WO 3 ), a hydrogen comprising tungstate (e.g. WO 3 H 0 , 53) and (metallic) tungsten.
  • Said novel mixtures may be prepared by reducing ammonium paratungstate [(NH 4 ) 10 W 12 H 2O ⁇ 42 -4H 2 O, sold by Osram Sylvania] in a plasma reactor at 5000-10000 K (Kelvin) with hydrogen.
  • the thus obtained mixtures may contain about 25 - 70 parts by weight, especially 30 - 55 parts by weight, of a hydrogen tungsten bronze; 20 - 70 parts by weight, especially 30 - 60 parts by weight, of a binary tungsten oxide; and about 1 - 30 parts by weight, especially 2 - 20 parts by weight, of tungsten metal; examples are mixtures comprising 25-55 % by weight of WO 3 H 0 , 53 , 35-60 % of WO 3 , and 3- 35 % of tungsten, it being understood that the sum of these three components is 100%, e.g. 35 % of W0 3 H o , 53 , 56 % Of WO 3 , and 9 % of tungsten.
  • Ammonium paratungstate powder (NH 4 ) 1 oW 12 H 2 o ⁇ 42 -4H 2 0, Osram Sylvania) is entrained into an argon carrier gas by a vibratory-type powder feeder operating at 10 g/min.
  • the fluidized powder is fed into a plasma reactor with a Tekna PL-50 plasma torch operated at a power of 65 kW.
  • the temperature range typically reached in the plasma hot zone of the reactor is between 5000 -10,000 K.
  • a mixture of 100 slpm argon, and hydrogen/helium as indicated in the below table is used for the sheath gas:
  • the reactant vapor is cooled by a quench gas and the resulting powder is collected in a bag filter.
  • the resulting powders are analyzed by powder X-ray diffraction, electron microscopy, and UV-vis-N I R spectroscopy.
  • the samples are slightly ground in an agate mortar for better particle homogenization and run on a standard Bragg-Brentano Siemens D5000 diffractometer system.
  • a high-power Cu- target is used operating at 50kV/35mA.
  • the data is collected in a step scan mode with step size 0.02° 2-theta and counting time of 1.5 seconds per step.
  • the data processing is done by Diffrac PlusTM software EvaTM v. 8.0.
  • the Rietveld analysis is carried out by Bruker's AXS TopasTM profile fitting software v. 2.1.
  • the obtained x-ray powder diffraction patterns are compared with reference patterns for available W and WO x materials in both PDF-2 Database and the calculated ones from the single crystal structural data provided in Inorganic Crystal Structure Database, 2005-2, Düsseldorf, Germany.
  • the initial qualitative analysis reveals that all 4 analyzed samples are composed by 3 components mixed in different proportions: the cubic hydrogen tungsten oxide (bronze), WO 3 H 0 53, the monoclinic and/or triclinic tungsten oxide, called in this study RT-WO3, and a cubic, bcc, HT-tungsten, W.
  • Each of the samples is found to consist of 3 phases, as shown in the following table 1. The relative percent of each phase is observed to be affected by the hydrogen in the sheath gas.
  • Samples containing solar control additives are evaluated using equipment as shown in fig. 1. This instrument compares the temperature build up of a black aluminum panel behind two plastic samples (A4 size), one sample containing the solar controlling additive the other being a reference without any solar controlling additive. The two samples are mounted on the front side of two different chambers that are exposed to light of a 500 W halogen lamp with color temperature of 5000 K. temperature is recorded by thermocouples (PT100) in each chamber, connected to a PC data logger.
  • PT100 thermocouples
  • Sheet extrusion The pellets are used to produce a 100 ⁇ m thick cast film (plate) on a CoIMn CR-136 / 350 sheet extrusion line at a maximum temperature of 280 0 C.
  • the ⁇ E values are measured in accordance with DIN 6174.
  • the UV-VIS-NIR Spectrum is recorded on a Shimadzu UV 3101 UV with ISR3100 integrating sphere: Parameter: Slit width 20, wavelength 250 - 1800 nm, Scan speed fast, Light Source change at 360 nm and Detector change at 830 nm.
  • the relative absorption is calculated by the absorption at the maximum divided by the initial absorption at the same wavelength.
  • the samples are irradiated in a Weather-Ometer Ci65 from ATLAS in accordance with ASTM G 155/ASTM G 151 , Xenon lamp with 2 borosilicate filters, 0.35 W/m2 at 340 nm, 63 ⁇ 3 0 C black panel temperature, 102 min dry and light, 18 min water spray and light.
  • the present PC compositions show good heat shielding and low haze and discoloration values.
  • PET-G Polyethylene terephthalate powder
  • Tinuvin Polyethylene terephthalate powder
  • the present PET compositions show a good heat shielding effect.
  • LDPE powder (FF29 from Polimeri Europa) and 0.8% Tinuvin 371 are turbo-mixed with the additives in loading as described in table 5 and then compounded in a twin screw CoIMn Extruder.
  • a 150-micron LDPE film is prepared by melt blow extrusion of the mixture using a FORMAC lab extruder.
  • the present LDPE compositions show a good heat shielding effect.
  • the different IR-Absorbers are tested in a 2P-PU formulation concerning the temperature uptake during NIR-Curing as well as the final coating properties.
  • the IR-Absorbers are incorporated into the millbase using glassbeads and a scandex shaker for 16 h according to the following table (values are in g).
  • Laropal A 81 (urea-aldehyde resin available from BASF) 15.7 g 60% in 1-methoxy-2propylacetate/xylene 3:'
  • the millbase is mixed with the letdown formulation and the crosslinker is added according to the following table.
  • Desmodur N3390 is an aliphatic isocyanate available from Bayer Material Science and used as crosslinker
  • Macrynal SM 51 On is a hydroxyfunctional acrylic resin available from Cytec Surface
  • EFKA 3030 is a modified polysiloxane to improve levelling available from Ciba Specialty
  • DBTL is Dibutyltin dilaurate and used as a catalyst
  • DABCO-33LV is a mixture of triethylenediamine and dipropyleneglycol available from Air
  • the coating is applied by a wire bar using a WFT (wet film thickness) of 80 ⁇ m.
  • WFT dry film thickness
  • the coatings are dried in an NIR-dryer using lamp settings and belt speeds as indicated below.
  • the distribution of the NIR-A into the coating formulation was checked via the measurement of haze over black. The lower the value the better the distribution in the formulation and the less impact on the visual film properties is observed.
  • the temperature of the coating surface is measured directly after cure.
  • the Table below shows the results using a belt speed of 2m/min, a 6 Adphos high-burn NIR- lamps, output 70 %, a distance to the lamp of 100mm
  • the present powder composition may be incorporated with low haze and provides good conversion of NIR radiation into heat.
  • the IR absorber according to example 1.1 is incorporated by means of an injection molding machine into a polycarbonate sheet (thickness 2mm) at a concentration of 500ppm.
  • the resulting (transparent and slightly bluish) sheet is welded together with a polycarbonate sheet (thickness 1 mm) using a 250 watt Nd:YAG-laser.
  • the surface is scanned by laser beam at a speed of 20mm/sec.
  • the C501 Varnish is prepared by mixing together Vinnapas® C501 resin manufactured by Wacker Chemie AG, a solid copolymer of vinyl acetate and crotonic acid with an acid number of 7.5 mg KOH/g, a molecular weight of 170 000 g/mol and a Tg of ca. 43 0 C, (20 parts) and propyl acetate (80 parts).
  • ink Z a mixture consisting of WO3H053 , WO 3 and W
  • ink X the analogous ink not comprising said absorbers
  • Each of said inks X and Z is applied to white packaging board using a standard K2 bar and dried. Then a 1 cm square area of each of the obtained packaging boards is lasered (fill 60, 1500mms, 20Khz). The optical density of the imaged areas are then measured along with the background whiteness. As can be seen from the table below, a good image density is observed with only 0.1% of the present ink (ink Z), and also the CIE whiteness of the unimaged area remains high at 99.15.
  • Figure 1 shows the evaluation equipment layout.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Polymer dispersions of powders based on tungsten hydrogen bronze, especially containing a minor amount of tungsten metal, show good IR absorbing and heat shielding properties. The powders may be obtained by contacting an ammonium tungstate with hydrogen at a temperature of 2500 K or more, e.g. in a plasma.

Description

Heat shielding additives
The present application pertains to certain particles of the tungsten/tungsten oxide series, a method for their preparation, compositions containing these particles, and the use of the particles as IR absorbers and/or heat shielding additives.
A number of metal oxides including certain tungstates have long been known to combine electric conductivity with heat shielding properties (Chopra et al., Thin Solid Films 102, 1 (1983)). Reactions of tungstates with various reductive agents including hydrogen and tungsten metal have been known to lead to coloured suboxides or composite oxides ("bronzes"). US-2007-187653 discloses the preparation of some tungsten oxides or bronzes by heating educts like tungsten hexachloride, ammonium metatungstate or tungstic acid combined with alkaline carbonates, or solutions of such educts up to 8000C; materials thus obtained are recommended for the preparation of light transmitting electroconductive films with infrared-shielding properties.
Tungsten suboxide powders, (e.g. WO27) are commercially available as fine powders (5-20 microns) e.g. from Osram Sylvania.
Tungsten suboxides and tungstates are known as infrared shielding material. The publications EP 1 676 890 and US2007/0187653 (Sumitomo Metal Mining Company) disclose an infrared shielding nanoparticle dispersion comprising tungsten trioxide having reduced oxygen. The preparation of some further tungstates is described in WO07/092030.
It has now been found that certain powders based on tungsten oxides and containing small amounts of tungsten metal, e.g. as obtainable in a high temperature process as explained further below, show especially valuable properties when dispersed in organic polymers. The present invention mainly provides a particle composition comprising a) 25 - 70 parts by weight, especially 30 - 55 parts by weight, of a hydrogen tungsten bronze, b) 20 - 70 parts by weight, especially 30 - 60 parts by weight, of a binary tungsten oxide, and c) 1 - 30 parts by weight, especially 2 - 20 parts by weight, of tungsten metal. Usually, a major fraction, e.g. 50 - 100 % b.w., preferably 80-100 % b.w., of the hydrogen tungsten bronze is of cubic crystal structure. The most preferred tungsten bronze phase generally is the one described by Wiseman, J. Solid State Chem. 6, 374 (1973), of space group lm-3, except that no restriction to deuterium is necessary for use in the present invention, and the material thus may contain any hydrogen isotope, usually natural hydrogen.
The binary tungsten oxide in the present composition in its overall composition usually conforms to the formula WO3-y, where y ranges from 0 to 1 , for example from 0.01 to 0.55, preferably from 0 to 0.33, especially from 0 to 0.1. Examples of such binary tungsten oxides are widely known, examples are the phases WO3, WO292 (also known as W25O73), WO283 (i.e. W24O68), WO28 (i.e. W5Oi4), WO272 (i.e. W18O49), WO2625 (i.e. W32O84), WO2.
Most preferred binary tungsten oxide, often formed in the process as described further below, is the trioxide (corresponding to the above formula wherein y = 0), in any of its modifications (especially the monoclinic and triclinic explained below), or combinations of said trioxide with minor amounts (e.g. up to 20 % b.w.) of a suboxide (wherein y > 0).
Some further preferred binary tungsten oxide phases include: WO3 in its monoclinic form, P2-|/n; WO3 in its triclinic form, P-1 ;
WO2 g2 in its monoclinic form, P2-|/c; WO28 in its tetragonal form, P 42m; WO272 in its monoclinic form, P2/m; WO2625 in its orthorhombic form, P b a m.
The particle composition of the invention may comprise components a-c each as separate particles or, preferably, the majority of particles, or all of them, are containing each of these components. Components a-c together usually make up 95 - 100 % b.w. of the total powder composition; the remainders, if any, usually are organic polymers, other tungsten compounds and/or water. The (primary) particles are usually nanoparticles from the size range 1 nm to 800 nm, e.g. 90% b.w. of the particles are within that range, especially within the diameter range 5 to 300 nm; aggregates, if formed, e.g. in a dispersion, usually may be converted into primary particles, e.g. dispersions thereof, by well known techniques. Preferred powders are those wherein at least 80 % b.w. of the particles have their smallest and their largest diameters from the range 5 to 300 nm. The particles embedded in their matrix are able to absorb relevant IR radiation (especially NIR, e.g. in the band from 800 to 2500 nm). The shape may be freely selected, e.g. from spheres, flakes and nanorods.
The invention further pertains to a process for the preparation of a hydrogen tungsten bronze, especially a hydrogen tungsten bronze composition comprising components a-c as defined above, which process comprises contacting an ammonium tungstate with hydrogen or a hydrogen releasing, reducing gas, at a temperature of 2500 K or more. Preferred ammonium tungstates for use in this process include ammonium monotungstate, ammonium paratungstates such as hexatungstate and dodekatungstate, and ammonium metatungstate, as well as their hydrates; an example is
Figure imgf000005_0001
Suitable gases for reduction and hydrogen release include, for example, ammonia or volatile hydrocarnons like ethane or propane; these may be used in place of hydrogen or as a mixture with hydrogen. The contacting is preferably effected in a plasma, especially where hydrogen and/or the hydrogen releasing gas is used in mixture with a noble gas.
The plasma torch is preferably an induction plasma torch. The preferred induction plasma torches for use in the process of the present invention are available from Tekna Plasma Systems, Inc. of Sherbrooke, Quebec, Canada. Boulos et al., US-A-5,200,595, is hereby incorporated by reference for its teachings relative to the construction and operation of plasma induction torches.
The present particle composition brings about the advantage of good dispersability in the polymer, good heat shielding properties of the polymer composition thus obtainable, and good transparency, low haze. The resulting polymer compositions generally show low discoloration and good colour stability upon aging (low yellowing).
The particles may be incorporated e.g. by an additive blending technique using a mixer, kneader or extruder, into coating or plastic compositions, e.g. thermoplastic polymer materials in form of films or sheets. The particles may be used to obtain transparent or translucent, especially transparent, materials having highly effective IR absorption/heat shielding properties, and/or to improve the heat absorption efficacy of the material. The present powder compositions advantageously are used as an additive in the following polymer matrices: - A -
1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, po- lybut-1-ene, poly-4-methylpent-1-ene, polyvinylcyclohexane, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).
Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
a) radical polymerisation (normally under high pressure and at elevated temperature).
b) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either π- or σ-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(lll) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, Na and/or Ilia of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
2. Mixtures of the polymers mentioned under 1 ), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE). 3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, ethylene/vinylcyclohexane copolymers, ethylene/cycloolefin copolymers (e.g. ethylene/norbornene like COC), ethylene/1 -olefins copolymers, where the 1 -olefin is generated in-situ; propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/vi- nylcyclohexene copolymers, ethylene/alkyl acrylate copolymers, ethyl en e/a Iky I methacrylate copolymers, ethylene/vinyl acetate copolymers or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1 ) above, for example polypropylene/ethy- lene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene- acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyal- kylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
4. Hydrocarbon resins (for example C5-C9) including hydrogenated modifications thereof (e.g. tackifiers) and mixtures of polyalkylenes and starch.
Homopolymers and copolymers from 1.) - 4.) may have any stereostructure including syndio- tactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included.
5. Polystyrene, poly(p-methylstyrene), poly(α-methylstyrene).
6. Aromatic homopolymers and copolymers derived from vinyl aromatic monomers including styrene, α-methylstyrene, all isomers of vinyl toluene, especially p-vinyltoluene, all isomers of ethyl styrene, propyl styrene, vinyl biphenyl, vinyl naphthalene, and vinyl anthracene, and mixtures thereof. Homopolymers and copolymers may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included. 6a. Copolymers including aforementioned vinyl aromatic monomers and comonomers selected from ethylene, propylene, dienes, nitriles, acids, maleic anhydrides, maleimides, vinyl acetate and vinyl chloride or acrylic derivatives and mixtures thereof, for example styrene/bu- tadiene, styrene/acrylonitrile, styrene/ethylene (interpolymers), styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/butadiene/alkyl methacrylate, styrene/maleic anhydride, styrene/acrylonitrile/methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene/pro- pylene/diene terpolymer; and block copolymers of styrene such as styrene/butadiene/sty- rene, styrene/isoprene/styrene, styrene/ethylene/butylene/styrene or styrene/ethylene/propy- lene/styrene.
6b. Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6.), especially including polycyclohexylethylene (PCHE) prepared by hydrogenating atactic polystyrene, often referred to as polyvinylcyclohexane (PVCH).
6c. Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6a.).
Homopolymers and copolymers may have any stereostructure including syndiotactic, isotac- tic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included.
7. Graft copolymers of vinyl aromatic monomers such as styrene or α-methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acry- lonitrile copolymers; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and maleimide on polybutadiene; styrene and alkyl acrylates or methacrylates on polybutadiene; styrene and acrylonitrile on ethylene/propylene/diene terpolymers; styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate/butadiene copolymers, as well as mixtures thereof with the copolymers listed under 6), for example the copolymer mixtures known as ABS, MBS, ASA or AES polymers. 8. Halogen-containing polymers such as polychloroprene, chlorinated rubbers, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or sulfo- chlorinated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, especially polymers of halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, as well as copolymers thereof such as vinyl chloride/vinylidene chloride, vinyl chloride/vinyl acetate or vinylidene chloride/vinyl acetate copolymers.
9. Polymers derived from α,β-unsatu rated acids and derivatives thereof such as polyacry- lates and polymethacrylates; polymethyl methacrylates, polyacrylamides and polyacryloni- triles, impact-modified with butyl acrylate.
10. Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers, for example acrylonitrile/ butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/alkoxyalkyl acrylate or acrylonitrile/vinyl halide copolymers or acrylonitrile/ alkyl methacrylate/butadiene terpolymers.
1 1. Polymers derived from unsaturated alcohols and amines or the acyl derivatives or ace- tals thereof, for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in 1 ) above.
12. Homopolymers and copolymers of cyclic ethers such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bisglycidyl ethers.
13. Polyacetals such as polyoxymethylene and those polyoxymethylenes which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS.
14. Polyphenylene oxides and sulfides, and mixtures of polyphenylene oxides with styrene polymers or polyamides. 15. Polyurethanes derived from hydroxyl-terminated polyethers, polyesters or polybutadi- enes on the one hand and aliphatic or aromatic polyisocyanates on the other, as well as precursors thereof.
16. Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, polyamide 11 , polyamide 12, aromatic polyamides starting from m-xylene diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic or/and terephthalic acid and with or without an ela- stomer as modifier, for example poly-2,4,4,-trimethylhexamethylene terephthalamide or poly- m-phenylene isophthalamide; and also block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol; as well as polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (RIM polyamide systems).
17. Polyureas, polyimides, polyamide-imides, polyetherimides, polyesterimides, polyhydan- toins and polybenzimidazoles.
18. Polyesters derived from dicarboxylic acids and diols and/or from hydroxycarboxylic acids or the corresponding lactones or lactides, for example polyethylene terephthalate, polybuty- lene terephthalate, poly-1 ,4-dimethylolcyclohexane terephthalate, polyalkylene naphthalate and polyhydroxybenzoates as well as copolyether esters derived from hydroxyl-terminated polyethers, and also polyesters modified with polycarbonates or MBS. Copolyesters may comprise, for example - but are not limited to - polybutylenesuccinate/terephtalate, polybuty- leneadipate/terephthalate, polytetramethyleneadipate/terephthalate, polybutylensuccinate/- adipate, polybutylensuccinate/carbonate, poly-3-hydroxybutyrate/octanoate copolymer, poly- 3-hydroxybutyrate/hexanoate/decanoate terpolymer. Furthermore, aliphatic polyesters may comprise, for example - but are not limited to - the class of poly(hydroxyalkanoates), in par- ticular, poly(propiolactone), poly(butyrolactone), poly(pivalolactone), poly(valerolactone) and poly(caprolactone), polyethylenesuccinate, polypropylenesuccinate, polybutylenesuccinate, polyhexamethylenesuccinate, polyethyleneadipate, polypropyleneadipate, polybutyleneadi- pate, polyhexamethyleneadipate, polyethyleneoxalate, polypropyleneoxalate, polybutylene- oxalate, polyhexamethyleneoxalate, polyethylenesebacate, polypropylenesebacate, polybu- tylenesebacate and polylactic acid (PLA) as well as corresponding polyesters modified with polycarbonates or MBS. The term "polylactic acid (PLA)" designates a homo-polymer of preferably poly-L-lactide and any of its blends or alloys with other polymers; a co-polymer of lactic acid or lactide with other monomers, such as hydroxy-carboxylic acids, like for example glycolic acid, 3-hydroxy-butyric acid, 4-hydroxy-butyric acid, 4-hydroxy-valeric acid, 5-hydr- oxy-valeric acid, 6-hydroxy-caproic acid and cyclic forms thereof; the terms "lactic acid" or "lactide" include L-lactic acid, D-lactic acid, mixtures and dimers thereof, i.e. L-lactide, D-lac- tide, meso-lacide and any mixtures thereof.
19. Polycarbonates and polyester carbonates.
20. Polyketones.
21. Polysulfones, polyether sulfones and polyether ketones.
22. Crosslinked polymers derived from aldehydes on the one hand and phenols, ureas and melamines on the other hand, such as phenol/formaldehyde resins, urea/formaldehyde resins and melamine/formaldehyde resins.
23. Drying and non-drying alkyd resins.
24. Unsaturated polyester resins derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols and vinyl compounds as crosslinking agents, and also halogen-containing modifications thereof of low flammability.
25. Crosslinkable acrylic resins derived from substituted acrylates, for example epoxy acry- lates, urethane acrylates or polyester acrylates.
26. Alkyd resins, polyester resins and acrylate resins crosslinked with melamine resins, urea resins, isocyanates, isocyanurates, polyisocyanates or epoxy resins.
27. Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, e.g. products of diglycidyl ethers of bisphenol A and bisphenol F, which are crosslinked with customary hardeners such as anhydrides or amines, with or without accelerators.
28. Natural polymers such as cellulose, rubber, gelatin and chemically modified homologous derivatives thereof, for example cellulose acetates, cellulose propionates and cellulose butyrates, or the cellulose ethers such as methyl cellulose; as well as rosins and their derivatives.
29. Blends of the aforementioned polymers (polyblends), for example PP/EPDM, PoIy- amide/EPDM or ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA,
PC/PBT, PVC/CPE, PVC/acrylates, POM/thermoplastic PUR, PC/thermoplastic PUR, POM/acrylate, POM/MBS, PPO/HIPS, PPO/PA 6.6 and copolymers, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS or PBT/PET/PC.
In case of transparent and translucent polymer materials, the amount of light transmitted through the present materials, i.e. degree of translucency or transparency, mainly depends on well known parameters such as the particle loading, further additives used, haze level of the polymer matrix, and thickness of the material. The present materials usually are at least 80 %, or rather more than 90 % translucent in each part of the visible range (400 - 800 nm); preferred materials have good transparency, and especially are selected from clear- transparent sheets and films of thickness less than 10 mm (e.g. 0.01 to 5 mm). Preferred materials further share one or more of the following advantageous properties: a full solar radiation transmittance (340-1800 nm) of less than 60 %, a haze of less than 10 %, - an electromagnetic shielding in the range 10 - 2000 MHz of less than 2 dB, and a full visible light transmittance (400 - 800 nm) of more than 75 %.
The present particles advantageously are used as an additive in the following plastic matrices (especially in the case of transparent and translucent polymer products): - Polycarbonate (PC) or a coating or coextruded layer on polycarbonate, polyesters, acrylics, halogenated polymers such as polyvinylchloride (PVC), polyolefins, aromatic homopolymers and copolymers derived from vinyl aromatic monomers and graft copolymers thereof such as acrylnitril-butadiene-styrene terpolymer (ABS), containing these polymers as major component or in essentially pure form (e.g. 50-100% b.w.), especially: - a polymer selected from PC, polymethylmethacrylate (PMMA), polyethyleneterephthalate (PET, PET-G), PVC, transparent ABS, polyvinylidene fluoride (PVDF), styrene-acrylnitril copolymer (SAN), polypropylene (PP), polyethylene (PE) including blends, alloys, co-polymers.
Incorporation into the polymer matrix leads to plastic articles which may be highly transparent; they may be colorless (e.g. for clear glazings or films) or colored, e.g. by addition of a pigment or mixture of pigments, e.g. for applications wherein suitable light filtering or sun screening is desired, or in the case of coloured coatings. The present oxide or nitride materials allow high loading, giving access to high heat shielding effects. Preferable loadings are from 0.01 to 15%, especially 0.1 to 5% by weight of the final polymer composition.
The present particles may further be functionalized at their surface before incorporation using known methods, e.g. silanization, use of thiols, amines, phosphines, stearates, etc.
In preferred embodiments, the present particle and/or powder compositions are combined with one or more further additives, e.g. selected from the following materials:
1. Antioxidants
1.1. Alkylated monophenols, for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-di- methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-bu- tyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(α-methylcyclohexyl)-4,6-dimethyl- phenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-meth- oxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1 '-methylundec-1 '-yl)phenol, 2,4-dimethyl-6-(1 '- methylheptadec-1 '-yl)phenol, 2,4-dimethyl-6-(1'-methyltridec-1'-yl)phenol and mixtures thereof.
1.2. Alkylthiomethylphenols, for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctyl- thiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4- nonylphenol. 1.3. Hydroquinones and alkylated hydroquinones, for example 2,6-di-tert-butyl-4-methoxy- phenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octade- cyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-bu- tyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis(3,5-di-tert-butyl-4-hy- droxyphenyl) adipate.
1.4. Tocopherols, for example α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol and mixtures thereof (vitamin E).
1.5. Hydroxylated thiodiphenyl ethers, for example 2,2'-thiobis(6-tert-butyl-4-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-2- methylphenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)- disulfide.
1.6. Alkylidenebisphenols, for example 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'- methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-(α-methylcyclohexyl)- phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4- methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butyl- phenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-(α-methylben- zyl)-4-nonylphenol], 2,2'-methylenebis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-methy- lenebis(2,6-di-tert-butylphenol), 4,4'-methylenebis(6-tert-butyl-2-methylphenol), 1 ,1-bis(5-tert- butyl-4-hydroxy-2-methylphenyl)butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4- methylphenol, 1 , 1 ,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1 , 1 -bis(5-tert-butyl-4- hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3'-tert- butyl-4'-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopenta- diene, bis[2-(3'-tert-butyl-2'-hydroxy-5'-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephtha- late, 1 ,1-bis-(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis(3,5-di-tert-butyl-4-hydroxyphe- nyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy2-methylphenyl)-4-n-dodecylmercaptobutane,
1 ,1 ,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.
1.7. Q-, N- and S-benzyl compounds, for example 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydi- benzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy- 3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4- tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxy- benzyl)sulfide, isooctyl-S^-di-tert-butyM-hydroxybenzylmercaptoacetate.
1.8. Hydroxybenzylated malonates, for example dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hy- droxybenzyl)malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, di- dodecylmercaptoethyl-2,2-bis (3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1 ,1 ,3,3-te- tramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.
1.9. Aromatic hydroxybenzyl compounds, for example 1 ,3,5-tris(3,5-di-tert-butyl-4-hydroxy- benzyl)-2,4,6-trimethylbenzene, 1 ,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetrame- thylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
1.10. Triazine compounds, for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxy- anilino)-1 ,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1 ,3,5-tri- azine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,3,5-triazine, 2,4,6-tris- (3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,2,3-triazine, 1 ,3,5-tris(3,5-di-tert-butyl-4-hydroxyben- zyl)isocyanurate, 1 ,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris- (3, 5-di-tert-butyl-4-hydroxyphenylethyl)-1 ,3,5-triazine, 1 ,3,5-tris(3,5-di-tert-butyl-4-hydroxy- phenylpropionyl)-hexahydro-1 ,3,5-triazine, 1 ,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl)iso- cyanurate.
1.1 1. Benzylphosphonat.es, for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphospho- nate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl3,5-di-tert-butyl-4-hy- droxybenzylphosphonate, dioctadecyl-δ-tert-butyl^-hydroxy-S-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
1.12. Acylaminophenols, for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N- (3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.
1.13. Esters of β-(3,5-di-tert-butyl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1 ,6-hexanediol, 1 ,9- nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethy- lene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hy- droxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylol- propane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
1.14. Esters of β-(5-tert-butyl-4-hvdroxy-3-methylphenyl)propionic acid with mono- or poly- hydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1 ,6-hexanedi- ol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis- (hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethyl- olpropane, 4-hydroxymethyl-1 -phospha-2,6,7-trioxabicyclo[2.2.2]octane; 3,9-bis[2-{3-(3-tert- butyl-4-hydroxy-5-methylphenyl)propionyloxy}-1 ,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]- undecane.
1.15. Esters of β-(3,5-dicvclohexyl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)ox- amide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hy- droxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
1.16. Esters of 3,5-di-tert-butyl-4-hvdroxyphenyl acetic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)ox- amide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hy- droxymethyl-1 -phospha-2,6,7-trioxabicyclo[2.2.2]octane.
1.17. Amides of β-(3,5-di-tert-butyl-4-hvdroxyphenyl)propionic acid e.g. N,N'-bis(3,5-di-tert- butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxy- phenylpropionyl)trimethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hy- drazide, N,N'-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]oxamide (Nau- gard®XL-1 , supplied by Uniroyal).
1.18. Ascorbic acid (vitamin C) 1.19. Aminic antioxidants, for example N,N'-di-isopropyl-p-phenylenediamine, N,N'-di-sec-bu- tyl-p-phenylenediamine, N,N'-bis(1 ,4-dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3- methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicy- clohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p- phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1 ,3-dimethylbutyl)-N'-phe- nyl-p-phenylenediamine, N-(1 -methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'- phenyl-p-phenylenediamine, 4-(p-toluenesulfamoyl)diphenylamine, N,N'-dimethyl-N,N'-di- sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenyl- amine, N-phenyl-1-naphthylamine, N-(4-tert-octylphenyl)-1-naphthylamine, N-phenyl-2-naph- thylamine, octylated diphenylamine, for example p,p'-di-tert-octyldiphenylamine, 4-n-butyl- aminophenol, 4-butyrylaminophenol, 4-nonanoylaminophenol, 4-dodecanoylaminophenol, 4- octadecanoylaminophenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylamino- methylphenol, 2,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, N,N,N',N'-tetra- methyl-4,4'-diaminodiphenylmethane, 1 ,2-bis[(2-methylphenyl)amino]ethane, 1 ,2-bis(phenyl- amino)propane, (o-tolyl)biguanide, bis[4-(1',3'-dimethylbutyl)phenyl]amine, tert-octylated N- phenyl-1-naphthylamine, a mixture of mono- and dialkylated tert-butyl/tert-octyldiphenyl- amines, a mixture of mono- and dialkylated nonyldiphenylamines, a mixture of mono- and dialkylated dodecyldiphenylamines, a mixture of mono- and dialkylated isopropyl/isohexyl- diphenylamines, a mixture of mono- and dialkylated tert-butyldiphenylamines, 2,3-dihydro- 3,3-dimethyl-4H-1 ,4-benzothiazine, phenothiazine, a mixture of mono- and dialkylated tert- butyl/tert-octylphenothiazines, a mixture of mono- and dialkylated tert-octyl-phenothiazines, N-allylphenothiazine, N,N,N',N'-tetraphenyl-1 ,4-diaminobut-2-ene.
2. UV absorbers and light stabilizers
2.1. 2-(2'-Hvdroxyphenyl)benzotriazoles, for example 2-(2'-hydroxy-5'-methylphenyl)-benzo- triazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-tert-butyl-2'-hydroxyphe- nyl)benzotriazole, 2-(2'-hydroxy-5'-(1 ,1 ,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3',5'-di- tert-butyl-2'-hydroxyphenyl)-5-chloro-benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-methylphe- nyl)-5-chloro-benzotriazole, 2-(3'-sec-butyl-5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'- hydroxy-4'-octyloxyphenyl)benzotriazole, 2-(3',5'-di-tert-amyl-2'-hydroxyphenyl)benzotriazole, 2-(3',5'-bis-(α,α-dimethylbenzyl)-2'-hydroxyphenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy- 5'-(2-octyloxycarbonylethyl)phenyl)-5-chloro-benzotriazole, 2-(3'-tert-butyl-5'-[2-(2-ethylhexyl- oxy)-carbonylethyl]-2'-hydroxyphenyl)-5-chloro-benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2- methoxycarbonylethyl)phenyl)-5-chloro-benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-meth- oxycarbonylethyl)phenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-octyloxycarbonyl- ethyl)phenyl)benzotriazole, 2-(3'-tert-butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl]-2'-hydroxy- phenyl)benzotriazole, 2-(3'-dodecyl-2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(3'-tert-butyl- 2'-hydroxy-5'-(2-isooctyloxycarbonylethyl)phenylbenzotriazole, 2,2'-methylene-bis[4-(1 ,1 ,3,3- tetramethylbutyl)-6-benzotriazole-2-ylphenol]; the transesterification product of 2-[3'-tert-bu- tyl-5'-(2-methoxycarbonylethyl)-2'-hydroxyphenyl]-2H-benzotriazole with polyethylene glycol
300; [R-CH2CH2-COO-CH2CH2-^- , where R = 3'-tert-butyl-4'-hydroxy-5'-2H-benzotri-
azol-2-ylphenyl, 2-[2'-hydroxy-3'-(α,α-dimethylbenzyl)-5'-(1 ,1 ,3,3-tetramethylbutyl)-phenyl]- benzotriazole; 2-[2'-hydroxy-3'-(1 ,1 ,3,3-tetramethylbutyl)-5'-(α,α-dimethylbenzyl)-phenyl]ben- zotriazole.
2.2. 2-Hvdroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyl- oxy, 4-dodecyloxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-hydroxy-4,4'-dimethoxy derivatives.
2.3. Esters of substituted and unsubstituted benzoic acids, for example 4-tert-butyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylben- zoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzo- ate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxyben- zoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
2.4. Acrylates, for example ethyl α-cyano-β,β-diphenylacrylate, isooctyl α-cyano-β,β-diphe- nylacrylate, methyl α-carbomethoxycinnamate, methyl α-cyano-β-methyl-p-methoxycinna- mate, butyl α-cyano-β-methyl-p-methoxy-cinnamate, methyl α-carbomethoxy-p-methoxycin- namate, N-(β-carbomethoxy-β-cyanovinyl)-2-methylindoline, neopentyl tetra(α-cyano-β,β-di- phenylacrylate.
2.5. Nickel compounds, for example nickel complexes of 2,2'-thio-bis[4-(1 ,1 ,3,3-tetramethyl- butyl)phenol], such as the 1 :1 or 1 :2 complex, with or without additional ligands such as n- butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert- butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphe- nylundecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands.
2.6. Sterically hindered amines, for example bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1 ,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1 -octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1 ,2,2,6,6-pentamethyl-4- piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-(2- hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tert- octylamino-2,6-dichloro-1 ,3,5-triazine, tris(2,2,6,6-tetramethyl-4-piperidyl)nitrilotriacetate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1 ,2,3,4-butanetetracarboxylate, 1 ,1'-(1 ,2-ethanediyl)- bis(3,3,5,5-tetramethylpiperazinone), 4-benzoyl-2,2,6,6-tetramethylpiperidine, 4-stearyloxy- 2,2,6,6-tetramethylpiperidine, bis(1 ,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5- di-tert-butylbenzyl)malonate, 3-n-octyl-7,7,9,9-tetramethyl-1 ,3,8-triazaspiro[4.5]decane-2,4- dione, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate, bis(1-octyloxy-2,2,6,6- tetramethylpiperidyl)succinate, linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4- piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1 ,3,5-triazine, the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1 ,3,5-triazine and 1 ,2-bis(3-aminopropylamino)ethane, the condensate of 2-chloro-4,6-di-(4-n-butylamino- 1 ,2, 2, 6, 6-pentamethylpiperidyl)-1 ,3,5-triazine and 1 ,2-bis(3-aminopropylamino)ethane, 8- acetyl-3-dodecyl-7,7,9,9-tetramethyl-1 ,3,8-triazaspiro[4.5]decane-2,4-dione, 3-dodecyl-1 - (2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione, 3-dodecyl-1-(1 ,2,2,6,6-pentamethyl-4- piperidyl)pyrrolidine-2,5-dione, a mixture of 4-hexadecyloxy- and 4-stearyloxy-2, 2,6,6- tetramethylpiperidine, a condensate of N,N'-bis(2,2,6,6-tetramethyl-4- piperidyl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1 ,3,5-triazine, a condensate of 1 ,2-bis(3-aminopropylamino)ethane and 2, 4, 6-trichloro-1 ,3,5-triazine as well as 4-butylamino-2,2,6,6-tetramethylpiperidine (CAS Reg. No. [136504-96-6]); a condensate of 1 ,6-hexanediamine and 2, 4, 6-trichloro-1 ,3,5-triazine as well as N,N-dibutylamine and 4- butylamino-2,2,6,6-tetramethylpiperidine (CAS Reg. No. [192268-64-7]); N-(2,2,6,6- tetramethyl-4-piperidyl)-n-dodecylsuccinimide, N-(1 , 2,2,6, 6-pentamethyl-4-piperidyl)-n- dodecylsuccinimide, 2-undecyl-7,7,9,9-tetramethyl-1 -oxa-3,8-diaza-4-oxo-spiro[4,5]decane, a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro- [4,5]decane and epichlorohydrin, 1 ,1-bis(1 , 2,2,6, 6-pentamethyl-4-piperidyloxycarbonyl)-2-(4- methoxyphenyl)ethene, N,N'-bis-formyl-N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexa- methylenediamine, a diester of 4-methoxymethylenemalonic acid with 1 ,2,2,6,6-pentamethyl- 4-hydroxypiperidine, poly[methylpropyl-3-oxy-4-(2,2,6,6-tetramethyl-4-piperidyl)]siloxane, a reaction product of maleic acid anhydride-α-olefin copolymer with 2,2,6,6-tetramethyl-4-ami- nopiperidine or 1 ,2,2,6,6-pentamethyl-4-aminopiperidine, 2,4-bis[N-(1-cyclohexyloxy-2,2,6,6- tetramethylpiperidine-4-yl)-N-butylamino]-6-(2-hydroxyethyl)amino-1 ,3,5-triazine, 1 -(2-hydr- oxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine, 5-(2-ethylhexanoyl)- oxymethyl-3,3,5-trimethyl-2-morpholinone, Sanduvor (Clariant; CAS Reg. No. 106917-31-1], 5-(2-ethylhexanoyl)oxymethyl-3,3,5-trimethyl-2-morpholinone, the reaction product of 2,4-bis- [(1-cyclohexyloxy-2,2,6,6-piperidine-4-yl)butylamino]-6-chloro-s-triazine with N,N'-bis(3-ami- nopropyl)ethylenediamine), 1 ,3,5-tris(N-cyclohexyl-N-(2,2,6,6-tetramethylpiperazine-3-one-4- yl)amino)-s-triazine, 1 ,3,5-tris(N-cyclohexyl-N-(1 ,2,2,6,6-pentamethylpiperazine-3-one-4-yl)- amino)-s-triazine.
2.7. Oxamides, for example 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-dioctyloxy- 5,5'-di-tert-butoxanilide, 2,2'-didodecyloxy-5,5'-di-tert-butoxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
2.8. 2-(2-Hydroxyphenyl)-1 ,3,5-triazines, for example 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)- 1 ,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2- (2, 4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2,4-bis(2-hydroxy-4-propyl- oxyphenyl)-6-(2,4-dimethylphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(4- methylphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)- 1 ,3,5-triazine, 2-(2-hydroxy-4-tridecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2- [2-hydroxy-4-(2-hydroxy-3-butyloxypropoxy)phenyl]-4,6-bis(2,4-dimethyl)-1 ,3,5-triazine, 2-[2- hydroxy-4-(2-hydroxy-3-octyloxypropyloxy)phenyl]-4,6-bis(2,4-dimethyl)-1 ,3,5-triazine, 2-[4- (dodecyloxy/tridecyloxy-2-hydroxypropoxy)-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)- 1 ,3,5-triazine, 2-[2-hydroxy-4-(2-hydroxy-3-dodecyloxypropoxy)phenyl]-4,6-bis(2,4-dimethyl- phenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-hexyloxy)phenyl-4,6-diphenyl-1 ,3,5-triazine, 2-(2-hydr- oxy-4-methoxyphenyl)-4,6-diphenyl-1 ,3,5-triazine, 2,4,6-tris[2-hydroxy-4-(3-butoxy-2- hydroxypropoxy)phenyl]-1 ,3,5-triazine, 2-(2-hydroxyphenyl)-4-(4-methoxyphenyl)-6-phenyl- 1 ,3,5-triazine, 2-{2-hydroxy-4-[3-(2-ethylhexyl-1-oxy)-2-hydroxypropyloxy]phenyl}-4,6-bis(2,4- dimethylphenyl)-1 ,3,5-triazine, 2,4-bis(4-[2-ethylhexyloxy]-2-hydroxyphenyl)-6-(4- methoxyphenyl)-1 ,3,5-triazine.
3. Metal deactivators, for example N,N'-diphenyloxamide, N-salicylal-N'-salicyloyl hydrazine, N,N'-bis(salicyloyl)hydrazine, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1 ,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N'-diacetyladipoyl dihydrazide, N,N'-bis(salicyl- oyl)oxalyl dihydrazide, N,N'-bis(salicyloyl)thiopropionyl dihydrazide.
4. Phosphites and phosphonites, for example triphenyl phosphite, diphenylalkyl phosphites, phenyldialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearylpentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,4-di- cumylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, diisodecyloxypentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)- pentaerythritol diphosphite, bis(2,4,6-tris(tert-butylphenyl)pentaerythritol diphosphite, tristea- ryl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4'-biphenylene diphosphonite, 6- isooctyloxy-2,4,8,10-tetra-tert-butyl-12H-dibenz[d,g]-1 ,3,2-dioxaphosphocin, bis(2,4-di-tert- butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenz[d,g]-1 ,3,2-dioxaphosphocin, 2,2',2"-nitrilo- [triethyltris(3,3',5,5'-tetra-tert-butyl-1 ,1 '-biphenyl-2,2'-diyl)phosphite], 2-ethylhexyl(3,3',5,5'-te- tra-tert-butyl-1 ,1 '-biphenyl-2,2'-diyl)phosphite, 5-butyl-5-ethyl-2-(2,4,6-tri-tert-butylphenoxy)- 1 ,3,2-dioxaphosphirane.
The following phosphites are especially preferred:
Tris(2,4-di-tert-butylphenyl) phosphite (lrgafos®168, Ciba Specialty Chemicals Inc.), tris(no- nylphenyl) phosphite,
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
Figure imgf000022_0004
Figure imgf000022_0005
5. Hydroxylamines, for example N,N-dibenzylhydroxylamine, N,N-diethylhydroxylamine, N, N- dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-ditetradecylhydroxylamine, N, N- dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-octadecylhydrox- ylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.
6. Nitrones, for example, N-benzyl-alpha-phenylnitrone, N-ethyl-alpha-methylnitrone, N-octyl- alpha-heptylnitrone, N-lauryl-alpha-undecylnitrone, N-tetradecyl-alpha-tridecylnnitrone, N- hexadecyl-alpha-pentadecylnitrone, N-octadecyl-alpha-heptadecylnitrone, N-hexadecyl-al- pha-heptadecylnitrone, N-ocatadecyl-alpha-pentadecylnitrone, N-heptadecyl-alpha-hepta- decylnitrone, N-octadecyl-alpha-hexadecylnitrone, nitrone derived from N,N-dialkylhydroxyl- amine derived from hydrogenated tallow amine.
7. Thiosynergists, for example dilauryl thiodipropionate, dimistryl thiodipropionate, distearyl thiodipropionate or distearyl disulfide.
8. Peroxide scavengers, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercapto- benzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β- dodecylmercapto)propionate.
9. Polyamide stabilizers, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.
10. Basic co-stabilizers, for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.
1 1. Nucleating agents, for example inorganic substances, such as talcum, metal oxides, such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds, such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds, such as ionic copolymers (ionomers). Especially preferred are 1 ,3:2,4-bis(3',4'-dimethylbenzylidene)sorbitol, 1 ,3:2,4-di(paramethyl- dibenzylidene)sorbitol, and 1 ,3:2,4-di(benzylidene)sorbitol.
12. Fillers and reinforcing agents, for example calcium carbonate, silicates, glass fibres, glass beads, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers.
13. Other additives, for example plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents and blowing agents.
14. Benzofuranones and indolinones, for example those disclosed in U.S. 4,325,863; U.S. 4,338,244; U.S. 5,175,312; U.S. 5,216,052; U.S. 5,252,643; DE-A-431661 1 ;
DE-A-4316622; DE-A-4316876; EP-A-0589839, EP-A-0591102; EP-A-1291384 or 3-[4-(2- acetoxyethoxy)phenyl]-5,7-di-tert-butylbenzofuran-2-one, 5,7-di-tert-butyl-3-[4-(2-stearoyloxy- ethoxy)phenyl]benzofuran-2-one, 3,3'-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)ben- zofuran-2-one], 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one, 3-(4-acetoxy-3,5-di- methylphenyl)-5,7-di-tert-butylbenzofuran-2-one, 3-(3,5-dimethyl-4-pivaloyloxyphenyl)-5,7-di- tert-butylbenzofuran-2-one, 3-(3,4-dimethylphenyl)-5,7-di-tert-butylbenzofuran-2-one, 3-(2,3- dimethylphenyl)-5,7-di-tert-butylbenzofuran-2-one, 3-(2-acetyl-5-isooctylphenyl)-5-isooctyl- benzofuran-2-one.
One or more of these further additives are usually contained in an amount of 0.01 to about 10 % of the composition, often in a concentration level of about 0.1 to 5 % by weight of the final composition. Important are, for example, antioxidants (e.g. phenolic antioxidants and/or phosph(on)ites listed above) and, for many applications, flame retardants. Clarifiers/nucleating agents may be added to provide or improve transparency, especially in polyolefin compositions. Especially preferred is the combination of the present nanoparticles with light stabilizers such as UV absorbers and/or sterically hindered amines (HALS). Zinc oxide in particular is a well known plastic additive that absorbs strongly UV radiation, improving plastic durability. Further, strong synergistic effects are known when combined with light stabilizers such as HALS (see e.g. EP-A-690094; US-5948836). Plastic materials, especially films of the present invention, containing polymers and nanoparticles as described above, advantageously may be used in technical application fields such as architectural glazing, glazing in building and construction, automotive glazing, transportation glazing, agricultural films and structures. The materials may be solid sheets, monolithic sheets, twin-wall sheets, multi-wall sheets, flat sheets, corrugated sheets, films, oriented or mono- or biaxially oriented films, lamination films, capstock films. Specific application fields include wintergarden and veranda buildings, facades, skylights, pool covers and enclosures, roof structures, vaults, walkways, shelters, signage, interior and exterior design elements, sun shades, side window, rear window, panorama roof, greenhouses.
Main applications are heat-shielding, light management, heat management, energy management, solar control; also of importance are laser welding, security features, marking, tracers, heat transfer.
Compositions of the invention preferably are unplasticized. Compositions of the invention do not require any further metals or metallic particles and usually do not contain such components. Of special technical interest are rigid, transparent compositions, such as plates or sheets, for automotive or architectural glazings, or translucent or transparent polyolefin or polyolefin copolymer films, especially for agricultural applications.
The additives of the invention and optional further components may be added to the polymer material individually or mixed with one another. If desired, the individual components can be mixed with one another before incorporation into the polymer for example by dry blending, compaction or in the melt.
The incorporation of the additives of the invention and optional further components into the polymer is carried out by known methods such as dry blending in the form of a powder, or wet mixing in the form of solutions, dispersions or suspensions for example in an inert solvent, water or oil. The additives of the invention and optional further additives may be incorporated, for example, before or after molding or also by applying the dissolved or dispersed additve or additive mixture to the polymer material, with or without subsequent evaporation of the solvent or the suspension/dispersion agent. They may be added directly into the processing apparatus (e.g. extruders, internal mixers, etc), e.g. as a dry mixture or powder or as solution or dispersion or suspension or melt.
The incorporation can be carried out in any heatable container equipped with a stirrer, e.g. in a closed apparatus such as a kneader, mixer or stirred vessel. The incorporation is preferably carried out in an extruder or in a kneader. It is immaterial whether processing takes place in an inert atmosphere or in the presence of oxygen.
The addition of the additive or additive blend to the polymer can be carried out in all customary mixing machines in which the polymer is melted and mixed with the additives. Suitable machines are known to those skilled in the art. They are predominantly mixers, kneaders and extruders.
The process is preferably carried out in an extruder by introducing the additive during processing. Particularly preferred processing machines are single-screw extruders, contrarotating and corotating twin-screw extruders, planetary-gear extruders, ring extruders or cokneaders. It is also possible to use processing machines provided with at least one gas removal compartment to which a vacuum can be applied.
Suitable extruders and kneaders are described, for example, in Handbuch der Kunststoffex- trusion, Vol. 1 Grundlagen, Editors F. Hensen, W. Knappe, H. Potente, 1989, pp. 3-7, ISBN:3-446-14339-4 (Vol. 2 Extrusionsanlagen 1986, ISBN 3-446-14329-7).
For example, the screw length is 1 - 60 screw diameters, preferably 20-48 screw diameters. The rotational speed of the screw is preferably 1 - 800 rotations per minute (rpm), very particularly preferably 25 - 400 rpm. The maximum throughput is dependent on the screw diameter, the rotational speed and the driving force. The process of the present invention can also be carried out at a level lower than maximum throughput by varying the parameters mentioned or employing weighing machines delivering dosage amounts.
If a plurality of components is added, these can be premixed or added individually.
The additives of the invention and optional further additives can also be added to the polymer in the form of a masterbatch ("concentrate") which contains the components in a concentration of, for example, about 5 % to about 80% and preferably 5 % to about 40 % by weight incorporated in a polymer and/or dispersed in a suitable solvent. The polymer must not be necessarily of identical structure than the polymer where the additives are added finally. In such operations, the polymer can be used in the form of powder, granules, solutions, suspensions or in the form of latices.
Incorporation can take place prior to or during the shaping operation, or by applying the dissolved or dispersed compound to the polymer, with or without subsequent evaporation of the solvent. In the case of elastomers, these can also be stabilized as latices. A further possibility for incorporating the additives of the invention into polymers is to add them before, during or directly after the polymerization of the corresponding monomers or prior to crosslinking. In this context the additive of the invention can be added as it is or else in encapsulated form (for example in waxes, oils or polymers).
The materials containing the additives of the invention described herein can be used for the production of moldings, rotomolded articles, injection molded articles, blow molded articles, films, tapes, mono-filaments, fibers, nonwovens, profiles, adhesives or putties, surface coatings and the like.
The present matrix material may also be a coating material or a cured coating comprising as component (a) a suitable binder. The binder (component (A)) can in principle be any binder which is customary in industry, for example those described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A18, pp. 368-426, VCH, Weinheim 1991. In general, it is a film-forming binder based on a thermoplastic or thermosetting resin, predominantly on a thermosetting resin. Examples thereof are alkyd, acrylic, polyester, phenolic, melamine, epoxy and polyurethane resins and mixtures thereof.
Component (A) can be a cold-curable or hot-curable binder; the addition of a curing catalyst may be advantageous. Suitable catalysts which accelerate curing of the binder are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A18, p.469, VCH Verlagsgesellschaft, Weinheim 1991.
Preference is given to coating compositions in which component (A) is a binder comprising a functional acrylate resin and a crosslinking agent.
Examples of coating compositions containing specific binders are: 1. paints based on cold- or hot-crosslinkable alkyd, acrylate, polyester, epoxy or melamine resins or mixtures of such resins, if desired with addition of a curing catalyst;
2. two-component polyurethane paints based on hydroxyl-containing acrylate, polyester or polyether resins and aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
3. two-component polyurethane paints based on thiol-containing acrylate, polyester or polyether resins and aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
4. one-component polyurethane paints based on blocked isocyanates, isocyanurates or polyisocyanates which are deblocked during baking, if desired with addition of a melamine resin;
5. one-component polyurethane paints based on aliphatic or aromatic urethanes or polyurethanes and hydroxyl-containing acrylate, polyester or polyether resins;
6. one-component polyurethane paints based on aliphatic or aromatic urethaneacrylates or polyurethaneacrylates having free amino groups within the urethane structure and melamine resins or polyether resins, if necessary with curing catalyst;
7. two-component paints based on (poly)ketimines and aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
8. two-component paints based on (poly)ketimines and an unsaturated acrylate resin or a polyacetoacetate resin or a methacrylamidoglycolate methyl ester;
9. two-component paints based on carboxyl- or amino-containing polyacrylates and polyepoxides;
10. two-component paints based on acrylate resins containing anhydride groups and on a polyhydroxy or polyamino component; 1 1. two-component paints based on acrylate-containing anhydrides and polyepoxides;
12. two-component paints based on (poly)oxazolines and acrylate resins containing anhydride groups, or unsaturated acrylate resins, or aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
13. two-component paints based on unsaturated polyacrylates and polymalonates; 14. thermoplastic polyacrylate paints based on thermoplastic acrylate resins or externally crosslinking acrylate resins in combination with etherified melamine resins; 15. paint systems based on siloxane-modified or fluorine-modified acrylate resins; 16. paint systems , especially for clearcoats, based on malonate- blocked isocyanates with melamine resins (e.g. hexamethoxymethylmelamine) as crosslinker (acid catalyzed);
17. UV-curable systems based on oligomeric urethane acrylates and/or acrylatacrylaten, if desired in combination with other oligomers or monomers;
18. dual cure systems, which are cured first by heat and subsequently by UV or electron irradiation, or vice versa, and whose components contain ethylenic double bonds capable to react on irradiation with UV light in presence of a photoinitiator or with an electron beam.
Coating systems based on siloxanes are also possible, e.g. systems described in WO 98/56852, WO 98/56853, DE-A-2914427, or DE-A-4338361.
In addition to components (A) and (B), the coating composition according to the invention preferably comprises as component (C) a light stabilizer of the sterically hindered amine type, the 2-(2-hydroxyphenyl)-1 ,3,5-triazine and/or 2-hydroxyphenyl-2H-benzotriazole type, for example as mentioned in the above list in sections 2.1 , 2.6 and 2.8. Further examples for light stabilizers of the 2-(2-hydroxyphenyl)-1 ,3,5-triazine type advantageously to be added can be found e.g. in the publications US-A-4619956, EP-A-434608, US-A-5198498, US-A- 5322868, US-A-5369140, US-A-5298067, WO-94/18278, EP-A-704437, GB-A-2297091 , WO-96/28431. Of special technical interest is the addition of compounds of the classes 2- resorcinyl-4,6-diphenyl-1 ,3,5-triazine, 2-resorcinyl-4,6-bis(biphenylyl)-1 ,3,5-triazine, and/or 2- hydroxyphenyl-2H-benztriazole.
Apart from components (A), (B) and, if used, (C), the coating composition can also comprise further components, examples being solvents, pigments, dyes, plasticizers, stabilizers, rheologic or thixotropic agents, drying catalysts and/or levelling agents. Examples of possible components are described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A18, pp. 429-471 , VCH, Weinheim 1991.
Possible drying catalysts or curing catalysts are, for example, free (organic) acids or bases, or (organic) blocked acids or bases which may be deblocked by thermal treatment or irradiation, organometallic compounds, amines, amino-containing resins and/or phosphines. Examples of organometallic compounds are metal carboxylates, especially those of the metals Pb, Mn, Co, Zn, Zr or Cu, or metal chelates, especially those of the metals Al, Ti , Zr or Hf, or organometallic compounds such as organotin compounds.
Examples of metal carboxylates are the stearates of Pb, Mn or Zn, the octoates of Co, Zn or Cu, the naphthenates of Mn and Co or the corresponding linoleates, resinates or tallates.
Examples of metal chelates are the aluminium, titanium or zirconium chelates of acetylacetone, ethyl acetylacetate, salicylaldehyde, salicylaldoxime, o-hydroxyacetophenone or ethyl trifluoroacetylacetate, and the alkoxides of these metals.
Examples of organotin compounds are dibutyltin oxide, dibutyltin dilaurate or dibutyltin dioctoate.
Examples of amines are, in particular, tertiary amines, for example tributylamine, triethanolamine, N-methyldiethanolamine, N-dimethylethanolamine, N-ethylmorpholine,
N-methylmorpholine or diazabicyclooctane (triethylenediamine), diazabicycloundecene, DBN (= 1 ,5-diazabicyclo[4.3.0]non-5-ene), and salts thereof. Further examples are quaternary ammonium salts, for example trimethylbenzylammonium chloride.
Amino-containing resins are simultaneously binder and curing catalyst. Examples thereof are amino-containing acrylate copolymers.
The curing catalyst used can also be a phosphine, for example triphenylphosphine.
The novel coating compositions can also be radiation-curable coating compositions. In this case, the binder essentially comprises monomeric or oligomeric compounds containing ethylenically unsaturated bonds (prepolymers), which after application are cured by actinic radiation, i.e. converted into a crosslinked, high molecular weight form. Where the system is UV-curing, it generally contains at least one photoinitiator as well. Corresponding systems are described in the abovementioned publication Ullmann's Encyclopedia of Industrial
Chemistry, 5th Edition, Vol. A18, pages 451-453. In radiation-curable coating compositions, the novel stabilizers can also be employed without the addition of sterically hindered amines.
The coating compositions according to the invention can be applied to any desired substrates, for example to metal, wood, plastic or ceramic materials. They are preferably used as topcoat in the finishing of automobiles. If the topcoat comprises two layers, of which the lower layer is pigmented and the upper layer is not pigmented, the novel coating composition can be used for either the upper or the lower layer or for both layers, but preferably for the upper layer.
The novel coating compositions can be applied to the substrates by the customary methods, for example by brushing, spraying, pouring, dipping or electrophoresis; see also Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A18, pp. 491-500.
Depending on the binder system, the coatings can be cured at room temperature or by heating. The coatings are preferably cured at 50 - 15O0C, and in the case of powder coatings or coil coatings even at higher temperatures.
The coatings obtained in accordance with the invention have excellent resistance to the damaging effects of light, oxygen and heat; particular mention should be made of the good light stability and weathering resistance of the coatings thus obtained, for example paints.
The coating compositions can comprise an organic solvent or solvent mixture in which the binder is soluble. The coating composition can otherwise be an aqueous solution or dispersion. The vehicle can also be a mixture of organic solvent and water. The coating composition may be a high-solids paint or can be solvent-free (e.g. a powder coating material). Powder coatings are, for example, those described in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., A18, pages 438-444. The powder coating material may also have the form of a powder-slurry (dispersion of the powder preferably in water).
The pigments can be inorganic, organic or metallic pigments. The novel coating compositions preferably contain no pigments and are used as a clearcoat.
The present matrix material may also be an inorganic polymer composition or organic/inorganic polymer hybrid system, e.g. a sol-gel coating. Examples are metal oxide systems based on metal alkoxides such as Si, Ti, Xr, Al alkoxides, or hybrid coatings based on a mixture of resin + metal alkoxide; examples for such systems and their preparation are given in section [0169] of US20070187653, or EP-A-1676890 col. 18, lines 9-16, which passages are hereby incorporated by reference. In a further embodiment the invention relates to the use of a blend comprising hydrogen tungsten bronze as defined above and in addition a dithiolen metal complex of the formula I or Il as disclosed in the European Patent application EP 07 100657.1 to increase the heat- input amount of near infrared radiation.
In a further embodiment the invention relates to the use of a blend comprising hydrogen tungsten bronze as defined above and in addition at least one organic IR absorber selected from quinone-diimmonium salt, aminium salt, polymethines such as cyanine squaraine, croconaine; phthalocyanine, naphthalocyanine and quaterrylene-bisimide or in addition at least one anorganic IR absorber selected from lanthane hexaboride, indium tin oxide (ITO) antimony tin oxide such as Minatec 230 A-IR available from Merck, or Lazerflair® pigments available from Merck.
Further examples of organic IR absorbers are alkylated triphenyl phosphorothionates, for example as sold under the trade name Ciba® Irgalube® 21 1 or Carbon Black, for example as sold under the trade names Ciba® Microsol® Black 2B or Ciba® Microsol® Black C-E2. Examples of inorganic IR absorbers are oxides, hydroxides, sulfides, sulfates and phosphates of metals such as copper, bismuth, iron, nickel, tin, zinc, manganese, zirconium, tungsten, lanthanum, and antimony, including antimony(V) oxide doped mica and tin(IV) oxide doped mica.
A preferred are novel mixtures comprises tungsten trioxide (WO3), a hydrogen comprising tungstate (e.g. WO3H0, 53) and (metallic) tungsten. Said novel mixtures may be prepared by reducing ammonium paratungstate [(NH4)10W12H2Oθ42-4H2O, sold by Osram Sylvania] in a plasma reactor at 5000-10000 K (Kelvin) with hydrogen. The thus obtained mixtures may contain about 25 - 70 parts by weight, especially 30 - 55 parts by weight, of a hydrogen tungsten bronze; 20 - 70 parts by weight, especially 30 - 60 parts by weight, of a binary tungsten oxide; and about 1 - 30 parts by weight, especially 2 - 20 parts by weight, of tungsten metal; examples are mixtures comprising 25-55 % by weight of WO3H0, 53 , 35-60 % of WO3 , and 3- 35 % of tungsten, it being understood that the sum of these three components is 100%, e.g. 35 % of W03Ho,53 , 56 % Of WO3 , and 9 % of tungsten.
The following examples describe certain embodiments of this invention, but the invention is not limited thereto. It should be understood that numerous changes to the disclosed embodiments could be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. These examples are therefore not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents. In these examples all parts given are by weight and the temperatures are given in degree Celsius unless otherwise indicated. Abbreviations used: NIR Near Infra Red radiation
SEM Scanning Electron Microscopy
1. Preparation
1.1 Ammonium tungstate powder was entrained into an argon gas stream by a standard vibratory powder feeder. The fluidized precursor was fed into a thermal plasma reactor. The temperature range typically reached in the plasma hot zone of the reactor is between 5000 - 10,000 K. The reactant vapor was cooled by a quench gas and the resulting powder was collected in a bag filter. A reducing plasma composition was achieved in order to produce an oxygen deficient tungsten oxide product denoted Wθ3-X. The resulting powders were analyzed by powder X-ray diffraction, SEM, light scattering particle size analysis, and UV- VIS-NIR spectroscopy. Particle size is between 30 and 200 nm. This material (sample 0) exhibits very good dispersibility in coatings or plastics etc. l CN
1.2 Ammonium paratungstate powder ((NH4)1oW12H242-4H20, Osram Sylvania) is entrained into an argon carrier gas by a vibratory-type powder feeder operating at 10 g/min. The fluidized powder is fed into a plasma reactor with a Tekna PL-50 plasma torch operated at a power of 65 kW. The temperature range typically reached in the plasma hot zone of the reactor is between 5000 -10,000 K. A mixture of 100 slpm argon, and hydrogen/helium as indicated in the below table is used for the sheath gas:
Sample No. Sheath Gas (slpm)
Ar He H2
1 100 0
2 100 0 1.3
3 100 5 0.8
4 100 5 0.4
5 100 0 2 [slpm = standard liters per minute; standard conditions for the calculation of slpm are defined as: Tn 0 0C (320F), Pn = 1.01 bar (14.72 psi)].
The reactant vapor is cooled by a quench gas and the resulting powder is collected in a bag filter. The resulting powders are analyzed by powder X-ray diffraction, electron microscopy, and UV-vis-N I R spectroscopy.
2. X-ray characterization
The samples are slightly ground in an agate mortar for better particle homogenization and run on a standard Bragg-Brentano Siemens D5000 diffractometer system. A high-power Cu- target is used operating at 50kV/35mA. The data is collected in a step scan mode with step size 0.02° 2-theta and counting time of 1.5 seconds per step. The data processing is done by Diffrac Plus™ software Eva™ v. 8.0. The Rietveld analysis is carried out by Bruker's AXS Topas™ profile fitting software v. 2.1.
The obtained x-ray powder diffraction patterns are compared with reference patterns for available W and WOx materials in both PDF-2 Database and the calculated ones from the single crystal structural data provided in Inorganic Crystal Structure Database, 2005-2, Karlsruhe, Germany. The initial qualitative analysis reveals that all 4 analyzed samples are composed by 3 components mixed in different proportions: the cubic hydrogen tungsten oxide (bronze), WO3H053, the monoclinic and/or triclinic tungsten oxide, called in this study RT-WO3, and a cubic, bcc, HT-tungsten, W. Each of the samples is found to consist of 3 phases, as shown in the following table 1. The relative percent of each phase is observed to be affected by the hydrogen in the sheath gas.
Table 1. Rietveld quantitative analysis of Tungsten/Tungsten Oxide mixtures.
Figure imgf000034_0001
3. Application Examples
Sample evaluation:
Samples containing solar control additives are evaluated using equipment as shown in fig. 1. This instrument compares the temperature build up of a black aluminum panel behind two plastic samples (A4 size), one sample containing the solar controlling additive the other being a reference without any solar controlling additive. The two samples are mounted on the front side of two different chambers that are exposed to light of a 500 W halogen lamp with color temperature of 5000 K. temperature is recorded by thermocouples (PT100) in each chamber, connected to a PC data logger.
The resulting heat shielding factor (HS) after 800 seconds, expressed as ΔT8oo sec(°C), is reported in the tables below.
3.1 Polycarbonate (PC) Injection molding / PC film extrusion
Mixing and compounding: 3.0 kg of milled polycarbonate (Makrolon 3103) are dried in a vacuum oven at 120 0C for 8 hours. The powder is mixed with the additives (samples) listed in the below Table for 3 minutes at 80 0C in a 5I Henschel Turbomixer, and then compounded on a Berstorff ZE 25x32D at 280 0C. The polymer strand is granulated.
Sheet extrusion: The pellets are used to produce a 100 μm thick cast film (plate) on a CoIMn CR-136 / 350 sheet extrusion line at a maximum temperature of 280 0C.
Evaluation: The ΔE values are measured in accordance with DIN 6174. The UV-VIS-NIR Spectrum is recorded on a Shimadzu UV 3101 UV with ISR3100 integrating sphere: Parameter: Slit width 20, wavelength 250 - 1800 nm, Scan speed fast, Light Source change at 360 nm and Detector change at 830 nm.
The relative absorption is calculated by the absorption at the maximum divided by the initial absorption at the same wavelength.
Haze is measured on a Haze-gard plus from Byk Gardner in accordance with ASTM D-1003. The results are presented in Table 2. Table 2: PC Film sample, Thickness 100 μm
Figure imgf000036_0001
Artificial weathering: The samples are irradiated in a Weather-Ometer Ci65 from ATLAS in accordance with ASTM G 155/ASTM G 151 , Xenon lamp with 2 borosilicate filters, 0.35 W/m2 at 340 nm, 63 ± 3 0C black panel temperature, 102 min dry and light, 18 min water spray and light.
The present PC compositions show good heat shielding and low haze and discoloration values.
3.2 Examples of PET-G film extrusion
Polyethylene terephthalate powder (PET-G; Eastar 6763 from Eastman) and 1% Tinuvin
1577 are turbo-mixed with the additives listed in the below Table in loading described in table 4, dried at 700C for 12 hours, then compounded in a twin screw CoIMn Extruder. The obtained pellets are dried again and extruded in a Collin cast line to get a 300 micron PET-G film.
Table 4
Figure imgf000036_0002
The present PET compositions show a good heat shielding effect. 3.3 Examples of LDPE films
LDPE powder (FF29 from Polimeri Europa) and 0.8% Tinuvin 371 are turbo-mixed with the additives in loading as described in table 5 and then compounded in a twin screw CoIMn Extruder. A 150-micron LDPE film is prepared by melt blow extrusion of the mixture using a FORMAC lab extruder.
Table 5
Figure imgf000037_0001
The present LDPE compositions show a good heat shielding effect.
3.4 Example for NIR curing
The different IR-Absorbers are tested in a 2P-PU formulation concerning the temperature uptake during NIR-Curing as well as the final coating properties.
The IR-Absorbers are incorporated into the millbase using glassbeads and a scandex shaker for 16 h according to the following table (values are in g).
Millbase
Laropal A 81 (urea-aldehyde resin available from BASF) 15.7 g 60% in 1-methoxy-2propylacetate/xylene 3:'
EFKA 4401 (polymeric dispersant, available from Ciba Inc) 0 08g
1 -methoxy-2propylacetate (solvent) 4 62g
Butylglycolacetate (solvent) 1 16g
NIR-A 0 19g
The millbase is mixed with the letdown formulation and the crosslinker is added according to the following table.
Figure imgf000038_0001
Desmodur N3390 is an aliphatic isocyanate available from Bayer Material Science and used as crosslinker
Figure imgf000038_0002
Macrynal SM 51 On is a hydroxyfunctional acrylic resin available from Cytec Surface
Specialties
EFKA 3030 is a modified polysiloxane to improve levelling available from Ciba Specialty
Chemicals
DBTL is Dibutyltin dilaurate and used as a catalyst
DABCO-33LV is a mixture of triethylenediamine and dipropyleneglycol available from Air
Products & Chemicals and used as catalyst
The coating is applied by a wire bar using a WFT (wet film thickness) of 80 μm. The coatings are dried in an NIR-dryer using lamp settings and belt speeds as indicated below.
The distribution of the NIR-A into the coating formulation was checked via the measurement of haze over black. The lower the value the better the distribution in the formulation and the less impact on the visual film properties is observed.
Figure imgf000039_0001
The temperature of the coating surface is measured directly after cure.
The Table below shows the results using a belt speed of 2m/min, a 6 Adphos high-burn NIR- lamps, output 70 %, a distance to the lamp of 100mm
Figure imgf000039_0002
The present powder composition may be incorporated with low haze and provides good conversion of NIR radiation into heat.
3.5 Example laser welding
The IR absorber according to example 1.1 is incorporated by means of an injection molding machine into a polycarbonate sheet (thickness 2mm) at a concentration of 500ppm. The resulting (transparent and slightly bluish) sheet is welded together with a polycarbonate sheet (thickness 1 mm) using a 250 watt Nd:YAG-laser. The surface is scanned by laser beam at a speed of 20mm/sec.
The resulting welding has an excellent connection, is highly transparent, does not show any localized plastic deformation, does not evolve bubbles during welding. No fracture of the joining line is induced due to mechanical stress. 3.6 White gravure ink A titanium dioxide based white ink that has excellent photosensitivity to laser imaging at 1064nm is prepared in the following manner:
Formulation of the ink
Figure imgf000040_0001
The C501 Varnish is prepared by mixing together Vinnapas® C501 resin manufactured by Wacker Chemie AG, a solid copolymer of vinyl acetate and crotonic acid with an acid number of 7.5 mg KOH/g, a molecular weight of 170 000 g/mol and a Tg of ca. 43 0C, (20 parts) and propyl acetate (80 parts).
The ink thus obtained, containing as IR absorber 0.1 % of a mixture consisting of WO3H053 , WO3 and W (hereinafter designated as ink Z) is compared to the analogous ink not comprising said absorbers (hereinafter designated as ink X).
Each of said inks X and Z is applied to white packaging board using a standard K2 bar and dried. Then a 1 cm square area of each of the obtained packaging boards is lasered (fill 60, 1500mms, 20Khz). The optical density of the imaged areas are then measured along with the background whiteness. As can be seen from the table below, a good image density is observed with only 0.1% of the present ink (ink Z), and also the CIE whiteness of the unimaged area remains high at 99.15.
Figure imgf000040_0002
Brief description of figures:
Figure 1 shows the evaluation equipment layout.

Claims

Claims
1. Powder composition comprising a) a hydrogen tungsten bronze, b) a binary tungsten oxide, and c) tungsten metal.
2. Composition of claim 1 comprising a) 25 - 70 parts by weight, especially 30 - 55 parts by weight, of a hydrogen tungsten bronze of the formula WO3-ZHX, where x ranges from 0.2 to 1 , especially from 0.4 to 0.7, and z is 0, or ranges from 0 to x, b) 20 - 70 parts by weight, especially 30 - 60 parts by weight, of the binary tungsten oxide, and c) 1 - 30 parts by weight, especially 2 - 20 parts by weight, of tungsten metal.
3. Composition of claim 1 wherein a major fraction of the hydrogen tungsten bronze is of cubic crystal structure, especially space group lm-3.
4. Composition of claim 1 wherein components (a) - (c) make up 95 - 100 % b.w. of the total powder composition, the remainders, if any, being organic polymers, other tungsten compounds and/or water.
5. Composition of claim 1 wherein the binary tungsten oxide is Wθ3-y, where y ranges from 0 to 1 , preferably from 0 to 0.33, especially from 0 to 0.1.
6. Process for the preparation of hydrogen tungsten bronze or a hydrogen tungsten bronze composition, especially as defined in claim 1 , which process comprises contacting ammonium tungstate with hydrogen and/or a hydrogen releasing gas at a temperature of 2500 K or more.
7. Process of claim 6, wherein the contact is effected in a plasma.
8. Process of claim 6, wherein hydrogen and/or hydrogen releasing gas is used in mixture with a noble gas.
9. Process of claim 8, wherein the amount of hydrogen is adjusted to keep the amount of tungsten metal formed in the product below 25 % b.w., especially in the range 3 - 20 % b.w. of the product.
10. Particle dispersion comprising hydrogen tungsten bronze particles in combination with particles of binary tungsten oxide and those of tungsten metal, preferably in a weight ratio as defined in claim 2, in a dispersing medium selected from organic polymers, solvents such as organic solvents or water or combinations of organic solvents and water, and combinations of organic polymers and solvents.
1 1. Particle dispersion of claim 10, wherein 90 % by weight or more of the total particle mass is particles from the size range 1 nm to 800 nm.
12. Composition comprising a) an organic polymer, especially a synthetic thermoplastic organic polymer or a coating binder, and b) 0.01 to 15 % b.w., based on component (a), of a hydrogen tungsten bronze, especially in the form of the powder composition of any of claims 1-5.
13. Composition of claim 12 containing as component (b) a hydrogen tungsten bronze of cubic crystal structure.
14. Composition of claim 12 or 13 containing component (b) in the form of particles dispersed in the matrix of component (a).
15. Use of hydrogen tungsten bronze particles or particles containing hydrogen tungsten bronze, especially in combination with particles of binary tungsten oxide and particles of tungsten metal in a weight ratio as defined in claim 2, as an infrared ray absorber and/or heat shielding additive in an organic or inorganic polymer composition or organic/inorganic polymer hybrid system..
PCT/EP2008/064347 2007-11-05 2008-10-23 Heat shielding additives WO2009059901A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010532541A JP5634871B2 (en) 2007-11-05 2008-10-23 Insulation additive
US12/739,166 US8168711B2 (en) 2007-11-05 2008-10-23 Heat shielding additives
CN200880114781.XA CN101848865B (en) 2007-11-05 2008-10-23 Heat shielding additives
EP08847970A EP2217533B1 (en) 2007-11-05 2008-10-23 Heat shielding additives comprising a tungsten hydrogen bronze, a binary tungsten oxide and tungsten metal
BRPI0818911A BRPI0818911A8 (en) 2007-11-05 2008-10-23 composition, process for the preparation of hydrogen and tungsten bronze or a hydrogen and tungsten bronze composition, particle dispersion, and use of hydrogen and tungsten bronze particles or particles containing hydrogen and tungsten bronze

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP07119940.0 2007-11-05
EP07119940 2007-11-05
EPPCT/EP2008/060550 2008-08-12
PCT/EP2008/060550 WO2009024497A1 (en) 2007-08-22 2008-08-12 Laser-sensitive coating composition
US19273108P 2008-09-22 2008-09-22
US61/192,731 2008-09-22

Publications (2)

Publication Number Publication Date
WO2009059901A2 true WO2009059901A2 (en) 2009-05-14
WO2009059901A3 WO2009059901A3 (en) 2009-10-29

Family

ID=39135202

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2008/064335 WO2009059900A2 (en) 2007-11-05 2008-10-23 Tungsten oxides used to increase the heat-input amount of near infrared radiation
PCT/EP2008/064347 WO2009059901A2 (en) 2007-11-05 2008-10-23 Heat shielding additives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064335 WO2009059900A2 (en) 2007-11-05 2008-10-23 Tungsten oxides used to increase the heat-input amount of near infrared radiation

Country Status (10)

Country Link
US (2) US8168711B2 (en)
EP (4) EP2682265A1 (en)
JP (2) JP5634871B2 (en)
KR (4) KR101611627B1 (en)
CN (4) CN101848865B (en)
BR (1) BRPI0818911A8 (en)
CO (1) CO6280522A2 (en)
EC (1) ECSP10010198A (en)
TW (1) TWI461368B (en)
WO (2) WO2009059900A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058200A1 (en) 2009-12-15 2011-06-16 Bayer Materialscience Ag Polymer composition with heat-absorbing properties and high stability
DE102009058462A1 (en) 2009-12-16 2011-06-22 Bayer MaterialScience AG, 51373 Producing polycarbonate injection molded body comprises introducing injection molded bodies containing polycarbonate in reactor, inerting atmosphere of reactor, introducing fluorine-inert gas mixture and evacuating and flushing the reactor
WO2011141368A1 (en) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer composition having heat-absorbent properties and high stability
WO2011141366A1 (en) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer composition having heat-absorbent properties and improved dyeing properties
WO2011141365A1 (en) 2010-05-10 2011-11-17 Bayer Materialscience Ag Stabiliser compositions
JP2012506463A (en) * 2008-10-23 2012-03-15 データレース リミテッド Heat absorption additive
WO2012055757A1 (en) 2010-10-25 2012-05-03 Bayer Materialscience Ag Multilayer plastic structure having low energy transmission
WO2013057074A1 (en) 2011-10-18 2013-04-25 Bayer Intellectual Property Gmbh Polymer composition with heat-absorbing properties
US8841375B2 (en) 2007-09-27 2014-09-23 Basf Se Isolable and redispersable transition metal nanoparticles their preparation and use as IR absorbers
US9267042B2 (en) 2008-10-27 2016-02-23 Datalase Ltd. Coating composition for marking substrates
US9333786B2 (en) 2007-07-18 2016-05-10 Datalase, Ltd. Laser-sensitive coating formulations
US9605129B2 (en) 2010-05-10 2017-03-28 Covestro Deutschland Ag Polymer composition having heat-absorbing properties and improved colour properties
US9862842B2 (en) 2012-02-29 2018-01-09 Sabic Global Technologies B.V. Infrared radiation absorbing articles and method of manufacture
WO2018122142A1 (en) 2016-12-28 2018-07-05 Covestro Deutschland Ag Additive fabrication process with a structural material comprising an ir absorber
EP3594008A1 (en) 2018-07-10 2020-01-15 Agfa-Gevaert Nv Near infrared (nir) laser processing of resin based articles
US11351756B2 (en) 2017-12-15 2022-06-07 Corning Incorporated Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059900A2 (en) * 2007-11-05 2009-05-14 Basf Se Tungsten oxides used to increase the heat-input amount of near infrared radiation
KR101676229B1 (en) 2009-01-20 2016-11-14 컬러매트릭스 홀딩즈 아이엔씨. Transparent, colorless infrared radiation absorbing compositions comprising non-stoichiometric tungsten oxide nanoparticles
JP5343697B2 (en) * 2009-05-15 2013-11-13 住友金属鉱山株式会社 Method for producing composite tungsten oxide ultrafine particles
JP5695356B2 (en) * 2010-07-13 2015-04-01 株式会社カネカ Curable coating agent having near-infrared absorbing ability, and near-infrared absorbing material
KR20110136274A (en) * 2010-06-14 2011-12-21 (주) 씨에프씨테라메이트 Inorganic compounds having photochromic and near infrared absorption poperties and manufacturing methods thereof
US8765855B2 (en) 2010-07-28 2014-07-01 Jagdip Thaker Reaction-based laser marking compositions, systems and methods
EP2643416B1 (en) * 2010-11-24 2019-08-07 Basf Se The use of aryl or heteroaryl substituted dithiolene metal complexes as ir absorbers
WO2012146749A1 (en) 2011-04-27 2012-11-01 Chemip B.V. Tungsten oxide compound
PT2734581T (en) * 2011-07-21 2017-07-13 Colormatrix Holdings Inc Polymeric materials
WO2013034533A2 (en) 2011-09-06 2013-03-14 Basf Se Infrared-absorbing white and light-coloured paints
CN102408841A (en) * 2011-09-19 2012-04-11 陈光伟 EVA adhesive film for packaging high-transmittance solar cell and preparation method thereof
CN103122155B (en) * 2011-11-18 2015-04-01 上海沪正纳米科技有限公司 Preparation method of high-performance window film insulation medium
JP2013151675A (en) * 2011-12-27 2013-08-08 Fujifilm Corp Infrared absorptive composition, infrared cut filter using the composition and method for manufacturing the same, and camera module and method for manufacturing the same
JP5942466B2 (en) * 2012-02-22 2016-06-29 住友金属鉱山株式会社 Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same
US9776210B2 (en) 2012-03-01 2017-10-03 Ferro Corporation Laser absorbing compounds
EP2790869B1 (en) * 2012-03-01 2017-11-01 Ferro Corporation Laser absorbing compounds
TWI434895B (en) 2012-03-28 2014-04-21 Ind Tech Res Inst Dyes and photoelectric conversion devices containing the same
CN104471737B (en) * 2012-07-13 2017-08-08 株式会社Lg化学 The outstanding photothermal deformation film of visible light transmission and the Organic Light Emitting Diode transfer film using it
US9017815B2 (en) 2012-09-13 2015-04-28 Ppg Industries Ohio, Inc. Near-infrared radiation curable multilayer coating systems and methods for applying same
LT2948504T (en) 2013-01-23 2019-10-10 Colormatrix Holdings, Inc. Polymeric materials
KR101724562B1 (en) * 2013-02-14 2017-04-07 후지필름 가부시키가이샤 Infrared absorption composition and infrared absorption composition kit infrared cut-off filter using same and manufacturing method thereof and camera module and manufacturing method thereof
EP2829582B1 (en) 2013-03-27 2018-09-19 NGK Insulators, Ltd. Marking base composition and marking base using the same
US10343339B2 (en) 2013-04-11 2019-07-09 Københavns Universitet Laser welding plastic
US9870842B2 (en) 2013-06-12 2018-01-16 Ppg Industries Ohio, Inc. Rapidly curable electrically conductive clear coatings
US9434652B2 (en) 2013-07-23 2016-09-06 Industrial Technology Research Institute Infrared absorption material, method for fabricating the same, and thermal isolation structure employing the same
GB201313593D0 (en) * 2013-07-30 2013-09-11 Datalase Ltd Ink for Laser Imaging
JP2015131928A (en) * 2014-01-15 2015-07-23 株式会社クレハ Near-infrared curing composition and use thereof
TWI532680B (en) * 2014-06-24 2016-05-11 奈星科技股份有限公司 Light shielding material, light shielding structure and fabrication method thereof
EP3178882B1 (en) * 2014-08-06 2021-03-10 Sumitomo Metal Mining Co., Ltd. Heat ray shielding film, heat ray-shielding laminated transparent substrate, vehicle, and building
JP6299559B2 (en) * 2014-10-30 2018-03-28 住友金属鉱山株式会社 Heat ray shielding particles, heat ray shielding particle dispersion, heat ray shielding particle dispersion, heat ray shielding particle dispersion combined transparent base material, infrared absorbing transparent base material, method for producing heat ray shielding particles
JP2017538817A (en) * 2014-12-01 2017-12-28 ダウ グローバル テクノロジーズ エルエルシー POLYMER COMPOSITION, SHRINKING FILM, AND METHOD FOR PRODUCING THEM
TWI581956B (en) * 2015-02-13 2017-05-11 林寬 Heat shielding thin films and heat shielding materials
CN106477633B (en) * 2015-09-01 2018-12-25 北京化工大学 A kind of bimetal-doped group vib metal oxide nano-material and the preparation method and application thereof
WO2017047736A1 (en) * 2015-09-18 2017-03-23 住友金属鉱山株式会社 Near-infrared-curable ink composition, near-infrared-cured film, and photoshaping method
WO2017116941A1 (en) * 2015-12-30 2017-07-06 3M Innovative Properties Company Infrared absorbing adhesive films and related methods
WO2017117356A1 (en) 2015-12-30 2017-07-06 3M Innovative Properties Company Abrasive article
JP6895441B2 (en) 2015-12-30 2021-06-30 スリーエム イノベイティブ プロパティズ カンパニー Polished articles and related methods
EP3397711B1 (en) 2015-12-30 2023-02-15 3M Innovative Properties Company Dual stage structural bonding adhesive
JP7021091B2 (en) * 2016-01-27 2022-02-16 エボニック オペレーションズ ゲーエムベーハー Manufacturing method of tungsten oxide and tungsten mixed oxide
JP6686719B2 (en) * 2016-06-15 2020-04-22 住友金属鉱山株式会社 Heat ray shielding fine particle dispersion, heat ray shielding laminated transparent substrate, and methods for producing the same
JP6681797B2 (en) * 2016-06-28 2020-04-15 住友金属鉱山株式会社 Method of heating object to be treated, method of heat treatment of object to be treated, method of heat treatment of steel sheet, and heat-acceleration coating layer
EP3306532A1 (en) 2016-10-05 2018-04-11 Agfa-Gevaert A laser markable rfid tag
EP3532294B1 (en) 2016-10-25 2022-03-09 Hewlett-Packard Development Company, L.P. Jettable composition containing cesium tungsten oxide nanoparticles and a zwitterionic stabilizer
US10759112B2 (en) * 2016-10-25 2020-09-01 Hewlett-Packard Development Company, L.P. Three-dimensional printing method
TWI628212B (en) * 2017-01-05 2018-07-01 黃宗之 Slurry and preparation method thereof, food packaging material and preparation method thereof, and food packaging member
UA124030C2 (en) 2017-01-09 2021-07-07 Евонік Оперейшнс Гмбх Method for producing metal oxides by means of spray pyrolysis
CN106892460B (en) * 2017-01-24 2018-05-22 南昌大学 A kind of preparation method of tungsten bronze nanometer sheet
CN106830085B (en) * 2017-01-24 2018-05-22 南昌大学 A kind of preparation method of stable hydrogen tungsten bronze nanometer sheet
CN110023058B (en) 2017-02-06 2021-08-10 惠普发展公司,有限责任合伙企业 3D printing
EP3519164B1 (en) 2017-02-06 2021-06-30 Hewlett-Packard Development Company, L.P. Fusing agent including a metal bis(dithiolene) complex
US11383433B2 (en) 2017-04-17 2022-07-12 Hewlett-Packard Development Company, L.P. Fusing agent(s)
EP3415498A1 (en) 2017-06-12 2018-12-19 Agfa Nv A developing agent precursor for laser markable compositions
EP3470135B1 (en) 2017-10-13 2020-04-08 Agfa Nv A composition comprising solvent and heat resistant capsules
EP3470134B1 (en) 2017-10-13 2020-06-03 Agfa Nv A composition comprising solvent and heat resistant capsules
US20190127599A1 (en) * 2017-11-01 2019-05-02 Industrial Technology Research Institute Dispersion of ir absorption particles, inkjet ink, and method of 3d printing
EP3495321A1 (en) 2017-12-07 2019-06-12 Evonik Degussa GmbH Preparation of powdery, porous crystalline metal silicates by means of flame spray pyrolysis
US10854554B2 (en) 2018-01-23 2020-12-01 Ferro Corporation Carbide, nitride and silicide enhancers for laser absorption
US10723160B2 (en) 2018-01-23 2020-07-28 Ferro Corporation Carbide, nitride and silicide enhancers for laser absorption
JP7133932B2 (en) * 2018-01-31 2022-09-09 共同印刷株式会社 Infrared absorbing ink and method for producing the same
JP6540859B1 (en) 2018-05-09 2019-07-10 住友金属鉱山株式会社 COMPOSITE TUNGSTEN OXIDE FILM, PROCESS FOR PRODUCING THE SAME, FILM-FORMED SUBSTRATE AND ARTICLE HAVING THE FILM
JP2020013119A (en) 2018-07-10 2020-01-23 キヤノン株式会社 toner
GB2574075B (en) * 2018-09-21 2020-07-08 Keeling & Walker Ltd Near infra-red absorbing material and uses
EP3626471A1 (en) 2018-09-24 2020-03-25 Agfa Nv Laser markable compositions
EP3626472A1 (en) 2018-09-24 2020-03-25 Agfa Nv Laser markable compositions
CN113039159B (en) * 2018-09-27 2023-11-24 住友金属矿山株式会社 Fine particle dispersion of infrared absorbing material and method for producing same
CN112955507A (en) * 2018-10-18 2021-06-11 巴斯夫欧洲公司 Particulate compositions comprising organic infrared absorbing pigments
KR102036253B1 (en) * 2019-04-22 2019-10-24 황태경 Environment-friendly Heating Shielding Film Using Non-radioactive Stable Isotope and Manufacturing Method Thereof
US20220281254A1 (en) 2019-08-08 2022-09-08 Agfa-Gevaert Nv Laser Markable Label and Tag
EP3805002A1 (en) 2019-10-11 2021-04-14 Agfa Nv Laser markable articles
EP3805003A1 (en) 2019-10-11 2021-04-14 Agfa Nv Laser markable articles
EP3805004A1 (en) 2019-10-11 2021-04-14 Agfa Nv Laser markable articles
EP3875285A1 (en) 2020-03-06 2021-09-08 Agfa Nv Anti-counterfeiting packaging
EP4117994A1 (en) 2020-03-12 2023-01-18 Agfa Nv Method of preparing a packaging box
EP3909781A1 (en) 2020-05-12 2021-11-17 Agfa-Gevaert Nv Laser markable articles
EP3928995A1 (en) 2020-06-22 2021-12-29 Agfa Nv Marking of articles
EP3928996A1 (en) 2020-06-22 2021-12-29 Agfa Nv Marking of articles
CN116745369A (en) 2020-12-11 2023-09-12 Asta能源解决方案有限公司 Optical painting of electric wires
CN114806280A (en) * 2021-01-28 2022-07-29 苏州诺菲纳米科技有限公司 Conductive ink, transparent conductive film and preparation method thereof
CN117836377A (en) * 2021-08-27 2024-04-05 住友金属矿山株式会社 Infrared curable ink composition, infrared cured product, and method for producing infrared cured product
CN113681200B (en) * 2021-09-27 2023-12-26 烟台佳隆纳米产业有限公司 Cesium tungsten bronze heat absorber, preparation thereof and application thereof in transparent ABS infrared welding
CN113861601B (en) * 2021-09-27 2023-03-07 烟台佳隆纳米产业有限公司 Cesium tungsten bronze heat absorbing agent, preparation method and application in MS infrared welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1676890A1 (en) * 2003-10-20 2006-07-05 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2007092030A2 (en) * 2005-05-10 2007-08-16 Nanoproducts Corporation Tungsten comprising nanomaterials and related nanotechnology
WO2009024497A1 (en) * 2007-08-22 2009-02-26 Basf Se Laser-sensitive coating composition

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2344619A1 (en) * 1976-03-19 1977-10-14 Anvar ELECTROCHROME AND PHOTOCHROME MATERIAL, ITS MANUFACTURING PROCESS AND DISPLAY DEVICE IMPLEMENTING THIS MATERIAL
US5800861A (en) * 1985-08-15 1998-09-01 The Sherwin-Williams Company High solid infrared absorbing compositions
JP2662986B2 (en) * 1988-06-24 1997-10-15 高周波熱錬株式会社 Method for producing ultrafine tungsten or tungsten oxide particles
JPH06262079A (en) * 1993-03-10 1994-09-20 Toyota Central Res & Dev Lab Inc Catalyst for nitrogen oxide purification and nitrogen oxide purification
JP2002212552A (en) * 2001-01-22 2002-07-31 Hitachi Maxell Ltd Infrared light emitting fluorophor and printed matter
WO2002074548A2 (en) * 2001-03-16 2002-09-26 Sherwood Technology Ltd. Laser-markable compositions
WO2002083798A1 (en) * 2001-04-17 2002-10-24 Gentex Corporation Ink compositions involving near-infrared absorber dyes and use in ink jet printing devices
WO2002086924A1 (en) * 2001-04-20 2002-10-31 Matsushita Electric Industrial Co., Ltd. Method of producing electronic parts, and member for production thereof
US7201963B2 (en) 2002-01-15 2007-04-10 Gentex Corporation Pre-processed workpiece having a surface deposition of absorber dye rendering the workpiece weld-enabled
JP2005099755A (en) * 2003-08-20 2005-04-14 Mitsubishi Chemicals Corp Optical filter
JP4582387B2 (en) * 2003-08-29 2010-11-17 東罐マテリアル・テクノロジー株式会社 Laser marking material
JP4424954B2 (en) * 2003-09-24 2010-03-03 富士フイルム株式会社 Ink jet recording head and ink jet recording apparatus
CN100590154C (en) 2003-10-20 2010-02-17 住友金属矿山株式会社 Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
GB0400813D0 (en) * 2004-01-14 2004-02-18 Sherwood Technology Ltd Laser imaging
JP4528935B2 (en) * 2004-03-05 2010-08-25 独立行政法人 国立印刷局 Printed material for authenticity determination using ink composition
DE602004014768D1 (en) * 2004-03-16 2008-08-14 Sumitomo Metal Mining Co SUN PROTECTION LAMINATE CONSTRUCTION
US20050247916A1 (en) * 2004-05-06 2005-11-10 Mccormick Demetrius Compositions for use in electronics devices
BRPI0514795B1 (en) 2004-08-31 2018-05-08 Sumitomo Metal Mining Co particle-dispersed electrical conductor that transmits visible light, and transparent electroconductive film
JP4355945B2 (en) * 2004-11-08 2009-11-04 住友金属鉱山株式会社 Near-infrared absorbing fiber and fiber product using the same
JP4623093B2 (en) * 2005-03-18 2011-02-02 住友金属鉱山株式会社 Agricultural and horticultural soil covering film
JP4678225B2 (en) * 2005-03-31 2011-04-27 住友金属鉱山株式会社 Infrared shielding material fine particle dispersion and infrared shielding material
DE102005038774A1 (en) * 2005-08-15 2007-02-22 Merck Patent Gmbh Polymers with high IR absorption
DE102005059614A1 (en) * 2005-12-12 2007-06-14 Nano-X Gmbh Anti-corrosion and/or anti-scaling coating for metals (especially steel) is applied by wet methods and heat treated to give a weldable coating
US7896650B2 (en) * 2005-12-20 2011-03-01 3M Innovative Properties Company Dental compositions including radiation-to-heat converters, and the use thereof
JP4921806B2 (en) * 2006-02-13 2012-04-25 住友金属鉱山株式会社 Tungsten ultrafine powder and method for producing the same
WO2008059995A1 (en) * 2006-11-17 2008-05-22 Lintec Corporation Pressure sensitive adhesive composition for display
JP4853710B2 (en) * 2006-11-22 2012-01-11 住友金属鉱山株式会社 Laser-absorbing light-absorbing resin composition, light-absorbing resin molded body, and method for producing light-absorbing resin molded body
US20100021833A1 (en) 2007-01-17 2010-01-28 Urs Lehmann Dithiolene metal complex colorless ir absorbers
JP5588588B2 (en) * 2007-02-20 2014-09-10 リンテック株式会社 Near-infrared shielding film for automobile window glass and method for producing automobile window glass using the film
JP5228376B2 (en) * 2007-05-24 2013-07-03 住友金属鉱山株式会社 Infrared shielding fine particles and manufacturing method thereof, infrared shielding fine particle dispersion, infrared shielding body, and infrared shielding base material
CA2693892A1 (en) * 2007-07-18 2009-01-22 Jonathan Campbell Laser-sensitive coating formulation
WO2009059900A2 (en) * 2007-11-05 2009-05-14 Basf Se Tungsten oxides used to increase the heat-input amount of near infrared radiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1676890A1 (en) * 2003-10-20 2006-07-05 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2007092030A2 (en) * 2005-05-10 2007-08-16 Nanoproducts Corporation Tungsten comprising nanomaterials and related nanotechnology
WO2009024497A1 (en) * 2007-08-22 2009-02-26 Basf Se Laser-sensitive coating composition

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333786B2 (en) 2007-07-18 2016-05-10 Datalase, Ltd. Laser-sensitive coating formulations
US8841375B2 (en) 2007-09-27 2014-09-23 Basf Se Isolable and redispersable transition metal nanoparticles their preparation and use as IR absorbers
JP2012506463A (en) * 2008-10-23 2012-03-15 データレース リミテッド Heat absorption additive
US8853314B2 (en) 2008-10-23 2014-10-07 Datalase Ltd. Heat absorbing additives
US9267042B2 (en) 2008-10-27 2016-02-23 Datalase Ltd. Coating composition for marking substrates
WO2011082940A1 (en) 2009-12-15 2011-07-14 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and high stability
US8399547B2 (en) 2009-12-15 2013-03-19 Bayer Materialscience Ag Polymer composition with heat-absorbing properties and high stability
DE102009058200A1 (en) 2009-12-15 2011-06-16 Bayer Materialscience Ag Polymer composition with heat-absorbing properties and high stability
DE102009058462A1 (en) 2009-12-16 2011-06-22 Bayer MaterialScience AG, 51373 Producing polycarbonate injection molded body comprises introducing injection molded bodies containing polycarbonate in reactor, inerting atmosphere of reactor, introducing fluorine-inert gas mixture and evacuating and flushing the reactor
US9605129B2 (en) 2010-05-10 2017-03-28 Covestro Deutschland Ag Polymer composition having heat-absorbing properties and improved colour properties
US8628699B2 (en) 2010-05-10 2014-01-14 Bayer Materialscience Ag Stabilizer combinations
WO2011141368A1 (en) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer composition having heat-absorbent properties and high stability
US8357741B2 (en) 2010-05-10 2013-01-22 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and improved colour properties
US8845920B2 (en) 2010-05-10 2014-09-30 Bayer Materialscience Ag Polymer compositions with heat-absorbing properties and a high stability
WO2011141366A1 (en) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer composition having heat-absorbent properties and improved dyeing properties
WO2011141365A1 (en) 2010-05-10 2011-11-17 Bayer Materialscience Ag Stabiliser compositions
WO2012055757A1 (en) 2010-10-25 2012-05-03 Bayer Materialscience Ag Multilayer plastic structure having low energy transmission
US9726795B2 (en) 2010-10-25 2017-08-08 Covestro Deutschland Ag Multilayer plastic structure having low energy transmission
WO2013057074A1 (en) 2011-10-18 2013-04-25 Bayer Intellectual Property Gmbh Polymer composition with heat-absorbing properties
US9651712B2 (en) 2011-10-18 2017-05-16 Covestro Deutschland Ag Polymer composition with heat-absorbing properties
US9862842B2 (en) 2012-02-29 2018-01-09 Sabic Global Technologies B.V. Infrared radiation absorbing articles and method of manufacture
WO2018122142A1 (en) 2016-12-28 2018-07-05 Covestro Deutschland Ag Additive fabrication process with a structural material comprising an ir absorber
US10974498B2 (en) 2016-12-28 2021-04-13 Covestro Deutschland Ag Additive fabrication process with a structural material comprising an IR absorber
US11890833B2 (en) 2017-12-15 2024-02-06 Corning Incorporated Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same
US11351756B2 (en) 2017-12-15 2022-06-07 Corning Incorporated Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same
EP3594008A1 (en) 2018-07-10 2020-01-15 Agfa-Gevaert Nv Near infrared (nir) laser processing of resin based articles
WO2020011601A1 (en) 2018-07-10 2020-01-16 Agfa-Gevaert Nv Near infrared (nir) laser processing of resin based articles

Also Published As

Publication number Publication date
EP2682265A1 (en) 2014-01-08
US8168711B2 (en) 2012-05-01
EP2217533B1 (en) 2012-10-03
CN102942818B (en) 2014-09-17
KR101320750B1 (en) 2013-10-21
WO2009059900A2 (en) 2009-05-14
BRPI0818911A8 (en) 2018-12-11
CO6280522A2 (en) 2011-05-20
US20100310787A1 (en) 2010-12-09
KR20120041266A (en) 2012-04-30
EP2217533A2 (en) 2010-08-18
CN101848811A (en) 2010-09-29
TWI461368B (en) 2014-11-21
KR20100076060A (en) 2010-07-05
TW200936506A (en) 2009-09-01
CN102965049A (en) 2013-03-13
ECSP10010198A (en) 2010-06-29
KR20120101168A (en) 2012-09-12
KR101192912B1 (en) 2012-10-18
KR20100088149A (en) 2010-08-06
CN101848865B (en) 2014-01-22
EP2244879A2 (en) 2010-11-03
KR101283865B1 (en) 2013-07-08
CN102942818A (en) 2013-02-27
CN101848865A (en) 2010-09-29
JP2011504157A (en) 2011-02-03
US20110024667A1 (en) 2011-02-03
CN101848811B (en) 2013-03-06
JP5634871B2 (en) 2014-12-03
WO2009059901A3 (en) 2009-10-29
JP5322121B2 (en) 2013-10-23
BRPI0818911A2 (en) 2015-05-12
JP2011503274A (en) 2011-01-27
EP2684691A1 (en) 2014-01-15
KR101611627B1 (en) 2016-04-11
WO2009059900A3 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP2340276B1 (en) Heat absorbing additives
WO2009059901A2 (en) Heat shielding additives
WO2008083918A1 (en) Near infrared absorbing phthalocyanines and their use
CA2699583C (en) Isolable and redispersable transition metal nanoparticles their preparation and use as ir absorbers
CA2624784A1 (en) Encapsulated luminescent pigments
WO2006082145A1 (en) Long wavelength shifted benzotriazole uv-absorbers and their use
EP2136645A2 (en) Antimicrobial plastics and coatings
WO2010142572A1 (en) Sterically hindered amine stabilizers
WO2008086929A1 (en) Tinted clear coatings uv stabili zed with 2-hydroxy phenyl triazine
EP1709114A1 (en) Stabilization of photochromic systems
WO2006131469A1 (en) Tris(hydroxyphenyl) triazines
ES2854702T3 (en) Heat absorbing additives
WO2010076278A1 (en) Phosphorus based dispersants for inorganic particles in polymer matrices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880114781.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08847970

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008847970

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010532541

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3268/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10067257

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20107012290

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12739166

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0818911

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100503