WO2008157688A2 - Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap - Google Patents
Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap Download PDFInfo
- Publication number
- WO2008157688A2 WO2008157688A2 PCT/US2008/067494 US2008067494W WO2008157688A2 WO 2008157688 A2 WO2008157688 A2 WO 2008157688A2 US 2008067494 W US2008067494 W US 2008067494W WO 2008157688 A2 WO2008157688 A2 WO 2008157688A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- recited
- rna molecule
- reading frame
- open reading
- Prior art date
Links
- 0 *[C@@](C1O)O[C@@](COP([*-])(OP([n]2cncc2)([O-])=O)=O)C1O Chemical compound *[C@@](C1O)O[C@@](COP([*-])(OP([n]2cncc2)([O-])=O)=O)C1O 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
- C07H19/207—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/02—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- mRNAs messenger RNAs
- RNA that are also capped, for instance small nuclear RNAs (snRNAs).
- snRNAs small nuclear RNAs
- the cap contains a 5'-5' triphosphate linkage between two nucleoside moieties and a 7-methyl group on a distal guanine ring.
- the capping of mRNA and snRNA promotes their normal functions in cells.
- RNA molecules that behave properly in a variety of biological applications.
- Such applications include both research applications and commercial production of polypeptides, e.g., the production in a cell-free translation system of polypeptides containing an "unnatural" amino acid at a specific site, or production in cultured cells of polypeptides that require post-translational modification for their activity or stability. In the latter systems, synthesis proceeds for a considerably longer time and therefore produces more protein.
- the method most frequently used to make capped RNAs in vitro is to transcribe a DNA template with either a bacterial or bacteriophage RNA polymerase in the presence of all four ribonucleoside triphosphates and a cap dinucleotide such as m 7 G(5')ppp(5')G (henceforth m 7 GpppG).
- the polymerase initiates transcription with a nucleophilic attack by the 3'-OH of the Guo moiety of m 7 GpppG on the ⁇ -phosphate of the next templated nucleoside triphosphate, resulting in the initial product m 7 GpppGpN.
- GTP-initiated product pppGpN is suppressed by setting the ratio of m 7 GpppG to GTP between 5 and 10 in the transcription reaction mixture.
- Synthetic RNAs may be synthesized by cell-free transcription of DNA templates. See R. Contreras et al, "Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes," Nucl. Acids Res., vol. 10, pp. 6353-6362 (1982); J. Yisraeli et al, "Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases, pp. 42-50 in J. Dahlberg et al (Eds.), Meth. Enzymol, vol. 180., pp. 42-50 (1989); and D.
- Capped RNAs thus produced are active in splicing reactions carried out in vitro. See M. Konarska et al., "Recognition of cap structure in splicing in vitro of mRNA precursors. Cell, vol. 38, pp. 731-736 (1984); and I. Edery et al, "Cap-dependent RNA splicing in a HeLa nuclear extract," Proc. Natl. Acad. ScL USA, vol. 82, pp. 7590-7594 (1985).
- Capped mRNAs are translated in cell-free translation systems more efficiently than are non-capped mRNAs. See S. Muthukrishnan et al., "5'-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation," Nature, vol. 255, pp. 33-37 (1975); L. Chu et al., "Paradoxical observations on the 5' terminus of ovalbumin messenger ribonucleic acid," J. Biol. Chem., vol. 253, pp. 5228-5231 (1978); E.
- 5'-Unmethylated mRNAs are trans lationally less active than 5'-methylated mRNAs. See G. Both et ah, “Methylation-dependent translation of viral messenger RNAs in vitro" Proc. Natl Acad. ScL USA, vol. 72, pp. 1189-1193 (1975).
- Capped mRNAs introduced into cultured mammalian cells by electroporation are translated more efficiently than are non-capped mRNAs. See E. Grudzien et ah, "Differential inhibition of mRNA degradation pathways by novel cap analogs," J. Biol. Chem. vol. 281, pp. 1857-1867 (2006).
- RNA, vol. 7, pp. 1486-1495 reported the synthesis and use of two novel two novel cap analogs, m ? 3'dGpppG and m 2 7 ' 3 " °GpppG, that are incapable of being incorporated in the reverse orientation.
- mRNAs capped with these "anti-reverse cap analogs" were translated more efficiently in an in vitro system than mRNAs capped with the conventional analog, m 7 GpppG. See also U.S. Patent No. 7,074,596, and U.S. Patent Application Publication 2003/0194759.
- the amount of protein produced from synthetic mRNAs introduced into cultured mammalian cells is limited by the degradation of mRNA by natural turnover processes.
- a major in vivo pathway of mRNA degradation is initiated by removal of the cap from intact mRNA by a specific pyrophosphatase, Dcpl/Dcp2, that cleaves between the ⁇ and ⁇ phosphates.
- Dcpl/Dcp2 a specific pyrophosphatase
- Dcpl/Dcp2 which acts on intact mRNA to initiate 5'— >V degradation
- DcpS which acts on short capped oligonucleotides resulting from 3' ⁇ 5' degradation. Because Dcpl/Dcp2 or Dcp2 alone releases m 7 GDP from capped mRNAs, cleavage is likely to occur between the ⁇ - and ⁇ -phosphates. See Z. Wang et ah, "The hDcp2 protein is a mammalian mRNA decapping enzyme," Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 12663-12668 (2002).
- nucleoside 5'- monophosphorothioates as well as triphosphate analogs such as ATP ⁇ S, GTP ⁇ S, and GDP ⁇ S were stable towards phosphatases. See F. Eckstein et al, "Guanosine 5'-O-(2- thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions", J. Biol. Chem., vol. 254, pp. 9829-9834 (1979), and D.
- S-ARCAs S-substitution at one or more phosphates together with T-O methyl substitution produces new analogs, called S-ARCAs with surprising properties.
- the novel ARCA modification ensures that the ⁇ , ⁇ , and ⁇ phosphorothioate groups are precisely positioned within the active sites of cap-binding proteins in both the translational and decapping machinery. At least some of these analogs are resistant to Dcpl/Dcp2.
- Some S-ARCAs have a much higher affinity for eIF4E than the corresponding analogs lacking a phosphorothioate group.
- the S-ARCAs increased stability in vivo and surprisingly increased the translation efficiency arising from higher affinity to eIF4E combined with Dcpl/Dcp2 resistance.
- the resistance to hydrolysis by Dcp2 under physiological conditions was surprisingly correlated with a ⁇ -phosphorothioate group in triphosphates, and is expected also to correlate with a ⁇ -phosphorothioate in tetraphosphates.
- Another advantage over regular ARCAs is the occurrence of P-diastereomerism, due to the phosphorothioate moieties.
- Fig. 1 depicts the synthesis of the ⁇ S-ARCA m 2 7 ' 2' ⁇ o Gppp s G (Dl and D2).
- Fig. 2 depicts the synthesis of the ⁇ S-ARCA m 2 7 ' 2' ⁇ °Gp s ppG (Dl and D2).
- Fig. 3 depicts the synthesis of the ⁇ S-ARCA m 2 7 ' 2' °Gpp s pG (D 1 and D2).
- FIG. 4 depicts the synthesis for a tetraphosphate ⁇ S-ARCA, m 2 7 ' 2 " °Gpp s ppG
- Fig. 5 depicts the synthesis for a S-ARCA with two phosphorothioate moieties the ⁇ and ⁇ positions in a triphosphate bridge, m 2 7 ' 2 " °GppsPsG (Dl, D2, D3 and D4).
- Figs. 6A-6H depict an analysis of in vzYr ⁇ -synthesized oligonucleotides digested with hDcp2 by anion exchange HPLC.
- Fig. 7 depicts the decay of luciferase mRNAs capped with S-ARCAs in HCl 1 cells.
- Fig. 8 depicts the translational efficiency of mRNAs capped with S-ARCAs in
- Figs. 9A-9E depict the polysomal distribution of luciferase mRNA capped with S-ARCAs in HCl 1 cells, shown as sedimentation in sucrose gradients by monitoring by absorbance at 260 nm (A), and by use of real time PCR to show distribution of luciferase mRNA (B, C, and D) and GAPDH mRNA (E).
- Fig. 10 depicts the time course of luciferase expression after nucleoporation of
- Analytical HPLC was performed on a Spectra- Physics SP8800 apparatus equipped with a Supelcosil LC-18-T reverse-phase column (4.6 x 250 mm, flow rate 1.3 ml/min) with a linear gradient 0-25% of methanol in 0.05 M ammonium acetate buffer at pH 5.9, using UV-detection at 260 nm.
- Semi-preparative HPLC was performed on a Waters 600E Multisolvent Delivery System equipped with a Waters HR- C-18 reverse-phase column (19 x 300 mm, flow rate 5.0 m/min) with a linear gradient of methanol in 0.05 M ammonium acetate buffer, pH 5.9, using UV-detection at 260 nm.
- GMP and GDP were purchased from Sigma-Aldrich and converted into triethylammonium salts using Dowex 50 WX 8 ion-exchange resin.
- Other nucleotides i.e. m 7 GMP, rri 2 7 ' 2 ⁇ o GMP, m 7 GDP, rri 2 7 ' 2 ⁇ o GDP were prepared as previously reported in J. Jemielity et al "Novel 'anti-reverse' cap analogues with superior translational properties," RNA, vol. 9, pp. 1108-1122 (2003).
- Thiophosphate triethylammonium salt was prepared from Na 3 PSO 3 by conversion on Dowex 50 WX 8 ion-exchange resin and (after evaporation to dryness) and re-evaporation with 99,8% ethanol stored at -20 0 C. See J Kowalska et al. "A simple and rapid synthesis of nucleotide analogues containing a phosphorothioate moiety at the terminal position of the phosphate chain", Tetrahedron Lett., vo. 48, pp. 5475-5479 (2007). 7-methylguanosine was prepared as previously reported, with the exception that DMF was used instead of DMA (See J. Jones et al, "Purine Nucleosides. 111.
- H8 _ a 810 807 901' 803 902' 801 908' 801 906' 801
- 5',5'-tetraphosphate bridge was shown by the synthesis of m 2 7 ' 2 ⁇ °GppsppG (Fig. 4).
- the synthesis of three other tetraphosphate S-ARCAs i.e. m 2 7 ' 2 ⁇ °GpspppG, m 2 7 ' 2 ⁇ °GpppspG, m 2 7 ' 2 ⁇ °GppppsG
- m 2 7 ' 2 ⁇ °GppppsG Three other tetraphosphate S-ARCAs (i.e. m 2 7 ' 2 ⁇ °GpspppG, m 2 7 ' 2 ⁇ °GpppspG, m 2 7 ' 2 ⁇ °GppppsG) is available via analogous approach.
- the developed strategy offers also a way to synthesize compounds containing multiple phosphorothioate moieties in the 5', 5 '-polyphosphate bridge that may be achieved by the synthetic route suggested in Fig 5, for example, compound m 2 7 ' 2 " °GppsPsG.
- Imidazolide derivative of guanosine 5'-O-thiophosphate will be prepared analogously to the procedure reported previously for imidazolide derivative of adenosine 5'-O-thiophosphate [M. Shimazu et al. "Regio- and stereocontrolled synthesis of 2'-5'-linked phosphorothioate oligoadenylates by uranyl ion catalyst in aqueous solution", J.
- 5'-O-monothiophosphate (triethylammonium salt, 53 mg, 0.1 mmol) will be mixed with phosphorothioate triethylammonium salt (320 mg, ca. 1.2 mmol) and the resultant mixture suspended in 3.5 mL of DMF. Subsequently, anhydrous zinc chloride (55 mg, 0.4 mmol) and manganese chloride (50 mg, 0.4 mmol) will be added. The reaction will be quenched by addition of EDTA solution (270 mg, 0.8 mmol in 35 mL of water) and brought to pH 7 with sodium bicarbonate.
- EDTA solution 270 mg, 0.8 mmol in 35 mL of water
- Imidazolide derivative of 7,2'-O-dimethylguanosine 5'-O- monophosphate sodium salt, 23 mg, 0.05 mmol
- guanosine 5'-O-(l,2- dithiodiphosphate) triethylammonium salt, 39 mg, 0.05 mmol
- anhydrous zinc chloride 55 mg, 0.4 mmol
- the reaction will be quenched by addition of EDTA solution (135 mg, 0.4 mmol in 20 mL of water) and brought to pH 7 with sodium bicarbonate.
- Chromatographic isolation and separation of m 2 7 ' 2 ⁇ °GppsPsG diastereomers Dl, D2, D3, D4 will be performed by semi-preparative RP HPLC.
- HCI l mammary epithelial cells are clonally derived from the COMMA- ID mouse mammary gland cells line. See K. Danielson et al "Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro," Proc. Natl Acad. ScL U.S.A., vol. 81, pp. 3756-3760 (1984). The cells were grown in RPMI 1640 medium containing 10% bovine growth serum (HyClone), 5 ⁇ g/ml bovine insulin (Sigma), and 10 ng/ml recombinant EGF (BD Biosciences).
- RNAs were synthesized by in vitro transcription in the presence a luciferase-encoding plasmid (p/wc-A 6 o), with T7 polymerase, in the presence of all four nucleoside triphosphates and different cap dinucleotides. See J. Jemielity et al "Novel 'anti- reverse' cap analogues with superior translational properties," RNA, vol. 9, pp. 1108-1122 (2003).
- a typical transcription reaction contained 40 mM Tris-HCl, pH 7.9, 6 mM MgCl 2 , 2 mM spermidine, 10 mM DTT, 0.1 mg/ml BSA, 1 U/ ⁇ l of RNasin (Promega), 0.5 mM ATP, 0.5 mM CTP, 0.5 mM UTP, 0.1 mM GTP, 1 mM cap analog, 15 ⁇ g/ml DNA, and 1 U/ ⁇ l of T7 polymerase (Promega).
- pluc-A ⁇ o which contains the entire firefly luciferase coding sequence in pGEM4 (Promega) and a 3 '-terminal 60-nt poly(A) tract (see E.
- RNAs Short RNAs (capped oligonucleotides of about 48 nt) were synthesized in the presence of 10 ⁇ Ci/ ⁇ l of [(X- 32 P]GTP (ICN) in 50- ⁇ l reaction mixtures incubated for 45 min at 37 0 C.
- RNAs were separated from unincorporated nucleotides using spin columns (Ambion), according to the manufacturer's protocol.
- concentrations of mRNAs were determined by Cerenkov counting in which the specific radioactivity of [(X- 32 P]GTP in the final transcription reaction mixture was used for conversion of cpm to pmol.
- Dcp2 activity was measured with capped 48-nt oligonucleotides as substrates, a truncated form of luciferase mRNA (48 nucleotides).
- GST-hDcp2 was expressed in Escherichia coli and purified as described by Z. Wang et ah, "The hDcp2 protein is a mammalian mRNA decapping enzyme," Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 12663- 12668 (2002).
- Capped oligonucleotides were first subjected to digestion with GST-hDcp2 at 37 0 C for 2 h in decapping buffer (10 mM Tris-HCl, pH 7.5, 100 mM potassium acetate, 2 mM magnesium acetate, 0.5 mM MnCl 2 , 2 mM dithiothreitol, and 0.1 mM spermine).
- decapping buffer 10 mM Tris-HCl, pH 7.5, 100 mM potassium acetate, 2 mM magnesium acetate, 0.5 mM MnCl 2 , 2 mM dithiothreitol, and 0.1 mM spermine.
- the gradient consisted of water for 1 min, a linear gradient to 112 mM KH 2 PO 4 , pH 4.5, for 20 min, a linear gradient of 112-450 mM KH 2 PO 4 for 15 min, a linear gradient of 450 mM to 1.5 M KH 2 PO 4 for 15 min, and isocratic elution at 1.5 M Of KH 2 PO 4 for 9 min, all at a flow rate 1 ml/min.
- Example 11 Measurement of translational efficiency and mRNA decay in HCIl cells
- RNA Two methods, electroporation and nucleoporation, were used to deliver RNA into cells.
- electroporation 5 ⁇ g of RNA were introduced into 10 7 HCl 1 cells in a total volume 400 ⁇ l of serum-reduced RPMI 1640 medium in a Gene pulser cuvette (4 mm gap) with a Bio-Rad GenepulserTM set at 0.22 kV and 960 ⁇ F.
- the cells were washed twice with PBS, centrifuged for 2 min 300 x g at room temperature, resuspended in prewarmed complete medium, and placed at 37 0 C.
- Eppendorf tubes placed in a water bath at 37 0 C, and shaken.
- cells were distributed into 35 -mm cell culture dishes and placed at 37 0 C in a 5% CO 2 humidified atmosphere. Cells were harvested at various times and washed twice with PBS.
- RNAs were further purified using the RNeasy mini kit.
- lysis buffer 50 mM Tris-HCl, pH 8.0, 140 mM NaCl, 1.5 mM MgCl 2 , 0.5% (v/v) Igepal (Sigma), and 1 mM dithiothreitol.
- RNAs were further purified using the RNeasy mini kit.
- 2 x 10 5 cells were lysed in 200 ⁇ l of Luciferase Cell Culture Lysis Reagent (Promega). Luciferase activity of cell extracts was measured according to the manufacturer's protocol (Promega).
- RNA from each fraction (1 ml) was isolated and analyzed by real time PCR.
- RNA sample isolated from HCl 1 cells and purified with an RNeasy mini kit (Qiagen) were treated with 3 units of DNase RQl (Promega) for 20 min at 37 0 C.
- Reverse transcription was performed on 400 ng of RNA in 20- ⁇ l reaction mixtures containing 5.5 mM MgC ⁇ , 500 ⁇ M of each dNTP, 2.5 ⁇ M random hexamers, 0.2 units of RNase inhibitor, and 0.8 units of MultiScribe reverse transcriptase (Applied Biosystems). Reaction mixtures were incubated at 25 0 C for 10 min, 48 0 C for 30 min, and 95 0 C for 5 min.
- Quantitative real time PCR was performed with specific primers designed for each mRNA with the Beacon Designer tool (Bio-Rad).
- the primers were 5'- CGTTCGGTTGGCAGAAGCTA-3' (SEQ ID NO: 1) and 5'-
- Luciferase mRNA from the cap structure to the beginning of the 3 '-terminal homopolymer tract consisted of 1714 nucleotides. These primers amplified nucleotides 226-398.
- Mouse GAPDH mRNA levels were measured by the same method and in the same RNA samples with the primers 5'- CAATGTGTCCGTCGTGGATCT-3' (SEQ ID NO: 3) and 5'- GAAGAGTGGGAGTTGCTGTTGA-3' (SEQ ID NO: 4).
- PCR detection system in 25- ⁇ l reaction mixtures containing 5 ⁇ l of the transcription reaction mixture (50 ng of cDNA), 12.5 ⁇ l of IQ SYBRgreen Supermix, and 0.3 mM primers (Bio- Rad).
- the incubation conditions were 3 min at 95 0 C for polymerase activation, and 40 cycles of 15 s at 95 0 C and 1 min at 60 0 C.
- Luciferase mRNA levels were calculated using the absolute standard curve method as described in User Bulletin No. 2 for the ABI Prism 7700 Sequence Detection System. After the amount of luciferase mRNA was calculated from a standard curve, it was normalized for the amount of mouse GAPDH mRNA in each sample. The amount of luciferase mRNA remaining at each time point was converted to a percent of the RNA present at zero time, and the results were plotted as logio([RNA]) versus time to determine half-life. For analysis of RNA from polysome gradients, in vzYr ⁇ -synthesized GFP mRNA was added to each fraction before RNA isolation as an internal standard to control variation in RNA yield. The level of GFP mRNA was used to normalize the levels of luciferase and GAPDH mRNA.
- Binding affinities of S analogs for murine eIF4E were determined by fluorescence quenching. Fluorescence titration measurements were carried out on an LS-50B spectrofluorometer (Perkin Elmer Co.) in 50 mM HEPES/KOH (pH 7.2), 100 mM KCl, 0.5 mM EDTA, 1 mM DTT at 20.0 ⁇ 0.2 0 C. Aliquots of 1 ⁇ l increasing concentration of cap analogue solutions were added to 1.4 ml of 0.1 protein solutions.
- the concentration of protein was fitted as a free parameter of equilibrium equation showing amount of "active" protein.
- a micrococcal nuclease-treated rabbit reticulocyte lysate was used for in vitro translation (A. Cai et al., "Quantitative assessment of mRNA cap analogues as inhibitors of in vitro translation," Biochemistry, vol. 38, pp. 8538-8547 (1999)).
- Optimal cap-dependent translation was achieved at 100 mM potassium acetate and 1.4 mM magnesium chloride.
- Stepinski et ah "Synthesis and properties of mRNAs containing the novel "anti-reverse” cap analogues 7-methyl(3'-O- methyl)GpppG and 7-methyl(3'-deoxy)GpppG," RNA, vol. 7, pp. 1486-1495 (2001), and J. Jemielity et ah, "Novel 'anti-reverse' cap analogues with superior translational properties," RNA, vol. 9, pp. 1108-1122 (2003).
- Two mononucleotide species, one of which is first converted into a reactive imidazolide derivative, are coupled in DMF.
- the reaction is facilitated by an 8-fold excess of ZnCl 2 , which significantly improves the solubility of the reactants in organic media, prevents the hydrolysis of imidazolide derivatives, and accelerates the reaction rate.
- An important step in the synthesis was coupling of an appropriate imidazolide derivative with a nucleoside 5'-phosphorothioate or 5'-(2-thiodiphosphate) in DMF in the presence of ZnCl2.
- the intermediate nucleoside 5'-(2-thiodiphosphates) were efficiently obtained in a similar, recently developed reaction, that employs the thiophosphate anion (PSO3 3 ) as nucleophile. See J.
- ⁇ is the phosphate moiety most distal to the 7-methylguanosine moiety.
- the position named “ ⁇ ” is the next phosphate in the direction moving toward the 7-methyguanosine moiety, and the position named “ ⁇ ” is the next phosphate in the direction moving toward the 7-methylguanosine moiety.
- the " ⁇ ” is the phosphate closest to the 7-methyguanosine moiety.
- the " ⁇ ” is separated from the 7-methylguanosine moiety by the " ⁇ " phosphate.
- nucleoside 5 '-diphosphates were converted into their imidazolide derivatives (7, 8 and 12-15) via reaction with imidazole employing the 2,2'-dithiodipirydine/triphenylphosphine activation system (T. Mukaiyama et al., "Phosphorylation by oxidation-reduction condensation. Preparation of active phosphorylating reagents," Bull. Chem. Soc. Jpn., vol. 44, p. 2284 (1971).
- the analogs modified at the ⁇ - position, i.e., m 7 GppspG (2) and m 2 7 ' 2 O GppspG (5) were synthesized as depicted in Fig. 3.
- oligonucleotides capped with either of the S- ARCAs were subjected to Dcp2 digestion in vitro, after which the products were further digested with a cocktail of ribonucleases (RiboShredder from Epicenter). Any nucleotide on the 5' side of a G residue acquired a 32 P-labeled 3 '-phosphate group after ribonuclease digestion by nearest-neighbor transfer. Anion exchange chromatography was then used to resolve the labeled 3 '-nucleoside monophosphates (3'-NMP*), at internal positions in the RNA, from labeled 5 '-terminal products (Fig. 6).
- the latter comprise p3Gp* derived from uncapped transcripts and m 2 7 ' 2 ⁇ °Gp3Gp* (when m 2 7 ' 2 ⁇ °Gp3G was used), or pGp* resulting from capped RNA resistant or nonresistant to enzymatic cleavage, respectively.
- All cap analogs used were ARCAs, which ensured that they were incorporated into RNA exclusively in the correct orientation. This further guaranteed that only one 5 '-terminal product (m 2 7 ' 2 " o Gp3Gp* ) was observed upon ribonuclease treatment.
- Uncapped RNA is not a substrate for Dcp2, which explains why p 3 Gp* product was observed after Dcp2 digestion.
- RNA stability in cells we predicted that the presence of this cap analog would affect mRNA stability in cells.
- electroporation we used conditions optimized previously. See E. Grudzien et ah, "Differential inhibition of mRNA degradation pathways by novel cap analogs," J. Biol. Chem., vol.
- Luciferase mRNAs containing various 5 '-terminal caps and a 3 '-terminal 60- nt poly(A) tract were synthesized in vitro. Following nucleoporation, cells were either removed at intervals up to 90 min for measuring translational efficiency, using the rate of luciferase activity increase; or up to 8 h for measuring luciferase mRNA stability by realtime PCR. Determination of translational efficiency and mRNA stability could be erroneous if mRNAs recovered from the cells contained both translated and untranslated mRNA. To address this issue, we determined the rates of degradation for total cytoplasmic mRNA versus polysomal mRNA.
- Luciferase mRNA capped with m 2 7 ' 2 " °Gp3G was nucleoporated into HCI l cells, which were then lysed at various times and layered on a sucrose gradient to separate polysomes from initiation complexes. Polysomal fractions were combined, and the RNA purified. To follow cytoplasmic mRNA degradation we used mRNA isolated from total cell extracts. Luciferase mRNA was quantified in both cases by real-time PCR using a pair of primers directed against the 5 '-end of luciferase mRNA. [0079] The transcripts associated with polysomes were degraded at about the same rate as total cytoplasmic mRNA (data not shown). This suggests that even if there exist translated and untranslated pools of luciferase mRNA at any given time, the mRNA freely exchanges between them. This observation validates measurements of trans lational efficiency and rate of degradation.
- Luc-A 6 o capped with various S-ARCAs were determined after nucleoporation into HCl 1 cells. The mRNA remaining in the cells at various times was determined by real-time PCR.
- the amount of luciferase mRNA was measured by real time PCR using primers that amplify sequences near the 5 '-end. Luciferase mRNA remaining at each time point was plotted as logio ([RNA]) versus time to determine V 2 . The curve was extrapolated to 0 h, and the amount of RNA delivered into the cells was calculated.
- Dcp2 susceptibility is given by the radioactivity in pGp* expressed as a percentage of the total. (ND) Not determined. degradation of 5 '-terminal sequences in Luc-A ⁇ o mRNAs capped with the indicated analogs was determined by real time PCR with primers directed against the 5 '-end of luciferase mRNAs. d Translational efficiency of Luc-A 6 o mRNAs capped with indicated cap analogs in HCl 1 cells are shown. Luciferase activity was normalized by the amount of lucifearse RNA in the cells. Relative translational efficiency was calculated as described by J. Jemielity et ah, "Novel 'anti-reverse' cap analogues with superior translational properties" RNA, vol. 9, pp. 1108-1122 (2003).
- Luciferase mRNA capped with S-ARCAs was more efficiently recruited to polysomes in HCIl cells
- °GppspG-capped mRNAs were translated more efficiently, namely, their polysomal distribution (Figs. 9A - 9E).
- An increase in the rate of initiation relative to elongation or termination results in a shift of the mRNA from lighter to heavier polysomes.
- the type of cap structure is not expected to affect the rate of elongation. Thus, a shift to higher polysomes indicates faster initiation.
- mRNP messenger ribonucleoprotein complexes
- Kp& for the Dl isomer of In 2 7 ' 2 " °GpsppG is 3-fold higher than for D2 or m 2 7 ' 2 ⁇ °GpppG.
- X AS for the Dl isomer of m 2 7 ' 2 ⁇ °GppspG is 2-fold higher than for D2 and 4.5-fold higher than for m 2 7 ' 2 ⁇ °GpppG.
- Example 24 Susceptibility to Enzymatic Hydrolysis by human and C. elegans DcpS.
- cap analogs at 4 ⁇ M concentration were subjected to enzymatic digestion by DcpS in conditions leading to complete degradation of the unmodified parent compound (i.e. m 7 GpppG for non-ARCA S-analogs and rri 2 7 ' 2 ⁇ o GpppG for ARCAs) within 40-90 min.
- Samples collected from reaction mixtures at various time intervals were analysed by RP HPLC with UV detection at 260nm as described in Materials and Methods.
- the analogs assigned as resistant remained completely undigested under the applied conditions, whereas the analogs assigned as hydrofyzed were hydrolyzed by DcpS with efficiency comparable to the respective unmodified parent compound.
- Example 26 mRNA Fragments Capped with S-ARCA as in vivo inhibitors of cap-dependent translation.
- Such fragments capped with triphosphate S-ARCAs containing the phosphorothioate modification in the ⁇ (gamma) position are expected to be resistant to DcpS, similar to what was shown for the cap dinucleotides themselves (Table 4, above). They are therefore expected to accumulate in the cell and compete with normal mRNAs for recruitment to the translational machinery.
- the ARCA modification is necessary for correct orientation of these S-ARCAs upon incorporation into the mRNA, since otherwise the phosphorothioate moiety would not be in the correct position to render the mRNA fragment resistant to DcpS.
- a modification of the ribose moiety of m 7 Guo is 2'-deoxy, 3'-deoxy, arabinose, 2'-O-ethyl, and 3'-O-ethyl.
- a modification of the 7-substituents of G is methyl, ethyl, propyl, butyl, benzyl, substituted benzyl, naphthylmethyl, substituted naphthylmethyl, and other substituted or unsubstituted Cl to ClO aliphatic or aromatic groups.
- a modification of the guanine moiety is to use adenine, uridine, cytosine, or m 7 G.
- adenine, uridine, cytosine, or m 7 G can be synthesized as disclosed in this application and adapted from methods otherwise known in the art, e.g., U.S. Patent Application Publication 2003/0194759.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200880102959.9A CN101855231B (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger RNA cap |
EA201070030A EA017740B1 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
SI200831256T SI2167523T1 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
DK08771474.7T DK2167523T3 (en) | 2007-06-19 | 2008-06-19 | SYNTHESIS AND USE OF ANTI-REVERSE PHOSPHOROTHIOAT ANALOGS OF THE MESSENGER RNA CAPPEN |
CA2692906A CA2692906C (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
ES08771474.7T ES2500515T3 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogues of the messenger RNA cap |
AU2008265683A AU2008265683B2 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger RNA cap |
EP08771474.7A EP2167523B1 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
PL08771474T PL2167523T3 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
US12/280,282 US8153773B2 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger RNA cap |
HRP20140771AT HRP20140771T1 (en) | 2007-06-19 | 2014-08-18 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94484207P | 2007-06-19 | 2007-06-19 | |
US60/944,842 | 2007-06-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008157688A2 true WO2008157688A2 (en) | 2008-12-24 |
WO2008157688A3 WO2008157688A3 (en) | 2009-02-26 |
Family
ID=40156965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/067494 WO2008157688A2 (en) | 2007-06-19 | 2008-06-19 | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
Country Status (15)
Country | Link |
---|---|
US (1) | US8153773B2 (en) |
EP (1) | EP2167523B1 (en) |
CN (3) | CN101855231B (en) |
AU (1) | AU2008265683B2 (en) |
CA (1) | CA2692906C (en) |
CY (1) | CY1115525T1 (en) |
DK (1) | DK2167523T3 (en) |
EA (1) | EA017740B1 (en) |
ES (1) | ES2500515T3 (en) |
HK (1) | HK1200461A1 (en) |
HR (1) | HRP20140771T1 (en) |
PL (1) | PL2167523T3 (en) |
PT (1) | PT2167523E (en) |
SI (1) | SI2167523T1 (en) |
WO (1) | WO2008157688A2 (en) |
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2281579A1 (en) * | 2009-08-05 | 2011-02-09 | BioNTech AG | Vaccine composition comprising 5'-Cap modified RNA |
CN101671669B (en) * | 2009-08-27 | 2012-05-02 | 浙江大学 | Liver cancer targeting gene expression element AE and application thereof |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
WO2015101416A1 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Methods for rna analysis |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2015188933A1 (en) | 2014-06-10 | 2015-12-17 | Curevac Ag | Methods and means for enhancing rna production |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2016170176A1 (en) | 2015-04-22 | 2016-10-27 | Curevac Ag | Rna containing composition for treatment of tumor diseases |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
WO2017109161A1 (en) | 2015-12-23 | 2017-06-29 | Curevac Ag | Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
WO2017130151A1 (en) * | 2016-01-29 | 2017-08-03 | Uniwersytet Warszawski | 5'-phosphorothiolate mrna 5'-end (cap) analogs, mrna comprising the same, method of obtaining and uses thereof |
WO2017140345A1 (en) | 2016-02-15 | 2017-08-24 | Curevac Ag | Method for analyzing by-products of rna in vitro transcription |
WO2017149139A1 (en) | 2016-03-03 | 2017-09-08 | Curevac Ag | Rna analysis by total hydrolysis |
WO2017162461A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
WO2017182524A1 (en) | 2016-04-22 | 2017-10-26 | Biontech Rna Pharmaceuticals Gmbh | Methods for providing single-stranded rna |
WO2017191264A1 (en) | 2016-05-04 | 2017-11-09 | Curevac Ag | Nucleic acid molecules and uses thereof |
WO2018033254A2 (en) | 2016-08-19 | 2018-02-22 | Curevac Ag | Rna for cancer therapy |
WO2018078053A1 (en) | 2016-10-26 | 2018-05-03 | Curevac Ag | Lipid nanoparticle mrna vaccines |
WO2018115507A2 (en) | 2016-12-23 | 2018-06-28 | Curevac Ag | Henipavirus vaccine |
WO2018115527A2 (en) | 2016-12-23 | 2018-06-28 | Curevac Ag | Mers coronavirus vaccine |
EP3424524A2 (en) | 2017-07-04 | 2019-01-09 | CureVac AG | Cancer rna-vaccine |
WO2019038332A1 (en) | 2017-08-22 | 2019-02-28 | Curevac Ag | Bunyavirales vaccine |
WO2019053003A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | Method of enhancing rna expression in a cell |
WO2019053056A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Cell & Gene Therapies Gmbh | Rna replicon for expressing a t cell receptor or an artificial t cell receptor |
WO2019053012A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | Rna replicon for reprogramming somatic cells |
WO2019092153A1 (en) | 2017-11-08 | 2019-05-16 | Curevac Ag | Rna sequence adaptation |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2019115635A1 (en) | 2017-12-13 | 2019-06-20 | Curevac Ag | Flavivirus vaccine |
WO2019122371A1 (en) | 2017-12-21 | 2019-06-27 | Curevac Ag | Linear double stranded dna coupled to a single support or a tag and methods for producing said linear double stranded dna |
EP3540060A1 (en) | 2013-12-30 | 2019-09-18 | CureVac AG | Methods for rna analysis |
US10428106B2 (en) | 2015-10-16 | 2019-10-01 | Modernatx, Inc. | Phosphate replacement mRNA cap analogs |
WO2019193183A2 (en) | 2018-04-05 | 2019-10-10 | Curevac Ag | Novel yellow fever nucleic acid molecules for vaccination |
WO2020002525A1 (en) | 2018-06-27 | 2020-01-02 | Curevac Ag | Novel lassa virus rna molecules and compositions for vaccination |
WO2020128031A2 (en) | 2018-12-21 | 2020-06-25 | Curevac Ag | Rna for malaria vaccines |
WO2020127959A1 (en) | 2018-12-21 | 2020-06-25 | Curevac Ag | Methods for rna analysis |
WO2020161342A1 (en) | 2019-02-08 | 2020-08-13 | Curevac Ag | Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases |
EP3701959A1 (en) | 2016-03-21 | 2020-09-02 | BioNTech RNA Pharmaceuticals GmbH | Rna replicon for versatile and efficient gene expression |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
WO2020254535A1 (en) | 2019-06-18 | 2020-12-24 | Curevac Ag | Rotavirus mrna vaccine |
WO2021028439A1 (en) | 2019-08-14 | 2021-02-18 | Curevac Ag | Rna combinations and compositions with decreased immunostimulatory properties |
WO2021123332A1 (en) | 2019-12-20 | 2021-06-24 | Curevac Ag | Lipid nanoparticles for delivery of nucleic acids |
WO2021156267A1 (en) | 2020-02-04 | 2021-08-12 | Curevac Ag | Coronavirus vaccine |
WO2021214204A1 (en) * | 2020-04-22 | 2021-10-28 | BioNTech SE | Rna constructs and uses thereof |
US20210340170A1 (en) * | 2018-03-15 | 2021-11-04 | Biontech Rna Pharmaceuticals Gmbh | 5'-cap compounds and their uses in stabilizing rna, expressing proteins and in therapy |
WO2021239880A1 (en) | 2020-05-29 | 2021-12-02 | Curevac Ag | Nucleic acid based combination vaccines |
WO2021245090A1 (en) | 2020-06-04 | 2021-12-09 | BioNTech SE | Rna replicon for versatile and efficient gene expression |
WO2022023559A1 (en) | 2020-07-31 | 2022-02-03 | Curevac Ag | Nucleic acid encoded antibody mixtures |
WO2022043551A2 (en) | 2020-08-31 | 2022-03-03 | Curevac Ag | Multivalent nucleic acid based coronavirus vaccines |
WO2022122689A1 (en) | 2020-12-09 | 2022-06-16 | BioNTech SE | Rna manufacturing |
WO2022137133A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Rna vaccine against sars-cov-2 variants |
WO2022135993A2 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration |
WO2022162027A2 (en) | 2021-01-27 | 2022-08-04 | Curevac Ag | Method of reducing the immunostimulatory properties of in vitro transcribed rna |
WO2022200575A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
WO2022207862A2 (en) | 2021-03-31 | 2022-10-06 | Curevac Ag | Syringes containing pharmaceutical compositions comprising rna |
US11471525B2 (en) | 2020-02-04 | 2022-10-18 | Curevac Ag | Coronavirus vaccine |
WO2022233880A1 (en) | 2021-05-03 | 2022-11-10 | Curevac Ag | Improved nucleic acid sequence for cell type specific expression |
WO2022235847A1 (en) | 2021-05-04 | 2022-11-10 | BioNTech SE | Technologies for early detection of variants of interest |
WO2023006920A1 (en) | 2021-07-29 | 2023-02-02 | BioNTech SE | Compositions and methods for treatment of melanoma |
WO2023006999A2 (en) | 2021-07-30 | 2023-02-02 | CureVac SE | Mrnas for treatment or prophylaxis of liver diseases |
WO2023031394A1 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
WO2023031392A2 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids comprising phosphatidylserine |
WO2023066874A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Methods for determining mutations for increasing modified replicable rna function and related compositions and their use |
WO2023066875A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Modified replicable rna and related compositions and their use |
WO2023139170A1 (en) | 2022-01-21 | 2023-07-27 | BioNTech SE | Analysis of rna molecules using catalytic nucleic acids |
WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
EP4227319A1 (en) | 2018-04-17 | 2023-08-16 | CureVac SE | Novel rsv rna molecules and compositions for vaccination |
EP4233898A2 (en) | 2016-05-04 | 2023-08-30 | CureVac SE | Influenza mrna vaccines |
EP4239080A2 (en) | 2015-07-01 | 2023-09-06 | CureVac Manufacturing GmbH | Method for analysis of an rna molecule |
WO2023166425A1 (en) | 2022-03-01 | 2023-09-07 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (angptl3) related conditions |
WO2023180904A1 (en) | 2022-03-21 | 2023-09-28 | Crispr Therapeutics Ag | Methods and compositions for treating lipoprotein-related diseases |
WO2023213378A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
WO2023227608A1 (en) | 2022-05-25 | 2023-11-30 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
US11834651B2 (en) | 2015-05-29 | 2023-12-05 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11866754B2 (en) | 2015-10-16 | 2024-01-09 | Modernatx, Inc. | Trinucleotide mRNA cap analogs |
US11872280B2 (en) | 2020-12-22 | 2024-01-16 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
US11878991B2 (en) | 2015-09-21 | 2024-01-23 | Trilink Biotechnologies, Llc | Compositions and methods for synthesizing 5′-Capped RNAs |
US11878055B1 (en) | 2022-06-26 | 2024-01-23 | BioNTech SE | Coronavirus vaccine |
WO2024018035A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
US11920148B2 (en) | 2017-02-22 | 2024-03-05 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
DE202023106198U1 (en) | 2022-10-28 | 2024-03-21 | CureVac SE | Nucleic acid-based vaccine |
WO2024056856A1 (en) | 2022-09-15 | 2024-03-21 | BioNTech SE | Systems and compositions comprising trans-amplifying rna vectors with mirna |
WO2024068545A1 (en) | 2022-09-26 | 2024-04-04 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
GB202404607D0 (en) | 2024-03-29 | 2024-05-15 | Glaxosmithkline Biologicals Sa | RNA formulation |
WO2024160936A1 (en) | 2023-02-03 | 2024-08-08 | Glaxosmithkline Biologicals Sa | Rna formulation |
WO2024165615A1 (en) | 2023-02-07 | 2024-08-15 | Biontech Cell & Gene Therapies Gmbh | Immune effector cells stably and transiently expressing nucleic acids |
WO2024171052A1 (en) | 2023-02-14 | 2024-08-22 | Glaxosmithkline Biologicals Sa | Analytical method |
WO2024184500A1 (en) | 2023-03-08 | 2024-09-12 | CureVac SE | Novel lipid nanoparticle formulations for delivery of nucleic acids |
WO2024193827A1 (en) | 2023-03-23 | 2024-09-26 | BioNTech SE | Stabilized nucleic acid compositions and methods for preparing, storing and using the same |
WO2024216217A1 (en) | 2023-04-14 | 2024-10-17 | BioNTech SE | Hiv vaccine |
US12133899B2 (en) | 2020-04-22 | 2024-11-05 | BioNTech SE | Coronavirus vaccine |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2659301A1 (en) * | 2006-07-28 | 2008-02-07 | Applera Corporation | Dinucleotide mrna cap analogs |
WO2009058911A2 (en) * | 2007-10-31 | 2009-05-07 | Applied Biosystems Inc. | Preparation and isolation of 5' capped mrna |
WO2013130824A1 (en) | 2012-02-29 | 2013-09-06 | Sangamo Biosciences, Inc. | Methods and compositions for treating huntington's disease |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
CA2901676C (en) | 2013-02-25 | 2023-08-22 | Sangamo Biosciences, Inc. | Methods and compositions for enhancing nuclease-mediated gene disruption |
EP3068905A4 (en) | 2013-11-11 | 2017-07-05 | Sangamo BioSciences, Inc. | Methods and compositions for treating huntington's disease |
US11021696B2 (en) | 2013-11-13 | 2021-06-01 | Children's Medical Center Corporation | Nuclease-mediated regulation of gene expression |
ES2813367T3 (en) | 2013-12-09 | 2021-03-23 | Sangamo Therapeutics Inc | Methods and compositions for genomic engineering |
WO2015117081A2 (en) | 2014-02-03 | 2015-08-06 | Sangamo Biosciences, Inc. | Methods and compositions for treatment of a beta thalessemia |
ES2879373T3 (en) | 2014-03-18 | 2021-11-22 | Sangamo Therapeutics Inc | Methods and compositions for the regulation of zinc finger protein expression |
US9522936B2 (en) | 2014-04-24 | 2016-12-20 | Sangamo Biosciences, Inc. | Engineered transcription activator like effector (TALE) proteins |
RU2691102C2 (en) | 2014-05-08 | 2019-06-11 | Сангамо Байосайенсиз, Инк. | Methods and compositions for treating huntington's disease |
EP3142707A4 (en) | 2014-05-13 | 2018-02-21 | Sangamo Therapeutics, Inc. | Methods and compositions for prevention or treatment of a disease |
US9970001B2 (en) | 2014-06-05 | 2018-05-15 | Sangamo Therapeutics, Inc. | Methods and compositions for nuclease design |
WO2016014837A1 (en) | 2014-07-25 | 2016-01-28 | Sangamo Biosciences, Inc. | Gene editing for hiv gene therapy |
US9616090B2 (en) | 2014-07-30 | 2017-04-11 | Sangamo Biosciences, Inc. | Gene correction of SCID-related genes in hematopoietic stem and progenitor cells |
US10889834B2 (en) | 2014-12-15 | 2021-01-12 | Sangamo Therapeutics, Inc. | Methods and compositions for enhancing targeted transgene integration |
WO2016154596A1 (en) | 2015-03-25 | 2016-09-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
ES2959608T3 (en) | 2015-04-03 | 2024-02-27 | Dana Farber Cancer Inst Inc | Composition and editing methods of the B cell genome |
AU2016262521A1 (en) | 2015-05-11 | 2017-12-14 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating HIV infection and AIDS |
CA2986310A1 (en) | 2015-05-11 | 2016-11-17 | Editas Medicine, Inc. | Optimized crispr/cas9 systems and methods for gene editing in stem cells |
BR112017024115A2 (en) | 2015-05-12 | 2018-08-07 | Sangamo Therapeutics Inc | nuclease-mediated gene expression regulation |
EP3307887A1 (en) | 2015-06-09 | 2018-04-18 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for improving transplantation |
US9957501B2 (en) | 2015-06-18 | 2018-05-01 | Sangamo Therapeutics, Inc. | Nuclease-mediated regulation of gene expression |
WO2017053753A1 (en) | 2015-09-23 | 2017-03-30 | Sangamo Biosciences, Inc. | Htt repressors and uses thereof |
EP3365447A1 (en) | 2015-10-21 | 2018-08-29 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hepatitis b virus |
CN109312338B (en) | 2015-10-30 | 2022-09-27 | 爱迪塔斯医药公司 | CRISPR/CAS related methods and compositions for treating herpes simplex virus |
WO2017091512A1 (en) | 2015-11-23 | 2017-06-01 | Sangamo Biosciences, Inc. | Methods and compositions for engineering immunity |
IL297018A (en) | 2015-12-18 | 2022-12-01 | Sangamo Therapeutics Inc | Targeted disruption of the mhc cell receptor |
WO2017106528A2 (en) | 2015-12-18 | 2017-06-22 | Sangamo Biosciences, Inc. | Targeted disruption of the t cell receptor |
US20180126003A1 (en) * | 2016-05-04 | 2018-05-10 | Curevac Ag | New targets for rna therapeutics |
CN109843915B (en) | 2016-05-06 | 2023-03-03 | 朱诺治疗学股份有限公司 | Genetically engineered cell and preparation method thereof |
EP3484870B1 (en) | 2016-07-13 | 2022-11-16 | Vertex Pharmaceuticals Incorporated | Methods, compositions and kits for increasing genome editing efficiency |
WO2018039440A1 (en) | 2016-08-24 | 2018-03-01 | Sangamo Therapeutics, Inc. | Regulation of gene expression using engineered nucleases |
SG11201901364VA (en) | 2016-08-24 | 2019-03-28 | Sangamo Therapeutics Inc | Engineered target specific nucleases |
CN110022904B (en) | 2016-10-20 | 2024-04-19 | 桑格摩生物治疗股份有限公司 | Methods and compositions for treating brile disease |
JP7108608B2 (en) | 2016-10-31 | 2022-07-28 | サンガモ セラピューティクス, インコーポレイテッド | Genetic modification of SCID-associated genes in hematopoietic stem and progenitor cells |
JP7292204B2 (en) | 2016-12-01 | 2023-06-16 | サンガモ セラピューティクス, インコーポレイテッド | Tau modulators and methods and compositions for their delivery |
WO2018200943A1 (en) | 2017-04-28 | 2018-11-01 | Acuitas Therapeutics, Inc. | Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
WO2018204469A2 (en) | 2017-05-03 | 2018-11-08 | Sangamo Therapeutics, Inc. | Methods and compositions for modification of a cystic fibrosis transmembrane conductance regulator (cftr) gene |
US11512287B2 (en) | 2017-06-16 | 2022-11-29 | Sangamo Therapeutics, Inc. | Targeted disruption of T cell and/or HLA receptors |
US11661611B2 (en) | 2017-11-09 | 2023-05-30 | Sangamo Therapeutics, Inc. | Genetic modification of cytokine inducible SH2-containing protein (CISH) gene |
EP3740480B1 (en) | 2018-01-17 | 2024-03-06 | Vertex Pharmaceuticals Incorporated | Dna-pk inhibitors |
CA3088788A1 (en) | 2018-01-17 | 2019-07-25 | Vertex Pharmaceuticals Incorporated | Dna-pk inhibitors |
AU2019209292B2 (en) | 2018-01-17 | 2023-10-05 | Vertex Pharmaceuticals Incorporated | Quinoxalinone compounds, compositions, methods, and kits for increasing genome editing efficiency |
US11690921B2 (en) | 2018-05-18 | 2023-07-04 | Sangamo Therapeutics, Inc. | Delivery of target specific nucleases |
CA3111711A1 (en) | 2018-09-18 | 2020-03-26 | Sangamo Therapeutics, Inc. | Programmed cell death 1 (pd1) specific nucleases |
BR112021013654A2 (en) | 2019-01-11 | 2021-09-14 | Acuitas Therapeutics, Inc. | LIPIDS FOR RELEASE OF LIPID NANOPARTICLES FROM ACTIVE AGENTS |
EP3911678A1 (en) | 2019-01-14 | 2021-11-24 | Genentech, Inc. | Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine |
BR112021020868A2 (en) | 2019-04-23 | 2021-12-14 | Sangamo Therapeutics Inc | Expression modulators of the gene open reading frame 72 of chromosome 9 and their uses |
IL294859A (en) | 2020-01-31 | 2022-09-01 | Genentech Inc | Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine |
CN116096702A (en) | 2020-07-16 | 2023-05-09 | 爱康泰生治疗公司 | Cationic lipids for lipid nanoparticles |
CN113106135A (en) * | 2020-08-20 | 2021-07-13 | 深圳市瑞吉生物科技有限公司 | Cap analog with Cap2 structure 5' structure, and preparation method and application thereof |
US20220064596A1 (en) | 2020-08-25 | 2022-03-03 | Kite Pharma, Inc. | T cells with improved functionality |
MX2023002670A (en) | 2020-09-08 | 2023-05-08 | Genentech Inc | Systems and methods for producing pharmaceutical compositions using peristaltic pumps and dampeners. |
CN113957108A (en) * | 2021-09-09 | 2022-01-21 | 上海兆维科技发展有限公司 | Synthesis method of capped RNA and capped RNA transcription reaction solution |
CA3242402A1 (en) | 2021-12-16 | 2023-06-22 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2023237726A1 (en) | 2022-06-10 | 2023-12-14 | Pantarhei Oncology B.V. | An intracellular tumor-specific variant of human zona pellucida glycoprotein 3 and nucleic acids coding therefor for use in the treatment of cancer |
CN114941018B (en) * | 2022-06-28 | 2023-09-22 | 翌圣生物科技(上海)股份有限公司 | Synthesis method of cap1 cap analogue |
WO2024137589A2 (en) | 2022-12-20 | 2024-06-27 | Genentech, Inc. | Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030194759A1 (en) | 2002-03-25 | 2003-10-16 | Edward Darzynkiewiz | Synthesis and use of anti-reverse mRBA cap analogues |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4854610A (en) * | 1988-02-10 | 1989-08-08 | Bertek, Inc. | Method of making laminated articles and articles made therefrom |
US5470967A (en) * | 1990-04-10 | 1995-11-28 | The Dupont Merck Pharmaceutical Company | Oligonucleotide analogs with sulfamate linkages |
US5643780A (en) * | 1992-04-03 | 1997-07-01 | Isis Pharmaceuticals, Inc. | Compositions and methods for modulating RNA activity through modification of the 5' cap structure of RNA |
US5653472A (en) * | 1995-07-25 | 1997-08-05 | The Standard Register Company | Form having detachable wristband and labels |
ATE445630T1 (en) * | 1997-04-22 | 2009-10-15 | Life Technologies Corp | METHOD FOR PRODUCING ASLV REVERSER TRANSCRIPTASE COMPOSED OF MULTIPLE SUBUNITS |
US7386949B2 (en) * | 1997-10-14 | 2008-06-17 | Laser Band, Llc | Special precautions self-laminating wristband business form and method |
US7047682B2 (en) * | 2002-09-27 | 2006-05-23 | Laser Band, Llc | Wristband/label assembly business form and method |
US6510634B1 (en) * | 1997-10-14 | 2003-01-28 | Laser Band, Llc | Multiple computer generated multi-web moisture proof identification bracelets on a single form with window |
US6000160A (en) * | 1997-10-14 | 1999-12-14 | Riley; James M. | Computer generated moisture proof identification bracelet |
US7017293B2 (en) * | 2002-09-27 | 2006-03-28 | Laser Band, Llc | Wristband/cinch with label assembly business form and method |
US7017294B2 (en) * | 2002-09-27 | 2006-03-28 | Laser Band, Llc | Wristband/cinch with inboard label assembly business form and method |
US6016618A (en) * | 1997-11-17 | 2000-01-25 | Avery Dennison Corporation | Laminated article |
WO2001029249A2 (en) * | 1999-10-15 | 2001-04-26 | Yale University | Conjoined polynucleotide catalysts |
US20040261644A1 (en) * | 2001-09-14 | 2004-12-30 | Stewart Thomas R. | Medical patient labeling system and method |
US6788687B2 (en) * | 2001-10-30 | 2004-09-07 | Qualcomm Incorporated | Method and apparatus for scheduling packet data transmissions in a wireless communication system |
US6836215B1 (en) * | 2002-01-22 | 2004-12-28 | The Standard Register Company | Printable identification band with top strip for RFID chip attachment |
US7316358B2 (en) * | 2002-03-18 | 2008-01-08 | Precision Dynamics Corporation | Identification band with adhesively attached coupling elements |
US7000951B2 (en) * | 2002-09-13 | 2006-02-21 | Chicago Tag And Label, Inc. | Form having a removable wristband and labels |
US6971200B2 (en) * | 2002-09-13 | 2005-12-06 | Chicago Tag & Label | Form having a removable wristband and labels |
US7520077B2 (en) * | 2004-06-17 | 2009-04-21 | Laser Band, Llc | Cushioned wristband with self-laminating identity tag |
US20050181165A1 (en) * | 2002-11-13 | 2005-08-18 | Franko Joseph D.Sr. | Glue-applied resealable expanded content label |
US7322613B2 (en) * | 2002-12-17 | 2008-01-29 | Precision Dynamic, Corporation | Multi-part form having detachable wristband, labels and cards or the like |
US7222748B2 (en) * | 2003-09-26 | 2007-05-29 | Royal Vendors, Inc. | Clear door vending machine |
US20050091896A1 (en) * | 2003-10-30 | 2005-05-05 | Kotik Mark M. | Identification band with detachable machine-readable lables |
US7320194B2 (en) * | 2004-06-01 | 2008-01-22 | Precision Dynamics Corporation | Adhesive wristband without removable release liner |
US7658026B2 (en) * | 2006-10-27 | 2010-02-09 | Laser Band, Llc | Wristband with snap closure and patent id label |
US20050285385A1 (en) * | 2004-06-28 | 2005-12-29 | Bova Antonio V | Emergency medical analysis form with detachable patient identification piece and method of using same |
US7417541B2 (en) * | 2004-10-08 | 2008-08-26 | Bartronics America, Inc. | Identification band with regions having electro-magnetically detectable regions |
US20060113788A1 (en) * | 2004-11-30 | 2006-06-01 | Laser Band, Llc. | Laser printable business form having a self laminating wristband and a self laminating strip label |
US7810267B2 (en) * | 2005-04-21 | 2010-10-12 | Avery Dennison Corporation | Patient identification products |
US20070120358A1 (en) * | 2005-11-30 | 2007-05-31 | Waggoner Bryce C | Patient wristband form |
US20070283607A1 (en) * | 2006-06-13 | 2007-12-13 | Printmark Industries, Inc. | Printed identification band and method of manufacturing same |
US20080067802A1 (en) * | 2006-08-24 | 2008-03-20 | Tri-State Hospital Supply Corporation | Self-laminating label for a wristband |
US8424115B2 (en) * | 2006-10-27 | 2013-04-23 | Laser Band, Llc | Wristband with contoured comfort sides |
WO2008157232A1 (en) * | 2007-06-14 | 2008-12-24 | Precision Dynamics Corporation | Printable multi-part form |
-
2008
- 2008-06-19 SI SI200831256T patent/SI2167523T1/en unknown
- 2008-06-19 EP EP08771474.7A patent/EP2167523B1/en active Active
- 2008-06-19 CN CN200880102959.9A patent/CN101855231B/en active Active
- 2008-06-19 CA CA2692906A patent/CA2692906C/en active Active
- 2008-06-19 CN CN201710815709.0A patent/CN107501370B/en active Active
- 2008-06-19 AU AU2008265683A patent/AU2008265683B2/en active Active
- 2008-06-19 ES ES08771474.7T patent/ES2500515T3/en active Active
- 2008-06-19 EA EA201070030A patent/EA017740B1/en not_active IP Right Cessation
- 2008-06-19 PL PL08771474T patent/PL2167523T3/en unknown
- 2008-06-19 CN CN201410246751.1A patent/CN104072561B/en active Active
- 2008-06-19 DK DK08771474.7T patent/DK2167523T3/en active
- 2008-06-19 WO PCT/US2008/067494 patent/WO2008157688A2/en active Application Filing
- 2008-06-19 US US12/280,282 patent/US8153773B2/en active Active - Reinstated
- 2008-06-19 PT PT87714747T patent/PT2167523E/en unknown
-
2014
- 2014-08-18 HR HRP20140771AT patent/HRP20140771T1/en unknown
- 2014-09-08 CY CY20141100718T patent/CY1115525T1/en unknown
-
2015
- 2015-01-27 HK HK15100888.8A patent/HK1200461A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030194759A1 (en) | 2002-03-25 | 2003-10-16 | Edward Darzynkiewiz | Synthesis and use of anti-reverse mRBA cap analogues |
US7074596B2 (en) | 2002-03-25 | 2006-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Synthesis and use of anti-reverse mRNA cap analogues |
Non-Patent Citations (41)
Cited By (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011015347A1 (en) * | 2009-08-05 | 2011-02-10 | Biontech Ag | Vaccine composition comprising 5'-cap modified rna |
US9295717B2 (en) | 2009-08-05 | 2016-03-29 | Biontech Ag | Vaccine composition comprising 5′-cap modified RNA |
EP2281579A1 (en) * | 2009-08-05 | 2011-02-09 | BioNTech AG | Vaccine composition comprising 5'-Cap modified RNA |
CN101671669B (en) * | 2009-08-27 | 2012-05-02 | 浙江大学 | Liver cancer targeting gene expression element AE and application thereof |
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2015101416A1 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Methods for rna analysis |
EP3540060A1 (en) | 2013-12-30 | 2019-09-18 | CureVac AG | Methods for rna analysis |
WO2015188933A1 (en) | 2014-06-10 | 2015-12-17 | Curevac Ag | Methods and means for enhancing rna production |
EP3521456A1 (en) | 2014-06-10 | 2019-08-07 | CureVac AG | Methods and means for enhancing rna production |
EP3603661A2 (en) | 2015-04-22 | 2020-02-05 | CureVac AG | Rna containing composition for treatment of tumor diseases |
EP3326641A1 (en) | 2015-04-22 | 2018-05-30 | CureVac AG | Rna containing composition for treatment of tumor diseases |
EP3173092A2 (en) | 2015-04-22 | 2017-05-31 | CureVac AG | Rna containing composition for treatment of tumor diseases |
WO2016170176A1 (en) | 2015-04-22 | 2016-10-27 | Curevac Ag | Rna containing composition for treatment of tumor diseases |
US11834651B2 (en) | 2015-05-29 | 2023-12-05 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
EP4239080A2 (en) | 2015-07-01 | 2023-09-06 | CureVac Manufacturing GmbH | Method for analysis of an rna molecule |
US12103944B2 (en) | 2015-09-21 | 2024-10-01 | Trilink Biotechnologies, Llc | Compositions and methods for synthesizing 5′-capped RNAs |
US11878991B2 (en) | 2015-09-21 | 2024-01-23 | Trilink Biotechnologies, Llc | Compositions and methods for synthesizing 5′-Capped RNAs |
US10570388B2 (en) | 2015-10-16 | 2020-02-25 | Modernatx, Inc. | Phosphate replacement MRNA cap analogs |
US10563195B2 (en) | 2015-10-16 | 2020-02-18 | Modernatx, Inc. | Phosphate replacement mRNA cap analogs |
US10428106B2 (en) | 2015-10-16 | 2019-10-01 | Modernatx, Inc. | Phosphate replacement mRNA cap analogs |
US11866754B2 (en) | 2015-10-16 | 2024-01-09 | Modernatx, Inc. | Trinucleotide mRNA cap analogs |
WO2017109161A1 (en) | 2015-12-23 | 2017-06-29 | Curevac Ag | Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
US11248223B2 (en) | 2015-12-23 | 2022-02-15 | Curevac Ag | Method of RNA in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
EA038834B1 (en) * | 2016-01-29 | 2021-10-26 | Университет Варшавский | 5'-PHOSPHOROTHIOLATE mRNA 5'-END (CAP) ANALOGS, mRNA COMPRISING THE SAME, METHOD OF PREPARATION AND USE THEREOF |
AU2017211693B2 (en) * | 2016-01-29 | 2021-09-09 | Uniwersytet Warszawski | 5'-phosphorothiolate mRNA 5'-end (cap) analogs, mRNA comprising the same, method of obtaining and uses thereof |
US11066436B2 (en) | 2016-01-29 | 2021-07-20 | Uniwersytet Warszawski | 5′-phosphorothiolate mRNA 5′-end (cap) analogs, mRNA comprising the same, method of obtaining and uses thereof |
WO2017130151A1 (en) * | 2016-01-29 | 2017-08-03 | Uniwersytet Warszawski | 5'-phosphorothiolate mrna 5'-end (cap) analogs, mrna comprising the same, method of obtaining and uses thereof |
WO2017140345A1 (en) | 2016-02-15 | 2017-08-24 | Curevac Ag | Method for analyzing by-products of rna in vitro transcription |
US11920174B2 (en) | 2016-03-03 | 2024-03-05 | CureVac SE | RNA analysis by total hydrolysis and quantification of released nucleosides |
WO2017149139A1 (en) | 2016-03-03 | 2017-09-08 | Curevac Ag | Rna analysis by total hydrolysis |
EP3964584A1 (en) | 2016-03-21 | 2022-03-09 | BioNTech SE | Trans-replicating rna |
WO2017162461A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
EP3701959A1 (en) | 2016-03-21 | 2020-09-02 | BioNTech RNA Pharmaceuticals GmbH | Rna replicon for versatile and efficient gene expression |
EP4008782A1 (en) | 2016-04-22 | 2022-06-08 | BioNTech SE | Methods for providing single-stranded rna |
WO2017182524A1 (en) | 2016-04-22 | 2017-10-26 | Biontech Rna Pharmaceuticals Gmbh | Methods for providing single-stranded rna |
WO2017191264A1 (en) | 2016-05-04 | 2017-11-09 | Curevac Ag | Nucleic acid molecules and uses thereof |
EP4233898A2 (en) | 2016-05-04 | 2023-08-30 | CureVac SE | Influenza mrna vaccines |
WO2018033254A2 (en) | 2016-08-19 | 2018-02-22 | Curevac Ag | Rna for cancer therapy |
WO2018078053A1 (en) | 2016-10-26 | 2018-05-03 | Curevac Ag | Lipid nanoparticle mrna vaccines |
WO2018115507A2 (en) | 2016-12-23 | 2018-06-28 | Curevac Ag | Henipavirus vaccine |
WO2018115527A2 (en) | 2016-12-23 | 2018-06-28 | Curevac Ag | Mers coronavirus vaccine |
US11920148B2 (en) | 2017-02-22 | 2024-03-05 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
EP3424524A2 (en) | 2017-07-04 | 2019-01-09 | CureVac AG | Cancer rna-vaccine |
WO2019008001A1 (en) | 2017-07-04 | 2019-01-10 | Curevac Ag | Novel nucleic acid molecules |
WO2019038332A1 (en) | 2017-08-22 | 2019-02-28 | Curevac Ag | Bunyavirales vaccine |
WO2019053003A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | Method of enhancing rna expression in a cell |
WO2019053056A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Cell & Gene Therapies Gmbh | Rna replicon for expressing a t cell receptor or an artificial t cell receptor |
WO2019053012A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | Rna replicon for reprogramming somatic cells |
EP4368702A2 (en) | 2017-09-13 | 2024-05-15 | BioNTech SE | Method of enhancing rna expression in a cell |
WO2019092153A1 (en) | 2017-11-08 | 2019-05-16 | Curevac Ag | Rna sequence adaptation |
WO2019115635A1 (en) | 2017-12-13 | 2019-06-20 | Curevac Ag | Flavivirus vaccine |
WO2019122371A1 (en) | 2017-12-21 | 2019-06-27 | Curevac Ag | Linear double stranded dna coupled to a single support or a tag and methods for producing said linear double stranded dna |
US20210340170A1 (en) * | 2018-03-15 | 2021-11-04 | Biontech Rna Pharmaceuticals Gmbh | 5'-cap compounds and their uses in stabilizing rna, expressing proteins and in therapy |
WO2019193183A2 (en) | 2018-04-05 | 2019-10-10 | Curevac Ag | Novel yellow fever nucleic acid molecules for vaccination |
EP4227319A1 (en) | 2018-04-17 | 2023-08-16 | CureVac SE | Novel rsv rna molecules and compositions for vaccination |
WO2020002525A1 (en) | 2018-06-27 | 2020-01-02 | Curevac Ag | Novel lassa virus rna molecules and compositions for vaccination |
WO2020128031A2 (en) | 2018-12-21 | 2020-06-25 | Curevac Ag | Rna for malaria vaccines |
WO2020127959A1 (en) | 2018-12-21 | 2020-06-25 | Curevac Ag | Methods for rna analysis |
WO2020161342A1 (en) | 2019-02-08 | 2020-08-13 | Curevac Ag | Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases |
WO2020254535A1 (en) | 2019-06-18 | 2020-12-24 | Curevac Ag | Rotavirus mrna vaccine |
WO2021028439A1 (en) | 2019-08-14 | 2021-02-18 | Curevac Ag | Rna combinations and compositions with decreased immunostimulatory properties |
WO2021123332A1 (en) | 2019-12-20 | 2021-06-24 | Curevac Ag | Lipid nanoparticles for delivery of nucleic acids |
US11964011B2 (en) | 2020-02-04 | 2024-04-23 | CureVac SE | Coronavirus vaccine |
US11964012B2 (en) | 2020-02-04 | 2024-04-23 | CureVac SE | Coronavirus vaccine |
DE112021000012T5 (en) | 2020-02-04 | 2021-11-18 | Curevac Ag | Coronavirus vaccine |
EP4147717A1 (en) | 2020-02-04 | 2023-03-15 | CureVac SE | Coronavirus vaccine |
US11471525B2 (en) | 2020-02-04 | 2022-10-18 | Curevac Ag | Coronavirus vaccine |
DE202021004123U1 (en) | 2020-02-04 | 2022-10-26 | Curevac Ag | Coronavirus Vaccine |
DE202021004130U1 (en) | 2020-02-04 | 2022-10-26 | Curevac Ag | Coronavirus Vaccine |
US11596686B2 (en) | 2020-02-04 | 2023-03-07 | CureVac SE | Coronavirus vaccine |
DE202021003575U1 (en) | 2020-02-04 | 2022-01-17 | Curevac Ag | Coronavirus Vaccine |
WO2021156267A1 (en) | 2020-02-04 | 2021-08-12 | Curevac Ag | Coronavirus vaccine |
US11576966B2 (en) | 2020-02-04 | 2023-02-14 | CureVac SE | Coronavirus vaccine |
US11547673B1 (en) | 2020-04-22 | 2023-01-10 | BioNTech SE | Coronavirus vaccine |
US11951185B2 (en) | 2020-04-22 | 2024-04-09 | BioNTech SE | RNA constructs and uses thereof |
US11925694B2 (en) | 2020-04-22 | 2024-03-12 | BioNTech SE | Coronavirus vaccine |
WO2021214204A1 (en) * | 2020-04-22 | 2021-10-28 | BioNTech SE | Rna constructs and uses thereof |
US11779659B2 (en) | 2020-04-22 | 2023-10-10 | BioNTech SE | RNA constructs and uses thereof |
US12133899B2 (en) | 2020-04-22 | 2024-11-05 | BioNTech SE | Coronavirus vaccine |
WO2021239880A1 (en) | 2020-05-29 | 2021-12-02 | Curevac Ag | Nucleic acid based combination vaccines |
WO2021245090A1 (en) | 2020-06-04 | 2021-12-09 | BioNTech SE | Rna replicon for versatile and efficient gene expression |
WO2022023559A1 (en) | 2020-07-31 | 2022-02-03 | Curevac Ag | Nucleic acid encoded antibody mixtures |
WO2022043551A2 (en) | 2020-08-31 | 2022-03-03 | Curevac Ag | Multivalent nucleic acid based coronavirus vaccines |
WO2022122689A1 (en) | 2020-12-09 | 2022-06-16 | BioNTech SE | Rna manufacturing |
US11918643B2 (en) | 2020-12-22 | 2024-03-05 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
US11872280B2 (en) | 2020-12-22 | 2024-01-16 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
WO2022137133A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Rna vaccine against sars-cov-2 variants |
WO2022135993A2 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration |
WO2022162027A2 (en) | 2021-01-27 | 2022-08-04 | Curevac Ag | Method of reducing the immunostimulatory properties of in vitro transcribed rna |
WO2022200575A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
WO2022207862A2 (en) | 2021-03-31 | 2022-10-06 | Curevac Ag | Syringes containing pharmaceutical compositions comprising rna |
WO2022233880A1 (en) | 2021-05-03 | 2022-11-10 | Curevac Ag | Improved nucleic acid sequence for cell type specific expression |
WO2022235847A1 (en) | 2021-05-04 | 2022-11-10 | BioNTech SE | Technologies for early detection of variants of interest |
WO2023006920A1 (en) | 2021-07-29 | 2023-02-02 | BioNTech SE | Compositions and methods for treatment of melanoma |
WO2023006999A2 (en) | 2021-07-30 | 2023-02-02 | CureVac SE | Mrnas for treatment or prophylaxis of liver diseases |
WO2023031392A2 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids comprising phosphatidylserine |
WO2023031394A1 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
WO2023066875A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Modified replicable rna and related compositions and their use |
WO2023066874A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Methods for determining mutations for increasing modified replicable rna function and related compositions and their use |
WO2023138786A1 (en) | 2022-01-21 | 2023-07-27 | BioNTech SE | Analysis of rna molecules using catalytic nucleic acids |
WO2023139170A1 (en) | 2022-01-21 | 2023-07-27 | BioNTech SE | Analysis of rna molecules using catalytic nucleic acids |
WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
WO2023166425A1 (en) | 2022-03-01 | 2023-09-07 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (angptl3) related conditions |
US12037616B2 (en) | 2022-03-01 | 2024-07-16 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (ANGPTL3) related conditions |
WO2023180904A1 (en) | 2022-03-21 | 2023-09-28 | Crispr Therapeutics Ag | Methods and compositions for treating lipoprotein-related diseases |
WO2023213783A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
WO2023213378A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
WO2023227608A1 (en) | 2022-05-25 | 2023-11-30 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
US11878055B1 (en) | 2022-06-26 | 2024-01-23 | BioNTech SE | Coronavirus vaccine |
WO2024017479A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
WO2024018035A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
WO2024056856A1 (en) | 2022-09-15 | 2024-03-21 | BioNTech SE | Systems and compositions comprising trans-amplifying rna vectors with mirna |
WO2024068545A1 (en) | 2022-09-26 | 2024-04-04 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
DE202023106198U1 (en) | 2022-10-28 | 2024-03-21 | CureVac SE | Nucleic acid-based vaccine |
WO2024089638A1 (en) | 2022-10-28 | 2024-05-02 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine |
WO2024160936A1 (en) | 2023-02-03 | 2024-08-08 | Glaxosmithkline Biologicals Sa | Rna formulation |
WO2024165146A1 (en) | 2023-02-07 | 2024-08-15 | Biontech Cell & Gene Therapies Gmbh | Immune effector cells stably and transiently expressing nucleic acids |
WO2024165615A1 (en) | 2023-02-07 | 2024-08-15 | Biontech Cell & Gene Therapies Gmbh | Immune effector cells stably and transiently expressing nucleic acids |
WO2024171052A1 (en) | 2023-02-14 | 2024-08-22 | Glaxosmithkline Biologicals Sa | Analytical method |
WO2024184500A1 (en) | 2023-03-08 | 2024-09-12 | CureVac SE | Novel lipid nanoparticle formulations for delivery of nucleic acids |
WO2024193827A1 (en) | 2023-03-23 | 2024-09-26 | BioNTech SE | Stabilized nucleic acid compositions and methods for preparing, storing and using the same |
WO2024194454A1 (en) | 2023-03-23 | 2024-09-26 | BioNTech SE | Stabilized nucleic acid compositions and methods for preparing, storing and using the same |
WO2024216217A1 (en) | 2023-04-14 | 2024-10-17 | BioNTech SE | Hiv vaccine |
GB202404607D0 (en) | 2024-03-29 | 2024-05-15 | Glaxosmithkline Biologicals Sa | RNA formulation |
Also Published As
Publication number | Publication date |
---|---|
WO2008157688A3 (en) | 2009-02-26 |
CN101855231B (en) | 2014-06-11 |
DK2167523T3 (en) | 2014-09-08 |
PT2167523E (en) | 2014-09-22 |
US20100233757A1 (en) | 2010-09-16 |
EA201070030A1 (en) | 2010-06-30 |
CN104072561A (en) | 2014-10-01 |
ES2500515T3 (en) | 2014-09-30 |
CA2692906C (en) | 2016-01-19 |
CN107501370B (en) | 2021-06-18 |
EA017740B1 (en) | 2013-02-28 |
CN101855231A (en) | 2010-10-06 |
HRP20140771T1 (en) | 2014-11-07 |
EP2167523A2 (en) | 2010-03-31 |
CN104072561B (en) | 2017-12-22 |
CY1115525T1 (en) | 2017-01-04 |
EP2167523A4 (en) | 2011-06-15 |
CA2692906A1 (en) | 2008-12-24 |
US8153773B2 (en) | 2012-04-10 |
PL2167523T3 (en) | 2014-12-31 |
SI2167523T1 (en) | 2014-09-30 |
CN107501370A (en) | 2017-12-22 |
AU2008265683B2 (en) | 2013-08-29 |
HK1200461A1 (en) | 2015-08-07 |
EP2167523B1 (en) | 2014-07-23 |
AU2008265683A1 (en) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8153773B2 (en) | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger RNA cap | |
EP2297175B1 (en) | Mrna cap analogs | |
US7074596B2 (en) | Synthesis and use of anti-reverse mRNA cap analogues | |
Grudzien‐Nogalska et al. | Synthesis of anti‐reverse cap analogs (ARCAs) and their applications in mRNA translation and stability | |
CN113603739B (en) | Capping analogue and application thereof | |
Kowalska et al. | Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS | |
Rydzik et al. | Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5′, 5′ bridge containing methylenebis (phosphonate) modification | |
KR20180100595A (en) | 5'-phosphorothiolate mRNA 5'-terminal (cap) analogs, mRNA comprising them, methods for obtaining them, and uses thereof | |
Strenkowska et al. | Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications | |
CN115362161A (en) | Process for preparing 3' -O-amino-2 ' -deoxyribonucleoside-5 ' -triphosphates | |
US11597745B2 (en) | β-modified phosphoric acid compound precursor, β-modified phosphoric acid compound, reaction inhibitor and medicine containing the same, and method for inhibiting reaction | |
US10696709B2 (en) | Phosphotriazole MRNA 5′-end cap analogs, composition comprising the same, RNA molecule incorporating the same, uses thereof and method of synthesizing RNA molecule, protein or peptide | |
PL214850B1 (en) | RNA molecule, the manner of obtaining of RNA and the manner of obtaining of peptites and proteins | |
WO2023199261A1 (en) | Rna molecule containing modified cap analogs at the 5 ' end, use of rna molecule in in vitro protein or peptide synthesis, rna molecule for use in medicine, and use of modified cap analogs for rna capping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880102959.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12280282 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08771474 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008771474 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2692906 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 100/KOLNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008265683 Country of ref document: AU Ref document number: 201070030 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2008265683 Country of ref document: AU Date of ref document: 20080619 Kind code of ref document: A |