WO2008137306A1 - Multi-location posture sensing - Google Patents
Multi-location posture sensing Download PDFInfo
- Publication number
- WO2008137306A1 WO2008137306A1 PCT/US2008/061100 US2008061100W WO2008137306A1 WO 2008137306 A1 WO2008137306 A1 WO 2008137306A1 US 2008061100 W US2008061100 W US 2008061100W WO 2008137306 A1 WO2008137306 A1 WO 2008137306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- accelerometer
- lead
- stimulation
- patient
- therapy
- Prior art date
Links
- XCRIZRXIQDRNEU-UHFFFAOYSA-N NCC1C=CC=CC=C1 Chemical compound NCC1C=CC=CC=C1 XCRIZRXIQDRNEU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36135—Control systems using physiological parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36542—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body motion, e.g. acceleration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36535—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body position or posture
Definitions
- the invention relates to electrical stimulation therapy and, more particularly, to controlling electrical stimulation therapy.
- Electrical stimulators may be used to deliver electrical stimulation therapy to patients to treat a variety of symptoms or conditions such as chronic pain, tremor, Parkinson's disease, epilepsy, urinary or fecal incontinence, sexual dysfunction, obesity, or gastroparesis.
- An electrical stimulator may deliver stimulation therapy via leads that include electrodes located, as examples, proximate to the spinal cord, pelvic nerves, or stomach, on or within the brain, or within the pelvic floor.
- the electrical stimulator delivers stimulation therapy in the form of electrical pulses or substantially continuous-time signals.
- the electrical stimulator may be external or implanted, for example, in a chest cavity, lower back, lower abdomen, or buttocks of a patient.
- a clinician selects values for a number of programmable therapy parameters in order to define the stimulation therapy to be delivered to a patient. For example, the clinician may select an amplitude, which may be a current or voltage amplitude. When therapy is delivered in the form of electrical pulses, the clinician may also select a pulse width for a stimulation waveform to be delivered to the patient as well as a rate at which the pulses are to be delivered to the patient. The clinician may also select particular electrodes within an electrode set to be used to deliver the pulses or continuous-time signal, and the polarities of the selected electrodes. The selected electrodes and their polarities may be referred to as an electrode combination or configuration. A group of parameter values may be referred to as a program in the sense that they drive the electrical stimulation therapy to be delivered to the patient.
- the invention is directed to techniques for detecting posture of a patient, and providing or adjusting therapy based on detected postures. More particularly, the invention is directed to techniques that may include detecting relative orientation of and/or motion between a device accelerometer and a lead accelerometer, and controlling stimulation therapy based on the relative orientation and/or motion.
- the device accelerometer may be located within or coupled to the housing of an electrical stimulator coupled to the lead, and the lead accelerometer may be located within or coupled to the lead.
- the lead accelerometer is positioned proximate to a distal end of the lead.
- a lead connected to the electrical stimulator may move relative to a target stimulation site. More particularly, the electrodes on the lead that deliver therapy to the target stimulation site may move relative to the target stimulation site, which may change how the patient perceives the therapy.
- the relative orientation of and/or motion between a device accelerometer and a lead accelerometer may be used to detect this movement and modify the therapy delivered to the patient appropriately.
- the invention is directed to a system comprising an electrical stimulator comprising a device accelerometer, a lead coupled to the electrical stimulator to deliver stimulation from the electrical stimulator to a target stimulation site in a patient, the lead comprising a lead accelerometer, a processor that receives a first signal from the device accelerometer and a second signal from the lead accelerometer, compares the first and second signals, and controls delivery of the stimulation to the patient based on the comparison, wherein the comparison of the first and second signals is indicative of a posture or posture transition of the patient.
- the invention is directed to a method comprising receiving a first signal from a device accelerometer and a second signal from a lead accelerometer, wherein the device accelerometer is located on or within an electrical stimulator that delivers stimulation to a patient, and wherein the lead accelerometer is coupled to a lead that delivers the stimulation from the electrical stimulator to the target stimulation site of the patient.
- the method further comprises comparing the first and second signals, and controlling delivery of the stimulation by the electrical stimulator based on the comparison, wherein the comparison is indicative of a posture or posture transition of the patient.
- the invention is directed to a medical device comprising a therapy module to deliver stimulation to a patient via a lead, a device accelerometer, and a processor to receive a first signal from the device accelerometer and a second signal from a lead accelerometer on the lead, compare the first and second signals, and control delivery of the stimulation by the therapy module based on the comparison.
- FIG. 1 is a conceptual diagram of a therapy system, which includes an implanted electrical stimulator coupled to a medical lead that has been implanted proximate to a target stimulation site.
- FIG. 2 is a block diagram illustrating various components of an electrical stimulator and an implantable lead.
- FIGS. 3A and 3B illustrate how the position of electrodes on a lead 14 relative to a target stimulation site may change as patient 16 changes posture.
- FIGS. 4A and 4B illustrate an example of how therapy parameters may be adjusted based on the motion of the electrodes carried by a lead relative to a target stimulation site.
- FIGS. 5A-5C illustrate two leads coupled to a stimulator to deliver bilateral stimulation.
- FIG. 6 is a flow chart illustrating an example technique for controlling therapy based on relative orientation of and/or motion between stimulator and lead-borne sensors.
- FIG. 1 is a conceptual diagram illustrating a therapy system 10, which includes electrical stimulator 12 coupled to stimulation lead 14.
- Electrical stimulator 12 provides a programmable stimulation signal (e.g., in the form of electrical pulses or substantially continuous-time signals) that is delivered to target stimulation site 18 by lead 14, and more particularly, via one or more stimulation electrodes carried by lead 14.
- Electrical stimulator 12 may also be referred to as a signal generator.
- Stimulator 12 may be implantable.
- stimulator 12 may be subcutaneously implanted in the body of a patient 16 (e.g., in a chest cavity, lower back, lower abdomen, or buttocks of patient 16).
- electrical stimulator 12 is a neurostimulator that delivers stimulation to nervous tissue at target stimulation site 18. More particularly, stimulator 12 delivers spinal cord stimulation) to target stimulation site 18 of the spinal cord 20 of patient 16.
- Spinal cord stimulation may be used, for example, to reduce pain experienced by patient 16.
- Therapy system 10 may be useful in other neurostimulation applications, including pelvic floor stimulation, deep brain stimulation, cortical surface stimulation, neuronal ganglion stimulation, gastric stimulation, peripheral nerve stimulation, or subcutaneous stimulation.
- Such therapy applications may be targeted to a variety of disorders such as chronic pain, peripheral vascular disease, angina, headache, tremor, depression, Parkinson's disease, epilepsy, urinary or fecal incontinence, sexual dysfunction, obesity, or gastroparesis.
- therapy system 10 may be useful in non- neuostimulation contexts.
- stimulator 12 may be used to deliver stimulation to a target muscle tissue site via leads to, for example, provide functional electrical stimulation.
- Target stimulation site 18 may be any nerve or other tissue site in body 16.
- stimulator 12 is coupled to a single lead 14.
- stimulator 12 may be coupled to two or more leads, e.g., for bilateral or multi-lateral stimulation.
- Lead 14 includes a lead body that extends from proximal end 15A to distal end 15B.
- Proximal end 15 A of lead 14 may be both electrically and mechanically coupled to stimulator 12 either directly or indirectly (e.g., via a lead extension).
- conductors disposed in the lead body may electrically connect stimulation electrodes adjacent to distal end 15B of lead 14 to stimulator 12.
- Lead 14 may also include one or more lead anchors, e.g., tines, adhesives, sutures, or any other suitable anchors (not shown in FIG. 1), along its lead body to help prevent migration of lead 14.
- Stimulator 12 includes device accelerometer 17, and lead 14 includes lead accelerometer 19 (shown with exaggerated size for clarity).
- device accelerometer 17 and lead accelerometer 19 are multi-axis accelerometers.
- device accelerometer 17 and lead accelerometer 19 may be single-axis accelerometers capable of detecting motion along one axis.
- Device accelerometer 17 may be located within or coupled to the housing of stimulator 12 such that device accelerometer 17 detects motion of stimulator 12.
- Lead accelerometer may be located within or coupled to lead 14 such that lead accelerometer 19 detects motion of lead 14.
- lead accelerometer 19 is positioned proximate to distal end 15B of lead 14. The relative motion between device accelerometer 17 and lead accelerometer 19 may reflect the motion of electrodes proximate to distal end 15B of lead 14 relative to target stimulation site 18 when patient 16 changes posture.
- a single accelerometer may provide basic motion and body posture information, e.g., standing, walking, prone.
- an accelerometer at a single location whether or not a multi-axis accelerometer, may be unable to detect certain types of motion or postures of a patient that affect the location of electrodes relative to target tissue.
- a signal from an accelerometer within a stimulator implanted in the lower back or buttocks region of a patient may not reflect bending or other torsional movements of the torso of the patient, as such motion generally occurs above the lower back.
- Such movements may cause electrodes at a different location on a lead coupled to the stimulator to move significantly relative to a target stimulation site.
- electrodes on a lead implanted in the epidural space may move significantly relative to target tissue of the spinal cord when the patient moves in this manner.
- the relative position of, orientation of, and/or motion between device accelerometer 17 and lead accelerometer 19 may be used as an indication of such movements, and the postures of patient 16 resulting from such movements.
- Stimulator 12, or another component of system 10 may adjust the therapy delivered to patient 16 based on the relative position of, orientation of, and/or motion between accelerometers 17, 19, as reflected in the signals generated by the accelerometers.
- the signals generated by of each of accelerometers 17, 19 may change differently as relative motion occurs between the accelerometers due to posture changes by patient.
- the electrodes selected to deliver therapy to patient 16, for example, may be adjusted based on the relative motion between accelerometers 17, 19. Additionally or alternatively, one or more other therapy parameters may be adjusted based on the relative motion. In this manner, system 10 may compensate for the movement of electrodes carried by lead 14 relative to target site 18 when patient 16 changes posture.
- Therapy system 10 may also include a clinician programmer 22 and a patient programmer 24.
- Clinician programmer 22 may be a handheld computing device that permits a clinician to program neurostimulation therapy for patient 16, e.g., using input keys and a display.
- the clinician may specify therapy parameters, e.g., programs, for use in delivery of neurostimulation therapy.
- Clinician programmer 22 supports telemetry (e.g., radio frequency telemetry) with neurostimulator 12 to download neurostimulation parameters and, optionally, upload operational or physiological data stored by stimulator 12. In this manner, the clinician may periodically interrogate stimulator 12 to evaluate efficacy and, if necessary, modify the stimulation parameters.
- telemetry e.g., radio frequency telemetry
- patient programmer 24 may be a handheld computing device.
- Patient programmer 24 may also include a display and input keys to allow patient 16 to interact with patient programmer 24 and stimulator 12.
- patient programmer 24 provides patient 16 with an interface for control of neurostimulation therapy delivered by stimulator 12.
- patient 16 may use patient programmer 24 to start, stop or adjust neurostimulation therapy.
- patient programmer 24 may permit patient 16 to adjust therapy parameters such as duration, amplitude, pulse width and pulse rate, within an adjustment range specified by the clinician via clinician programmer 22, or select from a plurality of stored stimulation therapy programs.
- Stimulator 12, clinician programmer 22, and patient programmer 24 may communicate via cables or a wireless communication, as shown in FIG. IA.
- Clinician programmer 22 and patient programmer 24 may, for example, communicate via wireless communication with neurostimulator 12 using RF telemetry techniques known in the art.
- Clinician programmer 22 and patient programmer 24 may also communicate with each other using any of a variety of local wireless communication techniques, such as RF communication according to the 802.11 or Bluetooth specification sets, infrared communication, e.g., according to the IrDA standard, or other standard or proprietary telemetry protocols.
- one or both of programmers 22, 24 may employ any of the techniques described herein to adjust therapy based on relative motion between accelerometers 17, 19.
- the programmers may receive values from accelerometers 17, 19 directly via wireless communication with the accelerometers, or via wireless communication with stimulator 12.
- the programmers may implement therapy changes through wireless communication with stimulator 12.
- FIG. 2 is a block diagram illustrating various components of stimulator 12 and an implantable lead 14.
- Stimulator 12 includes device accelerometer 17, therapy delivery module 30, processor 32, memory 34, telemetry module 36, and power source 37.
- Implantable lead 14 includes elongated lead body extending between proximal end 15A and distal end 15B. The lead body may be a cylindrical or may be a paddle-shaped (i.e., a
- Electrodes 4OA, 4OB, 4OC, and 4OD are disposed on the lead body adjacent to distal end 15B of lead 14.
- electrodes 40 may be ring electrodes. In other embodiments, electrodes 40 may be segmented or partial ring electrodes, each of which extends along an arc less than 360 degrees (e.g., 90-120 degrees) around the periphery of the lead body. In embodiments in which lead 14 is a paddle lead, electrodes 40 may be pad electrodes on one side of the lead body. Electrodes 40 extending around a portion of the circumference of lead body 38 or located on one side of a paddle lead may be useful for providing an electrical stimulation field in a particular direction and/or targeting a particular stimulation site. The configuration, type, and number of electrodes 40 illustrated in FIG. 2 are merely exemplary.
- Lead 14 also includes lead accelerometer 19 coupled to the lead body.
- lead accelerometer 19 is located proximate to distal end 15B of lead 14 and distal to electrodes 40. In other embodiments, lead accelerometer 19 may be positioned between individual electrodes 40 (e.g., between electrodes 4OB and 40C) or proximal on lead 14 relative to electrodes 40. In preferred embodiments, lead accelerometer 19 is proximate to electrodes 40 in order to best detect the orientation and/or motion of the portion of lead 14 that includes electrodes 40. Lead accelerometer 19 may be coupled to an outer surface of, or located within, the lead body.
- Stimulator 12 delivers stimulation therapy via electrodes 40 of lead 14.
- electrodes 40 are electrically coupled to a therapy delivery module 30 of stimulator 12 via conductors within lead 14.
- a pulse generator or other signal generation circuitry within therapy delivery module 30 delivers electrical signals (e.g., pulses or substantially continuous-time signals, such as sinusoidal signals) to target stimulation site 18 (FIG. 1) via at least some of electrodes 40 under the control of a processor 32.
- the electrical signals may be delivered from therapy delivery module 30 to electrodes 40 via a switch matrix, which may be controlled by processor 32, and conductors carried by lead 14 and electrically coupled to electrodes 40.
- Power source 37 may take the form of a small, rechargeable or non-rechargeable battery, or an inductive power interface that transcutaneously receives inductively coupled energy. In the case of a rechargeable battery, power source 37 similarly may include an inductive power interface for transcutaneous transfer of recharge power.
- Processor 32 may include any number of processors (e.g., a main processor and one or more slave or sub -processors) and may include any one or more of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), discrete logic circuitry, or the like.
- Processor 32 controls the implantable signal generator within therapy delivery module 30 to deliver neurostimulation therapy according to selected stimulation parameters.
- processor 32 may control therapy delivery module 30 to deliver electrical signals with selected amplitudes, pulse widths (if applicable), and rates.
- Processor 32 may also control therapy delivery module 30 to deliver the neurostimulation signals via selected subsets of electrodes 40 with selected polarities, i.e., selected electrode combinations or configurations.
- processor 32 may deliver stimulation according to a selected one or more of a plurality of programs stored in memory 34.
- Each program may include respective values for each of a plurality therapy parameters, such as respective values for each of amplitude, pulse width, pulse rate and electrode combination.
- Processor 32 may also control therapy delivery module 30 to deliver each signal according to a different program, thereby interleaving programs to simultaneously treat different symptoms or provide a combined therapeutic effect.
- Memory 34 of neurostimulator 12 may include any volatile or non-volatile media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM
- memory 34 of neurostimulator 12 may store multiple programs that are available to be selected by patient 16 via patient programmer 24 (FIG. 1) or a clinician via clinician programmer 22 (FIG. 1) for delivery of neurostimulation therapy.
- memory 34 may store programs transmitted by clinician programmer 22 (FIG. 1).
- Memory 34 also stores program instructions that, when executed by processor 32, cause stimulator 12 to deliver neurostimulation therapy, and provide the other functionality described herein. Accordingly, computer-readable media storing instructions may be provided to cause processor 32 to provide functionality as described herein.
- Processor 32 controls telemetry module 36 to exchange information with an external programmer, such as clinician programmer 22 and/or patient programmer 24 (FIG. 1), by wireless telemetry.
- telemetry module 36 supports wireless communication with one or more wireless sensors that sense physiological signals and transmit the signals to stimulator 12.
- Processor 32 also interfaces with device and lead accelerometers 17 and 19.
- Device accelerometer 17 may be coupled to the housing of stimulator 12 or located within stimulator 12. In either case, device accelerometer 17 senses the movement and orientation of stimulator 12, while lead accelerometer 19 senses the movement or orientation of the distal portion of lead 14 proximate to electrodes 40.
- Processor 32 may include any number of processors.
- processor 32 may comprise a first processor that controls therapy delivery module 30 to deliver therapy to patient 16 (e.g., a main processor) and a second processor dedicated to receiving and analyzing the signals obtained from device accelerometer 17 and lead accelerometer 19 (e.g., a slave or sub- processor).
- the second processor may provide the first processor with results from the analysis of the accelerometer signals.
- Processor 32 may compare the signals from the accelerometers, e.g., calculate the difference between the signals received from device accelerometer 17 and lead accelerometer 19 or some other value, to determine the relative movement or orientation of stimulator 12 and lead 14. For multi-axis accelerometers, calculating the difference may involve calculating the difference between each of the axial signals (X, Y, and Z) generated by each of the accelerometers. This calculation may be performed substantially in real-time.
- Processor 32 may also control therapy delivery module 30 to deliver therapy to patient 16 based on the relative orientation or movement of stimulator 12 and lead 14.
- the electrodes selected to deliver the stimulation signal and their polarities may be adjusted based on the relative orientation and/or motion of device accelerometer 17 and lead accelerometer 19.
- a stimulation amplitude, pulse width, pulse rate, or other therapy parameters may be also adjusted based on the relative orientation and/or motion of device accelerometer 17 and lead accelerometer 19. Adjustments to the therapy delivered to patient 16 may be made substantially in real-time as patient 16 transitions between postures.
- FIGS. 3 A and 3 B illustrate how the position of lead 14 may change as patient 16 changes posture.
- FIG. 3A illustrates patient 16 in an upright position
- FIG. 3B illustrates patient 16 bending forward at the waist.
- patient 16 is shown bent forward in phantom lines in FIG. 3 A, and the upright position of patient 16 is shown in phantom lines in FIG. 3B.
- Lead 14 extends from stimulator 12 implanted in the buttock of patient 16 along spinal cord 20 (e.g., though the epidural space) to target stimulation site 18 in the middle or upper back of patient 16.
- spinal cord 20 e.g., though the epidural space
- lead 14 follows the concavity of lower back 42 of patient 16.
- FIG. 3B when patient 16 is bent forward, lower back 42 is extended to a substantially straight or slightly convex position, and lead 14 conforms to the extended position of lower back 42.
- the position of electrodes 40 relative to target stimulation site 18 may vary based on the posture of patient 16. For example, in the upright position illustrated in FIG. 3 A, target stimulation site 18 may be approximately centered between electrodes 4OA and 4OB. When patient 16 is bent forward, as illustrated in FIG. 3B, electrodes 40 on lead 14 may move such that target stimulation site 18 is located between electrodes 4OC and 4OD. In FIG. 3B, the position of the distal end of lead 14 relative to spinal cord 20 prior to patient 16 bending over is illustrated by phantom lines 44. The electrodes selected to deliver stimulation therapy and/or their polarities may be modified based on the posture of patient 16.
- a first set of electrodes may be selected to deliver therapy when patient 16 is in a first position
- a second set of electrodes may be selected to deliver therapy when patient 16 is in a second position.
- the first and second positions may be indicated by the relative movement and orientations of accelerometers 17, 19 (FIGS. 1 and 2).
- Tracking the relative movement and orientation of device accelerometer 17 and lead accelerometer 19 may allow therapy parameters to be adjusted to maintain focus on target stimulation site 18.
- the relative movement and orientation of device accelerometer 17 and lead accelerometer 19 may be used to detect the transition of patient 16 from the upright position illustrated in FIG. 3 A to the forward bent position illustrated in FIG. 3B and appropriately modify which electrodes are used to deliver stimulation.
- Continuous posture sensing via device accelerometer 17 and lead accelerometer 19 may allow the therapy to be adjusted as necessary to maintain continuous focus on target stimulation site 18.
- Device accelerometer 17 and lead accelerometer 19 may provide direct sensor feedback that allows the therapy delivered to patient 16 to be adjusted as patient 16 is moving and allows therapy efficacy to be maintained throughout the patient's range of motion.
- Relationships between posture, as indicated by a relative movement and orientation of accelerometers 17 and 19, and effective therapy parameters, such as which electrodes are selected to deliver therapy, may be programmed or learned.
- a clinician or patient may program stimulator 12 to adjust one or more therapy parameters based on the posture of patient 16.
- patient 16 may take on a variety of postures, and the therapy parameters may be optimized in each posture.
- the relative orientation of accelerometers 17, 19 may also be determined in each posture.
- Stimulator 12 may store the programmed therapy parameters, e.g., therapy programs, specific to each posture in association with an indication of the relative orientation.
- stimulator 12 may adjust the therapy delivered to patient 16 based on the posture of patient 16 by, for example, periodically identifying the relative orientation of accelerometers 17, 19 based on the signals generated by the accelerometers, and selecting a program associated with the relative orientation.
- the relationships between posture and effective therapy parameters may be learned.
- stimulator 12 may "learn" to provide closed-loop therapy based on therapy adjustments made by patient 16. For example, a patient may adjust one or more therapy parameters, or select a new predetermined program, as necessary. Stimulator 12 may correlate the patient's posture, e.g., relative movement and orientation of accelerometers 17, 19 as indicated by a comparison of their signals, when the therapy was adjusted with the adjusted therapy parameters or program. Processor 32 of stimulator 12 may store relative signal values, e.g., differences between signals, and programs in a look-up table or other data structure.
- stimulator 12 may automatically apply the adjusted therapy parameters whenever patient 16 returns to that posture. In some embodiments, stimulator 12 may ask patient 16 whether or not to store the adjusted therapy parameters. This may allow automatic adjustment of therapy parameters in a manner desired by patient 16 as the sensed posture of patient 16 changes. Stimulator may learn associations of relative accelerometer movements and/or orientations with programs, and subsequently deliver therapy according to programs associated with relative accelerometer movements and/orientations, using any of the techniques described in commonly-assigned and copending U.S. Patent Application Serial No. 11/414,625, entitled, "CLOSED-LOOP THERAPY ADJUSTMENT” and filed on April 28, 2006, U.S. Patent Application Serial No. 11/607,454, entitled, "CLOSED-LOOP THERAPY ADJUSTMENT” and filed on December 1, 2006, and U.S. Patent Application Serial No. 11/607,426, entitled,
- a basic body model may be used to aid in adjusting therapy parameters based on the posture of patient 16.
- the basic body model may calculate the relative motion or position of lead 14 with respect to target stimulation site 18 based on the relative motion or position of device accelerometer 17 and lead accelerometer 19.
- the basic body model may include a variety of algorithms based on kinesiology and the biomechanics of the human body.
- the basic body model may be implemented using algorithms or a series of lookup tables.
- the basic body model may require user inputs regarding characteristics of patient 16 and therapy system 10 (FIG. 1).
- the implant locations of neurostimulator 12 and lead 14, the length of lead 14, and the length of lead 14 from distal end 15B and/or electrodes 40 to a lead anchor, and/or the height and gender of patient 16 may be inputted into the basic body model.
- the basic body model may analyze the relative motion and orientation of device accelerometer 17 and lead accelerometer 19 and determine how the position of electrodes 40 of lead 14 may have changed relative to target stimulation site 18.
- therapy parameters may be automatically adjusted based on the analysis provided by the basic body model.
- the analysis provided by the basic body model may compliment a programming session or learning mode.
- the basic body model may provide a starting point or suggestion of how to adjust therapy parameters based on posture.
- the clinician or patient may implement the therapy suggested by the basic body model and/or fine tune the therapy to better treat the symptoms of patient 16.
- the therapy suggested by the basic body model may be implemented (e.g., automatically or manually) and/or fine tuned by patient 16.
- FIGS. 4A and 4B illustrate an example of how therapy parameters may be adjusted based on the motion of the electrodes carried by a lead relative to a target stimulation site.
- Electrodes 52 may be programmed to deliver therapy to target stimulation site 53.
- electrodes 52 may be programmed to deliver therapy to target stimulation site 53 via an electrode configuration including electrodes 52F-52H with the illustrated polarities 54. More specifically, electrodes 52F and 52H may be activated as anodes and electrode 52G may be activated as a cathode to deliver therapy to target stimulation site 53.
- FIG. 4B illustrates an embodiment in which lead 50 has moved in direction 56 relative to the position of lead 50 illustrated in FIG. 4A and target stimulation site 53.
- electrodes 50D and 5OF may be activated as anodes and electrode 5OE may be activated as a cathode according to a new electrode configuration. This may allow the therapy delivered to target stimulation site 53 in FIG. 4B to remain substantially the same as the therapy delivered to target stimulation site 53 in FIG. 4A despite the movement of electrodes 52 relative to target stimulation site 53.
- the electrode configuration may change to include different numbers of electrodes or different arrangements of cathodes and anodes as patient 16 moves, rather than merely shifting a grouping of anodes and cathodes along a lead, to create virtual electrodes proximate to target stimulation site 53.
- multiple leads are coupled to stimulator 12 to deliver therapy to target stimulation site 18 of patient 16.
- FIGS. 5A-5C illustrate leads 14 and 15 coupled to stimulator 12 to deliver bilateral stimulation.
- each of leads 14 and 15 may include a respective lead accelerometer (not shown).
- FIG. 5B illustrates patient 16 in an upright position with lead 14 implanted on one side of spinal cord 20 and lead 15 implanted on the opposite side of spinal cord 20.
- FIGS. 5A and 5C illustrate how leads 14 and 15 may move relative to target stimulation site 18 when patient 16 bends to the side.
- leads 14 and 15 may move in opposite directions as patient 16 bends to the side. When patient 16 transitions to other postures, such as the forward bent position illustrated in FIG. 3B, leads 14 and 15 may both move in the same direction.
- Providing lead accelerometer on each of leads 14 and 15 may provide useful information regarding how each of leads 14 and 15 move relative to target stimulation site 18.
- only one of leads 14 and 15 may include a lead accelerometer, and the position of the other lead relative to target stimulation site 18 may be determined using the basic body model and/or the implant locations of the leads. Therapy adjustments may address different movement directions by different leads by, for example, moving active anodes and cathodes on each of the leads in different axial directs to keep them proximate to one or more target stimulation sites.
- FIG. 6 is a flow chart illustrating an example technique for controlling therapy based on relative motion between stimulator and lead-borne sensors.
- Signals from device accelerometer 17 and lead accelerometer 19 may be monitored, for example, via processor 32 (60).
- the relative orientation and/or motion of device accelerometer 17 and lead accelerometer 19 may be calculated (62). This calculation may be performed substantially in real-time and may be indicative of the posture of patient 16. If a posture change is detected based on the relative orientations of device accelerometer 17 and lead accelerometer 19, processor 32 may adjust the therapy delivered to patient 16 based on the relative orientation and/or motion to compensate for movement of electrodes relative to a target site due to the posture change (64).
- the relative orientations of the accelerometers as indicated by their respective orientations with respect to ground, i.e., the Earth's gravity, may be used to detect posture of the patient and posture transitions.
- the characteristics of the raw accelerometer signals generated by device accelerometer 17 and lead accelerometer 19 that indicate relative motion or movement between the accelerometers may be used in combination with or instead of the relative orientations of device accelerometer 17 and lead accelerometer 19 to identify posture changes and adjust the therapy delivered to patient 16.
- the amplitudes and rate of change of the amplitudes of the raw accelerometer signals may be used to determine the direction patient 16 is moving (e.g., bending) and how quickly patient 16 is changing posture.
- Processor 32 may adjust the therapy delivered to patient 16 based on the relative orientation of accelerometers 17 and 19, the direction patient 16 is moving, and/or the rate at which patient 16 is moving.
- the therapy is adjusted according to therapy parameters programmed into stimulator 12 or learned by stimulator 12. Additionally or alternatively, adjustments to the therapy delivered to patient 16 may be based on a basic body model.
- some embodiments may include a data structure that associates a plurality of values of relative orientation, e.g., differences between the signals generated by accelerometers 17, 19, with respective stimulation programs.
- processor 32 provides instructions that cause therapy module 30 to time- interleave stimulation energy between the electrode combinations of the programs as described in commonly-assigned U.S. Patent Application Serial No. 11/401,100, entitled, “SHIFTING BETWEEN ELECTRODE COMBINATIONS IN ELECTRICAL STIMULATION DEVICE,” and filed on April 10, 2006, the entire content of which is incorporated herein by reference.
- the amplitudes of the first and second electrode combinations are ramped downward and upward, respectively, in incremental steps until the amplitude of the second electrode combination reaches a target amplitude and the amplitude of the first combination reaches zero.
- therapy module 30 may include at least two current sources. It may be desirable to maintain the current at a relatively consistent perceptual intensity for patient 16 in order to prevent the current from exceeding a maximum threshold for patient 16, above which, patient 16 may feel pain or discomfort.
- processor 32 when processor 32 identifies a relative orientation that is not associated with a therapy program, e.g., in a data structure, processor 32 may generate an intermediary program between entries in the data structure by interpolation, e.g. linear, non-liner, or other.
- Processor 32 may employ any of the techniques described in commonly-assigned U.S. Patent Application No. 11/799,035, entitled “THERAPY ADJUSTMENT,” filed on April 30, 2007 and/or U.S. Patent Application No. 11/799,112, entitled “THERAPY ADJUSTMENT,” filed on April 30, 2007.
- Various embodiments of the invention have been described. These and other embodiments are within the scope of the following claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Electrotherapy Devices (AREA)
Abstract
Techniques for controlling therapy delivery based on the relative orientation and/or motion of a device accelerometer and a lead accelerometer are described. In one embodiment, a therapy system includes an electrical stimulator and a lead. The electrical stimulator comprises a processor that controls delivery of a therapy to a target stimulation site in a patient and a device accelerometer coupled to the electrical stimulator. The lead is coupled to the electrical stimulator to deliver the therapy from the electrical stimulator to the target stimulation site in the patient, and includes a lead accelerometer. The processor compares signals from the accelerometers, and controls delivery of the therapy to the patient based on the comparison. In this manner, the processor may adjust stimulation to, for example, address movement of electrodes relative to target tissue when a patient changes postures.
Description
MULTI-LOCATION POSTURE SENSING
TECHNICAL FIELD
The invention relates to electrical stimulation therapy and, more particularly, to controlling electrical stimulation therapy.
BACKGROUND
Electrical stimulators may be used to deliver electrical stimulation therapy to patients to treat a variety of symptoms or conditions such as chronic pain, tremor, Parkinson's disease, epilepsy, urinary or fecal incontinence, sexual dysfunction, obesity, or gastroparesis. An electrical stimulator may deliver stimulation therapy via leads that include electrodes located, as examples, proximate to the spinal cord, pelvic nerves, or stomach, on or within the brain, or within the pelvic floor. In general, the electrical stimulator delivers stimulation therapy in the form of electrical pulses or substantially continuous-time signals. The electrical stimulator may be external or implanted, for example, in a chest cavity, lower back, lower abdomen, or buttocks of a patient.
A clinician selects values for a number of programmable therapy parameters in order to define the stimulation therapy to be delivered to a patient. For example, the clinician may select an amplitude, which may be a current or voltage amplitude. When therapy is delivered in the form of electrical pulses, the clinician may also select a pulse width for a stimulation waveform to be delivered to the patient as well as a rate at which the pulses are to be delivered to the patient. The clinician may also select particular electrodes within an electrode set to be used to deliver the pulses or continuous-time signal, and the polarities of the selected electrodes. The selected electrodes and their polarities may be referred to as an electrode combination or configuration. A group of parameter values may be referred to as a program in the sense that they drive the electrical stimulation therapy to be delivered to the patient.
SUMMARY In general, the invention is directed to techniques for detecting posture of a patient, and providing or adjusting therapy based on detected postures. More particularly, the invention is directed to techniques that may include detecting relative orientation of and/or
motion between a device accelerometer and a lead accelerometer, and controlling stimulation therapy based on the relative orientation and/or motion. The device accelerometer may be located within or coupled to the housing of an electrical stimulator coupled to the lead, and the lead accelerometer may be located within or coupled to the lead. In some embodiments, the lead accelerometer is positioned proximate to a distal end of the lead.
When a patient changes posture, a lead connected to the electrical stimulator may move relative to a target stimulation site. More particularly, the electrodes on the lead that deliver therapy to the target stimulation site may move relative to the target stimulation site, which may change how the patient perceives the therapy. The relative orientation of and/or motion between a device accelerometer and a lead accelerometer may be used to detect this movement and modify the therapy delivered to the patient appropriately.
In one embodiment, the invention is directed to a system comprising an electrical stimulator comprising a device accelerometer, a lead coupled to the electrical stimulator to deliver stimulation from the electrical stimulator to a target stimulation site in a patient, the lead comprising a lead accelerometer, a processor that receives a first signal from the device accelerometer and a second signal from the lead accelerometer, compares the first and second signals, and controls delivery of the stimulation to the patient based on the comparison, wherein the comparison of the first and second signals is indicative of a posture or posture transition of the patient.
In another embodiment, the invention is directed to a method comprising receiving a first signal from a device accelerometer and a second signal from a lead accelerometer, wherein the device accelerometer is located on or within an electrical stimulator that delivers stimulation to a patient, and wherein the lead accelerometer is coupled to a lead that delivers the stimulation from the electrical stimulator to the target stimulation site of the patient. The method further comprises comparing the first and second signals, and controlling delivery of the stimulation by the electrical stimulator based on the comparison, wherein the comparison is indicative of a posture or posture transition of the patient. In another embodiment, the invention is directed to a medical device comprising a therapy module to deliver stimulation to a patient via a lead, a device accelerometer, and a processor to receive a first signal from the device accelerometer and a second signal from
a lead accelerometer on the lead, compare the first and second signals, and control delivery of the stimulation by the therapy module based on the comparison.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION QF DRAWINGS
FIG. 1 is a conceptual diagram of a therapy system, which includes an implanted electrical stimulator coupled to a medical lead that has been implanted proximate to a target stimulation site.
FIG. 2 is a block diagram illustrating various components of an electrical stimulator and an implantable lead.
FIGS. 3A and 3B illustrate how the position of electrodes on a lead 14 relative to a target stimulation site may change as patient 16 changes posture.
FIGS. 4A and 4B illustrate an example of how therapy parameters may be adjusted based on the motion of the electrodes carried by a lead relative to a target stimulation site.
FIGS. 5A-5C illustrate two leads coupled to a stimulator to deliver bilateral stimulation. FIG. 6 is a flow chart illustrating an example technique for controlling therapy based on relative orientation of and/or motion between stimulator and lead-borne sensors.
DETAILED DESCRIPTION
FIG. 1 is a conceptual diagram illustrating a therapy system 10, which includes electrical stimulator 12 coupled to stimulation lead 14. Electrical stimulator 12 provides a programmable stimulation signal (e.g., in the form of electrical pulses or substantially continuous-time signals) that is delivered to target stimulation site 18 by lead 14, and more particularly, via one or more stimulation electrodes carried by lead 14. Electrical stimulator 12 may also be referred to as a signal generator. Stimulator 12 may be implantable. For example, stimulator 12 may be subcutaneously implanted in the body of a patient 16 (e.g., in a chest cavity, lower back, lower abdomen, or buttocks of patient 16).
In the example of FIG. 1, electrical stimulator 12 is a neurostimulator that delivers stimulation to nervous tissue at target stimulation site 18. More particularly, stimulator 12 delivers spinal cord stimulation) to target stimulation site 18 of the spinal cord 20 of patient 16. Spinal cord stimulation may be used, for example, to reduce pain experienced by patient 16.
Therapy system 10, however, may be useful in other neurostimulation applications, including pelvic floor stimulation, deep brain stimulation, cortical surface stimulation, neuronal ganglion stimulation, gastric stimulation, peripheral nerve stimulation, or subcutaneous stimulation. Such therapy applications may be targeted to a variety of disorders such as chronic pain, peripheral vascular disease, angina, headache, tremor, depression, Parkinson's disease, epilepsy, urinary or fecal incontinence, sexual dysfunction, obesity, or gastroparesis. Further, therapy system 10 may be useful in non- neuostimulation contexts. For example, stimulator 12 may be used to deliver stimulation to a target muscle tissue site via leads to, for example, provide functional electrical stimulation. Therapy system 10 may be useful in any stimulation application in which movement of lead-borne electrodes relative to a stimulation site and relative motion between a lead coupled to an electrical stimulator and the electrical stimulator may occur. Thus, in various embodiments, target stimulation site 18 may be any nerve or other tissue site in body 16. In the embodiment illustrated by FIG. 1, stimulator 12 is coupled to a single lead 14. In some embodiments, stimulator 12 may be coupled to two or more leads, e.g., for bilateral or multi-lateral stimulation. Lead 14 includes a lead body that extends from proximal end 15A to distal end 15B. Proximal end 15 A of lead 14 may be both electrically and mechanically coupled to stimulator 12 either directly or indirectly (e.g., via a lead extension). In particular, conductors disposed in the lead body may electrically connect stimulation electrodes adjacent to distal end 15B of lead 14 to stimulator 12. Lead 14 may also include one or more lead anchors, e.g., tines, adhesives, sutures, or any other suitable anchors (not shown in FIG. 1), along its lead body to help prevent migration of lead 14. Stimulator 12 includes device accelerometer 17, and lead 14 includes lead accelerometer 19 (shown with exaggerated size for clarity). In a preferred embodiment, device accelerometer 17 and lead accelerometer 19 are multi-axis accelerometers.
However, in some embodiments, device accelerometer 17 and lead accelerometer 19 may be single-axis accelerometers capable of detecting motion along one axis.
Device accelerometer 17 may be located within or coupled to the housing of stimulator 12 such that device accelerometer 17 detects motion of stimulator 12. Lead accelerometer may be located within or coupled to lead 14 such that lead accelerometer 19 detects motion of lead 14. In the illustrated embodiment, lead accelerometer 19 is positioned proximate to distal end 15B of lead 14. The relative motion between device accelerometer 17 and lead accelerometer 19 may reflect the motion of electrodes proximate to distal end 15B of lead 14 relative to target stimulation site 18 when patient 16 changes posture.
A single accelerometer may provide basic motion and body posture information, e.g., standing, walking, prone. However, using a single accelerometer, it is difficult to distinguish between whole body motion (e.g., a bumpy car ride) and actual body movements (e.g., running). Additionally, an accelerometer at a single location, whether or not a multi-axis accelerometer, may be unable to detect certain types of motion or postures of a patient that affect the location of electrodes relative to target tissue. For example, a signal from an accelerometer within a stimulator implanted in the lower back or buttocks region of a patient may not reflect bending or other torsional movements of the torso of the patient, as such motion generally occurs above the lower back. Such movements may cause electrodes at a different location on a lead coupled to the stimulator to move significantly relative to a target stimulation site. For example, electrodes on a lead implanted in the epidural space may move significantly relative to target tissue of the spinal cord when the patient moves in this manner.
In the illustrated embodiment, the relative position of, orientation of, and/or motion between device accelerometer 17 and lead accelerometer 19 may be used as an indication of such movements, and the postures of patient 16 resulting from such movements. Stimulator 12, or another component of system 10, may adjust the therapy delivered to patient 16 based on the relative position of, orientation of, and/or motion between accelerometers 17, 19, as reflected in the signals generated by the accelerometers. The signals generated by of each of accelerometers 17, 19 may change differently as relative motion occurs between the accelerometers due to posture changes by patient.
The electrodes selected to deliver therapy to patient 16, for example, may be adjusted based on the relative motion between accelerometers 17, 19. Additionally or alternatively, one or more other therapy parameters may be adjusted based on the relative motion. In this manner, system 10 may compensate for the movement of electrodes carried by lead 14 relative to target site 18 when patient 16 changes posture.
Therapy system 10 may also include a clinician programmer 22 and a patient programmer 24. Clinician programmer 22 may be a handheld computing device that permits a clinician to program neurostimulation therapy for patient 16, e.g., using input keys and a display. For example, using clinician programmer 22, the clinician may specify therapy parameters, e.g., programs, for use in delivery of neurostimulation therapy.
Clinician programmer 22 supports telemetry (e.g., radio frequency telemetry) with neurostimulator 12 to download neurostimulation parameters and, optionally, upload operational or physiological data stored by stimulator 12. In this manner, the clinician may periodically interrogate stimulator 12 to evaluate efficacy and, if necessary, modify the stimulation parameters.
Like clinician programmer 22, patient programmer 24 may be a handheld computing device. Patient programmer 24 may also include a display and input keys to allow patient 16 to interact with patient programmer 24 and stimulator 12. In this manner, patient programmer 24 provides patient 16 with an interface for control of neurostimulation therapy delivered by stimulator 12. For example, patient 16 may use patient programmer 24 to start, stop or adjust neurostimulation therapy. In particular, patient programmer 24 may permit patient 16 to adjust therapy parameters such as duration, amplitude, pulse width and pulse rate, within an adjustment range specified by the clinician via clinician programmer 22, or select from a plurality of stored stimulation therapy programs.
Stimulator 12, clinician programmer 22, and patient programmer 24 may communicate via cables or a wireless communication, as shown in FIG. IA. Clinician programmer 22 and patient programmer 24 may, for example, communicate via wireless communication with neurostimulator 12 using RF telemetry techniques known in the art. Clinician programmer 22 and patient programmer 24 may also communicate with each other using any of a variety of local wireless communication techniques, such as RF communication according to the 802.11 or Bluetooth specification sets, infrared
communication, e.g., according to the IrDA standard, or other standard or proprietary telemetry protocols.
Although described herein with reference to embodiments in which stimulator 12 adjusts therapy based on relative motion between accelerometers 17, 19, the invention is not so limited. For example, in other embodiments, one or both of programmers 22, 24 may employ any of the techniques described herein to adjust therapy based on relative motion between accelerometers 17, 19. The programmers may receive values from accelerometers 17, 19 directly via wireless communication with the accelerometers, or via wireless communication with stimulator 12. The programmers may implement therapy changes through wireless communication with stimulator 12.
FIG. 2 is a block diagram illustrating various components of stimulator 12 and an implantable lead 14. Stimulator 12 includes device accelerometer 17, therapy delivery module 30, processor 32, memory 34, telemetry module 36, and power source 37. Implantable lead 14 includes elongated lead body extending between proximal end 15A and distal end 15B. The lead body may be a cylindrical or may be a paddle-shaped (i.e., a
"paddle" lead). Electrodes 4OA, 4OB, 4OC, and 4OD (collectively "electrodes 40") are disposed on the lead body adjacent to distal end 15B of lead 14.
In some embodiments, electrodes 40 may be ring electrodes. In other embodiments, electrodes 40 may be segmented or partial ring electrodes, each of which extends along an arc less than 360 degrees (e.g., 90-120 degrees) around the periphery of the lead body. In embodiments in which lead 14 is a paddle lead, electrodes 40 may be pad electrodes on one side of the lead body. Electrodes 40 extending around a portion of the circumference of lead body 38 or located on one side of a paddle lead may be useful for providing an electrical stimulation field in a particular direction and/or targeting a particular stimulation site. The configuration, type, and number of electrodes 40 illustrated in FIG. 2 are merely exemplary.
Lead 14 also includes lead accelerometer 19 coupled to the lead body. In the illustrated embodiment, lead accelerometer 19 is located proximate to distal end 15B of lead 14 and distal to electrodes 40. In other embodiments, lead accelerometer 19 may be positioned between individual electrodes 40 (e.g., between electrodes 4OB and 40C) or proximal on lead 14 relative to electrodes 40. In preferred embodiments, lead accelerometer 19 is proximate to electrodes 40 in order to best detect the orientation
and/or motion of the portion of lead 14 that includes electrodes 40. Lead accelerometer 19 may be coupled to an outer surface of, or located within, the lead body.
Stimulator 12 delivers stimulation therapy via electrodes 40 of lead 14. In particular, electrodes 40 are electrically coupled to a therapy delivery module 30 of stimulator 12 via conductors within lead 14. In one embodiment, a pulse generator or other signal generation circuitry within therapy delivery module 30 delivers electrical signals (e.g., pulses or substantially continuous-time signals, such as sinusoidal signals) to target stimulation site 18 (FIG. 1) via at least some of electrodes 40 under the control of a processor 32. The electrical signals may be delivered from therapy delivery module 30 to electrodes 40 via a switch matrix, which may be controlled by processor 32, and conductors carried by lead 14 and electrically coupled to electrodes 40.
Therapy delivery module 30, as well as the other components of stimulator 12 illustrated in FIG. 2, may be coupled to power source 37. Power source 37 may take the form of a small, rechargeable or non-rechargeable battery, or an inductive power interface that transcutaneously receives inductively coupled energy. In the case of a rechargeable battery, power source 37 similarly may include an inductive power interface for transcutaneous transfer of recharge power.
Processor 32 may include any number of processors (e.g., a main processor and one or more slave or sub -processors) and may include any one or more of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), discrete logic circuitry, or the like. Processor 32 controls the implantable signal generator within therapy delivery module 30 to deliver neurostimulation therapy according to selected stimulation parameters. For example, processor 32 may control therapy delivery module 30 to deliver electrical signals with selected amplitudes, pulse widths (if applicable), and rates. Processor 32 may also control therapy delivery module 30 to deliver the neurostimulation signals via selected subsets of electrodes 40 with selected polarities, i.e., selected electrode combinations or configurations.
At any given time, processor 32 may deliver stimulation according to a selected one or more of a plurality of programs stored in memory 34. Each program may include respective values for each of a plurality therapy parameters, such as respective values for each of amplitude, pulse width, pulse rate and electrode combination. Processor 32 may
also control therapy delivery module 30 to deliver each signal according to a different program, thereby interleaving programs to simultaneously treat different symptoms or provide a combined therapeutic effect.
Memory 34 of neurostimulator 12 may include any volatile or non-volatile media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM
(NVRAM), electronically-erasable programmable ROM (EEPROM), flash memory, and the like. In some embodiments, memory 34 of neurostimulator 12 may store multiple programs that are available to be selected by patient 16 via patient programmer 24 (FIG. 1) or a clinician via clinician programmer 22 (FIG. 1) for delivery of neurostimulation therapy. For example, memory 34 may store programs transmitted by clinician programmer 22 (FIG. 1). Memory 34 also stores program instructions that, when executed by processor 32, cause stimulator 12 to deliver neurostimulation therapy, and provide the other functionality described herein. Accordingly, computer-readable media storing instructions may be provided to cause processor 32 to provide functionality as described herein.
Processor 32 controls telemetry module 36 to exchange information with an external programmer, such as clinician programmer 22 and/or patient programmer 24 (FIG. 1), by wireless telemetry. In addition, in some embodiments, telemetry module 36 supports wireless communication with one or more wireless sensors that sense physiological signals and transmit the signals to stimulator 12.
Processor 32 also interfaces with device and lead accelerometers 17 and 19. Device accelerometer 17 may be coupled to the housing of stimulator 12 or located within stimulator 12. In either case, device accelerometer 17 senses the movement and orientation of stimulator 12, while lead accelerometer 19 senses the movement or orientation of the distal portion of lead 14 proximate to electrodes 40.
The signals sensed via device accelerometer 17 as well as those sensed via lead accelerometer 19 may be sent to processor 32 for analysis. Processor 32 may include any number of processors. In some embodiments, processor 32 may comprise a first processor that controls therapy delivery module 30 to deliver therapy to patient 16 (e.g., a main processor) and a second processor dedicated to receiving and analyzing the signals obtained from device accelerometer 17 and lead accelerometer 19 (e.g., a slave or sub- processor). The second processor may provide the first processor with results from the
analysis of the accelerometer signals. Processor 32 may compare the signals from the accelerometers, e.g., calculate the difference between the signals received from device accelerometer 17 and lead accelerometer 19 or some other value, to determine the relative movement or orientation of stimulator 12 and lead 14. For multi-axis accelerometers, calculating the difference may involve calculating the difference between each of the axial signals (X, Y, and Z) generated by each of the accelerometers. This calculation may be performed substantially in real-time.
Processor 32 may also control therapy delivery module 30 to deliver therapy to patient 16 based on the relative orientation or movement of stimulator 12 and lead 14. As will be described in further detail below, the electrodes selected to deliver the stimulation signal and their polarities may be adjusted based on the relative orientation and/or motion of device accelerometer 17 and lead accelerometer 19. In some embodiments, a stimulation amplitude, pulse width, pulse rate, or other therapy parameters may be also adjusted based on the relative orientation and/or motion of device accelerometer 17 and lead accelerometer 19. Adjustments to the therapy delivered to patient 16 may be made substantially in real-time as patient 16 transitions between postures.
FIGS. 3 A and 3 B illustrate how the position of lead 14 may change as patient 16 changes posture. FIG. 3A illustrates patient 16 in an upright position, and FIG. 3B illustrates patient 16 bending forward at the waist. For purposes of comparison, patient 16 is shown bent forward in phantom lines in FIG. 3 A, and the upright position of patient 16 is shown in phantom lines in FIG. 3B.
Lead 14 extends from stimulator 12 implanted in the buttock of patient 16 along spinal cord 20 (e.g., though the epidural space) to target stimulation site 18 in the middle or upper back of patient 16. When patient 16 is in an upright position, as illustrated in FIG. 3A, lead 14 follows the concavity of lower back 42 of patient 16. In FIG. 3B, when patient 16 is bent forward, lower back 42 is extended to a substantially straight or slightly convex position, and lead 14 conforms to the extended position of lower back 42.
Since lead 14 is attached to stimulator 12, it is unable to move with stimulation site 18 as patient 16 changes posture. Accordingly, the position of electrodes 40 relative to target stimulation site 18 may vary based on the posture of patient 16. For example, in the upright position illustrated in FIG. 3 A, target stimulation site 18 may be approximately centered between electrodes 4OA and 4OB. When patient 16 is bent forward, as illustrated
in FIG. 3B, electrodes 40 on lead 14 may move such that target stimulation site 18 is located between electrodes 4OC and 4OD. In FIG. 3B, the position of the distal end of lead 14 relative to spinal cord 20 prior to patient 16 bending over is illustrated by phantom lines 44. The electrodes selected to deliver stimulation therapy and/or their polarities may be modified based on the posture of patient 16. For example, a first set of electrodes may be selected to deliver therapy when patient 16 is in a first position, and a second set of electrodes may be selected to deliver therapy when patient 16 is in a second position. The first and second positions may be indicated by the relative movement and orientations of accelerometers 17, 19 (FIGS. 1 and 2).
Tracking the relative movement and orientation of device accelerometer 17 and lead accelerometer 19 may allow therapy parameters to be adjusted to maintain focus on target stimulation site 18. For example, the relative movement and orientation of device accelerometer 17 and lead accelerometer 19 may be used to detect the transition of patient 16 from the upright position illustrated in FIG. 3 A to the forward bent position illustrated in FIG. 3B and appropriately modify which electrodes are used to deliver stimulation. Continuous posture sensing via device accelerometer 17 and lead accelerometer 19 may allow the therapy to be adjusted as necessary to maintain continuous focus on target stimulation site 18. Device accelerometer 17 and lead accelerometer 19 may provide direct sensor feedback that allows the therapy delivered to patient 16 to be adjusted as patient 16 is moving and allows therapy efficacy to be maintained throughout the patient's range of motion.
Relationships between posture, as indicated by a relative movement and orientation of accelerometers 17 and 19, and effective therapy parameters, such as which electrodes are selected to deliver therapy, may be programmed or learned. For example, a clinician or patient may program stimulator 12 to adjust one or more therapy parameters based on the posture of patient 16.
During a programming session, patient 16 may take on a variety of postures, and the therapy parameters may be optimized in each posture. The relative orientation of accelerometers 17, 19 may also be determined in each posture. Stimulator 12 may store the programmed therapy parameters, e.g., therapy programs, specific to each posture in association with an indication of the relative orientation. After such a programming
session, stimulator 12 may adjust the therapy delivered to patient 16 based on the posture of patient 16 by, for example, periodically identifying the relative orientation of accelerometers 17, 19 based on the signals generated by the accelerometers, and selecting a program associated with the relative orientation. In some embodiments, the relationships between posture and effective therapy parameters may be learned. More specifically, stimulator 12 may "learn" to provide closed-loop therapy based on therapy adjustments made by patient 16. For example, a patient may adjust one or more therapy parameters, or select a new predetermined program, as necessary. Stimulator 12 may correlate the patient's posture, e.g., relative movement and orientation of accelerometers 17, 19 as indicated by a comparison of their signals, when the therapy was adjusted with the adjusted therapy parameters or program. Processor 32 of stimulator 12 may store relative signal values, e.g., differences between signals, and programs in a look-up table or other data structure.
In some embodiments, stimulator 12 may automatically apply the adjusted therapy parameters whenever patient 16 returns to that posture. In some embodiments, stimulator 12 may ask patient 16 whether or not to store the adjusted therapy parameters. This may allow automatic adjustment of therapy parameters in a manner desired by patient 16 as the sensed posture of patient 16 changes. Stimulator may learn associations of relative accelerometer movements and/or orientations with programs, and subsequently deliver therapy according to programs associated with relative accelerometer movements and/orientations, using any of the techniques described in commonly-assigned and copending U.S. Patent Application Serial No. 11/414,625, entitled, "CLOSED-LOOP THERAPY ADJUSTMENT" and filed on April 28, 2006, U.S. Patent Application Serial No. 11/607,454, entitled, "CLOSED-LOOP THERAPY ADJUSTMENT" and filed on December 1, 2006, and U.S. Patent Application Serial No. 11/607,426, entitled,
"CLOSED-LOOP THERAPY ADJUSTMENT" and filed on December 1, 2006, the entire content of each of which is incorporated herein by reference.
In other embodiments, a basic body model may be used to aid in adjusting therapy parameters based on the posture of patient 16. For example, the basic body model may calculate the relative motion or position of lead 14 with respect to target stimulation site 18 based on the relative motion or position of device accelerometer 17 and lead accelerometer 19. The basic body model may include a variety of algorithms based on
kinesiology and the biomechanics of the human body. In some embodiments, the basic body model may be implemented using algorithms or a series of lookup tables. In some embodiments, the basic body model may require user inputs regarding characteristics of patient 16 and therapy system 10 (FIG. 1). For example, the implant locations of neurostimulator 12 and lead 14, the length of lead 14, and the length of lead 14 from distal end 15B and/or electrodes 40 to a lead anchor, and/or the height and gender of patient 16 may be inputted into the basic body model. The basic body model may analyze the relative motion and orientation of device accelerometer 17 and lead accelerometer 19 and determine how the position of electrodes 40 of lead 14 may have changed relative to target stimulation site 18.
In some embodiments, therapy parameters may be automatically adjusted based on the analysis provided by the basic body model. In other embodiments, the analysis provided by the basic body model may compliment a programming session or learning mode. For example, during a programming session the basic body model may provide a starting point or suggestion of how to adjust therapy parameters based on posture. The clinician or patient may implement the therapy suggested by the basic body model and/or fine tune the therapy to better treat the symptoms of patient 16. Likewise, during a learning mode the therapy suggested by the basic body model may be implemented (e.g., automatically or manually) and/or fine tuned by patient 16. FIGS. 4A and 4B illustrate an example of how therapy parameters may be adjusted based on the motion of the electrodes carried by a lead relative to a target stimulation site. Lead 50 includes electrodes 52A-52H (collectively "electrodes 52") proximal to distal end 51 of lead 50. Electrodes 52 may be programmed to deliver therapy to target stimulation site 53. For example, as illustrated in FIG. 4A, electrodes 52 may be programmed to deliver therapy to target stimulation site 53 via an electrode configuration including electrodes 52F-52H with the illustrated polarities 54. More specifically, electrodes 52F and 52H may be activated as anodes and electrode 52G may be activated as a cathode to deliver therapy to target stimulation site 53.
FIG. 4B illustrates an embodiment in which lead 50 has moved in direction 56 relative to the position of lead 50 illustrated in FIG. 4A and target stimulation site 53. In order to effectively deliver therapy to target stimulation site 53, electrodes 50D and 5OF may be activated as anodes and electrode 5OE may be activated as a cathode according to
a new electrode configuration. This may allow the therapy delivered to target stimulation site 53 in FIG. 4B to remain substantially the same as the therapy delivered to target stimulation site 53 in FIG. 4A despite the movement of electrodes 52 relative to target stimulation site 53. In some embodiments, the electrode configuration may change to include different numbers of electrodes or different arrangements of cathodes and anodes as patient 16 moves, rather than merely shifting a grouping of anodes and cathodes along a lead, to create virtual electrodes proximate to target stimulation site 53.
In some embodiments, multiple leads are coupled to stimulator 12 to deliver therapy to target stimulation site 18 of patient 16. For example, FIGS. 5A-5C illustrate leads 14 and 15 coupled to stimulator 12 to deliver bilateral stimulation. In some embodiments, each of leads 14 and 15 may include a respective lead accelerometer (not shown). FIG. 5B illustrates patient 16 in an upright position with lead 14 implanted on one side of spinal cord 20 and lead 15 implanted on the opposite side of spinal cord 20. FIGS. 5A and 5C illustrate how leads 14 and 15 may move relative to target stimulation site 18 when patient 16 bends to the side.
As shown in FIGS. 5A and 5C, leads 14 and 15 may move in opposite directions as patient 16 bends to the side. When patient 16 transitions to other postures, such as the forward bent position illustrated in FIG. 3B, leads 14 and 15 may both move in the same direction. Providing lead accelerometer on each of leads 14 and 15 may provide useful information regarding how each of leads 14 and 15 move relative to target stimulation site 18. In other embodiments, only one of leads 14 and 15 may include a lead accelerometer, and the position of the other lead relative to target stimulation site 18 may be determined using the basic body model and/or the implant locations of the leads. Therapy adjustments may address different movement directions by different leads by, for example, moving active anodes and cathodes on each of the leads in different axial directs to keep them proximate to one or more target stimulation sites.
FIG. 6 is a flow chart illustrating an example technique for controlling therapy based on relative motion between stimulator and lead-borne sensors. Signals from device accelerometer 17 and lead accelerometer 19 may be monitored, for example, via processor 32 (60). Based on the signals received from device accelerometer 17 and lead accelerometer 19, the relative orientation and/or motion of device accelerometer 17 and lead accelerometer 19 may be calculated (62). This calculation may be performed
substantially in real-time and may be indicative of the posture of patient 16. If a posture change is detected based on the relative orientations of device accelerometer 17 and lead accelerometer 19, processor 32 may adjust the therapy delivered to patient 16 based on the relative orientation and/or motion to compensate for movement of electrodes relative to a target site due to the posture change (64).
The relative orientations of the accelerometers as indicated by their respective orientations with respect to ground, i.e., the Earth's gravity, may be used to detect posture of the patient and posture transitions. Furthermore, the characteristics of the raw accelerometer signals generated by device accelerometer 17 and lead accelerometer 19 that indicate relative motion or movement between the accelerometers may be used in combination with or instead of the relative orientations of device accelerometer 17 and lead accelerometer 19 to identify posture changes and adjust the therapy delivered to patient 16. For example, the amplitudes and rate of change of the amplitudes of the raw accelerometer signals may be used to determine the direction patient 16 is moving (e.g., bending) and how quickly patient 16 is changing posture. Processor 32 may adjust the therapy delivered to patient 16 based on the relative orientation of accelerometers 17 and 19, the direction patient 16 is moving, and/or the rate at which patient 16 is moving.
In some embodiments, the therapy is adjusted according to therapy parameters programmed into stimulator 12 or learned by stimulator 12. Additionally or alternatively, adjustments to the therapy delivered to patient 16 may be based on a basic body model.
As discussed above, some embodiments may include a data structure that associates a plurality of values of relative orientation, e.g., differences between the signals generated by accelerometers 17, 19, with respective stimulation programs.
Transitions between two programs based on changes in the relative orientation of accelerometers 17, 19 may be implemented via any suitable technique. In one embodiment, processor 32 provides instructions that cause therapy module 30 to time- interleave stimulation energy between the electrode combinations of the programs as described in commonly-assigned U.S. Patent Application Serial No. 11/401,100, entitled, "SHIFTING BETWEEN ELECTRODE COMBINATIONS IN ELECTRICAL STIMULATION DEVICE," and filed on April 10, 2006, the entire content of which is incorporated herein by reference. In the time-interleave shifting embodiment, the amplitudes of the first and second electrode combinations are ramped downward and
upward, respectively, in incremental steps until the amplitude of the second electrode combination reaches a target amplitude and the amplitude of the first combination reaches zero.
In another embodiment, shifting electrical stimulation and in particular, the current, between two electrode combinations of respective therapy programs is achieved by reducing an amplitude delivered to an electrode of one combination relative to the increase in amplitude an electrode of another combination. In such embodiments, therapy module 30 (FIG. 2) may include at least two current sources. It may be desirable to maintain the current at a relatively consistent perceptual intensity for patient 16 in order to prevent the current from exceeding a maximum threshold for patient 16, above which, patient 16 may feel pain or discomfort.
Furthermore, in some embodiments, when processor 32 identifies a relative orientation that is not associated with a therapy program, e.g., in a data structure, processor 32 may generate an intermediary program between entries in the data structure by interpolation, e.g. linear, non-liner, or other. Processor 32 may employ any of the techniques described in commonly-assigned U.S. Patent Application No. 11/799,035, entitled "THERAPY ADJUSTMENT," filed on April 30, 2007 and/or U.S. Patent Application No. 11/799,112, entitled "THERAPY ADJUSTMENT," filed on April 30, 2007. Various embodiments of the invention have been described. These and other embodiments are within the scope of the following claims.
Claims
1. A system comprising: an electrical stimulator comprising a device accelerometer;
5 a lead coupled to the electrical stimulator to deliver stimulation from the electrical stimulator to a target stimulation site in a patient, the lead comprising a lead accelerometer; a processor that receives a first signal from the device accelerometer and a second signal from the lead accelerometer, compares the first and second signals, and controls o delivery of the stimulation to the patient based on the comparison, wherein the comparison of the first and second signals is indicative of a posture or posture transition of the patient.
2. The system of claim 1, wherein the processor determines a relative orientation of the device accelerometer and the lead accelerometer based on the comparison of the first 5 and second signals, and controls delivery of the stimulation based on the relative orientation, wherein the relative orientation of the device accelerometer and lead accelerometer is indicative of the posture or posture transition of the patient.
3. The system of claim 1, wherein the processor determines a relative motion of the0 device accelerometer and the lead accelerometer based on the comparison of the first and second signals, and controls delivery of the stimulation based on the relative motion, wherein the relative motion of the device accelerometer and lead accelerometer is indicative of the posture or posture transition of the patient. 5
4. The system of claim 1, wherein lead accelerometer is proximate to a distal end of the lead body.
5. The system of claim 1, wherein the electrical stimulator comprises a housing, and the device accelerometer is located within the housing. 0
6. The system of claim 1, wherein the lead accelerometer is located within the lead.
7. The system of claim 1, wherein the lead comprises a plurality of electrodes, and wherein controlling delivery of the therapy to the patient based on the relative orientation of the device accelerometer and the lead accelerometer comprises controlling which of the plurality of electrodes are selected to deliver the therapy based on the comparison of the first and second signals.
8. The system of claim 7, wherein the lead accelerometer is located proximate to the electrodes.
9. The system of claim 1, wherein each of the device accelerometer and the lead accelerometer comprises a multi-axis accelerometer.
10. The system of claim 1, wherein the stimulation comprises spinal cord stimulation.
11. The system of claim 1, wherein the electrical stimulator is implantable.
12. The system of claim 1, wherein the processor comprises a processor of the electrical stimulator.
13. A method comprising: receiving a first signal from a device accelerometer and a second signal from a lead accelerometer, wherein the device accelerometer is located on or within an electrical stimulator that delivers stimulation to a patient, and wherein the lead accelerometer is coupled to a lead that delivers the stimulation from the electrical stimulator to the target stimulation site of the patient; comparing the first and second signals; and controlling delivery of the stimulation by the electrical stimulator based on the comparison, wherein the comparison is indicative of a posture or posture transition of the patient.
14. The method of claim 13, further comprising determining a relative orientation of the device accelerometer and the lead accelerometer based on the comparison of the first and second signals, wherein controlling delivery of the stimulation comprises controlling delivery of the stimulation based on the relative orientation, wherein the relative orientation of the device accelerometer and lead accelerometer is indicative of the posture or posture transition of the patient.
15. The method of claim 13, further comprising determining a relative motion of the device accelerometer and the lead accelerometer based on the comparison of the first and second signals, wherein controlling delivery of the stimulation comprises controlling delivery of the stimulation based on the relative motion, wherein the relative motion of the device accelerometer and lead accelerometer is indicative of the posture or posture transition of the patient.
16. The method of claim 13, wherein the lead comprises a plurality of electrodes, and wherein controlling delivery of the stimulation to the patient based on the comparison comprises controlling which of the plurality of electrodes are selected to deliver the therapy based on the comparison.
17. The method of claim 16, wherein the lead accelerometer is located proximate to the electrodes.
18. The method of claim 13, wherein each of the device accelerometer and the lead accelerometer comprises a multi-axis accelerometer.
19. The method of claim 13, wherein the stimulation comprises spinal cord stimulation.
20. The method of claim 13, wherein controlling delivery of the stimulation comprises controlling delivery of the stimulation substantially in real-time based on the signals received from the device accelerometer and the lead accelerometer.
21. The method of claim 11, further comprising determining a value based on the comparison of the first and second signals, wherein controlling delivery of the therapy by the electrical stimulator comprises controlling delivery of the therapy according to a stimulation program previously associated with the value in a data structure.
22. The method of claim 21, wherein the stimulation program is associated with the value during a programming session.
23. The method of claim 21, wherein the stimulation program is associated with the value using a learning mode.
24. The method of claim 21, wherein the stimulation program is associated with the value using a model.
25. A medical device comprising: a therapy module to deliver stimulation to a patient via a lead; a device accelerometer; and a processor to receive a first signal from the device accelerometer and a second signal from a lead accelerometer on the lead, compare the first and second signals, and control delivery of the stimulation by the therapy module based on the comparison.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08746507.6A EP2155325B1 (en) | 2007-05-07 | 2008-04-22 | Dual accelerometer posture sensing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/800,653 US8788055B2 (en) | 2007-05-07 | 2007-05-07 | Multi-location posture sensing |
US11/800,653 | 2007-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008137306A1 true WO2008137306A1 (en) | 2008-11-13 |
Family
ID=39619305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/061100 WO2008137306A1 (en) | 2007-05-07 | 2008-04-22 | Multi-location posture sensing |
Country Status (3)
Country | Link |
---|---|
US (1) | US8788055B2 (en) |
EP (1) | EP2155325B1 (en) |
WO (1) | WO2008137306A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ302434B6 (en) * | 2010-03-15 | 2011-05-11 | Vysoká škola bánská - Technická univerzita Ostrava | Method of monitoring patient vibrations for controlling electronic cardiac pacemaker |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8396565B2 (en) | 2003-09-15 | 2013-03-12 | Medtronic, Inc. | Automatic therapy adjustments |
US7957809B2 (en) | 2005-12-02 | 2011-06-07 | Medtronic, Inc. | Closed-loop therapy adjustment |
US8260425B2 (en) * | 2007-10-12 | 2012-09-04 | Intelect Medical, Inc. | Deep brain stimulation system with inputs |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8571643B2 (en) | 2010-09-16 | 2013-10-29 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8209028B2 (en) | 2008-07-11 | 2012-06-26 | Medtronic, Inc. | Objectification of posture state-responsive therapy based on patient therapy adjustments |
US8583252B2 (en) | 2008-07-11 | 2013-11-12 | Medtronic, Inc. | Patient interaction with posture-responsive therapy |
US8958885B2 (en) | 2008-07-11 | 2015-02-17 | Medtronic, Inc. | Posture state classification for a medical device |
US8708934B2 (en) | 2008-07-11 | 2014-04-29 | Medtronic, Inc. | Reorientation of patient posture states for posture-responsive therapy |
US9050471B2 (en) | 2008-07-11 | 2015-06-09 | Medtronic, Inc. | Posture state display on medical device user interface |
US9440084B2 (en) | 2008-07-11 | 2016-09-13 | Medtronic, Inc. | Programming posture responsive therapy |
US8249718B2 (en) | 2008-07-11 | 2012-08-21 | Medtronic, Inc. | Programming posture state-responsive therapy with nominal therapy parameters |
US8504150B2 (en) | 2008-07-11 | 2013-08-06 | Medtronic, Inc. | Associating therapy adjustments with posture states using a stability timer |
US9968784B2 (en) | 2008-07-11 | 2018-05-15 | Medtronic, Inc. | Posture state redefinition based on posture data |
US8280517B2 (en) | 2008-09-19 | 2012-10-02 | Medtronic, Inc. | Automatic validation techniques for validating operation of medical devices |
US8311639B2 (en) | 2009-07-08 | 2012-11-13 | Nevro Corporation | Systems and methods for adjusting electrical therapy based on impedance changes |
US8255057B2 (en) | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
WO2010093720A1 (en) | 2009-02-10 | 2010-08-19 | Nevro Corporation | Systems and methods for delivering neural therapy correlated with patient status |
WO2010111329A1 (en) | 2009-03-27 | 2010-09-30 | Medtronic, Inc. | Conditional electrical stimulation in response to a time schedule for pelvic health |
US9561366B2 (en) | 2009-03-27 | 2017-02-07 | Medtronic, Inc. | Conditional electrical stimulation |
WO2010111324A1 (en) | 2009-03-27 | 2010-09-30 | Medtronic, Inc. | Conditional electrical stimulation in response to user input for pelvic health |
DE202010018338U1 (en) | 2009-04-22 | 2015-10-12 | Nevro Corporation | Spinal cord modulation system for the relief of chronic pain |
AU2010238752B2 (en) | 2009-04-22 | 2014-05-29 | Nevro Corporation | Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods |
US9026223B2 (en) | 2009-04-30 | 2015-05-05 | Medtronic, Inc. | Therapy system including multiple posture sensors |
US9327070B2 (en) | 2009-04-30 | 2016-05-03 | Medtronic, Inc. | Medical device therapy based on posture and timing |
US8175720B2 (en) | 2009-04-30 | 2012-05-08 | Medtronic, Inc. | Posture-responsive therapy control based on patient input |
US8498710B2 (en) | 2009-07-28 | 2013-07-30 | Nevro Corporation | Linked area parameter adjustment for spinal cord stimulation and associated systems and methods |
US9149210B2 (en) | 2010-01-08 | 2015-10-06 | Medtronic, Inc. | Automated calibration of posture state classification for a medical device |
US8579834B2 (en) | 2010-01-08 | 2013-11-12 | Medtronic, Inc. | Display of detected patient posture state |
US9956418B2 (en) | 2010-01-08 | 2018-05-01 | Medtronic, Inc. | Graphical manipulation of posture zones for posture-responsive therapy |
US9357949B2 (en) | 2010-01-08 | 2016-06-07 | Medtronic, Inc. | User interface that displays medical therapy and posture data |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
US9566441B2 (en) | 2010-04-30 | 2017-02-14 | Medtronic, Inc. | Detecting posture sensor signal shift or drift in medical devices |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
AU2011336606B2 (en) | 2010-11-30 | 2016-06-23 | Nevro Corporation | Extended pain relief via high frequency spinal cord modulation, and associated systems and methods |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
US8725239B2 (en) | 2011-04-25 | 2014-05-13 | Cyberonics, Inc. | Identifying seizures using heart rate decrease |
US9789307B2 (en) | 2011-04-29 | 2017-10-17 | Medtronic, Inc. | Dual prophylactic and abortive electrical stimulation |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US9649494B2 (en) | 2011-04-29 | 2017-05-16 | Medtronic, Inc. | Electrical stimulation therapy based on head position |
US10448889B2 (en) | 2011-04-29 | 2019-10-22 | Medtronic, Inc. | Determining nerve location relative to electrodes |
AU2012304370B2 (en) | 2011-09-08 | 2016-01-28 | Nevro Corporation | Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods |
AU2012318335B2 (en) * | 2011-10-07 | 2017-06-15 | Anthony J. Colantonio | Lead coupler for multiple neurological stimulation leads |
US10206591B2 (en) | 2011-10-14 | 2019-02-19 | Flint Hills Scientific, Llc | Seizure detection methods, apparatus, and systems using an autoregression algorithm |
US9814884B2 (en) | 2011-11-04 | 2017-11-14 | Nevro Corp. | Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes |
US9907959B2 (en) | 2012-04-12 | 2018-03-06 | Medtronic, Inc. | Velocity detection for posture-responsive therapy |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US9737719B2 (en) | 2012-04-26 | 2017-08-22 | Medtronic, Inc. | Adjustment of therapy based on acceleration |
US10716510B2 (en) | 2013-09-17 | 2020-07-21 | Medibotics | Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration |
US10321873B2 (en) | 2013-09-17 | 2019-06-18 | Medibotics Llc | Smart clothing for ambulatory human motion capture |
US9582072B2 (en) | 2013-09-17 | 2017-02-28 | Medibotics Llc | Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways |
US10602965B2 (en) | 2013-09-17 | 2020-03-31 | Medibotics | Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll |
US9588582B2 (en) | 2013-09-17 | 2017-03-07 | Medibotics Llc | Motion recognition clothing (TM) with two different sets of tubes spanning a body joint |
US9833614B1 (en) | 2012-06-22 | 2017-12-05 | Nevro Corp. | Autonomic nervous system control via high frequency spinal cord modulation, and associated systems and methods |
US9849025B2 (en) | 2012-09-07 | 2017-12-26 | Yale University | Brain cooling system |
US9895538B1 (en) | 2013-01-22 | 2018-02-20 | Nevro Corp. | Systems and methods for deploying patient therapy devices |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US9731133B1 (en) | 2013-01-22 | 2017-08-15 | Nevro Corp. | Systems and methods for systematically testing a plurality of therapy programs in patient therapy devices |
US9295840B1 (en) | 2013-01-22 | 2016-03-29 | Nevro Corporation | Systems and methods for automatically programming patient therapy devices |
US9119964B2 (en) | 2013-03-06 | 2015-09-01 | Boston Scientific Neuromodulation Corporation | System for deep brain stimulation employing a sensor for monitoring patient movement and providing closed loop control |
US9895539B1 (en) | 2013-06-10 | 2018-02-20 | Nevro Corp. | Methods and systems for disease treatment using electrical stimulation |
WO2015009980A1 (en) * | 2013-07-18 | 2015-01-22 | Tesseract Sensors, LLC | Medical data acquisition systems and methods for monitoring and diagnosis |
US10149978B1 (en) | 2013-11-07 | 2018-12-11 | Nevro Corp. | Spinal cord modulation for inhibiting pain via short pulse width waveforms, and associated systems and methods |
US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
WO2017040153A1 (en) | 2015-08-28 | 2017-03-09 | Cardiac Pacemakers, Inc. | Systems and methods for behaviorally responsive signal detection and therapy delivery |
US11318310B1 (en) | 2015-10-26 | 2022-05-03 | Nevro Corp. | Neuromodulation for altering autonomic functions, and associated systems and methods |
US10300277B1 (en) | 2015-12-14 | 2019-05-28 | Nevro Corp. | Variable amplitude signals for neurological therapy, and associated systems and methods |
ES2876148T3 (en) | 2016-01-25 | 2021-11-12 | Nevro Corp | Treatment of congestive heart failure with electrical stimulation and associated systems and methods |
USD821587S1 (en) | 2017-01-26 | 2018-06-26 | Michael J. Vosch | Electrode patch array |
USD821588S1 (en) | 2017-01-26 | 2018-06-26 | Michael J. Vosch | Electrode patch array |
US11779755B2 (en) * | 2017-04-25 | 2023-10-10 | Neogenesis Technologies Llc | System and methods for therapeutic stimulation |
JP6988252B2 (en) * | 2017-08-10 | 2022-01-05 | オムロンヘルスケア株式会社 | Low frequency treatment device |
USD907213S1 (en) | 2017-09-18 | 2021-01-05 | Dms-Service Llc | Patch with electrode array |
WO2019060298A1 (en) | 2017-09-19 | 2019-03-28 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement |
USD898202S1 (en) | 2017-11-12 | 2020-10-06 | Dms-Service Llc | Patch with electrode array |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
TWI659762B (en) | 2017-12-14 | 2019-05-21 | 財團法人工業技術研究院 | Electrical stimulation control circuit and control method thereof |
US11318277B2 (en) | 2017-12-31 | 2022-05-03 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
WO2019217079A1 (en) | 2018-05-09 | 2019-11-14 | Boston Scientific Neuromodulation Corporation | Determination and use of a wellness factor in an implantable medical device system using qualitative and quantitative measurements |
WO2020056418A1 (en) | 2018-09-14 | 2020-03-19 | Neuroenhancement Lab, LLC | System and method of improving sleep |
US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
US11452874B2 (en) | 2020-02-03 | 2022-09-27 | Medtronic, Inc. | Shape control for electrical stimulation therapy |
US11554264B2 (en) | 2020-04-24 | 2023-01-17 | Medtronic, Inc. | Electrode position detection |
US20230148877A1 (en) * | 2021-11-17 | 2023-05-18 | Boston Scientific Neuromodulation Corporation | Systems and methods for scs therapy optimization |
WO2024187225A1 (en) * | 2023-03-10 | 2024-09-19 | Saluda Medical Pty Limited | Improved feedback control of neural stimulation therapy |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6044297A (en) * | 1998-09-25 | 2000-03-28 | Medtronic, Inc. | Posture and device orientation and calibration for implantable medical devices |
US20020170193A1 (en) * | 2001-02-23 | 2002-11-21 | Townsend Christopher P. | Posture and body movement measuring system |
US20040225332A1 (en) | 2003-05-09 | 2004-11-11 | Ursula Gebhardt | Use of accelerometer signal to augment ventricular arrhythmia detection |
US20050060001A1 (en) | 2003-09-15 | 2005-03-17 | Ruchika Singhal | Automatic therapy adjustments |
WO2005089860A1 (en) | 2004-03-16 | 2005-09-29 | Medtronic, Inc. | Collecting posture information to evaluate therapy |
US20070073355A1 (en) * | 1998-08-05 | 2007-03-29 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031618A (en) | 1990-03-07 | 1991-07-16 | Medtronic, Inc. | Position-responsive neuro stimulator |
US5233984A (en) | 1991-03-29 | 1993-08-10 | Medtronic, Inc. | Implantable multi-axis position and activity sensor |
FI100851B (en) | 1994-08-15 | 1998-03-13 | Polar Electro Oy | Method and apparatus for ambulatory recording and storage of a body part's movement in an individual and for simultaneous observation of movements of different body parts |
US5593431A (en) | 1995-03-30 | 1997-01-14 | Medtronic, Inc. | Medical service employing multiple DC accelerometers for patient activity and posture sensing and method |
US20020169485A1 (en) | 1995-10-16 | 2002-11-14 | Neuropace, Inc. | Differential neurostimulation therapy driven by physiological context |
US6449508B1 (en) | 1999-10-21 | 2002-09-10 | Medtronic, Inc. | Accelerometer count calculation for activity signal for an implantable medical device |
US6659968B1 (en) | 2000-06-01 | 2003-12-09 | Advanced Bionics Corporation | Activity monitor for pain management efficacy measurement |
EP1195139A1 (en) | 2000-10-05 | 2002-04-10 | Ecole Polytechnique Féderale de Lausanne (EPFL) | Body movement monitoring system and method |
US7167751B1 (en) | 2001-03-01 | 2007-01-23 | Advanced Bionics Corporation | Method of using a fully implantable miniature neurostimulator for vagus nerve stimulation |
US7110820B2 (en) | 2002-02-05 | 2006-09-19 | Tcheng Thomas K | Responsive electrical stimulation for movement disorders |
EP1511418B1 (en) | 2002-02-07 | 2009-04-08 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Body movement monitoring device |
US7151961B1 (en) | 2002-05-24 | 2006-12-19 | Advanced Bionics Corporation | Treatment of movement disorders by brain stimulation |
US7155279B2 (en) | 2003-03-28 | 2006-12-26 | Advanced Bionics Corporation | Treatment of movement disorders with drug therapy |
US7395113B2 (en) | 2004-03-16 | 2008-07-01 | Medtronic, Inc. | Collecting activity information to evaluate therapy |
WO2005089646A1 (en) * | 2004-03-16 | 2005-09-29 | Medtronic, Inc. | Sensitivity analysis for selecting therapy parameter sets |
EP1755734B1 (en) * | 2004-04-14 | 2013-02-27 | Medtronic Inc. | Collecting posture and activity information to evaluate therapy |
US7519431B2 (en) | 2005-04-11 | 2009-04-14 | Medtronic, Inc. | Shifting between electrode combinations in electrical stimulation device |
US20060235289A1 (en) | 2005-04-19 | 2006-10-19 | Willem Wesselink | Pacemaker lead with motion sensor |
US7389147B2 (en) | 2005-04-29 | 2008-06-17 | Medtronic, Inc. | Therapy delivery mode selection |
-
2007
- 2007-05-07 US US11/800,653 patent/US8788055B2/en active Active
-
2008
- 2008-04-22 WO PCT/US2008/061100 patent/WO2008137306A1/en active Application Filing
- 2008-04-22 EP EP08746507.6A patent/EP2155325B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070073355A1 (en) * | 1998-08-05 | 2007-03-29 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US6044297A (en) * | 1998-09-25 | 2000-03-28 | Medtronic, Inc. | Posture and device orientation and calibration for implantable medical devices |
US20020170193A1 (en) * | 2001-02-23 | 2002-11-21 | Townsend Christopher P. | Posture and body movement measuring system |
US20040225332A1 (en) | 2003-05-09 | 2004-11-11 | Ursula Gebhardt | Use of accelerometer signal to augment ventricular arrhythmia detection |
US20050060001A1 (en) | 2003-09-15 | 2005-03-17 | Ruchika Singhal | Automatic therapy adjustments |
WO2005089860A1 (en) | 2004-03-16 | 2005-09-29 | Medtronic, Inc. | Collecting posture information to evaluate therapy |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ302434B6 (en) * | 2010-03-15 | 2011-05-11 | Vysoká škola bánská - Technická univerzita Ostrava | Method of monitoring patient vibrations for controlling electronic cardiac pacemaker |
Also Published As
Publication number | Publication date |
---|---|
US20080281381A1 (en) | 2008-11-13 |
US8788055B2 (en) | 2014-07-22 |
EP2155325B1 (en) | 2015-12-02 |
EP2155325A1 (en) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8788055B2 (en) | Multi-location posture sensing | |
US20230072802A1 (en) | Systems and methods of providing modulation therapy without patient-perception of stimulation | |
US9950171B2 (en) | Paired stimulation pulses based on sensed compound action potential | |
US10213604B2 (en) | Controlling electrical stimulation based on evoked compound muscle action potential | |
US8126567B2 (en) | Therapy adjustment | |
US7769464B2 (en) | Therapy adjustment | |
US11813457B2 (en) | Hysteresis compensation for detection of ECAPs | |
US9737719B2 (en) | Adjustment of therapy based on acceleration | |
US12121730B2 (en) | Determining posture state from ECAPs | |
US20240033519A1 (en) | Posture-based control of electrical stimulation therapy | |
AU2008210293A1 (en) | Neurostimulation system for measuring patient activity | |
CN114728162A (en) | Subthreshold stimulation based on ECAP detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08746507 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008746507 Country of ref document: EP |