Nothing Special   »   [go: up one dir, main page]

WO2008007484A1 - Système de commande hydraulique pour machine de chantier - Google Patents

Système de commande hydraulique pour machine de chantier Download PDF

Info

Publication number
WO2008007484A1
WO2008007484A1 PCT/JP2007/057403 JP2007057403W WO2008007484A1 WO 2008007484 A1 WO2008007484 A1 WO 2008007484A1 JP 2007057403 W JP2007057403 W JP 2007057403W WO 2008007484 A1 WO2008007484 A1 WO 2008007484A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
accumulator
pump
flow rate
pressure
Prior art date
Application number
PCT/JP2007/057403
Other languages
English (en)
French (fr)
Inventor
Atsushi Wada
Naoyuki Moriya
John Gay
Katsuharu Gonmori
Original Assignee
Caterpillar Japan Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Japan Ltd. filed Critical Caterpillar Japan Ltd.
Priority to US12/308,665 priority Critical patent/US20100000209A1/en
Priority to EP07740839A priority patent/EP2039945A4/en
Priority to CN2007800164692A priority patent/CN101438064B/zh
Publication of WO2008007484A1 publication Critical patent/WO2008007484A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/50Monitoring, detection and testing means for accumulators
    • F15B2201/51Pressure detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2654Control of multiple pressure sources one or more pressure sources having priority
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention belongs to the technical field of a hydraulic control system in a work machine that can recover and reuse the position energy of the work part in a work machine having a work part that moves up and down.
  • work machines such as excavators and cranes are provided with a work part that can be raised and lowered, and the work part is raised and lowered based on an expansion and contraction operation of a hydraulic cylinder that is supplied with hydraulic pump force and hydraulic oil.
  • a hydraulic cylinder that is supplied with hydraulic pump force and hydraulic oil.
  • the meter-out control is performed by a throttle provided in a control valve that performs oil supply / discharge control of the hydraulic cylinder.
  • the working unit located above the ground has potential energy, but the position energy is converted into thermal energy when passing through the control valve restrictor, and Thermal energy is released into the atmosphere by an oil cooler, resulting in wasted energy loss.
  • an auxiliary hydraulic cylinder (assist cylinder) is provided in addition to the normal hydraulic cylinder, and the weight holding side oil chamber of the auxiliary hydraulic cylinder is provided when the working unit is lowered.
  • a technique is disclosed in which the pressure oil accumulated in the accumulator is supplied to the weight holding side of the auxiliary cylinder when the working unit is raised (for example, patent documents) 1)) o Patent Document 1: Japanese Patent No. 2582310
  • Patent Document 1 the oil discharged from the auxiliary hydraulic cylinder is accumulated in the accumulator when the working unit is lowered, but is provided for raising and lowering the working unit.
  • the oil discharged from the normal hydraulic cylinder is discharged to the oil tank via the control valve, and only a part of the potential energy of the work implement is recovered. If the operating force is not sufficiently accumulated in the accumulator when the working part is raised, part of the hydraulic oil supplied to the normal hydraulic cylinder through the control valve is supplied to the auxiliary hydraulic cylinder.
  • it since it is configured to be used for accumulator pressure accumulation, there is a problem that work efficiency decreases as the speed of ascent of the working part slows down.
  • the drainage oil of the normal hydraulic cylinder force is accumulated in the accumulator when the working part is lowered without providing an auxiliary hydraulic cylinder, and the pressure oil accumulated in the accumulator is supplied to the hydraulic cylinder when the working part is raised.
  • the pressure oil accumulated in the accumulator is supplied to the hydraulic cylinder when the working part is raised.
  • the pressure oil supply flow rate to the hydraulic cylinder is affected by the accumulator pressure accumulation state, there is a problem that workability is inaccurate and the workability is inferior. There is a problem to be solved by the present invention.
  • the invention of claim 1 includes a hydraulic cylinder that raises and lowers a working unit, and an oil tanker oil.
  • a first main pump that sucks and discharges, an accumulator for accumulating oil that is discharged from the weight holding side oil chamber force of the hydraulic cylinder when the working unit is lowered, and a hybrid pump that sucks and discharges the pressure oil accumulated in the accumulator
  • the discharge oil of the hybrid pump is configured to be supplied to the weight holding side oil chamber of the hydraulic cylinder, and the supply flow rate from the hybrid pump to the hydraulic cylinder is insufficient.
  • the oil in the work machine is configured to supply the insufficient flow rate to the weight holding side oil chamber of the first main pump force hydraulic cylinder. It is a pressure control system.
  • the above-mentioned hybrid pump sucks and discharges the high pressure oil accumulated in the accumulator, so it is Pressure oil can be supplied with a small amount of required power, and the potential energy recovered by the accumulator when the working part is lowered can be reused when the working part is raised. It can greatly contribute to energy saving.
  • the invention according to claim 2 is characterized in that the hydraulic control system includes a second main pump that sucks and discharges oil in the oil tank, and the supply flow rate from the second main pump is increased when the working unit is raised.
  • the hydraulic control system for a work machine according to claim 1, wherein the hydraulic control system is configured to join a supply flow rate from one main pump and supply the oil to a weight holding side oil chamber of the hydraulic cylinder.
  • the hydraulic control system is provided with a pressure accumulation state detecting means for detecting the pressure accumulation state of the accumulator, and the supply flow rate to the hydraulic cylinder of the hybrid pump force is changed or increased or decreased in the pressure accumulation state of the accumulator.
  • the supply flow rate of the first main pump force to the hydraulic cylinder is controlled to increase as the supply flow rate from the hybrid pump to the hydraulic cylinder decreases.
  • the hydraulic control system for a work machine according to claim 1 or 2.
  • the hybrid pump power supply flow rate and the supply flow rate from the first main pump that compensates for the shortage flow rate of the hybrid pump can be supplied to the hydraulic cylinder in a well-balanced manner according to the pressure accumulation state of the accumulator.
  • it is configured so that only the hybrid pump power is supplied until the accumulator is empty when the working part is raised, and when it becomes empty, the pressure oil is supplied from the first main pump.
  • the hydraulic control system includes a first control valve that controls a supply flow rate from the first main pump to the hydraulic cylinder, and a third control valve that controls a supply flow rate to the hybrid pump force hydraulic cylinder.
  • the hydraulic control system includes a pressure accumulation state detecting means for detecting the pressure accumulation state of the accumulator, and the discharge flow rate of the hybrid pump increases or decreases in response to a change in the pressure accumulation state of the accumulator.
  • the hydraulic control system for a work machine according to any one of claims 1 to 4, wherein the hydraulic control system is configured to be controlled.
  • the discharge flow rate of the hybrid pump can be supplied to the hydraulic cylinder without being wasted.
  • the hydraulic control system includes a recovery oil passage that supplies pressure oil, which also discharges the weight holding side oil chamber force of the hydraulic cylinder when the working unit is lowered, to the suction side of the accumulator and the hybrid pump.
  • a recovery oil passage that supplies pressure oil, which also discharges the weight holding side oil chamber force of the hydraulic cylinder when the working unit is lowered, to the suction side of the accumulator and the hybrid pump.
  • the hybrid pump is configured to suck in the pressure oil supplied to the recovered oil passage force and to supply the oil to the anti-weight holding oil chamber of the hydraulic cylinder when the working unit is lowered.
  • the pressure oil from which the hydraulic cylinder weight holding side oil chamber force is also discharged when the working unit is lowered is accumulated in the accumulator and supplied to the suction side of the hybrid pump.
  • the oil is supplied to the non-heavy side oil chamber of the hydraulic cylinder, and thus the potential energy of the working part can be reliably recovered and reused, which can greatly contribute to energy saving.
  • the invention according to claim 7 is characterized in that a recovery valve for controlling the flow rate of the hydraulic oil discharged from the weight holding side oil chamber force of the hydraulic cylinder is arranged in the recovery oil passage. It is a hydraulic control system in a machine.
  • FIG. 1 is a side view of a hydraulic excavator.
  • FIG. 2 is a circuit diagram of a hydraulic control system.
  • FIG. 3 is a circuit diagram of a hydraulic control system.
  • FIG. 4 is a block diagram showing input / output of a controller.
  • FIG. 1 is a hydraulic excavator which is an example of a work machine, and the hydraulic excavator 1 is a crawler type.
  • Each component of the lower traveling unit 2, the upper revolving unit 3 supported so as to be pivotable above the lower traveling unit 2, the working unit 4 mounted on the front of the upper revolving unit 3, and the like is further configured.
  • a boom 5 whose base end is supported by the upper swing body 3 so as to be swingable up and down, an arm 6 supported so as to be swingable back and forth at the front end of the boom 5, and attached to the distal end of the arm 6
  • the bucket is made up of 7 strengths.
  • [0008] 8 is a pair of left and right boom cylinders that extend and contract to swing the boom 5 up and down
  • the boom cylinder 8 holds the weight of the working unit 4 by the pressure of the head side oil chamber 8a (corresponding to the weight holding side oil chamber of the present invention).
  • the boom 5 is raised by extending by the pressure oil supply to the head side oil chamber 8a and the oil discharge from the rod side oil chamber 8b (corresponding to the anti-weight holding side oil chamber of the present invention).
  • the boom 5 is lowered by being contracted by pressure oil supply to the rod side oil chamber 8b and oil discharge from the head side oil chamber 8a.
  • the force that increases the potential energy of the working unit 4 as the boom 5 rises.
  • the potential energy is recovered when the boom 5 is lowered by a hydraulic control system, which will be described later. Used when rising 5! /
  • reference numerals 9 and 10 denote an engine E mounted on the hydraulic excavator 1 via a pump drive gear section G.
  • the first and second main pumps to be connected to each other.
  • These first and second main pumps 9 and 10 suck in the hydraulic oil from the oil tank 11 and discharge it to the first and second pump oil passages 12 and 13. It is configured as follows. 2 and 3, circled numbers are connector symbols, and the corresponding circled numbers are connected to each other.
  • Reference numerals 14 and 15 denote first and second regulators for controlling the discharge flow rate of the first and second main pumps 9 and 10, respectively.
  • the first and second regulators 14 and 15 are controllers to be described later.
  • the pump operates to produce a pump output corresponding to the engine speed and work load, and the first and second main pumps. Constant horsepower control is performed under the discharge pressures of 9 and 10.
  • the first and second regulators 14 and 15 are negative control flow rate control systems that increase or decrease the pump flow rate according to the movement stroke of the spools of the first and second control valves 18 and 19 described later. It is structured to do well.
  • first and second control valves 18 and 19 are directional control valves respectively connected to the first and second pump oil passages 12 and 13, and these first and second control valves The valves 18 and 19 operate to supply the discharge oil from the first and second main pumps 9 and 10 to the boom cylinder 8.
  • the first and second main pumps 9 and 10 are provided with a plurality of other hydraulic actuators (not shown in the figure) provided on the hydraulic excavator 1 connected only by the boom cylinder 8.
  • a control valve for other hydraulic actuators is connected to the first and second pump oil passages 12 and 13, but these are omitted.
  • the first control valve 18 is composed of a spool valve having ascending and descending pilot ports 18a and 18b, and a pilot pressure is input to both pilot ports 18a and 18b.
  • the spool moves as the pilot pressure is input to the force increasing side pilot port 18a located at the neutral position N where oil is not supplied to or discharged from the boom cylinder 8.
  • the first main pump 9 Is supplied to the head side oil chamber 8a of the boom cylinder 8 via the cylinder head side oil passage 20, while the oil discharged from the rod side oil chamber 8b to the cylinder rod side oil passage 21 is returned to the return oil passage. Switch to ascending position X, which flows to oil tank 11 via 22.
  • the spool moves to the side opposite to the ascending side position X and is discharged from the head side oil chamber 8a to the cylinder head side oil passage 20.
  • the oil thus supplied is switched to a descending position Y that is supplied from the cylinder rod side oil passage 21 to the rod side oil chamber 8b via the regeneration valve passage 18c.
  • the cylinder head side oil passage 20 is an oil passage connected to the head side oil chamber 8a to supply and discharge oil to the head side oil chamber 8a of the boom cylinder 8, and the cylinder rod side oil passage 21 is a boom. It is an oil passage connected to the rod side oil chamber 8b to supply and discharge oil to the rod side oil chamber 8b of the cylinder 8.
  • the regeneration valve path 18c provided in the first control valve 18 at the descending position Y is a valve path that connects the head side oil chamber 8a and the rod side oil chamber 8b of the boom cylinder 8. Therefore, the regeneration valve path 18c is provided with a check valve 18d that allows the oil flow from the head side oil chamber 8a to the rod side oil chamber 8b but prevents the reverse flow, and a throttle 18e. Has been. However As described above, when the first control valve 18 is at the lowering position Y, the oil discharged from the head side oil chamber 8a is supplied to the rod side oil chamber 8b via the regeneration valve path 18c.
  • the flow rate depends on the opening characteristic of the throttle 18e arranged in the regeneration valve path 18c (the opening characteristic of the throttle 18e is set according to the spool movement stroke of the first control valve 18) and the head. It changes depending on the differential pressure between the side oil chamber 8a and the rod side oil chamber 8b.
  • the second control valve 19 is composed of a spool valve provided with an ascending pilot port 19a, and in the state where the pilot pressure is input to the ascending pilot port 19a and V ⁇ , Although oil is not supplied to or discharged from the cylinder 8, it is located at the neutral position N. However, when the pilot pressure is input to the ascending-side pilot port 19a, the spool moves and the pressure oil of the second main pump 10 Is switched to the ascending position X to be supplied to the head side oil chamber 8a of the boom cylinder 8 via the cylinder head side oil passage 20.
  • Reference numerals 23, 24, and 25 denote first ascending side, first descending side, and second ascending side electromagnetic proportional pressure reducing valves. These electromagnetic proportional pressure reducing valves 23, 24, and 25 are supplied from the controller 16, respectively. Based on the control signal, the first control valve 18 operates to output the pilot pressure to the ascending pilot port 18a, the descending pilot port 18b, and the ascending pilot port 19a of the second control valve 19, respectively. .
  • the first and second control valves 18, 19 correspond to the increase or decrease of the pilot pressure output from the first ascending side, first descending side, and second ascending electromagnetic proportional pressure reducing valves 23, 24, 25.
  • This is designed to increase or decrease the movement stroke of the spool, and to control the flow rate of oil supply / discharge oil from the first and second control valves 18 and 19 to the boom cylinder 8. Yes.
  • 26 is a pilot pump serving as a pilot hydraulic pressure source.
  • first and second control valves 18 and 19 are supplied with the pressure oil from the first and second main pumps 9 and 10 to the oil tank 11 via the first and second negative control valves 27 and 28.
  • Center bypass valve passages 18f and 19b are formed. The opening amount of the center bypass valve passages 18f and 19b is the largest when the first and second control valves 18 and 19 are in the neutral position N, and becomes smaller as the moving stroke of the spool switched to the rising side position X becomes larger.
  • Lower side position Y First control valve 18 Center bypass valve path 18f has a characteristic of maintaining a large opening regardless of the stroke of the spool, and as a result, the passage flow rate of the center bypass valve line 18f of the first control valve 18 at the descending position Y is the neutral position N. The passing flow force at this time is also set so as not to change. Then, the passage flow rate of the center bypass valve passages 18f and 19b is input to the first and second regulators 14 and 15 as a negative control control signal, and the passage flow rate of the center bypass valve passages 18f and 19b is small. The discharge flow rate of the first and second main pumps 9 and 10 increases, so-called negative control flow rate control is performed.
  • the passage flow rate of the center bypass valve line 18f of the first control valve 18 does not change from that at the neutral position N even when switched to the lower side position Y.
  • the discharge flow rate of the first main pump 9 when the control valve 18 is in the descending position Y is controlled to be minimized by the negative control flow rate control!
  • 29 is a drift reducing valve disposed in the cylinder head side oil passage 20, 30 is an electromagnetic switching for a drift reducing valve in which the OFF position N force is also switched to the ON position X based on the ON signal from the controller 16.
  • the drift reducing valve 29 is always allowed to flow oil from the first and second control valves 18, 19 and the third control valve 37 described later to the head side oil chamber 8a of the boom cylinder 8.
  • the reverse flow is configured to be prevented when the drift-reducing valve solenoid switching valve 30 is in the OFF position N and allowed only when it is in the ON position X.
  • a relief valve 31 is connected to the cylinder head side oil passage 20, and the relief valve 31 limits the maximum pressure in the cylinder head side oil passage 20.
  • 32 is a hybrid pump, which is also connected to the engine E via a pump drive gear section G.
  • the hybrid pump 32 sucks oil supplied from the suction oil passage 33
  • the discharge flow rate of the hybrid pump 32 is controlled by a hybrid pump regulator 35 that operates based on a control signal output from the controller 16 while discharging to the hybrid pump oil passage 34. .
  • the suction oil passage 33 is supplied with pressure accumulation oil of the accumulator 36 or oil discharged from the head side oil chamber 8a of the boom cylinder 8, as will be described later.
  • the hybrid pump 32 sucks the accumulated oil of the accumulator 36 or the oil discharged from the head side oil chamber 8a of the boom cylinder 8 and discharges it to the hybrid pump oil passage 34.
  • the accumulated pressure of the accumulator 36 and the oil discharged from the head side oil chamber 8a are high pressure, and the pressure supplies the driving force to the hybrid pump 32.
  • the driving force is supplied not only by the engine E but also by the accumulated oil in the accumulator 36 or the oil discharged from the head side oil chamber 8a.
  • [0020] 37 is a third control valve connected to the hybrid pump oil passage 34.
  • the third control valve 37 is a pressure oil discharged from the hybrid pump 32 based on a control signal from the controller 16. Is operated to supply the boom cylinder 8.
  • the third control valve 37 is a third ascending side, third descending side oil conversion valve 38, 39 to which a control signal from the controller 16 is input. Is a directional control valve in which the spool moves based on the operation of the valve, and when no operation signal is input to both the electro-hydraulic conversion valves 38 and 39, the neutral position where oil supply / discharge to the boom cylinder 8 is not performed. However, when the operation signal is input to the third ascending-side electro-hydraulic conversion valve 38, the spool moves, and the pump oil is discharged from the hybrid pump 32 via the cylinder head-side oil passage 20.
  • the spool moves to the opposite side to the ascending position X, and the discharge oil of the hybrid pump 32 is discharged to the cylinder rod. It is configured to switch to a lower position Y to be supplied to the rod side oil chamber 8b of the boom cylinder 8 via the side oil passage 21.
  • the movement stroke of the spool of the third control valve 37 increases or decreases depending on the signal value of the operation signal input from the controller 16 force to the third ascending-side and third descending-side electro-hydraulic conversion valves 38, 39.
  • the flow rate of the supply / discharge oil from the third control valve 37 to the boom cylinder 8 is controlled by increasing / decreasing the movement stroke of the spool.
  • reference numeral 40 denotes a recovery oil passage branched from the cylinder head side oil passage 20, and a recovery nove 41 is arranged in the recovery oil passage 40, and the recovery valve
  • the accumulator oil passage 42 and the suction oil passage 33 are connected to the downstream side of 41.
  • the recovery oil passage 40 is provided with a check valve 43 that prevents the flow of oil in the reverse direction, allowing the oil to flow from the cylinder head side oil passage 20 to the accumulator oil passage 42 and the sac- tion oil passage 33. .
  • the oil discharged from the head side oil chamber 8a of the boom cylinder 8 to the cylinder head side oil passage 20 is supplied to the accumulator oil passage 42 and the suction oil passage 33 via the recovery oil passage 40. You can do it.
  • the recovery valve 41 is an open / close valve in which the spool moves based on the operation of the recovery electro-oil conversion valve 44 to which a control signal from the controller 16 is input.
  • the recovery oil passage 40 is closed to the closed position N.
  • the spool moves, Constructed to switch to open position X to open recovery oil passage 40! RU
  • the movement stroke of the spool of the recovery valve 41 is controlled to increase or decrease by the signal value of the operation signal input from the controller 16 to the recovery electro-hydraulic conversion valve 44, and the spool In this way, the flow rate of the oil flowing from the head side oil chamber 8a of the boom cylinder 8 to the accumulator oil passage 42 and the suction oil passage 33 via the recovery oil passage 40 is controlled. ! RU
  • the accumulator oil passage 42 is an oil passage from the recovered oil passage 40 to the accumulator 36 via the accumulator check valve 45, and the maximum pressure of the accumulator oil passage 42 is the accumulator oil passage 42.
  • the accumulator 36 is a force in which an optimum bladder type is used for accumulating hydraulic energy.
  • the accumulator 36 may be a piston type.
  • the accumulator check valve 45 includes a poppet valve 47 and an electromagnetic switching valve 48 for an accumulator check valve that switches to an OFF position N force ON position X based on an ON signal output from the controller 16. ing.
  • the poppet valve 47 allows the flow of oil from the recovery oil passage 40 to the accumulator 36 regardless of whether the accumulator check valve electromagnetic switching valve 48 is in the OFF position N or the ON position X.
  • the oil flow from the oil passage 33 to the oil passage 33 is blocked when the accumulator check valve solenoid valve 48 is in the OFF position N! /, And is in the ON position X! / ⁇ .
  • reference numeral 49 denotes a discharge oil passage that is branched from the succession oil passage 33 and reaches the oil tank 11, and a tank check valve 50 is disposed in the discharge oil passage 49.
  • the tank check valve 50 includes a poppet valve 51 and a tank check valve electromagnetic switching valve 52 that switches to an OFF position N force ON position X based on an ON signal output from the controller 16. ing.
  • the poppet valve 51 allows the oil flow from the suction oil passage 33 to the oil tank 11 only when the tank switching valve electromagnetic switching valve 52 is in the ON position X, and is in the OFF position N. It is designed to stop when you are. Then, for example, when the excavator 1 is finished or maintenance is performed, the accumulator 36 is switched to the ON position X by switching both the accumulator check valve electromagnetic switching valve 48 and the tank check valve electromagnetic switching valve 52 to the accumulator 36. The accumulated pressure oil can be discharged into the oil tank 11!
  • the controller 16 is configured by using a microcomputer or the like, and detects the operation direction and the operation amount of a boom operation lever (not shown) as shown in the block diagram of FIG.
  • Second discharge-side pressure sensor 55 connected to the second discharge-side pump oil passage 13
  • third discharge-side pressure sensor 56 connected to the hybrid pump oil passage 34 to detect the discharge pressure of the hybrid pump 32
  • the hybrid pump 32 The suction side pressure sensor 57 connected to the suction oil passage 33 to detect the suction side pressure, and the cylinder head side oil passage 20 to detect the pressure in the head side oil chamber 8a of the boom cylinder 8 are connected.
  • Cylinder head side pressure sensor 58 that is, the cylinder rod side pressure sensor 59 which is connected to the serial Ndaroddo side oil passage 21 so as to detect the pressure of the rod side oil chamber 8b of the boom cylinder 8, the accumulator 36
  • the signal from the accumulator pressure sensor 60 connected to the accumulator oil passage 42 is input, and based on these input signals, the electromagnetic proportional pressure reducing valve 17 for main pump control described above, the first rise Side electromagnetic proportional pressure reducing valve 23, first lowering side electromagnetic proportional pressure reducing valve 24, second ascending side electromagnetic proportional pressure reducing valve 25, electromagnetic valve 30 for drift reduction valve, hybrid pump regulator 35, third ascending side electro-hydraulic conversion valve 38, a control signal is output to the third descending electro-hydraulic conversion valve 39, the collecting electro-oil conversion valve 44, the accumulator check valve electromagnetic switching valve 48, the tank check valve electromagnetic switching valve 52, and the like.
  • 61 is a pressure accumulation state calculation unit provided in the controller 16, and the pressure accumulation state calculation unit 61 also inputs the force of an accumulator pressure sensor 60 (corresponding to the pressure accumulation state detection means of the present invention).
  • the current accumulator 36 is accumulated (%).
  • the accumulator state (%) is set in advance, for example, as 0% if the pressure in the accumulator oil passage 42 is equal to the precharge pressure (accumulation start set pressure) of the accumulator 36, and sufficiently accumulated in the accumulator 36. If the pressure is higher than the set pressure, it is calculated to be 100%, and if it is between the precharge pressure and the set pressure, the higher the pressure in the accumulator oil passage 42, the higher the percentage is calculated. Perform temperature correction if necessary.
  • the controller 16 controls the electromagnetic proportional pressure reducing valve 17 for main pump control so that the pump output corresponds to the engine speed. Is controlled to output the pilot pressure corresponding to the operation amount of the boom operation lever to the ascending pilot port 19a of the second control valve 19 for the second ascending electromagnetic proportional pressure reducing valve 25. Output a signal.
  • the second control valve 19 has a stroke corresponding to the operation amount of the boom control lever. The spool moves and switches to the up position X.
  • the discharge oil of the second main pump 10 flows into the cylinder head side oil passage 20 via the second control valve 19 at the ascending position X, and is supplied to the head side oil chamber 8a of the boom cylinder 8.
  • the controller 16 outputs a control command to the hybrid pump regulator 35 so that the discharge flow rate of the hybrid pump 32 becomes a flow rate corresponding to the operation amount of the boom operation lever.
  • An operation signal having a signal value corresponding to the operation amount of the boom operation lever is output to the electro-hydraulic conversion valve 38.
  • the spool of the third control valve 37 is moved by the stroke corresponding to the operation amount of the boom operation lever, and is switched to the ascending position X.
  • the discharge oil of the hybrid pump 32 flows into the cylinder head side oil passage 20 via the third control valve 37 at the ascending side position X, and the second main pump described above in the cylinder head side oil passage 20 Combined with the 10 discharge oil, it is supplied to the head side oil chamber 8a of the boom cylinder 8.
  • the oil in the rod side oil chamber 8b of the boom cylinder 8 is discharged to the oil tank 11 via the third control valve 37 at the ascending position X.
  • the controller 16 outputs an ON signal to the accumulator check valve electromagnetic switching valve 48 so as to switch to the ON position X.
  • the accumulator check nozzle 45 is allowed to flow oil from the accumulator oil passage 42 to the sac- tion oil passage 33.
  • the pressure oil accumulated in the accumulator 36 is supplied to the suction side of the hybrid pump 32 via the suction oil passage 33.
  • the controller 16 has the first raising side electromagnetic proportional pressure reducing valve 23 to the raising side pilot port 18a of the first control valve 18.
  • a control signal is output so that the pilot pressure corresponding to the operation amount of the boom control lever is output.
  • the spool of the first control valve 18 is moved by the stroke corresponding to the operation amount of the boom operation lever, and switched to the ascending position X.
  • the discharge oil of the first main pump 9 flows to the cylinder head side oil passage 20 via the first control valve 18 at the ascending side position X, and the second main pump is transferred to the cylinder head side oil passage 20.
  • the controller 16 outputs a control command to the hybrid pump regulator 35 so that the discharge flow rate of the hybrid pump 32 is zero, that is, the pressure oil supply of the hybrid pump 32 is stopped. Further, no operation command is output from the controller 16 to the third ascending side and third descending electro-hydraulic conversion valves 38, 39, and the third control valve 37 is held at the neutral position N. As a result, pressure oil is not supplied from the hybrid pump 32 to the head-side oil chamber 8a of the boom cylinder 8.
  • the controller 16 A control signal is output to the electromagnetic proportional pressure reducing valve 23 and the third ascending side electro-hydraulic conversion valve 38, and the first control valve 18 and the third control valve 37 are switched to the ascending position X.
  • the supply pressure oil from the first main pump 9 and the supply pressure oil from the first main pump 9 are combined and supplied to the head side oil chamber 8a of the boom cylinder 8.
  • the discharge flow rate of the hybrid pump 32 and the moving stroke of the spool of the third control valve 37 decrease, while the moving stroke of the spool of the first control valve 18 increases. Is controlled as follows. That is, as the pressure accumulation state of the accumulator 36 decreases, the supply flow rate from the hybrid pump 32 decreases while the supply flow rate from the first main pump 9 increases. The supply flow rate and the supply flow rate from the first main pump 9 are added to control the flow rate for one pump.
  • the pressure accumulation state is 0% to: L00%. Even in this case, the main pump control electromagnetic proportional pressure reducing valve 17, the second ascending electromagnetic proportional pressure reducing valve 25, and the accumulator check valve electromagnetic switching valve 48 The recovery electro-oil conversion valve 44 is controlled in the same manner as when the boom is raised in the above-described pressure accumulation state 100%.
  • the first main pump The flow rate for one pump supplied from 9 and the flow rate for one pump supplied from the second main pump 9 merge to be supplied to the head side oil chamber 8a, and the accumulator 36 has a pressure accumulation state of 0% to During the time of 100%, the flow rate for one pump supplied from the hybrid pump 32 and the first main pump 9 and the flow rate for one pump supplied from the second main pump 10 are merged. It will be subjected fed to the head-side oil chamber 8a. Therefore, when the boom 5 is raised, the flow of two pumps can be always supplied to the head side oil chamber 8a regardless of the accumulator 36 accumulating state, and the boom 5 is raised against the weight load of the working unit 4.
  • the hybrid pump 32 absorbs the high-pressure oil accumulated in the accumulator 36. This is a force that can raise the boom 5 at a desired speed corresponding to the operation amount of the boom operation lever. Since the oil is discharged and discharged, pressure oil can be supplied with much less required power than the first and second main pumps 9 and 10 where the differential pressure between the suction side and the discharge side is small.
  • the controller 16 when the boom operation lever is operated to the boom lowering side, the controller 16 outputs a control signal to the main pump control electromagnetic proportional pressure reducing valve 17 so as to reduce the pump output, and the first A control signal is output to the descending electromagnetic proportional pressure reducing valve 24 so that the pilot pressure 18b of the first control valve 18 outputs the pilot pressure corresponding to the operation amount of the boom operating lever.
  • the spool of the first control valve 18 is moved by the stroke corresponding to the operation amount of the boom control lever, and is switched to the lower position Y.
  • the oil discharged from the head side oil chamber 8a of the boom cylinder 8 is supplied to the rod side oil chamber 8b via the regeneration valve path 18c at the descending position Y, as described above.
  • the discharge flow rate of the first main pump 9 is controlled to be minimized by negative control flow rate control.
  • the second control valve 19 is held at the neutral position N when the boom 5 is lowered, and therefore does not supply or discharge oil to the boom cylinder 8, and the discharge flow rate of the second main pump 10 is also the negative control flow rate. It is controlled to be minimized by the control.
  • the controller 16 outputs a control command to the hybrid pump regulator 35 so that the discharge flow rate of the hybrid pump 32 becomes a flow rate corresponding to the operation amount of the boom operation lever.
  • An operation signal having a signal value corresponding to the operation amount of the boom operation lever is output to the electro-hydraulic conversion valve 39.
  • the spool of the third control valve 37 is moved by the stroke corresponding to the operation amount of the boom operation lever, and is switched to the lower position Y.
  • the oil discharged from the hybrid pump 32 flows into the cylinder rod side oil passage 21 via the third control valve 37 at the descending position Y and is supplied to the rod side oil chamber 8b of the boom cylinder 8.
  • the controller 16 outputs an ON signal to the electromagnetic pressure reducing valve 30 for drift reduction valve so as to switch to the ON position.
  • the drift reduction valve 29 is allowed to discharge oil from the head side oil chamber 8a of the boom cylinder 8.
  • the controller 16 outputs an activation signal having a signal value corresponding to the operation amount of the boom operation lever to the recovery electro-oil conversion valve 44.
  • the recovery valve 41 is switched to the open position X where the recovery oil passage 40 is opened by moving the spool by a stroke corresponding to the operation amount of the boom operation lever.
  • the oil discharged from the head side oil chamber 8a of the boom cylinder 8 flows through the recovery oil passage 40 to the accumulator oil passage 42 and the suction oil passage 33, and is accumulated in the accumulator 36, and is also hybridized.
  • the controller 16 outputs an ON signal to switch to the ON position X to the electromagnetic switching valve 48 for the accumulator check valve. This allows oil to flow from the recovery oil passage 40 to the accumulator oil passage 42 with almost no pressure loss!
  • the pressure oil from the hybrid pump 32 is supplied to the rod side oil chamber 8b of the boom cylinder 8.
  • the hybrid pump 32 High pressure oil discharged from the chamber 8a is sucked and discharged, so that it is supplied with much less required power than the first main pump 9 where the differential pressure between the suction side and discharge side is small. Can do.
  • the oil discharged from the head side oil chamber 8a of the boom cylinder 8 has a high pressure due to the potential energy of the working unit 4, and has a pressure receiving area acting on the piston 8c.
  • the force of the relationship is approximately twice as much as the amount supplied to the rod side oil chamber 8b.
  • the oil discharged from the head side oil chamber 8a is supplied to the suction side of the hybrid pump 32, as described above. While being supplied from the hybrid pump 32 to the rod side oil chamber 8b, pressure is accumulated in the accumulator 36. As described above, the pressure oil accumulated in the accumulator 36 is supplied from the hybrid pump 32 to the head-side oil chamber 8a when the boom 5 is raised.
  • the potential energy possessed by the working unit 4 can be recovered and reused without being wasted.
  • the boom cylinder 8 holds the weight of the working unit 4 with the pressure of the head side oil chamber 8a, and the pressure oil to the head side oil chamber 8a.
  • Supply and rod The boom 5 is raised by the oil discharge from the side oil chamber 8b, and the boom 5 is lowered by the pressure oil supply to the rod side oil chamber 8b and the oil discharge from the head side oil chamber 8a.
  • the boom cylinder 8 hydraulic control system is provided with an accumulator 36 for accumulating oil discharged from the head side oil chamber 8a of the boom cylinder 8 when the boom 5 is lowered.
  • first and second main pumps 9 and 10 that suck in and discharge oil from oil tank 11, and a hybrid pump that sucks and discharges pressure oil accumulated in accumulator 36 32 and are provided. If the accumulator 36 is sufficiently accumulated when the boom 5 is raised, the flow rate for one pump supplied from the second main pump 10 and the flow rate for one pump supplied from the hybrid pump 32 Are combined and supplied to the head-side oil chamber 8a. If the accumulator 36 has insufficient pressure accumulation and the supply flow rate from the hybrid pump 32 to the head-side oil chamber 8a is insufficient, the insufficient flow rate is reduced. One main pump 9 will supply.
  • the head side oil chamber 8a of the boom cylinder 8 has a flow rate of one pump from the second main pump 10 and a shortage of the hybrid pump 32 and the hybrid pump 32.
  • the flow of one pump from the first main pump 9 that compensates for this is combined and supplied, and the boom rises in the direction against the heavy load of the work unit 4 related to the pressure accumulation state of the accumulator 36.
  • the hybrid pump 32 sucks in the high-pressure oil accumulated in the accumulator 36. The force is such that the boom 5 can be raised at a desired speed corresponding to the amount of operation of the boom control lever.
  • the pressure oil can be supplied with a small required power with a small differential pressure between the suction side and the discharge side, and is thus collected by the accumulator 36 when the boom 5 is lowered.
  • the potential energy can be reused when Boom 5 is raised, it can greatly contribute to energy saving.
  • the pressure accumulation state of the accumulator 36 is calculated by the pressure accumulation state calculation unit 61 provided in the controller 16 based on the pressure of the accumulator oil passage 42 input from the accumulator pressure sensor 60.
  • the supply flow rate from the hybrid pump 32 to the boom cylinder 8 is increased / decreased in response to the increase / decrease change in the accumulated pressure state of the accumulator 36 obtained by the accumulated pressure state calculation unit 61, while the first main pump 9
  • the supply flow rate to the cylinder 8 is controlled to increase as the supply flow rate from the hybrid pump 32 to the boom cylinder 8 decreases.
  • the supply flow rate from the hybrid pump 32 and the supply flow rate from the first main pump 9 that compensates for the insufficient flow rate of the hybrid pump 32 are always balanced in accordance with the pressure accumulation state of the accumulator 36. For example, until the accumulator 36 is empty (accumulated pressure of 0%) when the boom 5 is raised, only the hydraulic oil is supplied from the hybrid pump 32.
  • the smooth operation of the boom 5 may be impaired when switching between the pressure oil supply from the hybrid pump 32 and the first main pump 9-pressure oil supply, such as the one configured to switch to the other pressure oil supply. Excellent operability without defects.
  • the first control valve 18 that controls the supply flow rate from the first main pump 9 to the boom cylinder 8 and the third control valve that controls the supply flow rate from the hybrid pump 32 to the boom cylinder 8 are also used. 37 is provided, the supply flow rate from the first main pump 9 and the noise pump 32 to the boom cylinder 8 can be accurately controlled.
  • the discharge flow rate of the hybrid pump 32 is configured to increase or decrease in response to the increase or decrease change of the pressure accumulation state of the accumulator 36 obtained by the pressure accumulation state calculation unit 61.
  • the discharge flow rate of 32 can be supplied to the boom cylinder 8 without wasting and lacking.
  • the pressure oil discharged from the head side oil chamber 8a of the boom cylinder 8 becomes high pressure due to the potential energy of the working unit 4, and the pressure receiving force applied to the piston 8c.
  • the force related to the area is also a force that discharges approximately twice the amount supplied to the rod-side oil chamber 8a.
  • the oil flows into the suction oil passage 33 and is accumulated in the accumulator 36 and supplied to the suction side of the hybrid pump 32.
  • the hybrid pump 32 sucks the oil discharged from the head side oil chamber 8a supplied from the recovery oil passage 40 and supplies it to the rod side oil chamber 8b of the boom cylinder 8.
  • the hybrid pump 32 Is designed to suck in and discharge high-pressure oil discharged from the head-side oil chamber 8a. Pressure S can be supplied with small required power.
  • the recovery oil path 40 for flowing the oil discharged from the head side oil chamber 8a to the accumulator oil path 42 and the suction oil path 33 is used to control the flow rate of the oil discharged from the head side oil chamber 8a.
  • a valve 41 is provided.
  • the present invention is of course not limited to the above embodiment.
  • the hydraulic control system for the boom cylinder of the hydraulic excavator has been described as an example. This can be implemented in a hydraulic control system for various hydraulic cylinders that raise and lower parts.
  • the second main pump is provided in addition to the hybrid pump and the first main pump as a pump that supplies the hydraulic oil to the hydraulic cylinder, thereby raising the working part in the direction against the heavy load.
  • the pressure oil can be supplied at a flow rate corresponding to two pumps, the present invention can be implemented even when the second main pump is not provided.
  • the present invention is useful for a hydraulic control system in a working machine that can recover and reuse the position energy of the working unit in a working machine that includes a working unit that moves up and down.
  • the normal hydraulic cylinder force discharged oil is accumulated in the accumulator when the working unit is lowered without being provided, and the pressure oil accumulated in the accumulator is accumulated in the accumulator when the working unit is raised. Therefore, the hydraulic pressure can be supplied regardless of the accumulator's accumulated pressure, and the hybrid pump reduces the differential pressure between the suction side and the discharge side and requires less movement.
  • Pressure oil can be supplied by force, and the potential energy recovered by the accumulator when the working unit is lowered can be reused when the working unit is raised, which can greatly contribute to energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

明 細 書
作業機械における油圧制御システム
技術分野
[0001] 本発明は、昇降する作業部を備えた作業機械において、作業部の有する位置エネ ルギーを回収、再利用することができる作業機械における油圧制御システムの技術 分野に属するものである。
背景技術
[0002] 一般に、油圧ショベルやクレーン等の作業機械は、昇降自在な作業部を備えると共 に、該作業部の昇降は、油圧ポンプ力 圧油供給される油圧シリンダの伸縮作動に 基づいて行うように構成されているが、このものにおいて、従来、作業部の下降時に 油圧シリンダの重量保持側油室から油タンクに排出される油は、作業部の自重による 急激な落下を防止するため、油圧シリンダの油供給排出制御を行うコントロールバル ブに設けられた絞りによってメータアウト制御されるように構成されている。つまり、地 面より上方に位置して 、る作業部は位置エネルギーを有して 、るが、該位置エネル ギ一は、前記コントロールバルブの絞りを通過するときに熱エネルギーに変換され、 さらに該熱エネルギーはオイルクーラーによって大気中に放出されることになつて、 無駄なエネルギー損失となる。
そこで、作業部の有する位置エネルギーを回収、再利用するために、通常の油圧 シリンダに加えて補助油圧シリンダ (アシストシリンダ)を設け、作業部の下降時に、補 助油圧シリンダの重量保持側油室力 排出される油をアキュムレータに蓄圧すると共 に、作業部の上昇時に、アキュムレータに蓄圧された圧油を補助シリンダの重量保持 側に供給するようにした技術が開示されている (例えば、特許文献 1参照。 ) o 特許文献 1:特許第 2582310号公報
発明の開示
発明が解決しょうとする課題
[0003] しかるに、前記特許文献 1のものは、作業部の下降時に、補助油圧シリンダからの 排出油はアキュムレータに蓄圧されるものの、作業部を昇降するために設けられる通 常の油圧シリンダからの排出油は、コントロールバルブを経由して油タンクに排出さ れるようになっており、作業機の有する位置エネルギーのうちの一部しか回収されて いないことになる。し力も、作業部の上昇時にアキュムレータに充分に蓄圧されてい ない場合には、油圧ポンプ力もコントロールバルブを介して通常の油圧シリンダに供 給される圧油の一部が、補助油圧シリンダに供給されると共にアキュムレータ蓄圧用 に用いられるように構成されているため、作業部の上昇速度が遅くなつて、作業効率 が低下するという問題がある。
そこで、補助油圧シリンダを設けることなぐ作業部の下降時における通常の油圧シ リンダ力 の排出油をアキュムレータに蓄圧すると共に、作業部の上昇時に該アキュ ムレータに蓄圧された圧油を油圧シリンダに供給することが提唱されるが、この場合、 アキュムレータの蓄圧状態によっては油圧シリンダに充分な圧油供給を行えないこと がある。しかるに、油圧シリンダへの圧油供給流量がアキュムレータの蓄圧状態によ つて左右されると、作業部の上昇速度を正確にコントロールできないことになつて、作 業性に劣るという問題があり、ここに本発明が解決しょうとする課題がある。
課題を解決するための手段
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作さ れたものであって、請求項 1の発明は、作業部を昇降せしめる油圧シリンダと、油タン タカ 油を吸込んで吐出する第一メインポンプと、作業部の下降時に油圧シリンダの 重量保持側油室力 排出される油を蓄圧するアキュムレータと、該アキュムレータに 蓄圧された圧油を吸込んで吐出するハイブリッドポンプとを備える一方、作業部の上 昇時に、前記ハイブリッドポンプの吐出油を油圧シリンダの重量保持側油室に供給 するように構成すると共に、ハイブリッドポンプから油圧シリンダへの供給流量が不足 する場合に、該不足する流量を第一メインポンプ力 油圧シリンダの重量保持側油 室に供給するように構成したことを特徴とする作業機械における油圧制御システムで ある。
そして、この様にすることにより、作業部の下降時に、油圧シリンダの重量保持側油 室力 排出された油がアキュムレータに蓄圧される一方、作業部の上昇時には、上 記アキュムレータに蓄圧された圧油を吸込んで吐出するハイブリッドポンプからの圧 油が油圧シリンダの重量保持側油室に供給されると共に、該ハイブリッドポンプから の供給流量が不足する場合には第一メインポンプからの圧油が供給されることになり 、而して、アキュムレータの蓄圧状態に関係なぐ油圧シリンダの重量保持側油室へ の圧油供給を行えることになる力 上記ハイブリッドポンプは、アキュムレータに蓄圧 された高圧の圧油を吸い込んで吐出するため、吸入側と吐出側との差圧が小さぐ 少ない所要動力で圧油供給を行うことができ、もって、作業部の下降時にアキュムレ ータに回収された位置エネルギーを作業部の上昇時に再利用できることになつて、 省エネルギー化に大きく貢献できる。
請求項 2の発明は、油圧制御システムは、油タンク力 油を吸込んで吐出する第二 メインポンプを備えると共に、作業部の上昇時に、前記第二メインポンプからの供給 流量を、ハイブリッドポンプおよび第一メインポンプからの供給流量に合流して油圧 シリンダの重量保持側油室に供給するように構成したことを特徴とする請求項 1に記 載の作業機械における油圧制御システムである。
そして、この様にすることにより、作業部の上昇時には、ノ、イブリツドポンプおよび第 一メインポンプ力 の供給流量に第二メインポンプの供給流量が合流して油圧シリン ダの重量保持側油室に供給されることになつて、重量負荷に抗する方向の作業部上 昇であっても、速度が低下してしまう惧れがなぐ作業効率の向上に寄与できる。 請求項 3の発明は、油圧制御システムは、アキュムレータの蓄圧状態を検出するた めの蓄圧状態検出手段を備えると共に、ハイブリッドポンプ力も油圧シリンダへの供 給流量は、アキュムレータの蓄圧状態の増減変化に対応して増減制御される一方、 第一メインポンプ力も油圧シリンダへの供給流量は、ハイブリッドポンプから油圧シリ ンダへの供給流量が減少するにつれて増加するように制御される構成であることを特 徴とする請求項 1または 2に記載の作業機械における油圧制御システムである。 そして、この様にすることにより、ハイブリッドポンプ力 供給流量と、該ハイブリッド ポンプの不足流量を補う第一メインポンプからの供給流量とを、アキュムレータの蓄 圧状態に応じてバランス良く油圧シリンダに供給できると共に、例えば、作業部の上 昇時にアキュムレータが空になるまではハイブリッドポンプ力ものみ圧油供給し、空に なった時点で第一メインポンプからの圧油供給に切換えるように構成したもののよう に、ハイブリッドポンプからの圧油供給と第一メインポンプ力 の圧油供給との切換時 に作業部の円滑な動作が損なわれてしまうような不具合がなぐ操作性に優れる。 請求項 4の発明は、油圧制御システムは、第一メインポンプから油圧シリンダへの 供給流量を制御する第一コントロールバルブと、ハイブリッドポンプ力 油圧シリンダ への供給流量を制御する第三コントロールバルブとを備えることを特徴とする請求項 1乃至 3の何れか一項に記載の作業機械における油圧制御システムである。
そして、この様にすることにより、第一メインポンプおよびハイブリッドポンプからブー ムシリンダへの供給流量を、精度良くコントロールすることができる。
請求項 5の発明は、油圧制御システムは、アキュムレータの蓄圧状態を検出するた めの蓄圧状態検出手段を備えると共に、ハイブリッドポンプの吐出流量は、アキュム レータの蓄圧状態の増減変化に対応して増減制御されるように構成されることを特徴 とする請求項 1乃至 4の何れか一項に記載の作業機械における油圧制御システムで ある。
そして、この様にすることにより、ハイブリッドポンプの吐出流量を無駄にすることなく 、且つ不足することなく油圧シリンダに供給することができる。
請求項 6の発明は、油圧制御システムは、作業部の下降時に油圧シリンダの重量 保持側油室力も排出される圧油を、アキュムレータおよびハイブリッドポンプの吸入 側に供給する回収油路を備えると共に、ハイブリッドポンプは、作業部の下降時に、 前記回収油路力 供給される圧油を吸込んで油圧シリンダの反重量保持側油室に 供給するように構成されることを特徴とする請求項 1乃至 5の何れか一項に記載の作 業機械における油圧制御システムである。
そして、この様にすることにより、作業部の下降時に油圧シリンダの重量保持側油 室力も排出された圧油は、アキュムレータに蓄圧されると共に、ハイブリッドポンプの 吸入側に供給されて該ハイブリッドポンプにより油圧シリンダの反重量側油室に供給 されること〖こなり、而して、作業部の有する位置エネルギーを、確実に回収、再利用 できることになつて、省エネルギー化に大きく貢献できる。
請求項 7の発明は、回収油路に、油圧シリンダの重量保持側油室力 排出される圧 油の流量を制御する回収用バルブを配したことを特徴とする請求項 6に記載の作業 機械における油圧制御システムである。
そして、この様にすることにより、回収用バルブによって油圧シリンダの重量保持側 油室からの排出流量を制御することで、作業部の下降速度を制御できることになつて 、良好な操作性を得ることができる。
図面の簡単な説明
[図 1]油圧ショベルの側面図である。
[図 2]油圧制御システムの回路図である。
[図 3]油圧制御システムの回路図である。
[図 4]コントローラの入出力を示すブロック図である。
符号の説明
4 作業部
8 ブームシリンダ
8a ヘッド側油室
8b ロッド側油室
9 第一メインポンプ
10 第二メインポンプ
11 油タンク
18 第一コントロールバルブ
32 ハイブリッドポンプ
35 ハイブリッドポンプ用レギユレータ
36 アキュムレータ
37 第三コント口ールバルブ
40 回収油路
41 回収用バルブ
60 アキュムレータ用圧力センサ
発明を実施するための最良の形態
次に、本発明の実施の形態について、図面に基づいて説明する。図 1において、: は作業機械の一例である油圧ショベルであって、該油圧ショベル 1は、クローラ式の 下部走行体 2、該下部走行体 2の上方に旋回自在に支持される上部旋回体 3、該上 部旋回体 3のフロントに装着される作業部 4等の各部力 構成され、さらに該作業部 4 は、基端部が上部旋回体 3に上下揺動自在に支持されるブーム 5、該ブーム 5の先 端部に前後揺動自在に支持されるアーム 6、該アーム 6の先端部に取付けられるバ ケット 7等力ら構成されて 、る。
[0008] 8は前記ブーム 5を上下揺動せしめるべく伸縮作動する左右一対のブームシリンダ
(本発明の油圧シリンダに相当する)であって、該ブームシリンダ 8は、ヘッド側油室 8 a (本発明の重量保持側油室に相当する)の圧力によって作業部 4の重量を保持する と共に、該ヘッド側油室 8aへの圧油供給およびロッド側油室 8b (本発明の反重量保 持側油室に相当する)からの油排出により伸長してブーム 5を上昇せしめ、また、ロッ ド側油室 8bへの圧油供給およびヘッド側油室 8aからの油排出により縮小してブーム 5を下降せしめるように構成されている。そして、前記ブーム 5の上昇に伴い、作業部 4の有する位置エネルギーが増加する力 該位置エネルギーは、後述する油圧制御 システムによってブーム 5の下降時に回収される一方、該回収されたエネルギーは、 ブーム 5の上昇時に利用されるようになって!/、る。
[0009] 次いで、前記油圧制御システムについて、図 2、図 3の回路図に基づいて説明する 力 これらの図面において、 9、 10は油圧ショベル 1に搭載のエンジン Eにポンプドラ イブギア部 Gを介して連結される第一、第二メインポンプであって、これら第一、第二 メインポンプ 9、 10は、油タンク 11から作動油を吸込んで第一、第二ポンプ油路 12、 13に吐出するように構成されている。尚、図 2、図 3中、丸付きの数字は結合子記号 であって、対応する丸付き数字同士が接続される。
[0010] 14、 15は前記第一、第二メインポンプ 9、 10の吐出流量制御を行う第一、第二レギ ユレータであって、該第一、第二レギユレータ 14、 15は、後述するコントローラ 16によ つて制御されるメインポンプ制御用電磁比例減圧弁 17からの制御信号圧を受けて、 エンジン回転数と作業負荷に対応したポンプ出力にするべく作動すると共に、第一、 第二メインポンプ 9、 10の吐出圧力を受けて定馬力制御を行う。さらに第一、第二レ ギユレータ 14、 15は、後述する第一、第二コントロールバルブ 18、 19のスプールの 移動ストロークに対応してポンプ流量を増減せしめるネガティブコントロール流量制 御も行うように構成されて 、る。
[0011] 一方、前記第一、第二コントローノレバルブ 18、 19は、第一、第二ポンプ油路 12、 1 3にそれぞれ接続される方向切換弁であって、これら第一、第二コントロールバルブ 1 8、 19は、第一、第二メインポンプ 9、 10の吐出油をブームシリンダ 8に供給するべく 作動する。尚、前記第一、第二メインポンプ 9、 10は、ブームシリンダ 8だけでなぐ油 圧ショベル 1に設けられる他の複数の油圧ァクチユエータ(図示しな 、が、走行モー タ、旋回モータ、アームシリンダ、バケツトシリンダ等)の圧油供給源となると共に、第 一、第二ポンプ油路 12、 13には他の油圧ァクチユエータ用のコントロールバルブも 接続されるが、これらについては省略する。
[0012] 前記第一コントロールバルブ 18は、上昇側、下降側パイロットポート 18a、 18bを備 えたスプール弁で構成されており、そして、両パイロットポート 18a、 18bにノ ィロット 圧が入力されて 、な 、状態では、ブームシリンダ 8に対する油給排を行わない中立 位置 Nに位置している力 上昇側ノ ィロットポート 18aにパイロット圧が入力されること によりスプールが移動して、第一メインポンプ 9の圧油をシリンダヘッド側油路 20を経 由してブームシリンダ 8のヘッド側油室 8aに供給する一方、ロッド側油室 8bからシリン ダロッド側油路 21に排出された油をリターン油路 22を経由して油タンク 11に流す上 昇側位置 Xに切換わる。また、下降側ノ ィロットポート 18bにパイロット圧が入力される ことにより、前記上昇側位置 Xとは反対側にスプールが移動して、ヘッド側油室 8aか らシリンダヘッド側油路 20に排出された油を、再生用弁路 18cを経由してシリンダロッ ド側油路 21からロッド側油室 8bに供給する下降側位置 Yに切換るように構成されて いる。尚、前記シリンダヘッド側油路 20は、ブームシリンダ 8のヘッド側油室 8aに油を 給排するべくヘッド側油室 8aに接続される油路であり、シリンダロッド側油路 21は、 ブームシリンダ 8のロッド側油室 8bに油を給排するべくロッド側油室 8bに接続される 油路である。
[0013] ここで、前記下降側位置 Yの第一コントロールバルブ 18に設けられる再生用弁路 1 8cは、ブームシリンダ 8のヘッド側油室 8aとロッド側油室 8bとを連通する弁路であつ て、該再生用弁路 18cには、ヘッド側油室 8aからロッド側油室 8bへの油の流れは許 容するが逆方向の流れは阻止するチェック弁 18dと、絞り 18eとが配されている。而し て、前述したように、第一コントロールバルブ 18が下降側位置 Yのとき、ヘッド側油室 8aから排出された油は、再生用弁路 18cを介してロッド側油室 8bに供給されるが、そ の流量は、再生用弁路 18cに配された絞り 18eの開口特性 (該絞り 18eの開口特性 は、第一コントロールバルブ 18のスプール移動ストロークに応じて設定される)と、へ ッド側油室 8aとロッド側油室 8bの差圧とによって変化するようになっている。
[0014] 一方、第二コントロールバルブ 19は、上昇側パイロットポート 19aを備えたスプール 弁で構成されており、そして、上昇側パイロットポート 19aにパイロット圧が入力されて Vヽな 、状態では、ブームシリンダ 8に対する油給排を行わな 、中立位置 Nに位置し ているが、上昇側ノ ィロットポート 19aにパイロット圧が入力されることによりスプール が移動して、第二メインポンプ 10の圧油をシリンダヘッド側油路 20を経由してブーム シリンダ 8のヘッド側油室 8aに供給する上昇側位置 Xに切換るように構成されて!ヽる
[0015] また、 23、 24、 25は第一上昇側、第一下降側、第二上昇側電磁比例減圧弁であ つて、これら各電磁比例減圧弁 23、 24、 25は、コントローラ 16からの制御信号に基 づいて、前記第一コントロールバルブ 18の上昇側パイロットポート 18a、下降側パイ ロットポート 18b、第二コントロールバルブ 19の上昇側パイロットポート 19aにそれぞ れパイロット圧を出力するべく作動する。そして、これら第一上昇側、第一下降側、第 二上昇側電磁比例減圧弁 23、 24、 25から出力されるパイロット圧の圧力の増減に 対応して第一、第二コントロールバルブ 18、 19のスプールの移動ストロークが増減す るようになっており、これによつて、第一、第二コントロールバルブ 18、 19からブーム シリンダ 8への給排油の流量制御がなされるように構成されている。尚、図 2、図 3中、 26はパイロット油圧源となるパイロットポンプである。
[0016] さらに、第一、第二コントロールバルブ 18、 19には、第一、第二メインポンプ 9、 10 の圧油を第一、第二ネガティブコントロールバルブ 27、 28を介して油タンク 11に流 すセンタバイパス弁路 18f、 19bが形成されている。該センタバイパス弁路 18f、 19b の開口量は、第一、第二コントロールバルブ 18、 19が中立位置 Nのときに最も大きく 、上昇側位置 Xに切換わったスプールの移動ストロークが大きくなるほど小さくなるよ うに制御される力 下降側位置 Yの第一コントロールバルブ 18のセンタバイパス弁路 18fは、スプールの移動ストロークに拠らず大きな開口を維持する特性を有しており、 これにより、下降側位置 Yの第一コントロールバルブ 18のセンタバイパス弁路 18fの 通過流量は、中立位置 Nのときの通過流量力も変化しないように設定されている。そ して、上記センタバイパス弁路 18f、 19bの通過流量は、ネガティブコントロール制御 信号として前記第一、第二レギユレータ 14、 15に入力されて、センタバイパス弁路 18 f、 19bの通過流量が少なくなるほど第一、第二メインポンプ 9、 10の吐出流量が増加 する、所謂ネガティブコントロール流量制御が行われるようになつている。ここで、前 述したように、第一コントロールバルブ 18のセンタバイパス弁路 18fの通過流量は、 下降側位置 Yに切換わっても中立位置 Nのときと変化せず、而して、第一コントロー ルバルブ 18が下降側位置 Yのときの第一メインポンプ 9の吐出流量は、ネガティブコ ントロール流量制御によって最小となるように制御されるようになって!/、る。
[0017] また、 29は前記シリンダヘッド側油路 20に配されるドリフト低減弁、 30はコントロー ラ 16からの ON信号に基づいて OFF位置 N力も ON位置 Xに切換わるドリフト低減弁 用電磁切換弁であって、上記ドリフト低減弁 29は、前記第一、第二コントロールバル ブ 18、 19および後述する第三コントロールバルブ 37からブームシリンダ 8のヘッド側 油室 8aへの油の流れは常時許容する力 逆方向の流れは、ドリフト低減弁用電磁切 換弁 30が OFF位置 Nのときには阻止し、 ON位置 Xのときのみ許容するように構成さ れている。尚、 31はシリンダヘッド側油路 20に接続されるリリーフ弁であって、該リリ ーフ弁 31によって、シリンダヘッド側油路 20の最高圧力が制限されている。
[0018] 一方、 32はハイブリッドポンプであって、このものもポンプドライブギア部 Gを介して エンジン Eに連結されている力 該ハイブリッドポンプ 32は、サクシヨン油路 33から供 給される油を吸込んでノ、イブリツドポンプ油路 34に吐出すると共に、ハイブリッドボン プ 32の吐出流量制御は、コントローラ 16から出力される制御信号に基づいて作動す るハイブリッドポンプ用レギユレータ 35によって行われるように構成されている。
[0019] ここで、前記サクシヨン油路 33には、後述するように、アキュムレータ 36の蓄圧油あ るいはブームシリンダ 8のヘッド側油室 8aからの排出油が供給されるようになっており 、而して、ハイブリッドポンプ 32は、アキュムレータ 36の蓄圧油あるいはブームシリン ダ 8のヘッド側油室 8aからの排出油を吸込んでノ、イブリツドポンプ油路 34に吐出する ことになる力 アキュムレータ 36の蓄圧油及びヘッド側油室 8aからの排出油は高圧 であって、その圧力はハイブリッドポンプ 32に駆動力を供給することになり、而して、 ハイブリッドポンプ 32は、エンジン Eだけでなくアキュムレータ 36の蓄圧油あるいはへ ッド側油室 8aからの排出油によって駆動力が供給されるようになっている。
[0020] 37は前記ハイブリッドポンプ油路 34に接続される第三コントロールバルブであって 、該第三コントロールバルブ 37は、コントローラ 16からの制御信号に基づいて、ハイ ブリツドポンプ 32から吐出される圧油を、ブームシリンダ 8に供給するべく作動する。
[0021] 前記第三コントロールバルブ 37について詳細に説明すると、該第三コントロールバ ルブ 37は、コントローラ 16からの制御信号が入力される第三上昇側、第三下降側電 油変換弁 38、 39の作動に基づいてスプールが移動する方向切換弁であって、両電 油変換弁 38、 39に作動信号が入力されていない状態では、ブームシリンダ 8に対す る油給排を行わない中立位置 Nに位置しているが、第三上昇側電油変換弁 38に作 動信号が入力されることによりスプールが移動して、ハイブリッドポンプ 32の吐出油を シリンダヘッド側油路 20を経由してブームシリンダ 8のヘッド側油室 8aに供給する一 方、ロッド側油室 8bからシリンダロッド側油路 21に排出された油をリターン油路 22を 経由して油タンク 11に流す上昇側位置 Xに切換わる。また、第三下降側電油変換弁 39に作動の制御信号が入力されることにより、前記上昇側位置 Xとは反対側にスプ ールが移動して、ハイブリッドポンプ 32の吐出油をシリンダロッド側油路 21を経由し てブームシリンダ 8のロッド側油室 8bに供給する下降側位置 Yに切換るように構成さ れている。
[0022] 前記第三コントロールバルブ 37のスプールの移動ストロークは、コントローラ 16力 ら 第三上昇側、第三下降側電油変換弁 38、 39に入力される作動信号の信号値によつ て増減制御されるようになっており、そして該スプールの移動ストロークの増減制御に よって、第三コントロールバルブ 37からブームシリンダ 8への給排油の流量制御がな されるように構成されて 、る。
[0023] さらに、 40は前記シリンダヘッド側油路 20から分岐形成される回収油路であって、 該回収油路 40には、回収用ノ レブ 41が配されていると共に、該回収用バルブ 41の 下流側で、アキュムレータ油路 42と前記サクシヨン油路 33とに接続されている。さら に、回収油路 40には、シリンダヘッド側油路 20からアキュムレータ油路 42およびサク シヨン油路 33への油の流れは許容する力 逆方向の流れは阻止するチェック弁 43 が配されている。而して、ブームシリンダ 8のヘッド側油室 8aからシリンダヘッド側油 路 20に排出された油を、回収油路 40を経由して、アキュムレータ油路 42およびサク シヨン油路 33に供給することができるようになって 、る。
[0024] 前記回収用バルブ 41は、コントローラ 16からの制御信号が入力される回収用電油 変換弁 44の作動に基づいてスプールが移動する開閉弁であって、回収用電油変換 弁 44に作動信号が入力されていない状態では、回収油路 40を閉じる閉位置 Nに位 置して 、るが、回収用電油変換弁 44に作動信号が入力されることによりスプールが 移動して、回収油路 40を開く開位置 Xに切換わるように構成されて!、る。
[0025] 前記回収用バルブ 41のスプールの移動ストロークは、コントローラ 16から回収用電 油変換弁 44に入力される作動信号の信号値によって増減制御されるようになってお り、そして、該スプールの移動ストロークの増減制御によって、ブームシリンダ 8のへッ ド側油室 8aから回収油路 40を経由してアキュムレータ油路 42およびサクシヨン油路 33に流れる油の流量制御がなされるように構成されて!、る。
[0026] 一方、アキュムレータ油路 42は、前記回収油路 40からアキュムレータチェックバル ブ 45を経由してアキュムレータ 36に至る油路であって、該アキュムレータ油路 42の 最高圧力は、アキュムレータ油路 42に接続されるリリーフ弁 46によって制限されてい る。尚、本実施の形態において、アキュムレータ 36は、油圧エネルギー蓄積用として 最適なブラダ型のものが用いられている力 これに限定されることなぐ例えばピスト ン型のものであっても良 、。
[0027] 前記アキュムレータチェックバルブ 45は、ポペット弁 47と、コントローラ 16から出力 される ON信号に基づいて OFF位置 N力 ON位置 Xに切換わるアキュムレータチェ ックバルブ用電磁切換弁 48とを用いて構成されている。そして、上記ポペット弁 47は 、回収油路 40からアキュムレータ 36への油の流れは、アキュムレータチェックバルブ 用電磁切換弁 48が OFF位置 N、 ON位置 Xの何れであっても許容する力 アキュム レータ 36からサクシヨン油路 33への油の流れは、アキュムレータチェックバルブ用電 磁切換弁 48が OFF位置 Nに位置して!/、るときには阻止し、 ON位置 Xに位置して!/ヽ るときのみ許容するように構成されている。尚、回収油路 40からアキュムレータ 36へ の油の流れは、前述したようにアキュムレータチェックバルブ用電磁切換弁 48が OF F位置 N、 ON位置 Xの何れであっても許容される力 アキュムレータチェックバルブ 用電磁切換弁 48が ON位置 Xに位置して!/、る状態では、アキュムレータ油路 42の圧 力がポペット弁 47の弁路を閉じる方向に作用しなくなるため、殆ど圧力損失のない状 態で回収油路 40からアキュムレータ油路 42に油を流すことができる。
[0028] さらに、 49は前記サクシヨン油路 33から分岐形成されて油タンク 11に至る排出油 路であって、該排出油路 49には、タンクチェックバルブ 50が配されている。
[0029] 前記タンクチェックバルブ 50は、ポペット弁 51と、コントローラ 16から出力される ON 信号に基づいて OFF位置 N力 ON位置 Xに切換わるタンクチェックバルブ用電磁 切換弁 52とを用いて構成されている。上記ポペット弁 51は、サクシヨン油路 33から油 タンク 11への油の流れを、タンクチェックバルブ用電磁切換弁 52が ON位置 Xに位 置しているときのみ許容し、 OFF位置 Nに位置しているときには阻止するようになって いる。そして、例えば、油圧ショベル 1の作業終了時やメンテナンス時等に、前記アキ ュムレータチェックバルブ用電磁切換弁 48およびタンクチェックバルブ用電磁切換 弁 52を共に ON位置 Xに切換えることにより、アキュムレータ 36に蓄圧された圧油を 油タンク 11に放出することができるようになって!/、る。
[0030] 一方、前記コントローラ 16は、マイクロコンピュータ等を用いて構成されるものであつ て、図 4のブロック図に示すごとぐ図示しないブーム用操作レバーの操作方向およ び操作量を検出するブーム操作検出手段 53、第一メインポンプ 9の吐出圧を検出す るべく第一ポンプ油路 12に接続される第一吐出側圧力センサ 54、第二メインポンプ 10の吐出圧を検出するべく第二吐出側ポンプ油路 13に接続される第二吐出側圧力 センサ 55、ハイブリッドポンプ 32の吐出圧を検出するべくハイブリッドポンプ油路 34 に接続される第三吐出側圧力センサ 56、ハイブリッドポンプ 32の吸入側の圧力を検 出するべくサクシヨン油路 33に接続される吸入側圧力センサ 57、ブームシリンダ 8の ヘッド側油室 8aの圧力を検出するべくシリンダヘッド側油路 20に接続されるシリンダ ヘッド側圧力センサ 58、ブームシリンダ 8のロッド側油室 8bの圧力を検出するべくシリ ンダロッド側油路 21に接続されるシリンダロッド側圧力センサ 59、アキュムレータ 36 の圧力を検出するべくアキュムレータ油路 42に接続されるアキュムレータ用圧力セン サ 60等からの信号を入力し、これら入力信号に基づいて、前述のメインポンプ制御 用電磁比例減圧弁 17、第一上昇側電磁比例減圧弁 23、第一下降側電磁比例減圧 弁 24、第二上昇側電磁比例減圧弁 25、ドリフト低減弁用電磁切換弁 30、ハイブリツ ドポンプ用レギユレータ 35、第三上昇側電油変換弁 38、第三下降側電油変換弁 39 、回収用電油変換弁 44、アキュムレータチェックバルブ用電磁切換弁 48、タンクチェ ックバルブ用電磁切換弁 52等に制御信号を出力する。
[0031] ここで、 61はコントローラ 16に設けられる蓄圧状態演算部であって、該蓄圧状態演 算部 61は、アキュムレータ用圧力センサ 60 (本発明の蓄圧状態検出手段に相当す る)力も入力されるアキュムレータ油路 42の圧力に基づ!/、て、現在のアキュムレータ 3 6の蓄圧状態(%)を演算する。該蓄圧状態(%)は、例えば、アキュムレータ油路 42 の圧力が、アキュムレータ 36のプレチャージ圧(蓄圧開始設定圧)と等しければ 0%、 アキュムレータ 36に充分に蓄圧されているとして予め設定される設定圧力以上なら ば 100%、プレチャージ圧と設定圧力とのあいだならば、アキュムレータ油路 42の圧 力が大きくなるほどパーセンテイジが高くなるように演算されるが、該蓄圧状態の演算 には、必要に応じて、温度補正を行う。
[0032] 次いで、ブーム用操作レバーがブーム上昇側に操作された場合、つまりブーム操 作検出手段 53からブーム上昇側操作の検出信号が入力された場合のコントローラ 1 6の制御について説明する。この場合、前記蓄圧状態演算部 61によって演算される アキュムレータ 36の蓄圧状態によってコントローラ 16の制御が異なるため、まず、蓄 圧状態 100%、つまりアキュムレータ 36に充分に蓄圧されている場合について説明 する。
[0033] アキュムレータ 36の蓄圧状態 100%でブーム上昇側に操作された場合、コントロー ラ 16は、メインポンプ制御用電磁比例減圧弁 17に対し、エンジン回転数に対応した ポンプ出力になるよう制御信号を出力すると共に、第二上昇側電磁比例減圧弁 25に 対し、第二コントロールバルブ 19の上昇側パイロットポート 19aに、ブーム用操作レバ 一の操作量に対応したノ ィロット圧を出力するように制御信号を出力する。これにより 第二コントロールバルブ 19は、ブーム用操作レバーの操作量に対応したストローク分 スプールが移動して、上昇側位置 Xに切換わる。而して、第二メインポンプ 10の吐出 油が、上昇側位置 Xの第ニコントロールバルブ 19を経由してシリンダヘッド側油路 20 に流れて、ブームシリンダ 8のヘッド側油室 8aに供給される。
[0034] さらにコントローラ 16は、ハイブリッドポンプ用レギユレータ 35に対し、ハイブリッドポ ンプ 32の吐出流量がブーム用操作レバーの操作量に対応した流量となるように制御 指令を出力すると共に、第三上昇側電油変換弁 38に対して、ブーム操作レバーの 操作量に対応した信号値の作動信号を出力する。これにより第三コントロールバルブ 37は、ブーム用操作レバーの操作量に対応したストローク分スプールが移動して、 上昇側位置 Xに切換わる。而して、ハイブリッドポンプ 32の吐出油が上昇側位置 Xの 第三コントロールバルブ 37を経由してシリンダヘッド側油路 20に流れ、該シリンダへ ッド側油路 20において前述した第二メインポンプ 10の吐出油と合流して、ブームシリ ンダ 8のヘッド側油室 8aに供給される。一方、ブームシリンダ 8のロッド側油室 8bの油 は、上昇側位置 Xの第三コントロールバルブ 37を経由して油タンク 11に排出される。
[0035] さらにコントローラ 16は、アキュムレータチェックバルブ用電磁切換弁 48に対し、 O N位置 Xに切換わるよう ON信号を出力する。これにより、アキュムレータチェックノ レ ブ 45は、アキュムレータ油路 42からサクシヨン油路 33への油の流れを許容する状態 になる。而して、アキュムレータ 36に蓄圧された圧油がサクシヨン油路 33を経由して 、ノ、イブリツドポンプ 32の吸入側に供給される。
[0036] また、蓄圧状態 100%でブーム用操作レバーがブーム上昇側に操作された場合、 コントローラ 16から第一上昇側、第一下降側電磁比例減圧弁 23、 24にパイロット圧 出力の制御信号は出力されず、第一コントロールバルブ 18は中立位置 Nに保持され る。これにより、第一メインポンプ 9の吐出油はブームシリンダ 8に供給されないと共に 、ネガティブコントロール流量制御によって、第一メインポンプ 9の流量は最小となるよ うに制御される。
[0037] さらに、コントローラ 16から回収用電油変換弁 44に作動信号は出力されず、回収 用バルブ 41は、回収油路 40を閉じる閉位置 Nに位置している。これにより、前述した 第二コントロールバルブ 19および第三コントロールバルブ 37からの供給圧油がアキ ュムレータ油路 42およびサクシヨン油路 33に流れることなぐブームシリンダ 8のへッ ド側油室 8aに供給されるようになって 、る。
[0038] 次いで、アキュムレータ 36の蓄圧状態が 0%でブーム上昇側に操作された場合に ついて説明するが、この場合、メインポンプ制御用電磁比例減圧弁 17、第二上昇側 電磁比例減圧弁 25、アキュムレータチェックバルブ用電磁切換弁 48、回収用電油 変換弁 44に対しては、前述した蓄圧状態 100%でブーム上昇側に操作された場合 と同様の制御がなされる。
[0039] さらにコントローラ 16は、蓄圧状態が 0%でブーム上昇側に操作された場合、第一 上昇側電磁比例減圧弁 23に対し、第一コントロールバルブ 18の上昇側パイロットポ ート 18aに、ブーム用操作レバーの操作量に対応したパイロット圧を出力するように 制御信号を出力する。これにより第一コントロールバルブ 18は、ブーム用操作レバー の操作量に対応したストローク分スプールが移動して、上昇側位置 Xに切換わる。而 して、第一メインポンプ 9の吐出油が、上昇側位置 Xの第一コントロールバルブ 18を 経由してシリンダヘッド側油路 20に流れ、該シリンダヘッド側油路 20において第二メ インポンプ 10の圧油と合流して、ブームシリンダ 8のヘッド側油室 8aに供給される。 一方、ブームシリンダ 8のロッド側油室 8bの油は、上昇側位置 Xの第一コントロール バルブ 18を経由して油タンク 11に排出される。
[0040] さらにコントローラ 16は、ハイブリッドポンプ用レギユレータ 35に対し、ハイブリッドポ ンプ 32の吐出流量をゼロにする、つまりハイブリッドポンプ 32の圧油供給を停止する ように制御指令を出力する。また、コントローラ 16から第三上昇側、第三下降側電油 変換弁 38、 39には作動指令は出力されず、第三コントロールバルブ 37は中立位置 Nに保持される。これにより、ハイブリッドポンプ 32からブームシリンダ 8のヘッド側油 室 8aには圧油供給されな 、ようになって 、る。
[0041] 一方、アキュムレータ 36の蓄圧状態が 0%〜100%のあいだ(但し、 0%および 100 %は含まず)のときにブーム上昇側に操作された場合、コントローラ 16は、第一上昇 側電磁比例減圧弁 23および第三上昇側電油変換弁 38に制御信号を出力して、第 一コントロールバルブ 18および第三コントロールバルブ 37を上昇側位置 Xに切換え 、これにより、ノ、イブリツドポンプ 32からの供給圧油および第一メインポンプ 9からの供 給圧油が合流してブームシリンダ 8のヘッド側油室 8aに供給されるように制御するが 、この場合、アキュムレータ 36の蓄圧状態が少なくなるにつれて、ハイブリッドポンプ 32の吐出流量および第三コントロールバルブ 37のスプールの移動ストロークが小さ くなる一方、第一コントロールバルブ 18のスプールの移動ストロークが大きくなるよう に制御される。つまり、アキュムレータ 36の蓄圧状態が少なくなるにつれて、ハイブリ ッドポンプ 32からの供給流量が減少する一方、第一メインポンプ 9からの供給流量が 増加するようになっている力 この場合、ハイブリッドポンプ 32からの供給流量と第一 メインポンプ 9からの供給流量とを足して一ポンプ分の流量となるように制御される。
[0042] さらに、蓄圧状態が 0%〜: L00%のぁ 、だのときも、メインポンプ制御用電磁比例減 圧弁 17、第二上昇側電磁比例減圧弁 25、アキュムレータチェックバルブ用電磁切 換弁 48、回収用電油変換弁 44に対しては、前述した蓄圧状態 100%でブーム上昇 側に操作された場合と同様の制御がなされる。
[0043] 而して、ブーム 5の上昇時に、アキュムレータ 36の蓄圧状態が 100%のときは、ハイ ブリツドポンプ 32から供給される一ポンプ分の流量と第二メインポンプ 10から供給さ れるーポンプ分の流量とが合流してブームシリンダ 8のヘッド側油室 8aに供給され、 また、アキュムレータ 36の蓄圧状態が 0%のときは、ハイブリッドポンプ 32から圧油供 給されな 、代わりに第一メインポンプ 9から供給される一ポンプ分の流量と、第二メイ ンポンプ 9から供給される一ポンプ分の流量とが合流してヘッド側油室 8aに供給され 、さらにアキュムレータ 36の蓄圧状態が 0%〜100%のあいだのときは、ハイブリッド ポンプ 32および第一メインポンプ 9から供給される足して一ポンプ分の流量と、第二 メインポンプ 10から供給される一ポンプ分の流量とが合流してヘッド側油室 8aに供 給されることになる。もって、ブーム 5の上昇時には、アキュムレータ 36の蓄圧状態に 関わらず、常に二ポンプ分の流量をヘッド側油室 8aに供給できることになつて、作業 部 4の重量負荷に抗するブーム 5の上昇であっても、ブーム用操作レバーの操作量 に対応する所望の速度でブーム 5を上昇せしめることができることになる力 この場合 、上記ハイブリッドポンプ 32は、アキュムレータ 36に蓄圧された高圧の圧油を吸い込 んで吐出するため、吸入側と吐出側との差圧が小さぐ第一、第二メインポンプ 9、 10 と比して大幅に少ない所要動力で圧油供給を行うことができる。
[0044] 次に、ブーム用操作レバーがブーム下降側に操作された場合、つまりブーム操作 検出手段 53からブーム下降側操作の検出信号が入力された場合のコントローラ 16 の制御について説明する。この場合は、アキュムレータ 36の蓄圧状態によらずコント ローラ 16の制御は同一となる。
[0045] つまり、ブーム用操作レバーがブーム下降側に操作された場合、コントローラ 16は 、メインポンプ制御用電磁比例減圧弁 17に対し、ポンプ出力を低減せしめるよう制御 信号を出力すると共に、第一下降側電磁比例減圧弁 24に対し、第一コントロールバ ルブ 18の下降側パイロットポート 18bに、ブーム用操作レバーの操作量に対応した ノ ィロット圧を出力するように制御信号を出力する。これにより、第一コントロールバル ブ 18は、ブーム用操作レバーの操作量に対応したストローク分スプールが移動して 、下降側位置 Yに切換わる。而して、該下降側位置 Yの再生用弁路 18cを経由して、 ブームシリンダ 8のヘッド側油室 8aからの排出油がロッド側油室 8bに供給されると共 に、前述したように、下降側位置 Yのセンタバイパス弁路 18fの通過流量は変化しな いため、第一メインポンプ 9の吐出流量は、ネガティブコントロール流量制御によって 最小となるように制御される。
尚、第二コントロールバルブ 19は、ブーム 5の下降時には中立位置 Nに保持され、 而して、ブームシリンダ 8に対する油給排を行わないと共に、第二メインポンプ 10の 吐出流量も、ネガティブコントロール流量制御によって最小となるように制御される。
[0046] さらにコントローラ 16は、ハイブリッドポンプ用レギユレータ 35に対し、ハイブリッドポ ンプ 32の吐出流量がブーム用操作レバーの操作量に対応した流量となるように制御 指令を出力すると共に、第三下降側電油変換弁 39に対して、ブーム操作レバーの 操作量に対応した信号値の作動信号を出力する。これにより第三コントロールバルブ 37は、ブーム用操作レバーの操作量に対応したストローク分スプールが移動して、 下降側位置 Yに切換わる。而して、ハイブリッドポンプ 32の吐出油が下降側位置 Yの 第三コントロールバルブ 37を経由してシリンダロッド側油路 21に流れて、ブームシリ ンダ 8のロッド側油室 8bに供給される。
[0047] さらにコントローラ 16は、ドリフト低減弁用電磁比例減圧弁 30に対し、 ON位置 に 切換わるよう ON信号を出力する。これにより、ドリフト低減弁 29は、ブームシリンダ 8 のヘッド側油室 8aからの油排出を許容する状態になる。 [0048] さらにコントローラ 16は、回収用電油変換弁 44に対し、ブーム操作レバーの操作 量に対応した信号値の作動信号を出力する。これにより回収用バルブ 41は、ブーム 用操作レバーの操作量に対応したストローク分スプールが移動して、回収油路 40を 開く開位置 Xに切換わる。而して、ブームシリンダ 8のヘッド側油室 8aから排出された 油は、回収油路 40を経由してアキュムレータ油路 42およびサクシヨン油路 33に流れ て、アキュムレータ 36に蓄圧されると共に、ハイブリッドポンプ 32の吸入側に供給さ れるようになっている力 さらにこのとき、コントローラ 16は、アキュムレータチェックバ ルブ用電磁切換弁 48に対し、 ON位置 Xに切換るよう ON信号を出力する。これによ り、殆ど圧力損失のない状態で回収油路 40からアキュムレータ油路 42に油を流すこ とができるようになって!/、る。
[0049] 而して、ブーム 5の下降時には、ハイブリッドポンプ 32からの圧油がブームシリンダ 8のロッド側油室 8bに供給されることになる力 この場合、上記ハイブリッドポンプ 32 は、ヘッド側油室 8aから排出された高圧の圧油を吸込んで吐出するため、吸入側と 吐出側との差圧が小さぐ第一メインポンプ 9と比して大幅に少ない所要動力で圧油 供給を行うことができる。
[0050] 一方、ブーム 5の下降時に、ブームシリンダ 8のヘッド側油室 8aから排出される油は 、作業部 4の有する位置エネルギーにより高圧となっていると共に、ピストン 8cに作用 する受圧面積の関係力もロッド側油室 8bへの供給量に対して略 2倍の排出量となる 力 該ヘッド側油室 8aからの排出油は、ハイブリッドポンプ 32の吸入側に供給されて 、前述したようにハイブリッドポンプ 32からロッド側油室 8bに供給されると共に、アキュ ムレータ 36に蓄圧される。そして、該アキュムレータ 36に蓄圧された圧油は、前述し たように、ブーム 5の上昇時にハイブリッドポンプ 32からヘッド側油室 8aに供給される ことになる。而して、作業部 4の有する位置エネルギーを、無駄にすることなく回収、 再利用できるようになって 、る。
尚、ブーム 5の下降時に、ヘッド側油室 8aからの排出油のうち一部は、第一コント口 ールバルブ 18の再生用弁路 18cを経由してロッド側油室 8bに供給される。
[0051] 叙述の如く構成された本形態にお!、て、ブームシリンダ 8は、ヘッド側油室 8aの圧 力で作業部 4の重量を保持すると共に、ヘッド側油室 8aへの圧油供給およびロッド 側油室 8bからの油排出により伸長してブーム 5を上昇せしめ、また、ロッド側油室 8b への圧油供給およびヘッド側油室 8aからの油排出により縮小してブーム 5を下降せ しめることになるが、該ブームシリンダ 8の油圧制御システムには、ブーム 5の下降時 にブームシリンダ 8のヘッド側油室 8aから排出された油を蓄圧するアキュムレータ 36 が設けられていると共に、ブームシリンダ 8に圧油供給するためのポンプとして、油タ ンク 11から油を吸込んで吐出する第一、第二メインポンプ 9、 10と、アキュムレータ 3 6に蓄圧された圧油を吸込んで吐出するハイブリッドポンプ 32とが設けられている。 そして、ブーム 5の上昇時に、アキュムレータ 36が充分に蓄圧されている場合には、 第二メインポンプ 10からの供給される一ポンプ分の流量とハイブリッドポンプ 32から 供給される一ポンプ分の流量とが合流してヘッド側油室 8aに供給される一方、アキュ ムレータ 36の蓄圧が充分でなくハイブリッドポンプ 32からヘッド側油室 8aへの供給 流量が不足する場合には、該不足する流量を第一メインポンプ 9が供給することにな る。
[0052] この結果、ブーム 5の上昇時に、ブームシリンダ 8のヘッド側油室 8aには、第二メイ ンポンプ 10からの一ポンプ分の流量と、ハイブリッドポンプ 32および該ハイブリッドポ ンプ 32の不足分を補う第一メインポンプ 9からの一ポンプ分の流量とが合流して供給 されることになつて、アキュムレータ 36の蓄圧状態に関係なぐ作業部 4の重量負荷 に抗する方向のブーム上昇であっても、ブーム用操作レバーの操作量に対応する所 望の速度でブーム 5を上昇せしめることができることになる力 この場合、上記ハイブ リツドポンプ 32は、アキュムレータ 36に蓄圧された高圧の圧油を吸い込んで吐出す るため、吸入側と吐出側との差圧が小さぐ少ない所要動力で圧油供給を行うことが でき、而して、ブーム 5の下降時にアキュムレータ 36に回収された位置エネルギーを ブーム 5の上昇時に再利用できることになつて、省エネルギー化に大きく貢献できる。
[0053] さらに、前記アキュムレータ 36の蓄圧状態は、アキュムレータ用圧力センサ 60から 入力されるアキュムレータ油路 42の圧力に基づいて、コントローラ 16に設けられた蓄 圧状態演算部 61によって演算されると共に、該蓄圧状態演算部 61で求められたァ キュムレータ 36の蓄圧状態の増減変化に対応して、ハイブリッドポンプ 32からブーム シリンダ 8への供給流量が増減制御される一方、第一メインポンプ 9からブームシリン ダ 8への供給流量は、ハイブリッドポンプ 32からブームシリンダ 8への供給流量が減 少するにつれて増加するよう〖こ制御されることになる。
[0054] この結果、ハイブリッドポンプ 32から供給流量と、該ハイブリッドポンプ 32の不足流 量を補う第一メインポンプ 9からの供給流量とを、アキュムレータ 36の蓄圧状態に応 じて常にバランス良くブームシリンダ 8に供給できると共に、例えば、ブーム 5の上昇 時にアキュムレータ 36が空(蓄圧状態 0%)になるまではハイブリッドポンプ 32からの み圧油供給し、空になった時点で第一メインポンプ 9からの圧油供給に切換えるよう に構成したもののように、ハイブリッドポンプ 32からの圧油供給と第一メインポンプ 9 力もの圧油供給との切換時にブーム 5の円滑な動作が損なわれてしまうような不具合 がなぐ操作性に優れる。
[0055] し力もこの場合、第一メインポンプ 9からブームシリンダ 8への供給流量を制御する 第一コントロールバルブ 18と、ハイブリッドポンプ 32からブームシリンダ 8への供給流 量を制御する第三コントロールバルブ 37とが設けられているため、第一メインポンプ 9 およびノヽイブリツドポンプ 32からブームシリンダ 8への供給流量を、精度良くコント口 一ノレすることができる。
[0056] そのうえ、ハイブリッドポンプ 32の吐出流量は、前記蓄圧状態演算部 61で求められ たアキュムレータ 36の蓄圧状態の増減変化に対応して増減制御されるように構成さ れているから、ハイブリッドポンプ 32の吐出流量を無駄にすることなぐ且つ不足する ことなくブームシリンダ 8に供給することができる。
[0057] 一方、ブーム 5の下降時に、ブームシリンダ 8のヘッド側油室 8aから排出される圧油 は、作業部 4の有する位置エネルギーにより高圧となっていると共に、ピストン 8cに作 用する受圧面積の関係力もロッド側油室 8aへの供給量に対して略 2倍の排出量とな る力 該ヘッド側油室 8aからの排出油は、回収油路 40を経由してアキュムレータ油 路 42およびサクシヨン油路 33に流れて、アキュムレータ 36に蓄圧されると共に、ノ、ィ ブリツドポンプ 32の吸入側に供給される。そしてノ、イブリツドポンプ 32は、回収油路 4 0から供給されるヘッド側油室 8aからの排出油を吸込んでブームシリンダ 8のロッド側 油室 8bに供給することになる力 この場合にハイブリッドポンプ 32は、ヘッド側油室 8 aから排出される高圧の圧油を吸い込んで吐出するため、吸入側と吐出側との差圧 力 S小さぐ少ない所要動力で圧油供給を行うことができる。
[0058] この結果、ブーム 5の下降時にヘッド側油室 8aから排出される圧油は、アキュムレ ータ 36に蓄圧されて前述したようにブーム 5の上昇時に再利用されると共に、ハイブ リツドポンプ 32の吸入側に供給されて該ハイブリッドポンプ 32からロッド側油室 8bに 供給されることになり、而して、作業部 4の有する位置エネルギーを、確実に回収、再 利用することができることになつて、省エネルギー化に大きく貢献できる。
[0059] しかも、前記ヘッド側油室 8aからの排出油をアキュムレータ油路 42およびサクショ ン油路 33に流す回収油路 40には、ヘッド側油室 8aからの排出油の流量を制御する 回収用バルブ 41が配されている。而して、該回収用バルブ 41によってヘッド側油室 8aからの排出流量を制御することで、ブーム 5の下降速度をブーム操作レバーの操 作量に対応するよう制御できることになつて、良好な操作性を得ることができる。
[0060] 尚、本発明は上記実施の形態に限定されないことは勿論であって、上記実施の形 態では、油圧ショベルのブームシリンダの油圧制御システムを例にとって説明したが 、本発明は、作業部を昇降せしめる各種油圧シリンダの油圧制御システムに実施す ることがでさる。
また、上記実施の形態では、油圧シリンダに圧油供給するポンプとして、ハイブリツ ドポンプおよび第一メインポンプにカ卩えて第二メインポンプを設け、これにより重量負 荷に抗する方向の作業部上昇時に二ポンプ分の流量の圧油供給を行えるようにした ものであるが、第二メインポンプが設けられていない場合であっても、本発明を実施 することは可會である。
産業上の利用可能性
[0061] 本発明は、昇降する作業部を備えた作業機械において、作業部の有する位置エネ ルギーを回収、再利用することができる作業機械における油圧制御システムに有用 であって、補助油圧シリンダを設けることなぐ作業部の下降時における通常の油圧 シリンダ力 の排出油をアキュムレータに蓄圧すると共に、作業部の上昇時には、該 アキュムレータに蓄圧された圧油をノヽイブリツドポンプまたは第一メインポンプ力 油 圧シリンダに供給するため、アキュムレータの蓄圧状態に関係なく油圧供給ができ、 さらに、ハイブリッドポンプによって吸入側と吐出側との差圧が小さぐ少ない所要動 力で圧油供給を行うことができ、もって、作業部の下降時にアキュムレータに回収さ れた位置エネルギーを作業部の上昇時に再利用できることになつて、省エネルギー 化に大きく貢献できる。

Claims

請求の範囲
[1] 作業部を昇降せしめる油圧シリンダと、油タンクから油を吸込んで吐出する第一メイ ンポンプと、作業部の下降時に油圧シリンダの重量保持側油室力 排出される油を 蓄圧するアキュムレータと、該アキュムレータに蓄圧された圧油を吸込んで吐出する ハイブリッドポンプとを備える一方、作業部の上昇時に、前記ハイブリッドポンプの吐 出油を油圧シリンダの重量保持側油室に供給するように構成すると共に、ハイブリツ ドポンプから油圧シリンダへの供給流量が不足する場合に、該不足する流量を第一 メインポンプ力 油圧シリンダの重量保持側油室に供給するように構成したことを特 徴とする作業機械における油圧制御システム。
[2] 油圧制御システムは、油タンクから油を吸込んで吐出する第二メインポンプを備え ると共に、作業部の上昇時に、前記第二メインポンプからの供給流量を、ハイブリッド ポンプおよび第一メインポンプ力 の供給流量に合流して油圧シリンダの重量保持 側油室に供給するように構成したことを特徴とする請求項 1に記載の作業機械にお ける油圧制御システム。
[3] 油圧制御システムは、アキュムレータの蓄圧状態を検出するための蓄圧状態検出 手段を備えると共に、ノ、イブリツドポンプ力も油圧シリンダへの供給流量は、アキュム レータの蓄圧状態の増減変化に対応して増減制御される一方、第一メインポンプか ら油圧シリンダへの供給流量は、ハイブリッドポンプから油圧シリンダへの供給流量 が減少するにつれて増加するように制御される構成であることを特徴とする請求項 1 または 2に記載の作業機械における油圧制御システム。
[4] 油圧制御システムは、第一メインポンプから油圧シリンダへの供給流量を制御する 第一コントロールバルブと、ノ、イブリツドポンプ力 油圧シリンダへの供給流量を制御 する第三コントロールバルブとを備えることを特徴とする請求項 1乃至 3の何れか一項 に記載の作業機械における油圧制御システム。
[5] 油圧制御システムは、アキュムレータの蓄圧状態を検出するための蓄圧状態検出 手段を備えると共に、ノ、イブリツドポンプの吐出流量は、アキュムレータの蓄圧状態の 増減変化に対応して増減制御されるように構成されることを特徴とする請求項 1乃至 4の何れか一項に記載の作業機械における油圧制御システム。
[6] 油圧制御システムは、作業部の下降時に油圧シリンダの重量保持側油室力 排出 される圧油を、アキュムレータおよびノ、イブリツドポンプの吸入側に供給する回収油 路を備えると共に、ハイブリッドポンプは、作業部の下降時に、前記回収油路から供 給される圧油を吸込んで油圧シリンダの反重量保持側油室に供給するように構成さ れることを特徴とする請求項 1乃至 5の何れか一項に記載の作業機械における油圧 制御システム。
[7] 回収油路に、油圧シリンダの重量保持側油室力 排出される圧油の流量を制御す る回収用バルブを配したことを特徴とする請求項 6に記載の作業機械における油圧 制御システム。
PCT/JP2007/057403 2006-07-10 2007-04-02 Système de commande hydraulique pour machine de chantier WO2008007484A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/308,665 US20100000209A1 (en) 2006-07-10 2007-04-02 Hydraulic control system in working machine ( as amended
EP07740839A EP2039945A4 (en) 2006-07-10 2007-04-02 HYDRAULIC CONTROL SYSTEM FOR WORKING MACHINE
CN2007800164692A CN101438064B (zh) 2006-07-10 2007-04-02 作业机械中的液压控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006188817A JP2008014468A (ja) 2006-07-10 2006-07-10 作業機械における油圧制御システム
JP2006-188817 2006-07-10

Publications (1)

Publication Number Publication Date
WO2008007484A1 true WO2008007484A1 (fr) 2008-01-17

Family

ID=38923053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057403 WO2008007484A1 (fr) 2006-07-10 2007-04-02 Système de commande hydraulique pour machine de chantier

Country Status (5)

Country Link
US (1) US20100000209A1 (ja)
EP (1) EP2039945A4 (ja)
JP (1) JP2008014468A (ja)
CN (1) CN101438064B (ja)
WO (1) WO2008007484A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351937A1 (en) * 2008-10-22 2011-08-03 Caterpillar SARL Hydraulic control system in working machine
CN102296663A (zh) * 2011-05-21 2011-12-28 山河智能装备股份有限公司 一种势能回收的液压系统
CN104975630A (zh) * 2014-04-14 2015-10-14 日立建机株式会社 液压驱动装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE492730T1 (de) * 2008-04-29 2011-01-15 Parker Hannifin Ab Anordnung zum bedienen einer hydraulischen vorrichtung
JP5246759B2 (ja) * 2008-09-04 2013-07-24 キャタピラー エス エー アール エル 作業機械における油圧制御システム
JP5574375B2 (ja) * 2010-06-30 2014-08-20 キャタピラー エス エー アール エル エネルギ回生用制御回路および作業機械
CN102312451B (zh) * 2010-06-30 2014-02-19 北汽福田汽车股份有限公司 挖掘机合流控制系统及其挖掘机
JP5681732B2 (ja) * 2011-02-03 2015-03-11 日立建機株式会社 作業機械の動力回生装置
JP5653844B2 (ja) * 2011-06-07 2015-01-14 住友建機株式会社 ショベル
US8944103B2 (en) 2011-08-31 2015-02-03 Caterpillar Inc. Meterless hydraulic system having displacement control valve
US8966892B2 (en) 2011-08-31 2015-03-03 Caterpillar Inc. Meterless hydraulic system having restricted primary makeup
US8863509B2 (en) 2011-08-31 2014-10-21 Caterpillar Inc. Meterless hydraulic system having load-holding bypass
JP5356477B2 (ja) * 2011-09-06 2013-12-04 住友建機株式会社 建設機械
US9057389B2 (en) 2011-09-30 2015-06-16 Caterpillar Inc. Meterless hydraulic system having multi-actuator circuit
US8966891B2 (en) 2011-09-30 2015-03-03 Caterpillar Inc. Meterless hydraulic system having pump protection
US9051714B2 (en) 2011-09-30 2015-06-09 Caterpillar Inc. Meterless hydraulic system having multi-actuator circuit
US9151018B2 (en) 2011-09-30 2015-10-06 Caterpillar Inc. Closed-loop hydraulic system having energy recovery
JP5873684B2 (ja) * 2011-10-20 2016-03-01 日立建機株式会社 作業車両の油圧駆動装置
US8984873B2 (en) 2011-10-21 2015-03-24 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
US8910474B2 (en) 2011-10-21 2014-12-16 Caterpillar Inc. Hydraulic system
US9080310B2 (en) 2011-10-21 2015-07-14 Caterpillar Inc. Closed-loop hydraulic system having regeneration configuration
US8919114B2 (en) 2011-10-21 2014-12-30 Caterpillar Inc. Closed-loop hydraulic system having priority-based sharing
US8973358B2 (en) 2011-10-21 2015-03-10 Caterpillar Inc. Closed-loop hydraulic system having force modulation
US8978374B2 (en) 2011-10-21 2015-03-17 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
US8978373B2 (en) 2011-10-21 2015-03-17 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
US8943819B2 (en) 2011-10-21 2015-02-03 Caterpillar Inc. Hydraulic system
US9068578B2 (en) 2011-10-21 2015-06-30 Caterpillar Inc. Hydraulic system having flow combining capabilities
US8893490B2 (en) 2011-10-21 2014-11-25 Caterpillar Inc. Hydraulic system
CN202926765U (zh) * 2012-05-22 2013-05-08 山河智能装备股份有限公司 工作装置势能回收液压系统
US9279236B2 (en) 2012-06-04 2016-03-08 Caterpillar Inc. Electro-hydraulic system for recovering and reusing potential energy
US9290912B2 (en) 2012-10-31 2016-03-22 Caterpillar Inc. Energy recovery system having integrated boom/swing circuits
WO2014109131A1 (ja) * 2013-01-08 2014-07-17 日立建機株式会社 作業機械の油圧システム
JP6090781B2 (ja) * 2013-01-28 2017-03-08 キャタピラー エス エー アール エル エンジンアシスト装置および作業機械
US9290911B2 (en) 2013-02-19 2016-03-22 Caterpillar Inc. Energy recovery system for hydraulic machine
JP2015090192A (ja) * 2013-11-06 2015-05-11 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP6112559B2 (ja) * 2013-11-06 2017-04-12 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP2015090193A (ja) * 2013-11-06 2015-05-11 キャタピラー エス エー アール エル 流体圧回路および作業機械
CH708876B1 (de) * 2013-11-19 2016-03-31 Liebherr Machines Bulle Sa Hydraulikventilanordnung mit Steuerungs-/Regelungsfunktion und zugehöriges Rücklaufventil.
KR101815411B1 (ko) * 2014-05-16 2018-01-04 히다찌 겐끼 가부시키가이샤 작업 기계의 압유 에너지 회생 장치
JP5975073B2 (ja) 2014-07-30 2016-08-23 コベルコ建機株式会社 建設機械
JP6453711B2 (ja) * 2015-06-02 2019-01-16 日立建機株式会社 作業機械の圧油エネルギ再生装置
CN105065351A (zh) * 2015-07-15 2015-11-18 沙洲职业工学院 一种液压控制系统
JP6676824B2 (ja) * 2017-09-29 2020-04-08 株式会社日立建機ティエラ 作業機械の油圧駆動装置
JP7240161B2 (ja) * 2018-12-13 2023-03-15 川崎重工業株式会社 油圧駆動システム
CN112983909B (zh) * 2019-12-13 2022-06-07 山河智能装备股份有限公司 一种动臂液压系统
JP7402085B2 (ja) * 2020-03-16 2023-12-20 株式会社小松製作所 作業機械の油圧システム、作業機械および油圧システムの制御方法
CN112283181A (zh) * 2020-09-25 2021-01-29 哈尔滨工业大学 足式机器人用高功率密度辅助增力液压缸
CN114458647B (zh) * 2022-02-21 2024-06-04 合肥协力仪表控制技术股份有限公司 一种非道路移动机器用液压源与液压能量回收再利用系统
CN114940467B (zh) * 2022-05-24 2023-11-03 华侨大学 电液复合叉车及其驱动系统、方法、装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0442860A1 (fr) * 1990-01-16 1991-08-21 W. Everaert Pvba Machine pour briser des surfaces de béton
JPH0564253U (ja) * 1992-01-31 1993-08-27 株式会社小松製作所 回収エネルギーのポンプ馬力補充装置
JP2582310B2 (ja) 1990-09-10 1997-02-19 株式会社小松製作所 作業機の位置エネルギー回収・活用装置
WO1998013603A1 (fr) * 1996-09-25 1998-04-02 Komatsu Ltd. Systeme de recuperation/reutilisation d'huile hydraulique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497947B2 (ja) * 1996-06-11 2004-02-16 日立建機株式会社 油圧駆動装置
US6378301B2 (en) * 1996-09-25 2002-04-30 Komatsu Ltd. Pressurized fluid recovery/reutilization system
KR20010071622A (ko) * 1998-06-27 2001-07-28 라르스 브룬 모빌 작업 기계
US6434864B1 (en) * 2000-09-22 2002-08-20 Grigoriy Epshteyn Frontal loader
JP4120323B2 (ja) * 2002-09-04 2008-07-16 トヨタ自動車株式会社 内燃機関の出力制御装置
US6854268B2 (en) * 2002-12-06 2005-02-15 Caterpillar Inc Hydraulic control system with energy recovery
US7124576B2 (en) * 2004-10-11 2006-10-24 Deere & Company Hydraulic energy intensifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0442860A1 (fr) * 1990-01-16 1991-08-21 W. Everaert Pvba Machine pour briser des surfaces de béton
JP2582310B2 (ja) 1990-09-10 1997-02-19 株式会社小松製作所 作業機の位置エネルギー回収・活用装置
JPH0564253U (ja) * 1992-01-31 1993-08-27 株式会社小松製作所 回収エネルギーのポンプ馬力補充装置
WO1998013603A1 (fr) * 1996-09-25 1998-04-02 Komatsu Ltd. Systeme de recuperation/reutilisation d'huile hydraulique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2039945A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351937A1 (en) * 2008-10-22 2011-08-03 Caterpillar SARL Hydraulic control system in working machine
EP2351937A4 (en) * 2008-10-22 2014-02-26 Caterpillar Sarl HYDRAULIC CONTROL SYSTEM FOR CONSTRUCTION MACHINE
CN102203434B (zh) * 2008-10-22 2014-04-09 卡特彼勒Sarl公司 作业机械的油压控制系统
CN102296663A (zh) * 2011-05-21 2011-12-28 山河智能装备股份有限公司 一种势能回收的液压系统
CN104975630A (zh) * 2014-04-14 2015-10-14 日立建机株式会社 液压驱动装置
CN104975630B (zh) * 2014-04-14 2019-01-04 日立建机株式会社 液压驱动装置

Also Published As

Publication number Publication date
JP2008014468A (ja) 2008-01-24
EP2039945A4 (en) 2011-05-04
CN101438064A (zh) 2009-05-20
CN101438064B (zh) 2012-05-02
EP2039945A1 (en) 2009-03-25
US20100000209A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2008007484A1 (fr) Système de commande hydraulique pour machine de chantier
JP5354650B2 (ja) 作業機械における油圧制御システム
JP5296570B2 (ja) 作業機械の油圧制御装置及びこれを備えた作業機械
EP2489883A1 (en) Hydraulic system for operating machine
JP2010121726A (ja) 作業機械における油圧制御システム
WO2017056199A1 (ja) 建設機械
JP4410512B2 (ja) 油圧駆動装置
CN112105785A (zh) 工程机械的液压驱动装置
JP2009150462A (ja) 作業機械における油圧制御システム
CN112703324B (zh) 流体回路
JP2010060057A (ja) 作業機械における油圧制御システム
JP2004346485A (ja) 油圧駆動装置
JP4753307B2 (ja) 作業機械における油圧制御システム
JP5246759B2 (ja) 作業機械における油圧制御システム
JP4702894B2 (ja) 油圧ショベルにおける油圧制御システム
JP5480564B2 (ja) 流体圧回路、及びそれを備える建設機械
JP2008185182A (ja) 作業機械における油圧制御システム
CN109963986B (zh) 作业机械的液压驱动装置
JP2008133914A (ja) 作業機械における油圧制御システム
JP4756600B2 (ja) 作業機械における油圧制御システム
JP2009270660A (ja) 作業機械における油圧制御システム
JP2008185098A (ja) 作業機械における制御システム
JP2017015130A (ja) 流体回路
JP2008185099A (ja) 作業機械における制御システム
JP2008075365A (ja) 作業機械における制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780016469.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007740839

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12308665

Country of ref document: US