Nothing Special   »   [go: up one dir, main page]

WO2008116181A2 - Variable codebook for mimo system - Google Patents

Variable codebook for mimo system Download PDF

Info

Publication number
WO2008116181A2
WO2008116181A2 PCT/US2008/057894 US2008057894W WO2008116181A2 WO 2008116181 A2 WO2008116181 A2 WO 2008116181A2 US 2008057894 W US2008057894 W US 2008057894W WO 2008116181 A2 WO2008116181 A2 WO 2008116181A2
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
size
wireless
precoding
channel
Prior art date
Application number
PCT/US2008/057894
Other languages
French (fr)
Other versions
WO2008116181A3 (en
Inventor
Kyungho Kim
Original Assignee
Marvell Semiconductor Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marvell Semiconductor Inc. filed Critical Marvell Semiconductor Inc.
Priority to CN200880009398.8A priority Critical patent/CN101669299B/en
Priority to EP08744204.2A priority patent/EP2130308B1/en
Priority to EP18199045.8A priority patent/EP3444969B1/en
Publication of WO2008116181A2 publication Critical patent/WO2008116181A2/en
Publication of WO2008116181A3 publication Critical patent/WO2008116181A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present disclosure relates generally to wireless communication systems and, more particularly, to a system and method for precoding wireless transmissions using a variable size codebook.
  • each frequency sub-band of the OFDM system may be viewed as an independent transmission channel within which to send data, thereby increasing the overall throughput or transmission rate of the communication system.
  • Transmitters used in the wireless communication systems that are compliant with the 802.1 la/802.1 lg/802.1
  • the 802.1 la/802.1 lg/802.1 In standards as well as other standards such as the 3GPP LTE and 802.16a IEEE Standard, typically perform multi-carrier OFDM symbol encoding (which may include error correction encoding and interleaving), convert the encoded symbols into the time domain using Inverse Fast Fourier Transform (IFFT) techniques, and perform digital to analog conversion and conventional radio frequency (RF) upconversion on the signals.
  • IFFT Inverse Fast Fourier Transform
  • RF radio frequency
  • the receivers used in the wireless communication systems that are compliant with the 802.11 a/802.11 g/802.11 n, 3GPP LTE and 802.16a IEEE standards typically include an RF receiving unit that performs RF downconversion and filtering of the received signals (which may be performed in one or more stages), and a baseband processor unit that processes the OFDM encoded symbols bearing the data of interest.
  • the digital form of each OFDM symbol presented in the frequency domain is recovered after baseband downconverting, conventional analog to digital conversion and Fast Fourier Transformation of the received time domain signal. Thereafter, the baseband processor performs demodulation and frequency domain equalization (FEQ) to recover the transmitted symbols, and these symbols are then processed with an appropriate FEC decoder, e.g.
  • FEQ demodulation and frequency domain equalization
  • a Viterbi decoder to estimate or determine the most likely identity of the transmitted symbol.
  • the recovered and recognized stream of symbols is then decoded, which may include deinterleaving and further error correction using any of a number of known error correction techniques, to produce a set of recovered signals corresponding to the original signals transmitted by the transmitter.
  • MIMO multiple-input, multiple-output
  • a MIMO channel formed by the various transmission and receive antennas between a particular transmitter and a particular receiver includes a number of independent spatial channels.
  • a wireless MlMO communication system can provide improved performance (e.g., increased transmission capacity) by utilizing the additional dimensionalities created by these spatial channels for the transmission of additional data.
  • the spatial channels of a "wideband MIMO system may experience different channel conditions (e.g., different fading and multi-path effects) across the overall system bandwidth and may therefore achieve different SNRs at different frequencies (i.e., at the different OFDM frequency sub-bands) of the overall system bandwidth. Consequently, the number of information bits per modulation symbol (i.e., the data rate) that may be transmitted using the different frequency sub-bands of each spatial channel for a particular level of performance may differ from frequency sub-band to frequency sub-band.
  • the RP modulated signals transmitted by the transmit antennas may reach the various receive antennas via a number of different propagation paths, the characteristics of which typically change over time due to the phenomena of multi-path and fading. Moreover, the characteristics of the various propagation sub-channels differ or vary based on the frequency of propagation. To compensate for the time varying, frequency selective nature of these propagation effects, and generally to enhance effective encoding and modulation in a MIMO wireless communication system, and improve the overall system throughput, the receiver of the MIMO wireless communication system may periodically develop or collect channel state information (CSI) for the wireless channel between the transmitter and receiver.
  • CSI channel state information
  • the wireless channel comprises a composite channel in which the effects of all combinations of transmit antennas and receive antennas are taken into account.
  • a channel matrix may be created comprising a plurality of complex channel values representing the channel characteristics (for example, the gain, the phase and the SNR of each channel) between each transmit-receive antenna pair.
  • the receiver may send the CSI, or other information derived from the CSI 5 back to the transmitter, which may use the CSI or other information derived from the CSI, to precondition or precode the signals transmitted over channel so as to compensate for the varying propagation effects of the channels.
  • a precoding matrix may be developed which when multiplied with the transmitted signal negates the propagation effects of the channel. However, because the propagation effects of the wireless channel vary over time, a single precoding matrix will only be sufficient to compensate for one set of channel characteristics. Separate precoding matrices must be developed to compensate for different sets of channel characteristics.
  • a plurality of precoding matrices may be derived in advance in order to compensate for a range of different channel conditions. The plurality of precoding matrices may be assembled in a codebook which may be stored in a memory associated with the transmitter.
  • the receiver in a MIMO wireless communication system may determine which of the precoding matrices in the codebook is most appropriate to compensate for the measured CSI.
  • the receiver may transmit a precoding matrix index or other identifier back to the transmitter specifying which precoding matrix in the codebook should be used to precode signals to be transmitted over the channel.
  • the transmitter may then precode signals using the specified precoding matrix.
  • the size of the codebook i.e. the number of precoding matrices included in the codebook, can have a significant impact on system throughput and overall channel efficiency.
  • a large codebook having many precoding matrices to choose from it is possible to select a precoding matrix which closely matches (i.e. counteracts) the measured propagation effects of the channel. By accurately counter-acting the propagation effects of the channel system throughput can be significantly improved.
  • a larger codebook requires a larger amount of data to be fed back from the receiver to the transmitter in order to identify a particular precoding matrix to be used for precoding transmitted signals.
  • the additional feedback data required of a large codebook consumes additional channel overhead and has a negative impact on channel efficiency.
  • the improved system throughput associated with a large codebook may be worth the cost in added overhead.
  • the improved system throughput, even with a large codebook may not justify the cost in increased channel overhead.
  • the present disclosure generally relates to the use of a variable size codebook within a MIMO wireless communication system.
  • the size of the codebook may be determined by the quality of the wireless transmission channel between the transmitter and receiver, for example, or some other codebook selection criteria. In some circumstances, it may be preferable to employ a larger codebook when the channel quality is high, allowing for significant gains in overall same system throughput. On the other hand, a smaller codebook may be preferable in circumstances when the channel quality is poor, so that the added channel overhead associated with a larger code book does not reduce the channel efficiency. For example, a smaller codebook may be preferable when a larger codebook would not significantly improve system throughput.
  • An embodiment provides a wireless transmission system.
  • the wireless transmission system includes a base station and a terminal.
  • the base station is adapted to transmit wireless signals to the terminal.
  • a memory is associated with the base station.
  • the memory stores a variable size codebook that includes a first plurality of precoding matrices.
  • the precoding matrices included in the variable size codebook may be used for precoding wireless signals transmitted by the base station.
  • the terminal is adapted to receive the wireless signals transmitted from the base station.
  • Channel state measuring circuitry associated with the terminal is provided for measuring transmission conditions of the wireless communication channel formed between the base station and the terminal.
  • the terminal includes a feedback transmitter for wirelessly transmitting channel state information from the terminal back to the base station.
  • the base station includes a feedback receiver for receiving the channel state information fed back from the terminal.
  • the base station selects a codebook size based on the channel state information and selects a precoding matrix from a codebook of the selected codebook size for precoding wireless signals to be transmitted from the base station to the receiver.
  • the variable size codebook may comprise a second plurality of precoding matrices formed from a subset of the first plurality of precoding matrices included in the variable sized codebook.
  • the variable sized codebook may comprise a plurality of fixed size codebooks containing different numbers of precoding matrices.
  • Another embodiment relates to a multiple-input-multiple-output (MIMO) wireless communication system that includes a base station adapted to transmit a plurality of wireless data streams.
  • the base station includes a memory that stores a variable size codebook for precoding the data streams transmitted by the base station.
  • the MlMO wireless communication system further includes a terminal adapted to receive wireless transmissions, including at least one of the plurality of data streams transmitted by the base station.
  • the terminal includes channel state measuring circuitry for measuring channel state information relating to the wireless communication channel established between the base station and the terminal.
  • the terminal further includes a feedback transmitter for wirelessly transmitting a feedback signal related to the channel state information back to the base station.
  • the base station includes a feedback receiver for receiving the feedback signal transmitted from the terminal.
  • the base station is adapted to select a codebook size and a precoding matrix from a codebook of the selected size based on the channel state information received by the feed back receiver.
  • a further embodiment provides a method of precoding a wireless transmission signal.
  • the method includes measuring a characteristic of a wireless communication channel, selecting a codebook size based on the measured characteristic of the wireless communication channel, and precoding the wireless transmission signal using a precoding matrix included in a codebook of the selected size.
  • the method may include providing a fixed size codebook having a plurality of precoding matrices, and creating a codebook of the selected codebook size from a subset of the precoding matrices found in the fixed size codebook.
  • the method may include providing a plurality of fixed size codebooks of different sizes.
  • Yet another embodiment relates to a wireless transmitter employing a variable size precoding codebook.
  • the transmitter includes a memory storing one or more precoding codebooks.
  • the transmitter further includes a feedback receiver for receiving channel state information from a receiver.
  • a codebook selector associated with the transmitter is adapted to select a codebook size base on channel state information received from the receiver.
  • the transmitter includes a transmission signal precoder adapted to precode a wireless transmission signal using a precoding matrix from a codebook of the selected size.
  • Still another embodiment provides a wireless receiver for use in a MlMO wireless communication system employing a variable size precoding codebook.
  • the receiver includes channel state measuring circuitry for generating channel state information describing the state of the channel.
  • a codebook size selector is provided for selecting the size of a codebook to be used for precoding signals to be sent by a transmitter to the receiver over the wireless channel.
  • the codebook size is selected based on the channel state information measured by the channel state measuring circuitry.
  • the receiver includes a feedback transmitter for transmitting a codebook index or other codebook size indicator to the wireless transmitter.
  • the wireless transmitter may precode wireless transmissions directed toward the receiver using a precoding matrix included in a codebook of the selected size.
  • Fig. 1 is a block diagram of a wireless MIMO communication system that employs a variable size codebook for precoding wireless transmission signals.
  • Fig 2. is a flow chart showing a method of selecting a codebook size and identifying a precoding matrix form within a codebook of the selected size based on codebook size and matrix selection criteria.
  • Figs. 3A-3F illustrate examples of various different devices in which a wireless communication system implementing a variable size codebook described herein may be used.
  • the present disclosure generally relates to variable sized codebooks for use in precoding data streams to be transmitted in multiple-input-multiple-output (MlMO) wireless communication systems.
  • MIMO multiple-input-multiple-output
  • the transmission characteristics of the wireless channel between the transmitter and receiver of a MIMO wireless communication system change over time. If the transmitter has a priori knowledge of the channel characteristics, signals may be preconditioned (precoded) to compensate in advance for the negative effects of transmitting the signals over the wireless channel. Under favorable conditions precoding signals in this manner can significantly improve channel throughput.
  • the communication channel may be represented as a matrix of complex channel values that represent the transmission effects of all combinations of the transmitting and receiving antennas.
  • a precoding matrix may be derived which counteracts the negative effects of transmitting signals over the wireless communication channel.
  • a signal may be multiplied by the precoding matrix before transmission over the wireless communication channel. Upon receiving such precoded signals the receiver has a much better chance of recovering the original signal, notwithstanding the negative effects of the wireless channel. Precoding signals in this manner can significantly improve system throughput.
  • a finite number of precoding matrices may be derived in advance, each matrix adapted to compensate for a particular set of channel characteristics.
  • the plurality of precoding matrices may be collected into a codebook and stored at the transmitter.
  • an appropriate precoding matrix may be selected from the codebook and applied to a signal before the signal is transmitted over the wireless communication channel.
  • channel state information is calculated at the receiver based on a known signal transmitted from the transmitter to the receiver.
  • the CSI is fed back to the transmitter and the transmitter chooses an appropriate precoding matrix for precoding subsequent signals from the codebook.
  • the receiver may have knowledge of the codebook and the receiver itself may be adapted to select an appropriate precoding matrix from the codebook. In this case, the receiver feeds back a precoding matrix index or other identifier to the transmitter that specifies the appropriate precoding matrix for precoding signals to be sent from the transmitter to the receiver given the channel conditions observed by the receiver.
  • a precoding matrix maybe selected which is closely paired to the characteristics of the wireless channel in order to achieve the greatest possible improvement in system throughput. If the codebook is small, it will be less likely that the precoding matrix will precisely compensate for the negative effects of the channel characteristics. Therefore, with a smaller codebook the improvement in channel throughput may not be as dramatic as with a larger codebook. However, a larger codebook requires greater specificity to identify the appropriate precoding matrix for a given set of channel conditions.
  • Another factor to consider when selecting the size of the codebook is the state of the channel at the time the signals are transmitted.
  • SINR signal to interference-plus-noise-ratio
  • accurate precoding of the signals may result in dramatically improved channel throughput.
  • precoding results may be marginal at best.
  • a smaller codebook with a more limited number of precoding matrices may be employed in order to reduce channel overhead.
  • a larger codebook may be more effective in situations in which the gain in channel throughput associated with the use of the larger codebook outweighs the cost in channel overhead. In other cases a smaller codebook may be more appropriate. Because the wireless channel conditions change over time, there may be times when a larger codebook is more beneficial and other times when a smaller codebook is more appropriate. Unfortunately, the channel conditions typically cannot be known in advance. It is difficult to determine whether the improved system performance associated with a large codebook will justify the cost in channel overhead, or whether a smaller codebook should be employed.
  • a solution is to use a variable size codebook, employing a more limited set of precoding matrices when channel conditions are such that the expected gains in system throughput associated with the use of a larger codebook may not justify the cost in increased channel overhead, and expanding the selection of available precoding matrices (i.e., using a larger codebook) when the channel conditions are such that the expected gains in system throughput may exceed the penalty paid in additional overhead.
  • the MIMO communication system 10 generally includes a single transmitter 12 having multiple transmission antennas 14 J -14 N and a single receiver 16 having multiple receiver antennas 18 I -18 M -
  • the transmitter 12 may actually be a base station capable of both transmitting signals to one or more remote terminals.
  • the receiver 16 may in turn be one such remote terminal, capable of receiving signals transmitted from the base station as well as transmitting signals back to the base station 12.
  • both the base station and the terminal may be capable of both transmitting and receiving signals, the base station will be referred to herein as the transmitter 12 and the terminal will be referred to as the receiver 16.
  • the number of transmission antennas 14i-14 N can be the same as, more than, or less than the number of receiver antennas 18 I -18 M - AS shown in Fig. 1, the transmitter 12 may include a controller 20 coupled to a memory 21, a symbol encoder/modulator unit 22, a precoding block 23, a space-time mapping block 24, and a codebook selection block 28.
  • the transmitter 12 may also include a matrix equalizer 25 and a symbol demodulator and decoder unit 26 to perform demodulation and decoding of signals received via the antennas 141-14N in a receive mode.
  • the controller 20 may be any desired type of controller and the controller 20 and the codebook/matrix selection block 28 may be implemented as one or more standard multipurpose, programmable processors, such as a general purpose micro-processor, a digital signal processor, an application specific integrated circuit (ASIC), etc., or may be implemented using any other desired types of hardware, software and/or firmware.
  • the precoding block 23, the space-time mapping block 24, and the matrix equalizer 25 may be implemented using known or standard hardware and/or software elements.
  • various of the transmitter components may be implemented in the same or in different hardware devices, such as in the same or different processors. Additionally, each of these components of the transmitter 12 may be disposed in a housing 29 (shown in dotted relief in Fig. 1) and the routines or instructions for implementing the functionality of any of these components may be stored in the memory 21 or within other memory devices associated with the individual hardware used to implement these components.
  • variable size codebook may be stored in the memory 21.
  • the variable-size codebook may be implemented in a number of different ways.
  • the variable size codebook may comprise a single fixed size codebook including a large number of pre- calculated precoding matrices. Smaller codebooks of differing sizes may be constructed from subsets of the plurality of precoding matrices found in the fixed size codebook.
  • a fixed size codebook having sixty- four precoding matrices maybe stored in the memory 21.
  • a second smaller codebook having only thirty-two precoding matrices may be created by selecting every other matrix found in the larger sixty- four matrix fixed size codebook.
  • a third codebook of sixteen matrices may be created by selecting every fourth matrix from the larger fixed size codebook.
  • a codebook of eight matrices may be created by selecting every eighth matrix from the larger fixed size codebook, and a codebook of just four matrices may be created by selecting every sixteenth matrix from the larger fixed size codebook.
  • Another alternative is to simply store a plurality of different size codebooks. For example, a first codebook having sixty- four precoding matrices may be stored in the memory 21.
  • a second separate codebook having thirty- two precoding matrices may also be stored in the memory 21.
  • a third codebook having 16 precoding matrices, a fourth codebook having eight precoding matrices and a fifth codebook having just four precoding matrices may also be stored separately in the memory 21.
  • One or more pre-calculated or predetermined spreading matrices may also be stored in the memory 21 and used in the spreading matrix block 24 at various times or under various different conditions.
  • a different pre-calculated or predetermined space- time mapping matrix may be stored for each of a number of possible combinations of encoded spatial streams of data to be transmitted and transmission antennas 14 to be used to simultaneously transmit these encoded spatial streams of data.
  • a different space-time mapping matrix may be calculated and stored for two spatial streams of data being sent via three of the transmission antennas 14, for two spatial streams of data being sent via four of the transmission antennas 14, for three spatial streams of data being sent via five transmission antennas 14, etc.
  • the communication system 10 may optimally send different numbers of spatial streams of data at different times, depending on the load of the system. Moreover, the communication system 10 may also use these various different pre-stored or pre-calculated space-time mapping matrices to account for or to adapt to the loss of one or more of the transmission antennas 14 to be used in sending data within the communication system 10.
  • information signals Tx j - Tx n which are to be transmitted from the transmitter 12 to the receiver 16 are provided to the symbol encoder/modulator unit 22 for encoding and modulation.
  • any desired number of signals Tx i - Tx n may be provided to the modulator unit 22, with this number generally being limited by the modulation scheme employed by and the bandwidth associated with the MIMO communication system 10.
  • the signals Txi - Tx n may be any type of signals, including analog or digital signals, and may represent any desired type of data or information.
  • a known test or control signal Cx i (which may be stored in the memory 21) may be provided to the symbol encoder and modulator unit 22 for use in determining CSI related information describing the characteristics of the channel(s) between the transmitter 12 and the receiver 16. If desired, the same control signal or a different control signal may be used to determine the CSI for each frequency sub-band and/or spatial channel used in the MIMO communication system 10.
  • the symbol encoder and modulator unit 22 may interleave digital representations of the various signals Tx i - Tx n and Cx i and may perform any other known type(s) of error- correction encoding on the signals Tx 1 - Tx n and Cx i to produce one or more encoded streams of symbols SSi, SS 2 , . . . SS P , to be modulated and sent from the transmitter 12 to the receiver 16. While the symbol streams SSi - SS P may be modulated using any desired or suitable QAM technique, such as using 64 QAM, these symbols may be modulated in any other known or desired manner including, for example, using any other desired phase and/or frequency modulation techniques.
  • the modulated encoded symbol streams SSi - SS p are provided by the symbol encoder and modulator unit 22 to the precoding block 23.
  • the individual symbols comprise vectors which may be multiplied by the appropriate precoding matrix in the precoding block 23.
  • the controller 20 receives a feedback signal from the receiver 16 which is used by the controller 20 to identify an appropriate precoding matrix stored in the variable size codebook stored in the memory 21.
  • the controller 20 accesses the variable size codebook stored in the memory 21 and retrieves a precoding matrix appropriate for the channel characteristics and conditions prevailing at the time and provides the selected precoding matrix to the precoding block 23.
  • the precoding block 23 multiplies the modulated encoded symbol streams SSi-SSp by the selected precoding matrix, then provides the precoded symbol streams to the space-time mapping block 24 for processing before being transmitted via the antennas 14]-14 N . While not specifically shown in Fig. 1, the precoded modulated symbol streams SSi - SS P may be processed by the space-time mapping block 24 that implements a space-time mapping matrix optionally in accordance with a transmission technique disclosed in co-pending U.S. Patent Application No.
  • the space-time mapping block 24 processes the modulated signals by injecting delays and/or gains into the modulated signals based on a space-time mapping matrix which may be provided by, for example, the controller 12, to thereby perform mixing and transmission of the spatial streams of data across the transmission antennas H 1 -H N .
  • the signals transmitted by the transmitter 12 are detected by the receiver antennas 18 j- 18 M and may be processed by a matrix equalizer 35 within the receiver 16 to enhance the reception capabilities of the antennas 18 J -18 M -
  • a symbol demodulator and decoder unit 36 under control of the controller 40, may decode and demodulate the received symbol strings SSi - SS p as recovered by the matrix equalizer 35. In this process, these signals may be downconverted to baseband.
  • the demodulator and decoder unit 36 may operate to perform demodulation on the received symbols in each symbol stream SSi - SS P to produce a digital bit stream for each symbol stream.
  • the symbol demodulator and decoder unit 36 may perform error correction decoding and deinterleaving on the bit stream to produce the received signals Rx)-Rx n corresponding to the originally transmitted signals Tx ⁇ -Tx n .
  • the MIMO wireless communication system 10 may also provide a reverse channel whereby signals may be transmitted from the receiver 16 back to transmitter 12.
  • the receiver 16 may also include a memory 48, a symbol encoder and modulator unit 46, a precoding block 33, and a space-time mapping block 34.
  • the symbol encoder/modulator 46 may receive one or more signals TRi-TR 01 .
  • the signals TRi -TR m may be encoded and modulated by the symbol encoder/modulator 46 using any desired encoding and modulation techniques.
  • the memory 48 optionally may store a variable size codebook similar to that stored in the transmitter memory 21.
  • the controller 40 may access the memory 48 to retrieve an appropriate precoding matrix for precoding the encoded and modulated symbol streams received from the symbol encoder/modulator 46.
  • the precoded symbol stream may then be upconverted and processed by a space-time mapping block 34 which may use a space-time mapping matrix developed according to the principles described herein based on the number of symbol streams to be sent simultaneously and the number of transmission antennas 18 to be used.
  • the output of the space-time mapping block 34 is then transmitted via the receiver antennas 18) -18 N to, for example, the transmitter 12, thereby implementing the reverse link.
  • the transmitter 12 may implement a matrix equalizer 25 and symbol demodulator/decoder 26 for receiving, demodulating and decoding signals transmitted from the receiver or terminal 16 to the transmitter or base station 16 over the reverse channel.
  • the matrix equalizer 25 and the demodulator/decoder unit 26 within the transmitter 12 operate similarly to the matrix equalizer 35 and the demodulator/decoder unit 36 of the receiver 16 to demodulate and decode the symbol streams transmitted by the receiver 16 to produce the recovered signals RRi -RR m .
  • the matrix equalizer 25 may process the received signals in any known manner to enhance the separation and therefore the reception of the various symbol streams transmitted by the antennas 18 I -18M.
  • the transmitter or base station controller 20 selects an appropriate precoding matrix from the variable size codebook stored in the memory 21 based on a feedback signal received from the receiver 16.
  • the receiver 16 includes the eodebook/matrix selection block 41.
  • the eodebook/matrix selection block 41 measures channel state information relating the characteristics and quality of the wireless channel between the transmitter and the receiver.
  • the channel state information may comprise a matrix of complex channel values that take into account the contributions of all combinations of the transmitting antennas 14 I -14 N and the receiving antennas 18 I -18 M -
  • the channel state information measured by the eodebook/matrix selection block 41 may include, for example, the channel gain and phase delay characteristics between each pair of transmit and receive antennas.
  • the codebook/matrix selection block 41 may also measure channel quality, in the form of (S DSi R), a signal-to-noise-ratio (SNA), or some other measure of the channel quality.
  • the codebook/matrix selection block 41 evaluates the channel state information using various criteria to select first the most appropriate code book to use given the measured channel conditions, and then a particular precoding matrix from the selected codebook for precoding signals.
  • the identity of or size of the selected codebook along with the identity of the selected precoding matrix is then fed back to the transmitter 12 so that the transmitter controller 20 may select the proper precoding matrix from the appropriate size codebook stored in the memory 21.
  • the selected codebook and the selected precoding matrix within the selected codebook may be fed back to the transmitter 12 via the reverse transmission channel, or over another dedicated feedback channel (not shown).
  • a selected precoding matrix may be specified by identifying a particular size codebook from which the precoding matrix is to be selected and a specific precoding matrix within the identified codebook. For example, in an embodiment in which four different sized codebooks are employed (e.g. codebooks containing 64, 32, 16 and 8 precoding matrices respectively), a minimum of 2 bits are required to identify one of the four different codebooks. An additional six bits are required to identify a particular precoding matrix within the largest codebook , if the codebook having 64 precoding matrices is selected. If the codebook having 32 matrices is selected, an additional 5 bits are required to specify a particular precoding matrix.
  • codebooks e.g. codebooks containing 64, 32, 16 and 8 precoding matrices respectively
  • channel throughput will be improved using a larger codebook by an amount significantly greater than the amount of channel capacity consumed by the additional overhead required to identify a precoding matrix within the larger codebook, the improved channel throughput associated with selecting a precoding matrix from the larger codebook may justify the increased cost in channel overhead.
  • the receiver may measure the SNR or the SINR or some measure of the channel quality from the signals received by the receiving antennas 18 1 - 18 M -
  • the codebook/matrix selection block 41 may then calculate an expected throughput for each of the different sized codebooks available for precoding signals to be transmitted to the receiver 16.
  • a ratio may be calculated for each of the different sized codebooks comparing the expected throughput associated with each codebook to the corresponding cost in additional overhead. Whichever codebook offers the highest ratio of improved channel performance to overhead cost will be selected.
  • codebook selection criteria may also be used. For example, a series of SNR or SlNR thresholds may be established. The codebook size may be selected based on where the measured SNR or SlNR falls in relation to the established thresholds.
  • the smallest available codebook may be selected. If the measured SNR or SINR is greater than or equal to the first threshold value, but less than the second threshold value, the next larger available codebook may be selected, and so on until there is a proper sized codebook identified for every possible set of channel conditions.
  • the codebook matrix selection block 41 may select a particular precoding matrix from the selected codebook.
  • the precoding matrix may be selected in a manner similar to the process of selecting the size of the codebook.
  • Some objective criteria, such as the maximum sum throughput, may be defined and calculated for each precoding matrix within the selected codebook.
  • the precoding matrix that produces the highest maximum sum throughput (or some other objective measure) may then be selected for precoding the symbols to be transmitted from the transmitter to the receiver.
  • Fig. 2 is a flowchart illustrating the process of selecting a precoding matrix in a MIMO wireless communication system employing a variable size codebook.
  • a first step 202 is to provide a variable size codebook that includes a plurality of precoding matrices that may be employed to precode signals transmitted from a wireless transmitter to a wireless receiver within a MIMO wireless communication system.
  • the variable sized codebook may comprise a single large codebook having a large number of precoding matrices from which smaller codebooks may be defined by selecting smaller subsets of the precoding matrices found in the larger codebook.
  • the variable sized codebook may comprise a collection of differently sized codebooks, each adapted for different channel conditions.
  • the process of applying a variable sized codebook to a MIMO wireless communication channel calls for measuring one or more characteristics of the wireless communication channel. At least one of the measured characteristics relates to codebook size and precoding matrix selection criteria.
  • the codebook size criteria are employed to determine the size or identity of a particular codebook from which a precoding matrix may be selected for precoding wireless transmissions from the transmitter to the receiver in the MIMO wireless communication system.
  • the measured communication channel characteristics may comprise, for example, the SNR, SINR, or some other measure of the channel quality.
  • the criteria for selecting the size of the codebook from which a precoding matrix will be selected may include comparing the cost in channel overhead associated with each available codebook to the corresponding expected gain in system throughput associated with each available codebook.
  • the expected throughput associate with each of the different size codebooks will be heavily influenced by the measured state of the communication channel.
  • the codebook that offers the greatest expected throughput under the measured channel conditions for the least additional cost in channel overhead may be selected.
  • predefined matrix selection criteria are applied to determine the best precoding matrix in the selected codebook for precoding wireless transmissions given the measured channel conditions.
  • the best matrix selection criteria may comprise, for example, calculating the maximum sum throughput for each matrix in the selected codebook, and selecting the matrix which provides the greatest throughput given the measured channel characteristics.
  • the process switches to the new precoding matrix at block 216 before proceeding to feed back the identity selected codebook and the selected matrix to the transmitter at block 218.
  • the process waits for the next reporting period at block 220.
  • the process may be adapted to re-evaluate channel conditions and select a codebook and precoding matrix at certain predefined rate, or after a predefined period of time, after a certain number of transmissions or based on some other criteria. In any case, at the beginning of the next reporting period the process returns to block 202 and repeats.
  • Variable size codebook techniques such as described above may be utilized in any type of wireless communication system including, for example, ones used in wireless computer systems such as those implemented via a wireless local area network (WLAN) or a wide area wireless network (e.g., WiMax), internet, cable and satellite based communication systems (such as internet, data, video and voice communication systems), wireless telephone systems (including cellular phone systems, voice over internet protocol (VoIP) systems, home-based wireless telephone systems, etc.)
  • WLAN wireless local area network
  • WiMax wide area wireless network
  • internet cable and satellite based communication systems
  • wireless telephone systems including cellular phone systems, voice over internet protocol (VoIP) systems, home-based wireless telephone systems, etc.
  • VoIP voice over internet protocol
  • variable size codebooks may be utilized in a high definition television (HDTV) 420 which may include either or both signal processing and/or control circuits, which are generally identified in Fig. 3C at 422, a WLAN network interface 429 and/or mass data storage 427 of the HDTV 420.
  • HDTV 420 receives HDTV input signals in either a wired or wireless format and generates HDTV output signals for a display 426.
  • signal processing circuit and/or control circuit 422 and/or other circuits (not shown) of HDTV 420 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other type of HDTV processing that may be required.
  • Variable size codebook techniques may be utilized in the signal processing circuit and/or control circuit 422 and/or the WLAN network interface 429, for example.
  • HDTV 420 may communicate with mass data storage 427 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices such as a hard disk drive (HDD) or a digital versatile disk (DVD) drive.
  • the HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8".
  • HDTV 420 may be connected to memory 428 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.
  • HDTV 420 also may support connections with a WLAN via the WLAN network interface 429 which may implement the beamforming techniques described above.
  • the present invention may be used in conjunction with a control system of a vehicle 430 having a WLAN network interface 448 and/or mass data storage 446.
  • a control system of a vehicle 430 having a WLAN network interface 448 and/or mass data storage 446.
  • sensors such as temperature sensors, pressure sensors, rotational sensors, airflow sensors and/or any other suitable sensors and/or that generates one or more output control signals such as engine operating parameters, transmission operating parameters, braking parameters, and/or other control signals.
  • Control system 440 may likewise receive signals from input sensors 442 and/or output control signals to one or more output devices 444.
  • control system 440 may be part of an anti-lock braking system (ABS), a navigation system, a telematics system, a vehicle telematics system, a lane departure system, an adaptive cruise control system, a vehicle entertainment system such as a stereo, DVD, compact disc and the like. Still other implementations are contemplated.
  • Powertrain control system 432 may communicate with mass data storage 446 that stores data in a nonvolatile manner.
  • Mass data storage 446 may include optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive.
  • the HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8".
  • Powertrain control system 432 may be connected to memory 447 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.
  • Powertrain control system 432 also may support connections with a WLAN via the WLAN network interface 448 which may implement the beamforming techniques described above.
  • the control system 440 may also include mass data storage, memory and/or a WLAN network interface (all not shown). Variable size codebook techniques may be utilized on the WLAN network interface 448 of the powertrain control system and/or the WLAN network interface of the control system 440.
  • variable size codebook techniques may be embodied in a cellular phone 450 that may include one or more cellular antennas 451, either or both signal processing and/or control circuits, which are generally identified in Fig. 3C at 452, a WLAN network interface 468 and/or mass data storage 464 of the cellular phone 450.
  • cellular phone 450 includes a microphone 456, an audio output 458 such as a speaker and/or audio output jack, a display 460 and/or an input device 462 such as a keypad, pointing device, voice actuation and/or other input device.
  • Signal processing and/or control circuits 452 and/or other circuits (not shown) in cellular phone 450 may process data, perform coding and/or encryption, perform calculations, format data and/or perform other cellular phone functions.
  • Cellular phone 450 may communicate with mass data storage 464 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive.
  • the HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8".
  • Cellular phone 450 may be connected to memory 466 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.
  • Cellular phone 450 also may support connections with a WLAN via the WLAN network interface 468. Variable size codebook techniques may be utilized on the WLAN network interface 468 and/or the signal processing and/or control circuits 452.
  • variable size codebook techniques may be embodied in a set top box 480 including either or both signal processing and/or control circuits, which are generally identified in Fig. 3D at 484, a WLAN network interface 496 and/or mass data storage 490 of the set top box 480.
  • Set top box 480 receives signals from a source such as a broadband source and outputs standard and/or high definition audio/video signals suitable for a display 488 such as a television and/or monitor and/or other video and/or audio output devices.
  • Signal processing and/or control circuits 484 and/or other circuits (not shown) of the set top box 480 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other set top box function.
  • Set top box 480 may communicate with mass data storage 490 that stores data in a nonvolatile manner.
  • Mass data storage 490 may include optical and/or magnetic storage devices, for example, a hard disk drive HDD and/or a DVD drive.
  • the HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8".
  • Set top box 480 may be connected to memory 494 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.
  • Set top box 480 also may support connections with a WLAN via the WLAN network interface 496 which may implement the beamforming techniques described herein. Variable size codebook techniques may be utilized in the signal processing and/or control circuits 484 and/or the WLAN network interface 496.
  • variable size codebook techniques may be embodied in a media player 500.
  • the variable size codebook techniques may be implemented in either or both the signal processing and/or control circuits, which are generally identified in Fig. 3E at 504, and a WLAN network interface 516 and/or mass data storage 510 of the media player 500.
  • media player 500 includes a display 507 and/or a user input 508 such as a keypad, touchpad and the like.
  • media player 500 may employ a graphical user interface (GUI) that typically employs menus, drop down menus, icons and/or a point-and-click interface via display 507 and/or user input 508.
  • GUI graphical user interface
  • Media player 500 further includes an audio output 509 such as a speaker and/or audio output jack.
  • Audio output 509 such as a speaker and/or audio output jack.
  • Signal processing and/or control circuits 504 and/or other circuits (not shown) of media player 500 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other media player function.
  • Media player 500 may communicate with mass data storage 510 that stores data such as compressed audio and/or video content in a nonvolatile manner.
  • the compressed audio files include files that are compliant with MP3 format or other suitable compressed audio and/or video formats.
  • the mass data storage may include optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive.
  • the HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8".
  • Media player 500 may be connected to memory 514 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.
  • Media player 500 also may support connections with a WLAN via the WLAN network interface 516 which may implement the beamforming techniques described herein. Still other implementations in addition to those described above are contemplated.
  • variable size codebook techniques may be embodied in a Voice over Internet Protocol (VoIP) phone 600 that may include one or more antennas 618, either or both signal processing and/or control circuits, which are generally identified in Fig. 3F at 604, and a wireless interface and/or mass data storage 602 of the VoIP phone 600.
  • VoIP phone 600 includes, in part, a microphone 610, an audio output 612 such as a speaker and/or audio output jack, a display monitor 614, an input device 616 such as a keypad, pointing device, voice actuation and/or other input devices, and a Wireless Fidelity (Wi-Fi) communication module 608.
  • Signal processing and/or control circuits 604 and/or other circuits (not shown) in VoIP phone 600 may process data, perform coding and/or encryption, perform calculations, format data and/or perform other VoIP phone functions.
  • VoIP phone 600 may communicate with mass data storage 602 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive.
  • the HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8".
  • VoIP phone 600 may be connected to memory 606, which may be a RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.
  • VoIP phone 600 is configured to establish communications link with a VoIP network (not shown) via Wi-Fi communication module 608 which may implement the beamforming techniques described herein.
  • Variable size codebook techniques may be employed in either or both the signal processing and/or control circuits 604 and the Wi-Fi communication module 608.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A MIMO wireless communication system employing a variable size precoding codebook is provided. The size of the codebook may be determined by the quality of the wireless transmission channel between a transmitter and a receiver associated with the MIMO wireless communication systems or some other codebook selection criteria. A larger codebook can be employed when the channel quality is high, allowing for significant gains in overall system throughput. In contrast, a smaller codebook can be employed when the cannel quality is poor, so that the added channel overhead associated with a larger code book does not reduce the channel efficiency under circumstances in which a larger codebook would not significantly improve system throughput.

Description

VARIABLE CODEBOOK FOR MIMO SYSTEM Cross-Reference to Related Application
[0001] This is a regular-filed application which is based on and claims priority to U.S. Provisional Patent Application Serial Number 60/896,374, entitled "Variable Codebook for MIMO System," which was filed on March 22, 2007, the entire disclosure of which is hereby incorporated by reference herein.
Field of Technology
[0002] The present disclosure relates generally to wireless communication systems and, more particularly, to a system and method for precoding wireless transmissions using a variable size codebook.
Background
[0003] An ever-increasing number of relatively cheap, low power wireless data communication services, networks and devices have been made available over the past number of years, promising near wire speed transmission and reliability. Various wireless technologies are described in detail in the 802.11 IEEE Standard, including for example, the IEEE Standard 802.1 Ia (1999) and its updates and amendments, the IEEE Standard 802.1 Ig (2003), 3GPP LTE,as well as the IEEE Standard 802.1 In now in the process of being adopted, all of which are collectively incorporated herein fully by reference. These standards have been or are in the process of being commercialized with the promise of 54 Mbps or more effective throughput such as lOOMbps, making them a strong competitor to traditional wired Ethernet and the more ubiquitous "802.1 Ib" or "WiFi" 11 Mbps mobile wireless transmission standard. [0004] In general, transmission systems compliant with the IEEE 802.11a and 802.11 g or "802.11a/g," 802.16 or 3GPP LTE, as well as the 802.1 In standards achieve high data transmission rates using Orthogonal Frequency Division Modulation or OFDM encoded symbols and using quadrature amplitude modulation (QAM) on the OFDM sub-bands. In a general sense, the use of OFDM divides the overall system bandwidth into a number of frequency sub-bands or channels, with each frequency sub-band being associated with a respective sub-carrier upon which data may be modulated. Thus, each frequency sub-band of the OFDM system may be viewed as an independent transmission channel within which to send data, thereby increasing the overall throughput or transmission rate of the communication system.
[0005] Transmitters used in the wireless communication systems that are compliant with the 802.1 la/802.1 lg/802.1 In standards as well as other standards such as the 3GPP LTE and 802.16a IEEE Standard, typically perform multi-carrier OFDM symbol encoding (which may include error correction encoding and interleaving), convert the encoded symbols into the time domain using Inverse Fast Fourier Transform (IFFT) techniques, and perform digital to analog conversion and conventional radio frequency (RF) upconversion on the signals. These transmitters then transmit the modulated and upconverted signals after appropriate power amplification to one or more receivers, resulting in a relatively high-speed time domain signal with a large peak-to-average ratio (PAR).
[0006] Likewise, the receivers used in the wireless communication systems that are compliant with the 802.11 a/802.11 g/802.11 n, 3GPP LTE and 802.16a IEEE standards typically include an RF receiving unit that performs RF downconversion and filtering of the received signals (which may be performed in one or more stages), and a baseband processor unit that processes the OFDM encoded symbols bearing the data of interest. The digital form of each OFDM symbol presented in the frequency domain is recovered after baseband downconverting, conventional analog to digital conversion and Fast Fourier Transformation of the received time domain signal. Thereafter, the baseband processor performs demodulation and frequency domain equalization (FEQ) to recover the transmitted symbols, and these symbols are then processed with an appropriate FEC decoder, e.g. a Viterbi decoder, to estimate or determine the most likely identity of the transmitted symbol. The recovered and recognized stream of symbols is then decoded, which may include deinterleaving and further error correction using any of a number of known error correction techniques, to produce a set of recovered signals corresponding to the original signals transmitted by the transmitter.
[0007J To further increase the number of signals which may be propagated in the communication system and/or to compensate for deleterious effects associated with the various propagation paths, and to thereby improve transmission performance, it is known to use multiple transmission and receive antennas within a wireless transmission system. Such a system is commonly referred to as a multiple-input, multiple-output (MIMO) wireless transmission system and is specifically provided for within the 3GPP LTE and the 802.1 In IEEE Standard now being adopted. The use of MIMO technology produces significant increases in spectral efficiency, throughput, and link reliability. These benefits generally increase as the number of transmission and receive antennas included in the MIMO system increases.
[0008] In particular, in addition to the frequency channels created by the use of OFDM, a MIMO channel formed by the various transmission and receive antennas between a particular transmitter and a particular receiver includes a number of independent spatial channels. A wireless MlMO communication system can provide improved performance (e.g., increased transmission capacity) by utilizing the additional dimensionalities created by these spatial channels for the transmission of additional data. Of course, the spatial channels of a "wideband MIMO system may experience different channel conditions (e.g., different fading and multi-path effects) across the overall system bandwidth and may therefore achieve different SNRs at different frequencies (i.e., at the different OFDM frequency sub-bands) of the overall system bandwidth. Consequently, the number of information bits per modulation symbol (i.e., the data rate) that may be transmitted using the different frequency sub-bands of each spatial channel for a particular level of performance may differ from frequency sub-band to frequency sub-band.
[0009] In MIMO wireless communication systems, the RP modulated signals transmitted by the transmit antennas may reach the various receive antennas via a number of different propagation paths, the characteristics of which typically change over time due to the phenomena of multi-path and fading. Moreover, the characteristics of the various propagation sub-channels differ or vary based on the frequency of propagation. To compensate for the time varying, frequency selective nature of these propagation effects, and generally to enhance effective encoding and modulation in a MIMO wireless communication system, and improve the overall system throughput, the receiver of the MIMO wireless communication system may periodically develop or collect channel state information (CSI) for the wireless channel between the transmitter and receiver. Generally, the wireless channel comprises a composite channel in which the effects of all combinations of transmit antennas and receive antennas are taken into account. A channel matrix may be created comprising a plurality of complex channel values representing the channel characteristics (for example, the gain, the phase and the SNR of each channel) between each transmit-receive antenna pair. Upon determining the CSl for the composite channel, the receiver may send the CSI, or other information derived from the CSI5 back to the transmitter, which may use the CSI or other information derived from the CSI, to precondition or precode the signals transmitted over channel so as to compensate for the varying propagation effects of the channels.
[0010] A precoding matrix may be developed which when multiplied with the transmitted signal negates the propagation effects of the channel. However, because the propagation effects of the wireless channel vary over time, a single precoding matrix will only be sufficient to compensate for one set of channel characteristics. Separate precoding matrices must be developed to compensate for different sets of channel characteristics. A plurality of precoding matrices may be derived in advance in order to compensate for a range of different channel conditions. The plurality of precoding matrices may be assembled in a codebook which may be stored in a memory associated with the transmitter. Upon measuring the CSI, the receiver in a MIMO wireless communication system may determine which of the precoding matrices in the codebook is most appropriate to compensate for the measured CSI. The receiver may transmit a precoding matrix index or other identifier back to the transmitter specifying which precoding matrix in the codebook should be used to precode signals to be transmitted over the channel. The transmitter may then precode signals using the specified precoding matrix.
[0011] The size of the codebook, i.e. the number of precoding matrices included in the codebook, can have a significant impact on system throughput and overall channel efficiency. With a large codebook having many precoding matrices to choose from, it is possible to select a precoding matrix which closely matches (i.e. counteracts) the measured propagation effects of the channel. By accurately counter-acting the propagation effects of the channel system throughput can be significantly improved. However, a larger codebook requires a larger amount of data to be fed back from the receiver to the transmitter in order to identify a particular precoding matrix to be used for precoding transmitted signals. The additional feedback data required of a large codebook consumes additional channel overhead and has a negative impact on channel efficiency. Under certain conditions, such as a channel with a high SNR, the improved system throughput associated with a large codebook may be worth the cost in added overhead. In other cases, such as a poor quality channel with a low SNR, the improved system throughput, even with a large codebook, may not justify the cost in increased channel overhead. When designing a codebook for a MIMO wireless communication system there is a tension between creating a large codebook with the possibility of significant improvements in system throughput under favorable conditions and creating a smaller codebook which will consume less channel overhead, and will not diminish system throughput when channel conditions are less than ideal.
Summary of the Disclosure
[0012] The present disclosure generally relates to the use of a variable size codebook within a MIMO wireless communication system. The size of the codebook may be determined by the quality of the wireless transmission channel between the transmitter and receiver, for example, or some other codebook selection criteria. In some circumstances, it may be preferable to employ a larger codebook when the channel quality is high, allowing for significant gains in overall same system throughput. On the other hand, a smaller codebook may be preferable in circumstances when the channel quality is poor, so that the added channel overhead associated with a larger code book does not reduce the channel efficiency. For example, a smaller codebook may be preferable when a larger codebook would not significantly improve system throughput.
[0013] An embodiment provides a wireless transmission system. The wireless transmission system includes a base station and a terminal. The base station is adapted to transmit wireless signals to the terminal. A memory is associated with the base station. The memory stores a variable size codebook that includes a first plurality of precoding matrices. The precoding matrices included in the variable size codebook may be used for precoding wireless signals transmitted by the base station. The terminal is adapted to receive the wireless signals transmitted from the base station. Channel state measuring circuitry associated with the terminal is provided for measuring transmission conditions of the wireless communication channel formed between the base station and the terminal. The terminal includes a feedback transmitter for wirelessly transmitting channel state information from the terminal back to the base station. The base station includes a feedback receiver for receiving the channel state information fed back from the terminal. The base station selects a codebook size based on the channel state information and selects a precoding matrix from a codebook of the selected codebook size for precoding wireless signals to be transmitted from the base station to the receiver. The variable size codebook may comprise a second plurality of precoding matrices formed from a subset of the first plurality of precoding matrices included in the variable sized codebook. Alternatively, the variable sized codebook may comprise a plurality of fixed size codebooks containing different numbers of precoding matrices.
[0014] Another embodiment relates to a multiple-input-multiple-output (MIMO) wireless communication system that includes a base station adapted to transmit a plurality of wireless data streams. The base station includes a memory that stores a variable size codebook for precoding the data streams transmitted by the base station. The MlMO wireless communication system further includes a terminal adapted to receive wireless transmissions, including at least one of the plurality of data streams transmitted by the base station. The terminal includes channel state measuring circuitry for measuring channel state information relating to the wireless communication channel established between the base station and the terminal. The terminal further includes a feedback transmitter for wirelessly transmitting a feedback signal related to the channel state information back to the base station. The base station includes a feedback receiver for receiving the feedback signal transmitted from the terminal. The base station is adapted to select a codebook size and a precoding matrix from a codebook of the selected size based on the channel state information received by the feed back receiver.
[0015] A further embodiment provides a method of precoding a wireless transmission signal. The method includes measuring a characteristic of a wireless communication channel, selecting a codebook size based on the measured characteristic of the wireless communication channel, and precoding the wireless transmission signal using a precoding matrix included in a codebook of the selected size. The method may include providing a fixed size codebook having a plurality of precoding matrices, and creating a codebook of the selected codebook size from a subset of the precoding matrices found in the fixed size codebook. Alternatively, the method may include providing a plurality of fixed size codebooks of different sizes.
[0016] Yet another embodiment relates to a wireless transmitter employing a variable size precoding codebook. The transmitter includes a memory storing one or more precoding codebooks. The transmitter further includes a feedback receiver for receiving channel state information from a receiver. A codebook selector associated with the transmitter is adapted to select a codebook size base on channel state information received from the receiver. Finally, the transmitter includes a transmission signal precoder adapted to precode a wireless transmission signal using a precoding matrix from a codebook of the selected size.
[0017] Still another embodiment provides a wireless receiver for use in a MlMO wireless communication system employing a variable size precoding codebook. The receiver includes channel state measuring circuitry for generating channel state information describing the state of the channel. A codebook size selector is provided for selecting the size of a codebook to be used for precoding signals to be sent by a transmitter to the receiver over the wireless channel. The codebook size is selected based on the channel state information measured by the channel state measuring circuitry. Finally, the receiver includes a feedback transmitter for transmitting a codebook index or other codebook size indicator to the wireless transmitter. Upon receiving the codebook index or other codebook size indicator, the wireless transmitter may precode wireless transmissions directed toward the receiver using a precoding matrix included in a codebook of the selected size.
Brief Description Of The Drawings
[0018] Fig. 1 is a block diagram of a wireless MIMO communication system that employs a variable size codebook for precoding wireless transmission signals.
[0019] Fig 2. is a flow chart showing a method of selecting a codebook size and identifying a precoding matrix form within a codebook of the selected size based on codebook size and matrix selection criteria. [0020] Figs. 3A-3F illustrate examples of various different devices in which a wireless communication system implementing a variable size codebook described herein may be used.
Detailed Description
[0021 J The present disclosure generally relates to variable sized codebooks for use in precoding data streams to be transmitted in multiple-input-multiple-output (MlMO) wireless communication systems. The transmission characteristics of the wireless channel between the transmitter and receiver of a MIMO wireless communication system change over time. If the transmitter has a priori knowledge of the channel characteristics, signals may be preconditioned (precoded) to compensate in advance for the negative effects of transmitting the signals over the wireless channel. Under favorable conditions precoding signals in this manner can significantly improve channel throughput.
[0022] In a MIMO wireless communication system the communication channel may be represented as a matrix of complex channel values that represent the transmission effects of all combinations of the transmitting and receiving antennas. A precoding matrix may be derived which counteracts the negative effects of transmitting signals over the wireless communication channel. A signal may be multiplied by the precoding matrix before transmission over the wireless communication channel. Upon receiving such precoded signals the receiver has a much better chance of recovering the original signal, notwithstanding the negative effects of the wireless channel. Precoding signals in this manner can significantly improve system throughput.
[0023] Since the channel characteristics change over time, a finite number of precoding matrices may be derived in advance, each matrix adapted to compensate for a particular set of channel characteristics. The plurality of precoding matrices may be collected into a codebook and stored at the transmitter. Upon measuring the existing channel characteristics an appropriate precoding matrix may be selected from the codebook and applied to a signal before the signal is transmitted over the wireless communication channel.
[0024] Typically, channel state information (CSl) is calculated at the receiver based on a known signal transmitted from the transmitter to the receiver. The CSI is fed back to the transmitter and the transmitter chooses an appropriate precoding matrix for precoding subsequent signals from the codebook. Alternatively, the receiver may have knowledge of the codebook and the receiver itself may be adapted to select an appropriate precoding matrix from the codebook. In this case, the receiver feeds back a precoding matrix index or other identifier to the transmitter that specifies the appropriate precoding matrix for precoding signals to be sent from the transmitter to the receiver given the channel conditions observed by the receiver.
[0025] If the codebook is large, containing many different precoding matrices for addressing a large number of different channel conditions, a precoding matrix maybe selected which is closely paired to the characteristics of the wireless channel in order to achieve the greatest possible improvement in system throughput. If the codebook is small, it will be less likely that the precoding matrix will precisely compensate for the negative effects of the channel characteristics. Therefore, with a smaller codebook the improvement in channel throughput may not be as dramatic as with a larger codebook. However, a larger codebook requires greater specificity to identify the appropriate precoding matrix for a given set of channel conditions. The greater specificity required of a larger codebook requires more data, either in the form of a longer matrix index identifier or more detailed CSI, to be fed back from the receiver to the transmitter than would otherwise be the case if a smaller codebook were employed. The additional channel overhead required of a larger codebook can reduce overall channel efficiency. Thus, there are tradeoffs that may be considered when selecting the size of the codebook.
[0026] Another factor to consider when selecting the size of the codebook is the state of the channel at the time the signals are transmitted. In some cases, for example when the channel exhibits a high signal to interference-plus-noise-ratio (SINR), accurate precoding of the signals may result in dramatically improved channel throughput. In other cases, such as when the SINR is low, precoding results may be marginal at best. When channel conditions warrant, it may be desirable to have a large codebook containing a large number of precoding matrices to choose from so that the maximum gains in channel throughput may be realized. On the other hand, when channel conditions are such that the positive effects of precoding will be limited, a smaller codebook with a more limited number of precoding matrices may be employed in order to reduce channel overhead.
[0027] Because of the increased cost in channel overhead associated with a larger codebook, a larger codebook may be more effective in situations in which the gain in channel throughput associated with the use of the larger codebook outweighs the cost in channel overhead. In other cases a smaller codebook may be more appropriate. Because the wireless channel conditions change over time, there may be times when a larger codebook is more beneficial and other times when a smaller codebook is more appropriate. Unfortunately, the channel conditions typically cannot be known in advance. It is difficult to determine whether the improved system performance associated with a large codebook will justify the cost in channel overhead, or whether a smaller codebook should be employed. A solution is to use a variable size codebook, employing a more limited set of precoding matrices when channel conditions are such that the expected gains in system throughput associated with the use of a larger codebook may not justify the cost in increased channel overhead, and expanding the selection of available precoding matrices (i.e., using a larger codebook) when the channel conditions are such that the expected gains in system throughput may exceed the penalty paid in additional overhead.
[0028] Referring now to Fig. 1, a MIMO communication system 10 is illustrated in block diagram form. The MIMO communication system 10 generally includes a single transmitter 12 having multiple transmission antennas 14J-14N and a single receiver 16 having multiple receiver antennas 18I-18M- In an embodiment of a MIMO wireless communication system the transmitter 12 may actually be a base station capable of both transmitting signals to one or more remote terminals. The receiver 16 may in turn be one such remote terminal, capable of receiving signals transmitted from the base station as well as transmitting signals back to the base station 12. Though both the base station and the terminal may be capable of both transmitting and receiving signals, the base station will be referred to herein as the transmitter 12 and the terminal will be referred to as the receiver 16. The number of transmission antennas 14i-14N can be the same as, more than, or less than the number of receiver antennas 18I-18M- AS shown in Fig. 1, the transmitter 12 may include a controller 20 coupled to a memory 21, a symbol encoder/modulator unit 22, a precoding block 23, a space-time mapping block 24, and a codebook selection block 28. The transmitter 12 may also include a matrix equalizer 25 and a symbol demodulator and decoder unit 26 to perform demodulation and decoding of signals received via the antennas 141-14N in a receive mode. (0029) The controller 20 may be any desired type of controller and the controller 20 and the codebook/matrix selection block 28 may be implemented as one or more standard multipurpose, programmable processors, such as a general purpose micro-processor, a digital signal processor, an application specific integrated circuit (ASIC), etc., or may be implemented using any other desired types of hardware, software and/or firmware. Likewise, the precoding block 23, the space-time mapping block 24, and the matrix equalizer 25 may be implemented using known or standard hardware and/or software elements. If desired, various of the transmitter components, such as the controller 20, the symbol encoder/modulator unit 22, the symbol demodulator/decoder unit 26, the codebook/matrix selection block 28, the precoding block 23, the space-time mapping block 24 and the matrix equalizer 25 may be implemented in the same or in different hardware devices, such as in the same or different processors. Additionally, each of these components of the transmitter 12 may be disposed in a housing 29 (shown in dotted relief in Fig. 1) and the routines or instructions for implementing the functionality of any of these components may be stored in the memory 21 or within other memory devices associated with the individual hardware used to implement these components.
[0030] A variable size codebook may be stored in the memory 21. The variable-size codebook may be implemented in a number of different ways. For example, the variable size codebook may comprise a single fixed size codebook including a large number of pre- calculated precoding matrices. Smaller codebooks of differing sizes may be constructed from subsets of the plurality of precoding matrices found in the fixed size codebook. For example, a fixed size codebook having sixty- four precoding matrices maybe stored in the memory 21. A second smaller codebook having only thirty-two precoding matrices may be created by selecting every other matrix found in the larger sixty- four matrix fixed size codebook. Similarly, a third codebook of sixteen matrices may be created by selecting every fourth matrix from the larger fixed size codebook. A codebook of eight matrices may be created by selecting every eighth matrix from the larger fixed size codebook, and a codebook of just four matrices may be created by selecting every sixteenth matrix from the larger fixed size codebook. Of course, these are just examples of the manner in which smaller codebooks may also be generated from a larger fixed size codebook. Codebooks comprising other subsets of a larger fixed size codebook may also be employed. Another alternative is to simply store a plurality of different size codebooks. For example, a first codebook having sixty- four precoding matrices may be stored in the memory 21. A second separate codebook having thirty- two precoding matrices may also be stored in the memory 21. A third codebook having 16 precoding matrices, a fourth codebook having eight precoding matrices and a fifth codebook having just four precoding matrices may also be stored separately in the memory 21.
[0031] One or more pre-calculated or predetermined spreading matrices may also be stored in the memory 21 and used in the spreading matrix block 24 at various times or under various different conditions. Thus, for example, a different pre-calculated or predetermined space- time mapping matrix may be stored for each of a number of possible combinations of encoded spatial streams of data to be transmitted and transmission antennas 14 to be used to simultaneously transmit these encoded spatial streams of data. Thus, for example, a different space-time mapping matrix may be calculated and stored for two spatial streams of data being sent via three of the transmission antennas 14, for two spatial streams of data being sent via four of the transmission antennas 14, for three spatial streams of data being sent via five transmission antennas 14, etc. In this manner, the communication system 10 may optimally send different numbers of spatial streams of data at different times, depending on the load of the system. Moreover, the communication system 10 may also use these various different pre-stored or pre-calculated space-time mapping matrices to account for or to adapt to the loss of one or more of the transmission antennas 14 to be used in sending data within the communication system 10.
[0032 J During operation, information signals Tx j - Txn which are to be transmitted from the transmitter 12 to the receiver 16 are provided to the symbol encoder/modulator unit 22 for encoding and modulation. Of course, any desired number of signals Tx i - Txn may be provided to the modulator unit 22, with this number generally being limited by the modulation scheme employed by and the bandwidth associated with the MIMO communication system 10. Additionally, the signals Txi - Txn may be any type of signals, including analog or digital signals, and may represent any desired type of data or information. Additionally, if desired, a known test or control signal Cx i (which may be stored in the memory 21) may be provided to the symbol encoder and modulator unit 22 for use in determining CSI related information describing the characteristics of the channel(s) between the transmitter 12 and the receiver 16. If desired, the same control signal or a different control signal may be used to determine the CSI for each frequency sub-band and/or spatial channel used in the MIMO communication system 10.
[0033] The symbol encoder and modulator unit 22 may interleave digital representations of the various signals Tx i - Txn and Cx i and may perform any other known type(s) of error- correction encoding on the signals Tx1 - Txn and Cx i to produce one or more encoded streams of symbols SSi, SS2, . . . SSP, to be modulated and sent from the transmitter 12 to the receiver 16. While the symbol streams SSi - SSP may be modulated using any desired or suitable QAM technique, such as using 64 QAM, these symbols may be modulated in any other known or desired manner including, for example, using any other desired phase and/or frequency modulation techniques. In any event, the modulated encoded symbol streams SSi - SSp are provided by the symbol encoder and modulator unit 22 to the precoding block 23. The individual symbols comprise vectors which may be multiplied by the appropriate precoding matrix in the precoding block 23. The controller 20 receives a feedback signal from the receiver 16 which is used by the controller 20 to identify an appropriate precoding matrix stored in the variable size codebook stored in the memory 21. The controller 20 accesses the variable size codebook stored in the memory 21 and retrieves a precoding matrix appropriate for the channel characteristics and conditions prevailing at the time and provides the selected precoding matrix to the precoding block 23. The precoding block 23 multiplies the modulated encoded symbol streams SSi-SSp by the selected precoding matrix, then provides the precoded symbol streams to the space-time mapping block 24 for processing before being transmitted via the antennas 14]-14N. While not specifically shown in Fig. 1, the precoded modulated symbol streams SSi - SSP may be processed by the space-time mapping block 24 that implements a space-time mapping matrix optionally in accordance with a transmission technique disclosed in co-pending U.S. Patent Application No. 11/851 ,237 entitled "Equal Power Output Spatial Spreading Matrix For Use In A MIMO Communication System," filed September 6, 2007, the entire disclosure of which is incorporated herein by reference, before being up-converted to the RF carrier frequencies associated with an OFDM technique (in one or more stages). Upon receiving the modulated signals, the space-time mapping block 24 processes the modulated signals by injecting delays and/or gains into the modulated signals based on a space-time mapping matrix which may be provided by, for example, the controller 12, to thereby perform mixing and transmission of the spatial streams of data across the transmission antennas H1-HN. [0034] The signals transmitted by the transmitter 12 are detected by the receiver antennas 18 j- 18M and may be processed by a matrix equalizer 35 within the receiver 16 to enhance the reception capabilities of the antennas 18J -18M- A symbol demodulator and decoder unit 36, under control of the controller 40, may decode and demodulate the received symbol strings SSi - SSp as recovered by the matrix equalizer 35. In this process, these signals may be downconverted to baseband. Generally, the demodulator and decoder unit 36 may operate to perform demodulation on the received symbols in each symbol stream SSi - SSP to produce a digital bit stream for each symbol stream. In some cases, if desired, the symbol demodulator and decoder unit 36 may perform error correction decoding and deinterleaving on the bit stream to produce the received signals Rx)-Rxn corresponding to the originally transmitted signals Tx \ -Txn.
[0035] The MIMO wireless communication system 10 may also provide a reverse channel whereby signals may be transmitted from the receiver 16 back to transmitter 12. Thus, as shown in Fig. 1, the receiver 16 may also include a memory 48, a symbol encoder and modulator unit 46, a precoding block 33, and a space-time mapping block 34. The symbol encoder/modulator 46 may receive one or more signals TRi-TR01. The signals TRi -TRm may be encoded and modulated by the symbol encoder/modulator 46 using any desired encoding and modulation techniques. The memory 48 optionally may store a variable size codebook similar to that stored in the transmitter memory 21. The controller 40 may access the memory 48 to retrieve an appropriate precoding matrix for precoding the encoded and modulated symbol streams received from the symbol encoder/modulator 46. The precoded symbol stream may then be upconverted and processed by a space-time mapping block 34 which may use a space-time mapping matrix developed according to the principles described herein based on the number of symbol streams to be sent simultaneously and the number of transmission antennas 18 to be used. The output of the space-time mapping block 34 is then transmitted via the receiver antennas 18) -18N to, for example, the transmitter 12, thereby implementing the reverse link. The transmitter 12 may implement a matrix equalizer 25 and symbol demodulator/decoder 26 for receiving, demodulating and decoding signals transmitted from the receiver or terminal 16 to the transmitter or base station 16 over the reverse channel.
The matrix equalizer 25 and the demodulator/decoder unit 26 within the transmitter 12 operate similarly to the matrix equalizer 35 and the demodulator/decoder unit 36 of the receiver 16 to demodulate and decode the symbol streams transmitted by the receiver 16 to produce the recovered signals RRi -RRm. Here again, the matrix equalizer 25 may process the received signals in any known manner to enhance the separation and therefore the reception of the various symbol streams transmitted by the antennas 18I-18M.
[0036] As mentioned above, the transmitter or base station controller 20 selects an appropriate precoding matrix from the variable size codebook stored in the memory 21 based on a feedback signal received from the receiver 16. In order to determine the appropriate codebook size and select he best precoding matrix for the channel conditions, the receiver 16 includes the eodebook/matrix selection block 41. When the receiver 16 receives signals from the transmitter 12, such as the known test signal Cx1, the eodebook/matrix selection block 41 (or the controller 40) measures channel state information relating the characteristics and quality of the wireless channel between the transmitter and the receiver. The channel state information may comprise a matrix of complex channel values that take into account the contributions of all combinations of the transmitting antennas 14I-14N and the receiving antennas 18I-18M- The channel state information measured by the eodebook/matrix selection block 41 may include, for example, the channel gain and phase delay characteristics between each pair of transmit and receive antennas. The codebook/matrix selection block 41 may also measure channel quality, in the form of (S DSi R), a signal-to-noise-ratio (SNA), or some other measure of the channel quality. The codebook/matrix selection block 41 then evaluates the channel state information using various criteria to select first the most appropriate code book to use given the measured channel conditions, and then a particular precoding matrix from the selected codebook for precoding signals. The identity of or size of the selected codebook along with the identity of the selected precoding matrix is then fed back to the transmitter 12 so that the transmitter controller 20 may select the proper precoding matrix from the appropriate size codebook stored in the memory 21. The selected codebook and the selected precoding matrix within the selected codebook may be fed back to the transmitter 12 via the reverse transmission channel, or over another dedicated feedback channel (not shown).
[0037] A selected precoding matrix may be specified by identifying a particular size codebook from which the precoding matrix is to be selected and a specific precoding matrix within the identified codebook. For example, in an embodiment in which four different sized codebooks are employed (e.g. codebooks containing 64, 32, 16 and 8 precoding matrices respectively), a minimum of 2 bits are required to identify one of the four different codebooks. An additional six bits are required to identify a particular precoding matrix within the largest codebook , if the codebook having 64 precoding matrices is selected. If the codebook having 32 matrices is selected, an additional 5 bits are required to specify a particular precoding matrix. Four additional bits are required to identify a particular precoding matrix if the codebook having 16 matrices is specified, and only 3 additional bits are required to identify a particular precoding matrix if the smallest codebook having 8 precoding matrices is employed. If the channel quality is poor, it is unlikely that system throughput will significantly improved by using a precoding matrix from one of the larger codebooks. In this case it may not be worth the price in additional channel overhead to use a precoding matrix from one of the larger codebooks and a smaller codebook maybe selected. If channel conditions are better, however, and it is likely that channel throughput will be improved using a larger codebook by an amount significantly greater than the amount of channel capacity consumed by the additional overhead required to identify a precoding matrix within the larger codebook, the improved channel throughput associated with selecting a precoding matrix from the larger codebook may justify the increased cost in channel overhead.
[0038J When employing a variable size codebook in a MIMO wireless communication system, objective criteria may be established for selecting the appropriate size codebook. Since there is a tradeoff between increased system throughput and increased channel overhead associated with using a larger codebook, one appropriate codebook selection criterion is to compare the expected channel throughput associated with a particular size codebook against the cost in feedback channel overhead associated with using that size codebook. In a MIMO wireless communication system, channel throughput is highly dependent on the transmission quality of the wireless channel. The receiver may measure the SNR or the SINR or some measure of the channel quality from the signals received by the receiving antennas 181- 18M- The codebook/matrix selection block 41 may then calculate an expected throughput for each of the different sized codebooks available for precoding signals to be transmitted to the receiver 16. A ratio may be calculated for each of the different sized codebooks comparing the expected throughput associated with each codebook to the corresponding cost in additional overhead. Whichever codebook offers the highest ratio of improved channel performance to overhead cost will be selected. Of course, other codebook selection criteria may also be used. For example, a series of SNR or SlNR thresholds may be established. The codebook size may be selected based on where the measured SNR or SlNR falls in relation to the established thresholds. When the measured SNR or SINR is below a first threshold the smallest available codebook may be selected. If the measured SNR or SlNR is greater than or equal to the first threshold value, but less than the second threshold value, the next larger available codebook may be selected, and so on until there is a proper sized codebook identified for every possible set of channel conditions.
[0039] Once a particular size codebook has been selected the codebook matrix selection block 41 may select a particular precoding matrix from the selected codebook. The precoding matrix may be selected in a manner similar to the process of selecting the size of the codebook. Some objective criteria, such as the maximum sum throughput, may be defined and calculated for each precoding matrix within the selected codebook. The precoding matrix that produces the highest maximum sum throughput (or some other objective measure) may then be selected for precoding the symbols to be transmitted from the transmitter to the receiver.
[0040] Fig. 2 is a flowchart illustrating the process of selecting a precoding matrix in a MIMO wireless communication system employing a variable size codebook. A first step 202 is to provide a variable size codebook that includes a plurality of precoding matrices that may be employed to precode signals transmitted from a wireless transmitter to a wireless receiver within a MIMO wireless communication system. As described above, the variable sized codebook may comprise a single large codebook having a large number of precoding matrices from which smaller codebooks may be defined by selecting smaller subsets of the precoding matrices found in the larger codebook. Alternatively, the variable sized codebook may comprise a collection of differently sized codebooks, each adapted for different channel conditions.
[0041] Next, at block 204, the process of applying a variable sized codebook to a MIMO wireless communication channel calls for measuring one or more characteristics of the wireless communication channel. At least one of the measured characteristics relates to codebook size and precoding matrix selection criteria. The codebook size criteria are employed to determine the size or identity of a particular codebook from which a precoding matrix may be selected for precoding wireless transmissions from the transmitter to the receiver in the MIMO wireless communication system. The measured communication channel characteristics may comprise, for example, the SNR, SINR, or some other measure of the channel quality. Once the channel characteristics have been measured, the process next calls for selecting the best codebook at block 206. This step requires evaluating predefined codebook selection criteria relating to the state of the wireless communication channel. For example, the criteria for selecting the size of the codebook from which a precoding matrix will be selected may include comparing the cost in channel overhead associated with each available codebook to the corresponding expected gain in system throughput associated with each available codebook. Typically, the expected throughput associate with each of the different size codebooks will be heavily influenced by the measured state of the communication channel. The codebook that offers the greatest expected throughput under the measured channel conditions for the least additional cost in channel overhead may be selected.
[0042] Once the best codebook for the given channel conditions has been selected, a determination is made at decision block 208 whether the selected codebook is the same codebook that was used for precoding a previous transmission. If the codebook is the same, the process continues directly to block 212 where the best precoding matrix for the measured channel conditions is selected. If the selected codebook is not the same as the codebook used for precoding the previous transmission, the process switches to the new codebook at block 210 before proceeding to select the best precoding matrix from the new codebook at block 212.
[0043] At block 212, predefined matrix selection criteria are applied to determine the best precoding matrix in the selected codebook for precoding wireless transmissions given the measured channel conditions. The best matrix selection criteria may comprise, for example, calculating the maximum sum throughput for each matrix in the selected codebook, and selecting the matrix which provides the greatest throughput given the measured channel characteristics.
[0044] Once the precoding matrix has been selected at 212, a determination is made at decision block 214 whether the selected precoding matrix is the same as a precoding matrix employed to precode a previous transmission. If so, the process continues directly to block 218 where an index identifying the selected codebook and the selected precoding matrix is fed back to the transmitter so that the transmitter may access the identified codebook and the identified precoding matrix within the identified codebook in order to precode a wireless transmission to be sent from the transmitter to the receiver in the MIMO wireless communication system. If, however, it is determined a decision block 214 that the selected precoding matrix is not the same precoding matrix that was employed on the previous transmission, the process switches to the new precoding matrix at block 216 before proceeding to feed back the identity selected codebook and the selected matrix to the transmitter at block 218.
[0045] Once the selected codebook and precoding matrix have been selected and their identities fed back to the transmitter for precoding a next wireless transmission, the process waits for the next reporting period at block 220. The process may be adapted to re-evaluate channel conditions and select a codebook and precoding matrix at certain predefined rate, or after a predefined period of time, after a certain number of transmissions or based on some other criteria. In any case, at the beginning of the next reporting period the process returns to block 202 and repeats.
[0046] Variable size codebook techniques such as described above may be utilized in any type of wireless communication system including, for example, ones used in wireless computer systems such as those implemented via a wireless local area network (WLAN) or a wide area wireless network (e.g., WiMax), internet, cable and satellite based communication systems (such as internet, data, video and voice communication systems), wireless telephone systems (including cellular phone systems, voice over internet protocol (VoIP) systems, home-based wireless telephone systems, etc.) Referring now to Figs. 3A-3H, various exemplary implementations of the present invention are shown.
[0047] Referring now to Fig. 3 A, variable size codebooks may be utilized in a high definition television (HDTV) 420 which may include either or both signal processing and/or control circuits, which are generally identified in Fig. 3C at 422, a WLAN network interface 429 and/or mass data storage 427 of the HDTV 420. HDTV 420 receives HDTV input signals in either a wired or wireless format and generates HDTV output signals for a display 426. In some implementations, signal processing circuit and/or control circuit 422 and/or other circuits (not shown) of HDTV 420 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other type of HDTV processing that may be required. Variable size codebook techniques may be utilized in the signal processing circuit and/or control circuit 422 and/or the WLAN network interface 429, for example.
[0048] HDTV 420 may communicate with mass data storage 427 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices such as a hard disk drive (HDD) or a digital versatile disk (DVD) drive. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8". HDTV 420 may be connected to memory 428 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. HDTV 420 also may support connections with a WLAN via the WLAN network interface 429 which may implement the beamforming techniques described above.
[0049] Referring now to Fig. 3B, the present invention may be used in conjunction with a control system of a vehicle 430 having a WLAN network interface 448 and/or mass data storage 446. In some implementations, may be used within a powertrain control system 432 that receives inputs from one or more sensors such as temperature sensors, pressure sensors, rotational sensors, airflow sensors and/or any other suitable sensors and/or that generates one or more output control signals such as engine operating parameters, transmission operating parameters, braking parameters, and/or other control signals.
[0050] Variable size codebook techniques may also be utilized in other control systems 440 of vehicle 430. Control system 440 may likewise receive signals from input sensors 442 and/or output control signals to one or more output devices 444. In some implementations, control system 440 may be part of an anti-lock braking system (ABS), a navigation system, a telematics system, a vehicle telematics system, a lane departure system, an adaptive cruise control system, a vehicle entertainment system such as a stereo, DVD, compact disc and the like. Still other implementations are contemplated.
[0051] Powertrain control system 432 may communicate with mass data storage 446 that stores data in a nonvolatile manner. Mass data storage 446 may include optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8". Powertrain control system 432 may be connected to memory 447 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. Powertrain control system 432 also may support connections with a WLAN via the WLAN network interface 448 which may implement the beamforming techniques described above. The control system 440 may also include mass data storage, memory and/or a WLAN network interface (all not shown). Variable size codebook techniques may be utilized on the WLAN network interface 448 of the powertrain control system and/or the WLAN network interface of the control system 440.
[0052] Referring now to Fig. 3C, variable size codebook techniques may be embodied in a cellular phone 450 that may include one or more cellular antennas 451, either or both signal processing and/or control circuits, which are generally identified in Fig. 3C at 452, a WLAN network interface 468 and/or mass data storage 464 of the cellular phone 450. In some implementations, cellular phone 450 includes a microphone 456, an audio output 458 such as a speaker and/or audio output jack, a display 460 and/or an input device 462 such as a keypad, pointing device, voice actuation and/or other input device. Signal processing and/or control circuits 452 and/or other circuits (not shown) in cellular phone 450 may process data, perform coding and/or encryption, perform calculations, format data and/or perform other cellular phone functions.
[0053J Cellular phone 450 may communicate with mass data storage 464 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8". Cellular phone 450 may be connected to memory 466 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. Cellular phone 450 also may support connections with a WLAN via the WLAN network interface 468. Variable size codebook techniques may be utilized on the WLAN network interface 468 and/or the signal processing and/or control circuits 452.
[0054] Referring now to Fig. 3D, the variable size codebook techniques may be embodied in a set top box 480 including either or both signal processing and/or control circuits, which are generally identified in Fig. 3D at 484, a WLAN network interface 496 and/or mass data storage 490 of the set top box 480. Set top box 480 receives signals from a source such as a broadband source and outputs standard and/or high definition audio/video signals suitable for a display 488 such as a television and/or monitor and/or other video and/or audio output devices. Signal processing and/or control circuits 484 and/or other circuits (not shown) of the set top box 480 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other set top box function.
[0055] Set top box 480 may communicate with mass data storage 490 that stores data in a nonvolatile manner. Mass data storage 490 may include optical and/or magnetic storage devices, for example, a hard disk drive HDD and/or a DVD drive. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8". Set top box 480 may be connected to memory 494 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. Set top box 480 also may support connections with a WLAN via the WLAN network interface 496 which may implement the beamforming techniques described herein. Variable size codebook techniques may be utilized in the signal processing and/or control circuits 484 and/or the WLAN network interface 496.
[0056] Referring now to Fig. 3E, the variable size codebook techniques may be embodied in a media player 500. The variable size codebook techniques may be implemented in either or both the signal processing and/or control circuits, which are generally identified in Fig. 3E at 504, and a WLAN network interface 516 and/or mass data storage 510 of the media player 500. In some implementations, media player 500 includes a display 507 and/or a user input 508 such as a keypad, touchpad and the like. In some implementations, media player 500 may employ a graphical user interface (GUI) that typically employs menus, drop down menus, icons and/or a point-and-click interface via display 507 and/or user input 508. Media player 500 further includes an audio output 509 such as a speaker and/or audio output jack. Signal processing and/or control circuits 504 and/or other circuits (not shown) of media player 500 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other media player function.
[0057] Media player 500 may communicate with mass data storage 510 that stores data such as compressed audio and/or video content in a nonvolatile manner. In some implementations, the compressed audio files include files that are compliant with MP3 format or other suitable compressed audio and/or video formats. The mass data storage may include optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8". Media player 500 may be connected to memory 514 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. Media player 500 also may support connections with a WLAN via the WLAN network interface 516 which may implement the beamforming techniques described herein. Still other implementations in addition to those described above are contemplated.
[0058] Referring to Fig. 3F, the variable size codebook techniques may be embodied in a Voice over Internet Protocol (VoIP) phone 600 that may include one or more antennas 618, either or both signal processing and/or control circuits, which are generally identified in Fig. 3F at 604, and a wireless interface and/or mass data storage 602 of the VoIP phone 600. In some implementations, VoIP phone 600 includes, in part, a microphone 610, an audio output 612 such as a speaker and/or audio output jack, a display monitor 614, an input device 616 such as a keypad, pointing device, voice actuation and/or other input devices, and a Wireless Fidelity (Wi-Fi) communication module 608. Signal processing and/or control circuits 604 and/or other circuits (not shown) in VoIP phone 600 may process data, perform coding and/or encryption, perform calculations, format data and/or perform other VoIP phone functions.
[0059] VoIP phone 600 may communicate with mass data storage 602 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices, for example, a hard disk drive (HDD) and/or a DVD drive. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8". VoIP phone 600 may be connected to memory 606, which may be a RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. VoIP phone 600 is configured to establish communications link with a VoIP network (not shown) via Wi-Fi communication module 608 which may implement the beamforming techniques described herein. Variable size codebook techniques may be employed in either or both the signal processing and/or control circuits 604 and the Wi-Fi communication module 608.
[0060] Moreover, while the present invention has been described with reference to specific examples, which are intended to be illustrative only and not to be limiting of the invention, changes, additions and/or deletions may be made to the disclosed embodiments without departing from the spirit and scope of the invention. For example, one or more steps of the method described above may be performed in a different order or concurrently to achieve desirable results.

Claims

ClaimsWhat is claimed is:
1. A wireless transmission system comprising; a base station adapted to transmit wireless signals; a memory associated with the base station, the memory storing a variable size codebook including a first plurality of precoding matrices for precoding the wireless signals; a terminal adapted to receive wireless signals; channel state measuring circuitry associated with the terminal configured to measure transmission conditions of a wireless communication channel between the base station and the terminal; a feedback transmitter associated with the terminal for wirelessly transmitting channel state information regarding the transmission conditions of the wireless communication channel from the terminal to the base station; and a feedback receiver associated with the base station for receiving the channel state information transmitted from the terminal, wherein the base station selects a codebook size based on the channel state information and selects a precoding matrix from a codebook of the selected codebook size for precoding wireless signals to be transmitted from the base station.
2. The wireless transmission system of claim 1 , wherein the variable size codebook comprises a second plurality of precoding matrices comprising a subset of the first plurality of precoding matrices included in the variable size codebook.
3. The wireless transmission system of claim 1, wherein the variable size codebook comprises a plurality of fixed size codebooks containing different numbers of precoding matrices.
4. The wireless transmission system of claim 1, wherein the channel state information measured by the channel state measuring circuitry comprises a signal interference plus noise ratio (STNR).
5. The wireless transmission system of claim 1, wherein the channel state information comprises a codebook index identifying a codebook size and a precoding matrix to be used to precode wireless transmission signals transmitted to the receiver.
6. A multiple-input-multiple-output (MIMO) wireless communication system comprising: a base station adapted to transmit a plurality of wireless data streams, the base station including a memory storing a variable size codebook for precoding the data streams; a terminal adapted to receive wireless transmissions including at least one of the plurality of data streams transmitted by the base station via a plurality of receiving antennas, the terminal including a channel state measuring block for measuring channel state information of a wireless communication channel established between the base station and the terminal, and a feedback transmitter for wirelessly transmitting a feedback signal corresponding to the channel state information; the base station further including a feedback receiver for receiving the feedback signal transmitted from the terminal, wherein the base station is adapted to select a codebook size based on the channel state information received by the feed back receiver.
7. The MlMO wireless communication system of claim 6, wherein the feedback signal comprises a codebook identifier and wherein the base station selects a codebook of the selected codebook size based on the codebook identifier.
8. The MIMO wireless communication system of claim 7, wherein the feedback signal further comprises a matrix identifier whereby the base station selects a precoding matrix within the selected codebook of the selected codebook size for precoding the data streams.
9. The MIMO wireless communication system of claim 6, wherein the channel state measuring block is adapted to measure a signal interference plus noise ratio (SINR) for the wireless communication channel established between the base station and the terminal.
10. The MIMO output wireless communication system of claim 6, wherein one of the base station or the terminal is further adapted to select a codebook size by measuring a ratio of an amount of transmission overhead associated with a particular codebook size and an achievable maximum throughput associated with the particular codebook size for a plurality of different codebook sizes, and to select the codebook size having the lowest ratio.
11. A method of precoding a wireless transmission signal, the method comprising: measuring a characteristic of a wireless communication channel; selecting a codebook size based on the measured characteristic of the wireless communication channel; and precoding the wireless transmission signal using a precoding matrix included in a codebook of the selected size.
12. The method of claim 11, further comprising providing a fixed size codebook having a plurality of preceding matrices, and creating a codebook of the selected codebook size from a subset of the precoding matrices in the fixed size codebook.
13. The method of claim 11 , further comprising providing a plurality of fixed size codebooks of different sizes.
14. The method of claim 11, further comprising developing codebook size selection criteria based on the measured characteristic of the wireless communication channel.
15. The method of claim 14, wherein the codebook size selection criteria comprise calculating, for a plurality of codebook sizes, a ratio of communication channel overhead consumed by a codebook of a particular size versus the channel throughput expected to be obtained by using a codebook of the particular size given the measured characteristic of the communication channel, and selecting a codebook size for which the ratio is smallest.
16. The method of claim 11, further comprising selecting a best matrix from a codebook of the selected codebook size based on matrix selection criteria.
17. The method of claim 16, wherein the matrix selection criteria comprise calculating the maximum sum throughput for precoding matrices in a codebook of the selected size and selecting a matrix with the highest maximum sum throughput.
18. The method of claim 16, further comprising feeding back a selected codebook size index and a selected matrix index from a receiver to a transmitter whereby the transmitter precodess wireless transmissions to the receiver using the selected matrix from a codebook of the selected codebook size.
19. The method of claim 11 , wherein measuring a characteristic of a wireless communication channel comprises measuring a signal interference plus noise ratio (SINR).
20. A wireless transmitter comprising: a memory storing one or more precoding codebooks; a feedback receiver for receiving channel state information; a codebook selector adapted to select a codebook size base on received channel state information; and a transmission signal precoder adapted to precode a wireless transmission signal using a precoding matrix from a codebook of the selected size.
21. The wireless transmitter of claim 20, wherein the channel state information received by the feedback receiver comprises a codebook size index which identifies an appropriate sized codebook based on a measured characteristic of a wireless communication channel.
22. The wireless transmitter of claim 21, wherein the channel state information received by the feedback receiver further comprises a matrix index identifying a matrix within the appropriate size codebook for precoding the wireless transmission signal based on the measured characteristic of the wireless communication channel.
23. A wireless receiver comprising; channel state information measuring circuitry; a codebook size selector for selecting a size of a codebook including precoding matrices for preceding signals to be sent to the receiver based on channel state information measured by the channel state measuring circuitry; and a feed back transmitter for transmitting the codebook size to a wireless transmitter, wherein the wireless transmitter precodes wireless transmissions directed to the receiver using a precoding matrix included in a codebook of the selected size.
24. The wireless receiver of claim 23, wherein the feedback receiver is configured to transmit a matrix identifier along with the codebook size for identifying a best precoding matrix within the codebook of the selected size for precoding the wireless transmission from the transmitter to the receiver based on the measure channel state information.
25. The receiver of claim 23, wherein the channel state information measuring circuitry measures a signal interference plus noise ratio for wireless transmissions received by the receiver.
PCT/US2008/057894 2007-03-22 2008-03-21 Variable codebook for mimo system WO2008116181A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880009398.8A CN101669299B (en) 2007-03-22 2008-03-21 Variable codebook for mimo system
EP08744204.2A EP2130308B1 (en) 2007-03-22 2008-03-21 Variable codebook for mimo system
EP18199045.8A EP3444969B1 (en) 2007-03-22 2008-03-21 Variable codebook for mimo system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89637407P 2007-03-22 2007-03-22
US60/896,374 2007-03-22

Publications (2)

Publication Number Publication Date
WO2008116181A2 true WO2008116181A2 (en) 2008-09-25
WO2008116181A3 WO2008116181A3 (en) 2008-12-31

Family

ID=39766794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/057894 WO2008116181A2 (en) 2007-03-22 2008-03-21 Variable codebook for mimo system

Country Status (5)

Country Link
US (3) US8259835B2 (en)
EP (2) EP3444969B1 (en)
CN (1) CN101669299B (en)
TW (1) TWI474688B (en)
WO (1) WO2008116181A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123320A2 (en) 2009-04-23 2010-10-28 Samsung Electronics Co., Ltd. Apparatus and method for interference mitigation in a wireless communication system
CN102006620A (en) * 2009-08-31 2011-04-06 巴比禄股份有限公司 Wireless terminal device, wireless communication system, and method of notifying communication status level
CN102006147A (en) * 2010-12-01 2011-04-06 西安电子科技大学 Implementation method for reducing average feedback quantity of codebook and optimizing codebook
WO2010048513A3 (en) * 2008-10-24 2011-04-14 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
WO2011080774A1 (en) * 2009-12-30 2011-07-07 Telecom Italia S.P.A Method for selecting a precodlng matrix in a "multiple input multiple output" ("mimo") system
WO2011091440A1 (en) * 2010-01-25 2011-07-28 Qualcomm Incorporated Feedback for supporting su-mimo and mu-mimo operation in wireless communication
EP2381588A2 (en) * 2008-12-21 2011-10-26 LG Electronics Inc. Data transmission device and method in a wireless communications system
EP2592764A1 (en) * 2011-11-14 2013-05-15 Alcatel Lucent Method for optimizing radio link transmission in a radio communication system, transmission unit, selection unit, network node, and apparatus thereof
KR101330341B1 (en) * 2009-01-05 2013-11-15 인텔 코오퍼레이션 Techniques utilizing step size adaptation for differential beamforming in wireless networks
WO2015022170A1 (en) * 2013-08-15 2015-02-19 Sony Corporation Transmitting apparatus and method for a mimo broadcast system
US9485661B2 (en) 2008-10-24 2016-11-01 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
KR20070113967A (en) * 2006-05-26 2007-11-29 엘지전자 주식회사 Phase shift based precoding method and tranceiver supporting the same
US7751495B1 (en) 2006-09-06 2010-07-06 Marvell International Ltd. Equal power output spatial spreading matrix for use in a wireless MIMO communication system
KR20080026010A (en) * 2006-09-19 2008-03-24 엘지전자 주식회사 Data transmitting method using phase-shift based precoding and tranceiver implementing the same
US8503560B2 (en) * 2006-10-02 2013-08-06 Samsung Electronics Co., Ltd System and method for performing precoding in a wireless communication system
BRPI0720943B1 (en) 2007-01-12 2020-09-15 Telefonaktiebolaget Lm Ericsson (Publ) METHODS IN A FIRST NODE TO ADAPT A TRANSMISSION OF MULTIPLE ANTENNAS TO A SECOND NODE THROUGH AN EFFECTIVE CHANNEL, AND, IN A SECOND NODE TO ASSIST FIRST NODE IN ADAPTING THE TRANSMISSION OF MULTIPLE AND THE FIRST NINE, THE FIRST AND WE
KR20080076683A (en) * 2007-02-14 2008-08-20 엘지전자 주식회사 Phase shift based precoding method and tranceiver supporting the same
US8259835B2 (en) 2007-03-22 2012-09-04 Marvell World Trade Ltd. Variable codebook for MIMO system
CN101689962B (en) * 2007-04-20 2016-03-16 交互数字技术公司 For the method and apparatus of the efficient precoding information validation of MIMO communication
KR20090030200A (en) 2007-09-19 2009-03-24 엘지전자 주식회사 Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
CN101889460B (en) * 2007-12-06 2013-05-01 日本电气株式会社 Terminal device and feedback method
US8259599B2 (en) * 2008-02-13 2012-09-04 Qualcomm Incorporated Systems and methods for distributed beamforming based on carrier-to-caused interference
US8498358B2 (en) * 2008-04-25 2013-07-30 Samsung Electronics Co., Ltd. Multiple antenna communication system including adaptive updating and changing of codebooks
US8199836B2 (en) * 2008-05-02 2012-06-12 Nec Laboratories America, Inc. Multi-resolution precoding codebook
US8352992B1 (en) * 2008-10-09 2013-01-08 Hewlett-Packard Development Company, L.P. Wireless media streaming
US8644408B2 (en) * 2008-10-10 2014-02-04 Qualcomm Incorporated Method and apparatus for channel feedback in a wireless communication system
KR101435846B1 (en) * 2008-10-30 2014-08-29 엘지전자 주식회사 Method of controlling interference in a wireless communication system having multiple antennas
WO2010076778A1 (en) * 2009-01-05 2010-07-08 Marvell World Trade Ltd Precoding codebooks for mimo communication systems
US8385441B2 (en) 2009-01-06 2013-02-26 Marvell World Trade Ltd. Efficient MIMO transmission schemes
US8787183B2 (en) * 2009-01-06 2014-07-22 Qualcomm Incorporated Method and apparatus for channel estimation using multiple description codes
US8238483B2 (en) 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
WO2010105415A1 (en) * 2009-03-17 2010-09-23 Huawei Technologies Co., Ltd. Method for generating a codebook
KR101263112B1 (en) * 2009-03-24 2013-05-09 후지쯔 가부시끼가이샤 Wireless communication system, terminal device, base station device, method of wireless communication in wireless communication system
EP2417780B1 (en) * 2009-04-06 2019-05-08 Marvell World Trade Ltd. Improved feedback strategies for multi-user mimo communication systems
KR101670744B1 (en) 2009-04-13 2016-11-09 엘지전자 주식회사 Uplink Signal Transmission and Reception Using the Optimized Rank 3 Codebook
CN102405603B (en) * 2009-04-21 2015-04-29 马维尔国际贸易有限公司 Method, device and system for beamforming with selective beam attenuation
KR101356518B1 (en) * 2009-04-30 2014-02-14 엘지전자 주식회사 Method for setting a precoder in open loop mimo system
KR101530559B1 (en) * 2009-06-04 2015-06-22 삼성전자 주식회사 Method and Apparatus for receiving and transmitting feedback information for CoMP operations in wireless communication cellular systems
CN101931440B (en) * 2009-06-19 2014-04-02 华为技术有限公司 Channel state information acquisition method and device
CN101997654B (en) * 2009-08-17 2013-08-28 富士通株式会社 Method and device for generating pre-coding matrix code book group
US8675794B1 (en) 2009-10-13 2014-03-18 Marvell International Ltd. Efficient estimation of feedback for modulation and coding scheme (MCS) selection
US8917796B1 (en) 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
PL3107329T3 (en) * 2009-10-30 2020-11-16 Electronics And Telecommunications Research Institute Method for transmitting control and training symbols in multi-user wireless communication system
KR101652869B1 (en) * 2009-11-02 2016-09-01 삼성전자주식회사 Method of controlling dynamic channel feedback for coordinated multi point transmission in network mimo system
WO2011055238A1 (en) 2009-11-09 2011-05-12 Marvell World Trade Ltd Asymmetrical feedback for coordinated transmission systems
JP5637486B2 (en) * 2009-12-17 2014-12-10 マーベル ワールド トレード リミテッド MIMO feedback scheme for cross-polarized antennas
CN102687456B (en) * 2010-01-07 2015-04-15 马维尔国际贸易有限公司 Signaling of dedicated reference signal (DRS) precoding granularity
EP2536086A1 (en) * 2010-02-09 2012-12-19 Fujitsu Limited Method and device for generating precoding matrix codebook and method for designating precoding matrix
JP5258002B2 (en) * 2010-02-10 2013-08-07 マーベル ワールド トレード リミテッド Device, mobile communication terminal, chipset, and method in MIMO communication system
US8711963B2 (en) * 2010-02-11 2014-04-29 Samsung Electronics Co., Ltd. Unified feedback frame for supporting a plurality of feedback modes and a multiple-input multiple-output (MIMO) communication system using the unified feedback frame
CN102201886B (en) * 2010-03-22 2014-03-12 中兴通讯股份有限公司 Pre-coding matrix selection method and system for closed loop multiple input multiple output system
US8687741B1 (en) 2010-03-29 2014-04-01 Marvell International Ltd. Scoring hypotheses in LTE cell search
CN102237975B (en) 2010-05-04 2013-10-02 华为技术有限公司 Method and device for transmitting pre-coding matrix index (PMI) and pre-coding PMI
CN103546241B (en) * 2010-05-04 2017-12-29 华为技术有限公司 Send pre-coding matrix index and the method and apparatus for carrying out precoding
CN102594502B (en) * 2010-05-04 2015-09-30 华为技术有限公司 Send pre-coding matrix index and carry out the method and apparatus of precoding
US8891652B2 (en) * 2010-06-24 2014-11-18 Qualcomm Incorporated Structured MIMO codebook
US8615052B2 (en) 2010-10-06 2013-12-24 Marvell World Trade Ltd. Enhanced channel feedback for multi-user MIMO
JP2012100254A (en) 2010-10-06 2012-05-24 Marvell World Trade Ltd Codebook subsampling for pucch feedback
CN102595488B (en) * 2011-01-11 2016-05-11 上海贝尔股份有限公司 A kind of channel direction information feedback method and equipment thereof
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
US8861391B1 (en) 2011-03-02 2014-10-14 Marvell International Ltd. Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes
WO2012131612A1 (en) 2011-03-31 2012-10-04 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
US8913683B2 (en) * 2011-07-11 2014-12-16 Telefonaktiebolaget L M Ericsson (Publ) Methods of providing channel state information using different pluralities of codewords and related devices and systems
US9413442B2 (en) 2011-10-10 2016-08-09 Lg Electronics Inc. Method and apparatus for reporting channel state information in a wireless communication system
US8923427B2 (en) 2011-11-07 2014-12-30 Marvell World Trade Ltd. Codebook sub-sampling for frequency-selective precoding feedback
WO2013068915A2 (en) 2011-11-07 2013-05-16 Marvell World Trade Ltd. Precoding feedback for cross-polarized antennas with magnitude information
WO2013068974A1 (en) 2011-11-10 2013-05-16 Marvell World Trade Ltd. Differential cqi encoding for cooperative multipoint feedback
US9220087B1 (en) 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
US8902842B1 (en) 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
US9148345B2 (en) * 2012-01-16 2015-09-29 Ciena Corporation Link management systems and methods for multi-stage, high-speed systems
CN103378882B (en) * 2012-04-16 2018-04-27 中兴通讯股份有限公司 A kind of extensive antenna system control signal sending method and device
WO2013160795A1 (en) 2012-04-27 2013-10-31 Marvell World Trade Ltd. Coordinated multipoint (comp) communication between base-stations and mobile communication terminals
WO2014039616A1 (en) 2012-09-06 2014-03-13 Marvell World Trade Ltd. Efficient search of precoders in precoded mimo systems
CN104144007B (en) * 2013-05-09 2018-01-30 电信科学技术研究院 A kind of information feedback method and device based on code book
KR102169960B1 (en) 2013-06-05 2020-10-26 엘지전자 주식회사 Method and apparatus for transmitting channel state information in wireless communication system
KR102097295B1 (en) * 2013-07-26 2020-04-06 한국전자통신연구원 Apparatus and method for encoding in multiple input multiple output communication systems
CN104811229B (en) * 2014-01-24 2020-09-08 中兴通讯股份有限公司 Channel state information processing method and device, terminal and base station
KR101995826B1 (en) 2014-05-15 2019-07-03 후아웨이 테크놀러지 컴퍼니 리미티드 Method and apparatus for measuring and feeding back channel information
US9848342B1 (en) 2016-07-20 2017-12-19 Ccip, Llc Excursion compensation in multipath communication systems having performance requirements parameters
WO2018207100A1 (en) * 2017-05-10 2018-11-15 Nokia Technologies Oy Low-overhead high-rank codebook
CN108880645B (en) * 2017-07-26 2019-08-27 华为技术有限公司 Methods, devices and systems for data transmission
US11398890B2 (en) * 2018-01-10 2022-07-26 Idac Holdings, Inc. Unified non-orthogonal multiple access
CN111082838B (en) 2018-10-18 2022-04-05 慧与发展有限责任合伙企业 Automatic selection of codebooks
WO2020186876A1 (en) * 2019-03-21 2020-09-24 中兴通讯股份有限公司 Codebook updating method, aau device, bbu device and readable storage medium
US11050465B2 (en) * 2019-06-21 2021-06-29 Qualcomm Incorporated User equipment initiated channel state feedback codebook selection
US12015458B2 (en) * 2019-08-09 2024-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Technique for precoding a radio transmission
CN112865840B (en) * 2019-11-27 2022-02-18 深圳市通用测试系统有限公司 Method, device and system for testing MIMO wireless terminal
CN111147129A (en) * 2019-12-31 2020-05-12 东方红卫星移动通信有限公司 Pre-coding method of low-earth-orbit satellite communication system
US11728852B2 (en) 2020-04-28 2023-08-15 Qualcomm Incorporated Block matrix generation for sequence based transmissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076213A1 (en) * 2005-01-13 2006-07-20 Intel Corporation Codebook generation system and associated methods
US20060270360A1 (en) * 2005-05-30 2006-11-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas
EP1732245A2 (en) * 2005-06-08 2006-12-13 Samsung Electronics Co.,Ltd. Transmitting and receiving apparatus and method in closed-loop mimo antenna system using codebook
US20060287743A1 (en) * 2005-06-16 2006-12-21 Hemanth Sampath Negotiated channel information reporting in a wireless communication system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60018452T2 (en) * 1999-11-29 2005-12-29 Nokia Corp. SYSTEM AND METHOD FOR IDENTIFYING CODING / DECODING INFORMATION IN A MOBILE COMMUNICATION NETWORK
HUE031812T2 (en) 2004-05-27 2017-08-28 Qualcomm Inc Modified preamble structure for ieee 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, mimo or otherwise extended devices
US8619907B2 (en) 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US7764673B1 (en) * 2004-08-04 2010-07-27 Cisco Technology, Inc. System and method for implementing a variable size codebook for compression in a communications environment
US7742390B2 (en) 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
US9136974B2 (en) * 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US20070098106A1 (en) * 2005-10-31 2007-05-03 Khojastepour Mohammad A Quantized multi-rank beamforming with structured codebook for multiple-antenna systems
US7782573B2 (en) * 2005-11-17 2010-08-24 University Of Connecticut Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback
KR100819285B1 (en) * 2006-03-16 2008-04-02 삼성전자주식회사 Method for transmiting/receiving feedback information in a multi-antenna system of selporting multi-user and system thereof
US10044532B2 (en) * 2006-03-20 2018-08-07 Texas Instruments Incorporated Pre-coder selection based on resource block grouping
US7751495B1 (en) * 2006-09-06 2010-07-06 Marvell International Ltd. Equal power output spatial spreading matrix for use in a wireless MIMO communication system
US7702029B2 (en) * 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
US8259835B2 (en) 2007-03-22 2012-09-04 Marvell World Trade Ltd. Variable codebook for MIMO system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076213A1 (en) * 2005-01-13 2006-07-20 Intel Corporation Codebook generation system and associated methods
US20060270360A1 (en) * 2005-05-30 2006-11-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas
EP1732245A2 (en) * 2005-06-08 2006-12-13 Samsung Electronics Co.,Ltd. Transmitting and receiving apparatus and method in closed-loop mimo antenna system using codebook
US20060287743A1 (en) * 2005-06-16 2006-12-21 Hemanth Sampath Negotiated channel information reporting in a wireless communication system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385452B2 (en) 2008-10-24 2013-02-26 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
CN104009821B (en) * 2008-10-24 2018-09-28 高通股份有限公司 The method and apparatus that separable channel state feedback is used in wireless communication system
US9485661B2 (en) 2008-10-24 2016-11-01 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
WO2010048513A3 (en) * 2008-10-24 2011-04-14 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
CN104009821A (en) * 2008-10-24 2014-08-27 高通股份有限公司 Method and apparatus for separable channel state feedback in a wireless communication system
CN102204141B (en) * 2008-10-24 2014-06-18 高通股份有限公司 Method and apparatus for separable channel state feedback in a wireless communication system
KR101301270B1 (en) * 2008-10-24 2013-08-30 퀄컴 인코포레이티드 Method and apparatus for separable channel state feedback in a wireless communication system
JP2012507203A (en) * 2008-10-24 2012-03-22 クゥアルコム・インコーポレイテッド Method and apparatus for separable channel state feedback in a wireless communication system
EP2381588A2 (en) * 2008-12-21 2011-10-26 LG Electronics Inc. Data transmission device and method in a wireless communications system
US9553645B2 (en) 2008-12-21 2017-01-24 Lg Electronics Inc. Data transmission device and method in a wireless communications system
EP2381588A4 (en) * 2008-12-21 2014-06-25 Lg Electronics Inc Data transmission device and method in a wireless communications system
US8891651B2 (en) 2008-12-21 2014-11-18 Lg Electronics Inc. Data transmission device and method in a wireless communications system
US8874046B2 (en) 2009-01-05 2014-10-28 Intel Corporation Techniques utilizing step size adaptation for differential beamforming in wireless networks
KR101330341B1 (en) * 2009-01-05 2013-11-15 인텔 코오퍼레이션 Techniques utilizing step size adaptation for differential beamforming in wireless networks
WO2010123320A2 (en) 2009-04-23 2010-10-28 Samsung Electronics Co., Ltd. Apparatus and method for interference mitigation in a wireless communication system
EP2422463A4 (en) * 2009-04-23 2016-11-09 Samsung Electronics Co Ltd Apparatus and method for interference mitigation in a wireless communication system
CN102006620A (en) * 2009-08-31 2011-04-06 巴比禄股份有限公司 Wireless terminal device, wireless communication system, and method of notifying communication status level
WO2011080774A1 (en) * 2009-12-30 2011-07-07 Telecom Italia S.P.A Method for selecting a precodlng matrix in a "multiple input multiple output" ("mimo") system
US8817904B2 (en) 2009-12-30 2014-08-26 Telecom Italia S.P.A. Method for selecting a precoding matrix in a multiple input multiple output (“MIMO”) system
KR101620973B1 (en) * 2009-12-30 2016-05-13 텔레콤 이탈리아 소시에떼 퍼 아찌오니 Method for selecting a precoding matrix in a multiple input multiple output(MIMO) system
US9148205B2 (en) 2010-01-25 2015-09-29 Qualcomm Incorporated Feedback for supporting SU-MIMO and MU-MIMO operation in wireless communication
WO2011091440A1 (en) * 2010-01-25 2011-07-28 Qualcomm Incorporated Feedback for supporting su-mimo and mu-mimo operation in wireless communication
JP2013518526A (en) * 2010-01-25 2013-05-20 クゥアルコム・インコーポレイテッド Feedback for supporting SU-MIMO and MU-MIMO operations in wireless communication
CN102006147A (en) * 2010-12-01 2011-04-06 西安电子科技大学 Implementation method for reducing average feedback quantity of codebook and optimizing codebook
EP2592764A1 (en) * 2011-11-14 2013-05-15 Alcatel Lucent Method for optimizing radio link transmission in a radio communication system, transmission unit, selection unit, network node, and apparatus thereof
WO2013072139A1 (en) * 2011-11-14 2013-05-23 Alcatel Lucent Method for optimizing radio link transmission in a radio communication system, transmission unit, base station and apparatus thereof
WO2015022170A1 (en) * 2013-08-15 2015-02-19 Sony Corporation Transmitting apparatus and method for a mimo broadcast system

Also Published As

Publication number Publication date
US20080232503A1 (en) 2008-09-25
US9391679B2 (en) 2016-07-12
US20140321569A1 (en) 2014-10-30
TWI474688B (en) 2015-02-21
US8259835B2 (en) 2012-09-04
EP2130308A2 (en) 2009-12-09
US8781019B2 (en) 2014-07-15
EP3444969B1 (en) 2020-02-19
WO2008116181A3 (en) 2008-12-31
EP2130308B1 (en) 2018-12-19
US20120250751A1 (en) 2012-10-04
CN101669299B (en) 2014-11-12
EP3444969A1 (en) 2019-02-20
TW200901696A (en) 2009-01-01
CN101669299A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US9391679B2 (en) Variable size codebook for MIMO system
EP2485409B1 (en) Antenna selection and training using a spatial spreading matrix for use in a wireless mimo communication system
US10200096B2 (en) Beamforming using predefined spatial mapping matrices
US8023457B2 (en) Feedback reduction for MIMO precoded system by exploiting channel correlation
US8634489B1 (en) Systems for selecting a modulation coding scheme
US8699978B1 (en) Increasing the robustness of channel estimates derived through sounding for WLAN
EP1772975B1 (en) Method and apparatus for detecting signal in a mimo communication system
US8774725B1 (en) Calibration correction for implicit beamforming in MIMO systems
US9258042B1 (en) Reuse of matrix equalizer for the purpose of transmit beamforming in a wireless MIMO communication system
WO2014201157A1 (en) Channel sounding and estimation strategies in mimo systems
WO2006075662A1 (en) Adaptive transmission detection method in multi-antenna communication system and multi-antenna reception device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880009398.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08744204

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008744204

Country of ref document: EP