WO2008017234A1 - Procédé de transfert nucléaire de cellules - Google Patents
Procédé de transfert nucléaire de cellules Download PDFInfo
- Publication number
- WO2008017234A1 WO2008017234A1 PCT/CN2007/002239 CN2007002239W WO2008017234A1 WO 2008017234 A1 WO2008017234 A1 WO 2008017234A1 CN 2007002239 W CN2007002239 W CN 2007002239W WO 2008017234 A1 WO2008017234 A1 WO 2008017234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oocyte
- nuclear transfer
- haplotype
- cell
- nuclear
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/873—Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
- C12N15/877—Techniques for producing new mammalian cloned embryos
- C12N15/8771—Bovine embryos
Definitions
- the invention belongs to the field of bioengineering technology, and in particular to a method of nuclear transfer. Background technique
- Somatic cell nuclear transfer (SCNT) technology has been widely used in the production of cloned and transgenic animals, and cloned animals of various species have been introduced (Chesne P., Adenot PG., Viglietta C., et al. Nat). Biotechnol. 2002, 20: 366-369; Woods GL" White L., Vanderwall DK” et al. Science 2003, 301: 1063 ).
- cloning technology has unique advantages, this is Because the cloning technology advances the screening work to the cellular level, the breeding cycle of the elite animals is greatly shortened. Currently, low efficiency is a bottleneck that limits the technology.
- Mitochondrion is not only the most abundant organelle in cytoplasm, but more importantly, due to the high mutation rate of mitochondria, it causes different mitochondrial DNA (mtDNA) sequences among different populations and different individuals in the same population. Haplotypes, this difference can cause differences in biological traits, such as differences in milk production and fertility in dairy cows (Tamassia M., Heyman Y., Lavergne Y., et al. Reproduction 2003, 126: 629) - 637; Sutrno, Cummins JM., Greeff J., et al. Theriogenology 2002, 57: 1603-1610; Mannen H., Kojima T" Oyama K., et al. J. Anim. Sci. 1998, 76: 36 -41 ) 0
- haplotypes in the field of animal reproduction have increasingly become research hotspots.
- the traditional concept of haplotype refers to the pattern of specific fragments produced by digestion of a specific fragment with a specific restriction endonuclease.
- IVP in vitro embryonic production
- somatic cell nuclear transfer indicate that in vitro embryo development is significantly affected by the maternal mtDNA haplotype and is associated with differences in oocyte ATP and mtDNA copy number (Tamassia M., Nuttinck F. Reynier ⁇ ,, et al. Biol. Reprod. 2004, 71: 697-704; Bruggerhoff K., Zakhartchenko V., Wenigerkind H., et al. Biol. Reprod. 2002, 66: 367-373; Hiendleder S. , Prelle K., Bruggerhoff K., et al. Biol. Reprod. 2004, 70: 1196-1205).
- oocytes are beneficial to the development of cloned embryos, and may be related to the development of certain mtDNA haplotypes in the cytoplasm, which are more suitable for embryonic development.
- the compatibility of mtDNA haplotypes may play an important role in facilitating the survival of cloned embryos of a particular mitochondrial type.
- An object of the present invention is to provide a method for nuclear transfer which comprises nuclear transfer of a donor cell and a recipient oocyte of a non-human mammal having the same haplotype DNA haplotype.
- the inventors performed haplotype analysis of mitochondrial DNA of experimental animals by PCR-RFLP technique, and classified mitochondrial DNA haplotypes of different experimental animals into four types, and then utilized the same haplotype nucleus.
- the nuclear transfer of the cells and the recipient oocytes revealed that the nuclear transfer with the same haplotype can effectively improve the developmental ability of the reconstructed embryo.
- the nuclear transfer method of the present invention comprises the following steps:
- a selecting a non-human mammal of a mitochondrial DNA haplotype, and using it as a dermal fibroblast or a cumulus cell as a donor cell;
- the nuclei of the nuclear donor cells are transferred into the cytoplasm of the enucleated oocyte, and the nuclei are integrated into the oocyte to form a reconstructed embryo.
- the same type (the same mitochondrial DNA haplotype) cell nuclear transfer method can effectively improve the fusion rate, cleavage rate and blastocyst rate of the reconstructed embryo, compared with the heterotypic (mitochondrial DNA haplotype) nuclear transfer, blastocyst rate Increased by about 1.5 times.
- PCR-RFLP polymerase chain reaction-restriction fragment length polymorphism
- H2 S: 5'-TTATCCGTTGGTCTTAGGAA-3';
- H3 S: 5,-TTATCACAATCCAGAACTGAC-3,;
- H4 S: 5'-TGTGCATGTGACACGTATCC-3';
- cycle conditions are: 94 °C 30s, 58 °C 30s, 72 °C lmin, 35 cycles; the last 72 °C extension for 10 min.
- H2 94 °C pre-denaturation 5 min, enter the cycle; cycle conditions are: 94 °C lmin, 56 °C lmin, 72 °C 4min, 35 cycles; the last 72 °C extension for 10 min.
- cycle conditions are: 94 °C lmin, 56. C lmin, 72 ° C for 4 min, 35 cycles; last 72 ° C for 10 min.
- H4 94 °C pre-denaturation for 5 min, enter the cycle;
- the cycle conditions are: 94 °C lmin, 56 °C lmin, 72 °C 5 min, 35 cycles; the last 72 °C extension for 10 min.
- the obtained PCR amplification product was purified by PCR product purification kit (Takara) product specification (product number DV807A).
- the purified amplification products were digested with restriction endonucleases, respectively, as follows:
- Bamin was digested overnight at 30 °C, and the rest were digested overnight at 37 ⁇ .
- the digested product was electrophoresed (0.8 ⁇ 2% agarose, 120V, lh) for further analysis.
- Young bovine fibroblasts or cumulus cells classified by the above mitochondrial DNA haplotype were cultured in DMEM/F12 (Gibco, product number 11039-021, respectively) containing 10% FBS.
- the mature 20h hour COCs (see Example 3) were placed in calcium-free magnesium-containing DPBS containing 0.5% hyaluronidase, digested for 1 ⁇ 2 min, and repeatedly sucked with a suction tube to remove the outer layer loose and expand. Cumulus cells.
- the cells were suspended in DMEM/F12+ 10% FBS, gently pipetted, and the cells were thoroughly blown off, and inoculated into a 25 cm 2 flask (inoculation density of about IX 10 5 , containing DMEM/F12 + 10% FBS medium 5 ml), at 38.5 Incubate in an incubator at °C, 5% C0 2 , saturated humidity.
- Cells cultured for 1 to 5 passages are used as donor cells for nuclear transfer.
- the culture solution was replaced with a culture solution containing 0.5% FBS and starved for 2 to 3 days to induce the cells to enter the G0/G1 phase.
- Lactic acid (Sigma L-7900) 14 ⁇ 1
- BSA no fatty acid
- BSA (no fatty acid) ( Sigma A-6003 ) 0.300 g Dissolve all dry powder ingredients except BSA in a beaker containing 70 ml of embryonic water. To prevent contamination of BME/MEM, add all liquid ingredients and cover the beaker with a cover. Stir, then add BSA dry powder and continue to stir until completely dissolved. The volume is adjusted to 100 ml, finally filtered through a 0.2 ⁇ m filter and stored at 4 Torr for no more than two weeks.
- the nucleus of the first polar body of the recipient oocyte and its vicinity is removed by a denucleation needle with an inner diameter of about 20 ⁇ m, and then the donor nucleus of different mitochondrial DNA haplotypes is injected into the perivitelline space of the enucleated oocyte.
- the nuclear nucleus was integrated into the oocyte at a fusion parameter of 2.5 Ky/cm - 3 V/cm and 6 - 10 ⁇ 3 to obtain a cloned reconstructed embryo.
- the eggs after the fusion operation were transferred to an ACM culture solution, and cultured in an incubator at 5 % C0 2 , 38.5 ° C, and a saturated humidity. After 30 to 60 min, the fusion was examined under a stereo microscope, and the fusion rate was calculated. The results are shown in Table 3.
- the above fused eggs were activated with ionomycin (Ionomycin, Sigma 1-0634) 5 ng/ml, and then placed in a culture dish containing CHX+CB (both purchased from sigma) and saturated at 38.5 °C. Place in a humidified incubator for 5 hours.
- ionomycin Ionomycin, Sigma 1-0634
- the reconstructed embryos were cultured in ACM medium and fetal rat fibroblasts (MEF) +1% fetal bovine serum (FBS), and cultured in an incubator at 5 % C0 2 , 38.5 ° C, and saturated humidity. After 72 h, the culture medium and MEF cells + 10% FBS were replaced. The cleavage condition of the reconstructed embryos was observed at 48h, the cleavage rate was calculated, and the number of blastocysts was recorded on the 7th day of culture, and the blastocyst rate was calculated. The results are shown in Table 3. Table 3. Comparison of different haplotype combinations and nuclear transfer efficiency between nucleoplasms
- Fusion rate number of fusions / number of reconstructed embryos
- Cleavage rate culture 48 hours split number / culture number
- Blastocyst rate number of blastocysts/cleavage number obtained in 7 days of culture According to the results in Table 3, the nuclear transfer efficiency between the same mitochondrial DNA haplotype (homotype) and the difference between different mitochondrial DNA haplotypes (heterotype) were counted separately. The nuclear transfer efficiency, the results are shown in Table 4. Table 4. Comparison of different types of nuclear transfer efficiency
- the fusion rate and cleavage rate of different combinations are basically the same, both above 70% and 54%; and in terms of blastocyst rate, the combination between the same haplotypes (A-A
- the combination with C-C) has the best effect, all of which are above 40%, which is obviously better than the combination between different haplotypes (about 30%).
- the blastocyst development rate of A-A combination was the highest, reaching 49.8 %; the C-C combination was second, reaching 42.2%; then the A ⁇ C combination was 36.1%, and the C-A combination development rate was the lowest, 24.4%. .
- nuclear transfer using the same nucleus and cytoplasm of mitochondrial DNA haplotypes can effectively improve the efficiency of somatic cell nuclear transfer.
- the use of the method of the present invention overcomes the problem of inefficient prior art nuclear transfer due to unclear oocyte origin.
- the method of the present invention has been verified by taking the cattle as an example, those skilled in the art can clearly see that the method of the present invention is equally applicable to other non-human mammals, such as pigs, sheep, and mice, according to the contents of the specification. Therefore, a homologous nuclear transfer method for these non-human mammals should also fall within the scope of the present invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
一种细胞核移植方法 技术领域
本发明属于生物工程技术领域, 具体地说, 是关于一种细胞核移植方法。 背景技术
体细胞核移植(somatic cell nuclear transfer, SCNT) 技术已广泛用于克隆动物和转基 因动物的生产,多种不同物种的克隆动物相继问世(Chesne P., Adenot PG., Viglietta C., et al. Nat Biotechnol. 2002, 20: 366-369; Woods GL" White L., Vanderwall DK" et al. Science 2003, 301 : 1063 ) . 与常规的转基因动物制备方法相比, 克隆技术具有独特的优势, 这是由 于克隆技术将筛选工作提前到了细胞水平, 从而大大缩短了优种动物繁殖周期。 目前, 效 率低下是限制该技术的瓶颈。
线粒体 (mitochondrion, mt) 不仅是细胞浆中含量最多的细胞器, 更重要的是由于线 粒体的高突变率, 引起不同种群间及同一种群不同个体间线粒体 DNA (mtDNA)序列的 差异, 表现出不同的单倍型, 这种差异可引起生物性状的不同, 例如在奶牛中可引起产奶 量及生育能力的差异 (Tamassia M., Heyman Y., Lavergne Y., et al. Reproduction 2003, 126: 629-637; Sutrno, Cummins JM., Greeff J., et al. Theriogenology 2002, 57: 1603-1610; Mannen H., Kojima T" Oyama K., et al. J. Anim. Sci. 1998, 76: 36-41 ) 0
最近几年, 动物繁殖领域中卵母细胞线粒体单倍型日益成为研究热点。传统的单倍型 概念是指使用特定限制性内切酶酶切特定片段后产生的特定酶切片段格局。来自体外胚胎 生产(IVP )和体细胞核移植的研究均说明体外胚胎的发育明显受母本 mtDNA单倍型影 响, 并且伴有卵母细胞 ATP及 mtDNA拷贝数的差异(Tamassia M., Nuttinck F., Reynier Ρ,, et al. Biol. Reprod. 2004, 71 : 697-704; Bruggerhoff K., Zakhartchenko V., Wenigerkind H., et al. Biol. Reprod. 2002, 66: 367-373; Hiendleder S., Prelle K., Bruggerhoff K., et al. Biol. Reprod. 2004, 70: 1196-1205)。
本申请人在其申请号为 200410016219.7 的中国发明专利申请中公开了一种同体细胞 核移植方法, 该方法是取同一个体的供核体细胞与去核卵母细胞进行细胞核移植, 结果显 示克隆囊胚在数量和质量上均有显著提高。发明人由此联想到,目前由常规核移植方法(异 体核移植) 得到的胚胎, 由于含有不同的受体和供体 mtDNA单倍型, 这些单倍型可能影 响重构胚的发育能力。发明人在前期的研究中发现, 某些类型的卵母细胞有利于克隆胚胎 的发育, 可能与胞质中某些 mtDNA单倍型更适合胚胎发育有关, 其中核编码因子与某些
mtDNA单倍型相兼容可能发挥了重要作用, 从而有利于特定线粒体类型的克隆胚胎的成 活。 发明内容
本发明的目的就在于提供一种细胞核移植方法, 该方法选取线粒体 DNA单倍型相同 的非人哺乳动物的供核体细胞和受体卵母细胞进行核移植。
为达到上述目的, 发明人通过 PCR- RFLP技术对实验动物的线粒体 DNA进行单倍型分 析, 将不同实验动物的线粒体 DNA单倍型分为 4种类型, 然后利用单倍型相同的供核体 细胞和受体卵母细胞进行核移植,结果发现采用单倍型相同的细胞核移植能够有效提高重 构胚的发育能力。
具体地, 本发明的细胞核移植方法包括以下步骤:
a、选取某一线粒体 DNA单倍型的非人哺乳动物, 以其成皮肤成纤维细胞或卵丘细胞 作为供核体细胞;
b、 选取线粒体 DNA单倍型相同的同一种哺乳动物, 以其卵母细胞作为受体细胞; c、 受体卵母细胞去核;
d、 将供核体细胞的细胞核移入去核卵母细胞的细胞质中, 使细胞核融入卵母细胞, 形成重构胚。
本发明的同型 (线粒体 DNA单倍型相同) 细胞核移植方法能够有效提高重构胚的融 合率、 卵裂率以及囊胚率, 相比异型 (线粒体 DNA单倍型不同) 核移植, 囊胚率提高了 约 1.5倍。
细胞核和细胞质的相互作用和协调是发挥生物功能的基础, 在长期的进化过程中, 不 同的核背景形成了与之相适应的特定单倍型的线粒体 DNA。 因此, 利用具有相同单倍型 的供核细胞和卵母细胞可有效解决核移植技术中核质间的不兼容, 从而提高核移植效率。 具体实施方式 '
以下结合具体实施例对本发明作进一步说明。应理解, 以下实施例仅用于说明本发明 而不用于限定本发明的范围。
PCR-RFLP (polymerase chain reaction— restriction fragment length polymorphism)是指 采用 PCR技术扩增目的 DNA片段, 然后将待检测的片段用限制性内切酶酶切, 限制性内 切酶识别并切割特异的序列, 之后将酶切后的产物进行电泳, 根据 DNA片段的大小来比 对不同来源基因序列的差异性。
本发明就是利用 PCR-RFLP技术, 扩增不同牛的线粒体 DNA, 然后进行 RPLP分析, 选出具有长度差异的片段, 根据酶切图谱将其分为 A、 B、 C、 D 四种类型。 然后选择线 粒体 DNA单倍型相同的细胞进行核移植, 结果发现细胞的融合率、 卵裂率以及囊胚率都 得到了显著提高。 实施例 1、 全长线粒体 DNA的扩增
分别抽取不同青年牛外周血标本, 肝素抗凝, 酚-氯仿分离抽提 DNA, 以抽提的 DNA 为模板, 分别以下列 Hl、 H2、 H3、 H4四个片段为引物, 扩增不同牛的线粒体 DNA:
HI : S: 5'-CTGCAGTCTCACCATCAACC-3';
A: 5 '-GTGTAGATGCTTGCATGTAAGT-3 ';
H2: S: 5'-TTATCCGTTGGTCTTAGGAA-3';
A: 5'GCGGCATGGTAATTAAGCTC-3 ';
H3: S: 5,-TTATCACAATCCAGAACTGAC-3,;
A: 5,-CTAGTGAGAGTGAGGAGATATG-3,;
H4: S: 5'-TGTGCATGTGACACGTATCC-3';
A: 5 '-AAGCGATTGCTTACTAGTCGG-3 ';
具体扩增条件如下-
HI : 94 °C 预变性 5min, 进入循环; 循环条件为: 94 °C 30s, 58°C30s, 72 °C lmin, 35个循环; 最后 72 °C 延伸 10 min。
H2: 94 °C 预变性 5min, 进入循环; 循环条件为: 94 °C lmin, 56°C lmin, 72 °C 4min, 35个循环; 最后 72°C 延伸 10 min。
H3: 94 °C 预变性 5min, 进入循环; 循环条件为: 94 °C lmin, 56。C lmin, 72 °C 4min, 35个循环; 最后 72 °C 延伸 10 min。
H4: 94 °C 预变性 5min, 进入循环; 循环条件为: 94 °C lmin, 56°C lmin, 72 °C 5min, 35个循环; 最后 72°C 延伸 10 min。
扩增完成后均进行 2%琼脂糖凝胶电泳, 以检测 PCR产物.,- ^保与预期一致。
获得的 PCR扩增产物按 PCR产物纯化试剂盒(Takara)产品说明书(产品号 DV807A) 进行纯化。
纯化的扩增产物分别以限制性内切酶进行酶切, 具体如下:
HI纯化片段 、5μ1 HI纯化片段 5 μΐ NEB buffer4 2 μΐ NEB bufferl 2 μΐ BSA 0.2 μΐ Hpall 0.2 μΐ
MaIII(a、 b) 0.2 μΐ H20 12.8 μΐ
H20 12.6 μΐ 20 μΐ
20 μΐ
Η2纯化片段 5 μΐ H2纯化片段 5 μΐ
NEB bufferl 2 μΐ 10XM 2 μΐ
Hpall 0.2 μΐ Pst I 0.2 μΐ
H20 12.8 μΐ H20 12.8 μΐ
20 μΐ 20 μΐ
Η3纯化片段 5 μΐ Η3纯化片段 5 μΐ 10XM 2 μΐ 10XK 2 μΐ
Avail 0.2 μΐ BamH I 0.2 μΐ
H20 12.8 μΐ H20 12.8 μΐ
20 μΐ 20 μΐ
H4纯化片段 5μ1
10XH 2μ1
Bglll 0.2 μΐ
Η20 12.8 μΐ
20 μΐ
其中 Bamin于 30°C酶切过夜, 其余均在 37Ό酶切过夜。
将酶切产物电泳 (0.8〜2%琼脂糖, 120V, lh) 以作进一步分析。
实施例 2、 酶切片段的分析及线粒体 DNA分类
将各种酶 RFLP分析中具有长度差异的片段进行汇总, 结果见以下表 1。
表 1、 内切酶 RFLP分析具有长度差异的片段汇总
注: +有相应酶酶切位点或具有此酶额外酶切位点;
-无相应酶酶切位点或无此酶额外酶切位点。 分析酶切片段的差异, 根据不同的个体来源, 将不同牛的线粒体单倍型分为 A、 B、 C、 D四种类型, 四种类型的酶切图谱如表 2所示:
表 2、 线粒体单倍型酶切图谱
Nlallla Nlalllb Hpall Hpall Pstl Avall BamHl Bglll (HI) (HI) (HI) (H2) (H2) (H3) (H3) (H4)
A - - - -. + + - +
B - 一 + - + + - +
C + - - + - - + -
D 一 + 一 + + 一 +
实施例 3、 受体卵母细胞的准备
对单倍型 A型青年牛进行活体取卵, 具体方法见申请号为 200510023510.1的中国发 明专利申请。
将收集液倒入拣卵杯中,用无钙镁杜氏磷酸缓冲液 (DPBS, 1升去离子水中含 8g NaCl, 0.2g KC1, 1.44g Na2HP04, 0.24g KH2P04, 30g BSA和 2000u肝素) 冲洗, 拣出卵母细胞复 合体(cumulus oocyte complexes, COCs)移入培养皿, 在体视显微镜下对 COCs进行分级, 选择胞质均匀,周围卵丘细胞排列紧密,包绕三层以上的卵母细胞,放入成熟液(TCM-199 (Gibco, Grand Island, NY)外加 10%胎牛血清(FBS )、 l(^g/ml促黄侔生成激素、 l g/ml 雌二醇和 ^g/ml促卵泡生成素) 中培养 15〜30h。 实施例 4、 供核体细胞的准备
分别取经以上线粒体 DNA单倍型分类的青年牛成纤维细胞或卵丘细胞, 用含 10% FBS的 DMEM/F12 (Gibco公司, 产品号分别为 11039-021 ) 进行培养。
1、 细胞原代培养
①成纤维细胞的原代培养
取新生牛耳组织, 置于含双抗(2%青链霉素) 的 0.9%生理盐水中, 耳组织经碘酊和 75%酒精浸泡消毒后, 无菌生理盐水洗 3〜5遍, 剪碎, 加入 0.25 %胰蛋白酶, 37°C消化 2 h,加入含 10%FBS的 DMEM/F12培养基, 37°C、 5 %C02、饱和湿度培养箱中原代培养, 倒置显微镜下观察细胞贴壁后更换培养基继续培养。
② 卵丘细胞的原代培养
将成熟 20h小时的 COCs (见实施例 3 )放入含 0.5%透明质酸酶的无钙镁的 DPBS中, 消化 l〜2min, 同时用吸胚管反复吹吸, 脱去外层疏松、 扩展的卵丘细胞。
收集这部分的卵丘细胞, 尽快移入无钙镁的 DPBS中, 1200rpm离心 5min, 弃上清; 加入 ΙΟΟμΙ 0.25 %胰酶吹打 lmin, 加入 DMEM/F12 + 10 %FBS ( 1 体积 FBS+9 体积 DMEM/F12培养液) 终止消化, lOOOrpm离心 5min, DMEM/F12培养液洗涤 2次。 用 DMEM/F12+ 10%FBS悬浮细胞, 轻轻吹打, 使细胞充分吹散, 接种至 25cm2培养瓶(接 种密度约为 I X 105, 内含 DMEM/F12+ 10%FBS培养液 5ml), 于 38.5°C, 5%C02, 饱和 湿度的培养箱中培养。
2、 约 3〜5天生长汇合后, 进行传代。
3、 取培养 1〜5代的细胞用作核移植的供核细胞。
细胞生长至瓶底 80〜90%时, 将培养液换成含 0.5%FBS的培养液血清饥饿 2〜3天, 诱导细胞进入 G0/G1期。
核移植前, 用 0.25 %胰酶消化贴壁细胞, 将消化下来的细胞用 3mg/ml的链霉蛋白酶 处理 50秒, 并离心洗涤, 最后用 DMEM/F12培养液 (GIBICO公司) ΙΟΟμΙ重悬, 并反 复吹打成单个细胞的悬液, 保存于恒温箱中待用。 实施例 5、 细胞核移植
5.1 、 核移植所需 ACM培养液的配制
ACM培养液的配方如下:
NaCl (Sigma S-5886) 0.580 g
KC1 ( Sigma P-5405 ) 0.022 g
NaHC03 (Sigma S-5761 ) 0.209 g
L-谷氨酰胺 ( Sigma G-8540) 0.015 g
CaCl2 · 2H20 ( Sigma C-7902 ) 0.004 g
丙酮酸 (2.2 mg/ml贮存于 PBS中) 2ml
BME氨基酸 ( Sigma B-6766) 2ml
MEM氨基酸 ( Sigma M-7145) 1ml
青链霉素 (GIBICO-BRL公司) 1ml
乳酸 ( Sigma L-7900) 14μ1
酚磺酞 ( Sigma P-0290) ΙΟΟμΙ
BSA (无脂肪酸) ( Sigma A-6003 ) 0.300 g 将除 BSA外的所有干粉成分溶解于盛有 70ml胚胎水的烧杯中, 为防止 BME/MEM 受到污染, 加入所有液体成分并用罩子罩住烧杯进行搅拌, 然后加入 BSA干粉继续搅拌 直至完全溶解, 用量筒定容至 100ml, 最后用 0.2μπι的滤膜过滤, 于 4Ό贮存不超过两周。
5.2、 细胞核移植
用内径约 20微米的去核针将受体卵母细胞的第一极体及其附近区域的卵核去除, 然 后将不同线粒体 DNA 单倍型的供体细胞核注入去核卵母细胞卵周隙, 以 2.5Ky/cm— 3V/cm和 6— 10μ3的融合参数, 将供核细胞核融入卵母细胞, 获得克隆重构胚。
融合操作后的卵移入 ACM培养液中,于 5 %C02、 38.5 °C ,饱和湿度的培养箱中培养。 30〜60min后, 在体视显微镜下检査融合情况, 计算融合率, 结果如表 3所示。
随后, 用离子霉素 (Ionomycin, Sigma 1-0634) 5ng/ml激活上述融合的卵, 然后放入 含 CHX+CB (两者都购自 sigma公司)的培养盘, 并在 38.5°C、饱和湿度的培养箱中放置 5小时。
重构胚放入 ACM培养液和胎鼠成纤维细胞 (MEF) +1 %胎牛血清 (FBS) 进行共培 养, 在 5 %C02、 38.5°C, 饱和湿度的培养箱中培养。 72h后更换培养液和 MEF细胞 +10 %FBS。 48h观察重构胚的卵裂情况, 计算卵裂率, 培养第 7天记录囊胚的数量, 计算囊 胚率, 结果如表 3所示。 表 3、 核质间不同单倍型组合与核移植效率的比较
注: 融合率 =融合数 /重构胚数
卵裂率 =培养 48小时分裂数 /培养数
囊胚率 =培养 7天所得囊胚数 /卵裂数 根据表 3的结果, 分别统计相同线粒体 DNA单倍型 (同型) 之间的核移植效率以及 不同线粒体 DNA单倍型之间 (异型) 的核移植效率, 结果如表 4所示。 表 4、 不同类型核移植效率的比较
δ
从以上表 3的数据可以看出, 不同组合方式的融合率和卵裂率基本一致, 均在 70% 和 54%上下; 而囊胚率方面, 相同单倍型之间的组合(A— A和 C—C组合) 效果最佳, 均达到了 40%以上, 明显优于不同单倍型之间的组合(为 30%左右)。其中 A— A组合的 囊胚发育率最髙, 达到 49.8 % ; C— C组合次之, 达到 42.2% ; 然后是 A^C组合, 达到 36.1 % , C— A组合发育率最低, 为 24.4%。
从表 4综合比较的结果也可以非常清楚地看到, 与异型核移植相比, 两者间的融合率 和卵裂率相差不大, 但是同型核移植的囊胚率明显高于异型核移植, 约为异型核移植的 1.5倍, 说明同型核 植相比异型核移植更易跨过胚胎体外发育的阻滞期, 从而表现出发 育优势。
综上所述, 采用线粒体 DNA单倍型相同的细胞核和卵母细胞细胞质进行核移植, 可 以有效提高体细胞核移植的效率。采用本发明的方法可以克服现有技术中由于卵母细胞来 源不清所导致的细胞核移植效率低下的问题。 虽然以上仅以牛为例对本发明的方法进行了验证,但是本领域的技术人员根据说明书 的内容, 显然可以看出本发明的方法同样适用于其它非人哺乳动物, 例如猪、羊以及老鼠 等, 因此, 针对这些非人哺乳动物的同型核移植方法同样应当属于本发明的范围。
Claims
1、 一种细胞核移植方法, 其特征在于, 该方法是以线粒体单倍型相同的非人哺乳动 物的供核体细胞和受体卵母细胞进行核移植。
2、 如权利要求 1所述的方法, 其特征在于, 包括以下步骤- a、选取某一线粒体 DNA单倍型的非人哺乳动物, 以其成皮肤成纤维细胞或卵丘细胞 作为供核体细胞;
b、 选取相同线粒体 DNA单倍型的同一种哺乳动物, 以其卵母细胞作为受体细胞; c、 受体卵母细胞去核;
d、 将供核体细胞的细胞核移入去核卵母细胞的细胞质中, 使细胞核融入卵母细胞, 形成重构胚。
3、 如权利要求 2所述的方法, 其特征在于, 作为供核体细胞的成纤维细胞或卵丘细 胞是经过加 10%胎牛血清的 DMEM/F12培养 1一 5代,并 0.5%胎牛血清饥饿 2— 3天的细 胞。
4、 如权利要求 2所述的方法, 其特征在于, 作为受体细胞的卵母细胞通过活体取卵 的方法获得。
5、 如权利要求 2所述的方法, 其特征在于, 所述卵母细胞去核是将卵母细胞的第一 极体及其附近区域的卵核去除。 '
6、 如权利要求 2所述的方法, 其特征在于, 所述细胞核融入卵母细胞的融合参数为 2.5KV/cm-3V/cm, 6—10μβ。
7、 如权利要求 1所述的方法, 其特征在于, 所述非人哺乳动物包括: 牛、 羊、 猪和 老鼠。
8、 如权利要求 7所述的方法, 其特征在于, 所述哺乳动物为牛。
9、如权利要求 1一 8中任一项所述的方法, 其特征在于, 还包括对哺乳动物的线粒体 DNA进行单倍型分析的步骤。
10、 如权利要求 9所述的方法, 其特征在于, 所述单倍型分析是通过 PCR— R LP技 术。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610029674.X | 2006-08-03 | ||
CN200610029674XA CN101117633B (zh) | 2006-08-03 | 2006-08-03 | 一种细胞核移植方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008017234A1 true WO2008017234A1 (fr) | 2008-02-14 |
Family
ID=39032621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/002239 WO2008017234A1 (fr) | 2006-08-03 | 2007-07-23 | Procédé de transfert nucléaire de cellules |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101117633B (zh) |
WO (1) | WO2008017234A1 (zh) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015088643A1 (en) | 2013-12-11 | 2015-06-18 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
WO2015188109A1 (en) | 2014-06-06 | 2015-12-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
WO2015200805A2 (en) | 2014-06-26 | 2015-12-30 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
WO2016081923A2 (en) | 2014-11-21 | 2016-05-26 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs |
WO2016196185A1 (en) | 2015-05-29 | 2016-12-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a c9orf72 locus |
WO2017143062A1 (en) | 2016-02-16 | 2017-08-24 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a mutant kynureninase gene |
WO2017201476A1 (en) | 2016-05-20 | 2017-11-23 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
WO2018023014A1 (en) | 2016-07-29 | 2018-02-01 | Regeneron Pharmaceuticals, Inc. | Mice comprising mutations resulting in expression of c-truncated fibrillin-1 |
WO2018064600A1 (en) | 2016-09-30 | 2018-04-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus |
WO2018157058A1 (en) | 2017-02-27 | 2018-08-30 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of retinoschisis |
WO2019006034A1 (en) | 2017-06-27 | 2019-01-03 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED ASGR1 LOCUS |
WO2019028032A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EMBRYONIC STEM CELLS OF TRANSGENIC MOUSE CASES AND MICE AND USES THEREOF |
WO2019028029A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EVALUATION OF CRISPR / CAS INDUCED RECOMBINATION WITH IN VIVO EXOGENIC DONOR NUCLEIC ACID |
WO2019028023A2 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR EVALUATING CRISPR / CAS MEDIATED DISRUPTION OR EXCISION AND CRISPR / CAS INDUCED RECOMBINATION USING IN VIVO EXOGENIC DONOR NUCLEIC ACID |
EP3456831A1 (en) | 2013-04-16 | 2019-03-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
EP3460063A1 (en) | 2013-12-11 | 2019-03-27 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
WO2019067875A1 (en) | 2017-09-29 | 2019-04-04 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED TTR LOCUS AND METHODS OF USE |
US10285387B2 (en) | 2015-03-16 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception |
WO2019094735A1 (en) | 2017-11-10 | 2019-05-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising slc30a8 mutation and methods of use |
WO2019108983A1 (en) | 2017-11-30 | 2019-06-06 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized trkb locus |
WO2019183123A1 (en) | 2018-03-19 | 2019-09-26 | Regeneron Pharmaceuticals, Inc. | Transcription modulation in animals using crispr/cas systems |
WO2020056122A1 (en) | 2018-09-13 | 2020-03-19 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
EP3653048A1 (en) | 2014-12-19 | 2020-05-20 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
WO2020131632A1 (en) | 2018-12-20 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
WO2020206139A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
WO2020247452A1 (en) | 2019-06-04 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use |
WO2020247812A1 (en) | 2019-06-07 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized albumin locus |
WO2020264339A1 (en) | 2019-06-27 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Modeling tdp-43 proteinopathy |
WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
WO2021154791A1 (en) | 2020-01-28 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
WO2021195079A1 (en) | 2020-03-23 | 2021-09-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
WO2021263146A2 (en) | 2020-06-26 | 2021-12-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ace2 locus |
WO2023081847A1 (en) | 2021-11-04 | 2023-05-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified cacng1 locus |
WO2023108047A1 (en) | 2021-12-08 | 2023-06-15 | Regeneron Pharmaceuticals, Inc. | Mutant myocilin disease model and uses thereof |
WO2023122506A1 (en) | 2021-12-20 | 2023-06-29 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising humanized ace2 and tmprss loci |
WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
WO2023154861A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
WO2023235677A1 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Animal model of tdp-43 proteinopathy |
WO2024026488A2 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified transferrin receptor locus |
WO2024031053A1 (en) | 2022-08-05 | 2024-02-08 | Regeneron Pharmaceuticals, Inc. | Aggregation-resistant variants of tdp-43 |
WO2024073679A1 (en) | 2022-09-29 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
WO2024163650A1 (en) | 2023-02-01 | 2024-08-08 | Regeneron Pharmaceuticals, Inc. | Animals comprising a modified klhdc7b locus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101665780B (zh) * | 2008-09-04 | 2011-06-08 | 中国科学院动物研究所 | 一种提高体细胞重编程效率的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020155601A1 (en) * | 2001-01-02 | 2002-10-24 | Yan Wen Liang | Method for producing a population of homozygous stem cells having a pre-selected immunotype and/or genotype, cells suitable for transplant derived therefrom, and materials and methods using same |
WO2003100018A2 (en) * | 2002-05-24 | 2003-12-04 | Advanced Cell Technology, Inc. | A bank of stem cells for transplantation |
CN1557946A (zh) * | 2004-02-11 | 2004-12-29 | 上海市儿童医院 | 一种同体细胞核移植方法 |
-
2006
- 2006-08-03 CN CN200610029674XA patent/CN101117633B/zh active Active
-
2007
- 2007-07-23 WO PCT/CN2007/002239 patent/WO2008017234A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020155601A1 (en) * | 2001-01-02 | 2002-10-24 | Yan Wen Liang | Method for producing a population of homozygous stem cells having a pre-selected immunotype and/or genotype, cells suitable for transplant derived therefrom, and materials and methods using same |
WO2003100018A2 (en) * | 2002-05-24 | 2003-12-04 | Advanced Cell Technology, Inc. | A bank of stem cells for transplantation |
CN1557946A (zh) * | 2004-02-11 | 2004-12-29 | 上海市儿童医院 | 一种同体细胞核移植方法 |
Non-Patent Citations (4)
Title |
---|
"Effect of Oocyte Mitochondrial DNA Haplotype on Bovine Somatic Cell Nuclear Transfer Efficiency", MOLECULAR REPRODUCTION AND DEVELOPMENT, vol. 74, 8 February 2007 (2007-02-08), pages 1278 - 1286 * |
HIENDLEDER S. AND WOLF E.: "The mitochondrial genome in embryo technologies", REPRODUCTION IN DOMESTIC ANIMALS, vol. 38, no. 4, 31 October 2003 (2003-10-31), pages 290 - 304 * |
JIAO F.: "Identification of Genetic Materials in Clonsed Cattle by Somatic Cell Nuclear Transfer", JOURNAL OF THE SHANGHAI JIAOTONG UNIVERSITY (AGRICULTURAL SCIENCE), vol. 24, no. 3, 30 June 2006 (2006-06-30) * |
STEINBORN R. ET AL.: "Coexistence of Bos taurus and B. indicus Mitochondrial DNAs in Nuclear Transfer-Derived Somatic Cattle Clones", GENETICS, vol. 162, 31 October 2002 (2002-10-31), pages 823 - 829, XP002969934 * |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3456831A1 (en) | 2013-04-16 | 2019-03-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
EP4349980A2 (en) | 2013-12-11 | 2024-04-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
WO2015088643A1 (en) | 2013-12-11 | 2015-06-18 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
EP3460063A1 (en) | 2013-12-11 | 2019-03-27 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
WO2015188109A1 (en) | 2014-06-06 | 2015-12-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
EP3708671A1 (en) | 2014-06-06 | 2020-09-16 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
WO2015200805A2 (en) | 2014-06-26 | 2015-12-30 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
EP3461885A1 (en) | 2014-06-26 | 2019-04-03 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
WO2016081923A2 (en) | 2014-11-21 | 2016-05-26 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs |
EP3521437A1 (en) | 2014-11-21 | 2019-08-07 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide rnas |
EP3653048A1 (en) | 2014-12-19 | 2020-05-20 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
EP3685662A1 (en) | 2015-03-16 | 2020-07-29 | Regeneron Pharmaceuticals, Inc. | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception |
US10285387B2 (en) | 2015-03-16 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception |
US11547101B2 (en) | 2015-05-29 | 2023-01-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
EP3689139A1 (en) | 2015-05-29 | 2020-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a c9orf72 locus |
WO2016196185A1 (en) | 2015-05-29 | 2016-12-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a c9orf72 locus |
US10285388B2 (en) | 2015-05-29 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
WO2017143062A1 (en) | 2016-02-16 | 2017-08-24 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a mutant kynureninase gene |
WO2017201476A1 (en) | 2016-05-20 | 2017-11-23 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
EP4368637A2 (en) | 2016-05-20 | 2024-05-15 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
WO2018023014A1 (en) | 2016-07-29 | 2018-02-01 | Regeneron Pharmaceuticals, Inc. | Mice comprising mutations resulting in expression of c-truncated fibrillin-1 |
WO2018064600A1 (en) | 2016-09-30 | 2018-04-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus |
US10781453B2 (en) | 2016-09-30 | 2020-09-22 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a C9ORF72 locus |
WO2018157058A1 (en) | 2017-02-27 | 2018-08-30 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of retinoschisis |
WO2019006034A1 (en) | 2017-06-27 | 2019-01-03 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED ASGR1 LOCUS |
US11696572B2 (en) | 2017-06-27 | 2023-07-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ASGR1 locus |
WO2019028029A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EVALUATION OF CRISPR / CAS INDUCED RECOMBINATION WITH IN VIVO EXOGENIC DONOR NUCLEIC ACID |
WO2019028032A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EMBRYONIC STEM CELLS OF TRANSGENIC MOUSE CASES AND MICE AND USES THEREOF |
WO2019028023A2 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR EVALUATING CRISPR / CAS MEDIATED DISRUPTION OR EXCISION AND CRISPR / CAS INDUCED RECOMBINATION USING IN VIVO EXOGENIC DONOR NUCLEIC ACID |
WO2019067875A1 (en) | 2017-09-29 | 2019-04-04 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED TTR LOCUS AND METHODS OF USE |
EP4276185A2 (en) | 2017-09-29 | 2023-11-15 | Regeneron Pharmaceuticals, Inc. | Rodents comprising a humanized ttr locus and methods of use |
WO2019094735A1 (en) | 2017-11-10 | 2019-05-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising slc30a8 mutation and methods of use |
WO2019108983A1 (en) | 2017-11-30 | 2019-06-06 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized trkb locus |
EP4299732A2 (en) | 2017-11-30 | 2024-01-03 | Regeneron Pharmaceuticals, Inc. | Rats comprising a humanized trkb locus |
WO2019183123A1 (en) | 2018-03-19 | 2019-09-26 | Regeneron Pharmaceuticals, Inc. | Transcription modulation in animals using crispr/cas systems |
WO2020056122A1 (en) | 2018-09-13 | 2020-03-19 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
US11690362B2 (en) | 2018-12-20 | 2023-07-04 | Regeneran Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
WO2020131632A1 (en) | 2018-12-20 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
WO2020206139A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
WO2020247452A1 (en) | 2019-06-04 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use |
WO2020247812A1 (en) | 2019-06-07 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized albumin locus |
WO2020264339A1 (en) | 2019-06-27 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Modeling tdp-43 proteinopathy |
WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
WO2021154791A1 (en) | 2020-01-28 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
WO2021195079A1 (en) | 2020-03-23 | 2021-09-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
WO2021263146A2 (en) | 2020-06-26 | 2021-12-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ace2 locus |
WO2023081847A1 (en) | 2021-11-04 | 2023-05-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified cacng1 locus |
WO2023108047A1 (en) | 2021-12-08 | 2023-06-15 | Regeneron Pharmaceuticals, Inc. | Mutant myocilin disease model and uses thereof |
WO2023122506A1 (en) | 2021-12-20 | 2023-06-29 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising humanized ace2 and tmprss loci |
WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
WO2023154861A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
WO2023235677A1 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Animal model of tdp-43 proteinopathy |
WO2024026488A2 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified transferrin receptor locus |
WO2024031053A1 (en) | 2022-08-05 | 2024-02-08 | Regeneron Pharmaceuticals, Inc. | Aggregation-resistant variants of tdp-43 |
WO2024073679A1 (en) | 2022-09-29 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
WO2024163650A1 (en) | 2023-02-01 | 2024-08-08 | Regeneron Pharmaceuticals, Inc. | Animals comprising a modified klhdc7b locus |
Also Published As
Publication number | Publication date |
---|---|
CN101117633B (zh) | 2011-07-20 |
CN101117633A (zh) | 2008-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008017234A1 (fr) | Procédé de transfert nucléaire de cellules | |
Heyman | Nuclear transfer: a new tool for reproductive biotechnology in cattle | |
Heyman et al. | Novel approaches and hurdles to somatic cloning in cattle | |
EP3381278A1 (en) | Method for preparing a canine model of atherosclerosis | |
CN105524940A (zh) | 一种基于组蛋白甲基化水平的修饰提高牛克隆效率的载体、细胞及方法 | |
CN107937445A (zh) | 利用体细胞克隆技术制备基因敲除犬的方法 | |
Yang et al. | Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer | |
Nicks et al. | Standardised method for cardiomyocyte isolation and purification from individual murine neonatal, infant, and adult hearts | |
Yuan et al. | Effects of recipient oocyte source, number of transferred embryos and season on somatic cell nuclear transfer efficiency in sheep | |
WO2018205641A1 (zh) | 一种抗寒及瘦肉型转基因猪及其制备方法 | |
Sun et al. | Cell-cycle synchronization of fibroblasts derived from transgenic cloned cattle ear skin: effects of serum starvation, roscovitine and contact inhibition | |
Guo et al. | Screening somatic cell nuclear transfer parameters for generation of transgenic cloned cattle with intragenomic integration of additional gene copies that encode bovine adipocyte-type fatty acid-binding protein (A-FABP) | |
CN1814750A (zh) | 一种哺乳动物体细胞核移植方法 | |
Yang et al. | Improving in vitro development of cloned bovine embryos with hybrid (Holstein–Chinese Yellow) recipient oocytes recovered by ovum pick up | |
JP7199741B2 (ja) | 非ヒト霊長類の体細胞クローン動物の製造方法 | |
CN104726495B (zh) | 一种基于talen介导的基因打靶敲除山羊blg的载体及重组细胞 | |
CN109136172B (zh) | 提高囊胚率的小鼠精子体外培养试剂盒及其使用方法 | |
JP5234535B2 (ja) | 哺乳動物未成熟卵子の体外成熟培養用添加剤及びそれを用いた成熟卵子の作出方法 | |
Goel et al. | Status and Prospects of Reproductive Biotechnologies of Small Ruminants in India: An Overview | |
CN115772539B (zh) | 一种具有ⅰ型气管发育不全表型的双侧肺脏缺失小鼠模型及其构建方法 | |
CN111073900A (zh) | 一种提高猪克隆胚胎发育效率的方法 | |
KR101074448B1 (ko) | 효율적인 이종간 조류의 생식선 카이메라 및 형질전환체의 제조방법 | |
Nicks et al. | A standardized method to purify cardiomyocytes from individual mouse hearts of any age | |
JP2004313184A (ja) | 未分化細胞を選別する方法およびその利用 | |
Fair et al. | Developments in the use of embryo technologies in dairy cows |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07785160 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07785160 Country of ref document: EP Kind code of ref document: A1 |