Nothing Special   »   [go: up one dir, main page]

WO2008118820A2 - Somatic cell reprogramming - Google Patents

Somatic cell reprogramming Download PDF

Info

Publication number
WO2008118820A2
WO2008118820A2 PCT/US2008/057924 US2008057924W WO2008118820A2 WO 2008118820 A2 WO2008118820 A2 WO 2008118820A2 US 2008057924 W US2008057924 W US 2008057924W WO 2008118820 A2 WO2008118820 A2 WO 2008118820A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
potency
cell
pluripotent
oct
Prior art date
Application number
PCT/US2008/057924
Other languages
French (fr)
Other versions
WO2008118820A3 (en
Inventor
James Thomson
Junying Yu
Original Assignee
Wisconsin Alumni Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39708430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008118820(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wisconsin Alumni Research Foundation filed Critical Wisconsin Alumni Research Foundation
Priority to CN200880014084A priority Critical patent/CN101743306A/en
Priority to KR1020097022090A priority patent/KR101516833B1/en
Priority to AU2008231020A priority patent/AU2008231020B2/en
Priority to CA2684242A priority patent/CA2684242C/en
Priority to JP2010501136A priority patent/JP5813321B2/en
Priority to EP08744218A priority patent/EP2137296A2/en
Priority to EP18177810.1A priority patent/EP3399025A1/en
Publication of WO2008118820A2 publication Critical patent/WO2008118820A2/en
Publication of WO2008118820A3 publication Critical patent/WO2008118820A3/en
Priority to IL200982A priority patent/IL200982A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/99Coculture with; Conditioned medium produced by genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/027Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a retrovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]

Definitions

  • Embryonic stem (ES) cells can grow indefinitely while maintaining pluripotency and can differentiate into cells of all three germ layers (Evans & Kaufman, Nature 292: 154-156 (1981)). Human ES cells will be useful in treating a host of diseases, such as Parkinson's disease, spinal cord injury and diabetes (Thomson et ai, Science 282:1145-1 147 (1998)).
  • diseases such as Parkinson's disease, spinal cord injury and diabetes (Thomson et ai, Science 282:1145-1 147 (1998)).
  • Bots have sought technical solutions to avoid the current method of generating ES cells from blastocyst cells and to avoid anticipated tissue rejection problems following transplantation into patients.
  • One desirable way to accomplish these solutions would be to generate pluripotcnt cells directly from somatic cells of a post-natal individual.
  • Somatic cells can be reprogrammed by transferring their nuclear contents into oocytes (Wilmut et ai, Nature 385:810-813(1997)) or by fusion with ES cells (Cowan et ai, Science 309: 1369-1373 (2005)), indicating that unfertilized eggs and ES cells contain factors that confer totipotency or pluripotency in somatic cells.
  • Hl Oct4 knock-in ES cells did not express EGFP, but that EGFP expression was restored upon cell-cell fusion with human ES cells. Yu et ai, Stem Cells 24:168-176 (2006), incorporated herein by reference as if set forth in its entirety). Therefore, Yu et ai demonstrated that differentiated cells can become pluripotent via cell-cell fusion with human ES cells. Regardless of the differentiated cell type, upon fusion with undifferentiated human ES cells, ES cell specific antigens and marker genes were expressed and differentiation-specific antigens were no longer detectable in the fused hybrid cells.
  • EGFP expression was re-established in the hybrid cells, providing a convenient marker for re-establishment of pluripotent stem cell status.
  • the hybrid cells formed embryoid bodies (EBs)
  • EBs embryoid bodies
  • Chambers & Smith (EP 1 698 639 A2, (2002)) maintained pluripotent murine cells without a feeder layer or feeder cell extract and without a gpl 30 cytokine by introducing vectors that encode or activate differentiation-suppressing factors, but did not convert differentiated cells into a pluripotent state.
  • Sox2, c-Myc and Klf4 into mouse ES cells and mouse adult fibroblasts cultured under conditions suitable for mouse ES cell culture to obtain induced pluripotent stem (iPS) cells that exhibited mouse ES cell morphology and growth properties and expressed mouse ES cell marker genes (Takahashi & Yamanaka, Cell 126:663-676 (2006)).
  • iPS induced pluripotent stem
  • exogenous Oct-4 introduced into the mouse fibroblasts resulted in only marginal Oct-4 expression.
  • Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development.
  • pluripotent cells can be directly generated from mouse fibroblast cultures by adding only a few defined factors using a retroviral transduction.
  • the set of factors used to produce iPS cells from differentiated mouse cells was insufficient to reprogram human somatic cells to pluripotency using lentiviral vectors without introducing additional changes to the cells.
  • LIF leukemia inhibitory factor
  • Stat3 pathway a key to mouse ES cell proliferation, does not support human ES cell proliferation and appears inactive in conditions that support human ES cells (Daheron L, et al, Stem Cells 22:770-778 (2004); Humphrey R, et al, Stem Cells 22:522-530 (2004); and Matsuda T, et al, EMBO J.
  • BMPs bone morphogenetic proteins
  • fibroblast growth factor (FGF) signaling is important to self-renewal of human ES cells, but apparently not for mice (Xu et al, (2005), supra; and Xu C, et al, Stem Cells 23:315-323 (2005)).
  • FGF fibroblast growth factor
  • the art still seeks a set of potency-determining factors suited at least for use in methods for reprogramming primate (including human and non-human) somatic cells to yield pluripotent cells.
  • primate including human and non-human somatic cells
  • Such cells obtained without relying upon embryonic tissues, would be suited for use in applications already contemplated for existing, pluripotent, primate ES cells.
  • iPS cells refer to cells that are substantially genetically identical to their respective differentiated somatic cell of origin and display characteristics similar to higher potency cells, such as ES cells, as described herein.
  • the cells can be obtained from various differentiated ⁇ i.e., non-pluripotent and multipotent) somatic cells.
  • iPS cells exhibit morphological (i.e., round shape, large nucleoli and scant cytoplasm) and growth properties (i.e., doubling time; ES cells have a doubling time of about seventeen to eighteen hours) akin to ES cells.
  • iPS cells express pluripotent cell- specific markers (e.g., Oct-4, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, but not SSEA-I).
  • iPS cells are not immediately derived from embryos and can transiently or stably express one or more copies of selected potency-determining factors at least until they become pluripotent.
  • not immediately derived from embryos means that the starting cell type for producing iPS cells is a non-pluripotent cell, such as a multipotent cell or terminally differentiated cell, such as somatic cells obtained from a post-natal individual.
  • a non-pluripotent cell such as a multipotent cell or terminally differentiated cell, such as somatic cells obtained from a post-natal individual.
  • At least two potency-determining factors can be introduced into, and expressed in, differentiated somatic cells, whereupon the somatic cells convert in culture to cells having properties characteristic of pluripotent cells, such as human ES cells (i.e., express at least Oct-4, SSEA-3, SSEA-4, TRA-1-60 or TRA-1-81 , but not SSEA-I , and appear as compact colonies having a high nucleus to cytoplasm ratio and prominent nucleolus), that can differentiate into cells characteristic of all three ge ⁇ n layers, and that contain the genetic complement of the somatic cells of a post-natal individual.
  • the reprogrammed (i.e., converted) cells are substantially genetically identical to the somatic cells from which they were derived.
  • a "potency-determining factor” refers to a factor, such as a gene or other nucleic acid, or a functional fragment thereof, as well as an encoded factor or functional fragment thereof, used to increase the potency of a somatic cell, so that it becomes pluripotent.
  • the potency-determining factors optionally can be present only transiently in the reprogrammed cells or can be maintained in a transcriptionally active or inactive state in the genome of the reprogrammed cells. Likewise, the potency-determining factors can be present in more than one copy in the reprogrammed cells, where the potency-determining factor can be integrated in the cell's genome, can be extra-chromosomal or both.
  • the potency-determining factors can include, but are not limited to, Stella (SEQ ID NO:1); POU5F1 (Oct-4; SEQ ID NO:2), Sox2 (SEQ ID NO:3), FoxD3, UTFl , Rexl, ZNF206, Soxl5, Mybl2, Lin28 (SEQ ID NO:4), Nanog (SEQ ID NO:5), DPP A2, ESGl, Otx2 and subsets thereof.
  • as few as two potency- determining factors e.g., Oct-4 and Sox2, can be sufficient.
  • Efficiency in obtaining reprogrammed cells can be improved by including additional potency-determining factor, such as Lin28, Nanog or both.
  • the invention relates to a replenishable, enriched population of pluripotent cells obtained from a post-natal individual, especially from a living individual, but optionally from a deceased individual.
  • Cells in the enriched cell population express at least one cell-type-specific marker, including, but not limited to, Oct-4, SSEA3, SSEA4, Tra-1-60, Tra-1 - 81 or combinations thereof and have other hallmarks of pluripotent cells, such as ES cells.
  • the pluripotent cells may express alkaline phosphatase (ALP).
  • the pluripotent cells may have a genome substantially genetically identical to that of a pre-existing, differentiated cell from the individual.
  • the pluripotent cells may have a genome that encodes at least one of the potency-determining factors, which may be transcriptionally active or inactive after reprogramming.
  • the potency-determining factors may be in a form of a reprogramming sequence in which a polynucleotide encoding the potency-determining factor is operably linked to a heterologous promoter.
  • heterologous promoter means a promoter that is operably linked to a polynucleotide for which the promoter does not normally initiate transcription.
  • the invention relates to methods and compositions for identifying potency-determining factors required to reprogram somatic cells into pluripotent cells.
  • FIG. 1 illustrates a site downstream from a human Oct4 promoter into which a knock-in construct was introduced.
  • EGFP enhanced green fluorescent protein
  • NEO neomycin phosphotransferase
  • FIGS. 2A-B illustrate human Hl ES cell differentiation.
  • FIG. 2 A shows schematics of myeloid precursor derivation and purification from human ES cells.
  • FIG. 2B shows phenotypic analysis of differentiated cells obtained after Percoll ® separation. Gray line: isotype control; black line: antibody staining. Abbreviations: hESC, human embryonic stem cell; MPO, myeloperoxidase; pHEMA, poly(2-hydroxyethyl methacrylate).
  • FlG. 3 illustrates the Oct-4 region containing the knock-in construct of FIG. 1.
  • FIGS. 4A-C illustrate lentiviral transduction of somatic cells.
  • FIG. 4A shows a schematic diagram of lentiviral construct.
  • FIG. 4B shows Percoll ® -purified cells were transduced with EGFP-expressing lentiviral vectors at various MOI. EGFP expression was analyzed by flow cytometry three days after transduction without drug selection.
  • FIG. 4C shows lentiviral transduction of Percoll ® -purified cells after several additional days of culture on Matrigel ® . EGFP expression was analyzed two days after lentiviral transduction.
  • FIG. 5 illustrates transgene overexpression in cells differentiated for seven days on Matrigel .
  • FIGS. 6A-B illustrate reprogramming of 0C/4KICD45+A cells through introduction of fourteen potency-determining factors.
  • FIG. 6A shows the established clones display undifferentiated human ES cell morphology and express EGFP under direction of the endogenous Oct4 promoter.
  • FIG. 6B shows flow cytometry analysis of human ES cell-specific cell surface antigen expression in established clones. Gray line: isotype control; black line: antibody staining.
  • FIGS. 7A-C illustrate reprogramming efficiency, as evidenced by colony formation, after introduction of various sets of potency-determining factors.
  • FIG. 7A shows the identified set of fourteen potency-determining factors was introduced into cells in combinations, wherein each combination excluded one of the fourteen factors.
  • the inventors determined whether the excluded potency-determining factor was essential to the reprogramming. For example, a set of potency-determining factors termed Ml that lacked Oct-4 (depicted as Ml - Oct-4) was unable to form a significant number of ES-like colonies. As such, it was concluded that Oct-4 was important for somatic cell reprogramming.
  • FIG. 7A shows the identified set of fourteen potency-determining factors was introduced into cells in combinations, wherein each combination excluded one of the fourteen factors.
  • FIG. 7B shows a set of potency-determining factors (narrowed from FIG. 7A) evaluated for further testing was narrowed from fourteen to four (M4, being Oct-4, Sox2, Lin28 and Nanog). These four potency- determining factors were tested by serially excluding one of the four from the combination. Where a combination of three potency-determining factors ⁇ e.g., M4-Oct-4) was unable to reprogram the tested cells to form a significant number of stable ES-like colonies, the inventors concluded that the omitted gene is important for somatic cell reprogramming.
  • the light gray bars indicate the total number of reprogrammed colonies formed having typical human ES cell morphology; dark gray bars indicate the number of large colonies with minimal differentiation.
  • FIG. 7B the light gray bars indicate the total number of reprogrammed colonies formed having typical human ES cell morphology; dark gray bars indicate the number of large colonies with minimal differentiation.
  • FIGS. 8A-B illustrate reprogramming in human adult skin fibroblasts.
  • FIG. 8A shows bright-field images of human adult skin cell (p5) (left) and reprogrammed cells (right).
  • FIG. 8B shows flow cytometry analysis of human ES cell-specific markers in human adult skin cells (p5) (bottom) and reprogrammed cells (top). Gray line: isotype control; black line: antibody staining.
  • FIGS. 9A-B illustrate the effect on reprogramming of relative expression of Oct-4 and Sox2.
  • FIG. 9A shows Western blot analysis of Oct-4 and Sox2 in 293FT cells; lane 1 , P Sin4-EF2-Oct4-IRESl-Sox2 (OS-IRESl); lane 2, P Sin4-EF2-Oct4-IRES2-Sox2 (OS-IRES2); lane 3, pSin4-EF2-Oct4-F2A-Sox2 (OS-F2A); lane 4, pSin4-EF2-Oct4-IRES 1 -puro (O); lane 5, pSin4-EF2-Sox2-IRESl-puro (S); lane 6, no plasmid (control).
  • FIG. 9B shows reprogramming in mesenchymal cells derived from OCT4 knock-in human ES cells using linked potency- determining factors; gene combinations are the same as in FIG. 9A, with the addition of pSin4- EF2-Nanog-IRESl-puro (N) and pSin4-EF2-Lin28-IRESl -puro (L).
  • ES cells play an important role in maintaining pluripotency and that differentiated somatic cells could be reprogrammed to a state of pluripotency through expression of potency-determining factors.
  • pluripotent cells refer to a population of cells that can differentiate into all three germ layers (e.g., endoderm, mesoderm and ectoderm). Pluripotent cells express a variety of pluripotent cell-specific markers, have a cell morphology characteristic of undifferentiated cells (i.e., compact colony, high nucleus to cytoplasm ratio and prominent nucleolus) and form teratomas when introduced into an immunocompromised animal, such as a SCID mouse.
  • the teratomas typically contain cells or tissues characteristic of all three germ layers.
  • Pluripotent cells are capable of both proliferation in cell culture and differentiation towards a variety of lineage-restricted cell populations that exhibit multipotent properties. Multipotent somatic cells are more differentiated relative to pluripotent cells, but are not terminally differentiated. Pluripotent cells therefore have a higher potency than multipotent cells.
  • reprogrammed pluripotent primate stem cells (and similar references) refer to the pluripotent products of somatic cell reprogramming methods. Such cells are suitable for use in research and therapeutic applications currently envisioned for human ES cells.
  • the present invention broadly relates to novel methods for reprogramming differentiated somatic cells into higher-potency cells, such as pluripotent cells, by administering at least two potency-determining factors into somatic cells to achieve a higher level of potency in the reprogrammed cells than in the somatic cells.
  • the present invention allows the generation of pluripotent cells, such as iPS cells, from somatic cells without requiring an addition of cell surface receptors for introducing the potency-determining factors to the somatic cells.
  • reprogramming refers to a genetic process whereby differentiated somatic cells are converted into de-differentiated, pluripotent cells, and thus have a greater pluripotency potential than the cells from which they were derived.
  • the reprogrammed cells express at least one of the following pluripotent cell-specific markers: SSEA-3, SSEA-4, TRA- 1-60 or TRA 1 -81. Preferably, the reprogrammed cells express all these markers.
  • Potency-determining factors that can reprogram somatic cells include, but are not limited to, factors such as Oct-4, Sox2, FoxD3, UTFl, Stella, Rexl , ZNF206, Soxl5, Mybl2, Lin28, Nanog, DPP A2, ESGl , Otx2 or combinations thereof. In the examples, a set with as few as two of the fourteen factors was sufficient to reprogram the tested cells; this set included Oct-4 and Sox2.
  • the potency-determining factor may be a transcription factor.
  • Suitable somatic cells can be any somatic cell, although higher reprogramming frequencies are observed when the starting somatic cells have a doubling time about twenty-four hours.
  • Somatic cells useful in the invention are non-embryonic cells obtained from a fetal, newborn, juvenile or adult primate, including a human. Examples of somatic cells that can be used with the methods described herein include, but are not limited to, bone marrow cells, epithelial cells, fibroblast cells, hematopoietic cells, hepatic cells, intestinal cells, mesenchymal cells, myeloid precursor cells and spleen cells.
  • somatic cell is a CD29 + CD44 + CDl 66 + CD105 + CD73 + and CD31 " mesenchymal cell that attaches to a substrate.
  • the somatic cells can be cells that can themselves proliferate and differentiate into other types of cells, including blood stem cells, muscle/bone stem cells, brain stem cells and liver stem cells.
  • Multipotent hematopoietic cells suitably myeloid precursor or mesenchymal cells, are specifically contemplated as suited for use in the methods of the invention.
  • suitable somatic cells are receptive, or can be made receptive using methods generally known in the scientific literature, to uptake of potency-determining factors including genetic material encoding the factors.
  • Uptake-enhancing methods can vary depending on the cell type and expression system. Exemplary conditions used to prepare receptive somatic cells having suitable transduction efficiency are known in the art and are described in the examples below. One method for making cells receptive to potency-determining factors is described below in connection with the electroporation methods.
  • a potency-determining factor may be introduced as a reprogramming sequence in which a polynucleotide sequence encoding the potency-determining factor is operably linked to a heterologous promoter, which may become inactive after somatic cells are reprogrammed.
  • the heterologous promoter is any promoter sequence that can drive expression of a polynucleotide sequence encoding the potency-determining factor in the somatic cell, such as, e.g., an Oct4 promoter.
  • the relative ratio of potency-determining factors may be adjusted to increase reprogramming efficiency. For example, linking Oct-4 and Sox2 in a 1 : 1 ratio on a single vector increased reprogramming efficiency in cells by a factor of four (FIG. 9A-B) when compared to reprogramming efficiency wherein the potency-determining factors were provided to cells in separate constructs and vectors, where the uptake ratio of the respective potency-determining factors into single cells was uncontrolled.
  • the ratio of potency-determining factors may differ depending upon the set of potency-determining factors used, one of ordinary skill in possession of this disclosure can readily determine an optimal ratio of potency-determining factors.
  • Pluripotent cells can be cultured in any medium used to support growth of pluripotent cells.
  • Typical culture medium includes, but is not limited to, a defined medium, such as TcSRTM (StemCell Technologies, Inc.; Vancouver, Canada), mTeSRTM (StemCell Technologies, Inc.) and StemLine ® serum-free medium (Sigma; St. Louis, MO), as well as conditioned medium, such as mouse embryonic fibroblast (MEF)-conditioned medium.
  • a "defined medium” refers to a biochemically defined formulation comprised solely of biochemically-defined constituents.
  • a defined medium may also include solely constituents having known chemical compositions.
  • a defined medium may further include constituents derived from known sources.
  • conditioned medium refers to a growth medium that is further supplemented with soluble factors from cells cultured in the medium. Alternatively, cells can be maintained on MEFs in culture medium.
  • SAGE serial analysis of gene expression
  • the invention provides an enriched population of pluripotent cells substantially genetically identical to cells of a post-natal individual.
  • the cells can be obtained by reprogramming somatic cells isolated from the post-natal individual.
  • the cell population is a purified population, representing at least 60%, 70%, 80% and advantageously greater than 95% of the cells in the population, and any and all whole or partial integers therebetween.
  • the reprogrammed cells are euploid, exhibit cell morphology characteristic of pluripotent cells and express pluripotent cell-specific markers, such as, e.g., Oct- 4, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81 or combinations thereof, and form teratomas when introduced into an immunocompromised animal.
  • Yet another aspect provides methods and compositions for identifying and using potency-determining factors sufficient to reprogram somatic cells into pluripotent cells.
  • the reprogrammed pluripotent cells contain the genetic complement of, and are substantially genetically identical to somatic cells obtained from a post-natal individual.
  • methods for identifying potency-determining factors include the steps of introducing genetic material encoding one or a plurality of putative potency-determining factors into somatic cells receptive to uptake of the genetic material under conditions effective to express the factors encoded on the introduced genetic material at levels sufficient to reprogram the cells to a less differentiated, higher-potency state; and observing a population of pluripotent cells after introduction of the genetic material.
  • the pluripotent cells can be characterized by cell morphology, pluripotent cell-specific markers or both.
  • the pluripotent cells can be identified by expression in the treated cells of a marker provided in the cells so as to be expressed only upon reprogramming of the cells to a pluripotent state.
  • potency-determining factors capable of reprogramming somatic cells into pluripotent cells can be identified, as is described in the examples below.
  • Retroviral vectors are transduced by packaging the vectors into virions prior to contact with a cell.
  • the DNA segment(s) encoding the potency-determining factor(s) can be located extra-chromosomally (e.g., on an episomal plasmid) or stably integrated into cellular chromosome(s).
  • a viral-based gene transfer and expression vector is a genetic construct that enables efficient and robust delivery of genetic material to most cell types, including non- dividing and hard-to-transfect cells (primary, blood, stem cells) in vitro or in vivo.
  • Viral-based constructs integrated into genomic DNA result in high expression levels.
  • the vectors include a transcription promoter and a polyadenylation signal operatively linked, upstream and downstream, respectively, to the DNA segment.
  • the vector can include a single DNA segment encoding a single potency-determining factor or a plurality of potency-determining factor-encoding DNA segments.
  • a plurality of vectors can be introduced into a single somatic cell.
  • the vector can optionally encode a selectable marker to identify cells that have taken up and express the vector.
  • a selectable marker to identify cells that have taken up and express the vector.
  • antibiotic can be added to the culture medium to identify successful introduction of the vector into the cells.
  • Integrating vectors can be employed, as in the examples, to demonstrate proof of concept.
  • Retroviral (e.g., lentiviral) vectors are integrating vectors; however, non-integrating vectors can also be used. Such vectors can be lost from cells by dilution after reprogramming, as desired.
  • a suitable non- integrating vector is an Epstein-Barr virus (EBV) vector. Ren C, et al, Acta. Biochim. Biophys. Sin. 37:68-73 (2005); and Ren C, et al, Stem Cells 24:1338-1347 (2006), each of which is incorporated herein by reference as if set forth in its entirety.
  • EBV Epstein-Barr virus
  • the vectors described herein can be constructed and engineered using art- recognized techniques to increase their safety for use in therapy and to include suitable expression elements and therapeutic genes.
  • Standard techniques for the construction of expression vectors suitable for use in the present invention are well-known to one of ordinary skill in the art and can be found in such publications such as Sambrook J, et al, "Molecular cloning: a laboratory manual,” (3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 2001), incorporated herein by reference as if set forth in its entirety.
  • the ability to identify and enrich for pluripotent cells can be facilitated by providing a non-lethal marker in the somatic cells, such as Green Fluorescent Protein (GFP), Enhanced Green Fluorescent Protein (EGFP) or luciferase, under the control of a promoter active only after the somatic cell has converted to a pluripotent state.
  • a selectable marker gene is used to identify the reprogrammed cells expressing the marker through visible cell selection techniques, such as fluorescent cell sorting techniques.
  • the reprogrammed cells can be produced without a selectable marker.
  • a marker was provided in the genome of the somatic cells downstream of the promoter that regulates Oct-4 expression.
  • the endogenous Oct4 promoter is active in undifferentiated, pluripotent ES cells.
  • a drug- selectable population of Oct-4-expressing ES cells did not persist through the culture period necessary for myeloid differentiation.
  • it is appropriate to enrich the population for pluripotent cells by selecting colonies having characteristic ES cell morphology and by maintaining the cells under ES cell maintenance culture conditions. It is not intended that all cells in the reprogrammed cell culture have the desired level of potency. Given the inefficiencies of cell sorting technology, the variations in levels of gene expression and other biological effects, some cells in the enriched population may not be pluripotent. However, at a practical level, the reprogrammed cell population derived from somatic cells is enriched for pluripotent cells.
  • the non-lethal marker can be constructed to enable its subsequent removal using any of a variety of art-recognized techniques, such as removal via Cre-mediated, site-specific gene excision. For example, it may become desirable to delete the marker gene after the pluripotent cell population is obtained, to avoid interference by the marker gene product in the experiment or process to be performed with the cells. Targeted deletions can be accomplished by providing structure(s) near the marker gene that permits its ready excision. That is, a Cre/Lox genetic element can be used. The Lox sites can be built into the cells. If it is desired to remove the marker from the pluripotent cells, the Cre agent can be added to the cells. Other similar systems also can be used.
  • Cre/Lox excision can introduce undesirable chromosomal rearrangements and can leave residual genetic material after excision
  • the inventors recognize the desirability of introducing the potency-determining factors into the somatic cells using non- integrating, episomal vectors and obtaining cells from which the episomal vectors are lost (e.g., at a rate of about 5% per generation) by subsequently withdrawing the drug selection used to maintain the vectors during the reprogramming step.
  • human Hl Oct4 knock-in ES cells were differentiated in stromal cell co-culture to yield cells suited for use as reprogrammable somatic cells. These cells are a model for cells isolated from a post-natal individual for use in a somatic cell reprogramming method.
  • IMR-90 human fetal lung fibroblast cells
  • these cells proliferate robustly in Eagle's Minimal Essential Medium- 10% FBS for more than twenty passages before undergoing senescence, but grow slowly in human ES cell culture conditions, a difference that provides a proliferative advantage to reprogrammed clones and aids in their selection by morphological criteria alone.
  • Other differentiated cell types used in the methods were human post-natal foreskin fibroblast cells (ATCC; Catalog No. CRL-2097) and human adult skin cells (ATCC; Catalog No. CRL-2106).
  • the ce ⁇ s were made receptive for transduction with a viral expression system as described below.
  • the somatic cells were transduced with polynucleotides encoding potency- determining factors thought to be associated with pluripotency, such that the somatic cells were reprogrammed to pluripotent cells. It is not yet determined whether all fourteen potency- determining factors provided in transduction vectors were taken up and expressed in the somatic cells.
  • the inventors provide one of ordinary skill in art the with the ability to identify one or more specific subsets of the potency- determining factors that are also capable of somatic reprogramming, thereby facilitating identification of other subsets of such potency-determining factors. Accordingly, the methods described below facilitate the identification of the potency-determining factors involved in reprogramming somatic cells into pluripotent cells.
  • the set of potency-determining factors sufficient to reprogram somatic cells can vary with the cell type of the somatic cells. It is noted that exposure to a set of fourteen potency-determining factors resulted in conversion to a pluripotent status in cultures of the indicated somatic cells. As shown below, one can identify a set of potency-determining factors sufficient to reprogram other cell types by repeating the methods described below using different combinations of potency-determining factors, which may include some or all of the fourteen factors as well as other potency-determining factors. Consequently, one can produce pluripotent cell lines/populations that are substantially genetically identical to a pre-existing, differentiated, somatic cell.
  • differentiated cells received vectors that encoded various potency-determining factors. Some of the cells contained in their genome a marker gene that encodes EGFP positioned downstream from the regulated Oct4 promoter, which is active only in pluripotent cells. The production of this useful tool is described in Yu et al., supra, which demonstrated that differentiated cells can become pluripotent via cell-cell fusion with human ES cells.
  • Example 1 Lentiviral vector packaging and production.
  • Transgene-expressing lentivirus vector was produced in 293FT cell lines
  • 293T is a fast-growing, highly transferable clonal variant derived from transformed 293 embryonal kidney cells, which contains the large T antigen for high-level expression of the packaging proteins that contribute to higher viral titers.
  • 293FT medium DMEM/10%FBS, 2 mM L-glutamine and 0.1 mM MEM Non-Essential Amino Acids
  • 293FT cells were collected by trypsinization. Following removal of trypsin by centrifugation, these cells were aliquoted into T75 flasks (15 x 10 6 cells/flask, and 6 flasks per construct) in 293FT medium without geneticin.
  • IMDM Iscove's Modified Dulbecco's Medium
  • the 293FT cell debris was removed from the supernatant by centrifugation at 3000 rpm (1750 g) for 15 minutes at 4°C.
  • the supernatant was filtered through 0.4 ⁇ M cellulose acetate (CA) membrane (Cornington, 1 15 ml low-protein binding), and ultracentrifuged in 70 ml sterilized bottles (Beckman, Cat# 355622, polycarbonate for 45Ti rotor only) at 33,000 rpm (5O 5 OOOg) for 2.5 hours at 4 0 C.
  • Lentivirus along with any remaining cell debris formed a visible pellet at the bottom of the centrifuge tube.
  • the sequence for a lentivirus (pSIN4-EF2-Stella-puro; SEQ ID NO:6, with the sequence for Stella from 3604 to 4083) harboring Stella (SEQ ID NO:1) is provided in the Sequence Listing.
  • the same sequence was used for all other potency- determining factors (e.g., SEQ ID NOS: 2-5), except that the sequence for Stella (SEQ ID NO: 1) was replaced with the sequence of another potency-determining factor.
  • Hl .1 human ES cells (WiCeIl Research Institute; Madison, WI) were maintained on irradiated mouse embryonic fibroblasts (MEFs) in DMEM/F12 culture medium consisting of 80% Dulbecco's modified Eagle's medium (no pyruvate, high glucose formulation; Invitrogen; Carlsbad, CA) supplemented with 20% KnockOut serum replacer, 1% non-essential amino acids (Gibco), 1 mM L-glutamine, 0.1 mM ⁇ -mercaptoethanol (Sigma) and 4 ng/ml basic fibroblast growth factor (bFGF) (all from Invitrogen unless otherwise noted), as previously described ⁇ see Amit et al, Dev Biol.
  • DMEM/F12 culture medium consisting of 80% Dulbecco's modified Eagle's medium (no pyruvate, high glucose formulation; Invitrogen; Carlsbad, CA) supplemented with 20% KnockOut serum replace
  • Feeder-free culture on Matrigel ® (BD Biosciences; Bedford, MA) with chemically defined TeSRTM medium (StemCell Technologies, Inc.) was carried out as described in Ludwig et al. Ludwig T, et al, Nat. Methods. 3:637-646 (2006); and Ludwig T, et al, Nat. Biotechnol. 24: 185-187 (2006), each of which is incorporated herein by reference as if set forth in its entirety.
  • the Hl Oct4 knock-in ES cell line was generated from the Hl .1 human ES cells according to a method described by Zwaka & Thomson.
  • a gene targeting vector was constructed by inserting a cassette, an IRES-EGFP, an IRES-NEO and a simian virus polyadenylation sequence (approximately 3.2 kilobases (kb)) into the 3' untranslated region of the fifth exon of the human Oct-4 (octamer-binding transcription factor 4) gene, also known as POU domain, class 5, transcription factor 1 (POU5F1).
  • This cassette was flanked in the 5' direction by a 6.3 kb homologous arm and by a 1.6 kb (6.5 kb in the alternative targeting vector) homologous arm in the 3' region (FIG. 1).
  • the cassette was inserted at position 31392 of the Oct-4 gene (SEQ ID NO:2).
  • the long arm contained a sequence from 25054-31392.
  • the short arm contained a sequence from 31392-32970.
  • the short arm was substituted by a longer homologous region (31392-32970 in AC006047 plus 2387-7337 in gene accession number AC004195). Isogenic homologous DNA was obtained by long-distance, genomic PCR and subcloned. All genomic fragments and the cassette were cloned into the multiple cloning site (MCS) of a cloning vector, pBluescript ® SK II (GenBank Accession Number X52328; Stratagene; La Jolla, CA).
  • MCS multiple cloning site
  • G418 selection 50 mg/ml; Invitrogen was started 48 hours after electroporation. After one week, G418 concentration was doubled. After three weeks, surviving colonies were analyzed individually by PCR using primers specific for the NEO cassette and for the POU5F1 gene just downstream of 3' homologous region, respectively. PCR-positive clones were re-screened by Southern blot analysis using BamHI digested DNA and a probe outside the targeting construct.
  • Hl Oct4 knock-in ES cell line expressed both EGFP and neomycin phosphotransferase (neo) from an endogenous Oct4 promoter/regulatory region using dual internal ribosome-entry sites (IRES) (FIG. 3). Expression of EGFP and neo in the Hl Oct4 knock-in ES cells indicated an active, endogenous Oct4 promoter/regulatory region.
  • Hl Oct4 knock-in ES cells were maintained through co-culture with mouse OP9 bone marrow stromal cells (FIG.
  • OP9 cultures were split every 4 days at a ratio of 1 :7. For use in human ES cell differentiation, after OP9 cells reached confluence on the fourth day, half of the medium was changed, and the cells were cultured for an additional four days.
  • Hl Oct4 knock-in ES cells were differentiated into attached cells (i.e., CD29+CD44+CD166+CD105+CD73+CD31-). Briefly, human Hl Oct4 knock-in ES cells (p76 to 1 10) were added to the OP9 monolayer (1.5 x 10 6 /10-cm dish) in 20 ml of DMEM medium supplemented with 10% FBS (HyClone Laboratories) and 100 ⁇ M monothioglycerol (MTG; Sigma; St. Louis, MO). The human ES/OP9 cell co-culture was incubated for nine days with changes of half of the medium on days 4, 6 and 8.
  • the co-culture was dispersed into individual cells by collagenase IV treatment (1 mg/ml in DMEM medium, Invitrogen) for 20 minutes at 37°C, followed by trypsin treatment (0.05% Trypsin/0.5 mM EDTA, Invitrogen) for 15 minutes at 37°C.
  • Cells were washed twice with medium and re- suspended at 2 x 10 6 /ml in DMEM medium supplemented with 10% FBS, 100 ⁇ M MTG and 100 ng/ml GM-CSF (Leukine; Berlex Laboratories Inc.; Richmond, CA).
  • Lentivirus encoding a potency-determining factor (MOI: 3 to 10) was added to the cell culture after addition of polybrene carrier at a final concentration of 6 ⁇ g/ml (Sigma). The lentivirus-containing medium was replaced with fresh medium the next day, and cells were cultured further in appropriate medium.
  • cells having high transduction efficiency were prepared as follows.
  • the Percoll -purified Hl Oct4 knock-in ES cells were allowed to differentiate further to mesenchymal-like cells for an additional seven days in the presence of GM-CSF on Matrigel ® , as described above. Many cells attached to the plate during this culture period.
  • the attached cells (referred to herein below as Oct4K ⁇ CO45+A cells, or simply as CD45+A cells) showed significantly higher transduction efficiency (FIG. 4C) and were used for this reprogramming experiment. While the cells were not CD45 + at the time of the experiments, the cells were obtained from CD45 + cells.
  • cell surface markers on the attached cells were characterized as CD29 + , CD44 + , CD166 + , CD105 + , CD73 + and CD31 " .
  • Inventors tested the hypothesis that differentiated cells could be reprogrammed to a state of pluripotency by expressing potency-determining factors in Oc ⁇ KICD45+A cells (FIG. 3), and obtained promising results. Because Nanog and Oct-4 are the best characterized potency- determining factors, inventors examined the effect of their over-expression in the cells.
  • the Oct4KICD45+A cells were first dissociated to individual cells with trypsin and replated onto Matrigel ® at ⁇ 10 5 cells/well of 6-well plates in TeSRTM medium.
  • Nanog-expressing 0C/4KICD45+A cells showed similar morphology to that of EGFP transfected cells (FIG. 5).
  • Nanog over-expression significantly enhanced Oct4KICO45+A cell proliferation, similar to that observed in human ES cells.
  • no Nanog- or EGFP- transfected cells survived.
  • these results indicate that a drug-selectable population of Oct-4-expressing ES cells does not persist through the culture period necessary for differentiation. Oct-4 expression resulted in dramatic morphological changes (FIG. 5), and many of these cells survived neomycin selection.
  • Intracellular myeloperoxidase (MPO) staining was performed using Fix & Perm ® reagents (Caltag Laboratories; Burlingame, CA). About 100 ⁇ l of cell suspension containing 5 x 10 5 cells was used in each labeling. Both primary and secondary antibody incubation (where applied) were carried out at room temperature for 30 minutes. Control samples were stained with isotype- matched control antibodies. After washing, the cells were resuspended in 300-500 ⁇ l of the FACS buffer, and analyzed on a FACSCalibur flow cytometer (BDIS; San Jose, CA) using CellQuestTM acquisition and analysis software (BDIS). A total of 20,000 events were acquired. All of the antibodies used in the flow cytometry analysis are listed in Table 1. The final data and graphs were analyzed and prepared using FlowJo software (Tree Star, Inc.; Ashland, OR).
  • Table 1 Antibodies for flow cytometry.
  • Table 2 Human ES cell-enriched genes.
  • Example 3 Reprogrammin ⁇ of mesenchymal-like cells with a limited set of four potency-determining factors after lentiviral transduction.
  • clonal refers to a characteristic of a population of cells derived from a common ancestor (i.e., derived from a single cell, not derived from a cell aggregate). That is, in a "clonal population," the cells display a uniform pattern of cell surface markers and morphological characteristics, as well as being substantially genetically identical.
  • human Hl Oct4 knock-in ES cells (p76 to pi 10) were induced to differentiate in co-culture with mouse OP9 bone marrow stromal cells. See, Vodyanyk M, et al., Blood 105:617-626 (2005), incorporated herein by reference as if set forth in its entirety. Small aggregates of human Hl Oct4 knock-in ES cells were added to OP9 cells in alpha MEM supplemented with 10% FCS and 100 ⁇ M MTG (Sigma). On the next day (day 1) of culture, the medium was changed, and the cultures were harvested on the days indicated below.
  • mesodermal commitment was detected by a peak expression of transcription factors for mesendoderm (GSC, MIXLl and T (BRACHYURY)) and early mesoderm [EVXl, LHXl and TBX6) with NimbleGen ® (Madison, WI) microarrays.
  • GSC mesendoderm
  • EVXl e.g., LHXl and TBX6
  • NimbleGen ® NimbleGen ®
  • Cells were washed 3 times with PBS-5% FBS, filtered through 70 ⁇ M and 30 ⁇ M cell strainers (BD Labware; Bedford, MA) and labeled with anti- mouse CD29-PE (AbD Serotec; Raleigh, NC) and anti-PE paramagnetic monoclonal antibodies (Miltenyi Biotech; Auburn, CA).
  • the cell suspension was purified with magnet-activated cell sorting (MACs) by passing it through a LD magnetic column attached to a Midi-MACS separation unit (Miltenyi Biotech) to obtain a negative fraction of OP9-depleted, human Hl Oct4 knock-in ES cell-derived cells. Purity of human Hl Oct4 knock-in ES cell-derived cells was verified using pan anti-human TRA-1-85 monoclonal antibodies (R&D Systems; Minneapolis, MN).
  • Transgene-expressing lentiviral transduction was then carried out as described above. Inventors tested the hypothesis that differentiated mesenchymal-like cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency-determining factors (e.g., Oct-4, Nanog, Sox2 and Lin28). The expression of at least these four potency- determining factors resulted in colonies having cells with typical morphology of pluripotent cells, such as human ES cells (FIG. 7B; dark gray bars). As shown in FIG. 7B, the greatest number of colonies having cells with typical morphology of pluripotent cells was obtained using the full complement of Oct-4, Nanog, Sox2 and Lin28. However, when one of Oct-4, Nanog, Sox2 or Lin28 was absent, the number of ES-like colonies was significantly attenuated (e.g., Nanog or Lin28) or absent (e.g., Oct-4 or Sox2).
  • potency-determining factors e.g., Oct
  • EGFP expression occurred when the native Oct4 promoter/regulatory region was active.
  • undifferentiated cells were identified by a green color that was absent from differentiated cells.
  • the expression of endogenous Oct- 4 in the cells was selectable.
  • Reprogrammed colonies also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers (data not shown).
  • Inventors randomly picked six colonies from two separate transfections with the same pool of fourteen ES cell-enriched potency-determining factors, and propagated five stable colonies for at least eight weeks.
  • inventors identified a novel approach for reprogramming primate somatic cells to become higher potency cells by administering four potency-determining factors into the somatic cells.
  • Example 5 Reprogramming of a differentiated cells after lentiviral transduction and expression of four potency-determining factors.
  • IMR-90 cells (0.9 x 10 6 /well), were transduced with a combination of Oct-4, Sox2, Nanog and Lin28.
  • Inventors tested the hypothesis that differentiated fibroblast cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency-determining factors (e.g., Oct-4, Sox2, Nanog and Lin28).
  • cells were transferred to three 10-cm dishes seeded with irradiated mouse embryonic fibroblasts (MEFs).
  • MEFs mouse embryonic fibroblasts
  • Reprogrammed cells were identified based on morphology alone (i.e., having a compact colony with high nucleus to cytoplasm ratio and prominent nucleolus). Reprogrammed cells also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers. [000101] Example 6: Reprogramming of differentiated cells after lentiviral transduction and expression of three potency-determining factors.
  • Transgene-expressing lentiviral transduction was carried out as described above. IMR-90 cells were transduced with a combination of three of the following: Oct-4, Sox2, Nanog and Lin28. Inventors tested the hypothesis that differentiated fibroblast cells could be reprogrammed to a state of pluripotency by expressing the even more limited set of potency- determining factors. The expression of at least three factors resulted in colonies with typical morphology of pluripotent cells like human ES cells. Reprogrammed colonies having cells with typical morphology of pluripotent cells were obtained using the full complement of Oct-4, Sox2 and Nanog with or without Lin28. Therefore, the presence or absence of Lin28 did not affect reprogramming. However, when any of Oct-4, Nanog or Sox2 was absent, the number of reprogrammed colonies was significantly attenuated or absent.
  • PCR with transgene-specific primer pairs was carried out using genomic DNA from IMR- 90 clones as template.
  • the reactions employed the pfx DNA polymerase (lnvitrogen, amplification buffer was used at 2X, and enhancer solution was used at 3X), and the following conditions: initial denaturation for 1 minute at 95°C; 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 68 0 C for 2 minutes; and followed by 68 0 C for 7 minutes.
  • transgenes PCR analysis for the transgenes showed that either all four transgenes or three transgenes (i.e., Oct-4, Sox2 and Nanog) integrated into the pluripotent cells following exposure to transgene-expressing lentivirus vectors.
  • Table 3 Primer sets for assessing provirus integration.
  • OCT4 656 OCT4-FI CAGTGCCCGAAACCCACAC
  • OCT4-R2 ACTTCACCTTCCCTCCAACC
  • Reprogrammed cells were identified based on morphology alone (i.e., having a compact colony with high nucleus to cytoplasm ratio and prominent nucleolus). Reprogrammed cells also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers.
  • Example 7 Reprogramming of differentiated cells after lentiviral transduction and expression of three potency-determining factors.
  • Post-natal fibroblast cells (0.6 x 10 6 /well) were transduced with a combination of Oct-4, Sox2,
  • Nanog and Lin28 were tested the hypothesis that differentiated, post-natal, fibroblast cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency- dete ⁇ nining factors and obtained promising results.
  • cells were transferred to three 10-cm dishes seeded with irradiated MEFs. By day 15 post-transduction, small colonies with pluripotent cell morphology became visible. On day 20 post-transduction, a total of 57 colonies were visible on the plates. Twenty-nine of the colonies were picked, twenty- seven of which were successfully expanded for an additional three weeks. Four of these colonies were then selected for continued expansion and analysis, and the other twenty-three were frozen.
  • iPS cells derived from CRL-2097 cells showed a variation in the lineages apparent in teratomas examined at five weeks. Two of the iPS cell colonies showed neural differentiation; whereas the other two colonies showed multiple foci of columnar epithelial cells, reminiscent of primitive ectoderm.
  • DNA fingerprint analysis confirmed that these colonies were derived from the original cell line and confirmed that they were not derived from human ES cells lines (e.g., Hl , H7, H9, H13 and H14).
  • Example 8 Reprogramming of differentiated cells after lentiviral transduction and expression of four potency-determining factors.
  • Transgene-expressing lentiviral transduction was carried out as described above. That is, 293FT cells or mesenchymal cells ( ⁇ 2 x 1O 5 cells/well of 6-well plate, seeded overnight) were transduced with various transgene combinations. Cells were transferred to 10 cm MEF dish (1 well of 6-well plate to 1x10 cm MEF dish) following the overnight incubation with lentivirus. Geneticin selection (50 ⁇ g/ml) for an active, endogenous, OCT4 promoter was carried out between day 1 1 to 15 post transduction. iPS colonies were counted on day 16. [000123] FIG.
  • FIGS. 9A demonstrates that Oct-4 and Sox2 expression occurred in 293FT cells following transfection ⁇ see, e.g., lanes 1-3).
  • pSin4-EF2-Oct4-IRESl-Sox2 is abbreviated as OS-IRESl ;
  • pSin4-EF2-Oct4-IRES2-Sox2 is abbreviated as OS-IRES2;
  • pSin4- EF2-Oct4-F2A-Sox2 is abbreviated as OS-F2A;
  • pSin4-EF2-Oct4-IRESl -puro is abbreviated as O; and
  • pSin4-EF2-Sox2-IRESl-puro is abbreviated as S.
  • FIG. 9B shows that reprogramming efficiency increased in mesenchymal cells derived from OCT4 knock-in human Hl ES cells (p6) when Oct-4 and Sox2 were provided on the same construct (IRESl is a very low-efficiency internal ribosome entry site; whereas IRES2 is a high-efficiency internal ribosome entry site).
  • OS-IRES2+N+L (the high-efficiency IRES) showed an approximate four fold increase in reprogramming efficiency when compared to O+S, O+S+N+L or OS-IRESl (the low-efficiency IRES) +N+L. Therefore, providing the potency- determining factors in one construct that provides for approximately equal expression levels of each can improve reprogramming efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Transplantation (AREA)
  • Psychology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to methods for reprogramming a somatic cell to pluripotency by administering into the somatic cell at least one or a plurality of potency- determining factors. The invention also relates to pluripotent cell populations obtained using a reprogramming method.

Description

SOMATIC CELL REPROGRAMMING
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of US Provisional Patent Application No.
60/919,687, filed March 23, 2007; US Provisional Patent Application No. 60/974,980, filed September 25, 2007; and US Provisional Patent Application No. 60/989,058, filed November 19, 2007, each of which is incorporated herein by reference as if set forth in its entirety.
STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT [0002] Not applicable.
BACKGROUND
[0003] Embryonic stem (ES) cells can grow indefinitely while maintaining pluripotency and can differentiate into cells of all three germ layers (Evans & Kaufman, Nature 292: 154-156 (1981)). Human ES cells will be useful in treating a host of diseases, such as Parkinson's disease, spinal cord injury and diabetes (Thomson et ai, Science 282:1145-1 147 (1998)). Scientists have sought technical solutions to avoid the current method of generating ES cells from blastocyst cells and to avoid anticipated tissue rejection problems following transplantation into patients. One desirable way to accomplish these solutions would be to generate pluripotcnt cells directly from somatic cells of a post-natal individual.
[0004] Somatic cells can be reprogrammed by transferring their nuclear contents into oocytes (Wilmut et ai, Nature 385:810-813(1997)) or by fusion with ES cells (Cowan et ai, Science 309: 1369-1373 (2005)), indicating that unfertilized eggs and ES cells contain factors that confer totipotency or pluripotency in somatic cells.
[0005] Likewise, Yu et al. showed that cells derived by in vitro differentiation from an
Hl Oct4 knock-in ES cells did not express EGFP, but that EGFP expression was restored upon cell-cell fusion with human ES cells. Yu et ai, Stem Cells 24:168-176 (2006), incorporated herein by reference as if set forth in its entirety). Therefore, Yu et ai demonstrated that differentiated cells can become pluripotent via cell-cell fusion with human ES cells. Regardless of the differentiated cell type, upon fusion with undifferentiated human ES cells, ES cell specific antigens and marker genes were expressed and differentiation-specific antigens were no longer detectable in the fused hybrid cells. Advantageously, EGFP expression was re-established in the hybrid cells, providing a convenient marker for re-establishment of pluripotent stem cell status. When the hybrid cells formed embryoid bodies (EBs), genes characteristic of all three germ layers and extra-embryonic tissues were up-regulated, indicating that the hybrid cells had a potential to differentiate into multiple lineages.
[0006] Although the transcriptional determination of pluripotency is not fully understood, several transcription factors, including Oct 3/4 (Nichols et al, Cell 95:379-391(1998)), Sox2 (Avilion et al, Genes Dev. 17: 126-140 (2003)) and Nanog (Chambers et al, Cell 1 13:643- 655(2003)) are involved in maintaining ES cell pluripotency; however, none is sufficient alone to specify ES cell identity.
[0007] Chambers & Smith (EP 1 698 639 A2, (2002)) maintained pluripotent murine cells without a feeder layer or feeder cell extract and without a gpl 30 cytokine by introducing vectors that encode or activate differentiation-suppressing factors, but did not convert differentiated cells into a pluripotent state.
[0008] More recently, Takahashi & Yamanaka introduced four factors (i.e., Oct3/4,
Sox2, c-Myc and Klf4) into mouse ES cells and mouse adult fibroblasts cultured under conditions suitable for mouse ES cell culture to obtain induced pluripotent stem (iPS) cells that exhibited mouse ES cell morphology and growth properties and expressed mouse ES cell marker genes (Takahashi & Yamanaka, Cell 126:663-676 (2006)). Notably, exogenous Oct-4 introduced into the mouse fibroblasts resulted in only marginal Oct-4 expression. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. However, c-Myc, which was necessary for pluripotent induction, is an oncogene. Likewise, Klf4 is an oncogene. These data demonstrate that pluripotent cells can be directly generated from mouse fibroblast cultures by adding only a few defined factors using a retroviral transduction. However, as described infra, the set of factors used to produce iPS cells from differentiated mouse cells was insufficient to reprogram human somatic cells to pluripotency using lentiviral vectors without introducing additional changes to the cells. [0009] One could hypothesize that factors that can reprogram human somatic cells differ from those factors that can reprogram somatic cells from model organisms (including mice) because ES cells from mice and humans require distinct sets of factors to remain undifferentiated, illustrating the significance of species-specific differences, even among mammals. For example, the leukemia inhibitory factor (LIF)/Stat3 pathway, a key to mouse ES cell proliferation, does not support human ES cell proliferation and appears inactive in conditions that support human ES cells (Daheron L, et al, Stem Cells 22:770-778 (2004); Humphrey R, et al, Stem Cells 22:522-530 (2004); and Matsuda T, et al, EMBO J. 18:4261-4269 (1999)). [00010] Similarly, while bone morphogenetic proteins (BMPs) together with LIF support mouse ES cell self-renewal at clonal densities in serum-free medium (Ying Q, et al, Cell 115:281-292 (2003)), they cause rapid human ES cell differentiation in conditions that would otherwise support self-renewal, such as culture on fibroblasts or in fibroblast-conditioned medium (Xu R, et al, Nat. Biotechnol. 20:1261-1264 (2002)). Indeed, inhibition of BMP signaling in human ES cells is beneficial (Xu R, et al, Nat. Methods 2:185-190 (2005)). [00011] Still further, fibroblast growth factor (FGF) signaling is important to self-renewal of human ES cells, but apparently not for mice (Xu et al, (2005), supra; and Xu C, et al, Stem Cells 23:315-323 (2005)).
[00012] Accordingly, the art still seeks a set of potency-determining factors suited at least for use in methods for reprogramming primate (including human and non-human) somatic cells to yield pluripotent cells. Such cells, obtained without relying upon embryonic tissues, would be suited for use in applications already contemplated for existing, pluripotent, primate ES cells.
BRIEF SUMMARY
[00013] The present invention is broadly summarized as relating to methods for reprogramming differentiated, somatic, primate cells into pluripotent cells, and more specifically into iPS cells. As used herein, "iPS cells" refer to cells that are substantially genetically identical to their respective differentiated somatic cell of origin and display characteristics similar to higher potency cells, such as ES cells, as described herein. The cells can be obtained from various differentiated {i.e., non-pluripotent and multipotent) somatic cells. [00014J iPS cells exhibit morphological (i.e., round shape, large nucleoli and scant cytoplasm) and growth properties (i.e., doubling time; ES cells have a doubling time of about seventeen to eighteen hours) akin to ES cells. In addition, iPS cells express pluripotent cell- specific markers (e.g., Oct-4, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, but not SSEA-I). iPS cells, however, are not immediately derived from embryos and can transiently or stably express one or more copies of selected potency-determining factors at least until they become pluripotent. As used herein, "not immediately derived from embryos" means that the starting cell type for producing iPS cells is a non-pluripotent cell, such as a multipotent cell or terminally differentiated cell, such as somatic cells obtained from a post-natal individual. [00015] In the methods described herein, at least two potency-determining factors can be introduced into, and expressed in, differentiated somatic cells, whereupon the somatic cells convert in culture to cells having properties characteristic of pluripotent cells, such as human ES cells (i.e., express at least Oct-4, SSEA-3, SSEA-4, TRA-1-60 or TRA-1-81 , but not SSEA-I , and appear as compact colonies having a high nucleus to cytoplasm ratio and prominent nucleolus), that can differentiate into cells characteristic of all three geπn layers, and that contain the genetic complement of the somatic cells of a post-natal individual. Apart from genetic material introduced to encode the potency-determining factors, the reprogrammed (i.e., converted) cells are substantially genetically identical to the somatic cells from which they were derived.
[00016] As used herein, a "potency-determining factor" refers to a factor, such as a gene or other nucleic acid, or a functional fragment thereof, as well as an encoded factor or functional fragment thereof, used to increase the potency of a somatic cell, so that it becomes pluripotent. The potency-determining factors optionally can be present only transiently in the reprogrammed cells or can be maintained in a transcriptionally active or inactive state in the genome of the reprogrammed cells. Likewise, the potency-determining factors can be present in more than one copy in the reprogrammed cells, where the potency-determining factor can be integrated in the cell's genome, can be extra-chromosomal or both. The potency-determining factors can include, but are not limited to, Stella (SEQ ID NO:1); POU5F1 (Oct-4; SEQ ID NO:2), Sox2 (SEQ ID NO:3), FoxD3, UTFl , Rexl, ZNF206, Soxl5, Mybl2, Lin28 (SEQ ID NO:4), Nanog (SEQ ID NO:5), DPP A2, ESGl, Otx2 and subsets thereof. In some embodiments, as few as two potency- determining factors, e.g., Oct-4 and Sox2, can be sufficient. Efficiency in obtaining reprogrammed cells, however, can be improved by including additional potency-determining factor, such as Lin28, Nanog or both.
[00017] In a first aspect, the invention relates to a replenishable, enriched population of pluripotent cells obtained from a post-natal individual, especially from a living individual, but optionally from a deceased individual. Cells in the enriched cell population express at least one cell-type-specific marker, including, but not limited to, Oct-4, SSEA3, SSEA4, Tra-1-60, Tra-1 - 81 or combinations thereof and have other hallmarks of pluripotent cells, such as ES cells. In addition, the pluripotent cells may express alkaline phosphatase (ALP). Furthermore, the pluripotent cells may have a genome substantially genetically identical to that of a pre-existing, differentiated cell from the individual. Likewise, the pluripotent cells may have a genome that encodes at least one of the potency-determining factors, which may be transcriptionally active or inactive after reprogramming. Additionally, the potency-determining factors may be in a form of a reprogramming sequence in which a polynucleotide encoding the potency-determining factor is operably linked to a heterologous promoter. As used herein, "heterologous promoter" means a promoter that is operably linked to a polynucleotide for which the promoter does not normally initiate transcription.
[00018] In a second aspect, the invention relates to methods and compositions for identifying potency-determining factors required to reprogram somatic cells into pluripotent cells.
[00019] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although suitable methods and materials for the practice or testing of the present invention are described below, other methods and materials similar or equivalent to those described herein, which are well known in the art, can also be used. [00020] Other objects, advantages and features of the present invention will become apparent from the following specification taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS [00021] FIG. 1 illustrates a site downstream from a human Oct4 promoter into which a knock-in construct was introduced. In cells containing the knock-in construct, enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NEO) are expressed when the Oct4 promoter is active. These cells can be used to evaluate which factors can reprogram somatic cells into pluripotent cells.
[00022] FIGS. 2A-B illustrate human Hl ES cell differentiation. FIG. 2 A shows schematics of myeloid precursor derivation and purification from human ES cells. FIG. 2B shows phenotypic analysis of differentiated cells obtained after Percoll® separation. Gray line: isotype control; black line: antibody staining. Abbreviations: hESC, human embryonic stem cell; MPO, myeloperoxidase; pHEMA, poly(2-hydroxyethyl methacrylate). [00023] FlG. 3 illustrates the Oct-4 region containing the knock-in construct of FIG. 1.
[00024] FIGS. 4A-C illustrate lentiviral transduction of somatic cells. FIG. 4A shows a schematic diagram of lentiviral construct. FIG. 4B shows Percoll®-purified cells were transduced with EGFP-expressing lentiviral vectors at various MOI. EGFP expression was analyzed by flow cytometry three days after transduction without drug selection. FIG. 4C shows lentiviral transduction of Percoll®-purified cells after several additional days of culture on Matrigel®. EGFP expression was analyzed two days after lentiviral transduction. [00025| FIG. 5 illustrates transgene overexpression in cells differentiated for seven days on Matrigel . No significant change in morphology was observed in cells overcxpressing Nanog or EGFP (control). Morphology of Oct-4-expressing cells changes dramatically, and many of these cells survived neomycin selection, but none of these cells showed typical human ES cell morphology, indicating that a drug-selectable population of Oct-4-expressing ES cells does not persist through the culture period necessary for myeloid differentiation. [00026] FIGS. 6A-B illustrate reprogramming of 0C/4KICD45+A cells through introduction of fourteen potency-determining factors. FIG. 6A shows the established clones display undifferentiated human ES cell morphology and express EGFP under direction of the endogenous Oct4 promoter. FIG. 6B shows flow cytometry analysis of human ES cell-specific cell surface antigen expression in established clones. Gray line: isotype control; black line: antibody staining.
[00027] FIGS. 7A-C illustrate reprogramming efficiency, as evidenced by colony formation, after introduction of various sets of potency-determining factors. FIG. 7A shows the identified set of fourteen potency-determining factors was introduced into cells in combinations, wherein each combination excluded one of the fourteen factors. By evaluating the ability of the potency-determining factors to reprogram the tested cells to an ES-like state, the inventors determined whether the excluded potency-determining factor was essential to the reprogramming. For example, a set of potency-determining factors termed Ml that lacked Oct-4 (depicted as Ml - Oct-4) was unable to form a significant number of ES-like colonies. As such, it was concluded that Oct-4 was important for somatic cell reprogramming. FIG. 7B shows a set of potency-determining factors (narrowed from FIG. 7A) evaluated for further testing was narrowed from fourteen to four (M4, being Oct-4, Sox2, Lin28 and Nanog). These four potency- determining factors were tested by serially excluding one of the four from the combination. Where a combination of three potency-determining factors {e.g., M4-Oct-4) was unable to reprogram the tested cells to form a significant number of stable ES-like colonies, the inventors concluded that the omitted gene is important for somatic cell reprogramming. In FIG. 7B, the light gray bars indicate the total number of reprogrammed colonies formed having typical human ES cell morphology; dark gray bars indicate the number of large colonies with minimal differentiation. FIG. 7C shows a set of potency-determining factors (narrowed from FIG. 7B) evaluated for further testing was narrowed from four to two {i.e., Oct-4 and Sox2). Oct-4, Sox2, Lin28 and Nanog were tested by serially excluding two of the four from the combination. [00028] FIGS. 8A-B illustrate reprogramming in human adult skin fibroblasts. FIG. 8A shows bright-field images of human adult skin cell (p5) (left) and reprogrammed cells (right). FIG. 8B shows flow cytometry analysis of human ES cell-specific markers in human adult skin cells (p5) (bottom) and reprogrammed cells (top). Gray line: isotype control; black line: antibody staining.
[00029] FIGS. 9A-B illustrate the effect on reprogramming of relative expression of Oct-4 and Sox2. FIG. 9A shows Western blot analysis of Oct-4 and Sox2 in 293FT cells; lane 1 , PSin4-EF2-Oct4-IRESl-Sox2 (OS-IRESl); lane 2, PSin4-EF2-Oct4-IRES2-Sox2 (OS-IRES2); lane 3, pSin4-EF2-Oct4-F2A-Sox2 (OS-F2A); lane 4, pSin4-EF2-Oct4-IRES 1 -puro (O); lane 5, pSin4-EF2-Sox2-IRESl-puro (S); lane 6, no plasmid (control). FIG. 9B shows reprogramming in mesenchymal cells derived from OCT4 knock-in human ES cells using linked potency- determining factors; gene combinations are the same as in FIG. 9A, with the addition of pSin4- EF2-Nanog-IRESl-puro (N) and pSin4-EF2-Lin28-IRESl -puro (L).
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[00030] The inventors hypothesized that potency-determining factors present in primate
ES cells play an important role in maintaining pluripotency and that differentiated somatic cells could be reprogrammed to a state of pluripotency through expression of potency-determining factors.
[00031] Cell types pass through various levels of potency during differentiation, such as totipotency, pluripotency and multipotency. Of particular interest herein are pluripotent cells. As used herein, "pluripotent cells" refer to a population of cells that can differentiate into all three germ layers (e.g., endoderm, mesoderm and ectoderm). Pluripotent cells express a variety of pluripotent cell-specific markers, have a cell morphology characteristic of undifferentiated cells (i.e., compact colony, high nucleus to cytoplasm ratio and prominent nucleolus) and form teratomas when introduced into an immunocompromised animal, such as a SCID mouse. The teratomas typically contain cells or tissues characteristic of all three germ layers. One of ordinary skill in the art can assess these characteristics by using techniques commonly used in the art. See, e.g., Thomson et al, supra. Pluripotent cells are capable of both proliferation in cell culture and differentiation towards a variety of lineage-restricted cell populations that exhibit multipotent properties. Multipotent somatic cells are more differentiated relative to pluripotent cells, but are not terminally differentiated. Pluripotent cells therefore have a higher potency than multipotent cells. As used herein, "reprogrammed pluripotent primate stem cells" (and similar references) refer to the pluripotent products of somatic cell reprogramming methods. Such cells are suitable for use in research and therapeutic applications currently envisioned for human ES cells.
[00032] The present invention broadly relates to novel methods for reprogramming differentiated somatic cells into higher-potency cells, such as pluripotent cells, by administering at least two potency-determining factors into somatic cells to achieve a higher level of potency in the reprogrammed cells than in the somatic cells. Advantageously, the present invention allows the generation of pluripotent cells, such as iPS cells, from somatic cells without requiring an addition of cell surface receptors for introducing the potency-determining factors to the somatic cells. As used herein, "reprogramming" refers to a genetic process whereby differentiated somatic cells are converted into de-differentiated, pluripotent cells, and thus have a greater pluripotency potential than the cells from which they were derived. That is, the reprogrammed cells express at least one of the following pluripotent cell-specific markers: SSEA-3, SSEA-4, TRA- 1-60 or TRA 1 -81. Preferably, the reprogrammed cells express all these markers. [00033] Potency-determining factors that can reprogram somatic cells include, but are not limited to, factors such as Oct-4, Sox2, FoxD3, UTFl, Stella, Rexl , ZNF206, Soxl5, Mybl2, Lin28, Nanog, DPP A2, ESGl , Otx2 or combinations thereof. In the examples, a set with as few as two of the fourteen factors was sufficient to reprogram the tested cells; this set included Oct-4 and Sox2. Addition of other potency-determining factors to Oct-4 and Sox2, however, increased the efficiency with which reprogrammed cells were obtained. c-Myc and Klf4, however, are not essential as potency-determining factors. Preferably, the potency-determining factor may be a transcription factor.
[00034] Suitable somatic cells can be any somatic cell, although higher reprogramming frequencies are observed when the starting somatic cells have a doubling time about twenty-four hours. Somatic cells useful in the invention are non-embryonic cells obtained from a fetal, newborn, juvenile or adult primate, including a human. Examples of somatic cells that can be used with the methods described herein include, but are not limited to, bone marrow cells, epithelial cells, fibroblast cells, hematopoietic cells, hepatic cells, intestinal cells, mesenchymal cells, myeloid precursor cells and spleen cells. Another type of somatic cell is a CD29+ CD44+ CDl 66+ CD105+ CD73+and CD31" mesenchymal cell that attaches to a substrate. Alternatively, the somatic cells can be cells that can themselves proliferate and differentiate into other types of cells, including blood stem cells, muscle/bone stem cells, brain stem cells and liver stem cells. Multipotent hematopoietic cells, suitably myeloid precursor or mesenchymal cells, are specifically contemplated as suited for use in the methods of the invention. [00035] Likewise, suitable somatic cells are receptive, or can be made receptive using methods generally known in the scientific literature, to uptake of potency-determining factors including genetic material encoding the factors. Uptake-enhancing methods can vary depending on the cell type and expression system. Exemplary conditions used to prepare receptive somatic cells having suitable transduction efficiency are known in the art and are described in the examples below. One method for making cells receptive to potency-determining factors is described below in connection with the electroporation methods.
[00036] A potency-determining factor may be introduced as a reprogramming sequence in which a polynucleotide sequence encoding the potency-determining factor is operably linked to a heterologous promoter, which may become inactive after somatic cells are reprogrammed. The heterologous promoter is any promoter sequence that can drive expression of a polynucleotide sequence encoding the potency-determining factor in the somatic cell, such as, e.g., an Oct4 promoter.
[00037] The relative ratio of potency-determining factors may be adjusted to increase reprogramming efficiency. For example, linking Oct-4 and Sox2 in a 1 : 1 ratio on a single vector increased reprogramming efficiency in cells by a factor of four (FIG. 9A-B) when compared to reprogramming efficiency wherein the potency-determining factors were provided to cells in separate constructs and vectors, where the uptake ratio of the respective potency-determining factors into single cells was uncontrolled. Although the ratio of potency-determining factors may differ depending upon the set of potency-determining factors used, one of ordinary skill in possession of this disclosure can readily determine an optimal ratio of potency-determining factors.
[00038] Pluripotent cells can be cultured in any medium used to support growth of pluripotent cells. Typical culture medium includes, but is not limited to, a defined medium, such as TcSR™ (StemCell Technologies, Inc.; Vancouver, Canada), mTeSR™ (StemCell Technologies, Inc.) and StemLine® serum-free medium (Sigma; St. Louis, MO), as well as conditioned medium, such as mouse embryonic fibroblast (MEF)-conditioned medium. As used herein, a "defined medium" refers to a biochemically defined formulation comprised solely of biochemically-defined constituents. A defined medium may also include solely constituents having known chemical compositions. A defined medium may further include constituents derived from known sources. As used herein, "conditioned medium" refers to a growth medium that is further supplemented with soluble factors from cells cultured in the medium. Alternatively, cells can be maintained on MEFs in culture medium.
|00039] The inventors used a serial analysis of gene expression (SAGE) library to obtain transcriptome profiles of genes abundant in ES cells. Specifically, a SAGE library was used to identify potency-determining factors that regulate pluripotency and self-renewal in ES cells. SAGE libraries are well-known to one of ordinary skill in the art and are publicly available or can be specifically constructed by companies, such as Agencourt Bioscience Corp. (Beverly, MA).
[00040] In another aspect, the invention provides an enriched population of pluripotent cells substantially genetically identical to cells of a post-natal individual. The cells can be obtained by reprogramming somatic cells isolated from the post-natal individual. In some embodiments, the cell population is a purified population, representing at least 60%, 70%, 80% and advantageously greater than 95% of the cells in the population, and any and all whole or partial integers therebetween. The reprogrammed cells are euploid, exhibit cell morphology characteristic of pluripotent cells and express pluripotent cell-specific markers, such as, e.g., Oct- 4, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81 or combinations thereof, and form teratomas when introduced into an immunocompromised animal.
[00041] Yet another aspect provides methods and compositions for identifying and using potency-determining factors sufficient to reprogram somatic cells into pluripotent cells. As noted herein, the reprogrammed pluripotent cells contain the genetic complement of, and are substantially genetically identical to somatic cells obtained from a post-natal individual. Generally, methods for identifying potency-determining factors include the steps of introducing genetic material encoding one or a plurality of putative potency-determining factors into somatic cells receptive to uptake of the genetic material under conditions effective to express the factors encoded on the introduced genetic material at levels sufficient to reprogram the cells to a less differentiated, higher-potency state; and observing a population of pluripotent cells after introduction of the genetic material. The pluripotent cells can be characterized by cell morphology, pluripotent cell-specific markers or both. Advantageously, the pluripotent cells can be identified by expression in the treated cells of a marker provided in the cells so as to be expressed only upon reprogramming of the cells to a pluripotent state. Through this approach, potency-determining factors capable of reprogramming somatic cells into pluripotent cells can be identified, as is described in the examples below.
[00042] Genetic material encoding a potency-determining factor can be introduced by transfection or transduction into the somatic cells using a vector, such as an integrating- or non- integrating vector. Of particular interest herein are retroviral vectors. Retroviral vectors, particularly lentiviral vectors, are transduced by packaging the vectors into virions prior to contact with a cell. After introduction, the DNA segment(s) encoding the potency-determining factor(s) can be located extra-chromosomally (e.g., on an episomal plasmid) or stably integrated into cellular chromosome(s).
[00043] A viral-based gene transfer and expression vector is a genetic construct that enables efficient and robust delivery of genetic material to most cell types, including non- dividing and hard-to-transfect cells (primary, blood, stem cells) in vitro or in vivo. Viral-based constructs integrated into genomic DNA result in high expression levels. In addition to a DNA segment that encodes a potency-determining factor of interest, the vectors include a transcription promoter and a polyadenylation signal operatively linked, upstream and downstream, respectively, to the DNA segment. The vector can include a single DNA segment encoding a single potency-determining factor or a plurality of potency-determining factor-encoding DNA segments. A plurality of vectors can be introduced into a single somatic cell. The vector can optionally encode a selectable marker to identify cells that have taken up and express the vector. As an example, when the vector confers antibiotic resistance on the cells, antibiotic can be added to the culture medium to identify successful introduction of the vector into the cells. Integrating vectors can be employed, as in the examples, to demonstrate proof of concept. Retroviral (e.g., lentiviral) vectors are integrating vectors; however, non-integrating vectors can also be used. Such vectors can be lost from cells by dilution after reprogramming, as desired. A suitable non- integrating vector is an Epstein-Barr virus (EBV) vector. Ren C, et al, Acta. Biochim. Biophys. Sin. 37:68-73 (2005); and Ren C, et al, Stem Cells 24:1338-1347 (2006), each of which is incorporated herein by reference as if set forth in its entirety.
[00044] The vectors described herein can be constructed and engineered using art- recognized techniques to increase their safety for use in therapy and to include suitable expression elements and therapeutic genes. Standard techniques for the construction of expression vectors suitable for use in the present invention are well-known to one of ordinary skill in the art and can be found in such publications such as Sambrook J, et al, "Molecular cloning: a laboratory manual," (3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 2001), incorporated herein by reference as if set forth in its entirety. [00045] The ability to identify and enrich for pluripotent cells can be facilitated by providing a non-lethal marker in the somatic cells, such as Green Fluorescent Protein (GFP), Enhanced Green Fluorescent Protein (EGFP) or luciferase, under the control of a promoter active only after the somatic cell has converted to a pluripotent state. A selectable marker gene is used to identify the reprogrammed cells expressing the marker through visible cell selection techniques, such as fluorescent cell sorting techniques. Alternatively, the reprogrammed cells can be produced without a selectable marker. In the examples below, a marker was provided in the genome of the somatic cells downstream of the promoter that regulates Oct-4 expression. The endogenous Oct4 promoter is active in undifferentiated, pluripotent ES cells. A drug- selectable population of Oct-4-expressing ES cells did not persist through the culture period necessary for myeloid differentiation. However, because some Oct-4 expression can persist into early stages of differentiation, it is appropriate to enrich the population for pluripotent cells by selecting colonies having characteristic ES cell morphology and by maintaining the cells under ES cell maintenance culture conditions. It is not intended that all cells in the reprogrammed cell culture have the desired level of potency. Given the inefficiencies of cell sorting technology, the variations in levels of gene expression and other biological effects, some cells in the enriched population may not be pluripotent. However, at a practical level, the reprogrammed cell population derived from somatic cells is enriched for pluripotent cells.
[00046] The non-lethal marker can be constructed to enable its subsequent removal using any of a variety of art-recognized techniques, such as removal via Cre-mediated, site-specific gene excision. For example, it may become desirable to delete the marker gene after the pluripotent cell population is obtained, to avoid interference by the marker gene product in the experiment or process to be performed with the cells. Targeted deletions can be accomplished by providing structure(s) near the marker gene that permits its ready excision. That is, a Cre/Lox genetic element can be used. The Lox sites can be built into the cells. If it is desired to remove the marker from the pluripotent cells, the Cre agent can be added to the cells. Other similar systems also can be used. Because Cre/Lox excision can introduce undesirable chromosomal rearrangements and can leave residual genetic material after excision, the inventors recognize the desirability of introducing the potency-determining factors into the somatic cells using non- integrating, episomal vectors and obtaining cells from which the episomal vectors are lost (e.g., at a rate of about 5% per generation) by subsequently withdrawing the drug selection used to maintain the vectors during the reprogramming step.
[00047] The following examples are provided as further non-limiting illustrations of methods for identifying potency-determining genes or factors for converting somatic cells into pluripotent cells. In some examples, human Hl Oct4 knock-in ES cells were differentiated in stromal cell co-culture to yield cells suited for use as reprogrammable somatic cells. These cells are a model for cells isolated from a post-natal individual for use in a somatic cell reprogramming method.
[00048] The methods were repeated with other differentiated cell types. One cell type was human fetal lung fibroblast cells, IMR-90. See, Nichols W, et ai, Science 196:60-63 (1977), incorporated herein by reference as if set forth in its entirety. IMR-90 cells are being extensively characterized by the ENCODE Consortium, are readily available from American Type Culture Collection (ATCC; Manassas, VA; Catalog No. CCL-186), and have published DNA fingerprints that allow independent confirmation of the origin of reprogrammed clones. In addition, these cells proliferate robustly in Eagle's Minimal Essential Medium- 10% FBS for more than twenty passages before undergoing senescence, but grow slowly in human ES cell culture conditions, a difference that provides a proliferative advantage to reprogrammed clones and aids in their selection by morphological criteria alone. Other differentiated cell types used in the methods were human post-natal foreskin fibroblast cells (ATCC; Catalog No. CRL-2097) and human adult skin cells (ATCC; Catalog No. CRL-2106).
[000491 The ce^s were made receptive for transduction with a viral expression system as described below. The somatic cells were transduced with polynucleotides encoding potency- determining factors thought to be associated with pluripotency, such that the somatic cells were reprogrammed to pluripotent cells. It is not yet determined whether all fourteen potency- determining factors provided in transduction vectors were taken up and expressed in the somatic cells. Having identified a set of fourteen potency-determining factors, and a subset of at least two of the fourteen factors, sufficient to reprogram somatic cells, the inventors provide one of ordinary skill in art the with the ability to identify one or more specific subsets of the potency- determining factors that are also capable of somatic reprogramming, thereby facilitating identification of other subsets of such potency-determining factors. Accordingly, the methods described below facilitate the identification of the potency-determining factors involved in reprogramming somatic cells into pluripotent cells.
[00050] It is specifically envisioned that the set of potency-determining factors sufficient to reprogram somatic cells can vary with the cell type of the somatic cells. It is noted that exposure to a set of fourteen potency-determining factors resulted in conversion to a pluripotent status in cultures of the indicated somatic cells. As shown below, one can identify a set of potency-determining factors sufficient to reprogram other cell types by repeating the methods described below using different combinations of potency-determining factors, which may include some or all of the fourteen factors as well as other potency-determining factors. Consequently, one can produce pluripotent cell lines/populations that are substantially genetically identical to a pre-existing, differentiated, somatic cell.
EXAMPLES
[00051] In the following examples, differentiated cells received vectors that encoded various potency-determining factors. Some of the cells contained in their genome a marker gene that encodes EGFP positioned downstream from the regulated Oct4 promoter, which is active only in pluripotent cells. The production of this useful tool is described in Yu et al., supra, which demonstrated that differentiated cells can become pluripotent via cell-cell fusion with human ES cells.
[00052] Example 1 : Lentiviral vector packaging and production.
[00053] Transgene-expressing lentivirus vector was produced in 293FT cell lines
(Invitrogen). 293T is a fast-growing, highly transferable clonal variant derived from transformed 293 embryonal kidney cells, which contains the large T antigen for high-level expression of the packaging proteins that contribute to higher viral titers. For routine maintenance and expansion, these cells were cultured in 293FT medium (DMEM/10%FBS, 2 mM L-glutamine and 0.1 mM MEM Non-Essential Amino Acids) in the presence of 500 μg/ml geneticin. For packaging, 293FT cells were collected by trypsinization. Following removal of trypsin by centrifugation, these cells were aliquoted into T75 flasks (15 x 106 cells/flask, and 6 flasks per construct) in 293FT medium without geneticin.
[00054] Co-transfection of lentiviral vector and two helper plasmids was carried out with
Superfect® transfection reagent (Qiagen) immediately following cell aliquoting (lentiviral vector: MD.G : pCMVdeltaR8.9 : Superfect® = 5 μg : 5 μg : 10 μg : 40 μl in 400 μl of Iscove's Modified Dulbecco's Medium (IMDM) (lX)/flask incubated at room temperature for 10 minutes). The next day, the culture medium containing the transfection mixture was replaced with fresh 293FT medium supplemented with 1 mM sodium pyruvate (8 ml/flask). Lentivirus-containing supernatant was collected around 48 to 72 hours after transduction (-48 ml per construct). The 293FT cell debris was removed from the supernatant by centrifugation at 3000 rpm (1750 g) for 15 minutes at 4°C. To concentrate the lentivirus, the supernatant was filtered through 0.4 μM cellulose acetate (CA) membrane (Cornington, 1 15 ml low-protein binding), and ultracentrifuged in 70 ml sterilized bottles (Beckman, Cat# 355622, polycarbonate for 45Ti rotor only) at 33,000 rpm (5O5OOOg) for 2.5 hours at 40C. Lentivirus along with any remaining cell debris formed a visible pellet at the bottom of the centrifuge tube. Following supernatant removal, PBS (~300 μl for each construct) was added to resuspend the pellet by rocking the centrifuge tubes at 40C for 8 to 14 hours, or at room temperature for 2 hours. The remaining cell debris was removed by centrifugation at 5000 rpm (2700 g) for 5 minutes, and the resuspended lentivirus was aliquoted and stored at -800C. The titer obtained generally ranged between 107 to 108 viral particles (vp)/ml after concentration. The sequence for a lentivirus (pSIN4-EF2-Stella-puro; SEQ ID NO:6, with the sequence for Stella from 3604 to 4083) harboring Stella (SEQ ID NO:1) is provided in the Sequence Listing. The same sequence was used for all other potency- determining factors (e.g., SEQ ID NOS: 2-5), except that the sequence for Stella (SEQ ID NO: 1) was replaced with the sequence of another potency-determining factor.
[00055] To efficiently introduce potency-determining factors into myeloid cells, inventors modified the lentiviral expression system (FlG. 4A). Inventors reduced the size of the original lentiviral construct (>1 lkb) by removing sequences neighboring 5' and 3' LTRs through serial deletion analysis. These modifications minimized the negative effect on the packaging efficiency. The titer obtained routinely ranged between 105 to 106 vp/ml of supernatant, and 107 to 108 vp/ml after concentration (through ultracentrifugation). Restriction sites were introduced into the backbone for convenient exchanges of the coding regions for specific transgenes. [00056] Example 2: Reprogramming of myeloid precursor cells after lentiviral transduction and expression of potency-determining factors.
[00057] To identify genes capable of reprogramming differentiated cells back to a state of pluripotency, efficient transduction of the cells is required. Inventors first tested the lentiviral transduction efficiency immediately after Pcrcoll® purification of a human Hl Oct4 knock-in ES cells (FIG. 2).
[00058] Hl .1 human ES cells (WiCeIl Research Institute; Madison, WI) were maintained on irradiated mouse embryonic fibroblasts (MEFs) in DMEM/F12 culture medium consisting of 80% Dulbecco's modified Eagle's medium (no pyruvate, high glucose formulation; Invitrogen; Carlsbad, CA) supplemented with 20% KnockOut serum replacer, 1% non-essential amino acids (Gibco), 1 mM L-glutamine, 0.1 mM β-mercaptoethanol (Sigma) and 4 ng/ml basic fibroblast growth factor (bFGF) (all from Invitrogen unless otherwise noted), as previously described {see Amit et al, Dev Biol. 227:271-278 (2000); and Thomson et al., Science 282:1 145-1 147 (1998), each of which is incorporated herein by reference as if set forth in its entirety). Feeder-free culture on Matrigel® (BD Biosciences; Bedford, MA) with chemically defined TeSR™ medium (StemCell Technologies, Inc.) was carried out as described in Ludwig et al. Ludwig T, et al, Nat. Methods. 3:637-646 (2006); and Ludwig T, et al, Nat. Biotechnol. 24: 185-187 (2006), each of which is incorporated herein by reference as if set forth in its entirety. [00059] The Hl Oct4 knock-in ES cell line was generated from the Hl .1 human ES cells according to a method described by Zwaka & Thomson. U.S. Patent Publication No. 2006/0128018 and Zwaka T & Thomson J, Nat. Biotechnol. 21 :319-321 (2003), each of which is incorporated herein by reference as if set forth in its entirety. Briefly, a gene targeting vector was constructed by inserting a cassette, an IRES-EGFP, an IRES-NEO and a simian virus polyadenylation sequence (approximately 3.2 kilobases (kb)) into the 3' untranslated region of the fifth exon of the human Oct-4 (octamer-binding transcription factor 4) gene, also known as POU domain, class 5, transcription factor 1 (POU5F1). This cassette was flanked in the 5' direction by a 6.3 kb homologous arm and by a 1.6 kb (6.5 kb in the alternative targeting vector) homologous arm in the 3' region (FIG. 1). The cassette was inserted at position 31392 of the Oct-4 gene (SEQ ID NO:2). The long arm contained a sequence from 25054-31392. The short arm contained a sequence from 31392-32970. In an alternative targeting vector, the short arm was substituted by a longer homologous region (31392-32970 in AC006047 plus 2387-7337 in gene accession number AC004195). Isogenic homologous DNA was obtained by long-distance, genomic PCR and subcloned. All genomic fragments and the cassette were cloned into the multiple cloning site (MCS) of a cloning vector, pBluescript® SK II (GenBank Accession Number X52328; Stratagene; La Jolla, CA).
[00060] For electroporation, cells were harvested with collagenase IV (1 mg/ml,
Invitrogen) for 7 minutes at 37°C, washed with medium and re-suspended in 0.5 ml culture medium (1.5-3.0 x 107 cells). To prepare the cells for electroporation, cells were added to 0.3 ml phosphate-buffered saline (PBS; Invitrogen) containing 40 mg linearized targeting vector DNA. Cells were then exposed to a single 320 V, 200 μF pulse at room temperature using a BioRad Gene Pulser® II (0.4 cm gap cuvette). Cells were incubated for ten minutes at room temperature and were plated at high-density on Matrigel®. G418 selection (50 mg/ml; Invitrogen) was started 48 hours after electroporation. After one week, G418 concentration was doubled. After three weeks, surviving colonies were analyzed individually by PCR using primers specific for the NEO cassette and for the POU5F1 gene just downstream of 3' homologous region, respectively. PCR-positive clones were re-screened by Southern blot analysis using BamHI digested DNA and a probe outside the targeting construct.
[00061] The Hl Oct4 knock-in ES cell line expressed both EGFP and neomycin phosphotransferase (neo) from an endogenous Oct4 promoter/regulatory region using dual internal ribosome-entry sites (IRES) (FIG. 3). Expression of EGFP and neo in the Hl Oct4 knock-in ES cells indicated an active, endogenous Oct4 promoter/regulatory region. [00062] Hl Oct4 knock-in ES cells were maintained through co-culture with mouse OP9 bone marrow stromal cells (FIG. 2A) maintained on gelatin-coated 10 cm plastic dishes (BD Biosciences) consisting of: DMEM medium (Invitrogen) supplemented with 20% non-heat- inactivated defined fetal bovine serum (FBS; HyClone Laboratories; Logan, UT) (10 ml/dish). The OP9 cultures were split every 4 days at a ratio of 1 :7. For use in human ES cell differentiation, after OP9 cells reached confluence on the fourth day, half of the medium was changed, and the cells were cultured for an additional four days.
[00063] For reprogramming, Hl Oct4 knock-in ES cells were differentiated into attached cells (i.e., CD29+CD44+CD166+CD105+CD73+CD31-). Briefly, human Hl Oct4 knock-in ES cells (p76 to 1 10) were added to the OP9 monolayer (1.5 x 106 /10-cm dish) in 20 ml of DMEM medium supplemented with 10% FBS (HyClone Laboratories) and 100 μM monothioglycerol (MTG; Sigma; St. Louis, MO). The human ES/OP9 cell co-culture was incubated for nine days with changes of half of the medium on days 4, 6 and 8. After incubation, the co-culture was dispersed into individual cells by collagenase IV treatment (1 mg/ml in DMEM medium, Invitrogen) for 20 minutes at 37°C, followed by trypsin treatment (0.05% Trypsin/0.5 mM EDTA, Invitrogen) for 15 minutes at 37°C. Cells were washed twice with medium and re- suspended at 2 x 106/ml in DMEM medium supplemented with 10% FBS, 100 μM MTG and 100 ng/ml GM-CSF (Leukine; Berlex Laboratories Inc.; Richmond, CA). Cells were further cultured in flasks coated with poly (2-hydroxyethyl methacrylate) (pHEMA; Sigma) for 10 days with changes of half of the medium every 3 days. During adhesion-preventing pHEMA culture, cells that would otherwise be adherent formed floating aggregates, while the cells of interest grew as individual cells in suspension. Large cell aggregates were removed by filtration through 100 μM cell strainers (BD Biosciences), while small aggregates and dead cells were removed by centrifugation through 25% Percoll® (Sigma). The differentiated cells recovered from the cell pellet expressed CD33, MPO, CDl Ib and CDl Ic molecules, which are characteristic for bone marrow myeloid cells (FIG. 2B). Inventors routinely produce 6-10 x 106 differentiated cells from 1 x 106 Hl ES cells (human Hl Oct4 knock-in ES cells). See also, Yu J, et al., Science 318:1917-1920 (2007), including the supplemental materials available at the Science website on the World Wide Web, incorporated herein by reference as if set forth in its entirety. [00064] Lentivirus encoding a potency-determining factor (MOI: 3 to 10) was added to the cell culture after addition of polybrene carrier at a final concentration of 6 μg/ml (Sigma). The lentivirus-containing medium was replaced with fresh medium the next day, and cells were cultured further in appropriate medium. Drug selection, if needed, started the third day after transduction. As shown in FIG. 5B, the transduction efficiency was very low (-18.4% at MOI of 10). Moreover, the expression of EGFP was barely above background. Similar results have been obtained with routine plasmid or Epstein-Barr virus nuclear antigen (EBNA)-based plasmid transfections (data not shown).
[00065] On the other hand, cells having high transduction efficiency were prepared as follows. The Percoll -purified Hl Oct4 knock-in ES cells were allowed to differentiate further to mesenchymal-like cells for an additional seven days in the presence of GM-CSF on Matrigel®, as described above. Many cells attached to the plate during this culture period. The attached cells (referred to herein below as Oct4KΛCO45+A cells, or simply as CD45+A cells) showed significantly higher transduction efficiency (FIG. 4C) and were used for this reprogramming experiment. While the cells were not CD45+ at the time of the experiments, the cells were obtained from CD45+ cells. As noted elsewhere herein, cell surface markers on the attached cells were characterized as CD29+, CD44+, CD166+, CD105+, CD73+ and CD31". [00066] Inventors tested the hypothesis that differentiated cells could be reprogrammed to a state of pluripotency by expressing potency-determining factors in Oc^KICD45+A cells (FIG. 3), and obtained promising results. Because Nanog and Oct-4 are the best characterized potency- determining factors, inventors examined the effect of their over-expression in the cells. [00067] The Oct4KICD45+A cells were first dissociated to individual cells with trypsin and replated onto Matrigel® at ~105 cells/well of 6-well plates in TeSR™ medium. Transgene- expressing lentiviral transduction was carried out the next day. Nanog-expressing 0C/4KICD45+A cells showed similar morphology to that of EGFP transfected cells (FIG. 5). Nanog over-expression, however, significantly enhanced Oct4KICO45+A cell proliferation, similar to that observed in human ES cells. Following neomycin selection for an active endogenous Oct4 promoter/regulatory region, no Nanog- or EGFP- transfected cells survived. Importantly, these results indicate that a drug-selectable population of Oct-4-expressing ES cells does not persist through the culture period necessary for differentiation. Oct-4 expression resulted in dramatic morphological changes (FIG. 5), and many of these cells survived neomycin selection. None of these cells, however, exhibited morphology typical of human ES cells. The Oct4KlCD45+A cells co-expressing Nanog and Oct-4 showed morphological changes similar to those observed in cells expressing Oct-4 alone. Thus, it appears that the two key potency- determining factors, Nanog and Oct-4, alone were not sufficient to convert differentiated cells to pluripotency.
[00068] Cells were analyzed using cell-sorting methods before and after exposing the somatic cells to the factors. Adherent cells were individualized by trypsin treatment (0.05% Trypsin/0.5 mM EDTA, Invitrogen), and fixed in 2% paraformaldehyde for 20 minutes at room temperature. The cells were filtered through a 40-μm mesh, and resuspended in FACS buffer (PBS containing 2% FBS and 0.1% sodium azide). Cells grown in suspension were stained in the FACS buffer supplemented with ImM EDTA and 1% noπnal mouse serum (Sigma). Intracellular myeloperoxidase (MPO) staining was performed using Fix & Perm® reagents (Caltag Laboratories; Burlingame, CA). About 100 μl of cell suspension containing 5 x 105 cells was used in each labeling. Both primary and secondary antibody incubation (where applied) were carried out at room temperature for 30 minutes. Control samples were stained with isotype- matched control antibodies. After washing, the cells were resuspended in 300-500 μl of the FACS buffer, and analyzed on a FACSCalibur flow cytometer (BDIS; San Jose, CA) using CellQuest™ acquisition and analysis software (BDIS). A total of 20,000 events were acquired. All of the antibodies used in the flow cytometry analysis are listed in Table 1. The final data and graphs were analyzed and prepared using FlowJo software (Tree Star, Inc.; Ashland, OR).
[00069] Table 1 : Antibodies for flow cytometry.
ANTIGEN LABEL J210™ ' ISOTYPE VENDOR
Product#
SSEA-3 None MAB4303 ratlgM Chemicon
SSEA-3 None 14-8833-80 ratlgM eBioscience
SSEA-4 None MAB4304 mIgG3 Chemicon
SSEA-4 APC FAB1435A mIgG3 R&D systems
Tra-1-60 None MAB4360 mlgM Chemicon
Tra-1-81 None MAB4381 mlgM Chemicon
CD29 PE MCA2298PE IgG AbD Serotec
Tra-1-85 APC FAB3195A mlgGl R&D Systems
CDHOa PE 556002 mIgG2a BD Pharmingen
CD56 PE 340724 mIgG2b BDIS
CD73 PE 550257 mlgGl BD Pharmingen
CD 105 PE MHCDl 0504 mlgGl Caltag
CD31 FITC 557508 mlgGl BD Pharmingen
CD34 FITC 555821 mlgG l BD Pharmingen
BD Pharmingen (San Diego, CA)
BD Immunocytometry Systems (BDIS) (San Jose, CA)
Caltag Laboratories (Burlingame, CA)
Chemicon International (Temecula, CA)
AbD Serotec (Raleigh, NC)
NA - not applicable.
[00070] To further evaluate the potency-determining factors involved in reprogramming these cells, inventors explored the transduction of pools of ES cells enriched with various combinations of potency-determining factors. An exemplary pool of potency-determining factors for reprogramming myeloid precursors included the fourteen potency-determining factors described in Table 2 below.
100071] Table 2: Human ES cell-enriched genes.
GENE SYMBOL UNIGENE ID ENTREZ ID ACCESSION
POU5F1 (Human Oct-4) Hs.249184 5460 NM 002701
Sox2 Hs.518438 6657 NM 003106
Nanog Hs.329296 79923 NM 024865
FoxD3 Hs.546573 27022 NM 012183
UTFl Hs.458406 8433 NM 003577
Stella Hs.131358 359787 NM 199286
Rexl Hs.335787 132625 NM 174900
ZNF206 Hs.334515 84891 NM 032805
Sox 15 Hs.95582 6665 NM 006942
Mybl2 Hs.179718 4605 NM 002466
Lin28 Hs.86154 79727 NM 024674
DPPA2 Hs.3511 13 151871 NM 138815
ESGl Hs.125331 340168 NM 001025290
Otx2 Hs.288655 5015 NM 172337
[00072] The expression of at least some of these fourteen factors in the Oct4KlCO45+A cells resulted in colonies with typical morphology of pluripotent cells, such as human ES cells (FIG.6A - left-hand photos). After neomycin selection from ~105 starting 0C/4KICD45+A cells, over ten colonies having the distinct ES cell morphology initially appeared. More than half of these colonies were subsequently lost to differentiation, suggesting either that over-expression of one or more introduced genes had a negative effect on the cells or that the cells continued to depend upon the foreign transgenes and gene silencing. Nevertheless, surviving colonies expressed the endogenous Oct4 promoter-driven EGFP (FIG. 7A - right-hand photos), indicating that the endogenous Oct4 promoter/regulatory region was reactivated. [00073] In this embodiment, EGFP expression occurs when the native Oct4 promoter/regulatory region is active. In other words, undifferentiated cells are identified by a green color that disappears when the cells differentiate. Thus, the expression of endogenous Oct- 4 in the primate ES cells was selectable. These colonies also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1 -81 pluripotent cell-specific markers (FIG. 6B). Similar results were obtained in reprogrammed colonies obtained using chemically defined TeSR™ medium. [00074] Inventors randomly picked six colonies from two separate transfections with the same pool of fourteen ES cell-enriched potency-determining factors, and propagated five stable colonies for at least eight weeks. Thus, inventors identified a novel approach for reprogramming primate somatic cells to become higher potency cells by administering fourteen potency- determining factors into the somatic cells.
[00075] When these cells were exposed to other combinations of potency-determining factors (i.e., Sox2, c-Myc, Oct 3/4 and Klf4) using the lentiviral delivery system described herein, reprogramming and conversion of the cells were not observed. [00076] Inventors used the techniques described herein to screen for subsets of the fourteen tested factors that are sufficient to reprogram the tested cells. Inventors' set of fourteen sufficient factors was subsequently narrowed to a set of six, and then four genes sufficient to reprogram these cells (FIGS. 7A-B; described further below). The four genes shown to be sufficient in combination to yield stable pluripotent cell were Oct-4, Nanog, Sox2 and Lin28, as shown in FIG. 7B.
[00077] Example 3: Reprogramminε of mesenchymal-like cells with a limited set of four potency-determining factors after lentiviral transduction.
[00078] To identify a more limited set of potency-deteπnining factors capable of reprogramming differentiated cells back to pluripotency, the above-identified methods were repeated with a combination of Pou5Fl (Oct-4), Nanog, Sox2 and Lin28. Inventors used the techniques described above to screen these potency-determining factors for their ability to reprogram cells.
[00079] A different cell type was used in this example to further demonstrate the utility of the methods. The cell type was a mesenchymal-like clonal cell directly differentiated from human Hl Oct4 knock-in ES cells, as described above. As used herein, "clonal" refers to a characteristic of a population of cells derived from a common ancestor (i.e., derived from a single cell, not derived from a cell aggregate). That is, in a "clonal population," the cells display a uniform pattern of cell surface markers and morphological characteristics, as well as being substantially genetically identical.
[00080] Briefly, human Hl Oct4 knock-in ES cells (p76 to pi 10) were induced to differentiate in co-culture with mouse OP9 bone marrow stromal cells. See, Vodyanyk M, et al., Blood 105:617-626 (2005), incorporated herein by reference as if set forth in its entirety. Small aggregates of human Hl Oct4 knock-in ES cells were added to OP9 cells in alpha MEM supplemented with 10% FCS and 100 μM MTG (Sigma). On the next day (day 1) of culture, the medium was changed, and the cultures were harvested on the days indicated below. [00081] On day 2 of co-culture, mesodermal commitment was detected by a peak expression of transcription factors for mesendoderm (GSC, MIXLl and T (BRACHYURY)) and early mesoderm [EVXl, LHXl and TBX6) with NimbleGen® (Madison, WI) microarrays. During days 3-5, specification of endoderm and mesodermal lineages was observed. This stage was accompanied with sustained expression of genes involved in epithelial-mesenchymal transition (EMT; SNAIL and SLUG) and cell expansion (HOXB2-3). It also coincided with a maximal cell proliferation rate in human Hl Oct4 knock-in ES cells/OP9 co-culture. 100082] Differentiation of specific mesendodermal lineages was observed on days 5-7 of co-culture, when markers of developing endoderm (AFP and SERPINAl), mesenchymal (SOX9, RUNX2 and PPARGl) and hematoendothelial (CDH5 and GATAl) cells were detected. However, muscle-inductive factors (MYODl, MYF5 andMYFS) were not expressed throughout seven days of co-culture. Moreover, neuroectoderm (SOXl and NEFL) or trophectodcπn (CGB and PLAC) markers were not detected, indicating that OP9 cells provided an efficient inductive environment for directed hESC differentiation toward the mesendodermal pathway. [00083] Also on day 2, a single-cell suspension of the human ES cell-derived cells was harvested by successive enzymatic treatment with collagenase IV (Gibco-Invitrogen) at 1 mg/ml in DMEM/F12 medium for 15 minutes at 37°C and 0.05% Trypsin-0.5 mM EDTA (Gibco- Invitrogen) for 10 minutes at 370C. Cells were washed 3 times with PBS-5% FBS, filtered through 70 μM and 30 μM cell strainers (BD Labware; Bedford, MA) and labeled with anti- mouse CD29-PE (AbD Serotec; Raleigh, NC) and anti-PE paramagnetic monoclonal antibodies (Miltenyi Biotech; Auburn, CA). The cell suspension was purified with magnet-activated cell sorting (MACs) by passing it through a LD magnetic column attached to a Midi-MACS separation unit (Miltenyi Biotech) to obtain a negative fraction of OP9-depleted, human Hl Oct4 knock-in ES cell-derived cells. Purity of human Hl Oct4 knock-in ES cell-derived cells was verified using pan anti-human TRA-1-85 monoclonal antibodies (R&D Systems; Minneapolis, MN).
[00084] Purified human Hl Oct4 knock-in ES cell-derived cells were plated at density of
2 x 104 cells/ml on semisolid, serum-free medium composed of StemLine™ serum-free medium (Sigma) supplemented with 5-100 ng/ml basic fibroblast growth factor (bFGF; PeproTech; Rocky Hill, NJ) and 1% methylcellulose (StemCell Technologies, Inc.) with or without 10-20 ng/ml PDGF-BB (PeproTech). PDGF-BB improved growth of mesenchymal cells, but was not essential for colony formation. After 14-21 days of culture, large, compact mesenchymal colonies formed, resembling embryoid bodies (EBs). Mesenchymal colonies were detected on day 7; however, 14-21 days were required to reveal actively growing colonies. [00085] Individual mesenchymal colonies were transferred to wells of a collagen- or fibroncctin-coated, 96-well plate pre-fϋled with 0.2 ml/well StemLine® serum-free medium supplemented with 5-100 ng/ml bFGF. After 3-4 days of culture, adherent cells from individual wells were harvested by trypsin treatment and expanded on collagen- or fibronectin-coated dishes in StemLine® serum-free medium with 5-100 ng/ml bFGF.
[00086] Transgene-expressing lentiviral transduction was then carried out as described above. Inventors tested the hypothesis that differentiated mesenchymal-like cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency-determining factors (e.g., Oct-4, Nanog, Sox2 and Lin28). The expression of at least these four potency- determining factors resulted in colonies having cells with typical morphology of pluripotent cells, such as human ES cells (FIG. 7B; dark gray bars). As shown in FIG. 7B, the greatest number of colonies having cells with typical morphology of pluripotent cells was obtained using the full complement of Oct-4, Nanog, Sox2 and Lin28. However, when one of Oct-4, Nanog, Sox2 or Lin28 was absent, the number of ES-like colonies was significantly attenuated (e.g., Nanog or Lin28) or absent (e.g., Oct-4 or Sox2).
[00087] In this embodiment, EGFP expression occurred when the native Oct4 promoter/regulatory region was active. In other words, undifferentiated cells were identified by a green color that was absent from differentiated cells. Thus, the expression of endogenous Oct- 4 in the cells was selectable. Reprogrammed colonies also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers (data not shown). [00088] Inventors randomly picked six colonies from two separate transfections with the same pool of fourteen ES cell-enriched potency-determining factors, and propagated five stable colonies for at least eight weeks. Thus, inventors identified a novel approach for reprogramming primate somatic cells to become higher potency cells by administering four potency-determining factors into the somatic cells.
[00089] When these cells were exposed to other combinations of potency-determining factors (i.e., Sox2, c-Myc, Oct 3/4 and Klf4) using the lentiviral delivery system described herein, reprogramming and conversion of the cells were not observed. [00090] Example 4: Reprogramming of mesenchymal-like cells with a limited set of two potency-determining factors after lentiviral transduction.
[00091] To identify an even more limited set of potency-determining factors capable of reprogramming differentiated cells back to pluripotency, the above-identified methods were repeated in the mesenchymal-like cells of Example 3 with a combination of two of the following four potency-determining factors: Oct-4, Nanog, Sox2 and Lin28. Inventors used the techniques described above to screen these potency-determining factors for their ability to reprogram cells. [00092] Transgene-expressing lentiviral transduction was then carried out as described above. Inventors tested the hypothesis that differentiated mesenchymal-like cells could be reprogrammed to a state of pluripotency by expressing fewer than four potency-determining factors. The expression of at least Oct-4 and Sox2 (FIG. 7C) resulted in colonies having cells with typical morphology of pluripotent cells, s,uch as human ES cells. Nanog and Lin28, singly and in combination, had a beneficial effect in clone recovery by improving reprogramming efficiency in human ES cell-derived mesenchymal cells to a state of pluripotency, but were essential neither for the initial appearance of reprogrammed cells nor for the expansion of reprogrammed cells.
[00093] Example 5: Reprogramming of a differentiated cells after lentiviral transduction and expression of four potency-determining factors.
[00094] To further demonstrate the utility of the limited set of potency-determining factors in reprogramming differentiated cells back to pluripotency, the above-identified methods were repeated with ATCC Catalog No. CCL-186 (IMR-90; ATCC), which are human fetal lung fibroblast cells (see also, Birney E, et ai, Nature 447:799-816 (2007)).
[00095] Transgene-expressing lentiviral transduction was carried out as described above.
That is, IMR-90 cells (0.9 x 106/well), were transduced with a combination of Oct-4, Sox2, Nanog and Lin28. Inventors tested the hypothesis that differentiated fibroblast cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency-determining factors (e.g., Oct-4, Sox2, Nanog and Lin28). Following transduction, cells were transferred to three 10-cm dishes seeded with irradiated mouse embryonic fibroblasts (MEFs). By day 12 post- transduction, small colonies with human ES cell morphology became visible. On day 20 post- transduction, a total of 198 colonies were visible on 3 plates. Forty-one of the colonies were picked, thirty-five of which were successfully expanded for an additional three weeks. Six of these colonies were then selected for continued expansion and analysis, and the other twenty- nine were frozen.
[00096] The introduction of at least Oct-4, Sox2, Nanog and Lin28 resulted in colonies with typical morphology of pluripotent cells like human ES cells that had a normal karyotype. Cells from each colony likewise expressed telomerase activity and expressed human ES cell- specific surface antigens (i.e., SSEA-3, SSEA-4, Tra-1-60 and Tral -81). For each of the colonies, the expression of endogenous OCT4 and NANOG was at levels similar to that of pluripotent cells, although the exogenous expression of these genes did vary. Moreover, EB and teratoma formation demonstrated that the reprogrammed cells had a developmental potential to give rise to differentiated derivatives of all three primary germ layers.
[00097] DNA fingerprint analysis confirmed that these colonies were derived from IMR-
90 cells and that they were not derived from human ES cells lines {e.g., Hl , H7, H9, H13 and H14).
[00098] Similar to the data obtained with differentiated mesenchymal cells, the greatest number of colonies having cells with typical morphology of pluripotent cells, such as human ES cells was obtained using the full complement of Oct-4, Nanog, Sox2 or Lin28. However, when Oct-4, Nanog, Sox2 or Lin28 were absent, the number of ES-like colonies was significantly attenuated (e.g., Nanog or Lin28) or absent (e.g., Oct-4 or Sox2).
[00099] The colonies selected for expansion and detailed characterization proliferated for at least twelve weeks and retained typical characteristics of normal pluripotent cells, even though no selection for the activation of a pluripotency-specific gene was applied during reprogramming.
[000100] Reprogrammed cells were identified based on morphology alone (i.e., having a compact colony with high nucleus to cytoplasm ratio and prominent nucleolus). Reprogrammed cells also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers. [000101] Example 6: Reprogramming of differentiated cells after lentiviral transduction and expression of three potency-determining factors.
[000102] To further demonstrate the utility of the limited set of potency-determining factors in reprogramming differentiated cells back to pluripotency, the above-identified methods were repeated with the IMR-90 cells, described above. In this set of experiments, fewer potency- determining factors were used than in Example 5.
[000103) Transgene-expressing lentiviral transduction was carried out as described above. IMR-90 cells were transduced with a combination of three of the following: Oct-4, Sox2, Nanog and Lin28. Inventors tested the hypothesis that differentiated fibroblast cells could be reprogrammed to a state of pluripotency by expressing the even more limited set of potency- determining factors. The expression of at least three factors resulted in colonies with typical morphology of pluripotent cells like human ES cells. Reprogrammed colonies having cells with typical morphology of pluripotent cells were obtained using the full complement of Oct-4, Sox2 and Nanog with or without Lin28. Therefore, the presence or absence of Lin28 did not affect reprogramming. However, when any of Oct-4, Nanog or Sox2 was absent, the number of reprogrammed colonies was significantly attenuated or absent.
[000104] To examine for the presence of Oct-4, Sox2, Nanog and Lin28 provirus in the reprogrammed cells, PCR with transgene-specific primer pairs (see, Table 3; one gene-specific primer and one lentiviral vector-specific primer) was carried out using genomic DNA from IMR- 90 clones as template. The reactions employed the pfx DNA polymerase (lnvitrogen, amplification buffer was used at 2X, and enhancer solution was used at 3X), and the following conditions: initial denaturation for 1 minute at 95°C; 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 680C for 2 minutes; and followed by 680C for 7 minutes. PCR analysis for the transgenes showed that either all four transgenes or three transgenes (i.e., Oct-4, Sox2 and Nanog) integrated into the pluripotent cells following exposure to transgene-expressing lentivirus vectors. [000105] Table 3: Primer sets for assessing provirus integration.
Genes Size(bp) Sequences (5' to 3')
OCT4 656 OCT4-FI CAGTGCCCGAAACCCACAC
(SEQ ID NO:7)
SP3 AGAGGAACTGCTTCCTTCACGACA
(SEQ ID NO:8)
NANOG 732 NANOG-Fλ CAGAAGGCCTCAGCACCTAC
(SEQ ID NO:9)
SP3 AGAGGAACTGCTTCCTTCACGACA
(SEQ ID NO:8)
SOX2 467 SOX2-YX TACCTCTTCCTCCCACTCCA
(SEQ ID NO: 10)
SP3 AGAGGAACTGCTTCCTTCACGACA
(SEQ ID NO:8)
LIN28 518 LIN28-FI AAGCGCAGATCAAAAGGAGA
(SEQ ID NO: 1 1)
SP3 AGAGGAACTGCTTCCTTCACGACA
(SEQ ID NO:8)
OCT4enάo 1 13 OCT4-F2 AGTTTGTGCCAGGGTTΠTG
(SEQ ID NO:12)
OCT4-R2 ACTTCACCTTCCCTCCAACC
(SEQ ID NO:13)
[000106] Reprogrammed cells were identified based on morphology alone (i.e., having a compact colony with high nucleus to cytoplasm ratio and prominent nucleolus). Reprogrammed cells also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers.
[000107] Example 7: Reprogramming of differentiated cells after lentiviral transduction and expression of three potency-determining factors.
[000108] To further demonstrate the utility of the limited set of potency-determining factors in reprogramming differentiated cells to pluripotency, the above-identified methods were repeated with ATCC Catalog No. CRL-2097 (ATCC), which are human post-natal foreskin fibroblast cells.
[000109] Transgene-expressing lentiviral transduction was carried out as described above.
Post-natal fibroblast cells (0.6 x 106/well) were transduced with a combination of Oct-4, Sox2,
Nanog and Lin28. Inventors tested the hypothesis that differentiated, post-natal, fibroblast cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency- deteπnining factors and obtained promising results. Following transduction, cells were transferred to three 10-cm dishes seeded with irradiated MEFs. By day 15 post-transduction, small colonies with pluripotent cell morphology became visible. On day 20 post-transduction, a total of 57 colonies were visible on the plates. Twenty-nine of the colonies were picked, twenty- seven of which were successfully expanded for an additional three weeks. Four of these colonies were then selected for continued expansion and analysis, and the other twenty-three were frozen. [000110] The expression of Oct-4, Sox2, Nanog and Lin28 resulted in colonies having cells with typical morphology of pluripotent cells, such as human ES cells, and a normal karyotype. Reprogrammed colonies likewise expressed telomerase activity and expressed pluripotent cell- specific markers (i.e., SSEA-3, SSEA-4, Tra-1-60 and Tral-81). For each, endogenous OCT4 and NANOG was expressed at levels similar to that observed in human pluripotent cells, although the exogenous expression of these genes varied. Moreover, EB and teratoma formation demonstrated that the reprogrammed cells had a developmental potential to give rise to differentiated derivatives of all three primary germ layers. However, in contrast to the iPS cells obtained from IMR-90 cells, iPS cells derived from CRL-2097 cells showed a variation in the lineages apparent in teratomas examined at five weeks. Two of the iPS cell colonies showed neural differentiation; whereas the other two colonies showed multiple foci of columnar epithelial cells, reminiscent of primitive ectoderm.
[000111] DNA fingerprint analysis confirmed that these colonies were derived from the original cell line and confirmed that they were not derived from human ES cells lines (e.g., Hl , H7, H9, H13 and H14).
[000112] Similar to the data obtained after transduction of differentiated mesenchymal cells, the greatest number of colonies having cells with typical morphology of human pluripotent cells were obtained using the full complement of Oct-4, Sox2, Nanog and Lin28. Interestingly, one cell line lacked Lin28, confirming that Lin28 was not essential for reprogramming somatic cells.
[000113] The colonies selected for expansion and detailed characterization proliferated for at least twelve weeks and retained typical characteristics of normal human pluripotent cells, even though no selection for the activation of a pluripotency-specific gene was applied during reprogramming. [000114] Reprogrammed cells were identified based on morphology alone (i.e., having a compact colony with high nucleus to cytoplasm ratio and prominent nucleolus). Reprogrammed cells also expressed Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 pluripotent cell-specific markers.
[000115] When these cells were exposed to other combinations of factors (i.e., Sox2, c- Myc, Oct 3/4 and Klf4) using the lentiviral delivery system described herein, reprogramming and conversion of the cells were not observed.
[000116] Example 8: Reprogramming of differentiated cells after lentiviral transduction and expression of four potency-determining factors.
[000117] To further demonstrate the utility of the limited set of potency-determining factors in reprogramming differentiated cells to pluripotency, the above-identified methods were repeated with ATCC Catalog No. CRL-2106 (SK46; ATCC), which are human adult skin cells. [000118] Transgene-expressing lentiviral transduction was carried out as described above. That is, skin cells (2.0 x 105/well) were transduced with a combination of Oct-4, Sox2, Nanog and Lin28. Inventors tested the hypothesis that adult skin cells could be reprogrammed to a state of pluripotency by expressing a limited set of potency-determining factors and obtained promising results. Following transduction, cells were transferred to three 10-cm dishes seeded with irradiated mouse embryonic fibroblasts (MEFs). After 10 days in human ES cell culture medium human ES cell culture medium conditioned with irradiated MEFs was used to support cell growth. By day 18 post-transduction, small colonies with pluripotent cell morphology became visible.
[000119] The expression of Oct-4, Sox2, Nanog and Lin28 resulted in colonies having cells with typical morphology of pluripotent cells (see, FIG. 8A), such as human ES cells (i.e., having a compact colony with high nucleus to cytoplasm ratio and prominent nucleolus). As shown in FIG. 8B, the reprogrammed cells also expressed cell surface markers typical of pluripotent cells; SK46 cells (control), however, did not. However, the reprogrammed colonies from adult skin cells appeared later than the cells in Example 7 and had a lower reprogramming efficiency than the cells in Example 7. [000120] Example 9: Increasing reprogramming efficiency by linking potency-determining factors on a single construct.
[000121] To increase the reprogramming efficiency, the above-identified methods were repeated using the construct shown in FIG. 4A; however, either Oct-4 or Sox2 were inserted in the transgene section, and Sox2 optionally replaced the puromycin resistance gene. The constructs were then expressed either in 293FT cells or in OCT4 knock-in human Hl ES cells (p6).
[000122] Transgene-expressing lentiviral transduction was carried out as described above. That is, 293FT cells or mesenchymal cells (~ 2 x 1O5 cells/well of 6-well plate, seeded overnight) were transduced with various transgene combinations. Cells were transferred to 10 cm MEF dish (1 well of 6-well plate to 1x10 cm MEF dish) following the overnight incubation with lentivirus. Geneticin selection (50 μg/ml) for an active, endogenous, OCT4 promoter was carried out between day 1 1 to 15 post transduction. iPS colonies were counted on day 16. [000123] FIG. 9A demonstrates that Oct-4 and Sox2 expression occurred in 293FT cells following transfection {see, e.g., lanes 1-3). In FIGS. 9A-B, pSin4-EF2-Oct4-IRESl-Sox2 is abbreviated as OS-IRESl ; pSin4-EF2-Oct4-IRES2-Sox2 is abbreviated as OS-IRES2; pSin4- EF2-Oct4-F2A-Sox2 is abbreviated as OS-F2A; pSin4-EF2-Oct4-IRESl -puro is abbreviated as O; and pSin4-EF2-Sox2-IRESl-puro is abbreviated as S.
[000124] FIG. 9B shows that reprogramming efficiency increased in mesenchymal cells derived from OCT4 knock-in human Hl ES cells (p6) when Oct-4 and Sox2 were provided on the same construct (IRESl is a very low-efficiency internal ribosome entry site; whereas IRES2 is a high-efficiency internal ribosome entry site). OS-IRES2+N+L (the high-efficiency IRES) showed an approximate four fold increase in reprogramming efficiency when compared to O+S, O+S+N+L or OS-IRESl (the low-efficiency IRES) +N+L. Therefore, providing the potency- determining factors in one construct that provides for approximately equal expression levels of each can improve reprogramming efficiency.
[000125] It is understood that certain adaptations of the invention described in this disclosure are a matter of routine optimization for those skilled in the art, and can be implemented without departing from the spirit of the invention, or the scope of the appended claims. [000126] All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. It is understood, however, that examples and embodiments of the present invention set forth above are illustrative and not intended to confine the invention. The invention embraces all modified forms of the examples and embodiments as come within the scope of the following claims.

Claims

CLAIMS WE CLAIM:
1. A method of reprogramming primate somatic cells, the method comprising the steps of: exposing a plurality of potency-determining factors to the primate somatic cells under conditions sufficient to reprogram the cells, wherein the potency-determining factors do not comprise c-Myc and Klf4; and culturing the exposed cells to obtain reprogrammed cells having a higher potency level than the primate somatic cells.
2. The method of Claim 1, wherein the primate somatic cells are obtained from a post-natal individual.
3. The method of Claim 2, wherein the reprogrammed cells are substantially genetically identical to the post-natal individual.
4. The method of Claim 1 , wherein the primate somatic cells are obtained by in vitro differentiation of a stem cell.
5. The method of Claim 1, wherein the exposing step includes the step of introducing a vector encoding one or more potency-determining factors into the primate somatic cells.
6. The method of Claim 5, wherein the vector is a viral-based vector.
7. The method of Claim 6, wherein the viral-based vector is a retroviral vector.
8. The method of Claim 7, wherein the retroviral vector is a lentiviral vector.
9. The method of Claim 1 , wherein the potency-determining factors are introduced to the somatic cells as a reprogramming sequence in which a nucleic acid sequence encoding the potency-determining factor is operably linked to a heterologous promoter.
10. The method of Claim 1, wherein the plurality of potency-deteπnining factors is selected from the group consisting of Oct-4, Sox2, Nanog and Lin28.
11. The method of Claim 1 , wherein the potency-determining factors are Oct-4, Sox2, and at least one of Nanog and Lin28.
12. The method of Claim 1 , wherein the potency-deteπnining factors are Oct-4 and Sox2.
13. The method of Claim 1, wherein the reprogrammed cells are pluripotent.
14. The method of Claim 1 , wherein the reprogrammed cells (i) express a cell marker selected from the group consisting of Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1-81 ; (ii) exhibit morphology characteristic of pluripotent cells; and (iii) form teratomas when introduced into an immunocompromised animal.
15. An enriched population of primate pluripotent cells produced according to a method comprising the step of: introducing a plurality of potency-determining factors into primate somatic cells under conditions sufficient to express the potency-determining factors, thereby reprogramming the somatic cells to produce euploid primate pluripotent cells, wherein the potency-determining factors do not comprise c-Myc or Klf4.
16. The enriched population of cells as claimed in Claim 15, wherein the primate pluripotent cells (i) express a cell surface marker selected from the group consisting of Oct-4, SSEA3, SSEA4, Tra-1-60 and Tra-1 -81 ; (ii) exhibit morphology characteristic of pluripotent cells; and (iii) form teratomas when introduced into an immunocompromised animal.
17. The enriched population of cells as claimed in Claim 15, wherein the potency- determining factors are Oct-4, Sox2 and at least one of Nanog and Lin28.
18. The enriched population of cells as claimed in Claim 15, wherein the potency- determining factors are Oct-4 and Sox2.
19. The enriched population of cells as claimed in Claim 15, wherein the primate pluripotent cells account for at least 60% of the population.
20. The enriched population of cells as claimed in Claim 15, wherein the primate pluripotent cells account for at least 80% of the population.
21. The enriched population of cells as claimed in Claim 15, wherein the primate pluripotent cells account for at least 95% of the population.
22. A cell culture comprising euploid pluripotent cells having a genome of a preexisting differentiated cell of an individual primate.
23. The cell culture of Claim 22, wherein the primate is a human.
24. The cell culture of Claim 22, wherein the cells further comprise in the genome a plurality of introduced polynucleotides encoding potency-determining factors, wherein the potency-determining factors do not comprise c-Myc and Klf4.
25. A method for assessing suitability of at least one putative potency-determining factor to convert primate somatic cells to pluripotent cells, the method comprising the steps of: exposing primate somatic cells to the at least one putative potency-determining factor, the primate somatic cells being receptive to uptake of the factor and comprising a marker gene under control of a regulated promoter active in a pluripotent cell; and evaluating whether the marker gene is expressed in the cells after exposure to the at least one factor, expression indicating suitability of the at least one factor to convert the primate somatic cells to pluripotent cells.
26. The method of Claim 25, wherein the regulated promoter is an Oct4 promoter.
27. The method of Claim 25, wherein the at least one putative potency-determining factor is Oct-4, Sox2 and at least one of Nanog and Lin28.
PCT/US2008/057924 2007-03-23 2008-03-21 Somatic cell reprogramming WO2008118820A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200880014084A CN101743306A (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
KR1020097022090A KR101516833B1 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
AU2008231020A AU2008231020B2 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
CA2684242A CA2684242C (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
JP2010501136A JP5813321B2 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
EP08744218A EP2137296A2 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
EP18177810.1A EP3399025A1 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming
IL200982A IL200982A (en) 2007-03-23 2009-09-16 Method of programming primate somatic cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US91968707P 2007-03-23 2007-03-23
US60/919,687 2007-03-23
US97498007P 2007-09-25 2007-09-25
US60/974,980 2007-09-25
US98905807P 2007-11-19 2007-11-19
US60/989,058 2007-11-19

Publications (2)

Publication Number Publication Date
WO2008118820A2 true WO2008118820A2 (en) 2008-10-02
WO2008118820A3 WO2008118820A3 (en) 2008-11-20

Family

ID=39708430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/057924 WO2008118820A2 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming

Country Status (10)

Country Link
US (7) US8440461B2 (en)
EP (2) EP3399025A1 (en)
JP (6) JP5813321B2 (en)
KR (1) KR101516833B1 (en)
CN (1) CN101743306A (en)
AU (1) AU2008231020B2 (en)
CA (1) CA2684242C (en)
IL (1) IL200982A (en)
SG (2) SG193653A1 (en)
WO (1) WO2008118820A2 (en)

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007852A2 (en) * 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009057831A1 (en) * 2007-10-31 2009-05-07 Kyoto University Nuclear reprogramming method
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010048567A1 (en) 2008-10-24 2010-04-29 Wisconsin Alumni Research Foundation Pluripotent stem cells obtained by non-viral reprogramming
JP2010523117A (en) * 2007-04-07 2010-07-15 ホワイトヘッド・インスティテュート・フォー・バイオメディカル・リサーチ Somatic cell reprogramming
WO2010137348A1 (en) 2009-05-29 2010-12-02 Keio University Method for selecting clone of induced pluripotent stem cells
WO2010150650A1 (en) * 2009-06-23 2010-12-29 学校法人日本大学 Novel method for maintaining stem cells in an undifferentiated state
WO2011016588A1 (en) 2009-08-07 2011-02-10 Kyoto University Method of efficiently establishing induced pluripotent stem cells
EP2287291A1 (en) 2009-08-07 2011-02-23 Kyoto University Canine iPS cells and method of producing same
WO2011037270A1 (en) 2009-09-24 2011-03-31 Kyoto University Method of efficiently establishing induced pluripotent stem cells
GB2474492A (en) * 2009-10-19 2011-04-20 Tristem Trading Treatment of medical conditions using reprogrammed cells
JPWO2009075119A1 (en) * 2007-12-10 2011-04-28 国立大学法人京都大学 Efficient nuclear initialization method
EP2331696A1 (en) * 2008-08-12 2011-06-15 Cellular Dynamics International, Inc. Methods for the production of ips cells
WO2011071118A1 (en) 2009-12-09 2011-06-16 国立大学法人京都大学 Agent for promoting differentiation of pluripotent stem cells into cardiac muscle cells which includes nitrovin
WO2011074690A1 (en) 2009-12-14 2011-06-23 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
WO2011090221A1 (en) 2010-01-22 2011-07-28 Kyoto University Method for improving induced pluripotent stem cell generation efficiency
WO2011102531A1 (en) 2010-02-16 2011-08-25 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2011110051A1 (en) * 2010-03-09 2011-09-15 中国科学院上海生命科学研究院 Inductive production of pluripotent stem cells using synthetic transcription factors
WO2011113889A1 (en) 2010-03-17 2011-09-22 Association Institut De Myologie Modified u7 snrnas for treatment of neuromuscular diseases
US8034613B2 (en) 2005-06-01 2011-10-11 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
US8048999B2 (en) 2005-12-13 2011-11-01 Kyoto University Nuclear reprogramming factor
US8058065B2 (en) 2005-12-13 2011-11-15 Kyoto University Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells
JP2011529329A (en) * 2008-07-30 2011-12-08 国立大学法人京都大学 Efficient method for establishing induced pluripotent stem cells
EP2401372A1 (en) * 2009-02-27 2012-01-04 Kyoto University Novel nuclear reprogramming substance
WO2012020687A1 (en) 2010-08-13 2012-02-16 Kyoto University Method of inducing differentiation from pluripotent stem cells to germ cells
WO2012026491A1 (en) 2010-08-26 2012-03-01 国立大学法人京都大学 Pluripotent stem cell cardiomyocyte differentiation-promoting agent
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
WO2012029994A1 (en) 2010-09-02 2012-03-08 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
WO2012036299A1 (en) 2010-09-14 2012-03-22 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2012037456A1 (en) 2010-09-17 2012-03-22 President And Fellows Of Harvard College Functional genomics assay for characterizing pluripotent stem cell utility and safety
JP2012507258A (en) * 2008-10-30 2012-03-29 国立大学法人京都大学 Method for producing induced pluripotent stem cells
US8158422B2 (en) 2006-02-09 2012-04-17 Wisconsin Alumni Research Foundation Erythroid cells producing adult-type β-hemoglobin generated from human embryonic stem cells
WO2012074117A1 (en) 2010-12-03 2012-06-07 国立大学法人京都大学 Efficient method for establishing artificial pluripotent stem cells
WO2012098260A1 (en) 2011-01-21 2012-07-26 Axiogenesis Ag A non-viral system for the generation of induced pluripotent stem (ips) cells
JP2012520660A (en) * 2009-03-20 2012-09-10 メゾブラスト,インコーポレーテッド Generation of reprogrammed pluripotent cells
WO2012137970A1 (en) 2011-04-08 2012-10-11 国立大学法人大阪大学 Modified laminin and use thereof
WO2012141181A1 (en) * 2011-04-11 2012-10-18 国立大学法人京都大学 Nuclear reprogramming substance
WO2013014929A1 (en) 2011-07-25 2013-01-31 Kyoto University Method for screening induced pluripotent stem cells
JP2013507974A (en) * 2009-10-29 2013-03-07 マックマスター ユニバーシティー Preparation of induced pluripotent stem cells and progenitor cells from fibroblasts
WO2013058403A1 (en) 2011-10-21 2013-04-25 国立大学法人京都大学 Method for culturing pluripotency-maintained singly dispersed cells by means of laminar flow
WO2013061078A1 (en) 2011-10-28 2013-05-02 Kymab Limited Transgenic non-human assay vertebrates, assays & kits
US8435785B2 (en) 2005-06-01 2013-05-07 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
WO2013077423A1 (en) 2011-11-25 2013-05-30 国立大学法人京都大学 Method for culturing pluripotent stem cell
WO2013079953A1 (en) 2011-12-02 2013-06-06 Kymab Limited Fertile transgenic animals useful for producing antibodies bearing human variable regions
WO2013111875A1 (en) 2012-01-27 2013-08-01 国立大学法人京都大学 Method for inducing differentiation of pluripotent stem cell into cardiac muscle
WO2013176233A1 (en) 2012-05-23 2013-11-28 国立大学法人京都大学 Highly efficient method for establishing artificial pluripotent stem cell
WO2014057997A1 (en) 2012-10-09 2014-04-17 Hayashi Nakanobu Reprogramming peptide and use thereof
WO2014123242A1 (en) 2013-02-08 2014-08-14 国立大学法人京都大学 Production methods for megakaryocytes and platelets
WO2014136519A1 (en) 2013-03-08 2014-09-12 国立大学法人京都大学 Promoter of differentiation of pluripotent stem cell into myocardium, which comprises egf receptor inhibitor
WO2014136581A1 (en) 2013-03-06 2014-09-12 国立大学法人京都大学 Culture system for pluripotent stem cells and method for subculturing pluripotent stem cells
WO2014148646A1 (en) 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction
WO2014157257A1 (en) 2013-03-25 2014-10-02 公益財団法人先端医療振興財団 Cell sorting method
WO2014168264A1 (en) 2013-04-12 2014-10-16 国立大学法人京都大学 Method for inducing alveolar epithelium progenitor cells
WO2014185358A1 (en) 2013-05-14 2014-11-20 国立大学法人京都大学 Efficient myocardial cell induction method
WO2014192909A1 (en) 2013-05-31 2014-12-04 iHeart Japan株式会社 Layered cell sheet incorporating hydrogel
WO2014200115A1 (en) 2013-06-11 2014-12-18 国立大学法人京都大学 Method for producing renal precursor cells, and drug containing renal precursor cells
WO2014200905A2 (en) 2013-06-10 2014-12-18 President And Fellows Of Harvard College Early developmental genomic assay for characterizing pluripotent stem cell utility and safety
US8927279B2 (en) 2003-11-26 2015-01-06 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US8932857B2 (en) 2010-06-15 2015-01-13 Kyoto University Method for selecting reduced differentiation resistance human induced pluripotent stem cells
WO2015020113A1 (en) 2013-08-07 2015-02-12 国立大学法人京都大学 Method for producing pancreatic hormone-producing cell
WO2015034012A1 (en) 2013-09-05 2015-03-12 国立大学法人京都大学 New method for inducing dopamine-producing neural precursor cells
WO2015037706A1 (en) 2013-09-13 2015-03-19 国立大学法人京都大学 Compound promoting differentiation of pluripotent stem cells into cardiomyocytes
WO2015064754A1 (en) 2013-11-01 2015-05-07 国立大学法人京都大学 Novel chondrocyte induction method
WO2015087231A1 (en) 2013-12-11 2015-06-18 Pfizer Limited Method for producing retinal pigment epithelial cells
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
US9328332B2 (en) 2008-06-04 2016-05-03 Cellular Dynamics International, Inc. Methods for the production of IPS cells using non-viral approach
EP3081638A1 (en) 2015-04-16 2016-10-19 Kyoto University Method for producing pseudo-islets
US9497943B2 (en) 2008-06-13 2016-11-22 Whitehead Institute For Biomedical Research Nucleic acid constructs encoding reprogramming factors linked by self-cleaving peptides
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
US9499786B2 (en) 2007-03-23 2016-11-22 Wisconsin Alumni Research Foundation Enriched population of human pluripotent cells with Oct-4 and Sox2 integrated into their genome
US9499790B2 (en) 2010-08-26 2016-11-22 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
US9724432B2 (en) 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
KR20170101926A (en) 2015-01-16 2017-09-06 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Gene expression system using stealthy rna, and gene introduction/expression vector including said rna
WO2017159862A1 (en) 2016-03-18 2017-09-21 国立大学法人京都大学 Freezing method for aggregates of pluripotent stem cell-derived myocardial cells
WO2017183736A1 (en) 2016-04-22 2017-10-26 国立大学法人京都大学 Method for producing dopamine-producing neural precursor cells
US9828603B2 (en) 2012-08-13 2017-11-28 Cedars Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9884076B2 (en) 2012-06-05 2018-02-06 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
EP2494035B1 (en) * 2009-10-29 2018-02-28 Janssen Biotech, Inc. Pluripotent stem cells
WO2018124118A1 (en) 2016-12-27 2018-07-05 住友化学株式会社 Evaluation method and selection method for induced pluripotent stem cells, and production method for induced pluripotent stem cells
WO2018135646A1 (en) 2017-01-20 2018-07-26 国立大学法人京都大学 METHOD FOR PRODUCING CD8α+β+ CYTOTOXIC T CELLS
WO2018139548A1 (en) 2017-01-26 2018-08-02 国立大学法人大阪大学 Medium for inducing differentiation of stem cells into mesodermal cells and method for producing mesodermal cells
US10077429B2 (en) 2012-10-23 2018-09-18 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2018168829A1 (en) 2017-03-14 2018-09-20 国立大学法人京都大学 Method for producing helper t cells from pluripotent stem cells
WO2018209022A2 (en) 2017-05-10 2018-11-15 University Of Rochester Methods of treating neuropsychiatric disorders
WO2018216743A1 (en) 2017-05-25 2018-11-29 国立大学法人京都大学 Method for inducing differentiation of intermediate mesodermal cell to renal progenitor cell, and method for inducing differentiation of pluripotent stem cell to renal progenitor cell
WO2018235786A1 (en) 2017-06-19 2018-12-27 国立大学法人大阪大学 Corneal endothelial cell marker and utilization thereof
WO2018235583A1 (en) 2017-06-19 2018-12-27 公益財団法人神戸医療産業都市推進機構 Method for predicting differentiation ability of pluripotent stem cell, and reagent for same
US10221396B2 (en) 2009-06-05 2019-03-05 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells
US10233426B2 (en) 2014-05-30 2019-03-19 Kyoto University Method for inducing cardiac differentiation of pluripotent stem cell with low-molecular compounds
US10260048B2 (en) 2010-06-15 2019-04-16 FUJIFILM Cellular Dynamics, Inc. Generation of induced pluripotent stem cells from small volumes of peripheral blood
WO2019078263A1 (en) 2017-10-17 2019-04-25 国立大学法人京都大学 Method for obtaining artificial neuromuscular junction from pluripotent stem cells
WO2019246112A1 (en) 2018-06-18 2019-12-26 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
WO2019246262A2 (en) 2018-06-21 2019-12-26 University Of Rochester Methods of treating or inhibiting onset of huntington's disease
WO2020013315A1 (en) 2018-07-13 2020-01-16 国立大学法人京都大学 METHOD FOR PRODUCING γδ T CELLS
WO2020017575A1 (en) 2018-07-19 2020-01-23 国立大学法人京都大学 Plate-shaped cartilage derived from pluripotent stem cells and method for producing plate-shaped cartilage
WO2020022261A1 (en) 2018-07-23 2020-01-30 国立大学法人京都大学 Novel renal progenitor cell marker and method for concentrating renal progenitor cells using same
WO2020032179A1 (en) 2018-08-10 2020-02-13 国立大学法人京都大学 Method for producing cd3-positive cell
WO2020074690A1 (en) 2018-10-12 2020-04-16 Vivet Therapeutics Codon-optimized transgene for the treatment of progressive familiar intrahepatic cholestasis type 3 (pfic3)
WO2020094693A1 (en) 2018-11-07 2020-05-14 Vivet Therapeutics Codon-optimized abcb11 transgene for the treatment of progressive familial intrahepatic cholestasis type 2 (pfic2)
WO2020116606A1 (en) 2018-12-06 2020-06-11 キリンホールディングス株式会社 Production method for t cells or nk cells, medium for culturing t cells or nk cells, method for culturing t cells or nk cells, method for maintaining undifferentiated state of undifferentiated t cells, and growth-accelerating agent for t cells or nk cells
WO2020123663A1 (en) 2018-12-11 2020-06-18 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
WO2020130147A1 (en) 2018-12-21 2020-06-25 国立大学法人京都大学 Lubricin-localized cartilage-like tissue, method for producing same and composition comprising same for treating articular cartilage damage
WO2020138371A1 (en) 2018-12-26 2020-07-02 キリンホールディングス株式会社 Modified tcr and production method therefor
US10711249B2 (en) 2014-12-26 2020-07-14 Kyoto University Method for inducing hepatocytes
WO2020167822A2 (en) 2019-02-13 2020-08-20 University Of Rochester Gene networks that mediate remyelination of the human brain
WO2020175592A1 (en) 2019-02-26 2020-09-03 国立大学法人東北大学 Method for producing osteoblast cluster using ips cells
US10801041B2 (en) 2015-11-18 2020-10-13 Orbis Health Solutions, Llc T7 alpha viral vector system
WO2020230832A1 (en) 2019-05-15 2020-11-19 味の素株式会社 Method for purifying neural crest cells or corneal epithelial cells
WO2020235319A1 (en) 2019-05-20 2020-11-26 味の素株式会社 Expansion culture method for cartilage or bone precursor cells
EP3744351A1 (en) 2014-12-17 2020-12-02 Fundacion para la Investigacion Medica Aplicada Nucleic acid constructs and gene therapy vectors for use in the treatment of wilson's disease and other conditions
EP3766962A1 (en) 2013-02-06 2021-01-20 University of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
EP3799889A1 (en) 2014-12-17 2021-04-07 Fundacion para la Investigacion Medica Aplicada Nucleic acid constructs and gene therapy vectors for use in the treatment of wilson disease and other conditions
WO2021117886A1 (en) 2019-12-12 2021-06-17 国立大学法人千葉大学 Freeze-dried preparation containing megakaryocytes and platelets
WO2021174004A1 (en) 2020-02-28 2021-09-02 Millennium Pharmaceuticals, Inc. Method for producing natural killer cells from pluripotent stem cells
WO2021241658A1 (en) 2020-05-26 2021-12-02 株式会社ヘリオス Hypoimmunogenic cells
WO2021256522A1 (en) 2020-06-17 2021-12-23 国立大学法人京都大学 Chimeric antigen receptor-expressing immunocompetent cells
EP3929302A1 (en) 2014-07-14 2021-12-29 Chugai Seiyaku Kabushiki Kaisha Method for identifying epitope on protein
WO2022014604A1 (en) 2020-07-13 2022-01-20 国立大学法人京都大学 Skeletal muscle precursor cells and method for purifying same, composition for treating myogenic diseases, and method for producing cell group containing skeletal muscle precursor cells
WO2022019152A1 (en) 2020-07-20 2022-01-27 学校法人 愛知医科大学 Composition for undifferentiated maintenance culture of pluripotent cells, medium for undifferentiated maintenance culture of pluripotent cells, maintenance culture method in undifferentiated state of pluripotent cells, and method for producing pluripotent cells
WO2022033983A1 (en) 2020-08-10 2022-02-17 Fundacion Para La Investigacion Medica Aplicada Gene therapy vector expressing cyp27a1 for the treatment of cerebrotendinous xanthomatosis
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
WO2022039279A1 (en) 2020-08-18 2022-02-24 国立大学法人京都大学 Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
WO2022050419A1 (en) 2020-09-04 2022-03-10 Heartseed株式会社 Quality improving agent for ips cells, method of producing ips cells, ips cells, and composition for producing ips cells
WO2022069598A1 (en) 2020-09-29 2022-04-07 Genethon Enhancing utrophin expression in cell by inducing mutations within utrophin regulatory elements and therapeutic use thereof
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
WO2022129430A1 (en) 2020-12-16 2022-06-23 Universitat Pompeu Fabra Therapeutic lama2 payload for treatment of congenital muscular dystrophy
WO2022136616A1 (en) 2020-12-23 2022-06-30 Vivet Therapeutics Minimal bile acid inducible promoters for gene therapy
US11401504B2 (en) 2016-04-15 2022-08-02 Kyoto University Method for inducing antigen specific CD8 positive T cells
WO2022196714A1 (en) 2021-03-17 2022-09-22 アステラス製薬株式会社 Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
WO2022230977A1 (en) 2021-04-30 2022-11-03 国立研究開発法人理化学研究所 Cord-like aggregates of retinal pigment epithelial cells, device and production method for producing same, and therapeutic agent comprising said cord-like aggregates
WO2022255489A1 (en) 2021-06-04 2022-12-08 キリンホールディングス株式会社 Cell composition, method for producing cell composition, and pharmaceutical composition containing cell composition
WO2022259721A1 (en) 2021-06-10 2022-12-15 味の素株式会社 Method for producing mesenchymal stem cells
WO2022264033A1 (en) 2021-06-15 2022-12-22 Takeda Pharmaceutical Company Limited Method for producing natural killer cells from pluripotent stem cells
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
WO2023286832A1 (en) 2021-07-15 2023-01-19 アステラス製薬株式会社 Pericyte-like cells expressing vascular endothelial growth factor (vegf) at high level
WO2023286834A1 (en) 2021-07-15 2023-01-19 アステラス製薬株式会社 Pericyte-like cell expressing vascular endothelial growth factor (vegf) at high level
WO2023003025A1 (en) 2021-07-21 2023-01-26 国立大学法人京都大学 Method for producing retinal tissue
WO2023017848A1 (en) 2021-08-11 2023-02-16 国立大学法人京都大学 Method for producing renal interstitial progenitor cells, erythropoietin-producing cells, and method for producing renin-producing cells
WO2023054357A1 (en) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 Method for producing pluripotent stem cells
WO2023069979A1 (en) 2021-10-20 2023-04-27 University Of Rochester Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss
WO2023069843A1 (en) 2021-10-20 2023-04-27 University Of Rochester Humanized chimeras for the prospective assessment of cell addition and replacement therapies
WO2023069881A1 (en) 2021-10-20 2023-04-27 University Of Rochester Treatment with genetically modified cells, and genetically modified cells per se, with increased competitive advantage and/or decreased competitive disadvantage
WO2023081633A1 (en) 2021-11-02 2023-05-11 University Of Rochester Tcf7l2 mediated remyelination in the brain
WO2023085356A1 (en) 2021-11-11 2023-05-19 株式会社ヘリオス Gene-modified pluripotent stem cell, immunocompetent cell derived therefrom, method for producing said cells, and use thereof
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
WO2023150557A1 (en) 2022-02-01 2023-08-10 University Of Rochester Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods
WO2023153464A1 (en) 2022-02-09 2023-08-17 住友ファーマ株式会社 Method for assessing differentiation potential of cells in culture broth in differentiation of pluripotent stem cells into neural cells of midbrain floor plate region
US11759482B2 (en) 2017-04-19 2023-09-19 Cedars-Sinai Medical Center Methods and compositions for treating skeletal muscular dystrophy
US11767507B2 (en) 2013-11-08 2023-09-26 The Mclean Hospital Corporation Methods for efficient generation of GABAergic interneurons from pluripotent stem cells
EP4257155A2 (en) 2018-11-16 2023-10-11 Encoded Therapeutics, Inc. Compositions and methods for treating wilson's disease
WO2023215455A1 (en) 2022-05-05 2023-11-09 University Of Rochester Dual macroglial-microglial approach towards therapeutic cell replacement in neurodegenerative and neuropsychiatric disease
WO2024163747A2 (en) 2023-02-02 2024-08-08 University Of Rochester Competitive replacement of glial cells
US12083188B2 (en) 2017-12-01 2024-09-10 Encoded Therapeutics, Inc. Engineered DNA binding proteins

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (en) 2003-07-31 2005-02-01 Univ Roma PROCEDURE FOR THE ISOLATION AND EXPANSION OF CARDIOC STAMIN CELLS FROM BIOPSIA.
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US20110236971A2 (en) * 2007-09-25 2011-09-29 Maksym Vodyanyk Generation of Clonal Mesenchymal Progenitors and Mesenchymal Stem Cell Lines Under Serum-Free Conditions
WO2009137844A2 (en) * 2008-05-09 2009-11-12 Vistagen Therapeutics, Inc. Pancreatic endocrine progenitor cells derived from pluripotent stem cells
WO2010033906A2 (en) * 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010042800A1 (en) * 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
US20110318830A1 (en) * 2008-11-12 2011-12-29 The Regents Of The University Of California Compositions and methods for re-programming and re-differentiating cells
WO2010068955A2 (en) * 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
US20110300627A1 (en) * 2009-01-20 2011-12-08 Sing George L Dedifferentiation and reprogramming of cells
US8557580B2 (en) 2009-02-20 2013-10-15 Cellular Dynamics International, Inc. Methods and compositions for the differentiation of stem cells
US9109245B2 (en) 2009-04-22 2015-08-18 Viacyte, Inc. Cell compositions derived from dedifferentiated reprogrammed cells
US20100272695A1 (en) 2009-04-22 2010-10-28 Alan Agulnick Cell compositions derived from dedifferentiated reprogrammed cells
US20110002897A1 (en) * 2009-06-11 2011-01-06 Burnham Institute For Medical Research Directed differentiation of stem cells
EP2468312A4 (en) 2009-08-19 2014-05-14 Univ Tohoku Sheet for corneal transplants
JP5898086B2 (en) * 2009-11-04 2016-04-06 セルラー ダイナミクス インターナショナル, インコーポレイテッド Episome reprogramming using chemicals
CN102822333A (en) * 2010-03-23 2012-12-12 奥林巴斯株式会社 Method for monitoring state of differentiation in stem cells
WO2011133661A2 (en) 2010-04-21 2011-10-27 Research Development Foundation Methods and compositions related to dopaminergic neuronal cells
WO2011143400A2 (en) * 2010-05-13 2011-11-17 The Regents Of The University Of California Method and composition for inducing human pluripotent stem cells
US9057734B2 (en) 2010-08-23 2015-06-16 President And Fellows Of Harvard College Optogenetic probes for measuring membrane potential
WO2012054896A1 (en) 2010-10-22 2012-04-26 Biotime Inc. Methods of modifying transcriptional regulatory networks in stem cells
CA2824553A1 (en) 2011-01-19 2012-07-26 The Regents Of The University Of California Somatic cells with innate potential for pluripotency
US9133266B2 (en) 2011-05-06 2015-09-15 Wisconsin Alumni Research Foundation Vitronectin-derived cell culture substrate and uses thereof
WO2013028702A1 (en) * 2011-08-22 2013-02-28 Mayo Foundation For Medical Education And Research Methods and materials for obtaining induced pluripotent stem cells
US20130058905A1 (en) 2011-08-23 2013-03-07 Igor Slukvin Angiohematopoietic Progenitor Cells
WO2013055834A2 (en) * 2011-10-11 2013-04-18 The New York Stem Cell Foundation Er stress relievers in beta cell protection
US10238755B2 (en) 2011-11-30 2019-03-26 The Wistar Institute Of Anatomy And Biology Methods and compositions for regulation of cell aging, carcinogenesis and reprogramming
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
AU2012347919B2 (en) 2011-12-05 2017-02-02 Factor Bioscience Inc. Methods and products for transfecting cells
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
WO2013090919A1 (en) 2011-12-16 2013-06-20 Wisconsin Alumni Research Foundation Fgf-2 having enhanced stability
US9175263B2 (en) 2012-08-22 2015-11-03 Biotime, Inc. Methods and compositions for targeting progenitor cell lines
KR20230154283A (en) 2012-11-01 2023-11-07 팩터 바이오사이언스 인크. Methods and products for expressing proteins in cells
HUE043785T2 (en) 2013-03-13 2019-09-30 Wisconsin Alumni Res Found Methods and materials for hematoendothelial differentiation of human pluripotent stem cells under defined conditions
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
CN105473134B (en) 2013-06-05 2021-04-27 再生疗法有限公司 Compositions and methods for induced tissue regeneration in mammalian species
US10738323B2 (en) 2013-07-12 2020-08-11 Cedars-Sinai Medical Center Generation of induced pluripotent stem cells from normal human mammary epithelial cells
CN105849256A (en) 2013-09-12 2016-08-10 株式会社钟化 Method for inducing differentiation of induced pluripotent stem cells and method for selecting induced pluripotent stem cells
US11377639B2 (en) 2013-11-15 2022-07-05 Wisconsin Alumni Research Foundation Lineage reprogramming to induced cardiac progenitor cells (iCPC) by defined factors
FI3690056T3 (en) 2014-01-31 2023-03-19 Factor Bioscience Inc Methods and products for nucleic acid production and delivery
US11078462B2 (en) 2014-02-18 2021-08-03 ReCyte Therapeutics, Inc. Perivascular stromal cells from primate pluripotent stem cells
US10240127B2 (en) 2014-07-03 2019-03-26 ReCyte Therapeutics, Inc. Exosomes from clonal progenitor cells
WO2016044681A1 (en) 2014-09-18 2016-03-24 North Carolina State University Mammalian lung spheroids and lung spheroid cells and uses thereof
JP6931612B2 (en) * 2014-10-06 2021-09-08 メモリアル スローン‐ケッターリング キャンサー センター How to reduce the carcinogenicity of induced pluripotent stem cells from aged donors
EP3543339A1 (en) 2015-02-13 2019-09-25 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
CN108473962B (en) 2015-09-08 2022-04-26 (由卫生与公众服务部部长代表的)美利坚合众国 Reproducible differentiation method of clinical grade retinal pigment epithelial cells
WO2017044488A1 (en) 2015-09-08 2017-03-16 Cellular Dynamics International, Inc. Macs-based purification of stem cell-derived retinal pigment epithelium
JP6976939B2 (en) 2015-10-20 2021-12-08 フジフィルム セルラー ダイナミクス,インコーポレイテッド Creation of multilineage hematopoietic progenitor cells by genetic programming
FR3044017B1 (en) * 2015-11-24 2019-05-03 Glaxosmithkline Intellectual Property Development Limited TRANSIENT TRANSFECTION METHOD FOR RETROVIRAL PRODUCTION
WO2017196175A1 (en) 2016-05-12 2017-11-16 Erasmus University Medical Center Rotterdam A method for culturing myogenic cells, cultures obtained therefrom, screening methods, and cell culture medium.
CN105861447B (en) * 2016-06-13 2017-12-19 广州市搏克生物技术有限公司 A kind of non-viral iPSCs inducing compositions and its kit
US11572545B2 (en) 2016-06-16 2023-02-07 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
US10221395B2 (en) 2016-06-16 2019-03-05 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
CN105936889B (en) * 2016-06-24 2019-10-18 肇庆大华农生物药品有限公司 A kind of cultural method of AD293 sphaerocyst group
CA3029582A1 (en) 2016-07-01 2018-01-04 Research Development Foundation Elimination of proliferating cells from stem cell-derived grafts
CN116115629A (en) 2016-08-17 2023-05-16 菲克特生物科学股份有限公司 Nucleic acid products and methods of administration thereof
JP7248571B2 (en) 2016-10-05 2023-03-29 フジフィルム セルラー ダイナミクス,インコーポレイテッド Generation of mature lineages from MeCP2-disrupted induced pluripotent stem cells
JPWO2018159805A1 (en) 2017-03-03 2020-01-09 国立大学法人京都大学 Method for producing pancreatic progenitor cells
JP7181219B2 (en) 2017-04-18 2022-11-30 フジフィルム セルラー ダイナミクス,インコーポレイテッド antigen-specific immune effector cells
EP3640318A4 (en) 2017-06-14 2021-03-17 Takeda Pharmaceutical Company Limited Cell-sealing device
US10760057B2 (en) 2017-07-06 2020-09-01 Wisconsin Alumni Research Foundation Human pluripotent stem cell-based screening for smooth muscle cell differentiation and disease
US11718829B2 (en) * 2017-07-28 2023-08-08 Breakthrough Tech Llc Methods and compositions for manufacturing extracellular matrix
NL2019517B1 (en) 2017-09-08 2019-03-19 Univ Erasmus Med Ct Rotterdam New therapy for Pompe disease
TW201945536A (en) 2018-03-19 2019-12-01 國立大學法人京都大學 Hydrogel capsule
EP3812456A4 (en) 2018-04-23 2022-01-12 Kyoto University Growth inhibitor
AU2019336221A1 (en) 2018-09-07 2021-03-04 Wisconsin Alumni Research Foundation Generation of hematopoietic progenitor cells from human pluripotent stem cells
WO2020102715A1 (en) * 2018-11-16 2020-05-22 Rapa Therapeutics, Llc Method for t cell de-differentiation and resulting cells
MX2021006208A (en) 2018-11-28 2021-10-01 Univ Texas Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment.
CA3121210A1 (en) 2018-11-29 2020-06-04 Board Of Regents, The University Of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
US20230159891A1 (en) 2020-03-31 2023-05-25 Kyoto University T cell progenitor production method
EP3922431A1 (en) 2020-06-08 2021-12-15 Erasmus University Medical Center Rotterdam Method of manufacturing microdevices for lab-on-chip applications
AU2021377699A1 (en) 2020-11-13 2023-06-15 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
WO2022216624A1 (en) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions and methods for generating alpha-beta t cells from induced pluripotent stem cells
JP2024519515A (en) 2021-04-07 2024-05-15 センチュリー セラピューティクス,インコーポレイテッド Compositions and methods for generating gamma-delta T cells from induced pluripotent stem cells - Patents.com
CN118159646A (en) 2021-09-13 2024-06-07 富士胶片细胞动力公司 Methods of producing committed cardiac progenitors
EP4405375A1 (en) 2021-09-23 2024-07-31 President and Fellows of Harvard College Genetically encoded voltage indicators and uses thereof
WO2023069386A1 (en) * 2021-10-18 2023-04-27 Wisconsin Alumni Research Foundation Systems and methods for label-free tracking of human somatic cell reprogramming
WO2023240147A1 (en) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Genetically engineered cells expressing cd16 variants and nkg2d and uses thereof
US20240139256A1 (en) 2022-09-30 2024-05-02 FUJIFILM Cellular Dynamics, Inc. Methods for the production of cardiac fibroblasts

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228457A1 (en) 1992-08-27 1994-04-28 Beiersdorf Ag Production of heterodimeric PDGF-AB using a bicistronic vector system in mammalian cells
DE4228458A1 (en) 1992-08-27 1994-06-01 Beiersdorf Ag Multicistronic expression units and their use
FR2722208B1 (en) 1994-07-05 1996-10-04 Inst Nat Sante Rech Med NEW INTERNAL RIBOSOME ENTRY SITE, VECTOR CONTAINING SAME AND THERAPEUTIC USE
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6667176B1 (en) * 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US20040199935A1 (en) 1999-06-30 2004-10-07 Chapman Karen B. Cytoplasmic transfer to de-differentiate recipient cells
US20020090722A1 (en) 2000-06-15 2002-07-11 Tanja Dominko Pluripotent mammalian cells
US20040235173A1 (en) 2000-07-03 2004-11-25 Gala Design, Inc. Production of host cells containing multiple integrating vectors by serial transduction
US20020136709A1 (en) 2000-12-12 2002-09-26 Nucleus Remodeling, Inc. In vitro-derived adult pluripotent stem cells and uses therefor
US20030044976A1 (en) 2001-08-27 2003-03-06 Advanced Cell Technology De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
JP2004248505A (en) 2001-09-21 2004-09-09 Norio Nakatsuji Undifferentiated fusion cell of somatic cell derived from es cell deficient in part or all of transplantation antigen and method for producing the same
ITMI20012110A1 (en) 2001-10-12 2003-04-12 Keryos Spa MULTI-CISTRONIC VECTORS USABLE IN GENE TRANSFER PROTOCOLS
EP1468094A4 (en) 2001-12-24 2005-01-26 Es Cell Int Pte Ltd Method of transducing es cells
GB0202149D0 (en) 2002-01-30 2002-03-20 Univ Edinburgh Pluripotency determining factors and uses thereof
GB0206357D0 (en) 2002-03-18 2002-05-01 Univ Bath Cells
ES2705683T3 (en) * 2002-12-16 2019-03-26 Technion Res & Dev Foundation Culture medium of pluripotent stem cells
EP1594954A4 (en) 2003-02-07 2010-01-27 Wisconsin Alumni Res Found Directed genetic modifications of human stem cells
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
JP4901471B2 (en) * 2004-02-19 2012-03-21 国立大学法人京都大学 Screening method for somatic cell nuclear reprogramming substances
AU2005221079B2 (en) * 2004-03-10 2010-07-22 Regents Of The University Of California Compositions and methods for growth of embryonic stem cells
KR100484653B1 (en) 2004-05-06 2005-04-20 주식회사 대웅 Preparation method for the production of active and soluble proteins in prokaryotes and polycistronic vectors therefor
US7465580B2 (en) 2004-05-19 2008-12-16 Wisconsin Alumni Research Foundation Non-cytotoxic oriP replicon
PE20060302A1 (en) 2004-06-18 2006-04-08 Glaxo Group Ltd BENZAZEPINE DERIVATIVES AS H3 RECEPTOR ANTAGONISTS
US9029146B2 (en) 2005-09-02 2015-05-12 Agency For Science, Technology And Research Mesenchymal stem cell conditioned medium
AU2006285468A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
US20070087437A1 (en) 2005-10-14 2007-04-19 Jifan Hu Methods for rejuvenating cells in vitro and in vivo
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
CN103113463B (en) 2005-12-13 2015-02-18 国立大学法人京都大学 Nuclear reprogramming factor
JP4803584B2 (en) 2006-02-08 2011-10-26 独立行政法人産業技術総合研究所 Transformed microorganism with high lipid productivity
KR20090036581A (en) 2006-07-07 2009-04-14 교와 핫꼬 기린 가부시키가이샤 Human artificial chromosome (hac) vector, and human cell pharmaceutical comprising human artificial chromosome (hac) vector
JP2009543580A (en) 2006-07-19 2009-12-10 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Composition for cell reprogramming and use thereof
EP2053128A4 (en) 2006-08-15 2010-05-05 Ishihara Sangyo Kaisha Novel method for utilization of microbial mutant
JP2008067693A (en) 2006-08-15 2008-03-27 Ishihara Sangyo Kaisha Ltd New method of utilizing microbial mutant
US20100069251A1 (en) 2006-09-15 2010-03-18 Children's Medical Center Corporation Methods for producing embryonic stem cells from parthenogenetic embryos
EP3399025A1 (en) * 2007-03-23 2018-11-07 Wisconsin Alumini Research Foundation Somatic cell reprogramming
CN105586358B (en) 2007-05-29 2020-08-25 克里斯多佛·B·里德 Methods of producing and using multipotent cell populations
JP2008307007A (en) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag Human pluripotent stem cell induced from human tissue-originated undifferentiated stem cell after birth
US20120282229A1 (en) 2007-08-01 2012-11-08 Christian Kannemeier Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
EP2198011B1 (en) 2007-08-31 2016-06-08 Whitehead Institute for Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
US20110236971A2 (en) 2007-09-25 2011-09-29 Maksym Vodyanyk Generation of Clonal Mesenchymal Progenitors and Mesenchymal Stem Cell Lines Under Serum-Free Conditions
US7615374B2 (en) 2007-09-25 2009-11-10 Wisconsin Alumni Research Foundation Generation of clonal mesenchymal progenitors and mesenchymal stem cell lines under serum-free conditions
CA2660123C (en) 2007-10-31 2017-05-09 Kyoto University Nuclear reprogramming method
US20110151447A1 (en) * 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
US9005966B2 (en) 2007-11-19 2015-04-14 The Regents Of The University Of California Generation of pluripotent cells from fibroblasts
EP2072618A1 (en) 2007-12-14 2009-06-24 Johannes Gutenberg-Universität Mainz Use of RNA for reprogramming somatic cells
US9206439B2 (en) 2008-01-14 2015-12-08 Wisconsin Alumni Research Foundation Efficient oriP/EBNA-1 plasmid vector
WO2009092042A1 (en) 2008-01-18 2009-07-23 Nevada Cancer Institute Reprogramming of differentiated progenitor or somatic cells using homologous recombination
WO2009102983A2 (en) * 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
SG10201400329YA (en) 2008-05-02 2014-05-29 Univ Kyoto Method of nuclear reprogramming
US8546140B2 (en) 2008-06-04 2013-10-01 Cellular Dynamics International, Inc. Methods for the production of iPS cells using non-viral approach
WO2010012077A1 (en) 2008-07-28 2010-02-04 Mount Sinai Hospital Compositions, methods and kits for reprogramming somatic cells
CN107988261A (en) 2008-08-12 2018-05-04 细胞动力国际有限公司 The method for producing IPS cells
WO2010028019A2 (en) 2008-09-03 2010-03-11 The General Hospital Corporation Direct reprogramming of somatic cells using non-integrating vectors
DK3450545T5 (en) 2008-10-24 2024-09-09 Wisconsin Alumni Res Found Pluripotent stem cells obtained by non-viral reprogramming

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2137296A2

Cited By (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457917B2 (en) 2003-11-26 2019-10-29 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US10017744B2 (en) 2003-11-26 2018-07-10 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US8927279B2 (en) 2003-11-26 2015-01-06 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US8932856B2 (en) 2003-11-26 2015-01-13 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US8951797B2 (en) 2003-11-26 2015-02-10 Whitehead Institute For Biomedical Research Compositions for identifying reprogramming factors
US11655459B2 (en) 2003-11-26 2023-05-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US11987815B2 (en) 2003-11-26 2024-05-21 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US9670464B2 (en) 2003-11-26 2017-06-06 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
US9624470B2 (en) 2005-06-01 2017-04-18 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
US8785189B2 (en) 2005-06-01 2014-07-22 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
US8435785B2 (en) 2005-06-01 2013-05-07 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
US8034613B2 (en) 2005-06-01 2011-10-11 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US8058065B2 (en) 2005-12-13 2011-11-15 Kyoto University Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US8048999B2 (en) 2005-12-13 2011-11-01 Kyoto University Nuclear reprogramming factor
US8158422B2 (en) 2006-02-09 2012-04-17 Wisconsin Alumni Research Foundation Erythroid cells producing adult-type β-hemoglobin generated from human embryonic stem cells
US10106772B2 (en) 2007-03-23 2018-10-23 Wisconsin Alumni Research Foundation Somatic cell reprogramming
US11898162B2 (en) 2007-03-23 2024-02-13 Wisconsin Alumni Research Foundation Reprogramming somatic cells into pluripotent cells using a vector encoding Oct4 and Sox2
US9499786B2 (en) 2007-03-23 2016-11-22 Wisconsin Alumni Research Foundation Enriched population of human pluripotent cells with Oct-4 and Sox2 integrated into their genome
US10093904B2 (en) 2007-04-07 2018-10-09 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
US9382515B2 (en) 2007-04-07 2016-07-05 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
JP2010523117A (en) * 2007-04-07 2010-07-15 ホワイトヘッド・インスティテュート・フォー・バイオメディカル・リサーチ Somatic cell reprogramming
US9714414B2 (en) 2007-04-07 2017-07-25 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2009007852A3 (en) * 2007-06-15 2009-08-20 Izumi Bio Inc Multipotent/pluripotent cells and methods
US8211697B2 (en) 2007-06-15 2012-07-03 Kyoto University Induced pluripotent stem cells produced using reprogramming factors and a rho kinase inhibitor or a histone deacetylase inhibitor
EP2164952B1 (en) * 2007-06-15 2016-10-26 Kyoto University Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
EP2476749A1 (en) * 2007-06-15 2012-07-18 Kyoto University Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US8257941B2 (en) 2007-06-15 2012-09-04 Kyoto University Methods and platforms for drug discovery using induced pluripotent stem cells
GB2450603B (en) * 2007-06-15 2010-02-10 Bayer Schering Pharma Ag Human pluripotent stem cells and their medical use
WO2009007852A2 (en) * 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
EP2213727A1 (en) * 2007-06-15 2010-08-04 Ipierian, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
EP2164952A1 (en) * 2007-06-15 2010-03-24 Ipierian, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US9714433B2 (en) 2007-06-15 2017-07-25 Kyoto University Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
WO2009057831A1 (en) * 2007-10-31 2009-05-07 Kyoto University Nuclear reprogramming method
US8791248B2 (en) 2007-12-10 2014-07-29 Kyoto University Nuclear reprogramming factor comprising miRNA and a protein factor
JPWO2009075119A1 (en) * 2007-12-10 2011-04-28 国立大学法人京都大学 Efficient nuclear initialization method
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
JP5558097B2 (en) * 2007-12-10 2014-07-23 国立大学法人京都大学 Efficient nuclear initialization method
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
US9328332B2 (en) 2008-06-04 2016-05-03 Cellular Dynamics International, Inc. Methods for the production of IPS cells using non-viral approach
EP2297307B1 (en) 2008-06-04 2016-06-01 Cellular Dynamics International, Inc. Methods for the production of ips cells using non-viral approach
US9644184B2 (en) 2008-06-04 2017-05-09 Cellular Dynamics International, Inc. Methods for the production of IPS cells using Epstein-Barr (EBV)-based reprogramming vectors
US9497943B2 (en) 2008-06-13 2016-11-22 Whitehead Institute For Biomedical Research Nucleic acid constructs encoding reprogramming factors linked by self-cleaving peptides
US11851670B2 (en) 2008-06-13 2023-12-26 Whitehead Institute For Biomedical Research Nucleic acid constructs encoding reprogramming factors linked by self-cleaving peptides
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US9528092B2 (en) 2008-07-30 2016-12-27 Kyoto University Methods of efficiently establishing induced pluripotent stem cells under hypoxic conditions
JP2011529329A (en) * 2008-07-30 2011-12-08 国立大学法人京都大学 Efficient method for establishing induced pluripotent stem cells
EP3330371A1 (en) * 2008-08-12 2018-06-06 Cellular Dynamics International, Inc. Methods for the production of ips cells
US9175268B2 (en) 2008-08-12 2015-11-03 Cellular Dynamics International, Inc. Methods for the production of iPS cells
EP2331696A1 (en) * 2008-08-12 2011-06-15 Cellular Dynamics International, Inc. Methods for the production of ips cells
WO2010048567A1 (en) 2008-10-24 2010-04-29 Wisconsin Alumni Research Foundation Pluripotent stem cells obtained by non-viral reprogramming
EP2356221B1 (en) * 2008-10-24 2018-11-21 Wisconsin Alumni Research Foundation Pluripotent stem cells obtained by non-viral reprogramming
JP2012507258A (en) * 2008-10-30 2012-03-29 国立大学法人京都大学 Method for producing induced pluripotent stem cells
EP2607476A1 (en) 2009-02-27 2013-06-26 Kyoto University Novel nuclear reprogramming substance
US8951801B2 (en) 2009-02-27 2015-02-10 Kyoto University Method for making IPS cells
EP2401372A1 (en) * 2009-02-27 2012-01-04 Kyoto University Novel nuclear reprogramming substance
JP2012518988A (en) * 2009-02-27 2012-08-23 国立大学法人京都大学 New nuclear initialization material
EP2401372A4 (en) * 2009-02-27 2012-09-19 Univ Kyoto Novel nuclear reprogramming substance
JP2012520660A (en) * 2009-03-20 2012-09-10 メゾブラスト,インコーポレーテッド Generation of reprogrammed pluripotent cells
US9487756B2 (en) 2009-03-20 2016-11-08 Mesoblast, Inc. Production of reprogrammed pluripotent cells
WO2010137348A1 (en) 2009-05-29 2010-12-02 Keio University Method for selecting clone of induced pluripotent stem cells
US10221396B2 (en) 2009-06-05 2019-03-05 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells
JP2011004607A (en) * 2009-06-23 2011-01-13 Nihon Univ New method for maintaining stem cell in undifferentiated state
WO2010150650A1 (en) * 2009-06-23 2010-12-29 学校法人日本大学 Novel method for maintaining stem cells in an undifferentiated state
WO2011016588A1 (en) 2009-08-07 2011-02-10 Kyoto University Method of efficiently establishing induced pluripotent stem cells
EP2287291A1 (en) 2009-08-07 2011-02-23 Kyoto University Canine iPS cells and method of producing same
US9404124B2 (en) 2009-08-07 2016-08-02 Kyoto University Method of producing induced pluripotent stem cells using inhibitors of P53
US8900871B2 (en) 2009-08-07 2014-12-02 Kyoto University Method of producing induced pluripotent stem cells using inhibitors of P53
US8709805B2 (en) 2009-08-07 2014-04-29 Kyoto University Canine iPS cells and method of producing same
WO2011037270A1 (en) 2009-09-24 2011-03-31 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US8993329B2 (en) 2009-09-24 2015-03-31 Kyoto University Method of efficiently establishing induced pluripotent stem cells
GB2474492A (en) * 2009-10-19 2011-04-20 Tristem Trading Treatment of medical conditions using reprogrammed cells
GB2474492B (en) * 2009-10-19 2014-05-21 Tristem Trading Cyprus Ltd Treatment using reprogrammed mature adult cells
JP2013507974A (en) * 2009-10-29 2013-03-07 マックマスター ユニバーシティー Preparation of induced pluripotent stem cells and progenitor cells from fibroblasts
US9340772B2 (en) 2009-10-29 2016-05-17 Mcmaster University Generating induced pluripotent stem cells and progenitor cells from fibroblasts
EP2494035B1 (en) * 2009-10-29 2018-02-28 Janssen Biotech, Inc. Pluripotent stem cells
WO2011071118A1 (en) 2009-12-09 2011-06-16 国立大学法人京都大学 Agent for promoting differentiation of pluripotent stem cells into cardiac muscle cells which includes nitrovin
WO2011074690A1 (en) 2009-12-14 2011-06-23 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
US9005967B2 (en) 2010-01-22 2015-04-14 Kyoto University Myc variants improve induced pluripotent stem cell generation efficiency
WO2011090221A1 (en) 2010-01-22 2011-07-28 Kyoto University Method for improving induced pluripotent stem cell generation efficiency
US8927277B2 (en) 2010-02-16 2015-01-06 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2011102531A1 (en) 2010-02-16 2011-08-25 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2011110051A1 (en) * 2010-03-09 2011-09-15 中国科学院上海生命科学研究院 Inductive production of pluripotent stem cells using synthetic transcription factors
WO2011113889A1 (en) 2010-03-17 2011-09-22 Association Institut De Myologie Modified u7 snrnas for treatment of neuromuscular diseases
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US8932857B2 (en) 2010-06-15 2015-01-13 Kyoto University Method for selecting reduced differentiation resistance human induced pluripotent stem cells
US10260048B2 (en) 2010-06-15 2019-04-16 FUJIFILM Cellular Dynamics, Inc. Generation of induced pluripotent stem cells from small volumes of peripheral blood
WO2012020687A1 (en) 2010-08-13 2012-02-16 Kyoto University Method of inducing differentiation from pluripotent stem cells to germ cells
US9499790B2 (en) 2010-08-26 2016-11-22 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
WO2012026491A1 (en) 2010-08-26 2012-03-01 国立大学法人京都大学 Pluripotent stem cell cardiomyocyte differentiation-promoting agent
US8658425B2 (en) 2010-08-26 2014-02-25 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
WO2012029994A1 (en) 2010-09-02 2012-03-08 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
WO2012036299A1 (en) 2010-09-14 2012-03-22 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2012037456A1 (en) 2010-09-17 2012-03-22 President And Fellows Of Harvard College Functional genomics assay for characterizing pluripotent stem cell utility and safety
WO2012074117A1 (en) 2010-12-03 2012-06-07 国立大学法人京都大学 Efficient method for establishing artificial pluripotent stem cells
WO2012098260A1 (en) 2011-01-21 2012-07-26 Axiogenesis Ag A non-viral system for the generation of induced pluripotent stem (ips) cells
WO2012137970A1 (en) 2011-04-08 2012-10-11 国立大学法人大阪大学 Modified laminin and use thereof
WO2012141181A1 (en) * 2011-04-11 2012-10-18 国立大学法人京都大学 Nuclear reprogramming substance
EP3608423A1 (en) 2011-07-25 2020-02-12 Kyoto University Method for screening induced pluripotent stem cells
US9938585B2 (en) 2011-07-25 2018-04-10 Kyoto University Method for screening induced pluripotent stem cells
WO2013014929A1 (en) 2011-07-25 2013-01-31 Kyoto University Method for screening induced pluripotent stem cells
EP3305899A1 (en) 2011-07-25 2018-04-11 Kyoto University Method for screening induced pluripotent stem cells
US10385407B2 (en) 2011-07-25 2019-08-20 Kyoto University Method for screening induced pluripotent stem cells
US9677141B2 (en) 2011-07-25 2017-06-13 Kyoto University Method for screening induced pluripotent stem cells
WO2013058403A1 (en) 2011-10-21 2013-04-25 国立大学法人京都大学 Method for culturing pluripotency-maintained singly dispersed cells by means of laminar flow
WO2013061078A1 (en) 2011-10-28 2013-05-02 Kymab Limited Transgenic non-human assay vertebrates, assays & kits
WO2013077423A1 (en) 2011-11-25 2013-05-30 国立大学法人京都大学 Method for culturing pluripotent stem cell
WO2013079953A1 (en) 2011-12-02 2013-06-06 Kymab Limited Fertile transgenic animals useful for producing antibodies bearing human variable regions
DE202012013369U1 (en) 2011-12-02 2016-08-23 Kymab Limited Fertile transgenic animals useful for producing antibodies carrying human variable regions
EP4282879A2 (en) 2011-12-02 2023-11-29 Kymab Ltd. Use of fertile transgenic animals for producing antibodies bearing human variable regions
US9587220B2 (en) 2012-01-27 2017-03-07 Kyoto University Method for inducing cardiac differentiation of pluripotent stem cell
WO2013111875A1 (en) 2012-01-27 2013-08-01 国立大学法人京都大学 Method for inducing differentiation of pluripotent stem cell into cardiac muscle
US10519425B2 (en) 2012-05-23 2019-12-31 Kyoto University Highly efficient method for establishing induced pluripotent stem cell
WO2013176233A1 (en) 2012-05-23 2013-11-28 国立大学法人京都大学 Highly efficient method for establishing artificial pluripotent stem cell
US9884076B2 (en) 2012-06-05 2018-02-06 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
US10457942B2 (en) 2012-08-13 2019-10-29 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US9828603B2 (en) 2012-08-13 2017-11-28 Cedars Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US11220687B2 (en) 2012-08-13 2022-01-11 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
WO2014057997A1 (en) 2012-10-09 2014-04-17 Hayashi Nakanobu Reprogramming peptide and use thereof
US10077429B2 (en) 2012-10-23 2018-09-18 Kyoto University Method of efficiently establishing induced pluripotent stem cells
EP3766962A1 (en) 2013-02-06 2021-01-20 University of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
WO2014123242A1 (en) 2013-02-08 2014-08-14 国立大学法人京都大学 Production methods for megakaryocytes and platelets
WO2014136581A1 (en) 2013-03-06 2014-09-12 国立大学法人京都大学 Culture system for pluripotent stem cells and method for subculturing pluripotent stem cells
US10196609B2 (en) 2013-03-08 2019-02-05 Kyoto University Composition for promoting cardiac differentiation of pluripotent stem cell comprising EGFR inhibitor
WO2014136519A1 (en) 2013-03-08 2014-09-12 国立大学法人京都大学 Promoter of differentiation of pluripotent stem cell into myocardium, which comprises egf receptor inhibitor
WO2014148646A1 (en) 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction
WO2014157257A1 (en) 2013-03-25 2014-10-02 公益財団法人先端医療振興財団 Cell sorting method
WO2014168264A1 (en) 2013-04-12 2014-10-16 国立大学法人京都大学 Method for inducing alveolar epithelium progenitor cells
WO2014185358A1 (en) 2013-05-14 2014-11-20 国立大学法人京都大学 Efficient myocardial cell induction method
WO2014192909A1 (en) 2013-05-31 2014-12-04 iHeart Japan株式会社 Layered cell sheet incorporating hydrogel
WO2014200905A2 (en) 2013-06-10 2014-12-18 President And Fellows Of Harvard College Early developmental genomic assay for characterizing pluripotent stem cell utility and safety
WO2014200115A1 (en) 2013-06-11 2014-12-18 国立大学法人京都大学 Method for producing renal precursor cells, and drug containing renal precursor cells
WO2015020113A1 (en) 2013-08-07 2015-02-12 国立大学法人京都大学 Method for producing pancreatic hormone-producing cell
US9796962B2 (en) 2013-08-07 2017-10-24 Kyoto University Method for generating pancreatic hormone-producing cells
WO2015034012A1 (en) 2013-09-05 2015-03-12 国立大学法人京都大学 New method for inducing dopamine-producing neural precursor cells
WO2015037706A1 (en) 2013-09-13 2015-03-19 国立大学法人京都大学 Compound promoting differentiation of pluripotent stem cells into cardiomyocytes
WO2015064754A1 (en) 2013-11-01 2015-05-07 国立大学法人京都大学 Novel chondrocyte induction method
US11767507B2 (en) 2013-11-08 2023-09-26 The Mclean Hospital Corporation Methods for efficient generation of GABAergic interneurons from pluripotent stem cells
WO2015087231A1 (en) 2013-12-11 2015-06-18 Pfizer Limited Method for producing retinal pigment epithelial cells
US10233426B2 (en) 2014-05-30 2019-03-19 Kyoto University Method for inducing cardiac differentiation of pluripotent stem cell with low-molecular compounds
EP3929302A1 (en) 2014-07-14 2021-12-29 Chugai Seiyaku Kabushiki Kaisha Method for identifying epitope on protein
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
EP3799889A1 (en) 2014-12-17 2021-04-07 Fundacion para la Investigacion Medica Aplicada Nucleic acid constructs and gene therapy vectors for use in the treatment of wilson disease and other conditions
EP3744351A1 (en) 2014-12-17 2020-12-02 Fundacion para la Investigacion Medica Aplicada Nucleic acid constructs and gene therapy vectors for use in the treatment of wilson's disease and other conditions
US10711249B2 (en) 2014-12-26 2020-07-14 Kyoto University Method for inducing hepatocytes
US10544431B2 (en) 2015-01-16 2020-01-28 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
US11926840B2 (en) 2015-01-16 2024-03-12 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
US11834667B2 (en) 2015-01-16 2023-12-05 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
KR20170101926A (en) 2015-01-16 2017-09-06 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Gene expression system using stealthy rna, and gene introduction/expression vector including said rna
EP3081638A1 (en) 2015-04-16 2016-10-19 Kyoto University Method for producing pseudo-islets
US9724432B2 (en) 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
US10279051B2 (en) 2015-04-30 2019-05-07 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
US11596700B2 (en) 2015-04-30 2023-03-07 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
US10801041B2 (en) 2015-11-18 2020-10-13 Orbis Health Solutions, Llc T7 alpha viral vector system
US11872251B2 (en) 2016-01-11 2024-01-16 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
WO2017159862A1 (en) 2016-03-18 2017-09-21 国立大学法人京都大学 Freezing method for aggregates of pluripotent stem cell-derived myocardial cells
US11401504B2 (en) 2016-04-15 2022-08-02 Kyoto University Method for inducing antigen specific CD8 positive T cells
WO2017183736A1 (en) 2016-04-22 2017-10-26 国立大学法人京都大学 Method for producing dopamine-producing neural precursor cells
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
WO2018124118A1 (en) 2016-12-27 2018-07-05 住友化学株式会社 Evaluation method and selection method for induced pluripotent stem cells, and production method for induced pluripotent stem cells
WO2018135646A1 (en) 2017-01-20 2018-07-26 国立大学法人京都大学 METHOD FOR PRODUCING CD8α+β+ CYTOTOXIC T CELLS
EP4053268A2 (en) 2017-01-20 2022-09-07 Kyoto University Method for producing cd8alpha+beta+cytotoxic t cells
WO2018139548A1 (en) 2017-01-26 2018-08-02 国立大学法人大阪大学 Medium for inducing differentiation of stem cells into mesodermal cells and method for producing mesodermal cells
WO2018168829A1 (en) 2017-03-14 2018-09-20 国立大学法人京都大学 Method for producing helper t cells from pluripotent stem cells
US11759482B2 (en) 2017-04-19 2023-09-19 Cedars-Sinai Medical Center Methods and compositions for treating skeletal muscular dystrophy
WO2018209022A2 (en) 2017-05-10 2018-11-15 University Of Rochester Methods of treating neuropsychiatric disorders
WO2018216743A1 (en) 2017-05-25 2018-11-29 国立大学法人京都大学 Method for inducing differentiation of intermediate mesodermal cell to renal progenitor cell, and method for inducing differentiation of pluripotent stem cell to renal progenitor cell
WO2018235583A1 (en) 2017-06-19 2018-12-27 公益財団法人神戸医療産業都市推進機構 Method for predicting differentiation ability of pluripotent stem cell, and reagent for same
WO2018235786A1 (en) 2017-06-19 2018-12-27 国立大学法人大阪大学 Corneal endothelial cell marker and utilization thereof
WO2019078263A1 (en) 2017-10-17 2019-04-25 国立大学法人京都大学 Method for obtaining artificial neuromuscular junction from pluripotent stem cells
US12083188B2 (en) 2017-12-01 2024-09-10 Encoded Therapeutics, Inc. Engineered DNA binding proteins
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
WO2019246112A1 (en) 2018-06-18 2019-12-26 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
WO2019246262A2 (en) 2018-06-21 2019-12-26 University Of Rochester Methods of treating or inhibiting onset of huntington's disease
WO2020013315A1 (en) 2018-07-13 2020-01-16 国立大学法人京都大学 METHOD FOR PRODUCING γδ T CELLS
WO2020017575A1 (en) 2018-07-19 2020-01-23 国立大学法人京都大学 Plate-shaped cartilage derived from pluripotent stem cells and method for producing plate-shaped cartilage
WO2020022261A1 (en) 2018-07-23 2020-01-30 国立大学法人京都大学 Novel renal progenitor cell marker and method for concentrating renal progenitor cells using same
WO2020032179A1 (en) 2018-08-10 2020-02-13 国立大学法人京都大学 Method for producing cd3-positive cell
EP4455166A2 (en) 2018-08-10 2024-10-30 Kyoto University Method for producing cd3-positive cell
EP4223320A2 (en) 2018-10-12 2023-08-09 Vivet Therapeutics Codon-optimized transgene for the treatment of progressive familiar intrahepatic cholestasis type 3 (pfic3)
WO2020074690A1 (en) 2018-10-12 2020-04-16 Vivet Therapeutics Codon-optimized transgene for the treatment of progressive familiar intrahepatic cholestasis type 3 (pfic3)
WO2020094693A1 (en) 2018-11-07 2020-05-14 Vivet Therapeutics Codon-optimized abcb11 transgene for the treatment of progressive familial intrahepatic cholestasis type 2 (pfic2)
EP4257155A2 (en) 2018-11-16 2023-10-11 Encoded Therapeutics, Inc. Compositions and methods for treating wilson's disease
WO2020116606A1 (en) 2018-12-06 2020-06-11 キリンホールディングス株式会社 Production method for t cells or nk cells, medium for culturing t cells or nk cells, method for culturing t cells or nk cells, method for maintaining undifferentiated state of undifferentiated t cells, and growth-accelerating agent for t cells or nk cells
WO2020123663A1 (en) 2018-12-11 2020-06-18 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
WO2020130147A1 (en) 2018-12-21 2020-06-25 国立大学法人京都大学 Lubricin-localized cartilage-like tissue, method for producing same and composition comprising same for treating articular cartilage damage
WO2020138371A1 (en) 2018-12-26 2020-07-02 キリンホールディングス株式会社 Modified tcr and production method therefor
WO2020167822A2 (en) 2019-02-13 2020-08-20 University Of Rochester Gene networks that mediate remyelination of the human brain
WO2020175592A1 (en) 2019-02-26 2020-09-03 国立大学法人東北大学 Method for producing osteoblast cluster using ips cells
WO2020230832A1 (en) 2019-05-15 2020-11-19 味の素株式会社 Method for purifying neural crest cells or corneal epithelial cells
WO2020235319A1 (en) 2019-05-20 2020-11-26 味の素株式会社 Expansion culture method for cartilage or bone precursor cells
WO2021117886A1 (en) 2019-12-12 2021-06-17 国立大学法人千葉大学 Freeze-dried preparation containing megakaryocytes and platelets
WO2021174004A1 (en) 2020-02-28 2021-09-02 Millennium Pharmaceuticals, Inc. Method for producing natural killer cells from pluripotent stem cells
WO2021241658A1 (en) 2020-05-26 2021-12-02 株式会社ヘリオス Hypoimmunogenic cells
WO2021256522A1 (en) 2020-06-17 2021-12-23 国立大学法人京都大学 Chimeric antigen receptor-expressing immunocompetent cells
WO2022014604A1 (en) 2020-07-13 2022-01-20 国立大学法人京都大学 Skeletal muscle precursor cells and method for purifying same, composition for treating myogenic diseases, and method for producing cell group containing skeletal muscle precursor cells
WO2022019152A1 (en) 2020-07-20 2022-01-27 学校法人 愛知医科大学 Composition for undifferentiated maintenance culture of pluripotent cells, medium for undifferentiated maintenance culture of pluripotent cells, maintenance culture method in undifferentiated state of pluripotent cells, and method for producing pluripotent cells
WO2022033983A1 (en) 2020-08-10 2022-02-17 Fundacion Para La Investigacion Medica Aplicada Gene therapy vector expressing cyp27a1 for the treatment of cerebrotendinous xanthomatosis
WO2022039279A1 (en) 2020-08-18 2022-02-24 国立大学法人京都大学 Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
WO2022050419A1 (en) 2020-09-04 2022-03-10 Heartseed株式会社 Quality improving agent for ips cells, method of producing ips cells, ips cells, and composition for producing ips cells
WO2022069598A1 (en) 2020-09-29 2022-04-07 Genethon Enhancing utrophin expression in cell by inducing mutations within utrophin regulatory elements and therapeutic use thereof
WO2022129430A1 (en) 2020-12-16 2022-06-23 Universitat Pompeu Fabra Therapeutic lama2 payload for treatment of congenital muscular dystrophy
WO2022136616A1 (en) 2020-12-23 2022-06-30 Vivet Therapeutics Minimal bile acid inducible promoters for gene therapy
WO2022196714A1 (en) 2021-03-17 2022-09-22 アステラス製薬株式会社 Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
WO2022230977A1 (en) 2021-04-30 2022-11-03 国立研究開発法人理化学研究所 Cord-like aggregates of retinal pigment epithelial cells, device and production method for producing same, and therapeutic agent comprising said cord-like aggregates
WO2022255489A1 (en) 2021-06-04 2022-12-08 キリンホールディングス株式会社 Cell composition, method for producing cell composition, and pharmaceutical composition containing cell composition
WO2022259721A1 (en) 2021-06-10 2022-12-15 味の素株式会社 Method for producing mesenchymal stem cells
WO2022264033A1 (en) 2021-06-15 2022-12-22 Takeda Pharmaceutical Company Limited Method for producing natural killer cells from pluripotent stem cells
WO2023286832A1 (en) 2021-07-15 2023-01-19 アステラス製薬株式会社 Pericyte-like cells expressing vascular endothelial growth factor (vegf) at high level
WO2023286834A1 (en) 2021-07-15 2023-01-19 アステラス製薬株式会社 Pericyte-like cell expressing vascular endothelial growth factor (vegf) at high level
WO2023003025A1 (en) 2021-07-21 2023-01-26 国立大学法人京都大学 Method for producing retinal tissue
WO2023017848A1 (en) 2021-08-11 2023-02-16 国立大学法人京都大学 Method for producing renal interstitial progenitor cells, erythropoietin-producing cells, and method for producing renin-producing cells
WO2023054357A1 (en) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 Method for producing pluripotent stem cells
WO2023069979A1 (en) 2021-10-20 2023-04-27 University Of Rochester Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss
WO2023069987A1 (en) 2021-10-20 2023-04-27 University Of Rochester Rejuvenation treatment of age-related white matter loss cross reference to related application
WO2023069843A1 (en) 2021-10-20 2023-04-27 University Of Rochester Humanized chimeras for the prospective assessment of cell addition and replacement therapies
WO2023069881A1 (en) 2021-10-20 2023-04-27 University Of Rochester Treatment with genetically modified cells, and genetically modified cells per se, with increased competitive advantage and/or decreased competitive disadvantage
WO2023081633A1 (en) 2021-11-02 2023-05-11 University Of Rochester Tcf7l2 mediated remyelination in the brain
WO2023085356A1 (en) 2021-11-11 2023-05-19 株式会社ヘリオス Gene-modified pluripotent stem cell, immunocompetent cell derived therefrom, method for producing said cells, and use thereof
WO2023150557A1 (en) 2022-02-01 2023-08-10 University Of Rochester Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods
WO2023153464A1 (en) 2022-02-09 2023-08-17 住友ファーマ株式会社 Method for assessing differentiation potential of cells in culture broth in differentiation of pluripotent stem cells into neural cells of midbrain floor plate region
WO2023215455A1 (en) 2022-05-05 2023-11-09 University Of Rochester Dual macroglial-microglial approach towards therapeutic cell replacement in neurodegenerative and neuropsychiatric disease
WO2024163747A2 (en) 2023-02-02 2024-08-08 University Of Rochester Competitive replacement of glial cells

Also Published As

Publication number Publication date
JP6924732B2 (en) 2021-08-25
US8183038B2 (en) 2012-05-22
KR101516833B1 (en) 2015-05-07
WO2008118820A3 (en) 2008-11-20
JP2010521990A (en) 2010-07-01
US20190106675A1 (en) 2019-04-11
IL200982A0 (en) 2010-05-17
US20140057355A1 (en) 2014-02-27
JP2024038501A (en) 2024-03-19
CA2684242C (en) 2019-11-12
US20200239840A1 (en) 2020-07-30
SG193652A1 (en) 2013-10-30
AU2008231020A1 (en) 2008-10-02
EP2137296A2 (en) 2009-12-30
JP2021176331A (en) 2021-11-11
US20110028537A1 (en) 2011-02-03
US8440461B2 (en) 2013-05-14
AU2008231020B2 (en) 2013-09-05
JP2018183183A (en) 2018-11-22
US20240271087A1 (en) 2024-08-15
CA2684242A1 (en) 2008-10-02
CN101743306A (en) 2010-06-16
EP3399025A1 (en) 2018-11-07
SG193653A1 (en) 2013-10-30
KR20090126303A (en) 2009-12-08
JP2018183182A (en) 2018-11-22
US10106772B2 (en) 2018-10-23
JP5813321B2 (en) 2015-11-17
US9499786B2 (en) 2016-11-22
US20080233610A1 (en) 2008-09-25
US20130210138A1 (en) 2013-08-15
JP6788329B2 (en) 2020-11-25
JP2015165810A (en) 2015-09-24
US11898162B2 (en) 2024-02-13
IL200982A (en) 2013-03-24

Similar Documents

Publication Publication Date Title
US11898162B2 (en) Reprogramming somatic cells into pluripotent cells using a vector encoding Oct4 and Sox2
EP2476750A1 (en) Somatic cell reprogramming
US20220010331A1 (en) Pluripotent stem cells obtained by non-viral reporgramming
JP5562231B2 (en) Efficient method for establishing induced pluripotent stem cells
IL261851A (en) Reprogramming t cells and hematopoietic cells
US20130065814A1 (en) Inductive production of pluripotent stem cells using synthetic transcription factors
WO2010131747A1 (en) Virus-producing cell
AU2016200360B2 (en) Somatic cell reprogramming
AU2013267048B2 (en) Somatic cell reprogramming
AU2015200413B2 (en) Reprogramming t cells and hematopoietic cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880014084.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08744218

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 200982

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2684242

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008231020

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010501136

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008744218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3460/KOLNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008231020

Country of ref document: AU

Date of ref document: 20080321

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20097022090

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE