Nothing Special   »   [go: up one dir, main page]

WO2008065187A1 - Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines - Google Patents

Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines Download PDF

Info

Publication number
WO2008065187A1
WO2008065187A1 PCT/EP2007/063062 EP2007063062W WO2008065187A1 WO 2008065187 A1 WO2008065187 A1 WO 2008065187A1 EP 2007063062 W EP2007063062 W EP 2007063062W WO 2008065187 A1 WO2008065187 A1 WO 2008065187A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound according
compound
corresponds
meets
Prior art date
Application number
PCT/EP2007/063062
Other languages
English (en)
Inventor
Marc Mauduit
Isabelle Laurent
Hervé CLAVIER
Original Assignee
Ecole Nationale Superieure De Chimie De Rennes
Cnrs (Centre National De La Recherche Scientifique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0610478A external-priority patent/FR2909381A1/fr
Application filed by Ecole Nationale Superieure De Chimie De Rennes, Cnrs (Centre National De La Recherche Scientifique) filed Critical Ecole Nationale Superieure De Chimie De Rennes
Priority to JP2009538722A priority Critical patent/JP5284269B2/ja
Priority to CN200780049125.1A priority patent/CN101595116B/zh
Priority to IN2409KON2009 priority patent/IN2009KN02409A/en
Priority to US12/517,322 priority patent/US8394965B2/en
Priority to EP07847578.7A priority patent/EP2097431B1/fr
Priority to BRPI0721051A priority patent/BRPI0721051B1/pt
Priority to CA002671082A priority patent/CA2671082A1/fr
Publication of WO2008065187A1 publication Critical patent/WO2008065187A1/fr
Priority to US13/736,236 priority patent/US8586757B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form

Definitions

  • Catalytic complexes based on ruthenium and use of such complexes for metathesis of olefins are known in the art.
  • the present invention relates to novel catalytic complexes based ruthenium activated and recyclable and a method of synthesis thereof.
  • the invention also relates to the use of such catalytic complexes for the metathesis of olefins.
  • Grubbs IL catalyst The development of recyclable or activated ruthenium-based catalyst complexes is based on the work of R. Grubbs of the University of California (USA) on ruthenium complex 2a (pre-catalyst 2b) called Grubbs IL catalyst.
  • a first advantage of this complex is to allow recycling of the precatalyst which is recovered at the end of the reaction and can be reused.
  • the first activated complex 4 was described in 2002 based on the electron effect induced by the presence of a nitro group (NO 2 ) on the Hoveyda styrenylether ligand complex described above.
  • This precatalyst is based on the strongly accelerated stall of the styrenyl ether ligand which leads to a rapid initiation of the catalytic cycle and therefore a significant increase in the reaction kinetics.
  • the reactions can then take place under milder conditions, in practice at room temperature, and with lower catalyst charges.
  • the object of the present invention is to describe activated and recyclable ruthenium complexes in which the compromise between these antinomic properties can be optimized, that is to say complexes capable of combining excellent activity while retaining good recycling.
  • An object of the present invention is therefore to provide such complexes whose use can allow a reduction of the catalytic charge. Such an objective is important in view of the high cost of these catalysts.
  • An object of the present invention is therefore also to provide such complexes whose degree of recyclability causes a significant reduction of toxic metal waste in the final products.
  • the catalysts according to the present invention will make it possible to obtain products having a very low level of ruthenium, in practice less than 10 to 20 ppm.
  • L is a neutral ligand
  • R and R are independently hydrogen, C 1 -C 6, a perhaloalkyl C 1 -C 6, an aldehyde, a ketone, an ester, an amide, a nitrile, an optionally substituted aryl, an alkyl pyridinium, a perhalogénoalkyl- pyridinium or cyclohexyl, C 5 or C 6, optionally substituted radical C n H 2n Y, or C n F 2n Y with n between 1 and 6, and Y is an ionic marker, or a radical of formula:
  • R can be a radical of formula (Ia) when the compound is of formula I,
  • R is a C 1 -C 6 cycloalkyl or a C 5 or C 6 aryl or a C 5 or C 6;
  • R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R are, independently, hydrogen, C 1 -C 6, a perhaloalkyl C 1 -C 6, or an aryl, C 5 or C 6 ;
  • R, R, R being able to form a heterocycle X is an anion: halogen, tetrafluoroborate ([BF 4 ]), [tetrakis- (3,5-bis- (trifluoromethyl) -phenyl) borate] ([BARF]), hexafluorophosphate ([PF 6 ]), hexafluoroantimony ([ SbF 6 ]), Hexafluoroarsenate ([AsF 6 ]), trifluoromethylsulfonate ([(CF 3 ) 2 N] -).
  • R and R being able to form with N and C to which they are attached a heterocycle of formula
  • R is hydrogen, C 1 -C 6 cycloalkyl or a C 5 or C 6 aryl or a C 5 or C 6
  • L is P (R) 3 , R being a C 1 to C 6 alkyl or a C 5 or C 6 aryl or cycloalkyl.
  • L is a ligand of formula 7a, 7b, 7c, 7d or 7e
  • n 1 0, 1, 2, 3;
  • R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 are independently a C-alkyl 1 to C 6 , C 3 to C 20 cycloalkyl, C 2 to C 2 alkenyl ; a naphthyl, an anthracene or a phenyl, said phenyl being able to be substituted by up to 5 groups selected from alkyl C 1 -C 6 alkoxy groups the C 1 -C 6 and
  • R and R on the one hand and R and R on the other hand can form a ring with 3, 4, 5, 6, 7 members; R can independently form an adjoined 6-membered aromatic ring.
  • L is PCy 3 , Cy being cyclohexyl, or L is a ligand of formula 7a or 7b.
  • X is a chlorine
  • X ' is a chlorine
  • the ionic marker Y is preferably chosen from the group consisting of:
  • the compound according to the invention corresponds to formula (I) in which
  • R is selected from the group consisting of CH 3 , CF 3 , C 6 F 5 , pNO 3 C 6 H 4.
  • R is CF 3 .
  • the compound corresponds to the formula
  • the compound corresponds to the formula Ib
  • the compound corresponds to the formula in the formula Ic
  • the compound corresponds to the formula in the formula Id
  • the compound corresponds to the formula in the formula
  • the compound corresponds to the formula of the formula If
  • the compound corresponding to the formula corresponds to the Ig formula
  • the compound corresponds to the formula of formula Ih
  • the compound has the formula Ii
  • the compound corresponds to the formula of formula Ij
  • the compound has the formula Ik formula
  • the compound corresponds to the formula corresponds to formula 11
  • the compound corresponds to the formula in formula 12
  • the compound corresponds to the formula in formula 13
  • the compound corresponds to the formula in formula 14
  • the invention also relates to any method for synthesizing a compound of formula (I), characterized in that it comprises a first step of reacting 4-isopropoxy-3-vinylaniline with a compound having an acyl function in order to obtaining an amide ligand and a second step of reacting this amide ligand with a compound of formula (III)
  • said compound of formula (III) is the Grubbs precatalyst (2b) or the Nolan precatalyst (2c).
  • this amide function can serve as a spacer for the introduction of an ionic tag ("tag”) for immobilization in aqueous and / or ionic phase as well as solid support.
  • tag an ionic tag
  • Such ionic labeling makes it possible to lead to a better recycling of the catalytic complexes in aqueous / ionic solvents or on a solid support (continuous flow reaction) and to obtain a clear reduction in the cost of the reaction while avoiding the contamination of the products in question. high added value, especially in the context of process for the synthesis of pharmaceutical molecules.
  • FIG. 1 is a graph showing the rate of conversion of a metallyl-allyl diethylmalonate compound over time in the context of a cyclizing metathesis reaction at ambient temperature, in the presence of 1 mol% of the Hoveyda 3b complex. on the one hand and catalytic complexes according to the invention Ia, Ib, Ic, Id, on the other hand;
  • FIG. 2 is a graph showing the rate of conversion of a metallyl-allyl diethylmalonate compound over time in the context of a metathesis reaction. cyclizing at room temperature, in the presence of 1 mol% of the Hoveyda 3b complex on the one hand and catalytic complexes according to the invention Ib, on the other hand;
  • FIG. 3 is a graph showing the degree of conversion over time of a metallyl-allyl diethylmalonate compound in the context of a cyclizing metathesis reaction at 45 ° C., in the presence of 1 mol% of the catalytic complex according to FIG. invention;
  • FIG. 4 is a graph showing the degree of conversion over time of a metallyl-allyl diethylmalonate compound in the context of a cyclizing metathesis reaction at 30 ° C. in the presence of 1 mol% of the catalytic complex according to FIG. invention Ib on the one hand and 0.3 mol% of the catalytic complex according to the invention Ib on the other hand;
  • FIG. 5 is a graph showing the degree of conversion over time of a metallyl-allyl diethylmalonate compound in the context of a cyclizing metathesis reaction at 30 ° C. in the presence of 1 mol% of the catalytic complexes according to FIG. invention Ib, the and If:
  • FIGS. 6 to 11 represent the NMR spectra of exemplary embodiments of various ruthenium complexes Ia, Ib, Ic, Id, Ie and If;
  • 1st step synthesis of friendships 6a, 6b, 6c, 6d, 6f, 9a, 9b, IQa and IQb from 4-isopropoxy-3-vinylaniline 5.
  • 4-isopropoxy-3-vinylaniline 0.2 mmol approx.
  • anhydrous dichloromethane 2-3 mL
  • Pyridine 1.5 eq
  • Acyl chloride or anhydride 1.2 g
  • the crude is then diluted with dichloromethane (10 mL), washed with an aqueous solution of 1N hydrochloric acid (2 mL) and then with a saturated solution of sodium hydrogencarbonate (2 x 2 mL) and finally with a saturated sodium chloride solution (3 x 2 mL). .
  • the organic phases are combined, dried over magnesium sulphate and concentrated under vacuum. The residue is purified by chromatography on silica gel.
  • the ⁇ -nitrobenzamide is obtained after chromatography on silica gel (eluent: CH 2 Cl 2 ) in the form of a yellow oil (67 mg, 96%).
  • the 4-isopropoxy-3-vinylaniline (30m, 1eq, 0.2mmol) is introduced into a flask, placed under nitrogen, and dissolved in anhydrous dichloromethane (3mL).
  • the pyridine (21 DL, 1.5 eq.) Is added to the solution which is then cooled to 0 ° C.
  • the oxalyl chloride (8.8DL, 1.2 eq.) then added slowly and the reaction medium is stirred. at room temperature under nitrogen for 2h.
  • the crude is then diluted with dichloromethane (10 mL), washed with an aqueous solution of 1N hydrochloric acid (2 mL) and then with a saturated solution of sodium hydrogencarbonate (2 x 2 mL) and finally with a saturated sodium chloride solution (3 x 2 mL). .
  • the organic phases are combined, dried over magnesium sulphate and concentrated under vacuum.
  • the chlorinated amide 9a (20 mg, 0.07 mmol) is dissolved in anhydrous toluene (2.5 ml). N-methylimidazole (ImL, 20eq) is added to the solution which is then refluxed overnight. The volatile phases are then removed under reduced pressure and the tagged compound is recovered in the form of a dark orange oil.
  • the amide ligand (léq.), The copper (I) chloride (leq) and the indenylidene precatalyst (léq.) are introduced into a flask under argon. Anhydrous dichloromethane (2-3mL) is added thereto. The reaction medium is then degassed three times, placed at 30-33 ° C. under an argon atmosphere and stirred for about 5 hours. The crude reaction product is then concentrated under vacuum. The residue is taken up in acetone (1-2 mL) and filtered through Celite. The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel.
  • Ligand N- (4-isopropoxy-3-vinylphenyl) trifluoroacetamide 6b 22mg, 0,08mmol, leq.
  • Copper (I) chloride 8mg, leq
  • Nolan's pre-catalyst 2 nd generation 68mg, léq.
  • formula 2c is introduced into a flask under argon.
  • Anhydrous dichloromethane (3mL) is added thereto.
  • the reaction medium is then degassed three times, placed at 30-33 ° C. under an argon atmosphere and stirred for about 5 hours.
  • the crude reaction product is then concentrated under vacuum.
  • the residue is taken up in acetone (1-2 mL) and filtered through Celite.
  • the filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel.
  • the N, N'-bis (4-isopropoxy-3-vinylphenyl) oxamide ligand 6f (8mg, 0.02mmol, leq), the copper (I) chloride (4mg, 2, leq) and the indenylidene precatalyst (37mg , 2, lq.) are introduced into a flask under argon. Anhydrous dichloromethane (5mL) is added thereto. The reaction medium is then degassed three times, placed at 30-33 ° C. under an argon atmosphere and stirred for about 5 hours. The crude reaction product is then concentrated under vacuum. The residue is taken up in acetone (2 ml) and filtered on a frit. The IJ complex is thus isolated in the form of a green solid (15 mg, 59%).
  • the present invention proposes to substitute the chlorine atom of the compound 10a with a tertiary amine (imidazole, pyridine, etc.).
  • the inventors have carried out the substitution with pyridine on 4-chloro-N- (4-isopropoxy-3-vinylphenyl) butanamide IQa to easily lead to the desired ionic ligand IQb. Its complexation with the Grubbs II catalyst leads to the complex 11.
  • the invention thus offers the possibility of performing metathesis reactions of olefins under more drastic conditions (higher heating) with the complex activated when the substrates are heavily congested (for example: tetrasubstituted olefins).
  • FIG. 4 is a graph showing the degree of conversion over time of a metallyl-allyl diethylmalonate compound in the context of a cyclizing metathesis reaction at 30 ° C. in the presence of 1 mol% of the catalytic complex according to the invention Ib on the one hand and 0.3 mol% of the catalytic complex according to the invention Ib on the other hand.
  • the graph shows a slight decrease in reactivity however it remains remarkable since 75% conversion is observed after only 40 minutes of reaction.
  • FIG. 5 is a graph showing the degree of conversion over time of a metallyl-allyl diethylmalonate compound in the context of a cyclizing metathesis reaction at 30 ° C., in the presence of 1 mol% of the catalytic complexes according to the invention Ib, the and If.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

L'invention concerne tout composés de formule (I) ou (II) dans laquelle: L est un ligand neutre; X, X' sont des ligands anioniques; R1 et R2 sont, indépendamment, un hydrogène, un alkyl en C1 à C6, un perhalogénoalkyl en C1 à C6, un aldéhyde, une cétone, un ester, un nitrile, un aryl, un pyridinium-alkyl, un pyridinium- perhalogénoalkyl- ou un cyclohexyl en C5 ou C6 éventuellement substitué, un radical 10 CnH2nY ou CnF2nY avec n compris entre 1 et 6 et Y un marqueur ionique, ou un radical de formule : R1 pouvant être un radical de formule (Ibis) quand le composé est de formule (I) ou de formule (IIbis) quand le composé est de formule (II) R3 est un alkyl en C1 à C6, ou un cycloalkyl en C5 ou C6 ou un aryl en C5 ou C6; R0, R4, R5, R6, R7, R8, R9, R10, R11 sont, indépendamment, un hydrogène, un alkyl en C1 à C6, un perhalogénoalkyl en C1 à C6, ou un aryl en C5 ou C6; R9, R10, R11 pouvant former un hétérocycle; X1 est un anion. R1 et R2 pouvant former avec le N et le C auxquels ils sont rattachés un hétérocycle.

Description

Complexes catalytiques à base de ruthénium et utilisation de tels complexes pour la métathèse d'oléfines.
La présente invention a pour objet de nouveaux complexes catalytiques à base de ruthénium activés et recyclables ainsi qu'un procédé de synthèse de ceux-ci.
L'invention concerne également l'utilisation de tels complexes catalytiques pour la métathèse d'oléfines.
Le développement de complexes catalytiques à base de ruthénium recyclables ou activés repose sur les travaux de R. Grubbs de l' Université de Californie (USA) relatifs au complexe au ruthénium 2a (pré-catalyseur 2b) dit catalyseur de Grubbs IL
Figure imgf000003_0001
2a 2b
Ainsi le premier complexe recyclable 3a (précatalyseur 3b) à ligand styrényléther (ligand dit « bommerang ») a été décrit par Hoveyda de l'Université de Boston (USA).
Figure imgf000003_0002
WO0214376
Ce composé est notamment décrit dans la demande de brevet internationale WO0214376. Un premier avantage de ce complexe est de permettre un recyclage du précatalyseur qui est récupéré en fin de réaction et peut être réutilisé.
Toutefois, ce catalyseur présente l'inconvénient de conduire à des pertes significatives, à hauteur de 10% par cycle. Un second avantage de ce complexe est de minimiser la présence de résidus métalliques toxiques (ruthénium) dans les produits de réaction.
Cependant, ce complexe s'avère être moins actif que celui de Grubbs 2b décrit ci- dessus.
Le premier complexe activé 4 a été décrit en 2002 basé sur l'effet électronique induit par la présence d'un groupement nitro (NO2) sur le complexe à ligand styrénylether d'Hoveyda décrit ci-dessus.
Figure imgf000004_0001
Ce complexe activé est décrit dans la demande de brevet internationale WO2004035596.
L'activation de ce précatalyseur est basée sur le décrochage fortement accéléré du ligand styrénylether qui entraîne une initiation rapide du cycle catalytique et donc par conséquent une augmentation significative de la cinétique réactionnelle. Les réactions peuvent alors avoir lieu dans des conditions plus douces, en pratique à température ambiante, et avec des charges catalytiques plus faibles.
Cependant, ce complexe ne se recycle pas facilement ce qui entraîne de surcroît une importante contamination de résidus métalliques toxiques (ruthénium) dans les produits de réaction. Un tel inconvénient est particulièrement gênant pour la synthèse de certains produits à haute valeur ajoutés telles que les molécules pharmaceutiqeus
Selon l'art antérieur il apparait donc que réactivité et recyclage de tels complexes de ruthénium sont deux propriétés antinomiques puisqu'en pratique, l'augmentation de l'activité se fait au détriment du recyclage et qu'inversement, l'augmentation du recyclage se fait au détriment de la réactivité de l'espèce catalytique.
Le but de la présente invention est de décrire des complexes de ruthénium activés et recyclables chez lesquels le compromis entre ces propriétés antinomiques peut être optimisé, c'est-à-dire des complexes susceptibles de combiner une excellente activité tout en conservant un bon recyclage. Un objectif de la présente invention est donc de proposer de tels complexes dont l'utilisation peut permettre une diminution de la charge catalytique. Un tel objectif est important compte tenu du coût élevé de ces catalyseurs.
Un objectif de la présente invention est donc aussi de proposer de tels complexes dont le degré de recyclabilité entraîne une diminution significative des déchets métalliques toxiques dans les produits finaux.
Dans les meilleurs des cas, les catalyseurs selon la présente invention permettront d'obtenir des produits présentant une très faibles teneurs en ruthénium, en pratique inférieur à 10 à 20 ppm. Ces objectifs sont atteints grâce à l'invention qui concerne tout composé de formule
(I) ou (II)
Figure imgf000005_0001
(I)
Figure imgf000005_0002
(»)
dans lesquelles :
L est un ligand neutre ;
X, X' sont des ligands anioniques ;
1 2 R et R sont, indépendamment, un hydrogène, un alkyl en C1 à C6, un perhalogénoalkyl en C1 à C6, un aldéhyde, une cétone, un ester, un amide, un nitrile, un aryl éventuellement substitué, un pyridinium- alkyl, un pyridinium- perhalogénoalkyl- ou un cyclohexyl en C5 ou C6 éventuellement substitué, un radical CnH2nY ou CnF2nY avec n compris entre 1 et 6, et Y un marqueur ionique, ou un radical de formule :
Figure imgf000006_0001
R pouvant être un radical de formule (I bis) quand le composé est de formule I,
Figure imgf000006_0002
(Ibis) ou de formule (II bis) quand le composé est de formule (II)
Figure imgf000006_0003
(llbis)
R est un alkyl en C1 à C6, ou un cycloalkyl en C5 ou C6 ou un aryl en C5 ou C6 ;
R , R , R , R , R , R , R , R , R sont, indépendamment, un hydrogène, un alkyl en C1 à C6, un perhalogénoalkyl en C1 à C6, ou un aryl en C5 ou C6 ; R , R , R pouvant former un hétérocycle X est un anion : halogène, tetrafluoroborate ([BF4] ), [tetrakis-(3,5-bis- (trifluoromethyl)-phenyl)borate] ([BARF] ), hexafluorophosphate ([PF6] ), hexafluoroantimoine ([SbF6] ), Hexafluoroarsenate ([AsF6] ), trifluoromethylsulfonate ([(CF 3)2N]-).
1 2
R et R pouvant former avec le N et le C auxquels ils sont rattachés un hétérocycle de formule
Figure imgf000007_0001
12 hal étant un halogène et R est un hydrogène, un alkyl en C1 à C6, ou un cycloalkyl en C5 ou C6 ou un aryl en C5 ou C6
Préférentiellement, L est P (R )3, R étant un alkyl en C1 à C6 ou un aryl ou un cycloalkyl en C5 ou C6 .
Egalement préférentiellement, L est un ligand de formule 7a, 7b, 7c, 7d ou 7e
Figure imgf000007_0002
7a 7b 7c 7d 7e
dans lesquelles : n1 = 0, 1, 2, 3 ;
R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28 sont indépendamment un alkyl en C1 à C6, un cycloalkyl en C3 à C20, un alkényl en C2 à C2Q? un naphtyl, un anthracène ou un phényl, ledit phényl pouvant être substitué par jusqu'à 5 groupes choisi parmi les alkyls en C1 à C6, les alkoxys en C1 à C6 et les
1 A A H OA 07 halogènes, ; R et R d'une part et R et R d'autre part pouvant former un cycle à 3, 4, 5, 6, 7 chaînons ; R pouvant former indépendamment un cycle aromatique à 6 chaînons accolé.
Avantageusement L est PCy3, Cy étant le cyclohexyl, ou L est un ligand de formule 7a ou 7b. X est un chlore, X' est un chlore,
Le marqueur ionique Y est choisi préférentiellement dans le groupe constitué par :
Figure imgf000008_0001
Selon une variante, le composé selon l'invention répond à la formule (I) dans laquelle
R est choisi dans le groupe constitué par CH3, CF3,C6F5,pNO3C6H4 Selon une variante, R est CF3. Selon une variante, le composé répond à la formule la
Figure imgf000008_0002
Selon une autre variante, le composé répond à la formule Ib
Figure imgf000009_0001
Selon une autre variante, le composé répond à la formule à la formule Ic
Figure imgf000009_0002
Selon une autre variante, le composé répond à la formule à la formule Id
Figure imgf000009_0003
Selon une autre variante, le composé répond à la formule à la formule le
Figure imgf000009_0004
Selon une autre variante, le composé répond à la formule à la formule If
Figure imgf000010_0001
Selon une autre variante, le composé répond à la formule répond à la formule Ig
Figure imgf000010_0002
Selon une autre variante, le composé répond à la formule à la formule Ih
Figure imgf000010_0003
Selon une autre variante, le composé répond à la formule la formule Ii
Figure imgf000010_0004
Selon une autre variante, le composé répond à la formule à la formule Ij
Figure imgf000011_0001
Selon une autre variante, le composé répond à la formule à la formule Ik
Figure imgf000011_0002
Selon une autre variante, le composé répond à la formule répond à la formule 11
Figure imgf000011_0003
11
Selon une autre variante, le composé répond à la formule à la formule 12
Figure imgf000011_0004
12 Selon une autre variante, le composé répond à la formule à la formule 13
Figure imgf000012_0001
Selon une autre variante, le composé répond à la formule à la formule 14
Figure imgf000012_0002
14
L'invention concerne également tout procédé de synthèse d'un composé de formule (I) caractérisé en ce qu'il comprend une première étape consistant à faire réagir la 4-isopropoxy- 3-vinylaniline avec un composé présentant une fonction acyle afin d'obtenir un ligand amide et une seconde étape consistant à faire réagir ce ligand amide avec un composé de formule (III)
Figure imgf000012_0003
(ni) Préférentiellement, ledit composé de formule (III) est le précatalyseur Grubbs (2b) ou le précatalyseur de Nolan (2c).
Figure imgf000013_0001
L'introduction, selon l'invention d'une fonction amide sur le ligand styrenylether présente la particularité de promouvoir l'activation du catalyseur.
Notament, lorsque la fonction amide possède un méthyl perfluoré (trifluorométhyl), une forte activation du catalyseur est observée se caractérisant par des conversions relativement élevées en des temps très courts. Dans ces conditions une répercussion économique peut être envisagée par le biais d'une diminution significative de la charge catalytique dans les réactions de métathèse et ce sans altérer les rendements.
De plus, cette fonction amide peut servir d'espaceur pour l'introduction d'un marqueur ("tag") ionique en vue d'une immobilisation en phase aqueuse et /ou ionique ainsi que sur support solide.
Un tel marquage ionique permet de conduire à un meilleur recyclage des complexes catalytiques dans des solvants aqueux/ioniques ou sur support solide (réaction en flux continus) et d'obtenir une nette diminution du coût de la réaction tout en évitant la contamination des produits à haute valeur ajoutée, notamment dans le cadre de procédé de synthèse de molécules pharmaceutiques.
L'invention, ainsi que les différents avantages qu'elle présente, seront plus facilement compris grâce à la description qui va suivre de différents exemples de réalisation de celle-ci donnés en référence aux figures, dans lesquelles :
- la figure 1 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à température ambiante, en présence de 1 mol % du complexe d'Hoveyda 3b d'une part et des complexes catalytiques selon l'invention la, Ib, Ic, Id, d'autre part;
- la figure 2 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à température ambiante, en présence de 1 mol % du complexe d'Hoveyda 3b d'une part et des complexes catalytiques selon l'invention Ib, le d'autre part ;
- la figure 3 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à 45°C, en présence de 1 mol % du complexe catalytique selon l'invention le;
- la figure 4 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à 300C, en présence de 1 mol % du complexe catalytique selon l'invention Ib d'une part et de 0,3 mol% du complexe catalytique selon l'invention Ib d'autre part; - la figure 5 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à 300C, en présence de 1 mol % des complexes catalytiques selon l'invention Ib, le et If :
- les figures 6 à 11 représentent les spectres RMN d'exemples de réalisation de différents complexes de ruthénium la, Ib, Ic, Id, le et If ;
Dans un premier temps, la synthèse des différents exemples de complexes selon l'invention est décrite ci-après.
Les complexes la, Ib, Ic, Id, le et If selon l'invention sont obtenus en deux étapes à partir de l'aniline fonctionnalisée 5.
Le procédé de synthèse en 4 étapes de cette aniline fonctionnalisée 5 à partir du para- nitro-phénol est décrit dans l'article "Activated pyridinium-tagged ruthénium complex as efficient catalyst for Ring-Closing Metathesis. " D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K. Grêla*, M. Mauduit*, J. Organomet. Chem., 2006, 691, 5397-5405. Le schéma suivant résume cette synthèse en deux étapes :
Figure imgf000015_0001
Synthétisé en 4 étapes 6b: R=CF3 60% 1a: R = CH3 98% (ReH) 6c: R=C6F5 92% 1b: R = CF3 91% 6d: R=PNO2C6H4 96% 1c: R = C6F5 50% 1d: R = PNO2C6H4 95%
1ère étape : synthèse des amitiés 6a, 6b, 6c, 6d, 6f, 9a, 9b, IQa et IQb à partir de la 4-isopropoxy-3-vinylaniline 5. Selon une procédure générale, le 4-isopropoxy-3-vinylaniline 5 (léq. ; 0,2mmol env.) est introduit dans un ballon, placé sous azote, et mis en solution dans le dichlorométhane anhydre (2-3mL). La pyridine (l,5éq.) est ajoutée à la solution qui est alors refroidie à 00C. Le chlorure d'acyle ou l'anhydride (l,2éq.) est alors additionné lentement puis le milieu réactionnel est agité à température ambiante, sous azote pendant 2h. Le brut est alors dilué au dichlorométhane (1OmL), lavé avec une solution aqueuse d'acide chlorhydrique IN (2mL) puis avec une solution saturée d'hydrogénocarbonate de sodium (2x2mL) et enfin avec une solution de chlorure de sodium saturée (3x2mL). Les phases organiques sont rassemblées, séchées sur sulfate de magnésium et concentrées sous vide. Le résidu est purifié par chromatographie sur gel de silice.
Synthèse du composé N-(4-isopropoxy-3-vinylphényl)acétamide 6a
Figure imgf000016_0001
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy- 3-vinylaniline 5 (50mg ; 0,3mmol) et avec le chlorure d'acétyle (15 DL), l'acétamide est obtenu après chromatographie sur gel de silice (éluant : CH2Cl2ZAcOEt (4:1)) sous la forme d'un solide rosé (49mg, 78%). Rf (CH2CVAcOEt (4:1)) = 0,48
RMN 1H (400MHz, CDCl3) C(ppm) : 7,54 (s, IH, NH); 7,51 (d, IH, 4J = 2,7Hz, H7); 7,38 (dd, IH, 3J = 8,8Hz, 4J = 2,7Hz, H5); 6,99 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, U9); 6,81 (d, IH, 3J = 8,8Hz, U4); 5,68 (dd, IH, 2Jgem = 1,4Hz, 3Jtrans = 17,8Hz, U1Oa); 5,22 (dd, IH, 2Jgem = 1,4Hz, 3JC1S = 11,2Hz, U1Qb); 4,45 (sept., IH, 3J = 6,1Hz, H2); 2,14 (s, 3H, Un); 1,31 (d, 6H, 3J = 6,1Hz, H7) RMN 13C (100MHz, CDCl3) qppm) : 168,4 (C=O); 152,0 (C3); 131,4 (C9); 131,1 (C8); 128,3 (C6); 121,2 (C7); 118,6 (C5); 115,1 (C4); 114,5 (ClO); 71,4 (C2); 24,3 (CI l); 22,1 (Cl)
Synthèse du composé N-(4-isopropoxy-3-vinylphényl)trifluoroacétamide 6b
Figure imgf000017_0001
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy-3- vinylaniline 5 (26mg ; 0,14mmol) et avec l'anhydride trifluoroacétique (25 DL), le trifluoroacétamide est obtenu après chromatographie sur gel de silice (éluant : CH2CVEP
(9:1)) sous la forme d'un solide jaunâtre (23mg, 59%).
Rf (CH2CVEP (9:1)) = 0,65
RMN 1H (400MHz, CDCl3) C(ppm) : 7,93 (s, IH, NH); 7,59 (d, IH, 4J = 2,7Hz, H7); 7,44
(dd, IH, 3J = 8,9Hz, 4J = 2,7Hz, H5); 7,01 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, H9); 6,88 (d, IH, 3J = 8,9 Hz, H4); 5,74 (dd, IH, 2Jgem = 1,3Hz, 3Jtrans = 17,9Hz, H1Oa); 5,28 (dd, IH,
2Jgem = 1,3Hz, 3JC1S = 11,2Hz, Hm); 4,53 (sept., IH, 3J = 6,1Hz, H2); 1,35 (d, 6H, 3J = 6,1Hz,
H;)
RMN 19F (376,5MHz, CDCl3) C(ppm) : -76,1 (s, 3F, FM)
RMN 13C (100MHz, CDCl3) C(ppm) : 155,7 (quad., 2JC-F = 37Hz, C=O); 153,3 (C3); 131,0 (C9); 128,7 (C8); 127,9 (C6); 121,2 (C7); 119,0 (C5); 115,8 (quad., 1Jc-F = 288Hz, CI l);
115,3 (C4); 114,7 (ClO); 71,3 (C2); 22,1 (Cl)
Synthèse du composé N-(4-isopropoxy-3-vinylphényl)pentafluorobenzamide 6ç
Figure imgf000017_0002
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy- 3-vinylaniline 5 (39mg ; 0,22mmol) et avec le chlorure de pentafluorobenzoyle (38DL), le pentafluorobenzamide est obtenu après chromatographie sur gel de silice (éluant : CH2CVEP (9:1)) sous la forme d'un solide rosé (75mg, 92%). Rf (CH2Cl2ZEP (9:1)) = 0,71
RMN 1H (400MHz, CDCl3) C(ppm) : 7,70 (s, IH, NH); 7,59 (d, IH, 4J = 2,7Hz, H7); 7,46 (dd, IH, 3J = 8,9Hz, 4J = 2,7Hz, H5); 7,02 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, U9); 6,87 (d, IH, 3J = 8,9 Hz, U4); 5,73 (dd, IH, 2Jgem = 1,3Hz, 3Jtrans = 17,9Hz, U1Oa); 5,27 (dd, IH, 2Jgem = 1,3Hz, 3JC1S = 11,2Hz, Um); 4,52 (sept., IH, 3J = 6,1Hz, H2); 1,35 (d, 6H, 3J = 6,1Hz, H;)
RMN 19F (376,5MHz, CDCl3) C(ppm) : -140,5 (d, 2F, 3JF.F = 16Hz, F72); -150,5 (t, IF, 3JF.F = 20Hz, V14); -160,1 (dt, 2F, 3 JF.F = 20Hz, 3 JF.F = 15Hz5F73)
RMN 13C (100MHz, CDCl3) C(ppm) : 155,2 (C=O); 152,9 (C3); 145,5-142,9-138,9-136,4 (C12, C13, C14); 131,1 (C9); 129,6 (C8); 128,6 (C6); 121,2 (C7); 119,0 (C5); 115,1 (C4); 114,8 (ClO); 111,6 (CI l); 71,4 (C2); 22,1 (Cl)
Synthèse du composé N-(4-isopropoxy-3-vinylphényl)/)«ranitrobenzamide 6d
Figure imgf000018_0001
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy- 3-vinylaniline 5 (38mg ; 0,22mmol) et avec le chlorure de /?αranitrobenzoyle (48mg), le
/?αranitrobenzamide est obtenu après chromatographie sur gel de silice (éluant : CH2Cl2) sous la forme d'un huile jaune (67mg, 96%).
Rf (CH2Cl2) = 0,43
RMN 1H (400MHz, CDCl3) E(ppm) : 8,44 (s, IH, NH); 8,17 (d, 2H, 3J = 8,8Hz, Hj2); 7,96 (d, 2H, 3J = 8,8Hz, Hj3); 7,61 (d, IH, 4J = 2,5Hz, H7); 7,45 (dd, IH, 3J = 8,8Hz, 4J = 2,5Hz, H5);
6,97 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, U9); 6,80 (d, IH, 3J = 8,8 Hz, U4); 5,63 (dd, IH,
2Jgem = 1,3Hz, 3Jtrans = 17,7Hz, U1Oa); 5,20 (dd, IH, 2Jgem = 1,3Hz, 3JC1S = 11,1Hz, Um); 4,48
(sept., IH, 3J = 6,1Hz, H2); 1,33 (d, 6H, 3J = 6,1Hz, U1)
RMN 13C (100MHz, CDCl3) C(ppm) : 164,0 (C=O); 152,7 (C3); 149,4 (C14) ; 140,3 (CI l); 131,2 (C9); 130,1 (C8); 128,3 (C6); 128,2 (C12); 123,7 (C13); 121,8 (C7); 119,4 (C5); 114,7
(C4); 114,6 (ClO); 71,2 (C2); 22,0 (Cl) Synthèse du composé N,N'-bis(4-isopropoxy-3-\ïnylphényl)oxamide 6f
Figure imgf000019_0001
Le 4-isopropoxy-3-vinylaniline 5 (30m ; léq. ; 0,2mmol) est introduit dans un ballon, placé sous azote, et mis en solution dans le dichlorométhane anhydre (3mL). La pyridine (21 DL, l,5éq.) est ajoutée à la solution qui est alors refroidie à 00C. Le chlorure d'oxalyle (8,8DL ; l,2éq.) est alors additionné lentement puis le milieu réactionnel est agité à température ambiante, sous azote pendant 2h.
Le brut est alors dilué au dichlorométhane (1OmL), lavé avec une solution aqueuse d'acide chlorhydrique IN (2mL) puis avec une solution saturée d'hydrogénocarbonate de sodium (2x2mL) et enfin avec une solution de chlorure de sodium saturée (3x2mL). Les phases organiques sont rassemblées, séchées sur sulfate de magnésium et concentrées sous vide.
Le résidu est purifié par chromatographie sur gel de silice (éluant : CH2CVEP (9:1)) pour conduire au composé 6f attendu sous la forme d'un solide blanc (14mg, 20%). Rf (CH2C12/EP (9:1)) = 0,66
RMN 1H (400MHz, CDCl3) C(ppm) : 9,30 (s, 2H, NH); 7,75 (d, 2H, 4J = 2,7Hz, H7); 7,55 (dd, 2H, 3J = 8,9Hz, 4J = 2,7Hz, H5); 7,04 (dd, 2H, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, H9); 6,89 (d, 2H, 3J = 8,9 Hz, H4); 5,76 (dd, 2H, 2Jgem = 1,3Hz, 3Jtrans = 17,9Hz, H1Oa); 5,29 (dd, 2H, 2Jgem = 1,3Hz, 3JC1S = 11,2Hz, H1Qb); 4,53 (sept., 2H, 3J = 6,1Hz, H2); 1,35 (d, 12H, 3J = 6,1Hz,
H;)
RMN 13C (100MHz, CDCl3) C(ppm) : 157,3 (C=O); 152,8 (C3); 131,2 (C9); 129,4 (C8);
128,6 (C6); 120,4 (C7); 118,2 (C5); 115,1 (C4); 114,9 (ClO); 71,3 (C2); 22,1 (Cl) Synthèse du composé N-(4-isopropoxy-3-vinylphényl)difluorochloroacétamide 9a
Figure imgf000020_0001
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy-
3-vinylaniline 5 (50mg ; 0,3mmol) et avec l'anhydride 2-chloro-2,2-difluoroethanoique (63 DL), l'acétamide est obtenu après chromatographie sur gel de silice (éluant : CH2Cl2/Ac0Et (4:1)) sous la forme d'un solide rosé (65mg, 75%). Rf (CH2C12/EP (4:1)) = 0,75 RMN 1H (400MHz, CDCl3) C(ppm) : 7,54 (s, IH, NH); 7,59 (d, IH, 4J = 2,7Hz, H7); 7,43 (dd, IH, 3J = 8,8Hz, 4J = 2,7Hz, H5); 6,99 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, U9); 6,86 (d, IH, 3J = 8,8Hz, U4); 5,70 (dd, IH, 2Jgem = 1,4Hz, 3Jtrans = 17,8Hz, U1Oa); 5,27 (dd, IH, 2Jgem = 1,4Hz, 3JC1S = 11,2Hz, U1Qb); 4,50 (sept., IH, 3J = 6,1Hz, H2); 1,34 (d, 6H, 3J = 6,1Hz, U1) RMN 19F (376,5MHz, CDCl3) C(ppm) : -64,3 (s, 2F, CF2) RMN 13C (100MHz, CDCl3) C(ppm) : 158,8 (C=O); 153,2 (C3); 131,0 (C9); 128,6 (C8); 128,1 (C6); 122,2 (CF2Cl); 121,2 (C5); 119,1 (C4); 116,2 (CF2Cl); 114,7 (ClO); 71,3 (C2); 22,0 (Cl)
Synthèse du composé 3-{l,l-difluoro-2-[4-isopropoxy-3-vinylphenylamino]-2- oxoethyl}-l-methyl-lH-imidazol-3-ium 9ç
Cl
Figure imgf000020_0002
L'amide chloré 9a (20mg ; 0,07mmol) est mis en solution dans le toluène anhydre (2,5mL). Le N-méthylimidazole (ImL ; 20éq.) est ajouté à la solution qui est alors portée à reflux pendant une nuit. Les phases volatiles sont alors éliminées sous pression réduite et le composé taggé est récupéré sous la forme d'une huile orange sombre. RMN 1H (400MHz, CDCl3) D (ppm): 9,49 (s, IH, NH); 7,67 (d, IH, 4J = 2,7Hz, H7); 7,48 (dd, IH, 3J = 8,8Hz, 4J = 2,7Hz, H5); 7,43 (s, IH, Hn) ; 7,04 (s, IH, Hi2) ; 7,00 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, U9); 6,89 (s, IH, Hi3) ; 6,86 (d, IH, 3J = 8,8Hz, U4); 5,70 (dd, IH, 2Jgem = 1,4Hz, 3Jtrans = 17,8Hz, U1Oa); 5,25 (dd, IH, 2Jgem = 1,4Hz, 3JC1S = 11,2Hz, Um); 4,52 (sept., IH, 3J = 6,1Hz, H2); 3,68 (s, 3H, HM) ;1,33 (d, 6H, 3J = 6,1Hz, H7) RMN 19F (376,5MHz, CDCl3) C(ppm) : -64,0 (s, 2F, CF2)
RMN 13C (100MHz, CDCl3) C(ppm) : 157,2 (C=O); 153,0 (C3); 131,1 (C9, CI l) ; 128,8 (C8); 128,4 (C6); 121,5 (C5); 119,3 (C4); 119,1 (CF2); 114,8 (ClO); 114,6 (C7); 71,3 (C2); 33,3 (C14) ; 22,0 (Cl)
Synthèse du composé 3-chloro-2,2,3,3-tetrafluoro-7V-(4-isopropoxy-3 vinylphenyl)propanamide_9b
Figure imgf000021_0001
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy-
3-vinylaniline 5 (50mg ; 0,3mmol) et avec le chlorure de 3-chloro-2,2,3,3- tetrafluoropropanoyl (81mg), l'acétamide est obtenu après chromatographie sur gel de silice (éluant : CH2Cl2/Ac0Et (4:1)) sous la forme d'un solide blanc (65mg, 57%). Rf (CH2CVAcOEt (9:1)) = 0,3 RMN 1H (400MHz, CDCl3) D (ppm): 8,00 (s, IH, NH); 7,62 (d, IH, 4J = 2,7Hz, H7); 7,44 (dd, IH, 3J = 8,8Hz, 4J = 2,7Hz, H5); 7,00 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, U9); 6,86 (d, IH, 3J = 8,8Hz, U4); 5,72 (dd, IH, 2Jgem = 1,4Hz, 3Jtrans = 17,8Hz, U1Oa); 5,28 (dd, IH, 2Jgem = 1,4Hz, 3JC1S = 11,2Hz, U1Ob); 4,52 (sept., IH, 3J = 6,1Hz, H2); 1,34 (d, 6H, 3J = 6,1Hz, U1) RMN 19F (376,5MHz, CDCl3) C(ppm) : -70,1 (s, 2F, F11); -118,6 (s, 2F, F72) RMN 13C (100MHz, CDCl3) E(ppm) : 155,7 (C=O); 153,3 (C3); 130,9 (C9); 128,6 (C8); 128,1 (C6); 124,8 (CF2CO); 121,2 (C5); 119,0 (C4); 115,2 (ClO); 114,2 (C7); 108,1 (CF2Cl); 71,3 (C2); 22,0 (Cl) 2eme étape : synthèse des complexes de ruthénium la, Ib, Ic, Id, le, If, 11, 12 à partir des amides 6a, 6b, 6c, 6d, 6f, IQb.
Selon une procédure générale, le ligand amide (léq.), le chlorure de cuivre (I) (léq) et le précatalyseur indènylidène (léq.) sont introduits dans un ballon sous argon. Le dichlorométhane anhydre (2-3mL) y est ajouté. Le milieu réactionnel est alors dégazé trois fois, placé à 30-330C sous atmosphère d'argon et maintenu sous agitation pendant 5h environ. Le brut réactionnel est alors concentré sous vide. Le résidu est repris à l'acétone (1- 2mL) et filtré sur Célite. Le filtrat est concentré sous vide et le résidu est purifié par chromatographie sur gel de silice.
Synthèse du complexe de ruthénium ^a
Figure imgf000022_0001
En utilisant la procédure générale d'obtention des complexes de ruthénium avec le N-
(4-isopropoxy-3-vinylphényl)acétamide 6a (24mg ; 0,011mmol), le complexe la est obtenu après chromatographie sur gel de silice (éluant : EP/ Acétone (1 :1)) sous la forme d'un solide vert (73mg ; 98%). Rf (EP/Acétone (1 : 1))= 0,52 RMN 1H (400MHz, (CD3)2CO) E(ppm) : 16,42 (s, IH, H9); 10,23 (s, IH, NH); 7,78 (d, IH, 3J = 8,6Hz, H5); 7,55 (s, IH, H7); 7,05 (s, 4H, Hj2); 6,91 (d, IH, 3J = 8,6Hz, H4); 4,88 (sept., IH, 3J = 6,1Hz, H2); 4,24 (s, 4H, H10); 2,45 (m, 18H, H11, H13); 2,09 (s, 3H, H14); 1,22 (d, 6H, 3J = 6,1Hz5 H1) Synthèse du complexe de ruthénium Ib
Figure imgf000023_0001
En utilisant la procédure générale d'obtention des complexes de ruthénium avec le N-
(4-isopropoxy-3-vinylphényl)trifluoroacétamide 6b (l l,7mg ; 0,04mmol), le complexe Ib est obtenu après chromatographie sur gel de silice (éluant : EP/Acétone (7:3)) sous la forme d'un solide vert (26,lmg ; 88%). Rf (EP/Acétone (3:2))= 0,37 RMN 19F (376,5MHz, (CD3)2CO) C(ppm) : -76,5 (s, 3F, FM)
RMN 1H (400MHz, (CD3)2CO) E(ppm) : 16,40 (s, IH, H9); 9,24 (s, IH, NH); 7,64 (dd, IH, 3J = 8,6Hz, 4J = 2,8Hz, H5); 7,55 (d, IH, 4J = 2,8Hz, H7); 7,05 (s, 4H, Hi2); 7,01 (d, IH, 3J = 8,6Hz, H4); 4,95 (sept., IH, 3J = 6,1Hz, H2); 4,27 (s, 4H, Hi0); 2,43 (m, 18H, Hn, Hi3); 1,22 (d, 6H5 3J = 6,1Hz, Hi)
Synthèse du complexe de ruthénium lç
Figure imgf000023_0002
En utilisant la procédure générale d'obtention des complexes de ruthénium avec le N-
(4-isopropoxy-3-vinylphényl)pentafluorobenzamide 6ç (9mg ; 0,02mmol), le complexe Ic est obtenu après chromatographie sur gel de silice (éluant : EP/Acétone (7:3)) sous la forme d'un solide vert (lOmg ; 50%). Rf (EP/Acétone (7:3))= 0,41 RMN 19F (376,5MHz, (CD3)2CO) C(ppm) : -143,6 (d, 2F, 3JF.F = 15Hz, F15); -155,2 (t, IF, 3JF. F = 20Hz, F77); -16,5 (dt, 2F, 3JF.F = 20Hz, 3JF.F = 15Hz5F76)
RMN 1H (400MHz, (CD3)2CO) C(ppm) : 16,41 (s, IH, H9); 10,35 (s, IH, NH); 7,75 (dd, IH, 3J = 8,6Hz, 4J = 2,8Hz, H5); 7,67 (d, IH, 4J = 2,8Hz, H7); 7,07 (s, 4H, Hi2); 7,03 (d, IH, 3J = 8,6Hz, H4); 4,95 (sept., IH, 3J = 6,1Hz, H2); 4,27 (s, 4H, Hi0); 2,43 (m, 18H, Hn, Hi3); 1,22 (d, 6H5 3J = 6,1Hz, Hi)
Synthèse du complexe de ruthénium Id
Figure imgf000024_0001
En utilisant la procédure générale d'obtention des complexes de ruthénium avec le N- (4-isopropoxy-3-vinylphényl)/?αranitrobenzamide 6d (8mg ; 0,02mmol), le complexe ^d est obtenu après chromatographie sur gel de silice (éluant : EP/ Acétone (6:4)) sous la forme d'un solide vert (18mg ; 95%). Rf (EP/Acétone (7:3))= 0,34
RMN 1H (400MHz5 (CD3)2CO) C(ppm) : 16,46 (s, IH, H9); 9,97 (s, IH, NH); 8,36 (d, 2H, 3J = 8,8Hz, Hi5); 8,21 (d, 2H, 3J = 8,8Hz, Hi6) ; 7,85 (dd, IH, 3J = 8,6Hz, 4J = 2,8Hz, H5); 7,74 (d, IH, 4J = 2,8Hz, H7); 7,07 (s, 4H, Hi2); 7,02 (d, IH, 3J = 8,6Hz, H4); 4,95 (sept., IH, 3J = 6,1Hz, H2); 4,27 (s, 4H, Hi0); 2,43 (m, 18H, Hn, Hi3); 1,24 (d, 6H, 3J = 6,1Hz, Hi)
Synthèse du complexe de ruthénium ^e
Figure imgf000024_0002
Le ligand N-(4-isopropoxy-3-vinylphényl)trifluoroacétamide 6b (22mg ; 0,08mmol ; léq.), le chlorure de cuivre (I) (8mg, léq) et le précatalyseur de Nolan de 2eme génération (68mg, léq.) de formule 2c sont introduits dans un ballon sous argon. Le dichlorométhane anhydre (3mL) y est ajouté. Le milieu réactionnel est alors dégazé trois fois, placé à 30-330C sous atmosphère d'argon et maintenu sous agitation pendant 5h environ.
Le brut réactionnel est alors concentré sous vide. Le résidu est repris à l'acétone (1- 2mL) et filtré sur Célite. Le filtrat est concentré sous vide et le résidu est purifié par chromatographie sur gel de silice.
Le complexe le est obtenu après chromatographie sur gel de silice (éluant : EP/Acétone (4:1)) sous la forme d'un solide vert (52mg ; 88%). Rf (EP/Acétone (1 :1))= 0,13
RMN 19F (376,5MHz, (CD3)2CO) C(ppm) : -76,5 (s, 3F, FM)
RMN 1H (400MHz, (CD3)2CO) C(ppm) : 16,54 (s, IH, H9); 10,44 (s, IH, NH); 7,79 (dd, IH, 3J = 8,6Hz, 4J = 2,6Hz, H5); 7,68 (d, IH, 4J = 2,6Hz, H7); 7,48 (s, 2H, Hi0); 7,14 (s, 4H, Hi2); 7,09 (m, IH, H4); 4,99 (sept., IH, 3J = 6,1Hz, H2); 2,47 (s, 6H, Hi3); 2,24 (s, 12H, Hn) ; 1,31 (d, 6H5 3J = 6,1Hz, Hi)
Synthèse du complexe de ruthénium IJ:
Figure imgf000025_0001
Le ligand N,N'-bis(4-isopropoxy-3-vinylphényl)oxamide 6f (8mg ; 0,02mmol ; léq.), le chlorure de cuivre (I) (4mg, 2, léq) et le précatalyseur indénylidène (37mg, 2, léq.) sont introduits dans un ballon sous argon. Le dichlorométhane anhydre (5mL) y est ajouté. Le milieu réactionnel est alors dégazé trois fois, placé à 30-330C sous atmosphère d'argon et maintenu sous agitation pendant 5h environ. Le brut réactionnel est alors concentré sous vide. Le résidu est repris à l'acétone (2mL) et filtré sur fritte. Le complexe IJ: est ainsi isolé sous la forme d'un solide vert (15mg ; 59%).
RMN 1H (400MHz, CD2Cl2) C(ppm) : 16,36 (s, 2H, H9); 9,30 (s, 2H, NH); 7,89 (d, 2H, 3J = 7,8Hz, H5); 7,35 (s, 2H, H7); 7,09 (s, 8H, Hi2); 6,84 (d, 2H, 3J = 8,0Hz, H4); 4,86 (m, 2H, H2); 4,16 (s, 8H, Hi0) ; 1,86 (m, 36H, Hn1 Hi3) ; 1,23 (d, 12H, 3J = 6,1Hz, Hi)
Synthèse du complexe de ruthénium marqué H.
La fonction trifluroacétamide étant clairement identifiée comme étant la fonction la plus apte à activer le précatalyseur, l'introduction d'un motif ionique (tag ionique) peut alors être réalisée.
Pour cela, la présente invention propose de substituer l'atome de chlore du composé 10a par une aminé tertiaire (imidazole, pyridine ...).
Ainsi, les inventeurs ont réalisé la substitution par la pyridine sur le 4-chloro-iV-(4- isopropoxy-3-vinylphenyl)butanamide IQa pour conduire aisément au ligand ionique désiré IQb. Sa complexation avec le catalyseur de Grubbs II conduit au complexe 11.
Figure imgf000026_0001
Synthèse du composé 4-chloro-7V-(4-isopropoxy-3-vinylphenyl)butanamide IQa
Figure imgf000026_0002
En utilisant la procédure générale d'obtention des amides à partir de la 4-isopropoxy-
3-vinylaniline 5 (50mg ; 0,3mmol) et avec le chlorure de 3-chloropropanoyl (15DL), l'acétamide est obtenu après chromatographie sur gel de silice (éluant : CH2Cl2) sous la forme d'un solide rosé (52mg, 65%). Rf (CH2Cl2) = 0,3
RMN 1H (400MHz, CDCl3) C(ppm) : 7,81 (s, IH, NH); 7,54 (d, IH, 4J = 2,7Hz, H7); 7,34 (dd, IH, 3J = 8,8Hz, 4J = 2,7Hz, H5); 6,98 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, H9); 6,79 (d, IH, 3J = 8,8Hz, H4); 5,67 (dd, IH, 2Jgem = 1,4Hz, 3Jtrans = 17,8Hz, H1Oa); 5,21 (dd, IH, 2Jgem = 1,4Hz, 3JC1S = 11,2Hz, H1Ob); 4,44 (sept., IH, 3J = 6,1Hz, H2); 3,60 (t, 2H, 3J = 7,1Hz, CH2Cl); 2,48 (t, 2H, 3J = 7,1Hz, H72); 2,14 (m, 2H, H11); 1,31 (d, 6H, 3J = 6,1Hz, H1) RMN 13C (100MHz, CDCl3) C(ppm) : 170,1 (C=O); 152,0 (C3); 131,3 (C9); 130,8 (C8); 128,3 (C6); 121,1 (C7); 118,6 (C5); 115,0 (C4); 114,5 (ClO); 71,4 (C2); 44,4 (C13); 33,8 (C12); 27,9 (CI l); 22,0 (Cl)
Synthèse du composé l-(4-(4-isopropoxy-3-vinylphenylamino)-4-oxobutyl)pyridinium hexafluorophosphate(V) IQb
Figure imgf000027_0001
A une solution d'acétamide IQa (52mg, 0,19 mmol) dans le toluène anhydre est ajoutée la pyridine (1 mL) puis le mélange est porté au reflux sous agitation pendant 2 jours. Apres évaporation du solvant, le résidu est dissous dans l'eau puis du KPF6 (38 mg) est ajouté. Apres 2h d'agitation à température ambiante, la phase aqueuse est extraite au dichlorométhane puis les phases organiques sont lavées avec une solution de NaCl saturée et séchée sur sulfate de magnésium. Après évaporation du solvant le sel de pyridinium est purifié par chromatographie sur gel de silice (éluant : CH2Cl2/Me0H (4:1)) sous la forme d'un solide amorphe (38mg, 44%). Rf (CH2CVMeOH (8 :2)) = 0,2
RMN 1H (400MHz, MeOD) E(ppm) : 8,98 (d, 2H, 3J = Hz, H14) ; 8,54 (dd, IH, 3J = Hz, H16) ; 8,06 (t, 2H, 3J = Hz, H75); 7,62 (d, IH, 4J = 2,7Hz, H7); 7,30 (dd, IH, 3J = 8,8Hz, 4J = 2,7Hz, H5); 6,97 (dd, IH, 3JC1S = 11,2Hz, 3Jtrans = 17,8Hz, H9); 6,88 (d, IH, 3J = 8,8Hz, H4); 5,70 (dd, IH, 2Jgem = 1,4Hz, 3Jtrans = 17,8Hz, H1Oa); 5,20 (dd, IH, 2Jgem = 1,4Hz, 3JC1S = 11,2Hz, Hm); 4,69 (t, 2H, 3J = 7,1Hz, CH2Pyr); 4,57 (s, IH, NH); 4,50 (sept., IH, 3J = 6,1Hz, H2); 2,50 (t, 2H, 3J = 7,1Hz, H72); 2,38 (m, 2H, Hn); 1,31 (d, 6H, 3J = 6,1Hz, H7)
RMN 13C (100MHz, CDCl3) C(ppm) : 171,9 (C=O); 153,2 (C3); 147,0 (C14); 146,0 (C16); 132,8; 132,7; 129,5; 129,3; 122,4; 119,58; 116,2; 114,6; 72,5; 62,5; 33,4; 27,9; 22,4
Synthèse du complexe de ruthénium H.
Figure imgf000028_0001
11
Le ligand l-(4-(4-isopropoxy-3-vinylphenylamino)-4-oxobutyl)pyridinium hexafluorophosphate(V) IQb (5mg ; 0,011mmol ; léq.), le chlorure de cuivre (I) (2mg, léq.) et le précatalyseur indénylidène (9,6mg, léq.) sont introduits dans un ballon sous argon. Le dichlorométhane anhydre (3mL) y est ajouté. Le milieu réactionnel est alors dégazé trois fois, placé à 30-330C sous atmosphère d'argon et maintenu sous agitation pendant 5h environ. Le brut réactionnel est alors concentré sous vide. Le résidu est repris à l'acétone
(2mL) et filtré sur fritte. Le complexe H. est ainsi isolé sous la forme d'un solide amorphe vert sombre.
RMN 1H (400MHz, (CD3)2CO) C(ppm) : 16,40 (s, IH, H9); 9,25 (d, 2H, 3J = 5,8Hz, Hi7) ; 9,18 (s, 2H, NH); 8,76 (t, IH, 3J = 6,5Hz, Hj9) ; 8,32 (d, 2H, 3J = 6,5Hz, Hi8) ; 7,62 (m, 2H, H5); 7,50 (d, IH, 3J = 2,5Hz, H7); 7,06 (s, 4H, Hi2); 6,94 (d, IH, 3J = 8,8Hz, H4); 5,00 (t, 2H, 3J = 7,1Hz, Hi6) ; 4,90 (m, IH, H2); 4,27 (s, 4H, Hi0) ; 2,59 (m, 4H, Hi4, Hi5) ; 2,44 (m, 18H, Hn1 Hi3) ; 1,23 (d, 6H, 3J = 6,1Hz, Hi)
Dans un second temps, l'activation des complexes de ruthénium activé la, lb,lc,ld, le et If a été étudiée.
Les complexes la, Ib, Ic, Id selon l'invention d'une part, et le complexe de l'art antéieur d'Hoveyda 3b d'autre part ont été étudiés dans une réaction de métathèse d'oléfmes cyclisante avec le métallyle-allyle diethylmalonate 7 à température ambiante dans le dichlorométhane en présence de 1 mol% de complexe selon le schéma réactionnel suivant.
Figure imgf000029_0001
Les résultats des taux de conversion obtenus avec ces composés sont représentés sur le graphe selon la figure 1.
Ces résultats montrent clairement l'effet activateur de la fonction acétamide. Notamment, quand cette fonction acétamide possède un groupement trifluorométhyle
(complexe Ib) un taux de conversion de plus de 37% après seulement 15 min de réaction est obtenu contre 5% dans le cas du complexe de Hoveyda 3b.
L'activité du composé le (issu de la complexation avec le catalyseur de Nolan 2c) et du composé Ib (issu de la complexation avec le catalyseur de Grubbs II 2b) d'une part et celle du complexe de l'art antérieur d'Hoveyda 3b d'autre part ont égalemant été étudiées dans la même réaction et dans les mêmes conditions réactionnelles.
Les résultats des taux de conversion obtenus avec ces composés sont représentés sur le graphe selon la figure 2. D'une façon tout à fait surprenante, ces résultats montrent une activité similaire pour les catalyseur le et Ib alors que le complexe de Grubbs II 2b (portant un ligand SIMes) est beaucoup plus actif que le complexe de Nolan 2c (portant un ligand IMes)]. Ce résultat est très intéressant car l'espèce catalytique portant un ligand IMes (issue du complexe de Nolan 2c) est beaucoup plus stable thermiquement que l'espèce catalytique portant un ligand SIMes (générée à partir du complexe de Grubbs II 2b.
L'invention offre donc la possibilité d'effectuer des réactions de métathèse d'oléfmes dans des conditions plus drastiques (chauffage plus élevé) avec le complexe activé le lorsque les substrats sont fortement encombrés (par exemple : oléfmes tétrasubstituées). Ainsi, une réaction de métathèse cyclisante d'un composé métallyle-allyle diethylmalonate réalisée à
45°C, en présence de 1 mol % du complexe catalytique le d'une part et à 300C en présence de 1 mol % des complexes catalytiques Ib et le d'autre part. Les résultats des taux de conversion obtenus avec ces composés sont représentés sur le graphe selon la figure 3. Comme prévu, le catalyseur IMes activé le montre une activité remarquable avec un taux de conversion de 87% après seulement 6 minutes de réaction.
L'activité du complexe activé Ib en diminuant sa charge catalytique dans la réaction de métathèse cyclisante d'un composé métallyle-allyle diéthylmalonate a égalment été évaluée. La figure 4 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à 300C, en présence de 1 mol % du complexe catalytique selon l'invention Ib d'une part et de 0,3 mol% du complexe catalytique selon l'invention Ib d'autre part. Le graphique montre une légère diminution de la réactivité cependant celle-ci reste remarquable puisque 75 % de conversion sont observé après seulement 40 minutes de réaction.
Enfin, le complexe activé dimérique If a également été évalué et son activité a été comparée avec les complexes activés Ib et le. La figure 5 est un graphique montrant le taux de conversion dans le temps d'un composé métallyle-allyle diéthylmalonate dans le cadre d'une réaction de métathèse cyclisante à 300C, en présence de 1 mol % des complexes catalytiques selon l'invention Ib, le et If.

Claims

REVENDICATIONS
Composé de formule (I) ou (II)
Figure imgf000031_0001
(I)
Figure imgf000031_0002
(H)
dans lesquelles :
L est un ligand neutre ;
X, X' sont des ligands anioniques ;
R 1 et R 2 sont, indépendamment, un hydrogène, un alkyl en C1 à C6, un perhalogénoalkyl en C1 à C6, un aldéhyde, une cétone, un ester, un amide, un nitrile, un aryl éventuellement substitué, un pyridinium- alkyl, un pyridinium- perhalogénoalkyl- ou un cyclohexyl en C5 ou C6 éventuellement substitué, un radical CnH2nY ou CnF2nY avec n compris entre 1 et 6, et Y un marqueur ionique, ou un radical de formule :
Figure imgf000031_0003
R pouvant être un radical de formule (Ibis) quand le composé est de formule (I),
Figure imgf000032_0001
(Ibis) ou de formule (Ilbis) quand le composé est de formule (II)
Figure imgf000032_0002
(Ilbis)
R est un alkyl en C1 à C6, ou un cycloalkyl en C5 ou C6 ou un aryl en C5 ou C6 ;
n0 „4 „5 „6 „7 „ 8 „9 „ 10 „ 11 . . A , , . , , „ ,
R , R , R , R , R , R , R , R , R sont, indépendamment, un hydrogène, un alkyl en C1 à C6, un perhalogénoalkyl en C1 à C6, ou un aryl en C5 ou C6 ; R , R , R pouvant former un hétérocycle
X est un anion : halogène, tetrafluoroborate ([BF4] ), [tetrakis-(3,5-bis- (trifluoromethyl)-phenyl)borate] ([BARF] ), hexafluorophosphate ([PF6] ), hexafluoroantimoine ([SbF6] ), Hexafluoroarsenate ([AsF6] ), trifluoromethylsulfonate ([(CF 3)2N] ).
1 2
R et R pouvant former avec le N et le C auxquels ils sont rattachés un hétérocycle de formule
Figure imgf000033_0001
12 hal étant un halogène et R est un hydrogène, un alkyl en C1 à C6, ou un cycloalkyl en C5 ou C6 ou un aryl en C5 ou C6 .
2. Composé selon la revendication 1 caractérisé en ce que
L est P (R )3, R étant un alkyl en C1 à C6 ou un aryl ou un cycloalkyl en C5 ou C6 .
3. Composé selon la revendication 1 caractérisé en ce que L est un ligand de formule 7a, 7b, 7c, 7d ou 7e
R K1-8 N "SS//N-R R1193 R K2-2
Figure imgf000033_0003
Figure imgf000033_0002
7a 7b 7c 7d 7e
dans lesquelles : n1 = 0, 1, 2, 3 ;
R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28 sont indépendamment un alkyl en C1 à C6, un cycloalkyl en C3 à C20, un alkényl en C2 à C2O? un naphtyl, un anthracène ou un phényl, ledit phényl pouvant être substitué par jusqu'à 5 groupes choisi parmi les alkyls en C1 à C6, les alkoxys en C1 à C6 et les halogènes, ; R
Figure imgf000033_0004
d'autre part pouvant former un cycle à 3, 4, 5, 6, 7 chaînons ; R pouvant former indépendamment un cycle aromatique à 6 chaînons accolé.
4. Composé selon la revendication 2 ou la revendication 3 caractérisé en ce que L est PCy3, Cy étant le cyclohexyl, ou L est un ligand de formule 7a ou 7b. X est un chlore, X' est un chlore,
5. Composé selon l'une des revendications 2 à 4 caractérisé en ce que le marqueur ionique Y est choisi dans le groupe constitué par :
Figure imgf000034_0001
6. Composé selon la revendication 4 caractérisé en ce qu'il réponde à la formule (I) dans laquelle R est choisi dans le groupe constitué par CH3, CF35C6F55PNO3C6H4
7. Composé selon la revendication 6 caractérisé en ce qu'il répond à la formule (I) dans laquelle R1 est CF3.
8. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule la
Figure imgf000034_0002
9. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ib
Figure imgf000034_0003
10. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ic
Figure imgf000035_0001
11. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Id
Figure imgf000035_0002
12. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule le
Figure imgf000035_0003
13. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule If
Figure imgf000035_0004
14. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ig
Figure imgf000036_0001
15. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ih
Figure imgf000036_0002
16. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ii
Figure imgf000036_0003
17. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ij
Figure imgf000036_0004
18. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule Ik
Figure imgf000037_0001
19. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule 11
Figure imgf000037_0002
11
20. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule 12
Figure imgf000037_0003
12
21. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule 13
Figure imgf000038_0001
22. Composé selon la revendication 4 caractérisé en ce qu'il répond à la formule 14
Figure imgf000038_0002
14
23. Procédé de synthèse d'un composé selon l'une quelconque des revendications 1 à 22 caractérisé en ce qu'il comprend une première étape consistant à faire réagir la 4-isopropoxy- 3-vinylaniline avec un composé présentant une fonction acyle afin d'obtenir un ligand amide et une seconde étape consistant à faire réagir ce ligand amide avec un composé de formule (III)
Figure imgf000038_0003
(III)
24. Procédé selon la revendication 23 caractérisé en ce que ledit composé de formule (III) est le précatalyseur Grubbs (2b) ou avec le précatalyseur de Nolan (2c).
PCT/EP2007/063062 2006-11-30 2007-11-30 Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines WO2008065187A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009538722A JP5284269B2 (ja) 2006-11-30 2007-11-30 ルテニウムを主成分とした触媒錯体、およびオレフィンメタセシスのための前記錯体の使用
CN200780049125.1A CN101595116B (zh) 2006-11-30 2007-11-30 钌基催化络合物以及这种络合物用于烯烃易位作用的用途
IN2409KON2009 IN2009KN02409A (fr) 2006-11-30 2007-11-30
US12/517,322 US8394965B2 (en) 2006-11-30 2007-11-30 Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis
EP07847578.7A EP2097431B1 (fr) 2006-11-30 2007-11-30 Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines
BRPI0721051A BRPI0721051B1 (pt) 2006-11-30 2007-11-30 complexos catalíticos à base de rutênio e reciláveis, assim como seu processo de síntese
CA002671082A CA2671082A1 (fr) 2006-11-30 2007-11-30 Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines
US13/736,236 US8586757B2 (en) 2006-11-30 2013-02-13 Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0610478 2006-11-30
FR0610478A FR2909381A1 (fr) 2006-11-30 2006-11-30 Complexes de rethenium et utilisation de tels complexes pour la metathese d'olefines
FR0700634A FR2909382B1 (fr) 2006-11-30 2007-01-30 Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines
FR0700634 2007-01-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/517,322 A-371-Of-International US8394965B2 (en) 2006-11-30 2007-11-30 Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis
EP11192598.8A Previously-Filed-Application EP2476688B1 (fr) 2006-11-30 2007-11-30 Complexes catalytiques à base de ruthénium et utilisation de tels complexes pour la métathèse d'oléfines
US13/736,236 Continuation US8586757B2 (en) 2006-11-30 2013-02-13 Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis

Publications (1)

Publication Number Publication Date
WO2008065187A1 true WO2008065187A1 (fr) 2008-06-05

Family

ID=39186057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/063062 WO2008065187A1 (fr) 2006-11-30 2007-11-30 Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines

Country Status (9)

Country Link
US (2) US8394965B2 (fr)
EP (2) EP2097431B1 (fr)
JP (1) JP5284269B2 (fr)
CN (1) CN103601758B (fr)
BR (1) BRPI0721051B1 (fr)
CA (1) CA2671082A1 (fr)
FR (1) FR2909382B1 (fr)
IN (1) IN2009KN02409A (fr)
WO (1) WO2008065187A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255877A1 (fr) 2009-05-07 2010-12-01 Umicore AG & Co. KG Procédé de préparation de catalyseurs de métathèse à base de ruthénium avec des ligands d'alkylidenes chélateurs
WO2012013208A1 (fr) 2010-07-30 2012-02-02 Ecole Nationale Superieure De Chimie De Rennes Nouveaux catalyseurs de métathèse stables et hautement ajustables
US8309737B2 (en) 2009-02-03 2012-11-13 Idenix Pharmaceuticals, Inc. Phosphinate ruthenium complexes
WO2013007561A1 (fr) 2011-07-12 2013-01-17 Basf Se Procédé de production de cycloheptène
WO2013010676A2 (fr) 2011-07-20 2013-01-24 Ecole Nationale Superieure De Chimie De Rennes Catalyseur supporté en phase liquide ionique
WO2013127880A1 (fr) * 2012-02-27 2013-09-06 Apeiron Synthesis Sp. Z O.O. Catalyseurs de métathèse contenant des groupes onium
WO2013140144A1 (fr) 2012-03-18 2013-09-26 Croda International Plc Métathèse d'oléfines, à l'aide de complexes catalytiques à base de ruthénium
WO2013186238A1 (fr) 2012-06-13 2013-12-19 Basf Se Procédé de production de cétones macrocycliques
WO2014001725A1 (fr) 2012-06-29 2014-01-03 Novance Procédé de synthèse d'acides insaturés biosourcés
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
WO2015097433A1 (fr) 2013-12-23 2015-07-02 Croda International Plc Polyol basé sur des résidus d'acides gras dimères et polyuréthannes correspondants
WO2015097434A1 (fr) 2013-12-23 2015-07-02 Croda International Plc Polyuréthane
US9527877B2 (en) 2012-06-29 2016-12-27 Apeiron Synthesis S.A. Metal complexes, their application and methods of carrying out of metathesis reaction
WO2017100585A1 (fr) * 2015-12-10 2017-06-15 Materia, Inc. Catalyseurs de métathèse d'oléfines
US9938253B2 (en) 2013-06-12 2018-04-10 Trustees Of Boston College Catalysts for efficient Z-selective metathesis
WO2019110658A1 (fr) 2017-12-08 2019-06-13 Arlanxeo Deutschland Gmbh Procédé de fabrication de caoutchoucs nitriles faisant appel à des complexes de ruthénium comme catalyseurs
EP3538508B1 (fr) 2016-11-09 2021-04-14 Verbio Vereinigte BioEnergie AG Complexes de ruthénium utiles pour catalyser des réactions de métathèse
WO2022200415A1 (fr) 2021-03-24 2022-09-29 Croda International Plc Revêtements, adhésifs et élastomères utilisant un polyol coiffé aux extrémités d'acétoacétate dérivé de polyesters thermoplastiques
WO2022200400A1 (fr) 2021-03-24 2022-09-29 Croda International Plc Revêtements, adhésifs et élastomères utilisant un polyol coiffé par extrémité acétoacétate
WO2022200495A1 (fr) 2021-03-24 2022-09-29 Croda International Plc Compositions de polymère élastomère et structures de voie ferrée et systèmes les comprenant
US11891517B2 (en) 2020-03-10 2024-02-06 Exxonmobil Chemical Patents Inc. Wax compositions comprising linear olefin dimers or hydrogenated variants thereof and methods for production thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999184B1 (fr) * 2012-12-12 2015-01-09 Ecole Nationale Superieure De Chimie De Rennes Complexes de ruthenium comprenant un diaminocarbene n-heterocyclique insature dissymetrique
FR3003564B1 (fr) * 2013-03-19 2015-03-06 Arkema France Procede de metathese comprenant l'extraction de l'ethylene forme au moyen d'une membrane
BR112018010108A2 (pt) 2015-11-18 2018-11-21 Provivi Inc micro-organismos para a produção de ferormônios de inseto e compostos relacionados
JP6970088B2 (ja) 2015-11-18 2021-11-24 プロビビ インコーポレイテッド オレフィンメタセシスを介した脂肪族オレフィン誘導体の生成
AR110606A1 (es) 2016-06-06 2019-04-17 Provivi Inc Producción semi-biosintética de alcoholes grasos y aldehídos grasos
FR3063290A1 (fr) 2017-02-24 2018-08-31 Stratoz Procede de synthese de pheromones
BR112019024258A2 (pt) 2017-05-17 2020-08-18 Provivi, Inc. Microorganismos yarrowia lipolytica recombinante e método para produzir um c6-c24 álcool graxo mono- ou poliinsaturado a partir de uma fonte endógena ou exógena de c6-c24 ácidograxo saturado
CN107641165B (zh) * 2017-08-08 2020-05-08 上海克琴科技有限公司 钌金属催化剂DREAM-2nd及其在烯烃关环复分解和双环戊二烯聚合反应中的应用
US11596612B1 (en) 2022-03-08 2023-03-07 PTC Innovations, LLC Topical anesthetics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287201A (en) * 1980-03-03 1981-09-01 Merck & Co., Inc. Anovulatory method and chicken feed compositions
WO1994005649A1 (fr) * 1992-09-01 1994-03-17 Pfizer Inc. Derives de 4-hydroxycoumarine a activite antibacterienne
WO2003044060A2 (fr) * 2001-11-15 2003-05-30 Materia, Inc. Precurseurs de ligands de carbene de chelation et leur utilisation dans la synthese de catalyseurs de metathese
WO2004035596A1 (fr) * 2002-10-15 2004-04-29 Boehringer Ingelheim International Gmbh Complexes de ruthenium en tant que (pre)catalyseurs de reaction de metathese
DE10335417A1 (de) * 2003-08-02 2005-02-17 Arlt, Dieter, Prof. Dr. Verfahren zur Herstellung von Metathesekatalysatoren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313559B2 (fr) 2000-08-10 2012-10-24 Trustees of Boston College Catalyseurs de metathese recyclables
CN102643175B (zh) * 2005-07-04 2014-12-10 赞南科技(上海)有限公司 钌络合物配体、钌络合物、固载钌络合物催化剂及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287201A (en) * 1980-03-03 1981-09-01 Merck & Co., Inc. Anovulatory method and chicken feed compositions
WO1994005649A1 (fr) * 1992-09-01 1994-03-17 Pfizer Inc. Derives de 4-hydroxycoumarine a activite antibacterienne
WO2003044060A2 (fr) * 2001-11-15 2003-05-30 Materia, Inc. Precurseurs de ligands de carbene de chelation et leur utilisation dans la synthese de catalyseurs de metathese
WO2004035596A1 (fr) * 2002-10-15 2004-04-29 Boehringer Ingelheim International Gmbh Complexes de ruthenium en tant que (pre)catalyseurs de reaction de metathese
DE10335417A1 (de) * 2003-08-02 2005-02-17 Arlt, Dieter, Prof. Dr. Verfahren zur Herstellung von Metathesekatalysatoren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUDESINSKY Z ET AL: "Tuberculostatics. IX. Allyl and propenyl derivatives of m-aminophenol", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, INSTITUTE OF ORGANIC CHEMISTRY & BIOCHEMISTRY, PRAGUE, CZ, vol. 19, 1954, pages 966 - 975, XP009097954, ISSN: 0010-0765 *
YAMAGUCHI M., ARISAWA M., HIRAMA M.: "ortho-vinylation reaction of anilines", CHEMICAL COMMUNICATIONS, 1998, pages 1399 - 1400, XP002475234 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481748B2 (en) 2009-02-03 2013-07-09 Idenix Pharmaceuticals, Inc. Phosphinate ruthenium complexes
US9115095B2 (en) 2009-02-03 2015-08-25 Idenix Pharmaceuticals, Inc. Phosphinate ruthenium complexes
US8309737B2 (en) 2009-02-03 2012-11-13 Idenix Pharmaceuticals, Inc. Phosphinate ruthenium complexes
US8765966B2 (en) 2009-02-03 2014-07-01 Idenix Pharmaceuticals, Inc. Phosphinate ruthenium complexes
EP2255877A1 (fr) 2009-05-07 2010-12-01 Umicore AG & Co. KG Procédé de préparation de catalyseurs de métathèse à base de ruthénium avec des ligands d'alkylidenes chélateurs
US8846938B2 (en) 2009-05-07 2014-09-30 Umicore Ag & Co. Kg Method for preparation of ruthenium-based metathesis catalysts with chelating alkylidene ligands
US9562116B2 (en) 2009-05-07 2017-02-07 Umicore Ag & Co. Kg Method for preparation of ruthenium-based metathesis catalysts with chelating alkylidene ligands
WO2012013208A1 (fr) 2010-07-30 2012-02-02 Ecole Nationale Superieure De Chimie De Rennes Nouveaux catalyseurs de métathèse stables et hautement ajustables
US8835628B2 (en) 2010-07-30 2014-09-16 Ecole Nationale Superieure De Chimie De Rennes Stable and highly tunable metathesis catalysts
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
WO2013007561A1 (fr) 2011-07-12 2013-01-17 Basf Se Procédé de production de cycloheptène
WO2013010676A3 (fr) * 2011-07-20 2013-08-29 Ecole Nationale Superieure De Chimie De Rennes Catalyseur supporté en phase liquide ionique
WO2013010676A2 (fr) 2011-07-20 2013-01-24 Ecole Nationale Superieure De Chimie De Rennes Catalyseur supporté en phase liquide ionique
US9403860B2 (en) 2012-02-27 2016-08-02 Apeiron Synthesis S.A. Metathesis catalysts containing onium groups
WO2013127880A1 (fr) * 2012-02-27 2013-09-06 Apeiron Synthesis Sp. Z O.O. Catalyseurs de métathèse contenant des groupes onium
US9371345B2 (en) 2012-02-27 2016-06-21 Apeiron Synthesis S.A. Metathesis catalysts containing onium groups
WO2013140144A1 (fr) 2012-03-18 2013-09-26 Croda International Plc Métathèse d'oléfines, à l'aide de complexes catalytiques à base de ruthénium
US9604903B2 (en) 2012-03-18 2017-03-28 Croda International Plc Metathesis process
US9816051B2 (en) 2012-03-18 2017-11-14 Croda International Plc Metathesis of olefins using ruthenium based catalytic complexes
WO2013140145A1 (fr) 2012-03-18 2013-09-26 Croda International Plc Procédé de métathèse
WO2013186238A1 (fr) 2012-06-13 2013-12-19 Basf Se Procédé de production de cétones macrocycliques
US8940940B2 (en) 2012-06-13 2015-01-27 Basf Se Process for preparing macrocyclic ketones
US9376366B2 (en) 2012-06-29 2016-06-28 Oleon S.A.S. Method for synthesising biobased unsaturated acids
CN104411672A (zh) * 2012-06-29 2015-03-11 诺文斯公司 生物来源的不饱和酸的合成方法
US9527877B2 (en) 2012-06-29 2016-12-27 Apeiron Synthesis S.A. Metal complexes, their application and methods of carrying out of metathesis reaction
WO2014001725A1 (fr) 2012-06-29 2014-01-03 Novance Procédé de synthèse d'acides insaturés biosourcés
US9938253B2 (en) 2013-06-12 2018-04-10 Trustees Of Boston College Catalysts for efficient Z-selective metathesis
WO2015097433A1 (fr) 2013-12-23 2015-07-02 Croda International Plc Polyol basé sur des résidus d'acides gras dimères et polyuréthannes correspondants
WO2015097434A1 (fr) 2013-12-23 2015-07-02 Croda International Plc Polyuréthane
WO2017100585A1 (fr) * 2015-12-10 2017-06-15 Materia, Inc. Catalyseurs de métathèse d'oléfines
US10857530B2 (en) 2015-12-10 2020-12-08 Umicore Ag & Co. Kg Olefin metathesis catalysts
EP3538508B1 (fr) 2016-11-09 2021-04-14 Verbio Vereinigte BioEnergie AG Complexes de ruthénium utiles pour catalyser des réactions de métathèse
US11484873B2 (en) 2016-11-09 2022-11-01 Verbio Vereinigte Bioenergie Ag Ruthenium complexes useful for catalyzing metathesis reactions
WO2019110658A1 (fr) 2017-12-08 2019-06-13 Arlanxeo Deutschland Gmbh Procédé de fabrication de caoutchoucs nitriles faisant appel à des complexes de ruthénium comme catalyseurs
US11407843B2 (en) 2017-12-08 2022-08-09 Arlanxeo Deutschland Gmbh Process for producing nitrile rubbers using ruthenium complex catalysts
US11891517B2 (en) 2020-03-10 2024-02-06 Exxonmobil Chemical Patents Inc. Wax compositions comprising linear olefin dimers or hydrogenated variants thereof and methods for production thereof
WO2022200415A1 (fr) 2021-03-24 2022-09-29 Croda International Plc Revêtements, adhésifs et élastomères utilisant un polyol coiffé aux extrémités d'acétoacétate dérivé de polyesters thermoplastiques
WO2022200400A1 (fr) 2021-03-24 2022-09-29 Croda International Plc Revêtements, adhésifs et élastomères utilisant un polyol coiffé par extrémité acétoacétate
WO2022200495A1 (fr) 2021-03-24 2022-09-29 Croda International Plc Compositions de polymère élastomère et structures de voie ferrée et systèmes les comprenant

Also Published As

Publication number Publication date
US20130144060A1 (en) 2013-06-06
JP5284269B2 (ja) 2013-09-11
US8394965B2 (en) 2013-03-12
EP2097431B1 (fr) 2015-03-25
BRPI0721051A2 (pt) 2014-07-29
FR2909382A1 (fr) 2008-06-06
CN103601758A (zh) 2014-02-26
JP2010511017A (ja) 2010-04-08
EP2097431A1 (fr) 2009-09-09
BRPI0721051B1 (pt) 2017-05-09
CN103601758B (zh) 2017-09-08
CA2671082A1 (fr) 2008-06-05
FR2909382B1 (fr) 2009-01-23
EP2476688B1 (fr) 2017-06-14
EP2476688A1 (fr) 2012-07-18
IN2009KN02409A (fr) 2015-08-07
US8586757B2 (en) 2013-11-19
US20100087644A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
EP2097431B1 (fr) Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines
FR2961205A1 (fr) Procede de preparation de composes esteramides
JP5372771B2 (ja) プロセス
EP0748326B1 (fr) Diphosphines optiquement actives, leur preparation par dedoublement du melange racemique
EP2139853A1 (fr) Procede de preparation de precurseurs de carbenes de type caac et leur utilisation pour preparer lesdits carbenes
WO2008135386A1 (fr) Ligands chiraux de type carbenes n-heterocycliques pour la catalyse asymetrique
FR2909671A1 (fr) Procede de preparation de composes 1,3,2-oxazaborolidines
FR2750423A1 (fr) Procede d'hydrogenation asymetrique d'un compose cetonique
JP3885497B2 (ja) 1,2,4−ブタントリオールの製造方法
EP1305324A1 (fr) Utilisation de diphosphines chirales comme ligands optiquement actifs
EP2240479B1 (fr) Nouveaux composes organiques azotés utilisables comme précurseur de composition catalytique
FR2867187A1 (fr) Procede utile pour la preparation de benzazepines et derives de celles-ci.
WO2002006226A1 (fr) Processus de préparation de pyrroles fusionnés
WO2012069566A1 (fr) Synthese de n-heterocycles par alkylation reductrice de derives cyanes
EP3066066B1 (fr) Procédé de synthèse d'esters
WO2005030719A1 (fr) Nouveau procede de preparation du cis-octahydro-isoindole
WO2023247697A1 (fr) Nouveaux composes a base de fer, leurs procedes de preparation et leur utilisation comme catalyseurs
FR2642426A1 (fr) Compose d'organogermanium, procedes pour leur fabrication et agent inhibiteur des enzymes de degradation des peptides opioides
FR2734823A1 (fr) Nouveaux complexes metalliques optiquement actifs et leur utilisation en catalyse asymetrique
CA2322986A1 (fr) Procede de separation de diastereoisomeres d'une diphosphine
FR2860231A1 (fr) Nouveau procede de preparation du cis-octahydro-isoindole
FR2865209A1 (fr) Procede de preparation de derives organozinciques aromatiques.
JPWO2005082861A1 (ja) 4−[5−(イミダゾール−1−イル)−2−メチルベンゾイル]−3,5−ジメチル安息香酸またはそのエステルの不斉還元法
FR2788764A1 (fr) Procede de preparation d'un compose de type indanone ou thioindanone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780049125.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07847578

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2671082

Country of ref document: CA

Ref document number: 2007847578

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009538722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2409/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12517322

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0721051

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090529