WO2007105622A1 - Method for producing heterocyclic compound - Google Patents
Method for producing heterocyclic compound Download PDFInfo
- Publication number
- WO2007105622A1 WO2007105622A1 PCT/JP2007/054644 JP2007054644W WO2007105622A1 WO 2007105622 A1 WO2007105622 A1 WO 2007105622A1 JP 2007054644 W JP2007054644 W JP 2007054644W WO 2007105622 A1 WO2007105622 A1 WO 2007105622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituent
- formula
- aryl
- heterocyclic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/87—Benzo [c] furans; Hydrogenated benzo [c] furans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/08—Bridged systems
Definitions
- the present invention relates to a method for producing a heterocyclic compound, in particular, isobenzofuran or a similar heterocyclic compound.
- Heterocyclic compounds having a ⁇ -conjugated system are also attracting interest as materials for organic electroluminescence (EL) devices, organic field effect transistor (FET) devices, fluorescent dyes, and the like.
- EL organic electroluminescence
- FET organic field effect transistor
- One such heterocyclic compound is isobenzofuran or a similar compound. So far, several methods have been reported for synthesizing isobenzofuran and its compounds in which oxygen atoms are replaced by sulfur atoms or selenium atoms.
- Non-Patent Document 1 describes a method of synthesizing 1,3-diphenylisobenzofuran by reducing orthodibenzoylbenzene with potassium borohydride and then dehydrating it using an acid catalyst. Is described. Then, 1,3-diphenylisobenzofuran obtained by this method is reacted with pentasulfurium diphosphorusen to produce 1,3-diphenylbenzo [c] thiophene (isothianaphthene). Is also obtained.
- Non-Patent Document 2 describes a method of synthesizing 1,3-diphenylisobenzofuran by oxidizing 2,2-dimethyl-1,3-diphenylisoindene in air.
- Non-Patent Document 3 describes a method of synthesizing 1,3-diphenylisobenzofuran by reacting benzoyl chloride to a dilithium salt of benzophenosylhydrazone and then reacting with lithium bromide. Yes.
- benzo [c] selenophene is obtained by reacting isobenzofuran with Woollins reagent ([PhP (Se) ( ⁇ -Se)]).
- the conventional synthesis methods often require special raw materials as shown in these examples. Therefore, the synthesis of the raw materials required multiple steps, which required a long time and high manufacturing costs. In addition, it was not easy to introduce a substituent at an arbitrary position of the ring skeleton of the obtained heterocyclic compound. In addition, the reactant In many cases, there were problems such as safety, the need for a large amount of solvent, and the formation of a large amount of by-products.
- Non-Patent Document 5 a method of synthesizing an indene derivative by reacting with an acetylene after activating a CH bond at the ortho-position of an aromatic ring to which an imino group is bonded with a rhodium compound, Similarly, a method for synthesizing a phthalimidine derivative by reacting with an isocyanate after being activated has already been reported by the inventors of the present application.
- Non-Patent Document 1 M. P. Cava, 2 others, Journal of Organic Chemistry, 1960, Vol. 25, p. 1481-1484
- Non-Patent Document 2 E. Johansson, 1 other, Journal of Organic Chemistry, 1981, Vol. 46, p. 3752-3754
- Non-Patent Document 3 J. T. Sharp, 1 other, Tetrahedron Letters, 1986, Vol. 27, p. 869 -872
- Non-Patent Document 4 A. K. Mohanakrishnan, 1 other, Tetrahedron Letters, 2005, 46, p. 7201-7204
- Non-Patent Document 5 Y. Kuninobu, 3 others, Journal of the American Chemical Society, 2006, No. 128, p. 202-209
- the present invention has been made to solve the above-described problems, and provides a method for synthesizing isobenzofuran and similar heterocyclic compounds in a short reaction step that is easily available. It is the purpose.
- the above object is to provide an aromatic imine having at least one aromatic ring bonded to a carbon atom of an imino group and having at least one hydrogen atom at the position of imino group ortho in the aromatic ring, an aldehyde, A group consisting of thioaldehyde, selenaldehyde, and terucaldehyde also selected from the group consisting of isobenzofuran, isothianaphthene, isoselenanaphthene and isotellananaphthene, characterized by reacting with one compound It is solved by providing a process for the preparation of one kind of heterocyclic compound in which force is also selected. Specifically, the above problem is solved by the following formula (I)
- R ⁇ R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
- R 5 and R 6 are each independently , A hydrogen atom, an alkyl group which may have a substituent, an alkyl group which may have a substituent,
- An aryl group which may have a substituent an aryl group which may have a substituent, an aryl group which may have a substituent, an aryl group which may have a substituent, or a substituent. It may have a cycloalkyl group or a substituent, R ⁇ R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring. And a compound of the following formula (II)
- R 7 has an aryl group that may have a substituent, an aromatic heterocyclic group that may have a substituent, an aryl group that may have a substituent, or a substituent.
- X is an oxygen atom, a sulfur atom, a selenium atom and It is one selected from the group of tellurium nuclear power.
- R 5 may have a substituent, may have a aryl group, or may have a substituent !, an aromatic heterocyclic group, an optionally substituted aryl group or substituent.
- X is an oxygen atom.
- Such catalysts that are preferably reacted in the presence of a catalyst comprising a transition metal compound include transition metal compounds belonging to Group 7, Group 8, Group 9 or Group 10 of the Periodic Table, among them.
- rhenium compounds, particularly rhenium (I) compounds are preferably used.
- the reaction it is represented by the formula (I). It is preferable that the molar ratio ( ⁇ ) of the compound represented by the formula (II) to the compound to be reacted is 1.5 or more.
- X is an oxygen atom, it is preferable to proceed the reaction while removing generated water from the reaction system.
- the present invention relates to an aromatic imine having at least one aromatic ring bonded to a carbon atom of an imino group and having at least one hydrogen atom at the position of the imino group ortho in the aromatic ring, and an aldehyde , Thioaldehyde, selenoaldehyde, and terucaldehyde are also selected.
- This is a method for producing one kind of selected heterocyclic compound.
- the aromatic imine may have an arbitrary substituent that does not inhibit the progress of the reaction of the present invention.
- a compound represented by the following formula (I) is preferably used.
- R 2, R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, which may have a substituent Alkyl group, aryl group which may have a substituent, aryl alkyl group which may have a substituent, aryl hydrocarbon group which may have a substituent, aryl which may have a substituent
- Good carboxyl group or salt thereof alkyl carbo group, aryl carbo group, alkyloxy carbo group, aryloxy carbo ol group, alkyl group, carboxy group, ally carboxy group, protective group Amino group, alkylamino group, arylamino group, am
- the monovalent substituents RR 2 , R 3 and R 4 bonded to the aromatic ring in the formula (I) are not particularly limited as long as they do not inhibit the progress of the reaction of the present invention. Instead, the above-mentioned various substituents can be employed. However, as shown in the formula (I), it is necessary that at least one hydrogen atom is bonded to the ortho position as viewed from the imino group in the aromatic ring. This is because it is presumed that the reaction proceeds by activating the CH bond at the ortho position as viewed from the force imino group that explains the estimation mechanism of the reaction of the present invention.
- the substituents R 1 R 2 , R 3 and R 4 may have a substituent !, an alkyl group, an optionally substituted alkenyl group, and a substituent. It may have an alkyl group or a substituent.
- the number of carbon atoms of the thiol group, arylsulfol group, alkylazo group and allylazo group is not particularly limited, and may be a polymer chain. However, it is usually 1 to 20, and preferably 1 to 10.
- R 5 may have a hydrogen atom, a substituent, an alkyl group, a substituent, an alkyl group, or a substituent.
- R 5 is preferably not a hydrogen atom.
- R 5 has an aryl group which may have a substituent, an aromatic heterocyclic group or a substituent which may have a substituent.
- each substituent of R 5 is not particularly limited, and may be a polymer chain, but is usually 1 to 20, preferably 6 to 20, more preferably 6 to 10. It is. Preferable specific examples thereof include a phenyl group which may have a substituent, a naphthyl group which may have a substituent, a substituent which may have a substituent, and a cinnamyl group.
- R 6 may have a hydrogen atom, a substituent, an alkyl group, or a substituent.
- Alkyl group, alkyl group which may have a substituent, aryl group which may have a substituent, aryl alkyl group which may have a substituent, and substituent An arylalkyl group that may be substituted, an arylalkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a heterocyclic group that may have a substituent.
- R 6 is not a hydrogen atom.
- each substituent of R 6 is not particularly limited and may be a polymer chain, but is usually 1 to 20, preferably 6 to 20, more preferably 6 to: LO.
- R 6 is a substituent that is not finally incorporated into the target product but is incorporated into the by-product amine or aldimine.
- Preferable specific examples include a phenyl group and a benzyl group.
- R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring.
- R 3 and R 4 adjacent substituents may be bonded to form a ring, or distant substituents may be bonded to form a ring.
- R 5 is It may be bonded to R 2 , R 3 or R 4 .
- R 6 is In this case, it may be bonded to R 3 , R 4, or R 5, and in this case, there is an amine produced as a by-product of the reaction, and aldimine is incorporated into the heterocyclic compound shown by the formula (III). Become.
- Three or more substituents of R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other.
- the ring thus formed may be an aromatic ring or a non-aromatic ring.
- the number of carbon atoms of the substituent in the case of forming a ring is not particularly limited, and the ring may be bonded to the polymer chain, but is usually 1 to 20, preferably 6 to 20, Preferably it is 6-10.
- the carbon number here is the total number of carbon atoms of the substituents that are bonded to each other to form a ring. For example, when a naphthalene ring is formed by condensing a benzene ring at the R 1 and R 2 positions, the carbon number is counted as 4.
- the compound may have an arbitrary substituent that does not inhibit the progress of the reaction of the present invention. Specifically, a compound represented by the following formula ( ⁇ ) is preferably used.
- R 7 has an aryl group that may have a substituent, an aromatic heterocyclic group that may have a substituent, an aryl group that may have a substituent, or a substituent.
- X is an oxygen atom, a sulfur atom, a selenium atom and It is one selected from the group of tellurium nuclear power.
- R 7 is, I may have a substituent!, Have Ariru group, the substituents! ⁇ ⁇ Aromatic heterocyclic group, optionally substituted aryl alkenyl group, optionally substituted aryl hydrocarbon group, optionally substituted, alkenyl group or substituent
- An alkynyl group which may have That is, it has an aromatic ring or an unsaturated bond that can be conjugated with a C X bond.
- R 7 may have an aryl group or a substituent which may have a substituent.
- R 7 may preferably have an aromatic heterocyclic group, a substituent, an arylalkyl group or a substituent, and may be an arylalkyl group.
- R 7 include a phenyl group which may have a substituent, a naphthyl group which may have a substituent, a cinnamyl group which may have a substituent.
- a good yield can be obtained regardless of whether R 7 is a phenyl group having an electron-withdrawing group or a phenyl group having an electron-donating group. As a result, it is possible to introduce various substituents.
- X is an oxygen atom, a sulfur atom, a selenium atom, and a tellurium atomic force, which is one kind selected.
- the compound represented by the formula (II) is an aldehyde.
- the compound represented by the formula (II) is thioaldehyde.
- X is a selenium atom
- the compound represented by the formula (II) is selenoaldehyde.
- X is a tellurium atom
- the compound represented by the formula ( ⁇ ) is a tellurium aldehyde.
- These compounds may form stable trimers. For example, in the case of thioaldehyde, a trithian ring is formed to form a trimer. In the production method of the present invention, this In this case, the reaction proceeds via the monomer produced in the reaction system.
- X is one selected from the group consisting of an oxygen atom, a sulfur atom, a selenium atom, and tellurium atomic energy.
- the heterocyclic compound represented by the formula ( ⁇ ) is isobenzofuran (2-benzofuran: benzo [c] furan).
- the heterocyclic compound represented by the formula ( ⁇ ) is isothianaphthene (2-benzothiophene (benzo [c] thiophene).
- the formula (III) is isoselenanaphthene (2-benzoselenophene: benzo [c] selenophene)
- the heterocyclic compound represented by formula (III) is Isotellanaphthene (2-benzoterphene: benzo [c] terphene).
- the substituents of RR 2 , R 3 , R 4 , R 5 and R 7 are each a compound represented by the formula (I) as a raw material And from a compound represented by the formula ( ⁇ ).
- Both the compound represented by the formula (I) and the compound represented by the formula ( ⁇ ⁇ ⁇ ) are compounds that can be easily introduced with various substituents, and as a result, have various substituents at desired positions.
- the heterocyclic compound represented by the formula ( ⁇ ) can be easily produced in one step.
- the reaction described above is represented by a reaction formula by taking the case where X is an oxygen atom as an example.
- 1 mol of the compound represented by the formula (IV) (aldimine) and 1 mol of water are by-produced.
- Half of the compound represented by the formula (Ila) reacts directly with the compound represented by the formula (I), and the other half captures the by-produced amine during the reaction to obtain the compound represented by the formula (IV) Is consumed to form).
- R 6 and R 7 in the compound represented by the formula (IV) have the same meanings as the formula (I) and the formula (II).
- the reaction is preferably performed with the molar ratio ( ⁇ ) of the compound represented by the formula (II) to the compound represented by the formula (I) being 1.5 or more. It is more preferable.
- the molar ratio ( ⁇ ) is usually 10 or less, preferably 5 or less.
- the method of mixing and reacting the compound represented by the formula (I) and the compound represented by the formula ( ⁇ ) is not particularly limited. You may make it react in a solution using a solvent, and you may make it react without a solvent.
- the solvent that can be used is not particularly limited, but an aprotic organic solvent such as hexane, benzene, toluene, dichloroethane, and tetrahydrofuran is preferable. Of these, hydrocarbon solvents or halogen-containing hydrocarbon solvents are preferably used.
- X in the formula (II) is an oxygen atom, water is by-produced as the reaction proceeds. Therefore, it is preferable to proceed the reaction while removing the produced water from the reaction system.
- the method for removing water from the reaction system is not particularly limited.
- a water-absorbing agent such as molecular sieves may coexist in the reaction system, and water is removed when the solvent is heated to reflux. You may leave.
- the reaction temperature is not particularly limited, but a temperature of 0 to 300 ° C is usually employed. Preferably, it is 50 ° C or higher and 200 ° C or lower.
- the compound represented by the formula (I) and the compound represented by the formula ( ⁇ ) are reacted, it is preferably reacted in the presence of a catalyst composed of a transition metal compound.
- the amount of the transition metal compound used is not particularly limited, but the transition metal compound is used in an amount of 0.001 to 0.5 times the number of moles of the compound represented by the formula (I) on a metal atom basis. Is preferred. From the viewpoint of the reaction rate and yield, the amount of the transition metal compound used is more preferably 0.005 times or more, more preferably 0. 0,5 times the number of moles of the compound represented by formula (I). 01 times or more. On the other hand, from the viewpoint of reducing manufacturing costs and waste, the amount of transition metal compound used is more preferably 0.2 times or less the number of moles of the compound represented by formula (I). Is less than 0.1 times.
- the transition metal compound used as the catalyst is preferably a transition metal compound belonging to Group 7, Group 8, Group 9 or Group 10 of the periodic table. This is because these transition metal compounds are generally considered to have the ability to activate C—H bonds.
- compounds of rhenium, ruthenium, rhodium, iridium and palladium are suitable. Of these, rhenium compounds, particularly monovalent rhenium compounds (rhenium (I) compounds) are preferably used.
- the rhenium compound is not particularly limited, but is preferably a compound containing a ligand (complex).
- the ligand includes halogen atoms such as bromine and chlorine, carbon monoxide, tetrahydrofuran (thf ) And the like.
- halogen atoms such as bromine and chlorine
- carbon monoxide tetrahydrofuran (thf )
- rhenium compound include [ReBr (CO) (thf)], ReBr (CO), and ReCl (CO).
- the valence of the rhenium compound to be added may be different as long as the rhenium (I) compound is present in the reaction system.
- a zero-valent rhenium compound may be oxidized in the reaction system, and a polyvalent rhenium compound may be reduced in the reaction system.
- reaction mechanism of the present invention is not necessarily clear, when a rhenium catalyst is used and an aldehyde is used as the compound represented by the formula (II), a mechanism such as the following formula (2) is used. Is estimated. First, the CH bond at the ortho position of the aromatic ring is activated by a rhenium catalyst, and an aldehyde is inserted into the formed C—Re bond. Next, find it in the molecule. A cyclization reaction proceeds nuclearly, rhenium salt is reductively eliminated, and amine is eliminated. The released amine reacts with the aldehyde and dehydrates to form aldimine.
- the heterocyclic compound represented by the formula (III) thus obtained has a long and ⁇ -conjugated system, it is an organic electroluminescence (EL) device, an organic field effect transistor (FET) device, an organic compound. It is promising as a material for light emitting diodes and fluorescent dyes. According to the production method of the present invention, a heterocyclic compound having various substituents at desired positions can be easily produced in one step. Therefore, it becomes easy to adjust the physical properties of the heterocyclic compound represented by the formula (III), and the target compound based on the molecular design can be easily obtained.
- EL organic electroluminescence
- FET organic field effect transistor
- the compound (B1553) represented by the following formulas (3) and (4) has an electron transport capability and a hole transfer capacity of 1 ⁇ 1 ⁇
- HT layer hole transport layer
- B1553 can be easily manufactured by the method shown in the equation (4).
- the heterocyclic compound represented by the formula (III) is also useful as a reaction intermediate.
- the heterocyclic compound represented by the formula (III) is reacted with olefin (V) or acetylene (VII) to advance the Diels-Alder reaction.
- the diels-alder reaction may proceed by reacting olefin (V) or acetylene (VII) with a bicyclic compound synthesized in advance.
- the reaction is allowed to proceed in the presence of a compound represented by the formula (I), a compound represented by the formula ( ⁇ ), olefin (V) or acetylene (VII), and represented by the formula (III) produced.
- the heterocyclic compound is preferably captured by olefin (V) or acetylene (VII) in the reaction system. This is a particularly effective technique when the heterocyclic compound represented by the formula (III) is unstable. In this case, it is preferable that olefin (V) or acetylene (VII) is blended in an excessive amount with respect to the compound represented by formula (I).
- the Diels-Alder attached product represented by the following formula (VI) is obtained. can get.
- the compound obtained by the Diels-Alder reaction as described above has a skeleton in which a large number of rings are bonded, and often has a long ⁇ -conjugated system. Therefore, an organic electroluminescence (EL) device or It is promising as a material for organic field-effect transistor (FET) elements, organic light-emitting diodes, and fluorescent dyes.
- EL organic electroluminescence
- FET organic field-effect transistor
- a polycyclic compound having various substituents at desired positions can be easily produced.
- a new blue light-emitting substance, 7, 16-dihydroheptacene derivative has been reported to be synthesized by the method of the following formula (5). (J. Org. Chem. 2006, 71, 4085), but requires a multi-step reaction.
- the manufacturing method of the present invention as shown in the equation (6), the number of steps can be greatly reduced.
- Example 1 The compound represented by formula (I) is an aromatic imine, N- (diphenylmethylene) benzenamine 129 mg (0.500 mmol), and the compound represented by formula (II) is benzaldehyde 1 02 (1. OOmmol). ), [ReBr (CO) (thf)] 10.6 mg (0.O125 mmol) as a catalyst,
- Examples 2-7 A heterocycle represented by the formula ( ⁇ ) in the same manner as in Example 1 except that the compound represented by the formula (I) and the compound represented by the formula ( ⁇ ) were each changed to the compounds shown in Table 1 below. The formula compound was obtained. The chemical reaction formula at that time is shown in the following formula (7). Table 1 summarizes the yield of the heterocyclic compound represented by the formula (III).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Disclosed is a method for producing a heterocyclic compound represented by the formula (III) below, wherein an aromatic imine is reacted with an aldehyde. (In the formula, R1, R2, R3, R4, R5 and R7 respectively represent a hydrogen atom, an alkyl group, an aryl group or the like; and X represents O, S, Se or Te.) Consequently, an isobenzofuran and similar compounds can be synthesized from an easily available raw material through a short reaction process.
Description
明 細 書 Specification
複素環式化合物の製造方法 Method for producing heterocyclic compound
技術分野 Technical field
[0001] 本発明は、複素環式化合物、特にイソべンゾフランやそれに類する複素環式化合 物を製造する方法に関する。 [0001] The present invention relates to a method for producing a heterocyclic compound, in particular, isobenzofuran or a similar heterocyclic compound.
背景技術 Background art
[0002] 長 、 π共役系を有する複素環式化合物は、有機電界発光 (EL)素子や有機電界 効果型トランジスタ (FET)素子、蛍光色素などの材料としての興味力もたれて 、る。 そして、そのような複素環式ィ匕合物の 1つとしてイソべンゾフランやそれに類する化合 物などが挙げられる。これまでに、イソべンゾフランやその酸素原子を硫黄原子ゃセ レン原子などに置き換えたィ匕合物を合成する方法力 ^、くつか報告されている。 [0002] Heterocyclic compounds having a π-conjugated system are also attracting interest as materials for organic electroluminescence (EL) devices, organic field effect transistor (FET) devices, fluorescent dyes, and the like. One such heterocyclic compound is isobenzofuran or a similar compound. So far, several methods have been reported for synthesizing isobenzofuran and its compounds in which oxygen atoms are replaced by sulfur atoms or selenium atoms.
[0003] 例えば非特許文献 1には、オルトジベンゾィルベンゼンを水素化ホウ素カリウムで還 元してから、酸触媒を用いて脱水させて 1, 3—ジフエ-ルイソベンゾフランを合成す る方法が記載されている。そして、この方法で得られた 1, 3—ジフエ-ルイソベンゾフ ランに対して、五硫ィ匕二リンを反応させることで、 1, 3—ジフエ-ルペンゾ [c]チオフ ェン (イソチアナフテン)が得られることも記載されている。非特許文献 2には、 2, 2— ジメチルー 1, 3—ジフエ-ルイソインデンを空気中で酸化させて、 1, 3—ジフエ-ル イソべンゾフランを合成する方法が記載されている。非特許文献 3には、ベンゾフエノ ントシルヒドラゾンのジリチウム塩に対して、ベンゾイルク口リドを反応させてから、臭化 リチウムを反応させて 1, 3—ジフヱニルイソべンゾフランを合成する方法が記載され ている。非特許文献 4には、イソべンゾフランに対して Woollins reagent ( [PhP (Se) ( μ - Se) ] )を反応させることによってベンゾ [c]セレノフェン (イソセレナナフテン)を [0003] For example, Non-Patent Document 1 describes a method of synthesizing 1,3-diphenylisobenzofuran by reducing orthodibenzoylbenzene with potassium borohydride and then dehydrating it using an acid catalyst. Is described. Then, 1,3-diphenylisobenzofuran obtained by this method is reacted with pentasulfurium diphosphorusen to produce 1,3-diphenylbenzo [c] thiophene (isothianaphthene). Is also obtained. Non-Patent Document 2 describes a method of synthesizing 1,3-diphenylisobenzofuran by oxidizing 2,2-dimethyl-1,3-diphenylisoindene in air. Non-Patent Document 3 describes a method of synthesizing 1,3-diphenylisobenzofuran by reacting benzoyl chloride to a dilithium salt of benzophenosylhydrazone and then reacting with lithium bromide. Yes. In Non-Patent Document 4, benzo [c] selenophene (isoselenanaphthene) is obtained by reacting isobenzofuran with Woollins reagent ([PhP (Se) (μ-Se)]).
2 2
合成する方法が記載されて ヽる。 A method of synthesis is described.
[0004] し力しながら、これらの例に示されて 、るように、従来の合成方法では、特殊な原料 が必要になることが多力つた。したがって、その原料の合成には多段階を必要とし、 長時間を要するとともに、製造コストが高力つた。また、得られる複素環式化合物の環 骨格の任意の位置に置換基を導入することも容易ではな力つた。さらに、反応剤の
安全性、多量の溶媒の必要性、多量の副生成物の生成などの問題を有する場合も 多かった。 [0004] However, as shown in these examples, the conventional synthesis methods often require special raw materials as shown in these examples. Therefore, the synthesis of the raw materials required multiple steps, which required a long time and high manufacturing costs. In addition, it was not easy to introduce a substituent at an arbitrary position of the ring skeleton of the obtained heterocyclic compound. In addition, the reactant In many cases, there were problems such as safety, the need for a large amount of solvent, and the formation of a large amount of by-products.
[0005] 非特許文献 5においては、ィミノ基が結合した芳香環のオルト位の C H結合をレ -ゥム化合物によって活性ィ匕してから、アセチレンと反応させてインデン誘導体を合 成する方法や、同様に活性ィ匕してからイソシアナートと反応させてフタルイミジン誘導 体を合成する方法が、本件出願の発明者らによって既に報告されている。 [0005] In Non-Patent Document 5, a method of synthesizing an indene derivative by reacting with an acetylene after activating a CH bond at the ortho-position of an aromatic ring to which an imino group is bonded with a rhodium compound, Similarly, a method for synthesizing a phthalimidine derivative by reacting with an isocyanate after being activated has already been reported by the inventors of the present application.
[0006] 非特許文献 1 :M. P. Cava,外 2名、 Journal of Organic Chemistry, 1960年、第 25卷 、 p. 1481 - 1484 [0006] Non-Patent Document 1: M. P. Cava, 2 others, Journal of Organic Chemistry, 1960, Vol. 25, p. 1481-1484
非特許文献 2 : E. Johansson,外 1名、 Journal of Organic Chemistry, 1981年、第 46 卷、 p. 3752- 3754 Non-Patent Document 2: E. Johansson, 1 other, Journal of Organic Chemistry, 1981, Vol. 46, p. 3752-3754
非特許文献 3 : J. T. Sharp,外 1名、 Tetrahedron Letters, 1986年、第 27卷、 p. 869 -872 Non-Patent Document 3: J. T. Sharp, 1 other, Tetrahedron Letters, 1986, Vol. 27, p. 869 -872
非特許文献 4: A. K. Mohanakrishnan、外 1名、 Tetrahedron Letters, 2005年、第 46 卷、 p. 7201 - 7204 Non-Patent Document 4: A. K. Mohanakrishnan, 1 other, Tetrahedron Letters, 2005, 46, p. 7201-7204
非特許文献 5 : Y. Kuninobu、外 3名、 Journal of the American Chemical Society, 200 6年、第 128卷、 p. 202- 209 Non-Patent Document 5: Y. Kuninobu, 3 others, Journal of the American Chemical Society, 2006, No. 128, p. 202-209
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] 本発明は上記課題を解決するためになされたものであり、入手容易な原料力ゝら短 い反応工程でイソべンゾフランやそれに類する複素環式化合物を合成する方法を提 供することを目的とするものである。 [0007] The present invention has been made to solve the above-described problems, and provides a method for synthesizing isobenzofuran and similar heterocyclic compounds in a short reaction step that is easily available. It is the purpose.
課題を解決するための手段 Means for solving the problem
[0008] 上記課題は、ィミノ基の炭素原子に結合した少なくとも 1つの芳香環を有し、かつ該 芳香環においてイミノ基力 オルトの位置に少なくとも 1つの水素原子を有する芳香 族ィミンと、アルデヒド、チォアルデヒド、セレノアルデヒド及びテル口アルデヒドからな る群力も選択される 1種の化合物とを反応させることを特徴とする、イソべンゾフラン、 イソチアナフテン、イソセレナナフテン及びイソテルラナフテンカもなる群力も選択さ れる 1種の複素環式化合物の製造方法を提供することによって解決される。
具体的には上記課題は、下記式 (I) [0008] The above object is to provide an aromatic imine having at least one aromatic ring bonded to a carbon atom of an imino group and having at least one hydrogen atom at the position of imino group ortho in the aromatic ring, an aldehyde, A group consisting of thioaldehyde, selenaldehyde, and terucaldehyde also selected from the group consisting of isobenzofuran, isothianaphthene, isoselenanaphthene and isotellananaphthene, characterized by reacting with one compound It is solved by providing a process for the preparation of one kind of heterocyclic compound in which force is also selected. Specifically, the above problem is solved by the following formula (I)
[化 1] [Chemical 1]
[式中、 R\ R2、 R3及び R4は、それぞれ独立して水素原子、ハロゲン原子、置換基を 有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよい アルキ-ル基、置換基を有してもよいァリール基、置換基を有してもよいァリールアル キル基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリール アルキ-ル基、置換基を有してもよいシクロアルキル基、置換基を有してもよい複素 環基、保護されていてもよい水酸基、アルコキシ基、ァリーロキシ基、アルデヒド基、 保護されていてもよいカルボキシル基又はその塩、アルキルカルボ-ル基、ァリール カルボ-ル基、アルキロキシカルボ-ル基、ァリーロキシカルボ-ル基、アルキル力 ルポ-口キシ基、ァリールカルボ-口キシ基、保護されていてもよいアミノ基、アルキ ルァミノ基、ァリールアミノ基、アンモ-ゥム基、アルキルアンモ-ゥム基、ァリールァ ンモ -ゥム基、保護されていてもよいチオール基、アルキルチオ基、ァリールチオ基、 保護されていてもよいスルフィン酸基又はその塩、アルキルスルフィエル基、ァリール スルフィエル基、保護されていてもよいスルホン酸基又はその塩、アルキルスルホ二 ル基、ァリールスルホ-ル基、アルキルァゾ基、ァリールァゾ基、保護されていてもよ いリン酸基又はその塩、保護されていてもよい亜リン酸基又はその塩、シァノ基、 -ト 口基又はアジド基であり; R5及び R6は、それぞれ独立して、水素原子、置換基を有し てもよいアルキル基、置換基を有してもよいァルケ-ル基、置換基を有してもよいァ ルキ-ル基、置換基を有してもよいァリール基、置換基を有してもよいァリールアルキ ル基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、シクロアルキル基又は置換基を有してもょ 、複素
環基であり ;R\ R2、 R3、 R4、 R5及び R6は、相互に結合して環を形成してもよい。 ] で示される化合物と、下記式 (II) [Wherein, R \ R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. An alkyl group, an aryl group that may have a substituent, an aryl group that may have a substituent, an arylalkyl group that may have a substituent, and a substituent. May have an aryl alkyl group, an optionally substituted cycloalkyl group, an optionally substituted heterocyclic group, an optionally protected hydroxyl group, an alkoxy group, an aryloxy group, an aldehyde Group, an optionally protected carboxyl group or a salt thereof, an alkyl carbo group, an aryl carbo group, an alkyloxy carbo group, an aryloxy carbo ol group, an alkyl group, a hydroxy group, an ally carbo group. -Mouthoxy group, even if protected Good amino group, alkylamino group, arylamino group, ammonia group, alkylammonium group, arylamine group, optionally protected thiol group, alkylthio group, arylthio group, protected Sulfinic acid group or salt thereof, alkyl sulfier group, aryl sulfiel group, sulfonic acid group or salt thereof which may be protected, alkyl sulfonyl group, aryl sulfonyl group, alkyl azo group, aralkyl azo group, protected A phosphoric acid group or a salt thereof, which may be protected, a phosphorous acid group or a salt thereof which may be protected, a cyano group, a -ortho group or an azide group; R 5 and R 6 are each independently , A hydrogen atom, an alkyl group which may have a substituent, an alkyl group which may have a substituent, an alkyl group which may have a substituent, or a substituent. An aryl group which may have a substituent, an aryl group which may have a substituent, an aryl group which may have a substituent, an aryl group which may have a substituent, or a substituent. It may have a cycloalkyl group or a substituent, R \ R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring. And a compound of the following formula (II)
[式中、 R7は、置換基を有してもよいァリール基、置換基を有してもよい芳香族複素 環基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、ァルケ-ル基又は置換基を有してもよ 、アルキ- ル基であり; Xは、酸素原子、硫黄原子、セレン原子及びテルル原子力 なる群から 選択される 1種である。 ] [Wherein R 7 has an aryl group that may have a substituent, an aromatic heterocyclic group that may have a substituent, an aryl group that may have a substituent, or a substituent. An alkenyl group which may have a substituent, a alkenyl group or an alkyl group which may have a substituent; and X is an oxygen atom, a sulfur atom, a selenium atom and It is one selected from the group of tellurium nuclear power. ]
で示される化合物とを反応させることを特徴とする、下記式 (III) Which is reacted with a compound represented by the following formula (III)
[化 3] [Chemical 3]
[式中、
R4、 R5、 R7及び Xは、上記式 (I)及び式 (II)と同じ。 ] で示される複素環式化合物の製造方法を提供することによって解決される。 [Where R 4 , R 5 , R 7 and X are the same as those in the above formulas (I) and (II). It is solved by providing the manufacturing method of the heterocyclic compound shown by these.
このとき、 R5が置換基を有してもよ!ヽァリール基、置換基を有してもよ!、芳香族複素 環基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、ァルケ-ル基又は置換基を有してもよ 、アルキ- ル基であることが好適である。 Xが酸素原子であることも好適である。また、遷移金属 化合物からなる触媒の存在下に反応させることが好ましぐそのような触媒としては、 周期表第 7族、第 8族、第 9族又は第 10族に属する遷移金属化合物、なかでもレニゥ ム化合物、特にレニウム(I)化合物が好適に用いられる。反応に際しては、式 (I)で示
される化合物に対する式 (II)で示される化合物のモル比(πΖι)を 1. 5以上として反 応させることが好ましい。また Xが酸素原子である場合には、生成する水を反応系か ら除去しながら反応を進行させることが好ま 、。 At this time, R 5 may have a substituent, may have a aryl group, or may have a substituent !, an aromatic heterocyclic group, an optionally substituted aryl group or substituent. An aryl group that may have an alkyl group, a substituent, a alkenyl group, or a substituent, which is an alkyl group, is preferable. It is also preferred that X is an oxygen atom. Such catalysts that are preferably reacted in the presence of a catalyst comprising a transition metal compound include transition metal compounds belonging to Group 7, Group 8, Group 9 or Group 10 of the Periodic Table, among them. However, rhenium compounds, particularly rhenium (I) compounds are preferably used. In the reaction, it is represented by the formula (I). It is preferable that the molar ratio (πΖι) of the compound represented by the formula (II) to the compound to be reacted is 1.5 or more. In addition, when X is an oxygen atom, it is preferable to proceed the reaction while removing generated water from the reaction system.
発明の効果 The invention's effect
[0011] 本発明の製造方法によれば、入手容易な原料力 短い反応工程でイソベンゾフラ ンやそれに類する複素環式化合物を合成することができる。そして、当該複素環式 化合物の環骨格の任意の位置にさまざまな置換基を導入することも容易であり、機 能材料や医薬品、あるいはそれらの中間体などとして有用な化合物を得ることができ る。 [0011] According to the production method of the present invention, it is possible to synthesize isobenzofuran and similar heterocyclic compounds in a reaction process that is easily available and has a short reaction time. It is also easy to introduce various substituents at any position of the ring skeleton of the heterocyclic compound, and it is possible to obtain compounds useful as functional materials, pharmaceuticals, or intermediates thereof. .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明は、ィミノ基の炭素原子に結合した少なくとも 1つの芳香環を有し、かつ該芳 香環においてイミノ基力 オルトの位置に少なくとも 1つの水素原子を有する芳香族 ィミンと、アルデヒド、チォアルデヒド、セレノアルデヒド及びテル口アルデヒドからなる 群力も選択される 1種の化合物とを反応させることを特徴とする、イソべンゾフラン、ィ ソチアナフテン、イソセレナナフテン及びイソテルラナフテンカもなる群力 選択され る 1種の複素環式化合物の製造方法である。 [0012] The present invention relates to an aromatic imine having at least one aromatic ring bonded to a carbon atom of an imino group and having at least one hydrogen atom at the position of the imino group ortho in the aromatic ring, and an aldehyde , Thioaldehyde, selenoaldehyde, and terucaldehyde are also selected. This is a method for producing one kind of selected heterocyclic compound.
[0013] まず、本発明の製造方法における原料ィ匕合物の一方である芳香族ィミンについて 説明する。当該芳香族ィミンは、本発明の反応の進行を阻害しない任意の置換基を 有してもよい。具体的には、下記式 (I)で示される化合物が好適に用いられる。 [0013] First, an aromatic imine that is one of raw materials and composites in the production method of the present invention will be described. The aromatic imine may have an arbitrary substituent that does not inhibit the progress of the reaction of the present invention. Specifically, a compound represented by the following formula (I) is preferably used.
[0014] [化 4] [0014] [Chemical 4]
[式中、
R2、 R3及び R4は、それぞれ独立して水素原子、ハロゲン原子、置換基を 有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよい
アルキ-ル基、置換基を有してもよいァリール基、置換基を有してもよいァリールアル キル基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリール アルキ-ル基、置換基を有してもよいシクロアルキル基、置換基を有してもよい複素 環基、保護されていてもよい水酸基、アルコキシ基、ァリーロキシ基、アルデヒド基、 保護されていてもよいカルボキシル基又はその塩、アルキルカルボ-ル基、ァリール カルボ-ル基、アルキロキシカルボ-ル基、ァリーロキシカルボ-ル基、アルキル力 ルポ-口キシ基、ァリールカルボ-口キシ基、保護されていてもよいアミノ基、アルキ ルァミノ基、ァリールアミノ基、アンモ-ゥム基、アルキルアンモ-ゥム基、ァリールァ ンモ -ゥム基、保護されていてもよいチオール基、アルキルチオ基、ァリールチオ基、 保護されていてもよいスルフィン酸基又はその塩、アルキルスルフィエル基、ァリール スルフィエル基、保護されていてもよいスルホン酸基又はその塩、アルキルスルホ二 ル基、ァリールスルホ-ル基、アルキルァゾ基、ァリールァゾ基、保護されていてもよ いリン酸基又はその塩、保護されていてもよい亜リン酸基又はその塩、シァノ基、 -ト 口基又はアジド基であり; R5及び R6は、それぞれ独立して、水素原子、置換基を有し てもよいアルキル基、置換基を有してもよいァルケ-ル基、置換基を有してもよいァ ルキ-ル基、置換基を有してもよいァリール基、置換基を有してもよいァリールアルキ ル基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、シクロアルキル基又は置換基を有してもょ 、複素 環基であり
R2、 R3、 R4、 R5及び R6は、相互に結合して環を形成してもよい。 ] [Where R 2, R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, which may have a substituent Alkyl group, aryl group which may have a substituent, aryl alkyl group which may have a substituent, aryl hydrocarbon group which may have a substituent, aryl which may have a substituent An alkyl group, an optionally substituted cycloalkyl group, an optionally substituted heterocyclic group, an optionally protected hydroxyl group, an alkoxy group, an aryloxy group, an aldehyde group, and a protected group; Good carboxyl group or salt thereof, alkyl carbo group, aryl carbo group, alkyloxy carbo group, aryloxy carbo ol group, alkyl group, carboxy group, ally carboxy group, protective group Amino group, alkylamino group, arylamino group, ammonia group, alkylammonium group, arylamine group, optionally protected thiol group, alkylthio group Group, arylthio group, sulfinic acid group or salt thereof which may be protected, alkylsulfier group, arylsulfur group, sulfonic acid group or salt thereof which may be protected, alkylsulfonyl group, arylsulfol group , An alkylazo group, an arylazo group, an optionally protected phosphoric acid group or a salt thereof, an optionally protected phosphorous acid group or a salt thereof, a cyano group, a -ortho group or an azide group; R 5 And R 6 are each independently a hydrogen atom, an alkyl group which may have a substituent, an alkyl group which may have a substituent, or an alkyl group which may have a substituent. An aryl group that may have a substituent, an aryl group that may have a substituent, an aryl group that may have a substituent, an aryl group that may have a substituent, a substituted group With group It, has a cycloalkyl group or a substituent Yo, a heterocyclic group R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring. ]
[0015] ここで、式 (I)において芳香環に結合している 1価の置換基 R R2、 R3及び R4は、 本発明の反応の進行を阻害しな 、ものであれば特に限定されず、上述の各種置換 基を採用することができる。し力しながら、式 (I)に示されるように、上記芳香環におい て、ィミノ基からみてオルトの位置には少なくとも 1つの水素原子が結合していること が必要である。後に、本発明の反応の推定メカニズムを説明する力 ィミノ基からみて オルト位の C H結合を活性ィ匕することによって反応が進行していると推定されるか らである。 Here, the monovalent substituents RR 2 , R 3 and R 4 bonded to the aromatic ring in the formula (I) are not particularly limited as long as they do not inhibit the progress of the reaction of the present invention. Instead, the above-mentioned various substituents can be employed. However, as shown in the formula (I), it is necessary that at least one hydrogen atom is bonded to the ortho position as viewed from the imino group in the aromatic ring. This is because it is presumed that the reaction proceeds by activating the CH bond at the ortho position as viewed from the force imino group that explains the estimation mechanism of the reaction of the present invention.
[0016] 置換基 R1 R2、 R3及び R4にお 、て、置換基を有してもよ!、アルキル基、置換基を 有してもよいァルケ-ル基、置換基を有してもよいアルキ-ル基、置換基を有してもよ
ぃァリール基、置換基を有してもよいァリールアルキル基、置換基を有してもよいァリ ールァルケ-ル基、置換基を有してもよいァリールアルキ-ル基、置換基を有しても よいシクロアルキル基、置換基を有してもよい複素環基、アルコキシ基、ァリーロキシ 基、アルキルカルボニル基、ァリールカルボニル基、アルキロキシカルボニル基、ァリ 一口キシカルボ-ル基、アルキルカルボ-口キシ基、ァリールカルボ-口キシ基、アル キルアミノ基、ァリールアミノ基、アルキルアンモ-ゥム基、ァリールアンモ-ゥム基、 アルキルチオ基、ァリールチオ基、アルキルスルフィエル基、ァリールスルフィ -ル基 、アルキルスルホ-ル基、ァリールスルホ-ル基、アルキルァゾ基及びァリールァゾ 基の炭素数は特に限定されず、高分子鎖であっても構わないが、通常 1〜20であり 、好適には 1〜 10である。 [0016] The substituents R 1 R 2 , R 3 and R 4 may have a substituent !, an alkyl group, an optionally substituted alkenyl group, and a substituent. It may have an alkyl group or a substituent. An aryl group, an aryl group that may have a substituent, an aryl group that may have a substituent, an aryl group that may have a substituent, and a substituent. A cycloalkyl group which may have a substituent, a heterocyclic group which may have a substituent, an alkoxy group, an aryloxy group, an alkylcarbonyl group, an arylylcarbonyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkylcarbo group; Nyloxy group, aryl-carboxyl group, alkylamino group, arylamino group, alkyl ammonium group, aryl ammonium group, alkylthio group, arylthio group, alkylsulfier group, arylsulfyl group, alkylsulfo group The number of carbon atoms of the thiol group, arylsulfol group, alkylazo group and allylazo group is not particularly limited, and may be a polymer chain. However, it is usually 1 to 20, and preferably 1 to 10.
[0017] 式 (I)にお 、て、 R5は、水素原子、置換基を有してもょ 、アルキル基、置換基を有し てもよぃァルケ-ル基、置換基を有してもよいアルキ-ル基、置換基を有してもよい ァリール基、置換基を有してもよいァリールアルキル基、置換基を有してもよいァリー ルァルケ-ル基、置換基を有してもよいァリールアルキ-ル基、置換基を有してもよ ぃシクロアルキル基又は置換基を有してもよい複素環基である。し力しながら、反応 生成物の安定性の観点からは、 R5が水素原子でない方が好ましい。すなわち、式 (I) で示される化合物はアルジミンではなくケチミンである方が好ましい。また、得られる 複素環式化合物の安定性の観点からは、 R5は、置換基を有してもよいァリール基、 置換基を有してもょ ヽ芳香族複素環基、置換基を有してもょ ヽァリールアルケニル基 、置換基を有してもよいァリールアルキ-ル基、置換基を有してもよいァルケ-ル基 又は置換基を有してもょ 、アルキ-ル基であることがより好ましく、置換基を有しても よいァリール基、置換基を有してもよい芳香族複素環基、置換基を有してもよいァリ ールァルケ-ル基又は置換基を有してもよいァリールアルキ-ル基であることがさら に好ましい。 R5の各置換基の炭素数は特に限定されず、高分子鎖であっても構わな いが、通常 1〜20であり、好適には 6〜20であり、より好適には 6〜10である。 の 好適な具体例としては、置換基を有してもよいフエ-ル基、置換基を有してもよいナ フチル基、置換基を有してもょ 、シンナミル基などが例示される。 [0017] In the formula (I), R 5 may have a hydrogen atom, a substituent, an alkyl group, a substituent, an alkyl group, or a substituent. An alkyl group that may have a substituent, an aryl group that may have a substituent, an aryl group that may have a substituent, an arylalkyl group that may have a substituent, and a substituent. An arylalkyl group which may be substituted, a cycloalkyl group which may have a substituent, or a heterocyclic group which may have a substituent. However, from the viewpoint of the stability of the reaction product, R 5 is preferably not a hydrogen atom. That is, the compound represented by the formula (I) is preferably ketimine rather than aldimine. In addition, from the viewpoint of the stability of the obtained heterocyclic compound, R 5 has an aryl group which may have a substituent, an aromatic heterocyclic group or a substituent which may have a substituent. A arylalkenyl group which may have a substituent, an alkenyl group which may have a substituent, or an alkyl group which may have a substituent. More preferably, it has an aryl group which may have a substituent, an aromatic heterocyclic group which may have a substituent, an arylalkyl group which may have a substituent or a substituent. Further preferred is an arylalkyl group which may be used. The carbon number of each substituent of R 5 is not particularly limited, and may be a polymer chain, but is usually 1 to 20, preferably 6 to 20, more preferably 6 to 10. It is. Preferable specific examples thereof include a phenyl group which may have a substituent, a naphthyl group which may have a substituent, a substituent which may have a substituent, and a cinnamyl group.
[0018] 式 (I)にお 、て、 R6は、水素原子、置換基を有してもょ 、アルキル基、置換基を有し
てもよぃァルケ-ル基、置換基を有してもよいアルキ-ル基、置換基を有してもよい ァリール基、置換基を有してもよいァリールアルキル基、置換基を有してもよいァリー ルァルケ-ル基、置換基を有してもよいァリールアルキ-ル基、置換基を有してもよ ぃシクロアルキル基又は置換基を有してもよい複素環基である。し力しながら、反応 性の観点力もは、 R6が水素原子でない方が好ましい。 R6の各置換基の炭素数は特 に限定されず、高分子鎖であっても構わないが、通常 1〜20であり、好適には 6〜20 であり、より好適には 6〜: LOである。 R6は、最終的には目的生成物の中には取り込ま れず、副生物であるアミンあるいはアルジミンの中に取り込まれる置換基である。 の 好適な具体例としては、フエニル基、ベンジル基などが例示される。 In the formula (I), R 6 may have a hydrogen atom, a substituent, an alkyl group, or a substituent. Alkyl group, alkyl group which may have a substituent, aryl group which may have a substituent, aryl alkyl group which may have a substituent, and substituent An arylalkyl group that may be substituted, an arylalkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a heterocyclic group that may have a substituent. However, in terms of reactivity, it is preferable that R 6 is not a hydrogen atom. The carbon number of each substituent of R 6 is not particularly limited and may be a polymer chain, but is usually 1 to 20, preferably 6 to 20, more preferably 6 to: LO. R 6 is a substituent that is not finally incorporated into the target product but is incorporated into the by-product amine or aldimine. Preferable specific examples include a phenyl group and a benzyl group.
[0019] 式 (I)において 、 R2、 R3、 R4、 R5及び R6は、相互に結合して環を形成してもよい。 In the formula (I), R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring.
例えば、
R3及び R4のうち隣接する置換基同士が結合して環を形成してもよ いし、離れた置換基同士が結合して環を形成してもよい。また、 R5が、
R2、 R3又 は R4と結合してもよい。さらには、 R6が、
R3、 R4又は R5と結合してもよぐこの 場合には反応によって副生するァミンある 、はアルジミンが式 (III)で示される複素環 式ィ匕合物中に取り込まれることになる。また、
R2、 R3、 R4、 R5及び R6の、 3個以上 の置換基が相互に結合してもよい。このようにして形成される環は、芳香環であっても 、非芳香環であってもよい。また、炭素環であっても複素環であってもよい。環を形成 する場合の置換基の炭素数は特に限定されず、その環が高分子鎖に結合していて も構わないが、通常 1〜20であり、好適には 6〜20であり、より好適には 6〜10である 。ここでの炭素数は、相互に結合して環を形成した置換基の合計の炭素数である。 例えば、 R1及び R2の位置でベンゼン環が縮合したナフタレン環を形成する場合には その炭素数は 4とカウントされる。 For example, Of R 3 and R 4 , adjacent substituents may be bonded to form a ring, or distant substituents may be bonded to form a ring. R 5 is It may be bonded to R 2 , R 3 or R 4 . Furthermore, R 6 is In this case, it may be bonded to R 3 , R 4, or R 5, and in this case, there is an amine produced as a by-product of the reaction, and aldimine is incorporated into the heterocyclic compound shown by the formula (III). Become. Also, Three or more substituents of R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other. The ring thus formed may be an aromatic ring or a non-aromatic ring. Further, it may be a carbocyclic ring or a heterocyclic ring. The number of carbon atoms of the substituent in the case of forming a ring is not particularly limited, and the ring may be bonded to the polymer chain, but is usually 1 to 20, preferably 6 to 20, Preferably it is 6-10. The carbon number here is the total number of carbon atoms of the substituents that are bonded to each other to form a ring. For example, when a naphthalene ring is formed by condensing a benzene ring at the R 1 and R 2 positions, the carbon number is counted as 4.
[0020] 次に、本発明の製造方法における原料化合物の他方である、アルデヒド、チォアル デヒド、セレノアルデヒド及びテル口アルデヒド力 なる群力 選択される 1種の化合物 について説明する。当該化合物は、本発明の反応の進行を阻害しない任意の置換 基を有してもよい。具体的には、下記式 (Π)で示される化合物が好適に用いられる。 [0020] Next, one compound selected from the group power consisting of aldehyde, thioaldehyde, selenoaldehyde, and teraldehyde aldehyde, which is the other raw material compound in the production method of the present invention, will be described. The compound may have an arbitrary substituent that does not inhibit the progress of the reaction of the present invention. Specifically, a compound represented by the following formula (Π) is preferably used.
[0021] [化 5]
R7 Η [0021] [Chemical 5] R 7 Η
[式中、 R7は、置換基を有してもよいァリール基、置換基を有してもよい芳香族複素 環基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、ァルケ-ル基又は置換基を有してもよ 、アルキ- ル基であり; Xは、酸素原子、硫黄原子、セレン原子及びテルル原子力 なる群から 選択される 1種である。 ] [Wherein R 7 has an aryl group that may have a substituent, an aromatic heterocyclic group that may have a substituent, an aryl group that may have a substituent, or a substituent. An alkenyl group which may have a substituent, a alkenyl group or an alkyl group which may have a substituent; and X is an oxygen atom, a sulfur atom, a selenium atom and It is one selected from the group of tellurium nuclear power. ]
[0022] 式 (Π)にお 、て、 R7は、置換基を有してもよ!、ァリール基、置換基を有してもよ!ヽ芳 香族複素環基、置換基を有してもよいァリールアルケニル基、置換基を有してもよい ァリールアルキ-ル基、置換基を有してもょ 、ァルケ-ル基又は置換基を有してもよ いアルキニル基である。すなわち、 C=X結合と共役可能な芳香環又は不飽和結合 を有するものである。なかでも、生成物の安定性の観点から、 C=X結合と共役可能 な芳香環を有するもの、すなわち、 R7が、置換基を有してもよいァリール基、置換基 を有してもょ 、芳香族複素環基、置換基を有してもょ 、ァリールァルケ-ル基又は置 換基を有してもょ 、ァリールアルキ-ル基であることが好まし 、。 R7の好適な具体例 としては、置換基を有してもよいフエ-ル基、置換基を有してもよいナフチル基、置換 基を有してもよいシンナミル基などが例示される。後の実施例でも示すように、本発明 の方法によれば、 R7が、電子吸引基を有するフ ニル基であっても、電子供与基を 有するフエニル基であっても良好な収率が得られることがわ力つており、様々な置換 基の導入が可能である。 [0022] Te you, expression (Π), R 7 is, I may have a substituent!, Have Ariru group, the substituents!ヽ 芳 Aromatic heterocyclic group, optionally substituted aryl alkenyl group, optionally substituted aryl hydrocarbon group, optionally substituted, alkenyl group or substituent An alkynyl group which may have That is, it has an aromatic ring or an unsaturated bond that can be conjugated with a C = X bond. Among them, from the viewpoint of stability of the product, those having an aromatic ring that can be conjugated with a C = X bond, that is, R 7 may have an aryl group or a substituent which may have a substituent. However, it may preferably have an aromatic heterocyclic group, a substituent, an arylalkyl group or a substituent, and may be an arylalkyl group. Preferable specific examples of R 7 include a phenyl group which may have a substituent, a naphthyl group which may have a substituent, a cinnamyl group which may have a substituent. As will be shown later in Examples, according to the method of the present invention, a good yield can be obtained regardless of whether R 7 is a phenyl group having an electron-withdrawing group or a phenyl group having an electron-donating group. As a result, it is possible to introduce various substituents.
[0023] 式 (II)にお 、て、 Xは、酸素原子、硫黄原子、セレン原子及びテルル原子力もなる 群力 選択される 1種である。 Xが酸素原子である場合、式 (II)で示される化合物は、 アルデヒドである。 Xが硫黄原子である場合、式 (II)で示される化合物は、チオアルデ ヒドである。 Xがセレン原子である場合、式 (II)で示される化合物は、セレノアルデヒド である。 Xがテルル原子である場合、式 (Π)で示される化合物は、テル口アルデヒドで ある。これらの化合物は安定な三量体を形成する場合があり、例えば、チオアルデヒ ドの場合にはトリチアン環を形成して三量体を形成する。本発明の製造方法では、こ
のような三量体を原料として使用してもよぐこの場合、反応系内で生成した単量体を 経て反応が進行する。 [0023] In the formula (II), X is an oxygen atom, a sulfur atom, a selenium atom, and a tellurium atomic force, which is one kind selected. When X is an oxygen atom, the compound represented by the formula (II) is an aldehyde. When X is a sulfur atom, the compound represented by the formula (II) is thioaldehyde. When X is a selenium atom, the compound represented by the formula (II) is selenoaldehyde. When X is a tellurium atom, the compound represented by the formula (Π) is a tellurium aldehyde. These compounds may form stable trimers. For example, in the case of thioaldehyde, a trithian ring is formed to form a trimer. In the production method of the present invention, this In this case, the reaction proceeds via the monomer produced in the reaction system.
[0024] 上記式 (I)で示される化合物と、上記式 (Π)で示される化合物とを反応させること〖こ よって、式 (III)で示される複素環式化合物が得られる。式 (III)で示される複素環式 化合物は、以下に示す分子構造を有するものである。 [0024] By reacting the compound represented by the above formula (I) with the compound represented by the above formula (Π), a heterocyclic compound represented by the formula (III) is obtained. The heterocyclic compound represented by the formula (III) has a molecular structure shown below.
[0025] [化 6] [0025] [Chemical 6]
[式中、
R7及び Xは、上記式 (I)及び式 (II)と同じ。 ] [Where R 7 and X are the same as the above formulas (I) and (II). ]
[0026] 式 (III)にお 、て、 Xは、酸素原子、硫黄原子、セレン原子及びテルル原子力もなる 群から選択される 1種である。 Xが酸素原子である場合、式 (ΠΙ)で示される複素環式 化合物はイソべンゾフラン(2—ベンゾフラン:ベンゾ [c]フラン)である。 Xが硫黄原子 である場合、式 (ΠΙ)で示される複素環式化合物は、イソチアナフテン (2—ベンゾチォ フェン(ベンゾ [c]チォフェン)である。 Xがセレン原子である場合、式(III)で示される 複素環式化合物は、イソセレナナフテン (2—ベンゾセレノフェン:ベンゾ [c]セレノフエ ン)である。 Xがテルル原子である場合、式 (III)で示される複素環式化合物は、イソテ ルラナフテン (2 -ベンゾテル口フェン:ベンゾ [c]テル口フェン)である。 In the formula (III), X is one selected from the group consisting of an oxygen atom, a sulfur atom, a selenium atom, and tellurium atomic energy. When X is an oxygen atom, the heterocyclic compound represented by the formula (ΠΙ) is isobenzofuran (2-benzofuran: benzo [c] furan). When X is a sulfur atom, the heterocyclic compound represented by the formula (ΠΙ) is isothianaphthene (2-benzothiophene (benzo [c] thiophene). When X is a selenium atom, the formula (III The heterocyclic compound represented by) is isoselenanaphthene (2-benzoselenophene: benzo [c] selenophene) When X is a tellurium atom, the heterocyclic compound represented by formula (III) is Isotellanaphthene (2-benzoterphene: benzo [c] terphene).
[0027] 式 (III)で示される複素環式ィ匕合物において、 R R2、 R3、 R4、 R5及び R7の置換基 は、それぞれ原料である式 (I)で示される化合物及び式 (Π)で示される化合物から位 置選択的に導入される。式 (I)で示される化合物も、式 (Π)で示される化合物も、さま ざまな置換基を導入することが容易な化合物であるから、結果として、さまざまな置換 基を所望の位置に有する式 (ΠΙ)で示される複素環式化合物を、一工程で容易に製 造することができる。 In the heterocyclic compound represented by the formula (III), the substituents of RR 2 , R 3 , R 4 , R 5 and R 7 are each a compound represented by the formula (I) as a raw material And from a compound represented by the formula (Π). Both the compound represented by the formula (I) and the compound represented by the formula (こ と が) are compounds that can be easily introduced with various substituents, and as a result, have various substituents at desired positions. The heterocyclic compound represented by the formula (ΠΙ) can be easily produced in one step.
[0028] 以上説明した反応を、 Xが酸素原子である場合を例として反応式で示すと、下記式
(1)のとおりである。すなわち、式 (I)で示される化合物 1モルに対して、式 (Ila)で示さ れる化合物 2モルを反応させることによって、式 (Ilia)で示される複素環式ィ匕合物 1モ ルが得られるとともに、式(IV)で示される化合物(アルジミン) 1モル及び水 1モルが副 生する。式 (Ila)で示される化合物は、半分が式 (I)で示される化合物と直接反応し、 残りの半分は反応中に副生したアミンを捕捉して式 (IV)で示される化合物(アルジミ ン)を形成するために消費される。ここで、式 (IV)で示される化合物中の R6及び R7は 、式 (I)及び式 (II)と同義である。 [0028] The reaction described above is represented by a reaction formula by taking the case where X is an oxygen atom as an example. (1) That is, by reacting 1 mol of the compound represented by the formula (I) with 2 mol of the compound represented by the formula (Ila), 1 mol of the heterocyclic compound represented by the formula (Ilia) is obtained. As a result, 1 mol of the compound represented by the formula (IV) (aldimine) and 1 mol of water are by-produced. Half of the compound represented by the formula (Ila) reacts directly with the compound represented by the formula (I), and the other half captures the by-produced amine during the reaction to obtain the compound represented by the formula (IV) Is consumed to form). Here, R 6 and R 7 in the compound represented by the formula (IV) have the same meanings as the formula (I) and the formula (II).
[0029] [化 7] [0029] [Chemical 7]
( I ) (H a) (m a) (IV) (I) (H a) (m a) (IV)
[0030] 本発明の製造方法においては、式 (I)で示される化合物に対して、式 (Π)で示され る化合物を過剰に用いることが好ましい。具体的には、式 (I)で示される化合物に対 する、式 (II)で示される化合物のモル比(πΖι)を 1. 5以上として反応させることが好 ましぐ 1. 8以上とすることがより好ましい。モル比(πΖι)は通常 10以下であり、好適 には 5以下である。 [0030] In the production method of the present invention, it is preferable to use an excess of the compound represented by the formula (I) relative to the compound represented by the formula (I). Specifically, the reaction is preferably performed with the molar ratio (πΖι) of the compound represented by the formula (II) to the compound represented by the formula (I) being 1.5 or more. It is more preferable. The molar ratio (πΖι) is usually 10 or less, preferably 5 or less.
[0031] 式 (I)で示される化合物と、式 (Π)で示される化合物とを混合して反応させる方法は 特に限定されない。溶媒を用いて溶液中で反応させても構わないし、無溶媒で反応 させても構わない。使用できる溶媒は、特に限定されないが、へキサン、ベンゼン、ト ルェン、ジクロロェタン、テトラヒドロフランなど、非プロトン性の有機溶媒が好適である 。中でも、炭化水素溶媒あるいは含ハロゲン炭化水素溶媒が好適に使用される。式( II)中の Xが酸素原子である場合、反応が進行するに従って水が副生するので、生成 する水を反応系から除去しながら反応を進行させることが好まし 、。反応系中に水が 存在すると、原料である式 (I)で示される化合物が加水分解するおそれがあるからで ある。水を反応系から除去する方法は、特に限定されない。モレキュラーシーブスな どの吸水剤を反応系内に共存させてもよいし、溶媒を加熱還流させる際に水分を除
去してもよい。反応温度は特に限定されないが、通常 0〜300°Cの温度が採用される 。好適には、 50°C以上であり、また 200°C以下である。 [0031] The method of mixing and reacting the compound represented by the formula (I) and the compound represented by the formula (Π) is not particularly limited. You may make it react in a solution using a solvent, and you may make it react without a solvent. The solvent that can be used is not particularly limited, but an aprotic organic solvent such as hexane, benzene, toluene, dichloroethane, and tetrahydrofuran is preferable. Of these, hydrocarbon solvents or halogen-containing hydrocarbon solvents are preferably used. When X in the formula (II) is an oxygen atom, water is by-produced as the reaction proceeds. Therefore, it is preferable to proceed the reaction while removing the produced water from the reaction system. This is because the presence of water in the reaction system may cause hydrolysis of the compound represented by the formula (I) as a raw material. The method for removing water from the reaction system is not particularly limited. A water-absorbing agent such as molecular sieves may coexist in the reaction system, and water is removed when the solvent is heated to reflux. You may leave. The reaction temperature is not particularly limited, but a temperature of 0 to 300 ° C is usually employed. Preferably, it is 50 ° C or higher and 200 ° C or lower.
[0032] 式 (I)で示される化合物と式 (Π)で示される化合物とを反応させる際に、遷移金属化 合物からなる触媒の存在下に反応させることが好ましい。遷移金属化合物の使用量 は特に限定されないが、式 (I)で示される化合物のモル数に対して、金属原子基準 で 0. 001〜0. 5倍のモル数の遷移金属化合物を使用するのが好ましい。反応速度 や収率の観点からは、遷移金属化合物の使用量は、式 (I)で示される化合物のモル 数に対してより好適には 0. 005倍以上であり、さらに好適には 0. 01倍以上である。 一方、製造コストや廃棄物の削減の観点力 は、遷移金属化合物の使用量は、式 (I )で示される化合物のモル数に対してより好適には 0. 2倍以下であり、さらに好適に は 0. 1倍以下である。 [0032] When the compound represented by the formula (I) and the compound represented by the formula (Π) are reacted, it is preferably reacted in the presence of a catalyst composed of a transition metal compound. The amount of the transition metal compound used is not particularly limited, but the transition metal compound is used in an amount of 0.001 to 0.5 times the number of moles of the compound represented by the formula (I) on a metal atom basis. Is preferred. From the viewpoint of the reaction rate and yield, the amount of the transition metal compound used is more preferably 0.005 times or more, more preferably 0. 0,5 times the number of moles of the compound represented by formula (I). 01 times or more. On the other hand, from the viewpoint of reducing manufacturing costs and waste, the amount of transition metal compound used is more preferably 0.2 times or less the number of moles of the compound represented by formula (I). Is less than 0.1 times.
[0033] 触媒として用いられる遷移金属化合物は、周期表第 7族、第 8族、第 9族又は第 10 族に属する遷移金属化合物であることが好ましい。これらの遷移金属化合物は、一 般的に、 C— H結合を活性ィ匕させる能力を有すると考えられているからである。特に、 レニウム、ルテニウム、ロジウム、イリジウム、パラジウムの化合物が好適である。これら のうちでも、レニウム化合物、特に 1価のレニウム化合物(レニウム (I)化合物)が好適 に用いられる。レニウム化合物としては特に限定されないが、配位子を含む化合物( 錯体)であることも好ましぐこの場合の配位子としては、臭素、塩素などのハロゲン原 子、一酸化炭素、テトラヒドロフラン (thf)などが挙げられる。具体的なレニウム化合物 としては、 [ReBr (CO) (thf) ] 、ReBr (CO) 、ReCl (CO)などが例示される。ここ [0033] The transition metal compound used as the catalyst is preferably a transition metal compound belonging to Group 7, Group 8, Group 9 or Group 10 of the periodic table. This is because these transition metal compounds are generally considered to have the ability to activate C—H bonds. In particular, compounds of rhenium, ruthenium, rhodium, iridium and palladium are suitable. Of these, rhenium compounds, particularly monovalent rhenium compounds (rhenium (I) compounds) are preferably used. The rhenium compound is not particularly limited, but is preferably a compound containing a ligand (complex). In this case, the ligand includes halogen atoms such as bromine and chlorine, carbon monoxide, tetrahydrofuran (thf ) And the like. Specific examples of the rhenium compound include [ReBr (CO) (thf)], ReBr (CO), and ReCl (CO). here
3 2 5 5 3 2 5 5
で、レニウム (I)化合物を用いる場合、反応系中にレニウム(I)化合物が存在していれ ばよぐ添加するレニウム化合物の価数が異なっていてもよい。例えば、 0価のレニゥ ム化合物が反応系内で酸ィ匕されてもょ 、し、多価のレニウム化合物が反応系内で還 元されてもよい。 When the rhenium (I) compound is used, the valence of the rhenium compound to be added may be different as long as the rhenium (I) compound is present in the reaction system. For example, a zero-valent rhenium compound may be oxidized in the reaction system, and a polyvalent rhenium compound may be reduced in the reaction system.
[0034] 本発明の反応のメカニズムは必ずしも明らかではないが、レニウム触媒を用い、式( II)で示される化合物としてアルデヒドを用いた場合には、下記式(2)のようなメカ-ズ ムが推定される。まず、芳香環のオルト位の C H結合がレニウム触媒によって活性 化され、形成された C— Re結合に対してアルデヒドが挿入する。続いて、分子内で求
核的に環化反応が進行し、レニウム塩が還元的に脱離するとともに、ァミンが脱離す る。脱離したアミンはアルデヒドと反応して脱水することにより、アルジミンを形成する。 [0034] Although the reaction mechanism of the present invention is not necessarily clear, when a rhenium catalyst is used and an aldehyde is used as the compound represented by the formula (II), a mechanism such as the following formula (2) is used. Is estimated. First, the CH bond at the ortho position of the aromatic ring is activated by a rhenium catalyst, and an aldehyde is inserted into the formed C—Re bond. Next, find it in the molecule. A cyclization reaction proceeds nuclearly, rhenium salt is reductively eliminated, and amine is eliminated. The released amine reacts with the aldehyde and dehydrates to form aldimine.
[0035] [化 8] [0035] [Chemical 8]
[0036] こうして得られた、式 (III)で示される複素環式化合物は、長 、 π共役系を有するの で、有機電界発光 (EL)素子や有機電界効果型トランジスタ (FET)素子、有機発光 ダイオード、蛍光色素などの材料として有望である。本発明の製造方法によれば、さ まざまな置換基を所望の位置に有する複素環式化合物を、一工程で容易に製造す ることができる。したがって、式 (III)で示される複素環式化合物の物理的性質を調整 することが容易になり、分子設計に基づいた目的化合物を容易に得ることができるよ うになる。 [0036] Since the heterocyclic compound represented by the formula (III) thus obtained has a long and π-conjugated system, it is an organic electroluminescence (EL) device, an organic field effect transistor (FET) device, an organic compound. It is promising as a material for light emitting diodes and fluorescent dyes. According to the production method of the present invention, a heterocyclic compound having various substituents at desired positions can be easily produced in one step. Therefore, it becomes easy to adjust the physical properties of the heterocyclic compound represented by the formula (III), and the target compound based on the molecular design can be easily obtained.
[0037] 例えば、下記式(3)及び (4)に示される化合物(B1553)は、電子輸送能力(Electro n Transport capability)とホ ~~ノレ輸 3^ 1 ^力 (Hole Transfer capaoility)に 1¾れ、固体状 態において強く発光し、ホール輸送層 (HT layer)に真空蒸着させることも容易なので 、有機発光ダイオードに好適に用いられる。そして、その製造方法については、下記 式(3)の方法が報告されている(J. Am. Chem. Soc. 1967, 89, 6091)。これに対し、本 発明の製造方法によれば、式 (4)に示される方法によって簡単に B1553を製造するこ とがでさる。
[0038] [ィ匕 9] [0037] For example, the compound (B1553) represented by the following formulas (3) and (4) has an electron transport capability and a hole transfer capacity of 1 ^ 1 ^ In addition, since it emits intensely in a solid state and can be easily vacuum-deposited on a hole transport layer (HT layer), it is preferably used for an organic light emitting diode. As for the production method, the method of the following formula (3) has been reported (J. Am. Chem. Soc. 1967, 89, 6091). On the other hand, according to the manufacturing method of the present invention, B1553 can be easily manufactured by the method shown in the equation (4). [0038] [9]
[0040] また、式 (III)で示される複素環式化合物は、反応中間体としても有用である。例え ば、式 (III)で示される複素環式化合物に対して、ォレフィン (V)又はアセチレン (VII) を反応させて Diels-Alder反応を進行させることも好ましい。このとき、予め合成した複 素環式化合物に対して、ォレフィン (V)又はアセチレン (VII)を反応させて Diels-Alde r反応を進行させてもよい。しかしながら、式 (I)で示される化合物、式 (Π)で示される 化合物、ォレフィン (V)又はアセチレン (VII)の三成分を共存させて反応を進行させ、 生成した式 (III)で示される複素環式化合物を、反応系中でォレフィン (V)又はァセ チレン (VII)によって捕捉するのが好ましい。これは、式 (III)で示される複素環式ィ匕 合物が不安定である場合に特に有効な手法である。この場合、ォレフィン (V)又はァ セチレン (VII)を、式 (I)で示される化合物に対して過剰の量配合することが好ま ヽ 。式 (III)で示される複素環式化合物に対して、下記式 (V)で示されるォレフィンを反 応させた場合には、下記式 (VI)で示される Diels-Alder付カ卩生成物が得られる。また 、式 (III)で示される複素環式化合物に対して、下記式 (VII)で示されるアセチレンを 反応させた場合には、下記式 (VIII)で示される Diels-Alder付カ卩生成物が得られる。こ こで、 R8、 R9、 R10、 R11 R12及び R13の各置換基は、前記 、 R2、 R3及び R4と同じも のを使用することができる。 [0040] The heterocyclic compound represented by the formula (III) is also useful as a reaction intermediate. For example, it is also preferred that the heterocyclic compound represented by the formula (III) is reacted with olefin (V) or acetylene (VII) to advance the Diels-Alder reaction. At this time, the diels-alder reaction may proceed by reacting olefin (V) or acetylene (VII) with a bicyclic compound synthesized in advance. However, the reaction is allowed to proceed in the presence of a compound represented by the formula (I), a compound represented by the formula (、), olefin (V) or acetylene (VII), and represented by the formula (III) produced. The heterocyclic compound is preferably captured by olefin (V) or acetylene (VII) in the reaction system. This is a particularly effective technique when the heterocyclic compound represented by the formula (III) is unstable. In this case, it is preferable that olefin (V) or acetylene (VII) is blended in an excessive amount with respect to the compound represented by formula (I). When the olefin represented by the following formula (V) is reacted with the heterocyclic compound represented by the formula (III), the Diels-Alder attached product represented by the following formula (VI) is obtained. can get. In addition, when the acetylene represented by the following formula (VII) is reacted with the heterocyclic compound represented by the formula (III), a diels-alder-attached product represented by the following formula (VIII) Is obtained. Here, as the substituents for R 8 , R 9 , R 10 , R 11 R 12 and R 13 , the same substituents as those for R 2 , R 3 and R 4 can be used.
[0041] [化 11]
[0041] [Chemical 11]
[0043] [化 13] [0043] [Chemical 13]
[0045] 以上のようにして Diels-Alder反応で得られる化合物は、多数の環が結合した骨格 を有していて、長い π共役系を有することも多いので、有機電界発光 (EL)素子や有 機電界効果型トランジスタ (FET)素子、有機発光ダイオード、蛍光色素などの材料と して有望である。本発明の製造方法によれば、さまざまな置換基を所望の位置に有 する多環式化合物を容易に製造することができる。例えば、新しい青色発光物質で ある 7, 16—ジヒドロへプタセン誘導体は下記式(5)の方法で合成できることが報告さ
れている(J. Org. Chem. 2006, 71, 4085)が、多段階の反応を要している。これに対 し、本発明の製造方法によれば、式 (6)に示されるように、工程の大幅な削減が可能 である。 [0045] The compound obtained by the Diels-Alder reaction as described above has a skeleton in which a large number of rings are bonded, and often has a long π-conjugated system. Therefore, an organic electroluminescence (EL) device or It is promising as a material for organic field-effect transistor (FET) elements, organic light-emitting diodes, and fluorescent dyes. According to the production method of the present invention, a polycyclic compound having various substituents at desired positions can be easily produced. For example, a new blue light-emitting substance, 7, 16-dihydroheptacene derivative, has been reported to be synthesized by the method of the following formula (5). (J. Org. Chem. 2006, 71, 4085), but requires a multi-step reaction. On the other hand, according to the manufacturing method of the present invention, as shown in the equation (6), the number of steps can be greatly reduced.
[0046] [化 15] [0046] [Chemical 15]
Ar = Ar' = Ph, 82% Ar = Ar '= Ph, 82%
mesityl, 86% mesityl, 86%
7,6-dihydroheptacene Ar = Ar' = Ph, 38% 7,6-dihydroheptacene Ar = Ar '= Ph, 38%
[0047] [化 16] [0047] [Chemical 16]
実施例 Example
[0048] 実施例 1
式 (I)で示される化合物として、芳香族ィミンである、 N— (ジフエ-ルメチレン)ベン ゼンァミン 129mg (0. 500mmol)、式(II)で示される化合物としてべンズアルデヒド 1 02 (1. OOmmol)、触媒として [ReBr (CO) (thf) ] 10. 6mg(0. O125mmol)、 [0048] Example 1 The compound represented by formula (I) is an aromatic imine, N- (diphenylmethylene) benzenamine 129 mg (0.500 mmol), and the compound represented by formula (II) is benzaldehyde 1 02 (1. OOmmol). ), [ReBr (CO) (thf)] 10.6 mg (0.O125 mmol) as a catalyst,
3 2 3 2
モレキュラーシーブス 4A0. 2g及びトルエン 1. OmLの混合物を、 115°Cで還流条件 下加熱した。 24時間後、式 (III)で示される複素環式ィ匕合物として 1, 3—ジフエ-ル イソべンゾフランが 95%の収率 ^H— NMR収率)で生成した。このとき、 N— (フエ- ルメチレン)ベンゼンァミンの副生が確認された。シリカゲルカラムクロマトグラフィー により単離、精製したところ、 1, 3—ジフエニルイソべンゾフランが 123mg (91) %得 られた。生成物の構造は、 'H-NMR, 13C— NMR及び IRにより同定した。触媒の [ ReBr(CO) (thf) ] は Vitali, D.; Calderazzo, F. Gazz. Chim. Ital. 1972, 102, 587に A mixture of molecular sieves 4A 0.2 g and toluene 1. OmL was heated at 115 ° C. under reflux conditions. After 24 hours, 1,3-diphenylisobenzofuran was produced as a heterocyclic compound represented by the formula (III) in a yield of 95% (^ H-NMR yield). At this time, by-production of N- (phenylmethylene) benzeneamine was confirmed. When isolated and purified by silica gel column chromatography, 123 mg (91)% of 1,3-diphenylisobenzofuran was obtained. The structure of the product was identified by 'H-NMR, 13 C-NMR and IR. The catalyst [ReBr (CO) (thf)] was found in Vitali, D .; Calderazzo, F. Gazz. Chim. Ital. 1972, 102, 587.
3 2 3 2
記載された方法に従って調製した。本実施例の化学反応式を下記式(3)に示す。ま た、式 (III)で示される複素環式化合物の収率を表 1にまとめて示す。 Prepared according to the method described. The chemical reaction formula of this example is shown in the following formula (3). Table 1 summarizes the yield of the heterocyclic compound represented by the formula (III).
[0049] 実施例 1で得られた 1, 3—ジフエ-ルイソベンゾフランの化学構造は、下記式 (IX) に示すとおりである。 [0049] The chemical structure of 1,3-diphenylisobenzofuran obtained in Example 1 is as shown in the following formula (IX).
[0050] [化 17] [0050] [Chemical 17]
[0051] また、実施例 1で得られた 1, 3—ジフエ-ルイソベンゾフランの構造データは、以下 のとおりである。 [0051] The structural data of 1,3-diphenylisobenzofuran obtained in Example 1 is as follows.
JH NMR (400 MHz, CDC1 ) δ 7.01-7.04 (m, 2Η), 7.30 (t, J = 7.8 Hz, 2H), 7.49 (t J H NMR (400 MHz, CDC1) δ 7.01-7.04 (m, 2Η), 7.30 (t, J = 7.8 Hz, 2H), 7.49 (t
3 Three
, J = 7.8 Hz, 4H), 7.83-7.87 (m, 2H), 7.95 (d, J = 7.8 Hz, 4H); 13C NMR (100 MHz, CDC1 ) δ 120.17 (2C), 122.08 (2C), 124.77 (4C), 125.14 (2C), 126.88 (4C), 128.9, J = 7.8 Hz, 4H), 7.83-7.87 (m, 2H), 7.95 (d, J = 7.8 Hz, 4H); 13 C NMR (100 MHz, CDC1) δ 120.17 (2C), 122.08 (2C), 124.77 (4C), 125.14 (2C), 126.88 (4C), 128.9
3 Three
4 (2C), 131.63 (2C), 143.72 (2C); IR (nujol, v I cm"1) 1653 (m), 1597 (m), 1492 (m) , 1205 (m), 1068 (m), 1028 (m), 910 (m), 765 (s), 741 (m), 691 (s), 658 (s)。 4 (2C), 131.63 (2C), 143.72 (2C); IR (nujol, v I cm '' 1 ) 1653 (m), 1597 (m), 1492 (m), 1205 (m), 1068 (m), 1028 (m), 910 (m), 765 (s), 741 (m), 691 (s), 658 (s).
[0052] 実施例 2〜7
式 (I)で示される化合物と、式 (Π)で示される化合物とを、それぞれ下記表 1に示す 化合物に変更した以外は、実施例 1と同様にして式 (ΠΙ)で示される複素環式化合物 を得た。そのときの化学反応式を下記式 (7)に示す。式 (III)で示される複素環式ィ匕 合物の収率を表 1にまとめて示す。 [0052] Examples 2-7 A heterocycle represented by the formula (ΠΙ) in the same manner as in Example 1 except that the compound represented by the formula (I) and the compound represented by the formula (Π) were each changed to the compounds shown in Table 1 below. The formula compound was obtained. The chemical reaction formula at that time is shown in the following formula (7). Table 1 summarizes the yield of the heterocyclic compound represented by the formula (III).
[0053] [化 18] [0053] [Chemical 18]
(1 equiv) (2 equiv) (1 equiv) (2 equiv)
[0054] [表 1] [0054] [Table 1]
R5 R6 R7 収率 実施例 1 Ph Ph Ph 91 (95) 実施例 2 Ph PhCH2 Ph - (95) 実施例 3 Ph Ph - (85) 実施例 4 Ph Ph p-MeC6H4 - (83) 実施例 5 Ph Ph o-MeC6H4 - (86) 実施例 6 Ph Ph p-(CF3)C6H4 (98) R 5 R 6 R 7 Yield Example 1 Ph Ph Ph 91 (95) Example 2 Ph PhCH 2 Ph - (95 ) Example 3 Ph Ph - (85) Example 4 Ph Ph p-MeC 6 H 4 - (83) example 5 Ph Ph o-MeC 6 H 4 - (86) example 6 Ph Ph p- (CF 3) C 6 H 4 (98)
実施例 7Example 7
つ1かっこ内の数字は1 H-NMR収率。「一」は未測定を示す。 One 1 numbers in parentheses 1 H-NMR Yield. “One” indicates unmeasured.
[0055] 実施例 8 [0055] Example 8
式 (I)で示される化合物として、芳香族ィミンである、 N— (ジフエ-ルメチレン)ベン ゼンァミン 129mg(0. 500mmol)、式(II)で示される化合物としてべンズアルデヒド 1 02μL·(l. OOmmol)、ォレフィンとしてシクロオタテン 130 μ L(l. OOmmol),触媒と して [ReBr(CO) (thf) ] 10. 6mg(0. O125mmol)、モレキュラーシーブス 4A0. 2 As the compound represented by the formula (I), N- (diphenylmethylene) benzenamine 129 mg (0.500 mmol) which is an aromatic imine, and benzaldehyde 1002 μL · (l. OOmmol), cyclooctene 130 μL (l.OOmmol) as olefin, [ReBr (CO) (thf)] 10.6 mg (0.O125 mmol), molecular sieves 4A0.2
3 2
g及びトルエン 1. OmLの混合物を、 115°Cで還流条件下加熱した。 24時間後、 1, 3 —ジフエ-ルイソベンゾフランの Diels-Alder付カ卩生成物が 90%の収率 (^H—NMR 収率)で生成した。このとき、 N— (フエ-ルメチレン)ベンゼンァミンの副生が確認さ れた。シリカゲルクロマトグラフィー及びゲル濾過クロマトグラフィーにより単離、精製 したところ、 Diels-Alder付カ卩生成物が 158mg (83%)得られた。生成物の構造は、 1 H— NMR、 13C— NMR及び IRにより同定した。本実施例の化学反応式を下記式 (4 )に示す。また、 Diels-Alder付カ卩生成物の収率を表 2にまとめて示す。 3 2 A mixture of g and toluene 1. OmL was heated at 115 ° C. under reflux conditions. After 24 hours, a 1,3-diphenylisobenzofuran diels-Alder product was produced in 90% yield (^ H-NMR yield). At this time, by-production of N- (fermethylene) benzeneamine was confirmed. When isolated and purified by silica gel chromatography and gel filtration chromatography, 158 mg (83%) of a Diels-Alder-attached koji product was obtained. The structure of the product was identified by 1 H-NMR, 13 C-NMR and IR. The chemical reaction formula of this example is shown in the following formula (4). In addition, Table 2 summarizes the yield of the Diels-Alder-added cocoon product.
[0056] 実施例 8で得られた Diels-Alder付加生成物の化学構造は、下記式 (X)に示すとお りである。 [0056] The chemical structure of the Diels-Alder addition product obtained in Example 8 is as shown in the following formula (X).
[0057] [化 19] [0057] [Chemical 19]
[0058] 上記式 (X)で示される Diels-Alder付カ卩生成物の構造データは、以下のとおりである JH NMR (400 MHz, CDC1 ) δ 0.46—0.54 (m, 2H), 1.29—1.38 (m, 2H), 1.42—1.62 ( [0058] The structural data of the Diels-Alder-attached product represented by the above formula (X) is as follows: JH NMR (400 MHz, CDC1) δ 0.46—0.54 (m, 2H), 1.29—1.38 (m, 2H), 1.42—1.62 (
3 Three
m, 8H), 2.95-3.01 (m, 2H), 7.04 (dd, J = 5.3, 3.0 Hz, 2H), 7.21 (dd, J = 5.3, 3.0 Hz , 2H), 7.36-7.45 (m, 6H); 7.66 (d, J = 6.9 Hz, 4H); 13C NMR (100 MHz, CDC1 ) δ m, 8H), 2.95-3.01 (m, 2H), 7.04 (dd, J = 5.3, 3.0 Hz, 2H), 7.21 (dd, J = 5.3, 3.0 Hz, 2H), 7.36-7.45 (m, 6H) ; 7.66 (d, J = 6.9 Hz, 4H); 13 C NMR (100 MHz, CDC1) δ
3 Three
25.35 (2C), 26.19 (2C), 30.37 (2C), 46.82 (2C), 91.40 (2C), 121.32 (2C), 126.10 (2 C), 128.34 (4C), 128.41 (2C), 128.59 (4C), 137.30 (2C), 146.79 (2C); IR (nujol, v I cm"1) 3055 (w), 1734 (w), 1700 (w), 1684 (w), 1635 (w), 1601 (w), 1521 (w), 1506 (w ), 1445 (s), 1364 (m), 1315 (m), 1015 (m), 979 (m), 972 (m), 771 (m), 753 (s), 798 (s) , 666 (m), 642 (m)。 25.35 (2C), 26.19 (2C), 30.37 (2C), 46.82 (2C), 91.40 (2C), 121.32 (2C), 126.10 (2 C), 128.34 (4C), 128.41 (2C), 128.59 (4C) , 137.30 (2C), 146.79 (2C); IR (nujol, v I cm " 1 ) 3055 (w), 1734 (w), 1700 (w), 1684 (w), 1635 (w), 1601 (w) , 1521 (w), 1506 (w), 1445 (s), 1364 (m), 1315 (m), 1015 (m), 979 (m), 972 (m), 771 (m), 753 (s) , 798 (s), 666 (m), 642 (m).
[0059] 実施例 9〜12 [0059] Examples 9-12
式 (I)で示される化合物と、式 (Π)で示される化合物とを、それぞれ下記表 2に示す 化合物に変更した以外は、実施例 8と同様にして Diels-Alder付加生成物を得た。そ
のときの化学反応式を下記式(8)に示す。また、 Diels-Alder付カ卩生成物の1 H— NMA Diels-Alder addition product was obtained in the same manner as in Example 8, except that the compound represented by the formula (I) and the compound represented by the formula (Π) were each changed to the compounds shown in Table 2 below. . So The chemical reaction formula at this time is shown in the following formula (8). In addition, 1 H—NM of the cocoon product with Diels-Alder
R収率を表 2にまとめて示す。 The R yield is summarized in Table 2.
[0060] 実施例 9で得られた Diels-Alder付加生成物の化学構造は、下記式 (XI)に示すとお りである。 [0060] The chemical structure of the Diels-Alder addition product obtained in Example 9 is as shown in the following formula (XI).
[0061] [化 20] [0061] [Chemical 20]
[0062] 上記式 (XI)で示される Diels-Alder付カ卩生成物の構造データは、以下のとおりであ る。 [0062] The structural data of the Diels-Alder-attached product represented by the above formula (XI) is as follows.
JH NMR (400 MHz, CDCl ) δ 0.42—0.52 (m, 2Η), 1.21—1.58 (m, 10H), 2.53 (t, J J H NMR (400 MHz, CDCl) δ 0.42—0.52 (m, 2Η), 1.21—1.58 (m, 10H), 2.53 (t, J
3 Three
= 10.2 Hz, IH), 2.94 (t, J = 10.2 Hz, IH), 6.84 (d, J = 16.2 Hz, IH), 6.98 (d, J = 7. 2 Hz, IH), 7.04 (d, J = 16.2 Hz, IH), 7.17-7.29 (m, 4H), 7.35 (t, J = 7.8 Hz, 2H), 7.40-7.46 (m, 3H), 7.50 (d, J = 7.8 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H); 13C NMR (10 0 MHz, CDCl ) δ 25.14 (IC), 25.30 (IC), 26.10 (IC), 26.17 (IC), 30.21 (IC), 30.7 = 10.2 Hz, IH), 2.94 (t, J = 10.2 Hz, IH), 6.84 (d, J = 16.2 Hz, IH), 6.98 (d, J = 7.2 Hz, IH), 7.04 (d, J = 16.2 Hz, IH), 7.17-7.29 (m, 4H), 7.35 (t, J = 7.8 Hz, 2H), 7.40-7.46 (m, 3H), 7.50 (d, J = 7.8 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H); 13 C NMR (10 0 MHz, CDCl) δ 25.14 (IC), 25.30 (IC), 26.10 (IC), 26.17 (IC), 30.21 (IC), 30.7
3 Three
2 (IC), 46.26 (IC), 50.57 (IC), 89.36 (IC), 91.51 (IC), 120.34 (IC), 121.52 (IC), 1 24.75 (IC), 126.17 (2C), 126.65 (2C), 127.88 (IC), 128.43 (2C), 128.52 (IC), 128.5 5 (2C), 128.63 (2C), 133.37 (IC), 136.75 (IC), 137.22 (IC), 145.59 (IC), 146.55 (1 C); IR (nujol, v I cm"1) 3025 (w), 1734 (w), 1684 (w), 1653 (w), 1600 (w), 1576 (w), 1559 (w), 1360 (m), 1018 (m), 967 (s), 755 (s), 698 (s), 666 (m), 639 (m)。 2 (IC), 46.26 (IC), 50.57 (IC), 89.36 (IC), 91.51 (IC), 120.34 (IC), 121.52 (IC), 1 24.75 (IC), 126.17 (2C), 126.65 (2C) , 127.88 (IC), 128.43 (2C), 128.52 (IC), 128.5 5 (2C), 128.63 (2C), 133.37 (IC), 136.75 (IC), 137.22 (IC), 145.59 (IC), 146.55 (1 C); IR (nujol, v I cm "1) 3025 (w), 1734 (w), 1684 (w), 1653 (w), 1600 (w), 1576 (w), 1559 (w), 1360 ( m), 1018 (m), 967 (s), 755 (s), 698 (s), 666 (m), 639 (m).
[0063] 実施例 10で得られた Diels-Alder付加生成物の化学構造は、下記式 (ΧΠ)に示すと おりである。 [0063] The chemical structure of the Diels-Alder addition product obtained in Example 10 is as shown in the following formula (ΧΠ).
[0064] [化 21]
[0064] [Chemical 21]
[0065] 上記式 (XII)で示される Diels-Alder付加生成物の構造データは、以下のとおりであ る。 [0065] The structural data of the Diels-Alder addition product represented by the above formula (XII) is as follows.
JH NMR (400 MHz, CDCl ) δ 0.44—0.52 (m, 2H), 1.28—1.61 (m, 10H), 2.38 (s, 3 J H NMR (400 MHz, CDCl) δ 0.44—0.52 (m, 2H), 1.28—1.61 (m, 10H), 2.38 (s, 3
3 Three
H), 2.93-3.00 (m, 2H), 7.01-7.06 (m, 2H), 7.18-7.24 (m, 4H), 7.36-7.44 (m, 3H), 7 .54 (d, J = 8.1 Hz, 2H), 7.65 (d, J = 7.7 Hz, 2H); 13C NMR (100 MHz, CDCl ) δ 21 H), 2.93-3.00 (m, 2H), 7.01-7.06 (m, 2H), 7.18-7.24 (m, 4H), 7.36-7.44 (m, 3H), 7.54 (d, J = 8.1 Hz, 2H), 7.65 (d, J = 7.7 Hz, 2H); 13 C NMR (100 MHz, CDCl) δ 21
3 Three
.25 (IC), 25.37 (2C), 26.21 (2C), 30.41 (2C), 46.81 (IC), 46.90 (IC), 91.31 (2C), 1 21.26 (IC), 121.39 (2C), 126.03 (2C), 128.32 (2C), 128.35 (IC), 128.54 (2C), 128.5 7 (2C), 129.05 (2C), 134.19 (IC), 138.17 (2C), 146.81 (IC); IR (nujol, v / cm"1) 17 34 (w), 1700 (w), 1684 (w), 1635 (w), 1541 (w), 1506 (w), 1365 (m), 1317 (m), 981 ( m), 821 (s), 762 (s), 697 (s)。 .25 (IC), 25.37 (2C), 26.21 (2C), 30.41 (2C), 46.81 (IC), 46.90 (IC), 91.31 (2C), 1 21.26 (IC), 121.39 (2C), 126.03 (2C) ), 128.32 (2C), 128.35 (IC), 128.54 (2C), 128.5 7 (2C), 129.05 (2C), 134.19 (IC), 138.17 (2C), 146.81 (IC); IR (nujol, v / cm " 1 ) 17 34 (w), 1700 (w), 1684 (w), 1635 (w), 1541 (w), 1506 (w), 1365 (m), 1317 (m), 981 (m), 821 (s), 762 (s), 697 (s).
[0066] [化 22] [0066] [Chemical 22]
[0067] [表 2]
収率 I 実施例 8 Ph Ph 83 (90) 実施例 9 Ph 77 (83)
[0067] [Table 2] Yield I Example 8 Ph Ph 83 (90) Example 9 Ph 77 (83)
実施例 10 Ph p-MeC6H4 81 (85) 実施例 11 Ph o-MeC6H4 56 (62) 実施例 12 Ph p-(CF3)C6H4 86 (92) Example 10 Ph p-MeC 6 H 4 81 (85) Example 11 Ph-MeC 6 H 4 56 (62) Example 12 Ph p- (CF 3 ) C 6 H 4 86 (92)
)1かっこ内の数字は1 H-NMR収率。
) 1 Numbers in parentheses 1 H-NMR Yield.
Claims
[化 1] [Chemical 1]
[式中、 R\ R2、 R3及び R4は、それぞれ独立して水素原子、ハロゲン原子、置換基を 有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよい アルキ-ル基、置換基を有してもよいァリール基、置換基を有してもよいァリールアル キル基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリール アルキ-ル基、置換基を有してもよいシクロアルキル基、置換基を有してもよい複素 環基、保護されていてもよい水酸基、アルコキシ基、ァリーロキシ基、アルデヒド基、 保護されていてもよいカルボキシル基又はその塩、アルキルカルボ-ル基、ァリール カルボ-ル基、アルキロキシカルボ-ル基、ァリーロキシカルボ-ル基、アルキル力 ルポ-口キシ基、ァリールカルボ-口キシ基、保護されていてもよいアミノ基、アルキ ルァミノ基、ァリールアミノ基、アンモ-ゥム基、アルキルアンモ-ゥム基、ァリールァ ンモ -ゥム基、保護されていてもよいチオール基、アルキルチオ基、ァリールチオ基、 保護されていてもよいスルフィン酸基又はその塩、アルキルスルフィエル基、ァリール スルフィエル基、保護されていてもよいスルホン酸基又はその塩、アルキルスルホ二
ル基、ァリールスルホ-ル基、アルキルァゾ基、ァリールァゾ基、保護されていてもよ いリン酸基又はその塩、保護されていてもよい亜リン酸基又はその塩、シァノ基、 -ト 口基又はアジド基であり; R5及び R6は、それぞれ独立して、水素原子、置換基を有し てもよいアルキル基、置換基を有してもよいァルケ-ル基、置換基を有してもよいァ ルキ-ル基、置換基を有してもよいァリール基、置換基を有してもよいァリールアルキ ル基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、シクロアルキル基又は置換基を有してもょ 、複素 環基であり
R2、 R3、 R4、 R5及び R6は、相互に結合して環を形成してもよい。 ] で示される化合物と下記式 (II) [Wherein, R \ R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. An alkyl group, an aryl group that may have a substituent, an aryl group that may have a substituent, an arylalkyl group that may have a substituent, and a substituent. May have an aryl alkyl group, an optionally substituted cycloalkyl group, an optionally substituted heterocyclic group, an optionally protected hydroxyl group, an alkoxy group, an aryloxy group, an aldehyde Group, an optionally protected carboxyl group or a salt thereof, an alkyl carbo group, an aryl carbo group, an alkyloxy carbo group, an aryloxy carbo ol group, an alkyl group, a hydroxy group, an ally carbo group. -Mouthoxy group, even if protected Good amino group, alkylamino group, arylamino group, ammonia group, alkylammonium group, arylamine group, optionally protected thiol group, alkylthio group, arylthio group, protected Sulfinic acid group or salt thereof, alkyl sulfier group, aryl sulfier group, sulfonic acid group which may be protected or salt thereof, alkyl sulfone group Group, arylsulfol group, alkylazo group, allylazo group, phosphoric acid group which may be protected or a salt thereof, phosphorous acid group which may be protected or a salt thereof, cyano group, -to-oral group or Each of R 5 and R 6 independently has a hydrogen atom, an alkyl group that may have a substituent, an alkyl group that may have a substituent, or a substituent. An alkyl group that may have a substituent, an aryl group that may have a substituent, an aryl group that may have a substituent, an aryl group that may have a substituent, and a substituent. May be an arylalkynyl group, a substituent, a cycloalkyl group or a substituent, and a heterocyclic group. R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring. ] And the following formula (II)
[化 2] [Chemical 2]
[式中、 R7は、置換基を有してもよいァリール基、置換基を有してもよい芳香族複素 環基、置換基を有してもよいァリールァルケ-ル基、置換基を有してもよいァリールァ ルキニル基、置換基を有してもよ 、ァルケ-ル基又は置換基を有してもよ 、アルキ- ル基であり; Xは、酸素原子、硫黄原子、セレン原子及びテルル原子力 なる群から 選択される 1種である。 ] [Wherein R 7 has an aryl group that may have a substituent, an aromatic heterocyclic group that may have a substituent, an aryl group that may have a substituent, or a substituent. An alkenyl group which may have a substituent, a alkenyl group or an alkyl group which may have a substituent; and X is an oxygen atom, a sulfur atom, a selenium atom and It is one selected from the group of tellurium nuclear power. ]
で示される化合物とを反応させることを特徴とする、下記式 (III) Which is reacted with a compound represented by the following formula (III)
[化 3] [Chemical 3]
[式中、
R7及び Xは、上記式 (I)及び式 (II)と同じ。 ] で示される複素環式化合物の製造方法。
[3] R5が置換基を有してもよ!ヽァリール基、置換基を有してもよ!ヽ芳香族複素環基、置 換基を有してもょ 、ァリールァルケ-ル基、置換基を有してもょ 、ァリールアルキ- ル基、置換基を有してもょ 、ァルケ-ル基又は置換基を有してもょ 、アルキ-ル基で ある請求項 2記載の複素環式化合物の製造方法。 [Where R 7 and X are the same as the above formulas (I) and (II). ] The manufacturing method of the heterocyclic compound shown by these. [3] R 5 may have a substituent, may have a aryl group, may have a substituent, may have an aromatic heterocyclic group, a substituent, an arylalkyl group, The heterocyclic ring according to claim 2, wherein the heterocyclic group is an aryl group, a cycloalkyl group, a substituent, a alkenyl group, or a substituent. A method for producing a formula compound.
[4] Xが酸素原子である請求項 2又は 3記載の複素環式化合物の製造方法。 [4] The method for producing a heterocyclic compound according to [2] or [3], wherein X is an oxygen atom.
[5] 遷移金属化合物からなる触媒の存在下に反応させる請求項 1〜4の!、ずれか記載 の複素環式化合物の製造方法。 [5] The reaction according to claims 1 to 4, wherein the reaction is carried out in the presence of a catalyst comprising a transition metal compound! A method for producing a heterocyclic compound according to any one of the above.
[6] 前記触媒が、周期表第 7族、第 8族、第 9族又は第 10族に属する遷移金属化合物 である請求項 5記載の複素環式化合物の製造方法。 6. The method for producing a heterocyclic compound according to claim 5, wherein the catalyst is a transition metal compound belonging to Group 7, Group 8, Group 9, or Group 10 of the periodic table.
[7] 前記触媒がレニウム化合物からなる請求項 6記載の複素環式化合物の製造方法。 7. The method for producing a heterocyclic compound according to claim 6, wherein the catalyst comprises a rhenium compound.
[8] 前記レニウム化合物がレニウム (I)化合物である請求項 7記載の複素環式化合物の 製造方法。 8. The method for producing a heterocyclic compound according to claim 7, wherein the rhenium compound is a rhenium (I) compound.
[9] 式 (I)で示される化合物に対する、式 (Π)で示される化合物のモル比(ΠΖΙ)を 1. 5 以上として反応させる請求項 2〜8のいずれか記載の複素環式化合物の製造方法。 [9] The heterocyclic compound according to any one of claims 2 to 8, which is reacted at a molar ratio (ΠΖΙ) of the compound represented by the formula (Π) to the compound represented by the formula (I) of 1.5 or more. Production method.
[10] 生成する水を反応系から除去しながら反応を進行させる、請求項 4記載の複素環 式化合物の製造方法。
10. The method for producing a heterocyclic compound according to claim 4, wherein the reaction is allowed to proceed while removing generated water from the reaction system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008505106A JP5181190B2 (en) | 2006-03-10 | 2007-03-09 | Method for producing heterocyclic compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066594 | 2006-03-10 | ||
JP2006-066594 | 2006-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007105622A1 true WO2007105622A1 (en) | 2007-09-20 |
Family
ID=38509445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/054644 WO2007105622A1 (en) | 2006-03-10 | 2007-03-09 | Method for producing heterocyclic compound |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5181190B2 (en) |
WO (1) | WO2007105622A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222612A (en) * | 2007-03-09 | 2008-09-25 | Okayama Univ | Method for producing compound containing imino group or carbonyl group |
JP2015119186A (en) * | 2008-09-25 | 2015-06-25 | ユニバーサル ディスプレイ コーポレイション | Organoselenium material and use of the same in organic light emitting device |
-
2007
- 2007-03-09 JP JP2008505106A patent/JP5181190B2/en active Active
- 2007-03-09 WO PCT/JP2007/054644 patent/WO2007105622A1/en active Application Filing
Non-Patent Citations (6)
Title |
---|
CAVA M.P. ET AL.: "Condensed Cyclobutane Aromatic Compounds. XIII. An Attempted Synthesis of 1,2-Diphenylbenzocyclobutene", JOURNAL OF ORGANIC CHEMISTRY, vol. 25, no. 9, 1960, pages 1481 - 1484, XP003017749 * |
JOHANSSON E. AND SKRAMSTAD J.: "Air Oxidation of an Isoindene: Formation of Isobenzofuran and Acetone", JOURNAL OF ORGANIC CHEMISTRY, vol. 46, no. 18, 28 August 1981 (1981-08-28), pages 3752 - 3754, XP003017750 * |
KUNINOBU Y. ET AL.: "Insertion of Polar and Nonpolar Unsaturated Molecules into Carbon-Rhenium Bonds Generated by C-H Bond Activation: Synthesis of Phthalimidine and Indense Derivatives", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 1, 11 January 2006 (2006-01-11), pages 202 - 209, XP003017752 * |
MOHANAKRISHNAN A.K. AND AMALADASS P.: "Synthesis of 1,3-Diarylbenzo[c]selenophenes", TETRAHEDRON LETTERS, vol. 46, no. 42, 17 October 2005 (2005-10-17), pages 7201 - 7204, XP005077518 * |
MOHANAKRISHNAN A.K. AND AMALADASS P.: "Synthesis of 1,3-Diarylbenzo[c]thiophenes", TETRAHEDRON LETTERS, vol. 46, no. 24, 13 June 2005 (2005-06-13), pages 4225 - 4229, XP004890136 * |
SHARP J.T. AND SKINNER C.E.D.: "The Generation and Reactions of C,N-dianions of Aromatic Tosylhydrazones: ortho-N-Dilithiated Benzophenone Tosylhydrazone", TETRAHEDRON LETTERS, vol. 27, no. 7, 1986, pages 869 - 872, XP003017751 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222612A (en) * | 2007-03-09 | 2008-09-25 | Okayama Univ | Method for producing compound containing imino group or carbonyl group |
JP2015119186A (en) * | 2008-09-25 | 2015-06-25 | ユニバーサル ディスプレイ コーポレイション | Organoselenium material and use of the same in organic light emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP5181190B2 (en) | 2013-04-10 |
JPWO2007105622A1 (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Catalyst-free room-temperature decarboxylative tri-or tetrafunctionalization of alkynyl carboxylic acids with N-fluorobenzenesulfonimide (NFSI) and diselenides | |
WO2004024670A1 (en) | Process for producing arylamine | |
Zong et al. | Efficient C S Cross‐Coupling of Thiols with Aryl Iodides Catalyzed by Cu (OAc) 2· H2O and 2, 2′‐Biimidazole | |
JP2006290786A (en) | 2,3-dihalobiphenylene derivative, precursor compound thereof and method for producing those | |
Yang et al. | Visible light-promoted [3+ 2] cyclization reaction of vinyl azides with perfluoroalkyl-substituted-imidoyl sulfoxonium ylides | |
WO2007105622A1 (en) | Method for producing heterocyclic compound | |
Touchard | New and efficient conditions for the Z-selective synthesis of unsaturated esters by the Horner-Wadsworth-Emmons olefination | |
JP4413507B2 (en) | Pincer metal complex, method for producing the same, and pincer metal complex catalyst | |
JP2003277333A (en) | Method for producing halotriarylamines and method for producing vinyltriarylamines using the same | |
CN113372346B (en) | Synthetic method of 3-fatty amine methyl imidazo [1, 2-alpha ] pyridine compound | |
Martínez-Núñez et al. | Synthesis of highly substituted 1, 3-dienes through halonium promoted 1, 2-sulfur migration of propargylic thioethers | |
JP3950422B2 (en) | Azadirs Alder Reaction Method | |
JP5178470B2 (en) | Method for producing fluorene derivative | |
JP3353046B2 (en) | Method for producing organic compound using organic bismuth compound | |
KR102242238B1 (en) | Substituted or unsubstituted 4-bromo-2-fluoroquinoline, method of the same and 2,4 substituted quinoline compounds containing them | |
CN115108932B (en) | Preparation method of aromatic amide compound | |
JP5594762B2 (en) | Method for producing silafluorene derivative | |
JP4635251B2 (en) | Organic bismuth compound and process for producing the same | |
JP2008069104A (en) | Helicene derivative, triyne derivative and method for producing the helicene derivative | |
JP2011183366A (en) | Catalyst composition for c-c coupling reaction | |
KR101546374B1 (en) | Preparation method of anthracene derivatives catalyzed by bismuth salts | |
JP5794570B2 (en) | Method for producing arylamines | |
JP2019151633A (en) | Method for producing aromatic compound | |
JP2023174407A (en) | Method for producing coupling compound | |
Vu | The application of visible light mediated photoredox catalysis in organic transformations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07738129 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2008505106 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07738129 Country of ref document: EP Kind code of ref document: A1 |