Nothing Special   »   [go: up one dir, main page]

WO2007026614A1 - 誘電体磁器およびその製法、並びに積層セラミックコンデンサ - Google Patents

誘電体磁器およびその製法、並びに積層セラミックコンデンサ Download PDF

Info

Publication number
WO2007026614A1
WO2007026614A1 PCT/JP2006/316744 JP2006316744W WO2007026614A1 WO 2007026614 A1 WO2007026614 A1 WO 2007026614A1 JP 2006316744 W JP2006316744 W JP 2006316744W WO 2007026614 A1 WO2007026614 A1 WO 2007026614A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
powder
barium titanate
main crystal
concentration
Prior art date
Application number
PCT/JP2006/316744
Other languages
English (en)
French (fr)
Inventor
Daisuke Fukuda
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to CN200680028613XA priority Critical patent/CN101238080B/zh
Priority to JP2007533211A priority patent/JP4805938B2/ja
Priority to US12/065,483 priority patent/US8154851B2/en
Publication of WO2007026614A1 publication Critical patent/WO2007026614A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/6281Alkaline earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a dielectric ceramic, a manufacturing method thereof, and a multilayer ceramic capacitor, and more particularly, a dielectric ceramic showing a high dielectric constant even when atomized, a manufacturing method thereof, and such a dielectric ceramic.
  • the present invention relates to a multilayer ceramic capacitor.
  • the dielectric layer constituting the multilayer ceramic capacitor has been made thin and highly laminated, so that the crystal grains constituting the dielectric layer have a high relative dielectric constant even if they are atomized.
  • a dielectric ceramic having a low temperature dependence of relative permittivity is required, and dielectric ceramics as shown in the following patent documents have been developed.
  • Patent Document 1 discloses that a part of a titanium site in barium titanate used as a dielectric porcelain is replaced with zirconium zirconium zirconate, and the norlium site is replaced with bismuth, sodium, and strontium. A composite of bismuth titanate sodium is disclosed.
  • Patent Document 2 discloses a titanium zircon in which part of barium sites in barium titanate is replaced with calcium and part of the titanium sites are replaced with zirconium, and these calcium and zirconium compositions are different. Barium acid 'disclosed in dielectric porcelain containing calcium crystal particles! Speak.
  • Patent Document 3 discloses a dielectric ceramic containing a zirconium component in an amount of 0.01 to 0.1 atomic% with respect to 1 mole of a composite oxide of barium, bismuth and titanium. It is disclosed.
  • Patent Document 4 discloses a dielectric ceramic in which 0.1 to 0.5 parts by mass of zirconia is contained in 100 parts by mass of a dielectric ceramic made of barium, titanium, and a rare earth element.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2005-22891
  • Patent Document 2 JP-A-2005-22890
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-238240
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-146744
  • Patent Document 1 there is a tendency for the relative dielectric constant to decrease when the ratio of substitution of part of the titanium sites in barium titanate with zirconium is increased.
  • the relative permittivity decreases with the substitution amount of the zirconium component in the composition on the side where the substitution amount of zirconium with respect to titanium in the titanium barium zirconate titanium is small.
  • Patent Document 3 when the zirconium oxide is changed over a molar ratio of 0.05-0.12 with respect to 1 mol of the barium, bismuth and titanium composite oxide, the relative dielectric constant is low. I'm down.
  • Patent Document 4 shows that the relative permittivity tends to decrease in a composition in which 0.05 to 0.5 parts by mass of zircoure is contained in 100 parts by mass of dielectric ceramics also having barium, titanium, and rare earth element forces. Has been.
  • the present invention is a dielectric ceramic that can increase the dielectric constant and can stabilize the temperature characteristics of the relative dielectric constant even with finely divided barium titanate-based crystal particles, and a method for producing the same, and a method for producing the same.
  • Another object of the present invention is to provide a high-capacity multilayer ceramic capacitor using such a dielectric ceramic as a dielectric layer.
  • the dielectric ceramic according to the present invention has the following: (1)
  • the main crystal particles are at least selected from Ti, Ca, Sr, and Ba.
  • the main crystal particles contain metal components of Mg, Mn and rare earth elements, and the Mg, Mn and At least one metal component of the rare earth element is present at a higher concentration on the surface side than the inside of the main crystal particle, the concentration ratio (inside the surface side Z) is 1.5 times or more, and the complex acid Zr is contained in an amount of 0.04 to 0.2 parts by mass in terms of an acid compound with respect to 100 parts by mass of the compound.
  • the main crystal particles include first crystal particles having a Ca concentration of 0.2 atomic% or less and second crystal particles having a Ca concentration of 0.4 atomic% or more.
  • the average particle size of the main crystal particles is preferably 0.4 ⁇ m or less.
  • the method for producing a dielectric ceramic according to the present invention includes: (4) a surface of a composite acid powder having, as main components, Ti and at least one alkaline earth metal element selected from Ca, Sr, and Ba. Further, it is characterized in that 0.04 to 0.2 part by mass of zirconium oxide is added to 100 parts by mass of dielectric powder coated with Mg, Mn and rare earth elements, and is fired after forming.
  • the composite oxide powder is a mixed powder of a barium titanate powder and a barium titanate'calcium powder
  • the dielectric powder is made of The average particle size is desirably 0.3 m or less.
  • the multilayer ceramic capacitor of the present invention is (7) a multilayer ceramic capacitor comprising a capacitor body in which dielectric layers and internal electrode layers are alternately stacked, wherein the dielectric layer is the dielectric layer described above. It is a porcelain.
  • the dielectric porcelain of the present invention Zr is converted into oxide in the dielectric porcelain in which barium titanate-based crystal particles are the main constituent mineral, that is, as acid zirconium.
  • barium titanate-based crystal particles are the main constituent mineral, that is, as acid zirconium.
  • the barium titanate-based main crystal grains constituting the dielectric ceramic are at a higher concentration on the surface side than the inside at least one metal component of Mg, Mn, and rare earth elements. Therefore, it is possible to make the added acid-zirconium exist in the vicinity of the surface, so that the crystal phase near the surface of the crystal grain is excellent in the ferroelectricity in which the acid-zirconium is dissolved. It can be formed as crystal particles.
  • the crystal structure of barium titanate does not exhibit strong ferroelectricity due to the solid solution of the additive component. Change to structure.
  • additives such as Mg, Mn, and rare earth elements are contained in the vicinity of the surface of the barium titanate crystal particles, and are changed to crystal particles having a crystal phase exhibiting the above ferroelectricity.
  • the dielectric constant can be increased.
  • impurities such as Mg are present in a high concentration near the surface of the crystal particle, so that the added acid zirconium oxide diffuses into the crystal particle. Can be suppressed.
  • the barium titanate in the solid solution region has a low tetragonality due to the presence of the above-described Y and the like in a high concentration.
  • barium titanium zirconate which has a high dielectric constant at room temperature, is formed by the solid solution of zirconium oxide. Therefore, the region on the surface side of the crystal grains that had previously been considered to have a low dielectric constant. As a result, the relative permittivity of the crystal grains as a whole can be improved.
  • the diffusion of additive components such as Y and zirconium oxide is suppressed on the inner side of the crystal grains, and most of them are tetragonal. The temperature characteristics of the rate can also be stabilized.
  • FIG. 1 is an enlarged longitudinal sectional view of a part of a multilayer ceramic capacitor of the present invention.
  • FIG. 2 is a longitudinal sectional view and a partially enlarged view of the multilayer ceramic capacitor of the present invention.
  • FIG. 3 is a process diagram showing a method for producing a multilayer ceramic capacitor of the present invention.
  • FIG. 1 is a partially enlarged schematic cross-sectional view showing a dielectric ceramic according to the present invention.
  • the dielectric porcelain according to the present invention comprises, as a main constituent mineral, a barium titanate-based main crystal particle 1, and its constituent components are at least one alkaline earth selected from Ti, Ca, Sr, and Ba. It is a complex oxide mainly composed of a metal element.
  • barium titanate, strontium titanate, or barium titanate containing calcium in this barium titanate 'calcium barium titanate containing strontium in barium titanate. It is preferable that any force of strontium or a mixture of these crystal particles 1 is used.
  • the composite oxide is a main crystal particle 1 mainly composed of the above-described barium titanate (BaTiO 3).
  • the main crystal grain 1 as the main component allows the relative permittivity to be increased by changing the AC electric field, which has a flat temperature characteristic of the relative permittivity and a high dependence of the relative permittivity on the AC electric field. There is.
  • the dielectric constant of the dielectric ceramic is increased and the temperature of the dielectric constant is increased.
  • the composite main crystal particle 1 includes, in particular, the first crystal particle la having a Ca concentration of 0.2 atomic% or less and the second crystal particle having a Ca concentration of 0.4 atomic% or more. It is preferable that it consists of lb.
  • the composite primary crystal particle 1 must have a first crystal particle la having a Ca concentration of 0.2 atomic% or less and a second crystal particle lb having a Ca concentration of 0.4 atomic% or more. Can extract the characteristics of both crystal grains, and the dielectric constant is high and the dielectric constant temperature is high. A product with a stable degree characteristic can be obtained.
  • the relative permittivity at 50 ° C or higher can be approximated to the relative permittivity at room temperature, so the X7R characteristics (temperature range: capacitance change rate within 55 to 125 ° C is within ⁇ 15%: This is because it is easier to satisfy the EIA standard.
  • the first crystal particle la having a Ca concentration of 0.2 atomic% or less and the second crystal particle lb having a Ca concentration of 0.4 atomic% or more are composed of barium titanate (BaTiO 3) powder and barium titanate calcium.
  • the crystal particles 1 of the present invention are characterized by containing Mg, Mn and rare earth metal components in terms of the insulating properties and temperature characteristics of the barium titanate-based crystal particles.
  • the present invention it is important that at least one metal component of Mg, Mn and rare earth elements is present at a higher concentration on the surface side 5 than the inside 3 of the main crystal particle 1.
  • the surface of the main crystal particle 1 has a crystalline phase with low ferroelectricity.
  • the internal 3 occupying most of the main crystal particle 1 is the tetragonal crystal that strongly exhibits the ferroelectricity of the original barium titanate main crystal particle 1 and therefore the ratio of the main crystal particle 1 as a whole.
  • the dielectric constant can be increased.
  • At least one metal component (element) of Mg, Mn, and rare earth elements is present at a higher concentration on the surface side 5 than the inside 3 of the main crystal particle 1.
  • concentration ratio of the element on the surface side 5 with respect to the center of 1 is 1.5 times or more.
  • the concentration ratio of the elements present in the main crystal particles 1 can be obtained as a count ratio by an analyzer (E PMA) provided in the electron microscope. In the analysis, the presence state of the element is detected while scanning the main crystal particle 1 from the surface side 5 to the center.
  • the element concentration on the surface side 5 of the main crystal grain 1 is the concentration on the surface side, which is 2 to 5 nm from the surface.
  • Mg contained in the barium titanate-based main crystal particles 1 is 0.04 to 0.14 quality.
  • the relative dielectric constant temperature characteristics of the barium titanate-based main crystal particles 1 itself are within the range of 0.2 to 0.9 parts by mass for the rare earth element and 0.04 to 0.15 parts by mass for Mn. This improves stability and improves insulation and reliability in high temperature load tests.
  • the rare earth element at least one of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc is particularly preferable.
  • Y is preferable in terms of improving the reliability of a dielectric ceramic in a high-temperature load test while stabilizing the temperature characteristics of the relative permittivity.
  • Mg, Mn, and rare earth elements when these metal components are not present in the main crystal particle 1 or when there is no concentration difference from the surface side 5 to the inside 3 of the main crystal particle 1 That is, when the concentration ratio of the element on the surface side 5 with respect to the central part of the main crystal particle 1 is smaller than 1.5 times, the added zirconium oxide diffuses to the inside 3 of the main crystal particle 1. As a result, the tetragonal nature of the barium titanate-based main crystal particle 1 itself is reduced as a whole, so that the relative dielectric constant is low.
  • zirconium is converted into an oxide in terms of 0.04 to 0.2 with respect to 100 parts by mass of the composite oxide composed of the barium titanate-based main crystal particles 1 described above. It is characterized in that it is contained in an amount of 0.06-0.1 parts by mass.
  • zirconium oxide When the amount of zirconium oxide is 0.04 parts by mass or more, zirconium oxide can be dissolved in the vicinity of the surface of the barium titanate-based main crystal particles 1, so that The crystal phase near the surface of the crystal grain 1 can be changed to titanium zirconate having a high relative dielectric constant at room temperature, which has the advantage that the main crystal grain 1 as a whole can have a high dielectric constant.
  • the grain growth of the barium titanate-based main crystal particles 1 can be suppressed, so that even when firing in a mass production furnace having a wide temperature distribution, Growth can be suppressed, which can reduce the change in relative permittivity and improve the insulation and reliability in high temperature load tests.
  • zirconium oxide when the amount of zirconium oxide is 0.2 parts by mass or less, zirconium oxide with respect to the core part of the inner part 3 in which the barium titanate-based main crystal particles 1 are usually considered to be tetragonal. Since the solid solution amount can be reduced, the decrease in the relative dielectric constant of the entire main crystal particle 1 can be suppressed.
  • the zirconium oxide cannot be dissolved in the vicinity of the surface of the barium titanate-based main crystal particles 1, so that the main crystal The crystal phase near the surface of the particle 1 cannot be changed to barium titanylzirconate having a high relative dielectric constant near room temperature. Therefore, a high dielectric constant cannot be achieved.
  • the amount of zirconium oxide is more than 0.2 parts by mass, since the zirconium oxide is dissolved in the entire main crystal particle 1, the ratio of the main crystal particle 1 is high near room temperature.
  • titanium zirconate barium which has a dielectric constant, the temperature characteristic of the dielectric constant of the dielectric ceramic becomes large.
  • the amount of zirconium oxide in the dielectric porcelain is determined by dissolving the dielectric porcelain in a solvent in advance, and then using the CP emission spectroscopic analysis, the main components of the crystal particles 1 are normodium, strontium, force ruthenium, titanium.
  • the amount of zirconium is measured together with the above.
  • the amount of barium, strontium, calcium, and titanium is also determined from the stoichiometric ratio of the amount of barium titanate, and the amount of zirconium oxide (ZrO) when the amount of barium titanate is 100 parts by mass is determined.
  • the average particle size of the main crystal particles 1 constituting the dielectric ceramic of the present invention is preferably 0.4 ⁇ m or less.
  • the lower limit of the average particle size of the main crystal particles 1 is preferably 0.1 m or more.
  • the average grain size of the main crystal grain 1 is 0.1 ⁇ m or more, it becomes the main crystal grain 1 having a high tetragonal property, so that the dielectric constant of the dielectric ceramic can be increased.
  • the average grain size of the main crystal particles 1 is obtained by observing the fracture surface of the dielectric ceramic with an electron microscope and using an image analyzer (Macview) for the obtained crystal structure photograph. Specifically, the outline of each crystal particle 1 projected on the entire surface of the obtained photograph was written, the area of the outline was obtained, the area was converted to a circle, the diameter was obtained for each particle, and found. Average the diameters of the individual crystal particles 1.
  • the molar ratio AZB between the A site (barium) and the B site (titanium) in the second crystal particle lb with a Ca concentration of 0.4 atomic% or more is It is more desirable to set it to 1.03 or more because the reason for suppressing the grain growth of the second crystal grain lb having a Ca concentration of 0.4 atomic% or more which is easy to grow.
  • a method for manufacturing the dielectric ceramic according to the present invention will be described.
  • a composite oxide powder containing at least one alkaline earth metal element selected from Ti, Ca, Sr, and Ba as a main component is prepared.
  • the surface of the composite oxide powder is coated with Mg, Mn and rare earth elements to prepare a dielectric powder coated with Mg, Mn and rare earth elements.
  • the coating of Mg, Mn and rare earth element composite oxide powder is performed by heating and mixing an aqueous solution of Mg, Mn and rare earth element with the composite oxide powder.
  • the obtained coating powder and acid zirconium powder are mixed in a solvent such as water or alcohol in which the coating powder and acid zirconium powder do not dissolve.
  • the amount of the coating powder and zirconium oxide powder to be mixed is the composition of the dielectric ceramic described above.
  • the average particle size of the dielectric powder prepared here is preferably 0.3 m or less. When the average particle size of the dielectric powder is 0.3 m or less, it is easy to reduce the thickness of the dielectric layer constituting the multilayer ceramic capacitor. On the other hand, the average particle size of the dielectric powder is preferably 0.2 ⁇ m or more.
  • the average particle size of the dielectric powder is 0.2 ⁇ m or more, it becomes a powder having high tetragonal properties, and it is easy to increase the dielectric constant immediately.
  • the average particle size of the dielectric powder is 0.2 ⁇ m or more, it becomes a powder having high tetragonal properties, and it is easy to increase the dielectric constant immediately.
  • the obtained mixed powder is formed into a tablet using a molding machine and fired under predetermined heating conditions.
  • FIG. 2 is a schematic cross-sectional view showing the multilayer ceramic capacitor of the present invention.
  • Main departure In the bright multilayer ceramic capacitor external electrodes 13 are formed on both ends of the capacitor body 11.
  • the external electrode 13 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.
  • the capacitor body 11 is configured by alternately laminating dielectric layers 15 and internal electrode layers 17.
  • the dielectric layer 15 is composed of crystal grains 1 and a grain boundary layer 19.
  • the thickness of the dielectric layer 15 is 3 ⁇ m or less, particularly 2.5 m or less, which is preferable for making a multilayer ceramic capacitor small and high capacity. It is more desirable for the thickness variation of the dielectric layer 15 to be within 10% in order to stabilize the temperature characteristics of the capacitor and the capacitance! /.
  • the internal electrode layer 17 is particularly desirable when a base metal such as nickel (Ni) or copper (Cu) is desired because the manufacturing cost can be suppressed even when the number of layers is increased. If simultaneous firing is possible, nickel (Ni) is more desirable!
  • FIG. 3 is a process diagram showing a method for producing the multilayer ceramic capacitor of the present invention.
  • organic resin such as polyvinyl propylar resin, solvent such as toluene and alcohol, and the like.
  • a ceramic slurry is prepared by mixing using a ball mill or the like, and then the ceramic slurry is formed using a sheet forming method such as a doctor blade method or a die coater method.
  • the thickness of the ceramic green sheet 21 is preferably
  • the conductor paste used as the internal electrode pattern 23 is prepared by mixing Ni, Cu or an alloy powder thereof as the main component metal, mixing ceramic powder as a co-material, and adding an organic binder, solvent and dispersant. .
  • the thickness of the internal electrode pattern 23 is preferably 1 ⁇ m or less because the multilayer ceramic capacitor is miniaturized and the step due to the internal electrode pattern 23 is reduced.
  • the ceramic pattern 25 is formed around the internal electrode pattern 23 with substantially the same thickness as the internal electrode pattern 23. It is preferable to form. It is preferable to use the dielectric powder as the ceramic component constituting the ceramic pattern 25 in that the firing shrinkage in the simultaneous firing is the same.
  • the internal electrode pattern 23 in the temporary laminate is shifted by a half pattern in the longitudinal direction.
  • the ceramic green sheet 21 is added to the main surface. After the inner electrode pattern 23 is printed after being in close contact with the base material on the lower layer side, and then dried, the ceramic green sheet 21 on which the inner electrode pattern 23 is not printed on the dried inner electrode pattern 23 It is also possible to form by a method in which the ceramic green sheets 21 are adhered and the internal electrode pattern 23 is printed sequentially.
  • the temporary laminate is pressed at a temperature higher and higher than the temperature and pressure at the time of the temporary lamination to obtain a laminate 29 in which the ceramic green sheet 21 and the internal electrode pattern 23 are firmly adhered. Can be formed.
  • the laminated body 29 is cut along the cutting line h, that is, approximately at the center of the ceramic pattern 25 formed in the laminated body 29 in a direction perpendicular to the longitudinal direction of the internal electrode pattern 23 ( In Fig. 3 (cl) and Fig. 3 (c2)), the capacitor body molded body is formed by cutting in parallel to the longitudinal direction of the internal electrode pattern 23 so that the end of the internal electrode pattern 23 is exposed. Is done. On the other hand, in the widest portion of the internal electrode pattern 23, the internal electrode pattern 23 is formed so as to be exposed on the side margin portion side.
  • the capacitor body molded body is fired under a predetermined atmosphere at a temperature condition to obtain a capacitor.
  • the sensor body 11 is formed, and in some cases, chamfering is performed on the ridge line portion of the capacitor body 11 and barrel polishing is performed to expose the internal electrode layer 17 that exposes the opposing end face force of the capacitor body 11. May be.
  • degreasing is performed in a temperature range up to 500 ° C, the heating rate is 5 to 20 ° C Zh, the firing temperature is in the range of 1100 to 1250 ° C, and the temperature is increased from degreasing to the maximum temperature.
  • the maximum temperature is 900 to: L 100 ° C, and the atmosphere is nitrogen.
  • an external electrode paste is applied to the opposite ends of the capacitor body 11 and baked to form the external electrodes 13. Further, a plating film is formed on the surface of the external electrode 13 in order to improve mountability.
  • a multilayer ceramic capacitor was produced as follows. Table 1 shows the types of raw material powder used, average particle size, amount added, and firing temperature. Here, barium titanate powder (BT powder) and barium titanate.calcium powder (BCT powder) coated with Mg, Y, and Mn and those not mixed with the powder were used. As BCT powder, Ba Ca TiO
  • the average particle size of barium titanate powder (BT powder) and barium titanate 'calcium powder (BCT powder) was both 0.25 m.
  • BT powder and BCT powder barium titanate powder and barium titanate 'calcium powder
  • equimolar amounts of BT powder and BCT powder were mixed, and the coating amounts of Mg, Mn and Y were adjusted so that BT powder and BCT powder were 100 parts by mass.
  • the AZB site ratio of BT powder and BCT powder was 1.003.
  • the particle sizes of BT powder and BCT powder were mainly 0.2 to 0.4 m.
  • the above powder was wet-mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirca balls having a diameter of 5 mm.
  • a polyvinyl butyral resin and a mixed solvent of toluene and alcohol are added to the wet-mixed powder, and wet-mixed using a zirconium ball of 5 mm in diameter to prepare a ceramic slurry.
  • a ceramic green sheet 21 having a thickness of 3 ⁇ m was produced.
  • the conductor paste used for internal electrode pattern 23 is Ni powder with an average particle size of 0.3 m, and 30 parts by weight of BT powder used for green sheet 21 as a co-material is added to 100 parts by weight of Ni powder. did.
  • the laminated molded body was debindered at 300 ° CZh in the atmosphere at a temperature increase rate of 10 ° CZh, and the temperature increase rate from 500 ° C was 300 ° CZh.
  • Hydrogen baked in nitrogen at 115 0-1200 ° C for 2 hours, then cooled to 1000 ° C at a temperature drop rate of 300 ° CZh, re-oxidized at 1000 ° C for 4 hours in a nitrogen atmosphere, 300 ° C
  • the capacitor body 11 was fabricated by cooling at a CZh cooling rate.
  • the size of the capacitor body 11 was 2 X I. 3 X 1.3 mm 3 and the thickness of the dielectric layer 15 was 2 m.
  • an external electrode paste containing Cu powder and glass was applied to both ends of the electronic component body, and baked at 850 ° C. Formed. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially applied to the surface of the external electrode 13 to produce a multilayer ceramic capacitor.
  • the concentration ratio of the elements present in the crystal particles 1 was obtained as a count ratio by an analyzer (EPMA) provided in the electron microscope. In this case, the presence state of the element is detected while scanning the crystal particle 1 from the surface side 5 to the center portion, and the element concentration on the surface side 5 of the crystal particle 1 is set to the inner concentration value of 2 to 5 nm from the surface side. The concentration was 5.
  • Crystal particles evaluated for concentration ratio 1 Were evaluated by arbitrarily selecting three dielectric ceramics. The composite value of BT crystal particles and BCT crystal particles is the average value of both crystal particles 1 in a dielectric ceramic.
  • a grain boundary layer was evaluated by an AC impedance method.
  • the resistance evaluation of the grain boundary in the dielectric layer 15 using this AC impedance measurement is as follows.1)
  • the temperature of the multilayer ceramic capacitor is higher than the Curie temperature indicated by the perovskite-type barium titanate crystal particles constituting the dielectric layer 15. It was left in a high temperature load atmosphere at a temperature 5 times higher and a voltage of 1Z3 or more of the rated voltage of the multilayer ceramic capacitor.
  • the resistance reduction rate of the grain boundary layer 19 in the dielectric layer 15 was measured by AC impedance measurement (Cole-Cole plot) under the same conditions before and after being left in the high temperature load atmosphere of the above conditions.
  • the average particle size of the BT type crystal particles and the BCT type crystal particles constituting the dielectric layer 15 was determined using the above-described image analysis apparatus (Macview).
  • the sample used was an etched polished surface. Their average value and D90 (90% cumulative value for small diameter force over large diameter) were obtained.
  • the rate of change in temperature is also within 15%, the breakdown voltage (BDV) is 155V or higher, the endurance time is 1740 hours or longer in a high-temperature load test (125 ° C, 9.45V), and the resistance by the AC impedance method The rate of change was 0.6% or less.
  • the first crystal particle la having a Ca concentration of 0.2 atomic% or less as the barium titanate-based crystal particle 1 by using a powder and BCT powder coated with Mg, Y, and ⁇
  • the relative dielectric constant is not only high but also the firing temperature changes.
  • the temperature characteristics of the dielectric constant also maintained the X7R characteristics, and the rate of change in resistance by the AC impedance method was 0.5% or less, which was highly reliable.
  • sample No. 1 in which barium titanate-based crystal particles 1 were coated with Mg, Y, and ⁇ but without addition of zirconium oxide had a relative dielectric constant as compared with the sample of the present invention.
  • sample No. 9 in which barium titanate-based crystal particles 1 were mixed together with acid-zirconium as an acid oxide without coating Mg, Y, ⁇ with Mg, Y, ⁇ , The concentration ratio of the surface side 5 to the central part of the crystal grain 1 of Y was smaller than 2, and the rate of change in capacitance with temperature exceeded -15%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 主結晶粒子1が、Tiと、Ca、Sr、Baから選ばれる少なくとも1種のアルカリ土類金属元素とを主成分として含む複合酸化物からなる誘電体磁器において、前記主結晶粒子1がMg、Mnおよび希土類元素の金属成分を含有するとともに、前記Mg、Mnおよび希土類元素の少なくとも1種の金属成分が前記主結晶粒子1の内部3よりも表面側5に高濃度で存在しており、前記複合酸化物100質量部に対して、Zrを酸化物換算で0.04~0.2質量部含有することにより、微粒化されたチタン酸バリウム系の結晶粒子であっても高誘電率化でき、かつ、比誘電率の温度特性を安定化できる。

Description

明 細 書
誘電体磁器およびその製法、並びに積層セラミックコンデンサ
技術分野
[0001] 本発明は、誘電体磁器およびその製法、並びに積層セラミックコンデンサに関し、 特に、微粒化しても高誘電率を示す誘電体磁器およびその製法、並びに、このような 誘電体磁器により構成される積層セラミックコンデンサに関する。
背景技術
[0002] 近年、携帯電話などモパイル機器の普及やパソコンなどの主要部品である半導体 素子の高速、高周波化に伴い、このような電子機器に搭載される積層セラミックコン デンサは、小型、高容量ィ匕の要求がますます高まっている。
[0003] そのため積層セラミックコンデンサを構成する誘電体層は薄層化と高積層化が図ら れており、そのため誘電体層を構成する結晶粒子は、それを微粒化しても比誘電率 が高くかつ比誘電率の温度依存性が少ないものが求められ、下記の特許文献に示 されるような誘電体磁器が開発されている。
[0004] 例えば、特許文献 1には、誘電体磁器として用いるチタン酸バリウム内のチタンサイ トの一部をジルコニウムで置換したチタンジルコン酸バリウムと、ノ リウムサイトをビス マス、ナトリウムおよびストロンチウムで置換したチタン酸ビスマス'ナトリウムとを複合 化したものが開示されている。
[0005] 特許文献 2には、チタン酸バリウム内のバリウムサイトの一部をカルシウムで置換し、 かつ、チタンサイトの一部をジルコニウムで置換し、これらカルシウムおよびジルコ二 ゥム組成の異なるチタンジルコン酸バリウム 'カルシウム結晶粒子を複合ィ匕させた誘 電体磁器にっ ヽて開示されて!ヽる。
[0006] 特許文献 3には、バリウム、ビスマスおよびチタンの複合酸ィ匕物 1モルに対してジル コ-ァ成分を 0. 01〜0. 1原子%の割合だけ含有させた誘電体磁器について開示さ れている。
[0007] 特許文献 4には、バリウム、チタン、希土類元素からなる誘電体磁器 100質量部に 対してジルコユアを 0. 11〜0. 5質量部含ませた誘電体磁器が開示されている。 特許文献 1:特開 2005 - 22891号公報
特許文献 2:特開 2005 - 22890号公報
特許文献 3:特開 2003 - 238240号公報
特許文献 4:特開 2003— 146744号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、上記特許文献 1〜4について、誘電体磁器の主成分であるチタン酸 バリウムに対するジルコニウム成分の添加効果は、 V、ずれも比誘電率を向上させるも のではない。
[0009] つまり、特許文献 1では、チタン酸バリウム内のチタンサイトの一部をジルコニウムで 置換する割合を増加させたときに比誘電率は低下する傾向が見られる。
[0010] 特許文献 2においても、チタンジルコン酸バリウム 'カルシウム中のチタンに対する ジルコニウムの置換量の少な 、側の組成にぉ 、ては、ジルコニウム成分の置換量と ともに比誘電率は低下して 、る。
[0011] 特許文献 3では、バリウム、ビスマスおよびチタンの複合酸化物 1モルに対してジル コ-ァをモル比で 0. 05-0. 12の割合にわたって変化させた場合、比誘電率が低 下している。
[0012] 特許文献 4では、バリウム、チタン、希土類元素力もなる誘電体磁器 100質量部に 対してジルコユアを 0. 05〜0. 5質量部含ませた組成において比誘電率は低下する 傾向が示されている。
[0013] つまり、これまでチタン酸バリウム系の結晶粒子に対して少量の酸化ジルコニウムを 含有させて比誘電率を高くした例はな 、。
[0014] 従って本発明は、微粒化されたチタン酸バリウム系の結晶粒子であっても高誘電率 化でき、かつ、比誘電率の温度特性を安定化できる誘電体磁器およびその製法、並 びに、このような誘電体磁器を誘電体層として用いた高容量の積層セラミックコンデ ンサを提供することを目的とする。
課題を解決するための手段
[0015] 本発明の誘電体磁器は、 (1)主結晶粒子が、 Tiと、 Ca、 Sr、 Baから選ばれる少なく とも 1種のアルカリ土類金属元素とを主成分として含む複合酸化物からなる誘電体磁 器において、前記主結晶粒子が Mg、 Mnおよび希土類元素の金属成分を含有する とともに、前記 Mg、 Mnおよび希土類元素の少なくとも 1種の金属成分が前記主結晶 粒子の内部よりも表面側に高濃度で存在しており、その濃度比 (表面側 Z内部)が 1 . 5倍以上であり、前記複合酸ィ匕物 100質量部に対して、 Zrを酸ィ匕物換算で 0. 04〜 0. 2質量部含有することを特徴とする。
[0016] 上記誘電体磁器ではまた、(2)前記主結晶粒子が、 Ca濃度 0. 2原子%以下の第 1結晶粒子と、 Ca濃度 0. 4原子%以上の第 2結晶粒子とからなること、(3)前記主結 晶粒子の平均粒径が 0. 4 μ m以下であることが望ましい。
[0017] 本発明の誘電体磁器の製法は、(4)Tiと、 Ca、 Sr、 Baから選ばれる少なくとも 1種 のアルカリ土類金属元素とを主成分とする複合酸ィヒ物粉末の表面に Mg、 Mnおよび 希土類元素を被覆した誘電体粉末 100質量部に対して、酸ィ匕ジルコニウムを 0. 04 〜0. 2質量部添加し、成形した後、焼成することを特徴とする。
[0018] 上記誘電体磁器の製法ではまた、 (5)前記複合酸化物粉末が、チタン酸バリウム 粉末とチタン酸バリウム 'カルシウム粉末との混合粉末であること、(6)前記誘電体粉 末の平均粒径が 0. 3 m以下であることが望ましい。
[0019] 本発明の積層セラミックコンデンサは(7)誘電体層と内部電極層とを交互に積層し てなるコンデンサ本体を具備する積層セラミックコンデンサにお 、て、前記誘電体層 が上記の誘電体磁器であることを特徴とする。
発明の効果
[0020] 本発明の誘電体磁器によれば、チタン酸バリウム系の結晶粒子を主構成鉱物とす る誘電体磁器中に Zrを酸化物換算で、つまり酸ィ匕ジルコニウムとして 0. 04〜0. 2質 量部含有させることにより誘電体磁器の高誘電率化を図ることができ、それとともに比 誘電率の温度特性の安定ィ匕を図ることができる。そして、このような誘電体磁器を誘 電体層として用いることにより容量温度特性に優れた高容量の積層セラミックコンデ ンサを容易に形成できる。
[0021] 即ち、これまで開示されている先行技術によれば、チタン酸バリウム系の主結晶粒 子に対する酸ィ匕ジルコニウムの添加効果は、添加するジルコニウムの酸ィ匕物量を多 くした場合に室温付近での比誘電率が高まることが知られていた (例えば、特許文献
2参照)。しかし、添加するジルコニウムの酸ィ匕物量が少ない場合には反対に比誘電 率は低下するものが大半であった (特許文献 1〜4参照)。
[0022] これに対して、本発明では誘電体磁器を構成するチタン酸バリウム系の主結晶粒 子が内部よりも表面側に高濃度に Mg、 Mnおよび希土類元素の少なくとも 1種の金 属成分を含有するものであることから、添加する酸ィ匕ジルコニウムを表面付近に存在 させることができ、このため結晶粒子の表面付近の結晶相を酸ィ匕ジルコニウムを固溶 させた強誘電性に優れる結晶粒子として形成できる。
[0023] 従来、チタン酸バリウムに Mg、 Mnおよび希土類元素などの添加物を含有させると 、チタン酸バリウムの結晶構造が上記添加成分の固溶により強誘電性を強く示さない 立方晶に近い結晶構造に変化する。ところが、本発明の誘電体磁器では、 Mg、 Mn および希土類元素などの添加物をチタン酸バリウム結晶粒子の表面付近に含有させ 、上記の強誘電性を示す結晶相を具備する結晶粒子に変えたことにより結果的に比 誘電率を高くすることができる。し力も本発明にかかる結晶粒子では、その結晶粒子 の表面付近に Mgなどの不純物が高濃度で存在して 、るために添カ卩した酸ィ匕ジルコ 二ゥムが結晶粒子の内部へ拡散するのを抑制できる。
[0024] 通常、誘電体粉末に異種金属成分が固溶すると、その固溶領域のチタン酸バリウ ムは上記 Yなどが高濃度で存在するために正方晶性が低いものとなるが、本発明で は酸ィ匕ジルコニウムが固溶することによって、室温における比誘電率の高いチタンジ ルコン酸バリウムが形成されることから、これまで比誘電率が低いとされていた結晶粒 子の表面側の領域を高誘電率ィ匕できたことにより結晶粒子全体として比誘電率の向 上を図ることができる。それとともに、結晶粒子の内部側は Yや酸ィ匕ジルコニウムなど の添加剤成分の拡散が抑えられ依然として大部分が正方晶性であるために、そのよ うな結晶粒子力 なる誘電体磁器は比誘電率の温度特性も安定ィ匕できる。
図面の簡単な説明
[0025] [図 1]本発明の積層セラミックコンデンサの一部を拡大した縦断面図である。
[図 2]本発明の積層セラミックコンデンサの縦断面図および一部拡大図である。
[図 3]本発明の積層セラミックコンデンサの製法を示す工程図である。 発明を実施するための最良の形態
[0026] (誘電体磁器)
まず本発明の誘電体磁器について詳細に説明する。図 1は本発明の誘電体磁器 を示す一部を拡大した断面模式図である。本発明に係る誘電体磁器はチタン酸バリ ゥム系の主結晶粒子 1を主構成鉱物とするものであり、その構成成分は Tiと、 Ca、 Sr 、 Baから選ばれる少なくとも 1種のアルカリ土類金属元素を主成分とする複合酸ィ匕物 である。
[0027] 複合酸ィ匕物としては、チタン酸バリウム、チタン酸ストロンチウム、または、このチタン 酸バリウムにカルシウムを含有させたチタン酸バリウム 'カルシウム、チタン酸バリウム にストロンチウムを含有させたチタン酸バリウム.ストロンチウムのいずれ力、またはこ れらの結晶粒子 1が混合したものであることが好ましい。
[0028] 複合酸化物が上記したチタン酸バリウム (BaTiO )を主体とする主結晶粒子 1であ
3
ると室温付近において高い比誘電率を得ることができるとともに、比誘電率の温度特 性も安定ィ匕できるという利点がある。
[0029] 複合酸化物がチタン酸バリウム.カルシウム(Ba Ca TiO 、X=0. 01〜0. 2)を l-X X 3
主体とする主結晶粒子 1であると、比誘電率の温度特性が平坦でかつ比誘電率の交 流電界依存性が高ぐ交流電界の変更によって比誘電率を高めることができるという 禾 IJ点がある。
[0030] 特に、主結晶粒子 1が上記した個々の特性を有するチタン酸バリウムとチタン酸バリ ゥム ·カルシウムとの複合体であると誘電体磁器の比誘電率を高めるとともに比誘電 率の温度特性を安定ィ匕でき、さらに交流電界の変更によって比誘電率を高めること のできる高機能の誘電体磁器となり、さらなる高誘電率ィ匕を図ることができるという利 点がある。
[0031] この場合、複合ィ匕された主結晶粒子 1は、特に、 Ca濃度が 0. 2原子%以下の第 1 結晶粒子 laと、 Ca濃度が 0. 4原子%以上の第 2結晶粒子 lbとからなるものであるこ とが好ましい。複合化された主結晶粒子 1の Ca濃度が 0. 2原子%以下の第 1結晶粒 子 laと、 Ca濃度が 0. 4原子%以上の第 2結晶粒子 lbとからなるものが共存すること により両結晶粒子の特性を引き出すことができ、比誘電率が高くかつ比誘電率の温 度特性が安定ィ匕したものが得られる。これは、前記両結晶粒子が共存すると、 Ca濃 度が 0. 2原子%以下の第 1結晶粒子 laのみの場合、および、 Ca濃度が 0. 4原子% 以上の第 2結晶粒子 lbのみの場合に比較して、 50°C以上における比誘電率を室温 における比誘電率に近づけられることから X7R特性 (温度範囲— 55〜125°Cにおけ る静電容量変化率が ± 15%以内: EIA規格)を満足しやすくなるためである。
なお、 Ca濃度が 0. 2原子%以下の第 1結晶粒子 laと、 Ca濃度が 0. 4原子%以上 の第 2結晶粒子 lbは、チタン酸バリウム(BaTiO )粉末とチタン酸バリウム 'カルシゥ
3
ム(Ba Ca TiO 、 X=0. 01〜0. 2)粉末を混合して焼結させることにより得ること
1-X X 3
ができる。
[0032] また、本発明の結晶粒子 1は、チタン酸バリウム系の結晶粒子の絶縁性や温度特 性を制御できると 、う点で Mg、 Mnおよび希土類元素の金属成分を含有することを 特徴とする。
[0033] 特に本発明では、 Mg、 Mnおよび希土類元素の少なくとも 1種の金属成分が前記 主結晶粒子 1の内部 3よりも表面側 5に高濃度で存在していることが重要である。 Mg 、 Mnおよび希土類元素の少なくとも 1種の金属成分が主結晶粒子 1の内部 3よりも表 面側 5に高濃度で存在すると、主結晶粒子 1の表面付近は強誘電性の低い結晶相と なる力 主結晶粒子 1の大部分を占める内部 3は本来のチタン酸バリウム系の主結晶 粒子 1が有する強誘電性を強く示す正方晶のままであることから全体として主結晶粒 子 1の比誘電率を高くできる。
[0034] この場合、 Mg、 Mnおよび希土類元素の少なくとも 1種の金属成分 (元素)が前記 主結晶粒子 1の内部 3よりも表面側 5に高濃度で存在しているとは、主結晶粒子 1の 中央部に対する表面側 5の前記元素の濃度比が 1. 5倍以上ある状態である。
[0035] 主結晶粒子 1中に存在する元素の濃度比は電子顕微鏡に備えてある分析装置 (E PMA)によってカウント比として求めることができる。分析する場合、主結晶粒子 1を 表面側 5から中央部にかけて走査しながら元素の存在状態を検出する。主結晶粒子 1の表面側 5の元素濃度は表面から 2〜5nmだけ内部の濃度値を表面側の濃度とす る。
[0036] この場合、チタン酸バリウム系の主結晶粒子 1中に含まれる Mgは 0. 04〜0. 14質 量部、希土類元素は 0. 2〜0. 9質量部、 Mnは 0. 04〜0. 15質量部の範囲であれ ば、チタン酸バリウム系の主結晶粒子 1自体の比誘電率の温度特性を安定ィ匕し、絶 縁性を高めかつ高温負荷試験での信頼性を向上できる。
[0037] ここで、希土類元素としては、 La、 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu、 Y、 Scのうち少なくとも 1種が好ましぐ特に、比誘電率の温度特性の安定 化を図りつつ、誘電体磁器の高温負荷試験での信頼性を向上させるという点で Yが 好ましい。
[0038] Mg、 Mnおよび希土類元素について、これらの金属成分が主結晶粒子 1中に存在 しない場合や、主結晶粒子 1の表面側 5から内部 3まで濃度差が無いように存在して いる場合、即ち、主結晶粒子 1の中央部に対する表面側 5の前記元素の濃度比が 1 . 5倍よりも小さい場合には、添加した酸ィ匕ジルコニウムが主結晶粒子 1の内部 3まで 拡散することになり、そのためチタン酸バリウム系の主結晶粒子 1自体の正方晶性が 全体的に低下することから比誘電率が低いものとなる。
[0039] また、本発明の誘電体磁器は上記したチタン酸バリウム系の主結晶粒子 1からなる 複合酸化物 100質量部に対して、ジルコニウムを酸ィ匕物換算で 0. 04〜0. 2質量部 含有することを特徴とするものであり、特に、 0. 06-0. 1質量部であることが望まし い。
[0040] ジルコニウムの酸化物量が 0. 04質量部以上であると、チタン酸バリウム系の主結 晶粒子 1の表面付近にジルコニウムの酸ィ匕物を固溶させることができるために、主結 晶粒子 1の表面付近の結晶相を、室温にて高い比誘電率を有するチタンジルコン酸 ノ リウムに変更でき、このため主結晶粒子 1全体として高誘電率ィ匕できるという利点が ある。
[0041] また、チタン酸バリウム系の主結晶粒子 1に酸化ジルコニウムを添加するとチタン酸 ノ リウム系の主結晶粒子 1の粒成長を抑制できることから広い温度分布をもつ量産炉 での焼成においても粒成長を抑制でき、このことにより比誘電率の変化が小さくなり、 かつ、絶縁性や高温負荷試験での信頼性を高めることができる。
[0042] ジルコニウムの酸化物量が 0. 2質量部以下であると、通常、チタン酸バリウム系の 主結晶粒子 1が正方晶を示すとされる内部 3のコア部に対するジルコニウムの酸ィ匕物 の固溶量を低くできるために主結晶粒子 1全体の比誘電率の低下を抑制できるという 禾 IJ点がある。
[0043] ジルコニウムの酸化物量が 0. 04質量部よりも少ないと、チタン酸バリウム系の主結 晶粒子 1の表面付近にジルコニウムの酸ィ匕物を固溶させることができないために、主 結晶粒子 1の表面付近の結晶相を、室温付近にて高い比誘電率を有するチタンジ ルコン酸バリウムに変更できず、このために高誘電率ィ匕を図ることができない。
[0044] ジルコニウムの酸化物量が 0. 2質量部よりも多いと、主結晶粒子 1全体にジルコ- ゥムの酸ィ匕物が固溶するため、主結晶粒子 1が室温付近にて高い比誘電率を有する チタンジルコン酸バリウムに変わり誘電体磁器の比誘電率の温度特性が大きくなる。
[0045] 誘電体磁器中の酸化ジルコニウム量は誘電体磁器を予め溶媒に溶解させた後、 I CP発光分光分析を用いて、結晶粒子 1の主成分であるノ リウム、ストロンチウム、力 ルシゥム、チタンなどとともにジルコニウム量を測定する。この場合、バリウム、ストロン チウム、カルシウム、チタン量力も化学量論比としてチタン酸バリウム量を求め、その チタン酸バリウム量を 100質量部としたときの酸化ジルコニウム(ZrO )量を求める。
2
[0046] 本発明の誘電体磁器を構成する主結晶粒子 1の平均粒径は 0. 4 μ m以下であるこ とが好ましい。主結晶粒子 1の平均粒径が 0. 4 m以下であると誘電体磁器中に多 く粒界を形成できるために誘電特性とともに絶縁性をも高めることができる。一方、主 結晶粒子 1の平均粒径の下限としては 0. 1 m以上であることが好ましい。主結晶粒 子 1の平均粒径が 0. 1 μ m以上であると正方晶性の高い主結晶粒子 1となりやすぐ このため誘電体磁器の比誘電率を高めることができる。
[0047] 主結晶粒子 1の平均粒径は誘電体磁器の破断面を電子顕微鏡観察し、得られた 結晶組織写真について画像解析装置 (Macview)を用いて求める。具体的には、得 られた写真の全面に映し出された個々の結晶粒子 1の輪郭を書き、その輪郭の面積 を求め、その面積を円に換算して個々の粒子について直径を求め、求めた個々の結 晶粒子 1の直径を平均化する。
[0048] 加えて本発明では、結晶粒子 1におけるバリウムまたは Caの Aサイト、およびチタン の Bサイトの比力 A/B≥l. 003の関係を満足することが好ましぐさらには、結晶 粒子 1を Ca濃度が 0. 2原子%以下の第 1結晶粒子 laと、 Ca濃度が 0. 4原子%以上 の第 2結晶粒子 lbとから構成した結晶粒子とした場合、 Ca濃度が 0. 4原子%以上 の第 2結晶粒子 lb中の Aサイト (バリウム)と Bサイト(チタン)とのモル比 AZBが 1. 0 03以上とすることが、粒成長しやすい Ca濃度が 0. 4原子%以上の第 2結晶粒子 lb の粒成長を抑制できる理由力もより望ましい。
[0049] また、チタン酸バリウム系の結晶粒子 1の粒成長を抑制するという点では炭酸バリゥ ムを添加することも効果的である。
[0050] (誘電体磁器の製法)
次に、本発明の誘電体磁器の製法について説明する。まず、 Tiと、 Ca、 Sr、 Baか ら選ばれる少なくとも 1種のアルカリ土類金属元素を主成分とする複合酸化物粉末を 準備する。次いで、この複合酸化物粉末の表面に Mg、 Mnおよび希土類元素の被 覆加工を行い、 Mg、 Mnおよび希土類元素が被覆された誘電体粉末を調製する。こ の場合、 Mg、 Mnおよび希土類元素の複合酸化物粉末への被覆加工は、 Mg、 Mn および希土類元素の水溶液を複合酸化物粉末と加熱混合することにより行われる。
[0051] 次に、得られた被覆粉末と酸ィ匕ジルコニウム粉末とを水やアルコールなど被覆粉末 および酸ィ匕ジルコニウム粉末が溶解しない溶媒中で混合する。この場合、混合する 被覆粉末および酸化ジルコニウム粉末量は上記した誘電体磁器の組成である。ここ で調製された誘電体粉末の平均粒径は 0. 3 m以下であることが好ましい。誘電体 粉末の平均粒径が 0. 3 m以下であると積層セラミックコンデンサなどを構成する誘 電体層の薄層化を図ることが容易となる。一方、この誘電体粉末の平均粒径は 0. 2 μ m以上であることが好ましい。誘電体粉末の平均粒径が 0. 2 μ m以上であると、正 方晶性の高い粉末となりやすぐ高誘電率化が容易となる。この場合、 Ca濃度の異 なるような誘電体粉末を複数混合して用いる場合、全て被覆した誘電体粉末を用い ることが各焼成温度にぉ 、て比誘電率を高められると 、う点で好ま 、。
[0052] 次 ヽで、得られた混合粉末を成形機によりタブレット状に成形し、所定の加熱条件 にて焼成する。
[0053] (積層セラミックコンデンサ)
本発明の積層セラミックコンデンサについて、図 2の概略断面図をもとに詳細に説 明する。図 2は、本発明の積層セラミックコンデンサを示す概略断面図である。本発 明の積層セラミックコンデンサは、コンデンサ本体 11の両端部に外部電極 13が形成 されている。この外部電極 13は、例えば、 Cuもしくは Cuと Niの合金ペーストを焼き付 けて形成されている。
[0054] コンデンサ本体 11は誘電体層 15と内部電極層 17とが交互に積層され構成されて いる。誘電体層 15は、結晶粒子 1と粒界層 19により構成されている。その誘電体層 1 5の厚みは 3 μ m以下、特に、 2. 5 m以下であることが積層セラミックコンデンサを 小型高容量ィ匕する上で好ましぐさらに本発明で、静電容量のばらつきおよび容量 温度特性の安定ィ匕のために、誘電体層 15の厚みばらつきが 10%以内であることが より望まし!/、。
[0055] 内部電極層 17は、高積層化しても製造コストを抑制できるという点で、ニッケル (Ni )や銅 (Cu)などの卑金属が望ましぐ特に、本発明にかかる誘電体層 15との同時焼 成が図れると!、う点でニッケル (Ni)がより望まし!/、。
[0056] (積層セラミックコンデンサの製法)
次に、本発明に係る積層セラミックコンデンサの製法について詳細に説明する。図 3は、本発明の積層セラミックコンデンサの製法を示す工程図である。
[0057] (a)工程:本発明の製法では、まず、上記した誘電体粉末および焼結助剤となるガ ラス粉末をポリビニルプチラール榭脂などの有機榭脂や、トルエンおよびアルコール などの溶媒とともにボールミルなどを用いて混合してセラミックスラリを調製し、次、で 、上記セラミックスラリをドクターブレード法ゃダイコータ法などのシート成形法を用い てセラミックグリーンシート 21を形成する。セラミックグリーンシート 21の厚みは、誘電 体層 15の高容量ィ匕のための薄層化、高絶縁性を維持するという点で 1〜4 mが好 ましい。
[0058] (b)工程:次に、上記得られたセラミックグリーンシート 21の主面上に矩形状の内部 電極パターン 23を印刷して形成する。内部電極パターン 23となる導体ペーストは、 Ni、 Cuもしくはこれらの合金粉末を主成分金属とし、これに共材としてのセラミック粉 末を混合し、有機バインダ、溶剤および分散剤を添加して調製する。内部電極バタ ーン 23の厚みは積層セラミックコンデンサの小型化および内部電極パターン 23によ る段差を低減するという理由から 1 μ m以下が好ましい。 [0059] なお、本発明によれば、セラミックグリーンシート 21上の内部電極パターン 23による 段差解消のために、内部電極パターン 23の周囲にセラミックパターン 25を内部電極 パターン 23と実質的に同一厚みで形成することが好ましい。セラミックパターン 25を 構成するセラミック成分は、同時焼成での焼成収縮を同じにするという点で前記誘電 体粉末を用いることが好まし 、。
[0060] (c)工程:次に、内部電極パターン 23が形成されたセラミックグリーンシート 21を所 望枚数重ねて、その上下に内部電極パターン 23を形成していないグリーンシート 21 を複数枚、上下層が同じ枚数になるように重ねて、仮積層体を形成する。仮積層体 中における内部電極パターン 23は、長寸方向に半パターンずつずらしてある。この ような積層工法により、切断後の積層体 29の端面に内部電極パターン 23が交互に 露出されるように形成できる。
[0061] 尚、本発明においては、上記したように、セラミックグリーンシート 21の主面に内部 電極パターン 23を予め形成しておいて積層する工法のほかに、セラミックグリーンシ ート 21をー且下層側の基材に密着させた後に、内部電極パターン 23を印刷し、次 いで乾燥させた後に、その乾燥された内部電極パターン 23上に、内部電極パターン 23を印刷していないセラミックグリーンシート 21を重ねて、仮密着させ、このようなセ ラミックグリーンシート 21の密着と内部電極パターン 23の印刷を逐次行う工法によつ ても形成できる。
[0062] 次に、仮積層体を上記仮積層時の温度圧力よりも高温、高圧の条件にてプレスを 行い、セラミックグリーンシート 21と内部電極パターン 23とが強固に密着された積層 体 29を形成できる。
[0063] 次に、積層体 29を、切断線 hに沿って、即ち、積層体 29中に形成されたセラミック パターン 25の略中央を、内部電極パターン 23の長寸方向に対して垂直方向(図 3の (cl)、および図 3の(c2) )に、内部電極パターン 23の長寸方向に平行に切断して、 内部電極パターン 23の端部が露出するようにコンデンサ本体成形体が形成される。 一方、内部電極パターン 23の最も幅の広い部分においては、サイドマージン部側に はこの内部電極パターン 23は露出されて ヽな 、状態で形成される。
[0064] 次に、このコンデンサ本体成形体を、所定の雰囲気下、温度条件で焼成してコンデ ンサ本体 11が形成され、場合によっては、このコンデンサ本体 11の稜線部分の面取 りを行うとともに、コンデンサ本体 11の対向する端面力も露出する内部電極層 17を露 出させるためにバレル研磨を施しても良い。本発明の製法において、脱脂は 500°C までの温度範囲で、昇温速度が 5〜20°CZh、焼成温度は最高温度が 1100〜125 0°Cの範囲、脱脂から最高温度までの昇温速度が 200〜500°CZh、最高温度での 保持時間が 0. 5〜4時間、最高温度から 1000°Cまでの降温速度が 200〜500°CZ h、雰囲気が水素ッ窒素、焼成後の熱処理 (再酸化処理)最高温度が 900〜: L 100°C 、雰囲気が窒素であることが好ましい。
[0065] 次に、このコンデンサ本体 11の対向する端部に、外部電極ペーストを塗布して焼 付けを行い外部電極 13が形成される。また、この外部電極 13の表面には実装性を 高めるためにメツキ膜が形成される。
実施例
[0066] 積層セラミックコンデンサを以下のようにして作製した。用いる原料粉末の種類、平 均粒径、添加量、焼成温度を表 1に示した。ここではチタン酸バリウム粉末 (BT粉末) とチタン酸バリウム.カルシウム粉末 (BCT粉末)に、 Mg、 Y、 Mnを被覆したものと被 覆しないで前記粉末と混合したものを用いた。 BCT粉末としては、 Ba Ca TiO
0.95 0.05 3 のものを用いた。
チタン酸バリウム粉末 (BT粉末)とチタン酸バリウム 'カルシウム粉末 (BCT粉末)の 平均粒径はともに 0. 25 mものとした。 BT粉末と BCT粉末とを混合するに当っては 、 BT粉末と BCT粉末とを等モル量混合し、 Mg、 Mnおよび Yの被覆量は BT粉末と BCT粉末を 100質量部として調製した。また、 BT粉末および BCT粉末の AZBサイ ト比は 1. 003のものを用いた。また、 BT粉末および BCT粉末の粒径は主体が 0. 2 〜0. 4 mのものを用いた。また、ガラス粉末の組成は SiO = 50、 BaO = 20、 CaO
2
= 20、 Li 0= 10 (モル%)とした。
2
[0067] 上記粉末を直径 5mmのジルコ-ァボールを用いて、溶媒としてトルエンとアルコー ルとの混合溶媒を添加し湿式混合した。次に、湿式混合した粉末にポリビニルブチラ ール榭脂およびトルエンとアルコールの混合溶媒を添カ卩し、同じく直径 5mmのジル コ-ァボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により 厚み 3 μ mのセラミックグリーンシート 21を作製した。
[0068] 次に、このセラミックグリーンシート 21の上面に Niを主成分とする矩形状の内部電 極パターン 23を複数形成した。内部電極パターン 23に用いた導体ペーストは、 Ni粉 末は平均粒径 0. 3 mのものを、共材としてグリーンシート 21に用いた BT粉末を Ni 粉末 100質量部に対して 30質量部添加した。
[0069] 次に、内部電極パターン 23を印刷したセラミックグリーンシート 21を 360枚積層し、 その上下面に内部電極パターン 23を印刷していないセラミックグリーンシート 21をそ れぞれ 20枚積層し、プレス機を用いて温度 60°C、圧力 1 X 107Pa、時間 10分の条 件で一括積層し、所定の寸法に切断した。
[0070] 次に、積層成形体を 10°CZhの昇温速度で大気中で 300°CZhにて脱バインダ処 理を行い、 500°Cからの昇温速度が 300°CZhの昇温速度で、水素 窒素中、 115 0〜1200°Cで 2時間焼成し、続いて 300°CZhの降温速度で 1000°Cまで冷却し、 窒素雰囲気中 1000°Cで 4時間再酸化処理をし、 300°CZhの降温速度で冷却し、コ ンデンサ本体 11を作製した。このコンデンサ本体 11の大きさは 2 X I. 3 X 1. 3mm3 、誘電体層 15の厚みは 2 mであった。
[0071] 次に、焼成した電子部品本体をバレル研磨した後、電子部品本体の両端部に Cu 粉末とガラスを含んだ外部電極ペーストを塗布し、 850°Cで焼き付けを行 、外部電 極 13を形成した。その後、電解バレル機を用いて、この外部電極 13の表面に、順に Niメツキ及び Snメツキを行 ヽ、積層セラミックコンデンサを作製した。
[0072] 比較例として、酸化ジルコニウム粉末を添カ卩しないもの、酸化ジルコニウムの量を本 発明の範囲外の量としたもの、そして Mg、 Yおよび Mnをチタン酸バリウム系粉末に 被覆せずに、チタン酸バリウム系粉末と Mg、 Yおよび Mnの酸ィ匕物とを一括混合した ものを調製して、上記と同様の製法によって積層セラミックコンデンサを作製した。
[0073] 次に、これらの積層セラミックコンデンサについて以下の評価を行った。結晶粒子 1 中に存在する元素の濃度比は電子顕微鏡に備えてある分析装置 (EPMA)によって カウント比として求めた。この場合、結晶粒子 1を表面側 5から中央部にかけて走査し ながら元素の存在状態を検出し、その結晶粒子 1の表面側 5の元素濃度は表面から 2〜5nmだけ内部の濃度値を表面側 5の濃度とした。濃度比を評価した結晶粒子 1 は誘電体磁器から任意に 3個選択して評価した。 BT結晶粒子と BCT結晶粒子とを 複合ィ匕し誘電体磁器では両結晶粒子 1の平均値である。
[0074] 静電容量および比誘電率ならびに比誘電率の温度特性は、周波数 1. OkHz、測 定電圧 0. 5Vrmsの測定条件で行った。比誘電率は、静電容量と内部電極層 17の 有効面積、誘電体層 15の厚み力も算出した。
[0075] 高温負荷試験は、温度 125°C、電圧 9. 45V、 1000時間までの評価(MTTF)を行 つた。試料数は 30個とした。
[0076] また、積層セラミックコンデンサの信頼性評価として、交流インピーダンス法による粒 界層評価を行った。この交流インピーダンス測定を用いた誘電体層 15中の粒界の抵 抗評価は、積層セラミックコンデンサを、誘電体層 15を構成するぺロブスカイト型チタ ン酸バリウム結晶粒子が示すキュリー温度よりも 1. 5倍高い温度、および、前記積層 セラミックコンデンサの定格電圧の 1Z3以上の電圧、の高温負荷雰囲気中に放置し た。そして、前記条件の高温負荷雰囲気に放置する前と後において同じ条件にて交 流インピーダンス測定(コールコールプロット)での前記誘電体層 15中の粒界層 19の 抵抗減少率を測定した。
[0077] また、誘電体層 15を構成する BT型結晶粒子と BCT型結晶粒子の平均粒径は上 述の画像解析装置(Macview)を用いて求めた。試料は研磨面をエッチングしたも のを用いた。それらの平均値と D90 (小径力も大径にかけての 90%累積値)を求め た。
[0078] Ca濃度にっ ヽては透過電子顕微鏡およびエネルギー分散型 X線分析装置 (EDS )を用いて中心部近傍の任意の場所を分析した。その際、 Ca濃度が 0. 4原子%より も高いもの(小数点 2位四捨五入)に関して Ca濃度の高い誘電体粒子とした。この分 析は主結晶粒子 100〜150個について行った。
[0079] 結果を表 1、 2に示す。
[表 1]
Figure imgf000017_0001
i喵 ¾*
Figure imgf000018_0001
csi csi csi csi csi
の温度変化率も— 15%以内であり、絶縁破壊電圧 (BDV)が 155V以上、高温負荷 試験(125°C、 9. 45V)での耐久時間が 1740時間以上、交流インピーダンス法によ る抵抗変化率が 0. 6%以下であった。
[0083] 特に、ともに Mg、 Y、 Μηを被覆した ΒΤ粉末および BCT粉末を用いて、チタン酸バ リウム系の結晶粒子 1として Ca濃度が 0. 2原子%以下の第 1結晶粒子 laと、 Ca濃度 が 0. 4原子%以上の第 2結晶粒子 lbとを複合化させた誘電体磁器 (試料 No. 2〜5 )では、比誘電率が高いばかりでなぐ焼成温度が変化しても比誘電率の温度特性も X7R特性を維持し、交流インピーダンス法による抵抗変化率が 0. 5%以下であり 高信頼性を有していた。
[0084] 一方、チタン酸バリウム系の結晶粒子 1に Mg、 Y、 Μηの被覆しても酸化ジルコユウ ムを添加しな力つた試料 No. 1では、本発明の試料に比較して比誘電率が低力 た
[0085] また、酸ィ匕ジルコニウムを本発明の規定量よりも多く添カ卩した試料 No. 6において は、 20°Cに対する 125°Cにおける静電容量の温度変化率が— 15%を超えていた。
[0086] さらに、チタン酸バリウム系の結晶粒子 1に Mg、 Y、 Μηの被覆を行うことなく Mg、 Y 、 Mnを酸ィ匕物として酸ィ匕ジルコニウムとともに一括混合した試料 No. 9については、 Yの結晶粒子 1の中央部に対する表面側 5の濃度比が 2よりも小さくなり、静電容量の 温度変化率が― 15%を超えて 、た。

Claims

請求の範囲
[1] 主結晶粒子が、 Tiと、 Ca、 Sr、 Baから選ばれる少なくとも 1種のアルカリ土類金属 元素とを主成分として含む複合酸化物からなる誘電体磁器にぉ 、て、前記主結晶粒 子が Mg、 Mnおよび希土類元素の金属成分を含有するとともに、前記 Mg、 Mnおよ び希土類元素の少なくとも 1種の金属成分が前記主結晶粒子の内部よりも表面側に 高濃度で存在しており、その濃度比 (表面側 Z内部)が 1. 5倍以上であり、前記複合 酸ィ匕物 100質量部に対して、 Zrを酸ィ匕物換算で 0. 04〜0. 2質量部含有することを 特徴とする誘電体磁器。
[2] 前記主結晶粒子が、 Ca濃度 0. 2原子%以下の第 1結晶粒子と、 Ca濃度 0. 4原子 %以上の第 2結晶粒子とからなることを特徴とする請求項 1に記載の誘電体磁器。
[3] 前記主結晶粒子の平均粒径が 0. 4 μ m以下であることを特徴とする請求項 1に記 載の誘電体磁器。
[4] Tiと、 Ca、 Sr、 Baから選ばれる少なくとも 1種のアルカリ土類金属元素とを主成分と する複合酸化物粉末の表面に Mg、 Mnおよび希土類元素を被覆した誘電体粉末 1
00質量部に対して、酸ィ匕ジルコニウムを 0. 04〜0. 2質量部添加し、成形した後、焼 成することを特徴とする誘電体磁器の製法。
[5] 前記複合酸化物粉末が、チタン酸バリウム粉末とチタン酸バリウム 'カルシウム粉末 との混合粉末であることを特徴とする請求項 4に記載の誘電体磁器の製法。
[6] 前記誘電体粉末の平均粒径が 0. 3 μ m以下であることを特徴とする請求項 4また は 5に記載の誘電体磁器の製法。
[7] 誘電体層と内部電極層とを交互に積層してなるコンデンサ本体を具備する積層セ ラミックコンデンサにおいて、前記誘電体層が請求項 1〜3のいずれかに記載の誘電 体磁器であることを特徴とする積層セラミックコンデンサ。
PCT/JP2006/316744 2005-08-29 2006-08-25 誘電体磁器およびその製法、並びに積層セラミックコンデンサ WO2007026614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680028613XA CN101238080B (zh) 2005-08-29 2006-08-25 介电陶瓷及其制造方法、以及层叠陶瓷电容器
JP2007533211A JP4805938B2 (ja) 2005-08-29 2006-08-25 誘電体磁器およびその製法、並びに積層セラミックコンデンサ
US12/065,483 US8154851B2 (en) 2005-08-29 2006-08-25 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-248414 2005-08-29
JP2005248414 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026614A1 true WO2007026614A1 (ja) 2007-03-08

Family

ID=37808708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316744 WO2007026614A1 (ja) 2005-08-29 2006-08-25 誘電体磁器およびその製法、並びに積層セラミックコンデンサ

Country Status (6)

Country Link
US (1) US8154851B2 (ja)
JP (1) JP4805938B2 (ja)
KR (1) KR20080048458A (ja)
CN (1) CN101238080B (ja)
TW (1) TWI367870B (ja)
WO (1) WO2007026614A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073721A (ja) * 2007-07-27 2009-04-09 Kyocera Corp 誘電体磁器および積層セラミックコンデンサ
JP2013115243A (ja) * 2011-11-29 2013-06-10 Kyocera Corp コンデンサ
US9959976B2 (en) 2016-03-21 2018-05-01 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
JP2018526301A (ja) * 2015-05-27 2018-09-13 エプコス アクチエンゲゼルシャフトEpcos Ag ビスマスナトリウムストロンチウムチタン酸塩系誘電体組成物、誘電体素子、電子部品および積層電子部品

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101152453B1 (ko) * 2006-02-27 2012-06-01 히타치 긴조쿠 가부시키가이샤 반도체 자기 조성물
WO2009057373A1 (ja) * 2007-10-29 2009-05-07 Kyocera Corporation 誘電体磁器および積層セラミックコンデンサ
WO2012043427A1 (ja) * 2010-10-01 2012-04-05 太陽誘電株式会社 積層セラミックコンデンサ
JP5979992B2 (ja) 2011-07-05 2016-08-31 キヤノン株式会社 圧電材料
CN103650186B (zh) * 2011-07-05 2017-02-08 佳能株式会社 压电材料
CN107651956B (zh) 2011-07-05 2021-08-20 佳能株式会社 压电元件、多层压电元件、排液头、排液装置、超声波马达、光学装置和电子装置
CN102540462A (zh) * 2012-02-20 2012-07-04 江苏大学 基于Maxwell-Garnett理论的金属陶瓷薄膜光电特性设计方法
KR20130106569A (ko) 2012-03-20 2013-09-30 삼성전기주식회사 유전체 조성물 및 이를 포함하는 세라믹 전자부품
KR101823174B1 (ko) 2013-06-14 2018-01-29 삼성전기주식회사 적층 세라믹 커패시터 및 그 실장 기판
KR101883027B1 (ko) * 2014-12-16 2018-07-27 삼성전기주식회사 유전체 자기 조성물, 유전체 재료 및 이를 포함하는 적층 세라믹 커패시터
KR102183425B1 (ko) * 2015-07-22 2020-11-27 삼성전기주식회사 적층 세라믹 전자부품
KR101792368B1 (ko) * 2015-12-24 2017-11-20 삼성전기주식회사 유전체 자기 조성물, 유전체 재료 및 이를 포함하는 적층 세라믹 커패시터
JP6996320B2 (ja) * 2018-01-31 2022-01-17 Tdk株式会社 誘電体磁器組成物および積層セラミックコンデンサ
JP2019134098A (ja) * 2018-01-31 2019-08-08 Tdk株式会社 積層セラミックコンデンサ
KR102584993B1 (ko) * 2018-02-08 2023-10-05 삼성전기주식회사 커패시터 부품 및 그 제조방법
KR102194706B1 (ko) 2019-02-15 2020-12-23 삼성전기주식회사 적층형 커패시터
KR102603410B1 (ko) * 2019-06-28 2023-11-17 가부시키가이샤 무라타 세이사쿠쇼 적층형 전자부품 및 적층형 전자부품의 제조 방법
KR102523255B1 (ko) 2019-06-28 2023-04-19 가부시키가이샤 무라타 세이사쿠쇼 적층형 전자부품
KR20190116132A (ko) * 2019-07-15 2019-10-14 삼성전기주식회사 적층형 커패시터 및 그 실장 기판
JP7480459B2 (ja) * 2019-10-17 2024-05-10 太陽誘電株式会社 セラミック電子部品およびその製造方法
CN113045314A (zh) * 2019-12-27 2021-06-29 奇力新电子股份有限公司 具薄型化适用高频组件的陶瓷粉末
JP2021150300A (ja) * 2020-03-16 2021-09-27 株式会社村田製作所 積層セラミックコンデンサ
JP2021150301A (ja) 2020-03-16 2021-09-27 株式会社村田製作所 積層セラミックコンデンサ
CN114685161A (zh) * 2020-12-28 2022-07-01 中国科学院上海硅酸盐研究所 一种x8r型陶瓷电容器电介质材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (ja) * 2001-03-07 2002-09-18 Kyocera Corp 誘電体磁器および積層型電子部品
JP2002293617A (ja) * 2001-03-28 2002-10-09 Kyocera Corp 誘電体磁器および積層型電子部品ならびに積層型電子部品の製法
JP2003146744A (ja) * 2001-11-13 2003-05-21 Ngk Insulators Ltd 低温焼成用誘電体磁器の比誘電率の管理方法、低温焼成用誘電体磁器および電子部品
JP2005022890A (ja) * 2003-06-30 2005-01-27 Kyocera Corp 誘電体磁器および積層型電子部品
JP2005187218A (ja) * 2003-12-24 2005-07-14 Kyocera Corp 誘電体磁器および積層型電子部品、並びに積層型電子部品の製法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018701A1 (fr) * 1998-09-30 2000-04-06 Tdk Corporation Matiere ceramique dielectrique non reduite, procede de production de ladite matiere et condensateur ceramique a couches
JP4048790B2 (ja) 2002-02-12 2008-02-20 松下電器産業株式会社 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ
JP2005022891A (ja) 2003-06-30 2005-01-27 Kyocera Corp 誘電体磁器および積層型電子部品
US7433173B2 (en) * 2004-11-25 2008-10-07 Kyocera Corporation Multilayer ceramic capacitor and method for manufacturing the same
TW200706513A (en) * 2005-04-27 2007-02-16 Murata Manufacturing Co Dielectric ceramic, process for producing the same, and laminated ceramic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (ja) * 2001-03-07 2002-09-18 Kyocera Corp 誘電体磁器および積層型電子部品
JP2002293617A (ja) * 2001-03-28 2002-10-09 Kyocera Corp 誘電体磁器および積層型電子部品ならびに積層型電子部品の製法
JP2003146744A (ja) * 2001-11-13 2003-05-21 Ngk Insulators Ltd 低温焼成用誘電体磁器の比誘電率の管理方法、低温焼成用誘電体磁器および電子部品
JP2005022890A (ja) * 2003-06-30 2005-01-27 Kyocera Corp 誘電体磁器および積層型電子部品
JP2005187218A (ja) * 2003-12-24 2005-07-14 Kyocera Corp 誘電体磁器および積層型電子部品、並びに積層型電子部品の製法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073721A (ja) * 2007-07-27 2009-04-09 Kyocera Corp 誘電体磁器および積層セラミックコンデンサ
JP2013115243A (ja) * 2011-11-29 2013-06-10 Kyocera Corp コンデンサ
JP2018526301A (ja) * 2015-05-27 2018-09-13 エプコス アクチエンゲゼルシャフトEpcos Ag ビスマスナトリウムストロンチウムチタン酸塩系誘電体組成物、誘電体素子、電子部品および積層電子部品
US10388456B2 (en) 2015-05-27 2019-08-20 Tdk Electronics Ag Dielectric composition, dielectric element, electronic component and laminated electronic component
US9959976B2 (en) 2016-03-21 2018-05-01 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same

Also Published As

Publication number Publication date
TWI367870B (en) 2012-07-11
CN101238080A (zh) 2008-08-06
JPWO2007026614A1 (ja) 2009-03-05
TW200716507A (en) 2007-05-01
CN101238080B (zh) 2012-10-24
US8154851B2 (en) 2012-04-10
JP4805938B2 (ja) 2011-11-02
KR20080048458A (ko) 2008-06-02
US20090219666A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4805938B2 (ja) 誘電体磁器およびその製法、並びに積層セラミックコンデンサ
JP4965435B2 (ja) 積層セラミックコンデンサおよびその製法
JP4821357B2 (ja) 電子部品、誘電体磁器組成物およびその製造方法
JP4809152B2 (ja) 積層セラミックコンデンサ
JP5035016B2 (ja) 誘電体磁器組成物および電子部品
JP4967965B2 (ja) 誘電体磁器組成物および電子部品
JPH11273985A (ja) 誘電体セラミックおよびその製造方法、ならびに、積層セラミック電子部品およびその製造方法
JPWO2008132902A1 (ja) 誘電体磁器および積層セラミックコンデンサ
JP2004214539A (ja) 誘電体セラミックおよび積層セラミックコンデンサ
JP5558249B2 (ja) 積層セラミックコンデンサ
JP4999988B2 (ja) 積層セラミックコンデンサ
JP4771818B2 (ja) 積層セラミックコンデンサ
WO2009119613A1 (ja) 積層セラミックコンデンサ
JP4511323B2 (ja) 積層セラミックコンデンサおよびその製法
JP2002265260A (ja) 誘電体磁器および積層型電子部品
JP2005187296A (ja) 誘電体セラミック組成物及び積層セラミックコンデンサ
JP2006041371A (ja) 積層セラミックコンデンサおよびその製法
JP2003142331A (ja) 積層セラミック電子部品
JP4463093B2 (ja) 積層セラミックコンデンサおよびその製法
JP4508858B2 (ja) 積層セラミックコンデンサおよびその製法
JP5534976B2 (ja) 積層セラミックコンデンサ
JP4557708B2 (ja) 積層セラミックコンデンサおよびその製法
JP4463095B2 (ja) 積層セラミックコンデンサおよびその製法
JP4753860B2 (ja) 積層セラミックコンデンサ
WO2023234392A1 (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028613.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087003576

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007533211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12065483

Country of ref document: US