WO2007015824A2 - Novel macrocyclic inhibitors of hepatitis c virus replication - Google Patents
Novel macrocyclic inhibitors of hepatitis c virus replication Download PDFInfo
- Publication number
- WO2007015824A2 WO2007015824A2 PCT/US2006/027738 US2006027738W WO2007015824A2 WO 2007015824 A2 WO2007015824 A2 WO 2007015824A2 US 2006027738 W US2006027738 W US 2006027738W WO 2007015824 A2 WO2007015824 A2 WO 2007015824A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- cycloalkyl
- substituted
- compound
- optionally substituted
- Prior art date
Links
- 0 *C(CC1C(NC(C2)([C@]2C=CCCCCCC2N(*)*)C(*)=O)=O)CN1C2=O Chemical compound *C(CC1C(NC(C2)([C@]2C=CCCCCCC2N(*)*)C(*)=O)=O)CN1C2=O 0.000 description 21
- XMADARMVFQWAPC-UHFFFAOYSA-O C=CCCCCCC(C(O)=O)N=C(c1ccccc1)c1ccccc1N(C(C1[NH+](Cc2ccccc2)CCC1)=O)N Chemical compound C=CCCCCCC(C(O)=O)N=C(c1ccccc1)c1ccccc1N(C(C1[NH+](Cc2ccccc2)CCC1)=O)N XMADARMVFQWAPC-UHFFFAOYSA-O 0.000 description 1
- DZSQWQQXJRNJAL-LGFUSVOQSA-N CC(C)(C)OC(NC(CCCCC/C=C\[C@H](C1)[C@H]1C(NS(NCC1CC1)(=O)=O)=O)C(N(CCC1)[C@@H]1C(N)=O)=O)=O Chemical compound CC(C)(C)OC(NC(CCCCC/C=C\[C@H](C1)[C@H]1C(NS(NCC1CC1)(=O)=O)=O)C(N(CCC1)[C@@H]1C(N)=O)=O)=O DZSQWQQXJRNJAL-LGFUSVOQSA-N 0.000 description 1
- BTKGLHULYNXSAR-UHFFFAOYSA-O CC(C)(C)OC(NC(CCCCCCCC(C1)C1(C([NH2+]S(C1C=CC=CC1F)(=O)=O)=O)NC(C1N2CCC1)=O)C2=O)=O Chemical compound CC(C)(C)OC(NC(CCCCCCCC(C1)C1(C([NH2+]S(C1C=CC=CC1F)(=O)=O)=O)NC(C1N2CCC1)=O)C2=O)=O BTKGLHULYNXSAR-UHFFFAOYSA-O 0.000 description 1
- QBQBAWIFUYVVNR-UHFFFAOYSA-O CC(C)(C)OC(NC(CCCCCCCC(C1)C1(NC(C1N2CCC1)=O)[IH]([NH3+])=O)C2O)=O Chemical compound CC(C)(C)OC(NC(CCCCCCCC(C1)C1(NC(C1N2CCC1)=O)[IH]([NH3+])=O)C2O)=O QBQBAWIFUYVVNR-UHFFFAOYSA-O 0.000 description 1
- LQYHTXUYYNNFPZ-UHFFFAOYSA-N CC(C)(C)OC(NS(NCc1ccccc1)(=O)=O)=O Chemical compound CC(C)(C)OC(NS(NCc1ccccc1)(=O)=O)=O LQYHTXUYYNNFPZ-UHFFFAOYSA-N 0.000 description 1
- YDSBMLKZVWLIOY-BSYIGOSKSA-N CC(C)(C)OC(N[C@@H](CCCCC/C=C\C(C)(C1)[C@]1(C(NCc1ccc[s]1)=O)NC([C@H]1N2CCC1)=O)C2=O)=O Chemical compound CC(C)(C)OC(N[C@@H](CCCCC/C=C\C(C)(C1)[C@]1(C(NCc1ccc[s]1)=O)NC([C@H]1N2CCC1)=O)C2=O)=O YDSBMLKZVWLIOY-BSYIGOSKSA-N 0.000 description 1
- HKWOBJOJVAAUIJ-BSUWFDNTSA-N CC(C)(C)OC(N[C@@H](CCCCCCC[C@H](C1)[C@]1(C(O)=O)NC([C@H](C1)N2C[C@@H]1OC(N(C1)Cc3c1cccc3F)=O)=O)C2=O)=O Chemical compound CC(C)(C)OC(N[C@@H](CCCCCCC[C@H](C1)[C@]1(C(O)=O)NC([C@H](C1)N2C[C@@H]1OC(N(C1)Cc3c1cccc3F)=O)=O)C2=O)=O HKWOBJOJVAAUIJ-BSUWFDNTSA-N 0.000 description 1
- ZPUKCRKHNOUTJA-LBPRGKRZSA-O CC(C)(C)[OH+]C(N[C@@H](CCCCCCC=C)C(O)=O)=O Chemical compound CC(C)(C)[OH+]C(N[C@@H](CCCCCCC=C)C(O)=O)=O ZPUKCRKHNOUTJA-LBPRGKRZSA-O 0.000 description 1
- UIOQPNMXRZXZBQ-UWEOCWBNSA-N CC(C)C[C@H](C[C@H]1C(N[C@](C2)([C@@H]2CCCCCCC[C@@H]2NC(OC(C)(C)C)=O)C(NS(C3CC3)(=O)=O)=O)=O)CN1C2=O Chemical compound CC(C)C[C@H](C[C@H]1C(N[C@](C2)([C@@H]2CCCCCCC[C@@H]2NC(OC(C)(C)C)=O)C(NS(C3CC3)(=O)=O)=O)=O)CN1C2=O UIOQPNMXRZXZBQ-UWEOCWBNSA-N 0.000 description 1
- OGNIIOPMSMVBQA-JDCPEADTSA-N CCCC/C=C\[C@H](C1)[C@]1(C(NS(NCC)(=O)=O)=O)NC([C@H](CCC1)N1C([C@H](CC)NC(OC(C)(C)C)=O)=O)=O Chemical compound CCCC/C=C\[C@H](C1)[C@]1(C(NS(NCC)(=O)=O)=O)NC([C@H](CCC1)N1C([C@H](CC)NC(OC(C)(C)C)=O)=O)=O OGNIIOPMSMVBQA-JDCPEADTSA-N 0.000 description 1
- YPTIYWVMUGPOIZ-CMAAQPKYSA-N CCCCS(NC([C@@](C1)([C@]1(CCCCCCC[C@@H](C(N1[C@H]2CCC1)O)NC(OC(C)(C)C)=O)CC2=O)N)=O)(=O)=O Chemical compound CCCCS(NC([C@@](C1)([C@]1(CCCCCCC[C@@H](C(N1[C@H]2CCC1)O)NC(OC(C)(C)C)=O)CC2=O)N)=O)(=O)=O YPTIYWVMUGPOIZ-CMAAQPKYSA-N 0.000 description 1
- NQISKEFPQPXRQZ-WWMMDOJLSA-N CCCS(NC([C@@](C1)([C@@H]1CCCCCCC[C@@H](C(N1[C@H]2CCC1)=O)NC(OC(C)(C)C)=O)NC2=O)=O)(=O)=O Chemical compound CCCS(NC([C@@](C1)([C@@H]1CCCCCCC[C@@H](C(N1[C@H]2CCC1)=O)NC(OC(C)(C)C)=O)NC2=O)=O)(=O)=O NQISKEFPQPXRQZ-WWMMDOJLSA-N 0.000 description 1
- HAFLODBHGIMAHR-UHFFFAOYSA-N COC(C(C1)(C1C=C)C(N)=O)=O Chemical compound COC(C(C1)(C1C=C)C(N)=O)=O HAFLODBHGIMAHR-UHFFFAOYSA-N 0.000 description 1
- CLCNFQRAYKGAHX-UHFFFAOYSA-N COC(C(C1)(C1C=C)NC(OC)=O)=O Chemical compound COC(C(C1)(C1C=C)NC(OC)=O)=O CLCNFQRAYKGAHX-UHFFFAOYSA-N 0.000 description 1
- KUFGRCXOMLVNJG-UHULFZJBSA-N COC1=CCC(CC(N[C@@H](CCCCC/C=C\[C@H](C2)[C@]2(C(NS(C2CC2)=O)=O)NC([C@H]2N3CCC2)=O)C3=O)=O)C=C1 Chemical compound COC1=CCC(CC(N[C@@H](CCCCC/C=C\[C@H](C2)[C@]2(C(NS(C2CC2)=O)=O)NC([C@H]2N3CCC2)=O)C3=O)=O)C=C1 KUFGRCXOMLVNJG-UHULFZJBSA-N 0.000 description 1
- QYWUBUCXNBNXLM-UHFFFAOYSA-N Cc(cc1)ccc1NS(N)(=O)=O Chemical compound Cc(cc1)ccc1NS(N)(=O)=O QYWUBUCXNBNXLM-UHFFFAOYSA-N 0.000 description 1
- IPSABLMEYFYEHS-QHCPKHFHSA-N O=C([C@H]1N(Cc2ccccc2)CCC1)Nc(cccc1)c1C(c1ccccc1)=O Chemical compound O=C([C@H]1N(Cc2ccccc2)CCC1)Nc(cccc1)c1C(c1ccccc1)=O IPSABLMEYFYEHS-QHCPKHFHSA-N 0.000 description 1
- WXNKPEMOWXOJQJ-RMAOKOMNSA-N OC(C(C1)([C@@H]1CCCCCCCCC(N1[C@H]2CCC1)=O)NC2=O)=O Chemical compound OC(C(C1)([C@@H]1CCCCCCCCC(N1[C@H]2CCC1)=O)NC2=O)=O WXNKPEMOWXOJQJ-RMAOKOMNSA-N 0.000 description 1
- XNROFTAJEGCDCT-NSHDSACASA-N OC([C@H]1N(Cc2ccccc2)CCC1)=O Chemical compound OC([C@H]1N(Cc2ccccc2)CCC1)=O XNROFTAJEGCDCT-NSHDSACASA-N 0.000 description 1
- JEHKKBHWRAXMCH-UHFFFAOYSA-N OS(c1ccccc1)=O Chemical compound OS(c1ccccc1)=O JEHKKBHWRAXMCH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
- C07K5/0806—Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/407—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
- A61K38/1793—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/217—IFN-gamma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/2292—Thymosin; Related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/55—Protease inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to compounds, processes for their synthesis, compositions and methods for the treatment of hepatitis C virus (HCV) infection.
- HCV hepatitis C virus
- HCV infection is the most common chronic blood borne infection in the United States. Although the numbers of new infections have declined, the burden of chronic infection is substantial, with Centers for Disease Control estimates of 3.9 million (1.8%) infected persons in the United States.
- Chronic liver disease is the tenth leading cause of death among adults in the United States, and accounts for approximately 25,000 deaths annually, or approximately 1% of all deaths. Studies indicate that 40% of chronic liver disease is HCV-related, resulting in an estimated 8,000-10,000 deaths each year. HCV-associated end-stage liver disease is the most frequent indication for liver transplantation among adults.
- HCV is an enveloped positive strand RNA virus in the Flaviviridae family.
- the single strand HCV RNA genome is approximately 9500 nucleotides in lingth and has a single open reading frame (ORF) encoding a single large polyprotein of about 3000 amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce the structural and non-structural (NS) proteins of the virus.
- NS structural and non-structural
- the generation of mature nonstructural proteins (NS2, NS3, NS4, NS4A, NS4B, NS5A, and NS5B) is effected by two viral proteases.
- the first viral protease cleaves at the NS2-NS3 junction of the polyprotein.
- the second viral protease is serine protease contained within the N-terminal region of NS3 (herein referred to as "NS3 protease").
- NS3 protease mediates all of the subsequent cleavage events at sites downstream relative to the position of NS3 in the polyprotein (i.e., sites located between the C-terminus of NS3 and the C-terminus of the polyprotein).
- NS3 protease exhibits activity both in cis, at the NS3-NS4 cleavage site, and in trans, for the remaining NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B sites.
- the NS4A protein is believed to serve multiple functions, acting as a cofactor for the NS3 protease and possibly assisting in the membrane localization of NS3 and other viral replicase components.
- the formation of the complex between NS3 and NS4A is necessary for NS3-mediated processing events and enhances proteolytic efficiency at all sites recognized by NS3.
- the NS3 protease also exhibits nucleoside triphosphatase and RNA helicase activities.
- NS5B is an RNA-dependent RNA polymerase involved in the replication of HCV RNA.
- R 2 is hydroxyl or NHR 5 ;
- R 3 is selected from the group consisting of H, CH 2 R 6 , COR 6 CO 2 R 7 , CSNH 2 , optionally substituted 2-thiaz ⁇ le, and
- R 4 is hydrogen or cyclopropylmethyl
- R 5 is selected from the group consisting of phenyl, CH 2 C(CF 3 ) 2 OH, C 3 alkyl, cyclopropylcarbonyl, SO 2 R 8 , CN, and
- R 6 is selected from the group consisting of R 9 , optionally-substituted phenyl, cyclopropyl, cyclobutyl, optionally-substututed furanyl, fluorinated alkyl; and hydroxylated alkyl;
- R 7 is cyclopentyl or Ci-C 6 alkyl
- R 8 is selected from the group consisting of NR 11 R 12 , tert-butyl, chloropyridinyl,
- R/ is selected from the group consisting of tert-butyl, trifluoromethyl, trifluoroethyl, and methyl trifluoromethyl;
- R 10 is selected from the group consisting of H, Ci to C 3 alkyl, 3-propenyl, methylmethoxyl, and benzyl;
- R 11 is H, methyl, Ci -4 alkyl or Ci -4 fluorinated alkyl
- R 12 is selected from the group consisting of Ci to C 3 alkyl, 3-propenyl, phenyl,
- CH 2 R 16 R 17 , and fluorinated alkyl or Rn and R 12 taken together can form a 4 or 5 membered ring optionally substituted with 2 fluorines
- R 13 is pyridinyl or R 14 ;
- R 14 is selected from the group consisting of pyridinyl, chlorophenyl, naphthyl, and anisolyl;
- R 15 is NR 11 R 12 or alkyl or cycloalkyl; ;
- R 16 is pyridinyl
- R 17 is H or methyl.
- R 18 ' and R 19 are each independently H, halogen, methyl or CF 3 [0008] Another embodiment provides compound of the general formula (II)
- R J is selected from the group consisting of H, CH 2 R 6 , COR 6 , CO 2 R 7 ', optionally substituted 2- thiazole
- R 5 is selected from the group consisting of cyclopropylmethyl or SO 2 R 8 ,
- R 6 is selected from the group consisting of R 9 , optionally-substituted phenyl, cyclopropyl, cyclobutyl, optionally-substututed furanyl, fiuorinated alkyl; and hydroxylated alkyl;
- R 7 is cyclopentyl or C 1 -Ce alkyl
- R 8 is selected from the group consisting Of NR 11 R 12 , optionally substituted phenyl, and
- R 10 is selected from the group consisting of H, Ci to C 3 alkyl, 3-propenyl, methylmethoxyl, and benzyl;
- R 11 is H, methyl, Ci -4 alkyl or Ci -4 fiuorinated alkyl
- R 12 is selected from the group consisting of Ci to C 3 alkyl, 3-propenyl, phenyl,
- chlorophenyl, dichlorophenyl, benzyl, pyridinyl, CH 2 R 13 , CH 2 R 16 R 17 , and fiuorinated alkyl or Rn arid Ri 2 taken together can form a 4 or 5 membered ring optionally substituted with 2 fluorines
- R 17 is H or methyl.
- R 18 and R 19 is independently H, halogen, methyl or CF 3
- W is selected from the groups
- B ring is selected from Z is bond, O, or S;
- R 1 is H, C 1-7 alkyl, C 3-7 cycloalkyl, pyridal, thioazolo, naphthyl, fused heterocycle, phenyl, substituted phenyl, benzyloxy, or substituted benzyloxy;
- W is selected from hydrogen, halogen, OCH 3 , SR 3 , NHR 3 , CH(R 3 ) 2 , or
- R 3 is H, C 1-8 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C] -6 alkyl, C 4-1O cycloalkyl-alkyl, C 7 . 1 0 arylalkyl, or C 6-12 heteroarylalkyl;
- R and R are each independently substituted or unsubstituted groups selected from H, C 1-6 alkyl, C(O)R 8 , C(O)OR 8 , C 3-7 cycloalkyl, alkyl-C 4-10 cycloalkyl, phenyl, benzyl, C(O)NR 8 R 8 , C(S)NR 8 R 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ; wherein R 8 is a substituted or unsubstituted group selected from H, C 1-6 alkyl, C 3-7 cycloalkyl, alkyl-C 3-7 cycloalkyl, C 6 or 1 0 aryl, alkyl-C 6 or i 0 aryl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, tetrahydrofuran ring, tetrapyranyl ring, benzyl, or
- R 21 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, C 6 o r 1 0 aryl, pyridal, pyrimidal, pyrazinyl, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, or thiophenoxy;
- R is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4 . 10 cycloalkyl-alkyl, or phenyl;
- Y has a formula selected from -C(O)NHS(O) 2 R 13 , -C(O)NHS(O) 2 NR la R lb , - C(O)NHR la , -C(O)R la , -C(O)NHC(O)R 13 , -C(O)NHS(O) 2 R 1 ", -C(O)NHS(O)R 1 a , or -C(O)OH; wherein R ia and R lb are each independently substituted or unsubstituted groups selected from H, CN, CF 3 , C 1-6 alkyl, C] -6 alkenyl, C 1-6 alkynyl, C 3-7 cycloalkyl, alkyl-C 3-1 o cycloalkyl, C 6 O r 10 aryl, alkyl-C 6 O r 10 aryl, alkenyl-C ⁇ or 10 aryl, heterocycle, heteroaromatic
- R lc is H, halo, C 1-6 alkyl, C 3-6 cycloalkyl, Cj -6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(CO)R Id , or NH(CO)NHR ld , wherein each R ld is independently H, Ci -6 alkyl, or C 3-6 cycloalkyl, or R lc is NH(CO)OR le , wherein R le is C 1-6 alkyl or C 3-6 cycloalkyl; and the dashed line represents an optional double bond.
- Preferred embodiments provide a compound having the Formula IV:
- W is selected from hydrogen, OCH 3 , SR 3 , NHR 3 , CH(R 3 ) 2 , or
- R 3 is H or C 1-3 alkyl
- R 4 and R 5 are independently substituted or unsubstituted groups selected from H, C 1-6 alkyl, C(O)R 8 , C(O)OR 8 , C 3-7 cycloalkyl, alkyl-C 4-10 cycloalkyl, phenyl, or benzyl; wherein R 8 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3- 7 cycloalkyl, alkyl-C 3-7 cycloalkyl, C 6 or 1 0 aryl, or alkyl-C 6 or )0 aryl;
- Y has a formula selected from -C(O)NHS(O) 2 R 1 a , -C(O)NHS(O) 2 NR 1 a R lb , - C(O)NHR 13 , -C(0)R la , -C(O)NHC(O)R Ia , -C(O)NHS(O) 2 R 13 , -C(O)NHS(O)R Ia , or -C(O)OH; wherein R la and R lb are each independently substituted or unsubstituted groups selected from H, CN, CF 3 , Cj -6 alkyl, Cj -6 alkenyl, C 1-6 alkynyl, C 3-7 cycloalkyl, alkyl-C 3 _i 0 cycloalkyl, C 6 or 10 aryl, alkyl-C 6 or 10 aryl, alkenyl-C 6 or i 0 aryl, heterocycle, or al
- R 1 is H, Cj -7 alkyl, C 3-7 cycloalkyl, pyridal, thioazolo, naphthyl, fused heterocycle, phenyl, substituted phenyl, benzyloxy, or substituted benzyloxy;
- R 2 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, substituted phenyl, C 1-6 alkoxy, or substituted C 1-6 alkoxy;
- R 3 is H, C 1-6 alkyl, C(O)R 5 , C(O)OR 5 , C(O)NR 5 R 6 , C(S)NR 5 R 6 , or S(O) 2 R 5 ;
- R 5 and R 6 are each independently selected from H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, benzyl, phenyl, or substituted phenyl;
- Y is a sulfonimide of the formula -C(O)NHS(O) 2 R 4 or a carboxylic acid of the formula -C(O)OH; wherein R 4 is Ci -6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 6 aryl, or substituted C 6 aryl;
- Z is a bond, O, or S; and the dashed line represents an optional double bond.
- the phenyl on R 1 is substituted with halo, Ci -3 alkyl, substituted C 1-3 alkyl with up to 3 fluoro, Ci -3 alkoxy, substituted Ci -3 alkoxy substituted with up to 3 fluoro, cyano, hydroxy, nitro, NH 2 , NHR 2 , OrNR 2 R 3 , wherein
- R 2 is H, Ci_ 6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, substituted phenyl, C] -6 alkoxy, or substituted Ci -6 alkoxy;
- R 3 is H, C 1-6 alkyl, C(O)R 5 , C(O)OR 5 , C(O)NR 5 R 6 , C(S)NR 5 R 6 , or S(O) 2 R 5 ;
- R 5 and R 6 are each independently selected from H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, benzyl, phenyl, or substituted phenyl.
- Preferred embodiments provide a compound having the Formula VI:
- W is selected from halogen, OCH 3 , SR 15 , NHR 15 , or CHR 3 R 15 , wherein R 15 is a substituted or unsubstituted group selected from H, C] -8 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, Ci -6 alkyl, C 4 _io cycloalkyl-alkyl, C 7-1 O arylalkyl, or C 6-I2 heteroarylalkyl;
- R 3 is H or C 1-3 alkyl
- R 4 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4 . 10 cycloalkyl-alkyl, substituted or unsubstituted phenyl, or substituted or unsubstituted benzyl;
- R 5 is H, Ci -6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ;
- R 6 and R 7 are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- J 0 cycloalkyl-alkyl, or substituted or unsubstituted phenyl, or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 8 is a substituted or unsubstituted group selected from Cj -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 6 Or 1 0 aryl, tetrahydrofuran ring, or tetrapyranyl ring;
- Y is an amide of the formula -C(O)NHR 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, phenyl, cyano, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 5-10 arylalkyl, or heteroarylalkyl, or Y is an acyl sulfonamide of the formula -C(O)NHS(O) 2 R 9 or an acyl sulfonamide of the formula -C(O)NHS(O)R 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 5-10 arylalkyl, C 6 O r io aryl, or heteroaromatic ring; or Y is a acyl sulfamide of the
- R 1c is H, halo, C 1-6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R 1d ) 2 , NH(CO)R 1d , or NH(CO)NHR 1d , wherein each R 1d is independently H, C 1-6 alkyl, or C 3-6 cycloalkyl, or R 1c is NH(CO)OR 1e , wherein R 1e is C 1-6 alkyl or C 3-6 cycloalkyl; the dashed line represents an optional double bond;
- R 21 is a substituted or unsubstituted group selected from C 1 . 6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, C 6 or 10 aryl, pyridal, pyrimidal, pyrazinyl, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, or thiophenoxy; and
- R 22 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or phenyl.
- Preferred embodiments provide a compound having the Formula VII:
- R 4 is selected from H, Cj -6 alkyl, C 3-7 cycloalkyl, C 4-J0 cycloalkyl-alkyl, substituted or unsubstiruted phenyl, or substituted or unsubstiruted benzyl;
- R 5 is H, Cj -6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ;
- R 6 and R 7 are each independently H, Cj -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or substituted or unsubstiruted phenyl; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 8 is a substituted or unsubstituted group selected from Cj -6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, phenyl, C 6 or io aryl, C 1-6 alkoxy, Ci -6 alkyl, tetrahydrofuran ring, or tetrapyranyl ring;
- V is selected from O, S, or NH
- W is selected from O, NH, or CH 2 ;
- Y is an amide of the formula -C(O)NHR 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, phenyl, cyano, C 3-7 cycloalkyl, or C 4-10 cycloalkyl-alkyl, C 5-10 arylalkyl, or heteroarylalkyl; or Y is an acyl sulfonimide of the formula -C(O)NHS(O)R 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 5- io arylalkyl, C 6 or l o aryl, hetero aromatic ring; the dashed line represents an optional double bond; R 21 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl,
- R 22 is a substituted or unsubstituted group selected from Ci -6 alkyl, C 3-7 cycloalkyl, C4.10 cycloalkyl-alkyl, or phenyl. [0015] Preferred embodiments provide a compound having the Formula VIII:
- Q is an unsubstituted or substituted core ring selected from:
- R 1 - ⁇ R>2 is a substituted or unsubstituted group selected from Ci- 6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, be ⁇ zothiazole, benzothiophene, benzofuran, indole, or benzimidazole; and R 2 is a substituted or unsubstituted group selected from H, phenyl, pyridine, pyrazine,
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S 5 . or NR 6 R 7 ;
- R 4 is H, Ci _ 6 alkyl, C 3-7 cycloalkyl, C 4-J o cycloalkyl-alkyl, substituted or unsubstituted phenyl, or substituted or unsubstituted benzyl;
- R 5 is H, C 1-6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ;
- R 6 and R 7 are each independently H, Cj -6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, or substituted or unsubstituted phenyl; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 8 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4- I 0 cycloalkyl-alkyl, phenyl, C 6 O r io aryl, C 1-6 alkyl, tetrahydrofuran ring, tetrapyranyl ring;
- Y is a sulfonimide of the formula -C(O)NHS(O) 2 R 9 , wherein.
- R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, or C 4-J0 cycloalkyl-alkyl, C 6 or io aryl, Ci -6 alkyl, NR 6 R 7 , NR la R lb , heteroaromatic ring, or Y is a carboxylic acid or pharmaceutically acceptable salt, solvate, or prodrug thereof; wherein R la and R lb are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 6 or 10 a*yl or R 1a and R lb are each independently H, heterocycle, which is a five-, six-, or seven-membered, saturated or unsaturated heterocyclic molecule,
- V is selected from O, S, or NH
- W is selected from O, NR 15 , or CR 15 , wherein R 15 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-I o cycloalkyl-alkyl, or substituted or unsubstituted C 1-6 alkyl; the dashed lines represent an optional double bond;
- R 21 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyL phenyl, C 6 or io aryl, pyridal, pyrimidal, pyrazinyl, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, or thiophenoxy; and
- R 22 is a substituted or unsubstituted group selected from Cj -6 alkyl, C 3-7 cycloalkyl, or C 4-1O cycloalkyl-alkyl, or phenyl.
- Preferred embodiments provide a compound having the general Formula Villa:
- R 1 and R 2 are each independently H, halo, cyano, hydroxy, Cj -3 alkyl, or C 1-3 alkoxy;
- R 5 is H, C(O)OR 8 or C(O)NHR 8 ;
- R 8 is Ci -6 alkyl, C 5-6 cycloalkyl, or 3-tetrahydrofuryl
- R 9 is C]- 3 alkyl, C 3-4 cycloalkyl, or phenyl which is optionally substituted by up to two halo, cyano, hydroxy, Cj. 3 alkyl, C) -3 alkoxy;
- R 10 and R 11 are each independently H, C 1-3 alkyl, or R 10 and R 11 are taken together with the carbon to which they are attached to form cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl;
- W is selected from O or NH; the dashed line represents an optional double bond.
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, OrNR 6 R 7 .
- Preferred embodiments provide a compound having the general Formula VIIIb:
- R 1 and R 2 are each independently H, halo, cyano, hydroxy, Cj -3 alkyl, or C 1-3 alkoxy;
- R 5 is H, C(O)OR 8 or C(O)NHR 8 ;
- R 8 is Ci -6 alkyl, C 5-6 cycloalkyl, or 3-tetrahydrofuryl
- R 9 is C] -3 alkyl, C 3 _ 5 cycloalkyl, or phenyl which is optionally substituted by up to two halo, cyano, hydroxy, C] -3 alkyl, or C 1-3 alkoxy;
- R 10 and R 11 are each independently H, C 1-3 alkyl, or C 4- s cycloalkyl;
- W is selected from O or NH; the dashed line represents an optional double bond;
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, OrNR 6 R 7 .
- Preferred embodiments provide a compound having the Formula VIIIc:
- R la and R lb are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, or C 4-10 cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, C 1-6 alkoxy, amido, or phenyl; or R la and R lb are each independently H and C 6 or io aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C 1-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, or Ci -6 alkoxy optionally substituted with up to 5 fluoro; or R la and R lb are
- R lc is H, halo, Ci -6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(CO)R ld , or NH(CO)NHR Id , wherein each R ld is independently H, C 1-6 alkyl, or C 3-6 cycloalkyl; or R lc is NH(CO)OR 16 wherein R le is C 1-6 alkyl, or C 3-6 cycloalkyl;
- W is O or NH
- V is selected from O, S, or NH; when V is O or S, W is selected from O, NR 15 , or CR 15 ; when V is NH, W is selected from NR 15 or CR 15 , where R 15 is H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or Cj -6 alkyl optionally substituted with up to 5 fluoro;
- Q is a bicyclic secondary amine with the structure of: wherein R 21 and R 22 are each independently H, halo, cyano, nitro, hydroxy, Q- 6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 2-6 alkenyl, Ci -6 alkoxy, hydroxy-Ci -6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, C 1-6 alkoxy optionally substituted with up to 5 fluoro, C 6 or io aryl, pyridal, pyrimidal, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, thiophenoxy, S(O) 2 NR 6 R 7 , NHC(O)NR 6 R 7 , NHC(S)NR 6 R 7 , C(O)NR 6 R 7 , NR 6 R 7 , C(O)R 8 , C(O)OR
- R 14 is H, Q -6 alkyl, C 3-7 cycloalkyl, or C 4-10 cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, C 1-6 alkoxy, or phenyl; or R 14 is C 6 o r io aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, C] -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-Ci -6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, C 1-6 alkoxy optionally substituted
- R a is Cj -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 2c R 2d , halo, cyano, nitro, hydroxy, Cj -6 alkyl, C 3-7 cycloalkyl, C 4- ]O cycloalkyl-alkyl, C 2-6 alkenyl, Cj -6 alkoxy, hydroxy-C 1-6 alkyl, C
- R is H, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, naphthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 2c R 2d , halo, cyano, nitro, hydroxy, Ci -6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-d-6 alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, or Cj -6 alkoxy optionally substituted with up to 5 flu
- R 4 is H, C 1 . 6 alkyl, C 3-7 cycloalkyl, C 4-I o cycloalkyl-alkyl, or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, Cj -6 alkyl, C 3- 7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, Ci -6 alkoxy, hydroxy-Ci-6 alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, or Ci -6 alkoxy optionally substituted with up to 5 fluoro;
- R 5 is H, C 1-5 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , or S(O) 2 R 8 ;
- R 8 is C i- 6 alkyl, C 3-7 cycloalkyl, or C 4 _io cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, Ci -6 alkoxy, or phenyl; or R 8 is C 6 or io aryl which is optionally substituted by up to three ' halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 2-6 alkenyl, Ci -6 alkoxy, hydroxy-C 1-6 alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, or Ci -6 alkoxy optionally substituted with up to 5 fluoro; and the dashed line represents an optional double bond.
- Preferred embodiments provide a compound having the Formula VIIId:
- R la and R lb are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, or C 4-10 cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, Cj -6 alkoxy, amido, or phenyl; or R la and R Ib are each independently H or heteroaryl selected from the group consisting of:
- R lc is H, halo, C 1-6 alkyl, C 3-6 cycloalkyl, Ci -6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(CO)R ld , or NH(CO)NHR ld , wherein each R ld is independently H, C 1-6 alkyl, or C 3-6 cycloalkyl; or NR la R Ib is a three- to six- membered alkyl cyclic secondary amine, which optionally has one to three hetero atoms incorporated in the ring, and which is optionally substituted from one to three times with halo, cyano, nitro, C 1-6 alkoxy, amido, or phenyl;
- R 21 and R 22 are each independently H, halo, cyano, hydroxy, C 1-3 alkyl, or C 1-3 alkoxy;
- R 5 is H, C(O)NR 6 R 7 , C(O)R 8 , or C(O)OR 8 ;
- R 6 and R 7 are each independently H, Ci -6 alkyl, C 3 _ 7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or phenyl;
- R 8 is C 1-6 alkyl, C 3-7 cycloalkyl, C 4- ) O cycloalkyl-alkyl, or 3-tetrahydrofuryl;
- R 1 is C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 5 R 6 , halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2- 6 alkenyl, C 1-6 alkoxy, hydroxy-Cj-6 alkyl, C 1-6 alkyl optionally substitute
- R 2 is H, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 5 R 6 , halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C4- 10 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C 1-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, or C 1-6 alkoxy optionally substituted with up to 5 fluoro;
- R is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3 , 7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C ⁇ alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, or C 1-6 alkoxy optionally substituted with up to 5 fluoro;
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, or NR 6 R 7 .
- R 4 is C 1-6 alkyl, C(O)NR 5 R 6 , C(S)NR 5 R 6 , C(O)R 7 , C(O)OR 7 , or S(O) 2 R 7 ;
- R 5 and R 6 are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 2-6 alkenyl, hydroxy-C 1-6 alkyl, or C 1-6 alkyl optionally substituted with up to 5 fluoro, Ci -6 alkoxy optionally substituted with up to 5 fluoro; or R 5 and R 6 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 7 is C 1-6 alkyl, C 3-7 cycloalkyl, C 4- I 0 cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, C] -6 alkoxy, or phenyl; or R 7 is C 6 or l0 aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, C] -6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, C 2-6 alkenyl, Cj -6 alkoxy, hydroxy-C 1-6 alkyl, Cj -6 alkyl optionally substituted with up to 5 fluoro, or C 1- 6 alkoxy optionally substituted with up to 5 fluoro;
- R 8 is Ci -3 alkyl, C 3-4 cycloalkyl, or phenyl which is optionally substituted by up to two halo, cyano, hydroxy, C J-3 alkyl, or C 1-3 alkoxy; and the dashed line represents an optional double bond; or a pharmaceutically acceptable salt thereof.
- Preferred embodiments provide a compound of the formula (IX):
- armaceutically acceptable salt, prodrug, or ester thereof wherein: (a) Z is a group configured to hydrogen bond to an NS3 protease His57 imidazole moiety and to hydrogen bond to a NS3 protease Glyl37 nitrogen atom;
- P 1 ' is a group configured to form a non-polar interaction with at least one NS3 protease Sl' pocket moiety selected from the group consisting of Lysl36, Glyl37, Serl39, His57, Gly58, Gln41, Ser42, and Phe43;
- L is a linker group consisting of from 1 to 5 atoms selected from the group consisting of carbon, oxygen, nitrogen, hydrogen, and sulfur;
- P2 is selected from the group consisting of unsubstituted aryl, substituted aryl, unsubstituted heteroaryl, substituted heteroaryl, unsubstituted heterocyclic and substituted heterocyclic; P2 being positioned by L to form a non-polar interaction with at least one NS3 protease S2 pocket moiety selected from the group consisting of His57, Argl55, Val78, Asp79, Gln80 and Asp ⁇ l;
- R 5 is selected from the group consisting of H 5 C(O)NR 6 R 7 and C(O)OR 8 ;
- R 6 and R 7 are each independently H, C 1-6 alkyl, C3_ 7 cycloalkyl, C 4-1 O alkylcycloalkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, Q -6 alkyl, C 3-7 cycloalkyl, C 4-I o alkylcycloalkyl, C 2-6 alkenyl, hydroxy-Ci-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, Cj -6 alkoxy optionally substituted with up to 5 fluoro; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R is Ci-6 alkyl, C 3-7 cycloalkyl, C 4-I0 alkylcycloalkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, C 1-6 alkoxy, or phenyl; or R 8 is C 6 or io aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, Cj -6 alkyl, C 3-7 cycloalkyl, C 4-10 alkylcycloalkyl, C 2-6
- R 8 is C 1-6 alkyl optionally substituted with up to 5 fluoro groups; or R 8 is a tetrahydrofuran ring linked through the C 3 or C 4 position of the tetrahydrofuran ring; or R 8 is a tetrapyranyl ring linked through the C 4 position of the tetrapyranyl ring;
- Y is is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, OrNR 9 R 10 ; and (i) R 9 and R 10 are each independently H, C 1-6 allcyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or substituted or unsubstituted phenyl; or R 9 and R 10 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl.
- the present embodiments provide for a method of inhibiting NS3/NS4 protease activity comprising contacting a NS3/NS4 protease with a compound disclosed herein.
- the present embodiments provide for a method of treating hepatitis by modulating NS3/NS4 protease comprising contacting a NS3/NS4 protease with a compound disclosed herein.
- Preferred embodiments provide a pharmaceutical composition comprising: a) a preferred compound; and b) a pharmaceutically acceptable carrier.
- Preferred embodiments provide a method of treating a hepatitis C virus infection in an individual, the method comprising administering to the individual an effective amount of a composition comprising a preferred compound.
- Preferred embodiments provide a method of treating liver fibrosis in an individual, the method comprising administering to the individual an effective amount of a composition comprising a preferred compound.
- Preferred embodiments provide a method of increasing liver function in an individual having a hepatitis C virus infection, the method comprising administering to the individual an effective amount of a composition comprising a preferred compound.
- Preferred embodiments provide a compound having the formula (1):
- Preferred embodiments provide a method of making the compound of formula (1), comprising intermixing compound (Ia) with TBTU and DIEA.
- Preferred embodiments provide a method of making a compound of formula (3), comprising intermixing a compound of (2) with sodium methanolate and water:
- Preferred embodiments provide a method of making a compound of formula (7), comprising intermixing a compound formula (4) with a compound of formula (5) and a compound of formula (6):
- Preferred embodiments provide a method of making a compound of formula (7), comprising intermixing a compound of formula (6) with a compound of formula (5) and a compound of formula (8):
- Preferred embodiments provide a method of purifying a compound of formula (7), comprising intermixing a compound of formula (7) with a compound of formula (8) and a compound of formula (9) and treating the product thereof with hydrochloric acid:
- Preferred embodiments provide a method of making a compound of formula (11):
- Preferred embodiments provide a method of making a compound of formula (14), comprising intermixing a compound of formula (11), a compound of formula (12), a compound of formula (13), and methanol:
- Preferred embodiments provide a method of making a compound of formula (15), comprising intermixing a compound of formula (14), N,N-dimethylpyridin-4- amine, and boc anhydride:
- Preferred embodiments provide a method for making a compound of formula (15), comprising: converting an amide of formula (11) to a carbamate of formula (14):
- Preferred embodiments provide a method of making a compound of formula (19), comprising intermixing a dihalobutene and a compound of formula (18):
- Preferred embodiments provide a method of making a compound of formula (20), comprising intermixing lithium hexamethyldisilazide and compound (19):
- Preferred embodiments provide a . method of making a compound of formula (21):
- Preferred embodiments provide a method of making a compound of formula (22), comprising intermixing a compound of formula (21) and iodoethane and a base:
- Preferred embodiments provide a method of making a compound of formula (22), comprising: intermixing a dihalobutene and a compound of formula (18) to form a compound of formula (19):
- Preferred embodiments provide a method of making a compound of formula (23), comprising intermixing a 7-Bromo-l-heptene and a compound of formula (18):
- Preferred embodiments provide a method of making a compound of formula (24), comprising intermixing an acid and a compound of formula (23), and treating the resulting product with hoc anhydride:
- Preferred embodiments provide a method of making a compound of formula (24), comprising: intermixing a 7-Bromo-l-heptene and a compound of formula (18) to form a compound of formula (23):
- hepatic fibrosis used interchangeably herein with “liver fibrosis,” refers to the growth of scar tissue in the liver that can occur in the context of a chronic hepatitis infection.
- the terms "individual,” “host,” “subject,” and “patient” are used ' interchangeably herein, and refer to a mammal, including, but not limited to, primates, including simians and humans.
- liver function refers to a normal function of the liver, including, but not limited to, a synthetic function, including, but not limited to, synthesis of proteins such as serum proteins (e.g., albumin, clotting factors, alkaline phosphatase, aminotransferases (e.g., alanine transaminase, aspartate transaminase), 5'- nucleosidase, ?-glutaminyltranspeptidase, etc.), synthesis of bilirubin, synthesis of cholesterol, and synthesis of bile acids; a liver metabolic function, including, but not limited to, carbohydrate metabolism, amino acid and ammonia metabolism, hormone metabolism, and lipid metabolism; detoxification of exogenous drugs; a hemodynamic function, including splanchnic and portal hemodynamics; and the like.
- proteins such as serum proteins (e.g., albumin, clotting factors, alkaline phosphatase, aminotransferases (e.g., alan
- sustained viral response refers to the response of an individual to a treatment regimen for HCV infection, in terms of serum HCV titer.
- a sustained viral response refers to no detectable HCV RNA (e.g., less than about 500, less than about 200, or less than about 100 genome copies per milliliter serum) found in the patient's serum for a period of at least about one month, at least about two months, at least about three months, at least about four months, at least about five months, or at least about six months following cessation of treatment.
- Treatment failure patients generally refers to HCV- infected patients who failed to respond to previous therapy for HCV (referred to as “non- responders") or who initially responded to previous therapy, but in whom the therapeutic response was not maintained (referred to as “relapsers").
- the previous therapy generally can include treatment with IFN-a monotherapy or IFN-a combination therapy, where the combination therapy may include administration of IFN- ⁇ and an antiviral agent such as ribavirin.
- treatment refers to obtaining a desired pharmacologic and/or physiologic effect.
- the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse affect attributable to the disease.
- Treatment covers any treatment of a disease in a mammal, particularly in a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; and (c) relieving the disease, i.e., causing regression of the disease.
- the terms "individual,” “host,” “subject,” and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, murines, simians, humans, mammalian farm animals, mammalian sport animals, and mammalian pets.
- Type I interferon receptor agonist refers to any naturally occurring or non-naturally occurring ligand of human Type I interferon receptor, which binds to and causes signal transduction via the receptor.
- Type I interferon receptor agonists include interferons, including naturally-occurring interferons, modified interferons, synthetic interferons, pegylated interferons, fusion proteins comprising an interferon and a heterologous protein, shuffled interferons; antibody specific for an interferon receptor; non-peptide chemical agonists; and the like.
- Type II interferon receptor agonist refers to any naturally occurring or non-naturally occurring ligand of human Type II interferon receptor that binds to and causes signal transduction via the receptor.
- Type II interferon receptor agonists include native human interferon-?, recombinant IFN-? species, glycosylated IFN-? species, pegylated IFN-? species, modified or variant IFN-? species, IFN-? fusion proteins, antibody agonists specific for the receptor, non-peptide agonists, and the like.
- a Type HI interferon receptor agonist refers to any naturally occurring or non-naturally occurring ligand of humanIL-28 receptor a ("IL- 28R”), the amino acid sequence of which is described by Sheppard, et al., infra., that binds to and causes signal transduction via the receptor.
- IL- 28R humanIL-28 receptor a
- interferon receptor agonist refers to any Type I interferon receptor agonist, Type II interferon receptor agonist, or Type III interferon receptor agonist.
- dosing event refers to administration of an antiviral agent to a patient in need thereof, which event may encompass one or more releases of an antiviral agent from a drug dispensing device.
- the term "dosing event,” as used herein includes, but is not limited to, installation of a continuous delivery device (e.g., a pump or other controlled release injectable system); and a single subcutaneous injection followed by installation of a continuous delivery system.
- Continuous delivery as used herein (e.g., in the context of “continuous delivery of a substance to a tissue”) is meant to refer to movement of drug to a delivery site, e.g., into a tissue in a fashion that provides for delivery of a desired amount of substance into the tissue over a selected period of time, where about the same quantity of drug is received by the patient each minute during the selected period of time.
- Controlled release as used herein (e.g., in the context of “controlled drug release”) is meant to encompass release of substance (e.g., a Type I or Type III interferon receptor agonist, e.g., IFN-a) at a selected or otherwise controllable rate, interval, and/or amount, which is not substantially influenced by the environment of use.
- substance e.g., a Type I or Type III interferon receptor agonist, e.g., IFN-a
- Controlled release thus encompasses, but is not necessarily limited to, substantially continuous delivery, and patterned delivery (e.g., intermittent delivery over a period of time that is interrupted by regular or irregular time intervals).
- “Patterned” or “temporal” as used in the context of drug delivery is meant delivery of drug in a pattern, generally a substantially regular pattern, over a pre-selected period of time (e.g., other than a period associated with, for example a bolus injection).
- “Patterned” or “temporal” drug delivery is meant to encompass delivery of drug at an increasing, decreasing, substantially constant, or pulsatile, rate or range of rates (e.g., amount of drug per unit time, or volume of drug formulation for a unit time), and further encompasses delivery that is continuous or substantially continuous, or chronic.
- controlled drug delivery device is meant to encompass any device wherein the release (e.g., rate, timing of release) of a drug or other desired substance contained therein is controlled by or determined by the device itself and not substantially influenced by the environment of use, or releasing at a rate that is reproducible within the environment of use.
- substantially continuous as used in, for example, the context of “substantially continuous infusion” or “substantially continuous delivery” is meant to refer to delivery of drug in a manner that is substantially uninterrupted for a pre-selected period of drug delivery, where the quantity of drug received by the patient during any 8 hour interval in the pre-selected period never falls to zero.
- substantially continuous drug delivery can also encompass delivery of drug at a substantially constant, pre-selected rate or range of rates (e.g., amount of drug per unit time, or volume of drug formulation for a unit time) that is substantially uninterrupted for a pre-selected period of drug delivery.
- substantially steady state as used in the context of a biological parameter that may vary as a function of time, it is meant that the biological parameter exhibits a substantially constant value over a time course, such that the area under the curve defined by the value of the biological parameter as a function of time for any 8 hour period during the time course (AUCShr) is no more than about 20% above or about 20% below, and preferably no more than about 15% above or about 15% below, and more preferably no more than about 10% above or about 10% below, the average area under the curve of the biological parameter over an 8 hour period during the time course (AUC8hr average).
- AUCShr area under the curve defined by the value of the biological parameter as a function of time for any 8 hour period during the time course
- the serum concentration of the drug is maintained at a substantially steady state during a time course when the area under the curve of serum concentration of the drug over time for any 8 hour period during the time course (AUC8hr) is no more than about 20% above or about 20% below the average area under the curve of serum concentration of the drug over an 8 hour period in the time course (AUC 8hr average), i.e., the AUC8hr is no more than 20% above or 20% below the AUC8hr average for the serum concentration of the drug over the time course.
- AUC8hr area under the curve of serum concentration of the drug over time for any 8 hour period during the time course
- AUC 8hr average the average area under the curve of serum concentration of the drug over an 8 hour period in the time course
- hydrogen bond refers to an attractive force between an electronegative atom (such as oxygen, nitrogen, sulfur or halogen) and a hydrogen atom which is linked covalently to another electronegative atom (such as oxygen, nitrogen, sulfur or halogen). See, e.g., Stryer et. al. "Biochemistry", Fith Edition 2002, Freeman & Co. N.Y. Typically, the hydrogen bond is between a hydrogen atom and two unshared electrons of another atom.
- a hydrogen bond between hydrogen and an electronegative atom not covalently bound to the hydrogen may be present when the hydrogen atom is at a distance of about 2.5 angstroms to about 3.8 angstroms from the not-covalently bound electronegative atom, and the angle formed by the three atoms (electronegative atom covalently bound to hydrogen, hydrogen, and electronegative atom not-covalently bound electronegative atom) deviates from 180 degrees by about 45 degrees or less.
- the distance between the hydrogen atom and the not-covalently bound electronegative atom may be referred to herein as the "hydrogen bond length,” and the angle formed by the three atoms (electronegative atom covalently bound to hydrogen, hydrogen, and electronegative atom not-covalently bound electronegative atom) may be referred to herein as the "hydrogen bond angle.”
- hydrogen bond length may range from about 2.7 angstroms to about 3.6 angstroms, or about 2.9 angstroms to about 3.4 angstroms.
- stronger hydrogen bonds are formed when the hydrogen bond angle is closer to being linear; thus, in some instances, hydrogen bond angles may deviate from 180 degrees by about 25 degrees or less, or by about 10 degrees or less.
- non-polar interaction refers to proximity of non-polar molecules or moieties, or proximity of molecules or moieties with low polarity, sufficient for van der Waals interaction between the moieties and/or sufficient to exclude polar solvent molecules such as water molecules.
- polar solvent molecules such as water molecules.
- the distance between atoms (excluding hydrogen atoms) of non-polar interacting moieties may range from about 2.9 angstroms to about 6 angstroms. In some instances, the space separating non-polar interacting moieties is less than the space that would accommodate a water molecule.
- non-polar moiety or moiety with low polarity refers to moieties with low dipolar moments (typically dipolar moments less than the dipolar moment of O-H bonds OfH 2 O and N-H bonds of NH 3 ) and/or moieties that are not typically present in hydrogen bonding or electrostatic interactions.
- exemplary moieties with low polarity are alkyl, alkenyl, and unsubstituted aryl moieties.
- an NS3 protease Sl' pocket moiety refers to a moiety of the NS3 protease that interacts with the amino acid positioned one residue C-terminal to the cleavage site of the substrate polypeptide cleaved by NS3 protease (e.g., the NS3 protease moieties that interact with amino acid S in the polypeptide substrate DLEWT-STWVLV).
- exemplary moieties include, but are not limited to, atoms of the peptide backbone or side chains of amino acids Lysl36, Glyl37, Serl39, His57, Gly58, Gln41, Ser42, and Phe43, see Yao. et. al., Structure 1999, 7, 1353.
- an NS3 protease S2 pocket moiety refers to a moiety of the NS3 protease that interacts with the amino acid positioned two residues N-terminal to the cleavage site of the substrate polypeptide cleaved by NS3 protease (e.g., the NS3 protease moieties that interact with amino acid V in the polypeptide substrate DLEWT-STWVLV).
- exemplary moieties include, but are not limited to, atoms of the peptide backbone or side chains of amino acids His57, A ⁇ gl55, Val78, Asp79, Gln80 and Asp81, see Yao. et. al., Structure 1999, 7, 1353.
- a first moiety "positioned by" a second moiety refers to the spatial orientation of a first moiety as determined by the properties of a second moiety to which the first atom or moiety is covalently bound.
- a phenyl carbon may position an oxygen atom bonded to the phenyl carbon in a spatial position such that the oxygen atom hydrogen bonds with a hydroxyl moiety in an NS3 active site.
- alkyl used herein refers to a monovalent straight or branched chain radical of from one to twenty carbon atoms, including, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, and the like.
- alkoxy used herein refers to straight or branched chain alkyl radical covalently bonded to the parent molecule through an --O-- linkage. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, n-butoxy, sec-butoxy, t-butoxy and the like.
- alkenyl used herein refers to a monovalent straight or branched chain radical of from two to twenty carbon atoms containing a carbon double bond including, but not limited to, 1-propenyl, 2-propenyl, 2-methyl-l-propenyl, 1-butenyl, 2-butenyl, and the like.
- alkynyl used herein refers to a monovalent straight or branched chain radical of from two to twenty carbon atoms containing a carbon triple bond including, but not limited to, 1-propynyl, 1-butynyl, 2-butynyl, and the like.
- aryl refers to homocyclic aromatic radical whether fused or not fused.
- aryl groups include, but are not limited to, phenyl, naphthyl, biphenyl, phenanthrenyl, naphthacenyl, and the like.
- cycloalkyl used herein refers to saturated aliphatic ring system radical having three to twenty carbon atoms including, but not limited to, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.
- cycloalkenyl refers to aliphatic ring system radical having three to twenty carbon atoms having at least one carbon-carbon double bond in the ring.
- Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like.
- polycycloalkyl refers to saturated aliphatic ring system radical having at least two rings that are fused with or without bridgehead carbons.
- examples of polycycloalkyl groups include, but are not limited to, bicyclo[4.4.0]decanyl, bicyclo[2.2.1]heptanyl, adamantyl, norbornyl, and the like.
- polycycloalkenyl refers to aliphatic ring system radical having at least two rings that are fused with or without bridgehead carbons in which at least one of the rings has a carbon-carbon double bond.
- examples of polycycloalkenyl groups include, but are not limited to, norbornylenyl, 1,1' -bi cyclopentenyl, and the like.
- polycyclic hydrocarbon refers to a ring system radical in which all of the ring members are carbon atoms. Polycyclic hydrocarbons can be aromatic or can contain less than the maximum number of non-cumulative double bonds. Examples of polycyclic hydrocarbon include, but are not limited to, naphthyl,
- heterocyclic refers to cyclic ring system radical having at least one ring system in which one or more ring atoms are not darbon, namely heteroatom.
- Heterocycles can be nonaromatic or aromatic.
- heterocyclic groups include, but are not limited to, morpholinyl, tetrahydrofuranyl, dioxolanyl, pyrolidinyl, oxazolyl, pyranyl, pyridyl, pyrimidinyl, pyrrolyl, and the like.
- heteroaryl refers to heterocyclic group, whether one or more rings, formally derived from an arene by replacement of one or more methine and/or vinylene groups by trivalent or divalent heteroatoms, respectively, in such a way as to maintain the aromatic system in one or more rings.
- heteroaryl groups include, but are not limited to, pyridyl, pyrrolyl, oxazolyl, indolyl, and the like.
- arylalkyl refers to one or more aryl groups appended to an alkyl radical.
- arylalkyl groups include, but are not limited to, benzyl, phenethyl, phenpropyl, phenbutyl, and the like. >
- cycloalkylalkyl refers to one or more cycloalkyl groups appended to an alkyl radical. Examples of cycloalkylalkyl include, but are not limited to, cyclohexylmethyl, cyclohexylethyl, cyclopentylmethyl, cyclopentylethyl, and the like.
- heteroarylalkyl used herein refers to one or more heteroaryl groups appended to an alkyl radical. Examples of heteroarylalkyl include, but are not limited to, pyridylmethyl, furanylmethyl, thiophenylethyl, and the like.
- heterocyclylalkyl refers to one or more heterocyclyl groups appended to an alkyl radical.
- heterocyclylalkyl include, but are not limited to, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, tetrahydrofuranylmethyl, pyrrolidinylpropyl, and the like.
- aryloxy used herein refers to an aryl radical covalently bonded to the parent molecule through an --O-- linkage.
- alkylthio refers to straight or branched chain alkyl radical covalently bonded to the parent molecule through an --S-- linkage.
- alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, n-butoxy, sec-butoxy, t-butoxy and the like.
- arylthio refers to an aryl radical covalently bonded to the parent molecule through an --S-- linkage.
- alkylamino refers to nitrogen radical with one or more alkyl groups attached thereto.
- monoalkylamino refers to nitrogen radical with one alkyl group attached thereto and dialkylamino refers to nitrogen radical with two alkyl groups attached thereto.
- cyanoamino used herein refers to nitrogen radical with nitrile group attached thereto.
- sulfamyl used herein refers to -SO 2 NH 2 .
- thiocarboxy used herein refers to CSOH.
- a radical indicates species with a single, unpaired electron such that the species containing the radical can be covalently bonded to another species.
- a radical is not necessarily a free radical. Rather, a radical indicates a specific portion of a larger molecule.
- the term "radical” can be used interchangeably with the term "group.”
- a substituted group is derived from the unsubstituted parent structure in which there has been an exchange of one or more hydrogen atoms for another atom or group.
- the substituent group(s) is (are) one or more group(s) individually and independently selected from C 1 -Cs alkyl, C 1 -C 6 alkenyl, C 1 -C 6 alkynyl, C 3 -C 6 cycloalkyl, C 3 -C 6 heterocycloalkyl (e.g., tetrahydrofuryl), aryl, heteroaryl, halo (e.g., chloro, bromo, iodo and fluoro), cyano, hydroxy, Cj-C 6 alkoxy, aryloxy, sulfhydryl (mercapto), C 1 -C 6 alkylthio, arylthio, mono- and di-(Ci-C 6 )alkyl amino, quatern
- Asymmetric carbon atoms may be present in the compounds described. All such isomers, including diastereomers and enantiomers, as well as the mixtures thereof are intended to be included in the scope of the recited compound, hi certain cases, compounds can exist in tautomeric forms. All tautomeric forms are intended to be included in the scope. Likewise, when compounds contain an alkenyl or alkenylene group, there exists the possibility of cis- and trans- isomeric forms of the compounds. Both cis- and trans- isomers, as well as the mixtures of cis- and trans- isomers, are contemplated. Thus, reference herein to a compound includes all of the aforementioned isomeric forms unless the context clearly dictates otherwise.
- a polymorph is a composition having the same chemical formula, but a different structure.
- a solvate is a composition formed by solvation (the combination of solvent molecules with molecules or ions of the solute).
- a hydrate is a compound formed by an incorporation of water.
- a conformer is a structure that is a conformational isomer. Conformational isomerism is the phenomenon of molecules with the same structural formula but different conformations (conformers) of atoms about a rotating bond. Salts of compounds can be prepared by methods known to those skilled in the art.
- salts of compounds can be prepared by reacting the appropriate base or acid with a stoichiometric equivalent of the compound.
- a prodrug is a compound that undergoes biotransformation (chemical conversion) before exhibiting its pharmacological effects.
- a prodrug can thus be viewed as a drug containing specialized protective groups used in a transient manner to alter or to eliminate undesirable properties in the parent molecule.
- reference herein to a compound includes all of the aforementioned forms unless the context clearly dictates otherwise.
- compositions [0107] The present embodiments provide compounds of the general formula (Ia) or (Ib)
- R 3 is selected from the group consisting of H, CH 2 R 6 , COR 6 CO 2 R 7 , CSNH 2 , optionally substituted 2-thiazole, and
- R 4 is hydrogen or methylcyclopropyl
- R 5 is selected from the group consisting of phenyl, CH 2 C(CF 3 ) 2 OH, C 3 alkyl, carbonylcyclopropyl, SO 2 R 8 , CN, and
- R 6 is. selected from the group consisting of R 9 , optionally-substituted phenyl, cyclopropyl, cyclobutyl, optionally-substututed furanyl, fluorinated alkyl; and hydroxylated alkyl;
- R 7 is cyclopentyl or C 1 -C 6 alkyl
- R 8 is selected from the group consisting of . NR 11 R 12 , tert-butyl, chloropyridinyl,
- R is selected from the group consisting of tert-butyl, trifluoromethyl, trifluoroethyl, and methyltrifluoromethyl;
- R 10 is selected from the group consisting of H, C 1 to C 3 alkyl, 3-propenyl, methylmethoxyl, and benzyl;
- R 11 is H, methyl, C 1-4 alkyl or Ci -4 fluorinated alkyl
- R 12 is selected from the group consisting of C 1 to C 3 alkyl, 3-propenyl, phenyl,
- CH 2 R 16 R 17 , and fluorinated alkyl or Rn and R) 2 taken together can form a 4 or 5 membered ring optionally substituted with 2 fluorines
- R 13 is pyridinyl or R 14 ;
- R 14 is selected from the group consisting of pyridinyl, chlorophenyl, naphthyl, and anisolyl;
- R 15 is NR 11 R 12 or alkyl or cycloalkyl; ; R 16 is pyridinyl; R 17 is H or methyl.
- R 18 and R 19 is independently H, halogen, methyl or CF 3 [0108] Another embodiment provides compound ot the general formula (II)
- R 3 is selected from the group consisting of H, CH 2 R 6 , COR 6 , CO 2 R 7 ', optionally substituted 2- thiazole
- R 5 is selected from the group consisting of methylcyclopropyl or SO 2 R 8 ,
- R 6 is selected from the group consisting of R 9 , optionally-substituted phenyl, cyclopropyl, ' cyclobutyl, optionally-substututed furanyl, fluorinated alkyl; and hydroxylated alkyl;
- R 7 is cyclopentyl or Cj-C 6 alkyl
- R 8 is selected from the group consisting Of NR 11 R 12 , optionally substituted phenyl, and
- R 10 is selected from the group consisting of H, C 1 to C 3 alkyl, 3-propenyl, methylmethoxyl, and benzyl;
- R ⁇ is H, methyl, C 1-4 alkyl or C 1-4 fluorinated alkyl
- R 12 is selected from the group consisting of C 1 to C 3 alkyl, 3-propenyl, phenyl,
- chlorophenyl, dichlorophenyl, benzyl, pyridinyl, CH 2 R 13 , alkyl or Rn and R 12 taken together can form a 4 or 5 membered ring optionally substituted with 2 fluorines
- R 17 is H or methyl.
- R 18 and R 19 is independently H, halogen, methyl or CF 3
- W is selected from the groups
- R 20 is H, CH 3 , alkyl, fluorinated alkyl, SO 2 Ar, the 12-13 bond is a single or double bond.
- B ring is selected from Z is bond, O, or S;
- R 1 is H, C 1-7 alkyl, C 3-7 cycloalkyl, pyridal, thioazolo, naphthyl, fused heterocycle, phenyl, substituted phenyl, benzyloxy, or substituted benzyloxy;
- W is selected from hydrogen, halogen, OCH 3 , SR 3 , NHR 3 , CH(R 3 ) 2 , or
- R 3 is H, Cj.8 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, C 1-6 alkyl, C 4-10 cycloalkyl-alkyl, C 7- io arylalkyl, or C 6-12 heteroarylalkyl;
- R and R 5 are each independently substituted or unsubstituted groups selected from H, C 1-6 alkyl, C(O)R 8 , C(O)OR 8 , C 3-7 cycloalkyl, alkyl-Gno cycloalkyl, phenyl, benzyl, C(O)NR 8 R 8 , C(S)NR 8 R 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ; wherein R 8 is a substituted or unsubstituted group selected from H, C 1-6 alkyl, C 3-7 cycloalkyl, alkyl-C 3-7 cycloalkyl, C 6 or 1 0 aryl, alkyl-C 6 or 10 aryl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, tetrahydrofuran ring, tetrapyranyl ring, benzyl, or phen
- R 22 is a substituted or unsubstituted group selected from Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or phenyl;
- Y has a formula selected from -C(O)NHS(O) 2 R 13 , -C(O)NHS(O) 2 NR la R lb , - C(O)NHR 13 , -C(O)R la , -C(O)NHC(O)R 13 , -C(O)NHS(O) 2 R 13 , -C(O)NHS(O)R la , or -C(O)OH; wherein R la and R lb are each independently substituted or unsubstituted groups selected from H, CN, CF 3 , C 1-6 alkyl, Ci -6 alkenyl, Ci -6 alkynyl, C 3-7 cycloalkyl, alkyl-C 3- i 0 cycloalkyl, C 6 or 10 aryl, alkyl-C 6 or 1 0 aryl, alkenyl-C 6 or 10 aryl, heterocycle, heteroaromatic ring, or alky
- R lc is H, halo, C 1-6 alkyl, Q -6 cycloalkyl, C] -6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(C0)R ld , or NH(CO)NHR ld , wherein each R ld is independently H, Ci -6 alkyl, or C 3-6 cycloalkyl, or R lc is NH(CO)OR 16 , wherein R le is C 1-6 alkyl or C 3-6 cycloalkyl; and the dashed line represents an optional double bond.
- W is selected from hydrogen, OCH 3 , SR 3 , NHR 3 , CH(R 3 ) 2 , or
- R 3 is H or C 1-3 alkyl; and R 5 are independently substituted or unsubstituted groups selected from H, Cj -6 alkyl, C(O)R 8 , C(O)OR 8 , C 3-7 cycloalkyl, alkyl-C 4-10 cycloalkyl, phenyl, or benzyl; .
- R 8 is a substituted or unsubstituted group selected from Ci -6 alkyl, C 3- 7 cycloalkyl, alkyl-C 3- 7 cycloalkyl, C 6 or 10 a ⁇ yh or alkyl-C 6 or 10 aryl;
- Y has a formula selected from -C(O)NHS(O) 2 R 13 , -C(O)NHS(O) 2 NR la R Ib , - C(O)NHR 13 , -C(O)R la , -C(O)NHC(O)R 13 , -C(O)NHS(O) 2 R la , -C(O)NHS(O)R 13 , or -C(O)OH; wherein R la and R lb are each independently substituted or unsubstituted groups selected from H, CN, CF 3 , Ci -6 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 3-7 cycloalkyl, alkyl-C 3- io cycloalkyl, C 6 OT 1 0 aryl, alkyl-C 6 O r 10 aryl, alkenyl-C 6 or 10 aryl, heterocycle, or alkyl-heterocycle
- R 1 is H, C 1-7 alkyl, C 3-7 cycloalkyl, pyridal, thioazolo, naphthyl, fused heterocycle, phenyl, substituted phenyl, benzyloxy, or substituted benzyloxy;
- R 2 is H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, substituted phenyl, Ci -6 alkoxy, or substituted Cj -6 alkoxy;
- R 3 is H, C 1-6 alkyl, C(O)R 5 , C(O)OR 5 , C(O)NR 5 R 6 , C(S)NR 5 R 6 , or S(O) 2 R 5 ;
- R 5 and R 6 are each independently selected from H, C ]-6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, benzyl, phenyl, or substituted phenyl;
- Y is a sulfonimide of the formula -C(O)NHS(O) 2 R 4 or a carboxylic acid of the formula -C(O)OH; wherein R 4 is C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 6 aryl, or substituted C 6 aryl;
- Z is a bond, O, or S; and the dashed line represents an optional double bond.
- the phenyl on R 1 is substituted with halo, Ci -3 alkyl, substituted C 1-3 alkyl with up to 3 fluoro, Ci -3 alkoxy, substituted Ci -3 alkoxy substituted with up to 3 fluoro, cyano, hydroxy, nitro, NH 2 , NHR 2 , or NR 2 R 3 , wherein R 2 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, substituted phenyl, C 1-6 alkoxy, or substituted C 1-6 alkoxy;
- R 3 is H, C 1-5 alkyl, C(O)R 5 , C(O)OR 5 , C(O)NR 5 R 6 , C(S)NR 5 R 6 , or S(O) 2 R 5 ;
- R 5 and R 6 are each independently selected from H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, benzyl, phenyl, or substituted phenyl.
- the benzyloxy on R 1 is substituted with halo, C 1-3 alkyl, substituted Ci -3 alkyl with up to 3 fluoro, C 1-3 alkoxy, substituted C 1-3 alkoxy substituted with up to 3 fluoro, cyano, hydroxy, nitro, NH 2 , NHR 2 , or NR 2 R 3 , wherein
- R 2 is H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, substituted phenyl, Ci -6 alkoxy, or substituted C 1-6 alkoxy;
- R 3 is H, C 1-6 alkyl, C(O)R 5 , C(O)OR 5 , C(O)NR 5 R 6 , C(S)NR 5 R 6 , or S(O) 2 R 5 ;
- R 5 and R 6 are each independently selected from H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-I o cycloalkyl-alkyl, C 3-7 cycloalkyl fused to C 6 aryl or C 6 aryl heterocyclyl, benzyl, phenyl, or substituted phenyl.
- the phenyl on R 2 is substituted with halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-Ci -6 alkyl, C] -6 alkyl, substituted Ci -6 alkyl with up to 5 fluoro, C 1-6 alkoxy, substituted Ci -6 alkoxy with up to 5 fluoro.
- the phenyl on R 5 and R 6 is substituted with halo, cyano, nitro, hydroxy, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C 1-6 alkyl, C 1-6 alkyl, substituted Ci -6 alkyl with up to 5 fluoro, Ci -6 alkoxy, substituted C 1-6 alkoxy with up to 5 fluoro.
- the C 6 aryl on R 4 is substituted with up to three halo.
- W is selected from halogen, OCH 3 , SR 15 , NHR 15 , or CHR 3 R 15 , wherein R 15 is a substituted or unsubstituted group selected from H, C 1-8 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, Cj -6 alkyl, C 4-10 cycloalkyl-alkyl, C 7-10 arylalkyl, or C 6-12 heteroarylalkyl;
- R 3 is H or C 1-3 alkyl
- R 4 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, substituted or unsubstituted phenyl, or substituted or unsubstituted benzyl;
- R 5 is H, C 1-6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ;
- R 6 and R 7 are each independently H, Cj -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or substituted or unsubstituted phenyl, or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 6 Or io aryl, tetrahydrofuran ring, or tetrapyranyl ring;
- Y is an amide of the formula -C(O)NHR 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, phenyl, cyano, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 5-10 arylalkyl, or heteroarylalkyl, or Y is an acyl sulfonamide of the formula -C(O)NHS(O) 2 R 9 or an acyl sulfonimide of the formula -C(O)NHS(O)R 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C5- 1 0 arylalkyl, C 6 or 10 aryl, or heteroaromatic ring; or Y is a acyl sulfamide of the
- NR la R Ib form a substituted or unsubstituted three- to six- membered alkyl cyclic secondary amine, or NR la R lb is a heteroaryl selected from the group consisting of:
- R lc is H, halo, C 1-6 alkyl, C 3-6 cycloalkyl, Ci -6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(CO)R ld , or NH(CO)NHR ld , wherein each R ld is independently H, C 1-6 alkyl, or C 3-6 cycloalkyl, or R lc is NH(CO)OR 16 , wherein R le is Cj -6 alkyl or C 3-6 cycloalkyl; the dashed line represents an optional double bond;
- R 21 is a substituted or unsubstituted group selected from Cj -6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, phenyl, C 6 Or 10 aryl, pyridal, pyrimidal, pyrazinyl, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, or thiophenoxy; and
- R 22 is a substituted or unsubstituted group selected from Ci -6 alkyl, C 3-7 cycloalkyl, C 4-1 O cycloalkyl-alkyl, or phenyl.
- Q is a unsubstituted or substituted core ring where p is 0 or 1, t o i or Q is R -R , wherein R is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole; and R 2 is a substituted or unsubstituted group selected from H, phenyl, pyridine, pyrazine, pyrimidine,
- R 4 is selected from H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, substituted or unsubstituted phenyl, or substituted or unsubstituted benzyl;
- R 5 is H, Ci -6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ;
- R 6 and R 7 are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- jo cycloalkyl-alkyl, or substituted or unsubstituted phenyl; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 8 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, phenyl, C 6 O r io aryl > C 1-6 alkoxy, Cj -6 alkyl, tetrahydrofuran ring, or tetrapyranyl ring;
- V is selected from O, S, or NH
- W is selected from O, NH, or CH 2 ;
- Y is an amide of the formula -C(O)NHR 9 , wherein R 9 is a substituted or unsubstituted group selected from C 1-6 alkyl, phenyl, cyano, C 3-7 cycloalkyl, or C 4-10 cycloalkyl-alkyl, C 5-1O arylalkyl, or heteroarylalkyl; or Y is an acyl sulfonimide of the formula -C(O)NHS(O)R 9 , wherein R 9 is a substituted or unsubstituted group selected from Cj -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 5-10 arylalkyl, C 6 or l0 aryl, heteroaromatic ring; the dashed line represents an optional double bond;
- R 21 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, phenyl, C 6 O r io aryl, pyridal, pyrimidal, pyrazinyl, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, or thiophenoxy; and
- R 22 is a substituted or unsubstituted group selected from C] -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or phenyl.
- Q is an unsubstituted or substituted core ring selected from:
- R 1 is a substituted or unsubstituted group selected from C i-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole; and R 2 is a substituted or unsubstituted group selected from H, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene,
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, or NR 6 R 7 ;
- R 4 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, substituted or unsubstituted phenyl, or substituted or unsubstituted benzyl;
- R 5 is H 3 C 1-6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , S(O) 2 R 8 , or (CO)CHR 21 NH(CO)R 22 ;
- R 6 and R 7 are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or substituted or unsubstituted phenyl; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 8 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl, phenyl, C 6 Or 1 0 aryl, C 1-6 alkyl, tetrahydrofuran ring, tetrapyranyl ring;
- Y is a sulfo ⁇ imide of the formula -C(O)NHS(O) 2 R 9 , wherein R 9 is a substituted or unsubstituted group selected from Ci -6 alkyl, C 3-7 cycloalkyl, or C 4-I0 cycloalkyl-alkyl, C 6 or ip aryl, Cj -6 alkyl, NR 6 R 7 , NR Ia R lb , heteroaromatic ring, or Y is a carboxylic acid or pharmaceutically acceptable salt, solvate, or prodrug thereof; wherein R la and R lb are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 6 or J O aryl or R la and R lb are each independently H, heterocycle, which is a five-, six-, or seven-membered, saturated or unsaturated heterocyclic molecule, containing from
- V is selected from O, S, or NH
- W is selected from O, NR 15 , or CR 15 , wherein R 15 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or substituted or unsubstituted Ci -6 alkyl; the dashed lines represent an optional double bond;
- R 21 is a substituted or unsubstituted group selected from Ci -6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, phenyl, C 6 or io aryl, pyridal, pyrimidal, pyrazinyl, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, or thiophe ⁇ oxy; and
- R 22 is a substituted or unsubstituted group selected from C 1-6 alkyl, C 3-7 cycloalkyl, or C 4-I o cycloalkyl-alkyl, or phenyl.
- R 1 and R 2 are each independently H, halo, cyano, hydroxy, C 1-3 alkyl, or C 1-3 alkoxy;
- R 5 is H, C(O)OR 8 or C(O)NHR 8 ;
- R 8 is C 1-6 alkyl, C 5-6 cycloalkyl, or 3-tetrahydrofuryl;
- R 9 is C 1-3 alkyl, C 3-4 cycloalkyl, or phenyl which is optionally substituted by up to two halo, cyano, hydroxy, C 1-3 alkyl, C 1-3 alkoxy;
- R 10 and R n are each independently H, Ci -3 alkyl, or R 10 and R 11 are taken together with the carbon to which they are attached to form cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl;
- W is selected from O or NH; the dashed line represents an optional double bond.
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, or NR 6 R 7 .
- R 1 and R 2 are each independently H, halo, cyano, hydroxy, C 1-3 alkyl, or C 1 ⁇ alkoxy;
- R 5 is H, C(O)OR 8 or C(O)NHR 8 ;
- R 8 is C 1-6 alkyl, C 5-6 cycloalkyl, or 3-tetrahydrofuryl
- R 9 is C 1-3 alkyl, C 3-5 cycloalkyl, or phenyl which is optionally substituted by up to two halo, cyano, hydroxy, C) -3 alkyl, or Ci -3 alkoxy;
- R 10 and R ⁇ are each independently H, C 1-3 alkyl, or C 4-5 cycloalkyl;
- W is selected from O or NH; the dashed line represents an optional double bond;
- Z is a C 5 . 7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, or NR 6 R 7 .
- R la and R lb are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, or C 4-I0 cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, Cj -6 alkoxy, amido, or phenyl; or R la and R lb are each independently H and C 6 or io aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-Ci -6 alkyl, Cj -6 alkyl optionally substituted with up to 5 fluoro, or Cj -6 alkoxy optionally substituted with up to 5 fluoro; or R la and R lb are each independently H or heterocycle, which is a five-, six-,
- R lc is H, halo, C 1-6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(C0)R ld , or NH(C0)NHR ld , wherein each R ld is independently H, C 1-6 alkyl, or C 3-6 cycloalkyl; or R lc is NH(CO)OR le wherein R le is C 1-6 alkyl, or C 3-6 cycloalkyl;
- W is O or NH
- V is selected from O, S, or NH; when V is O or S, W is selected from O, NR 15 , or CR 15 ; when V is NH 5 W is selected from NR 15 or CR 15 , where R 15 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or C 1-6 alkyl optionally substituted with up to 5 fluoro;
- Q is a bicyclic secondary amine with the structure of:
- R 21 and R 22 are each independently H, halo, cyano, nitro, hydroxy, Cj- 6 alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C 1-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, Ci -6 alkoxy optionally substituted with up to 5 fluoro, C 6 Or io aryl, pyridal, pyrimidal, thienyl, furanyl, thiazolyl, oxazolyl, phenoxy, thiophenoxy, S(O) 2 NR 6 R 7 , NHC(O)NR 6 R 7 , NHC(S)NR 6 R 7 , C(O)NR 6 R 7 , NR 6 R 7 , C(O)R 8 , C(O)OR 8 , NHC(O)R 8 , NHC(O
- R 2a is Ci -6 alkyl, C 3-7 cycloalkyl, C 4- i ⁇ cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 2c R 2d , halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-I0 cycloalkyl-alkyl, C 2-6 alkenyl, Cj -6 alkoxy, hydroxy-C ⁇ alkyl, Ci -6
- R 2b is H, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, naphthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 2c R 2d , halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, Ci -6 alkoxy, hydroxy-Ci- 6 alkyl, Cj -6 alkyl optionally substituted with up to 5 fluoro, or Ci -6 alkoxy optionally substituted with up to
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, OrNR 6 R 7 .
- R is H, C] -6 alkyl, C 3-7 cycloalkyl, C 4-I o cycloalkyl-alkyl, or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, Ci -6 alkyl, C 3- ⁇ cycloalkyl, C 4- io cycloalkyl-alkyl, C 2-6 alkenyl, Cj -6 alkoxy, hydroxy-C]. 6 alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, or Ci -6 alkoxy optionally substituted with up to 5 fluoro;
- R 5 is H, C 1-6 alkyl, C(O)NR 6 R 7 , C(S)NR 6 R 7 , C(O)R 8 , C(O)OR 8 , or S(O) 2 R 8 ;
- R 8 is Ci -6 alkyl, C 3-7 cycloalkyl, or C 4-1O cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, C 1-6 alkoxy, or phenyl; or R 8 is C 6 or 10 aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, C] -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-Ci -6 alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, or C 1-6 alkoxy optionally substituted with up to 5 fluoro; and the dashed line represents an optional double bond.
- the present embodiments provide compounds having the Formula VIIId:
- R la and R lb are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, or C 4-I0 cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, C 1-6 alkoxy, amido, or phenyl; or R la and R lb are each independently H or heteroaryl selected from the group consisting of:
- R Ic is H, halo, Ci -6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R ld ) 2 , NH(CO)R ld , or NH(C0)NHR ld , wherein each R ld is independently H, C 1-6 alkyl, or C 3-6 cycloalkyl; or NR la R lb is a three- to six- membered alkyl cyclic secondary amine, which optionally has one to three hetero atoms incorporated in the ring, and which is optionally substituted from one to three times with halo, cyano, nitro, C 1-6 alkoxy, amido, or phenyl;
- R 21 and R 22 are each independently H, halo, cyano, hydroxy, C 1-3 alkyl, or C 1-3 alkoxy;
- R 5 is H, C(O)NR 6 R 7 , C(O)R 8 , or C(O)OR 8 ;
- R 6 and R 7 are each independently H, Q- ⁇ alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or phenyl;
- R is Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or 3-tetrahydrofuryl;
- R 1 is C]_ 6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 5 R 6 , halo, cyano, nitro, hydroxy, C] -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, Ci -6 alkoxy, hydroxy-C ⁇ alkyl, C 1-6 alkyl optionally
- R is H, phenyl, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, furan, thiophene, thiazole, oxazole, imidazole, isoxazole, pyrazole, isothiazole, napthyl, quinoline, isoquinoline, quinoxaline, benzothiazole, benzothiophene, benzofuran, indole, or benzimidazole, each optionally substituted with up to three NR 5 R 6 , halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C 1-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, or C 1-6 alkoxy optionally substituted with up to 5 fluoro;
- R 3 is H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3 . 7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2-6 alkenyl, Ci -6 alkoxy, hydroxy-C 1-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, or C 1-6 alkoxy optionally substituted with up to 5 fluoro;
- Z is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, or NR 6 R 7 .
- R 4 is C 1-6 alkyl, C(O)NR 5 R 6 , C(S)NR 5 R 6 , C(O)R 7 , C(O)OR 7 , or S(O) 2 R 7 ;
- R 5 and R 6 are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-1O cycloalkyl-alkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, C 2- 6 alkenyl, hydroxy-C] -6 alkyl, or C 1-6 alkyl optionally substituted with up to 5 fluoro, Ci -6 alkoxy optionally substituted with up to 5 fluoro; or R 5 and R 6 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 7 is C] -6 alkyl, C 3-7 cycloalkyl, C 4-1 O cycloalkyl-alkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, Cj -6 alkoxy, or phenyl; or R 7 is C 6 or io aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, Cue alkyl, C 3-7 cycloalkyl, C 4- io cycloalkyl-alkyl, C 2-6 alkenyl, C 1-6 alkoxy, hydroxy-C ⁇ e alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, or Ci- 6 alkoxy optionally substituted with up to 5 fluoro; •
- R 8 is C 1-3 alkyl, C 3-4 cycloalkyl, or phenyl which is optionally substituted by up to two halo, cyano, hydroxy, Ci -3 alkyl, or Ci -3 alkoxy; and the dashed line represents an optional double bond.
- Z is a group configured to hydrogen bond to an NS3 protease His57 imidazole moiety and to hydrogen bond to a NS3 protease Glyl37 nitrogen atom;
- P 1 ' is a group configured to form a non-polar interaction with at least one NS3 protease Sl' pocket moiety selected from the group consisting of Lysl36 5 Glyl37, Serl39, His57, Gly58, Gln41, Ser42, and Phe43;
- L is a linker group consisting of from 1 to 5 atoms selected from the group consisting of carbon, oxygen, nitrogen, hydrogen, and sulfur;
- P2 is selected from the group consisting of unsubstituted aryl, substituted aryl, unsubstituted heteroaryl, substituted heteroaryl, unsubstituted heterocyclic and substituted heterocyclic; P2 being positioned by L to form a non-polar interaction with at least one NS3 protease S2 pocket moiety selected from the group consisting of His57, Argl55, Val78, Asp79, GInSO and Asp81;
- R 5 is selected from the group consisting of H, C(O)NR 6 R 7 and C(O)OR 8 ;
- R 6 and R 7 are each independently H, Ci -6 alkyl, C 3-7 cycloalkyl, C 4-10 alkylcycloalkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- Io alkylcycloalkyl, C 2-6 alkenyl, hydroxy-Ci-6 alkyl, C 1-6 alkyl optionally substituted with up to 5 fluoro, C] -6 alkoxy optionally substituted with up to 5 fluoro; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- R 8 is C 1-6 alkyl, C 3-7 cycloalkyl, C 4-I0 alkylcycloalkyl, which are all optionally substituted from one to three times with halo, cyano, nitro, hydroxy, Ci -6 alkoxy, or phenyl; or R 8 is C 6 or io aryl which is optionally substituted by up to three halo, cyano, nitro, hydroxy, C !-6 alkyl, C 3-7 cycloalkyl, C 4-10 alkylcycloalkyl, C 2-6 alkenyl, Cj -6 alkoxy, hydroxy-Ci- 6 alkyl, Cj.
- R 8 is C 1-6 alkyl optionally substituted with up to 5 fluoro groups; or R 8 is a tetrahydrofuran ring linked through the C 3 or C 4 position of the tetrahydrofuran ring; or R 8 is a tetrapyranyl ring linked through the C 4 position of the tetrapyranyl ring;
- Y is is a C 5-7 saturated or unsaturated chain containing one or two heteroatoms selected from O, S, OrNR 9 R 10 ; and (i) R y and R i ⁇ are each independently H, C 1-6 alkyl, C 3-7 cycloalkyl, C 4-10 cycloalkyl-alkyl, or substituted or unsubstituted phenyl; or R 9 and R 10 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl.
- the compound having the general Formula IX may contain one or more moieties that form a hydrogen bond with a peptide backbone atom or side chain moiety located in the substrate binding pocket of NS3 protease.
- the compound having the general Formula IX may contain one or more moieties that form non-polar interactions with peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease.
- the dashed line between carbons 13 and 14 maybe a single bond or a double bond.
- Z may be configured to form a hydrogen bond with a peptide backbone atom or side chain moiety located in the substrate binding pocket of NS3 protease, including, but not limited to, NS3 protease His57 imidazole moiety and NS3 protease Glyl37 nitrogen atom. In some instances, Z may be configured to form a hydrogen bond with both the NS3 protease His57 imidazole moiety and the NS3 protease Glyl37 nitrogen atom.
- the Pl' group of the compound having the general formula EX may be configured to form a non-polar interaction with peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease, including, but not limited to amino acid residues that form the NS3 protease Sl' pocket.
- the Pl 1 group may form a non-polar interaction with at least one amino acid selected from Lysl36, Glyl37, Serl39, His57, Gly58, Gln41, Ser42, and Phe43.
- the P2 group of the compound having the general formula IX may be configured to form a non-polar interaction with peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease, including, but not limited to amino acid residues that form the NS3 protease S2 pocket.
- the P2 group may form a non-polar interaction with at least one amino acid selected from His57, Argl55, Val78, Asp79, Gln80 and Asp81.
- the P2 group also may be configured to form a hydrogen bond with peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease, including, but not limited to amino acid residues that form the NS3 protease S2 pocket.
- the P2 group may form a hydrogen bond with at least one amino acid selected from His57, Argl55, Val78, Asp79, Gln80 and ' Asp ⁇ l.
- P2 may form both a non-polar interaction and a hydrogen bond with peptide backbone or side chain moieties or atoms located in the substrate binding pocket of NS3 protease, such amino acids selected from His57, Argl55, Val78, Asp79, Gln80 and Asp ⁇ l. Such hydrogen bond and non-polar interactions may occur with the same amino acid residue or with different amino acid residues in the NS3 protease S2 pocket.
- P2 may be selected from the group consisting of unsubstituted aryl, substituted aryl, unsubstituted heteroaryl, substituted heteroaryl, unsubstituted heterocyclic and substituted heterocyclic.
- the position of the P2 group is determined by the linker L.
- P2 may be positioned by linker L to form a non-polar interaction with peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease, including, but not limited to amino acid residues that form the NS3 protease S2 pocket.
- the P2 group may be positioned by L to form a non-polar interaction with at least one amino acid selected from His57, Argl55, Val78, Asp79, Gln80 and Asp81.
- P2 may be positioned by linker L to form a hydrogen bond with peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease, including, but not limited to amino acid residues that form the NS3 protease S2 pocket.
- the P2 group may be positioned by L to form a hydrogen bond with at least one amino acid selected from His57, Argl55, Val78, Asp79, Gln80 and Asp ⁇ L hi some instances, P2 may be positioned to form both a non-polar interaction and a hydrogen bond peptide backbone or side chain atom or atoms located in the substrate binding pocket of NS3 protease, such as an amino acid selected from His57, Argl55,_Val78, Asp79, Gln80 and Asp ⁇ l .
- Such hydrogen bond and non-polar interactions may occur with the same amino acid residue or with different amino acid residues in the NS3 protease S2 pocket.
- L may be a linker group that links P2 to the heterocyclic backbone of the compound of formula IX.
- Linker L may contain any of a variety of atoms and moieties suitable for positioning P2 in the NS3 protease substrate binding pocket.
- L may contain 1 to 5 atoms selected from the group consisting of carbon, oxygen, nitrogen, hydrogen, and sulfur.
- L may contain 2 to 5 atoms selected from the group consisting of carbon, oxygen, nitrogen, hydrogen, and sulfur.
- Specific exemplary groups for L include, but are not limited to, ester, amide, carbamate, thioester, and thioamide.
- the compound of formula IX also may contain an R 5 group, where the R 5 group may contain a carboxyl moiety.
- exemplary carboxyl moieties of R 5 include C(O)NR 6 R 7 and C(O)OR 8 where R 6 and R 7 are each independently H, Ci -5 alkyl, C 3-7 cycloalkyl, C 4-10 alkylcycloalkyl or phenyl, said phenyl optionally substituted by up to three halo, cyano, nitro, hydroxy, C 1-6 alkyl, C 3-7 cycloalkyl, C 4- Io alkylcycloalkyl, C 2- 6 alkenyl, hydroxy-Q- 6 alkyl, Ci -6 alkyl optionally substituted with up to 5 fluoro, C 1-6 alkoxy optionally substituted with up to 5 fluoro; or R 6 and R 7 are taken together with the nitrogen to which they are attached to form indolinyl, pyrrolidinyl, piperidinyl,
- L consists of from 2 to 5 atoms.
- L is selected from the group consisting of ester, amide, carbamate, thioester, and thioamide.
- P2 is further positioned by L to form a hydrogen bonding interaction with at least one NS3 protease S2 pocket moiety selected from the group consisting of His57, Argl55, Val78, Asp79, Gln80 and Asp81.
- P2 is
- compounds of formula IX have the structure:
- the present embodiments provide for a method of inhibiting NS3/NS4 protease activity comprising contacting a NS3/NS4 protease with a compound disclosed herein.
- the present embodiments provide for a method of treating hepatitis by modulating NS3/NS4 protease comprising contacting a NS3/NS4 protease with a compound disclosed herein.
- Exemplary compounds of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, and IX are set forth in Tables 1 through 8 and compounds 100, 701-706, 801, 922, 927, 2001-2011, 2101-2154, 2201-2252, 2301-2322, 2401-2404, 2501- 2502, and 2601-2604 below.
- Preferred compounds include Compounds 100- 1032 and 2001-2322.
- Preferred embodiments provide a method of treating a hepatitis C virus infection in an individual, the method comprising administering to the individual an effective amount of a composition comprising a preferred compound.
- Preferred embodiments provide a method of treating liver fibrosis in an individual, the method comprising administering to the individual an effective amount of a composition comprising a preferred compound.
- Preferred embodiments provide a method of increasing liver function in an individual having a hepatitis C virus infection, the method comprising administering to the individual an effective amount of a composition comprising a preferred compound.
- the present embodiments further provide compositions, including pharmaceutical compositions, comprising compounds of the general Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, Vlllb, VIIIc, Vllld, VHIe, or IX, including salts, esters, or other derivatives thereof.
- the present embodiments further provide compositions, including pharmaceutical compositions, comprising compounds of the general Formula Ia, including salts, esters, or other derivatives thereof.
- a subject pharmaceutical composition comprises a subject compound; and a pharmaceutically acceptable excipient.
- a wide variety of pharmaceutically acceptable excipients is known in the art and need not be discussed in detail herein. Pharmaceutically acceptable excipients have been amply described in a variety of publications, including, for example, A.
- a subject compound inhibits the enzymatic activity of a hepatitis virus C (HCV) NS3 protease. Whether a subject compound inhibits HCV NS3 protease can be readily determined using any known method. Typical methods involve a determination of whether an HCV polyprotein or other polypeptide comprising an NS3 recognition site is cleaved by NS3 in the presence of the agent.
- HCV hepatitis virus C
- a subject compound inhibits NS3 enzymatic activity by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%, or more, compared to the enzymatic activity of NS3 in the absence of the compound.
- a subject compound inhibits enzymatic activity of an HCV NS3 protease with an IC 50 of less than about 50 ⁇ M, e.g., a subject compound inhibits an HCV NS3 protease with an IC 5 0 of less than about 40 ⁇ M, less than about 25 ⁇ M, less than about 10 ⁇ M, less than about 1 ⁇ M, less than about 100 nM, less than about 80 nM, less than about 60 nM, less than about 50 nM, less than about 25 nM, less than about 10 nM, or less than about 1 nM, or less.
- a subject compound inhibits the enzymatic activity of a hepatitis virus C (HCV) NS3 helicase. Whether a subject compound inhibits HCV NS3 helicase can be readily determined using any known method. In many embodiments, a subject compound inhibits KfS3 enzymatic activity by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%, or more, compared to the enzymatic activity of NS3 in the absence of the compound.
- HCV hepatitis virus C
- a subject compound inhibits HCV viral replication.
- a subject compound inhibits HCV viral replication by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%, or more, compared to HCV viral replication in the absence of the compound.
- Whether a subject compound inhibits HCV viral replication can be determined using methods known in the art, including an in vitro viral replication assay.
- Whether a subject method is effective in treating an HCV infection can be determined by a reduction in viral load, a reduction in time to seroconversion (virus undetectable in patient serum), an increase in the rate of sustained viral response to therapy, a reduction of morbidity or mortality in clinical outcomes, or other indicator of disease response.
- an effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective to reduce viral load or achieve a sustained viral response to therapy.
- Whether a subject method is effective in treating an HCV infection can be determined by measuring viral load, or by measuring a parameter associated with HCV infection, including, but not limited to, liver fibrosis, elevations in serum transaminase levels, and necroinflammatory activity in the liver, indicators of liver fibrosis are discussed in detail below.
- the method involves administering an effective amount of a compound of Formula I, optionally in combination with an effective amount of one or more additional antiviral agents.
- an effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective to reduce viral titers to undetectable levels, e.g., to about 1000 to about 5000, to about 500 to about 1000, or to about 100 to about 500 genome copies/mL serum.
- an effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective to reduce viral load to lower than 100 genome copies/mL serum.
- an effective amount of a compound of Formula Ia, Ib, II, III, IV, V, Vt, Vn, VIII, Villa, VHIb, VIIIc, VIIId, VIIIe, or IX, and optionally one or more additional antiviral agents is an amount that is effective to achieve a 1.5-log, a 2-log, a 2.5-log, a 3-log, a 3.5-log, a 4-log, a 4.5-log, or a 5-log reduction in viral titer in the serum of the individual.
- an effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective to achieve a sustained viral response, e.g., non-detectable or substantially non-detectable HCV RNA (e.g., less than about 500, less than about 400, less than about 200, or less than about 100 genome copies per milliliter serum) is found in the patient's serum for a period of at least about one month, at least about two months, at least about three months, at least about four months, at least about five months, or at least about six months following cessation of therapy.
- a sustained viral response e.g., non-detectable or substantially non-detectable HCV RNA (e.g., less than about 500, less than about 400, less than about 200, or less than about 100 genome copies per milliliter serum) is found in the patient's serum for a period of at least about one month, at least about two months, at least about three months, at least about four months, at least about five months,
- liver fibrosis As noted above, whether a subject method is effective in treating an HCV infection can be determined by measuring a parameter associated with HCV infection, such as liver fibrosis. Methods of determining the extent of liver fibrosis are discussed in detail below. In some embodiments, the level of a serum marker of liver fibrosis indicates the degree of liver fibrosis.
- ALT serum alanine aminotransferase
- an effective amount of a compound of formula I, and optionally one or more additional antiviral agents is an amount effective to reduce ALT levels to less than about 45 IU/ml serum.
- a therapeutically effective amount of a compound of Formula Ia, Ib, II, III, rv, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX, and optionally one or more additional antiviral agents is an amount that is effective to reduce a serum level of a marker of liver fibrosis by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%, or more, compared to the level of the marker in an untreated individual, or to a placebo-treated individual.
- Methods of measuring serum markers include immunological-based methods, e.g., enzyme-linked immunosorbent assays (ELISA), radioimmunoassays, and the like, using antibody specific for a given serum marker.
- ELISA enzyme-linked immunosorbent assays
- radioimmunoassays radioimmunoassays, and the like, using antibody specific for a given serum marker.
- an effective amount of a compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX and an additional antiviral agent is a synergistic amount.
- a "synergistic combination” or a "synergistic amount" of a compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX and an additional antiviral agent is a combined dosage that is more effective in the therapeutic or prophylactic treatment of an HCV infection than the incremental improvement in treatment outcome that could be predicted or expected from a merely additive combination of (i) the therapeutic or prophylactic benefit of the compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX when administered at that same dosage as a monotherapy and (ii) the therapeutic or prophylactic benefit of the additional antiviral agent when administered at the same dosage as a monotherapy.
- a selected amount of a compound of Formula Ia, Ib, II, III, IV, V, VI 3 VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX and a selected amount of an additional antiviral agent are effective when used in combination therapy for a disease, but the selected amount of the compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX and/or the selected amount of the additional antiviral agent is ineffective when used in monotherapy for the disease.
- the embodiments encompass (1) regimens in which a selected amount of the additional antiviral agent enhances the therapeutic benefit of a selected amount of the compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VHIc, VIIId, VIIIe, or IX when used in combination therapy for a disease, where the selected amount of the additional antiviral agent provides no therapeutic benefit when used in monotherapy for the disease (2) regimens in which a selected amount of the compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VHId, VIIIe, or IX enhances the therapeutic benefit of a selected amount of the additional antiviral agent when used in combination therapy for a disease, where the selected amount of the compound of Formula Ia, Ib, II, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or iXprovides no therapeutic benefit when used in monotherapy for the disease and (3) regimens in which a
- a "synergistically effective amount" of a compound of Formula Ia, Ib, II, III, IV, V, VI, VII, V ⁇ i, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX and an additional antiviral agent, and its grammatical equivalents, shall be understood to include any regimen encompassed by any of (l)-(3) above. Fibrosis
- the embodiments provides methods for treating liver fibrosis (including forms of liver fibrosis resulting from, or associated with, HCV infection), generally involving administering a therapeutic amount of a compound of Formula I, and optionally one or more additional antiviral agents. Effective amounts of compounds of Formula I, with and without one or more additional antiviral agents, as well as dosing regimens, are as discussed below.
- liver fibrosis reduction is determined by analyzing a liver biopsy sample.
- An analysis of a liver biopsy comprises assessments of two major components: necroinfiammation assessed by "grade” as a measure of the severity and ongoing disease activity, and the lesions of fibrosis and parenchymal or vascular remodeling as assessed by "stage” as being reflective of long- term disease progression. See, e.g., Brunt (2000) Hepatol.
- METAVIR Hepatology 20:15-20. Based on analysis of the liver biopsy, a score is assigned.
- the METAVIR scoring system is based on an analysis of various features of a liver biopsy, including fibrosis (portal fibrosis, centrilobular fibrosis, and cirrhosis); necrosis (piecemeal and lobular necrosis, acidophilic retraction, and ballooning degeneration); inflammation (portal tract inflammation, portal, lymphoid aggregates, and distribution of portal inflammation); bile duct changes; and the Knodell index (scores of periportal necrosis, lobular necrosis, portal inflammation, fibrosis, and overall disease activity), lne ⁇ eiimtions ot eacft stage in the METAVIR system are as follows: score: 0, no fibrosis; score: 1, stellate enlargement of portal tract but without septa formation; score: 2, enlargement of portal tract with rare septa formation; score: 3, numerous septa without cirrhosis; and score: 4, cirrhosis.
- Knodell's scoring system also called the Hepatitis Activity Index, classifies specimens based on scores in four categories of histologic features: I. Periportal and/or bridging necrosis; II. Intralobular degeneration and focal necrosis; III. Portal inflammation; and IV. Fibrosis.
- scores are as follows: score: 0, no fibrosis; score: 1, mild fibrosis (fibrous portal expansion); score: 2, moderate fibrosis; score: 3, severe fibrosis (bridging fibrosis); and score: 4, cirrhosis. The higher the score, the more severe the liver tissue damage.
- the Ishak scoring system is described in Ishak (1995) J. Hepatol. 22:696- 699. Stage 0, No fibrosis; Stage 1, Fibrous expansion of some portal areas, with or without short fibrous septa; stage 2, Fibrous expansion of most portal areas, with or without short fibrous septa; stage 3, Fibrous expansion of most portal areas with occasional portal to portal (P-P) bridging; stage 4, Fibrous expansion of portal areas with marked bridging (P-P) as well as portal-central (P-C); stage 5, Marked bridging (P-P and/or P-C) with occasional nodules (incomplete cirrhosis); stage 6, Cirrhosis, probable or definite.
- the benefit of anti-fibrotic therapy can also be measured and assessed by using the Child-Pugh scoring system which comprises a multicomponent point system based upon abnormalities in serum bilirubin level, serum albumin level, prothrombin time, the presence and severity of ascites, and the presence and severity of encephalopathy. Based upon the presence and severity of abnormality of these parameters, patients may be placed in one of three categories of increasing severity of clinical disease: A, B, or C.
- a therapeutically effective amount of a compound of formula I, and optionally one or more additional antiviral agents is an amount that effects a change of one unit or more in the fibrosis stage based on pre- and post-therapy liver biopsies.
- a therapeutically effective amount of a compound of formula I, and optionally one or more additional antiviral agents reduces liver fibrosis by at least one unit in the METAVIR, the Knodell, the Scheuer, the Ludwig, or the Ishak scoring system.
- indices of liver function can also be used to evaluate the efficacy of treatment with a compound of Formula I. Morphometric computerized semi- automated assessment of the quantitative degree of liver fibrosis based upon specific staining of collagen and/or serum markers of liver fibrosis can also be measured as an indication of the efficacy of a subject treatment method. Secondary indices of liver function include, but are not limited to, serum transaminase levels, prothrombin time, bilirubin, platelet count, portal pressure, albumin level, and assessment of the Child-Pugh score.
- An effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective to increase an index of liver function by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%, or more, compared to the index of liver function in an untreated individual, or to a placebo-treated individual.
- Those skilled in the art can readily measure such indices of liver function, using standard assay methods, many of which are commercially available, and are used routinely in clinical settings.
- Serum markers of liver fibrosis can also be measured as an indication of the efficacy of a subject treatment method.
- Serum markers of liver. fibrosis include, but are not limited to, hyaluronate, N-terminal procollagen III peptide, 7S domain of type IV collagen, C-terminal procollagen I peptide, and laminin. Additional biochemical markers of liver fibrosis include a-2-macroglobulin, haptoglobin, gamma globulin, apolipoprotein A, and gamma glutamyl transpeptidase.
- a therapeutically effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective to reduce a serum level of a marker of liver fibrosis by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%, or more, compared to the level of the marker in an untreated individual, or to a placebo-treated individual.
- ELISA enzyme-linked immunosorbent assays
- radioimmunoassays radioimmunoassays
- pirfenidone or a pirfenidone analog
- receptor agonist and pirfenidone include: indocyanine green clearance (ICG), galactose elimination capacity (GEC), aminopyrine breath test (ABT), antipyrine clearance, monoethylglycine-xylidide (MEG-X) clearance, and caffeine clearance.
- a "complication associated with cirrhosis of the liver” refers to a disorder that is a sequellae of decompensated liver disease, i.e., or occurs subsequently to and as a result of development of liver fibrosis, and includes, but it not limited to, development of ascites, variceal bleeding, portal hypertension, jaundice, progressive liver insufficiency, encephalopathy, hepatocellular carcinoma, liver failure requiring liver transplantation, and liver-related mortality.
- a therapeutically effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount that is effective in reducing the incidence (e.g., the likelihood that an individual will develop) of a disorder associated with cirrhosis of the liver by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%, or more, compared to an untreated individual, or to a placebo-treated individual.
- Whether treatment with a compound of Formula I, and optionally one or more additional antiviral agents, is effective in reducing the incidence of a disorder associated with cirrhosis of the liver can readily be determined by those skilled in the art.
- Reduction in liver fibrosis increases liver function.
- the embodiments provide methods for increasing liver function, generally involving administering a therapeutically effective amount of a compound of Formula I, and optionally one or more additional antiviral agents.
- Liver functions include, but are not limited to, synthesis of proteins such as serum proteins (e.g., albumin, clotting factors, alkaline phosphatase, aminotransferases (e.g., alanine transaminase, aspartate transaminase), 5'- nucleosidase, ?-glutaminyltranspeptidase, etc.), synthesis of bilirubin, synthesis of cholesterol, and synthesis of bile acids; a liver metabolic function, including, but not limited to, carbohydrate metabolism, amino acid and ammonia metabolism, hormone metabolism, and lipid metabolism; detoxification of exogenous drugs; a hemodynamic function, including splanchnic and portal hemodynamics; and the like.
- proteins such as serum proteins (e.g., albumin, clotting factors, alkaline phosphatase, aminotransferases (e.g., alanine transaminase, aspartate transaminase), 5'-
- liver function is increased is readily ascertainable by those skilled in the art, using well-established tests of liver function.
- markers of liver function such as albumin, alkaline phosphatase, alanine transaminase, aspartate transaminase, bilirubin, and the like, can be assessed by measuring the level of these markers in the serum, using standard immunological and enzymatic assays.
- Splanchnic circulation and portal hemodynamics can be measured by portal wedge pressure and/or resistance using standard methods.
- Metabolic functions can be measured by measuring the level of ammonia in the serum.
- Whether serum proteins normally secreted by the liver are in the normal range can be determined by measuring the levels of such proteins, using standard immunological and enzymatic assays. Those skilled in the art know the normal ranges for such serum proteins. The following are non-limiting examples.
- the normal level of alanine transaminase is about 45 IU per milliliter of serum.
- the normal range of aspartate transaminase is from about 5 to about 40 units per liter of serum.
- Bilirubin is measured using standard assays. Normal bilirubin levels are usually less than about 1.2 mg/dL.
- Serum albumin levels are measured using standard assays. Normal levels of serum albumin are in the range of from about 35 to about 55 g/L.
- Prolongation of prothrombin time is measured using standard assays. Normal prothrombin time is less than about 4 seconds longer than control.
- [U.1O3 J ⁇ inerapeuiically effective amount of a compound of Formula I, and optionally one or more additional antiviral agents, is one that is effective to increase liver function by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or more.
- a therapeutically effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is an amount effective to reduce an elevated level of a serum marker of liver function by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or more, or to reduce the level of the serum marker of liver function to within a normal range.
- a therapeutically effective amount of a compound of Formula I, and optionally one or more additional antiviral agents is also an amount effective to increase a reduced level of a serum marker of liver function by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or more, or to increase the level of the serum marker of liver function to within a normal range.
- the active agent(s) may be administered to the host using any convenient means capable of resulting in the desired therapeutic effect.
- the agent can be incorporated into a variety of formulations for therapeutic administration. More particularly, the agents of the embodiments can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants and aerosols.
- Formulations e.g., compound of Formula I, and optionally one or more additional antiviral agents
- compositions are provided in formulation with a pharmaceutically acceptable exci ⁇ ient(s).
- a pharmaceutically acceptable exci ⁇ ient A wide variety of pharmaceutically acceptable excipients is known in the art and need not be discussed in detail herein.
- Pharmaceutically acceptable excipients have been amply described in a variety of publications, including, for example, A. Gennaro (2000) "Remington: The Science and Practice of Pharmacy," 20th edition, Lippincott, Williams, & Wilkins; Pharmaceutical Dosage Forms and Drug Delivery Systems (1999) H.C.
- compositions such as vehicles, adjuvants, carriers or diluents
- pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- an agent is formulated in an aqueous buffer.
- Suitable aqueous buffers include, but are not limited to, acetate, succinate, citrate, and phosphate buffers varying in strengths from about 5mM to about 10OmM.
- the aqueous buffer includes reagents that provide for an isotonic solution. Such reagents include, but are not limited to, sodium chloride; and sugars e.g., mannitol, dextrose, sucrose, and the like.
- the aqueous buffer further includes a non-ionic surfactant such as polysorbate 20 or 80.
- the formulations may further include a preservative.
- Suitable preservatives include, but are not limited to, a benzyl alcohol, phenol, chlorobutanol, benzalkonium chloride, and the like. In many cases, the formulation is stored at about 4°C. Formulations may also be lyophilized, in which case they generally include cryoprotectants such as sucrose, trehalose, lactose, maltose, mannitol, and the like. Lyophilized formulations can be stored over extended periods of time, even at ambient temperatures.
- administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, subcutaneous, intramuscular, transdermal, intratracheal, etc., administration.
- administration is by bolus injection, e.g., subcutaneous bolus injection, intramuscular bolus injection, and the like.
- compositions of the embodiments can be administered orally, parenterally or via an implanted reservoir. Oral administration or administration by injection is preferred.
- Subcutaneous administration of a pharmaceutical composition of the embodiments is accomplished using standard methods and devices, e.g., needle and syringe, a subcutaneous injection port delivery system, and the like. See, e.g., U.S. Patent Nos. 3,547,119; 4,755,173; 4,531,937; 4,311,137; and 6,017,328.
- A. combination of a subcutaneous injection port and a device for administration of a pharmaceutical composition of the embodiments to a patient through the port is referred to herein as "a subcutaneous injection port delivery system.”
- subcutaneous administration is achieved by bolus delivery by needle and syringe.
- the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds.
- the following methods and excipients are merely exemplary and are in no way limiting.
- the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- conventional additives such as lactose, mannitol, corn starch or potato starch
- binders such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins
- disintegrators such as corn starch, potato starch or sodium carboxymethylcellulose
- lubricants such as talc or magnesium stearate
- the agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- an aqueous or nonaqueous solvent such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol
- solubilizers isotonic agents
- suspending agents emulsifying agents
- stabilizers and preservatives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- bases such as emulsifying bases or water-soluble bases.
- the compounds of the embodiments can be administered rectally via a suppository.
- the suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition . containing one or more inhibitors.
- unit dosage forms for injection or intravenous administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the embodiments calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
- the specifications for the novel unit dosage forms of the embodiments depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- compositions such as vehicles, adjuvants, carriers or diluents
- pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- Other antiviral or antifibrotic agents are readily available to the public.
- a subject method will in some embodiments be carried out by administering an NS3 inhibitor that is a compound of Formula Ia, Ib 7 II, III, TV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX, and optionally one or more additional antiviral agent(s).
- an NS3 inhibitor that is a compound of Formula Ia, Ib 7 II, III, TV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX, and optionally one or more additional antiviral agent(s).
- the method further includes administration of one or more interferon receptor agonist(s).
- Interferon receptor agonists are described above.
- the method further includes administration of pirfenidone or a pirfenidone analog. Pirfenidone and pirfenidone analogs are described above.
- Additional antiviral agents that are suitable for use in combination therapy include, but are not limited to, nucleotide and nucleoside analogs.
- Non-limiting examples include azidothymidine (AZT) (zidovudine), and analogs and derivatives thereof; 2',3'- dideoxyinosine (DDI) (didanosine), and analogs and derivatives thereof; 2',3'r dideoxycytidine (DDC) (dideoxycytidine), and analogs and derivatives thereof; 2'3,'- didehydro-2',3'-dideoxythymidine (D4T) (stavudine), and analogs and derivatives thereof; combivir; abacavir; adefovir dipoxil; cidofovir; ribavirin; ribavirin analogs; and the like.
- the method farther includes administration of ribavirin.
- Ribavirin l- ⁇ -D-ribofuranosyl-lH-l 5 2,4-triazole-3-carboxamide, available from ICN Pharmaceuticals, Inc., Costa Mesa, Calif., is described in the Merck Index, compound No. 8199, Eleventh Edition. Its manufacture and formulation is described in U.S. Pat. No. 4,211,771. Some embodiments also involve use of derivatives of ribavirin (see, e.g., U.S. Pat. No. 6,277,830).
- the ribavirin may be administered orally in capsule or tablet form, or in the same or different administration form and in the same or different route as the interferon receptor agonist.
- other types of administration of both medicaments as they become available are contemplated, such as by nasal spray, transdermally, intravenously, by suppository, by sustained release dosage form, etc. Any form of administration will work so long as the proper dosages are delivered without destroying the active ingredient
- the method further includes administration of ritonavir.
- Ritonavir 10-hydroxy-2-methyl-5-(l -methylethyl)-l -[2-(I -methylethyl)-4- thiazolyl]-3,6 ⁇ dioxo-8,l l-bis(phenylmethyl)-2,4,7,12-tetraazatridecan-13-oic acid, 5- thiazolylmethyl ester [5S-(5R*, 8R*, 1OR*, UR*)], available from Abbott Laboratories, is an inhibitor of the protease of the human immunodeficiency virus and also of the cytochrome P450 3A and P450 2D6 liver enzymes frequently involved in hepatic metabolism of therapeutic molecules in man.
- ritonavir at doses below the normal therapeutic dosage may be combined with other protease inhibitox-s to achieve therapeutic levels of the second protease inhibitor while reducing the number of dosage units required, the dosing frequency, or both.
- Coadministration of low-dose ritonavir may also be used to compensate for drug interactions that tend to decrease levels of a protease inhibitor metabolized by CYP3A. Its structure, synthesis, manufacture and formulation are described in U.S. Pat. No. 5,541,206 U.S. Pat. No. 5,635,523 U.S. Pat. No. 5,648,497 U.S. Pat. No. 5,846,987 and U.S. Pat. No. 6,232,333.
- the ritonavir may be administered orally in capsule or tablet or oral solution form, or in the same or different administration form and in the same or different route as the NS-3 inhibitor compound.
- an additional antiviral agent is administered during the entire course of NS3 inhibitor compound treatment.
- an additional antiviral agent is administered for a period of time that is overlapping with that of the NS3 inhibitor compound treatment, e.g., the additional antiviral agent treatment can begin before the NS3 inhibitor compound treatment begins and end before the NS3 inhibitor compound treatment ends; the additional antiviral agent treatment can begin after the NS3 inhibitor compound treatment begins and end after the NS3 inhibitor compound treatment ends; the additional antiviral agent treatment can begin after the NS3 inhibitor compound treatment begins and end before the NS3 inhibitor compound treatment ends; or the additional antiviral agent treatment can begin before the NS3 inhibitor compound treatment begins and end after the NS3 inhibitor compound treatment ends.
- the NS3 inhibitor compounds described herein may be used in acute or chronic therapy for HCV disease.
- the NS3 inhibitor compound is administered for a period of about 1 day to about 7 days, or about 1 week to about 2 weeks, or about 2 weeks to about 3 weeks, or about 3 weeks to about 4 weeks, or about 1 month to about 2 months, or about 3 months to about 4 months, or about 4 months to about 6 months, or about 6 months to about 8 months, or about 8 months to about 12 months, or at least one year, and may be administered over longer periods of time.
- the NS3 inhibitor compound can be administered 5 times per day, 4 times per day, tid, bid, qd, qod, biw, tiw, qw, qow, three times per month, or once monthly. In other embodiments, the NS3 inhibitor compound is administered as a continuous infusion.
- an NS3 inhibitor compound of the embodiments is administered orally.
- an NS3 inhibitor compound as described herein may be administered to the patient at a dosage from about 0.01 mg to about 100 mg/kg patient bodyweight per day, in 1 to .5 divided doses per day.
- the NS3 inhibitor compound is administered at a dosage of about 0.5 mg to about 75 mg/kg patient bodyweight per day, in 1 to 5 divided doses per day.
- the amount of active ingredient that may be combined with carrier materials to produce a dosage form can vary depending on the host to be treated and the particular mode of administration.
- a typical pharmaceutical preparation can contain from about 5% to about 95% active ingredient (w/w). hi other embodiments, the pharmaceutical preparation can contain from about 20% to about 80% active ingredient.
- dose levels can vary, as a function of the specific NS3 inhibitor compound, the severity of the symptoms and the susceptibility of the. subject to side effects.
- Preferred dosages for a given NS3 inhibitor compound are readily determinable by those of skill in the art by a variety of means.
- a preferred means is to measure the physiological potency of a given interferon receptor agonist.
- multiple doses of NS3 inhibitor compound are administered.
- an NS3 inhibitor compound is administered once per month, twice per month, three times per month, every other week (qow), once per week (qw), twice per week (biw), three times per week (tiw), four times per week, five times per week; six times per week, every other day (qod), daily (qd), twice a day (qid), or three times a day (tid), over a period of time ranging from about one day to about one week, from about two weeks to about four weeks, from about one month to about two months, from about two months to about four months, from about four months to about six months, from about six months to about eight months, from about eight months to about 1 year, from about 1 year to about 2 years, or from about 2 years to about 4 years, or more.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of ribavirin.
- Ribavirin can be administered in dosages of about 400 mg, about 800 mg, about 1000 mg, or about 1200 mg per day.
- One embodiment provides any of the above-described methods modified to include co-administering to the patient a therapeutically effective amount of ribavirin for the duration of the desired course of NS3 inhibitor compound treatment.
- Another embodiment provides any of the above-described methods modified to include co-administering to the patient about 800 mg.to about 1200 mg ribavirin orally per day for the duration of the desired course of NS 3 inhibitor compound treatment.
- any of the above-described methods may be modified to include coadministering to the patient (a) 1000 mg ribavirin orally per day if the patient has a body weight less than 75 kg or (b) 1200 mg ribavirin orally per day if the patient has a body weight greater than or equal to 75 kg, where the daily dosage of ribavirin is optionally divided into to 2 doses for the duration of the desired course of NS3 inhibitor compound treatment.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of levovirin.
- Levovirin is generally administered in an amount ranging from about 30 mg to about 60 mg, from about 60 mg to about 125 mg, from about 125 mg to about 200 mg, from about 200 mg to about 300 gm, from about 300 mg to about 400 mg, from about 400 mg to about 1200 mg, from about 600 mg to about 1000 mg, or from about 700 to about 900 mg per day, or about 10 mg/kg body weight per day.
- levovirin is administered orally in dosages of about 400, about 800, about 1000, or about 1200 mg per day for the desired course of NS3 inhibitor compound treatment.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of viramidine.
- Viramidine is generally administered in an amount ranging from about 30 mg to about 60 mg, from about 60 mg to about 125 mg, from about 125 mg to about 200 mg, from about 200 mg to about 300 gm, from about 300 mg to about 400 r ⁇ g ? from about 400 mg to about 1200 mg, from about 600 mg to about 1000 mg, or from about 700 to about 900 mg per day, or about 10 mg/kg body weight per day.
- viramidine is administered orally in dosages of about 800, or about 1600 mg per day for the desired course of NS3 inhibitor compound treatment.
- Combination therapies with ritonavir are described above.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of ritonavir.
- Ritonavir is generally administered in an amount ranging from about 50 mg to about 100 mg, from about 100 mg to about 200 mg, from about 200 mg to about 300 mg, from about 300 mg to about 400 mg, from about 400 mg to about 500 mg, or from about 500 mg to about 600 mg, twice per day.
- ritonavir is administered orally in dosages of about 300 mg, or about 400 mg, or about 600 mg twice per day for the desired course of NS3 inhibitor compound treatment.
- Suitable a-glucosidase inhibitors include any of the above-described imino-sugars, including long-alkyl chain derivatives of imino sugars as disclosed in U.S. Patent Publication No. 2004/0110795; inhibitors of endoplasmic reticulum-associated a- glucosidases; inhibitors of membrane bound a-glucosidase; miglitol (Glyset®), and active derivatives, and analogs thereof; and acarbose (Precose®), and active derivatives, and analogs thereof.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of an a-glucosidase inhibitor administered for a period of about 1 day to about 7 days, or about 1 week to about 2 weeks, or about 2 weeks to about 3 weeks, or about 3 weeks to about 4 weeks, or about 1 month to about 2 months, or about 3 months to about 4 months, or about 4 months to about 6 months, or about 6 months to about 8 months, or about 8 months to about 12 months, or at least one year, and may be administered over longer periods of time.
- An a-glucosidase inhibitor can be administered 5 times per day, 4 times per day, tid (three times daily), bid, qd, qod, biw, tiw, qw, qow, three times per month, or once monthly, hi other embodiments, an. a-glucosidase inhibitor is administered as a continuous infusion.
- an a-glucosidase inhibitor is administered orally.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of a- glucosidase inhibitor administered to the patient at a dosage of from about 10 mg per day to about 600 mg per day in divided doses, e.g., from about 10 mg per day to about 30 mg per .
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of a-glucosidase inhibitor administered in a dosage of about 10 mg three times daily.
- an a-glucosidase inhibitor is administered in a dosage of about 15 mg three times daily.
- an a-glucosidase inhibitor is administered in a dosage of about 20 mg three times daily.
- an a-glucosidase inhibitor is administered in a dosage of about 25 mg three times daily.
- an a- glucosidase inhibitor is administered in a dosage of about 30 mg three times daily.
- an a-glucosidase inhibitor is administered in a dosage of about 40 mg three times daily. In some embodiments, an a-glucosidase inhibitor is administered in a dosage of about 50 mg three times daily. In some embodiments, an a-glucosidase inhibitor is administered in a dosage of about 100 mg three times daily. In some embodiments, an a- glucosidase inhibitor is administered in a dosage of about 75 mg per day to about 150 mg per day in two or three divided doses, where the individual weighs 60 kg or less. In some embodiments, an a-glucosidase inhibitor is administered in a dosage of about 75 mg per day to about 300 mg per day in two or three divided doses, where the individual weighs 60 kg or more.
- the amount of active ingredient (e.g., a-glucosidase inhibitor) that may be combined with carrier materials to produce a dosage form can vary depending on the host to be treated and the particular mode of administration.
- a typical pharmaceutical preparation can contain from about 5% to about 95% active ingredient (w/w). In other embodiments, the pharmaceutical preparation can contain from about 20% to about 80% active ingredient.
- dose levels can vary as a function of the specific a-glucosidase inhibitor, the severity of the symptoms and the susceptibility of the subject to side effects.
- Preferred dosages for a given a-glucosidase inhibitor are readily determinable by those of skill in the art by a variety of means. A typical means is to measure the physiological potency of a given active agent.
- multiple doses of an a-glucosidase inhibitor are administered.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of a- glucosidase inhibitor administered once per month, twice per month, three times per month, every other week (qow), once per week (qw), twice per week (biw), three times per week (tiw), four times per week, five times per week, six times per week, every other day (qod), daily (qd), twice a day (qid), or three times a day (tid), over a period of time ranging from about one day to about one week, from about two weeks to about four weeks, from about one month to about two months, from about two months to about four months, from about four months to about six months, from about six months to about eight months, from about eight months to about 1 year, from about 1 year to about 2 years, or from about 2 years to about 4 years, or more.
- Combination therapies comprising administering an NS
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of thymosin-a.
- Thymosin-a (ZadaxinTM) is generally administered by subcutaneous injection.
- Thymosin-a can be administered tid, bid, qd, qod, biw, tiw, qw, qow, three times per month, once monthly, substantially continuously, or continuously for the desired course of NS3 inhibitor compound treatment.
- thymosin-a is administered twice per week for the desired course of NS3 inhibitor compound treatment.
- Effective dosages of thymosin-a range from about 0.5 mg to about 5 mg, e.g., from about 0.5 mg to about 1.0 mg, from about 1.0 mg to about 1.5 mg, from about 1.5 mg to about 2.0 mg, from about 2.0 mg to about 2.5 mg, from about 2.5 mg to about 3.0 mg, from about 3.0 mg to about 3.5 mg, from about 3.5 mg to about 4.0 mg, from about 4.0 mg to about 4.5 mg, or from about 4.5 mg to about 5.0 mg.
- thymosin-a is administered in dosages containing an amount of 1.0 mg or 1.6 mg.
- Thymosin-a can be administered over a period of time ranging from about one day to about one week, from about two weeks to about four weeks, from about one month to about two months, from about two months to about four months, from about four months to about six months, from about six months to about eight months, from about eight months to about 1 year, from about 1 year to about 2 years, or from about 2 years to about 4 years, or more.
- thymosin-a is administered for the desired course of NS3 inhibitor compound treatment.
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of an interferon receptor agonist.
- a compound of Formula Ia, Ib, H, III, IV, V, VI, VII, VIII, Villa, VIIIb, VIIIc, VIIId, VIIIe, or IX and a Type I or III interferon receptor agonist are co-administered in the treatment methods described herein.
- Type I interferon receptor agonists suitable for use herein include any interferon-a (IFN-a).
- the interferon-a is a PEGylated interferon-a.
- the interferon-a is a consensus interferon, such as INFERGEN® interferon alfacon-1. In still other embodiments, the interferon-a is a monoPEG (30 kD, linear)-ylated consensus interferon.
- Effective dosages of an IFN-a range from about 3 ⁇ g to about 27 ⁇ g, from about 3 MU to about 10 MU, from about 90 ⁇ g to about 180 ⁇ g, or from about 1 ⁇ ⁇ g to about 90 ⁇ g.
- Effective dosages of Infergen® consensus IFN-a include about 3 ⁇ g, about 6 ⁇ g, about 9 ⁇ g, about 12 ⁇ g, about 15 ⁇ g, about 18 ⁇ g, about 21 ⁇ g, about 24 ⁇ g, about 27 ⁇ g, or about 30 ⁇ g, of drug per dose.
- Effective dosages of IFN-a2a and IFN-a2b range from 3 million Units (MU) to 10 MU per dose.
- Effective dosages of PEGASYS®PEGylated IFN- a2a contain an amount of about 90 ⁇ g to 270 ⁇ g, or about 180 ⁇ g, of drug per dose.
- Effective dosages of PEG-INTRON®PEGylated IFN-a2b contain an amount of about 0.5 ⁇ g to 3.0 ⁇ g of drug per kg of body weight per dose.
- Effective dosages of PEGylated consensus interferon (PEG-CIFN) contain an amount of about 18 ⁇ g to about 90 ⁇ g, or from about 27 ⁇ g to about 60 ⁇ g, or about 45 ⁇ g, of CIFN amino acid weight per dose of PEG-CIFN.
- Effective dosages of monoPEG (30 kD, linear)-ylated CIFN contain an amount of about 45 ⁇ g to about 270 ⁇ g, or about 60 ⁇ g to about 180 ⁇ g, or about 90 ⁇ g to about 120 ⁇ g, of drug per dose.
- IFN-a can be administered daily, every other day, once a week, three times a week, every other week, three times per month, once monthly, substantially continuously or continuously.
- the Type I or Type III interferon receptor agonist and/or the Type II interferon receptor agonist is administered for a period of about 1 day to about 7 days, or about 1 week to about 2 weeks, or about 2 weeks to about 3 weeks, or about 3 weeks to about 4 weeks, or about 1 month to about 2 months, or about 3 months to about 4 months, or about 4 months to about 6 months, or about 6 months to about 8 months, or about 8 months to about 12- months, or at least one year, and may be administered over longer periods of time.
- Dosage regimens can include tid, bid, qd, qod, biw, tiw, qw, qow, three times per month, or monthly administrations.
- Some embodiments provide any of the above- described methods in which the desired dosage of IFN-a is administered subcutaneously to the patient by bolus delivery qd, qod, tiw, biw, qw, qow, three times per month, or monthly, or is administered subcutaneously to the patient per day by substantially continuous or continuous delivery, for the desired treatment duration.
- any of the above-described methods may be practiced in which the desired dosage of PEGylated IFN-a (PEG-IFN-a) is administered subcutaneously to the patient by bolus delivery qw, qow, three times per month, or monthly for the desired treatment duration.
- an NS3 inhibitor compound and a Type II interferon receptor agonist are co-administered in the treatment methods of the embodiments.
- Type ⁇ interferon receptor agonists suitable for use herein include any interferon-? (IFN-?).
- Effective dosages of IFN- ⁇ can range from about 0.5 ⁇ g/m 2 to about 500 ⁇ g/m 2 , usually from about 1.5 ⁇ g/m z to 200 ⁇ g/m 2 , depending on the size of the patient. This activity is based on 10 6 international units (U) per 50 ⁇ g of protein. IFN-? can be administered daily, every other day, three times a week, or substantially continuously or continuously.
- IFN-? is administered to an individual in a unit dosage form of from about 25 ⁇ g to about 500 ⁇ g, from about 50 ⁇ g to about 400 ⁇ g, or from about 100 ⁇ g to about 300 ⁇ g. In particular embodiments of interest, the dose is about 200 ⁇ g IFN-?. In many embodiments of interest, IFN-?lb is administered.
- the amount of IFN-? per body weight (assuming a range of body weights of from about 45 kg to about 135 kg) is in the range of from about 4.4 ⁇ g IFN-? per kg body weight to about 1.48 ⁇ g IFN-? per kg body weight.
- the body surface area of subject individuals generally ranges from about 1.33 m 2 to about 2.50 m 2 .
- an IFN-? dosage ranges from about 150 ⁇ g/m 2 to about 20 ⁇ g/m 2 .
- a Type I or a Type III interferon receptor agonist is administered in a first dosing regimen, followed by a second dosing regimen.
- the first dosing regimen of Type I or a Type III interferon receptor agonist generally involves administration of a higher dosage of the Type I or Type III interferon receptor agonist.
- the first dosing regimen comprises administering CIFN at about 9 ⁇ g, about 15 ⁇ g, about 18 ⁇ g, or about 27 ⁇ g.
- the first dosing regimen can encompass a single dosing event, or at least two or more dosing events.
- the first dosing regimen of the Type I or Type III interferon receptor agonist can be administered daily, every other day, three times a week, every other week, three times per month, once monthly, substantially continuously or continuously.
- the first dosing regimen of the Type I or Type III interferon receptor agonist is administered for a first period of time, which time period can be at least about 4 weeks, at least about 8 weeks, or at least about 12 weeks.
- the second dosing regimen of the Type I or Type III interferon receptor agonist (also referred to as "the maintenance dose”) generally involves administration of a lower amount of the Type I or Type III interferon receptor agonist.
- the second dosing regimen comprises administering CIFN at a dose of at least about 3 ⁇ g, at least about 9 ⁇ g, at least about 15 ⁇ g, or at least about 18 ⁇ g.
- the second dosing regimen can encompass a single dosing event, or at least two or more dosing events.
- the second dosing regimen of the Type I or Type III interferon receptor agonist can be administered daily, every other day, three times a week, every other week, three times per month, once monthly, substantially continuously or continuously.
- a "priming" dose of a Type II interferon receptor agonist (e.g., IFN-?) is included, hi these embodiments, IFN-? is administered for a period of time from about 1 day to about 14 days, from about 2 days to about 10 days, or from about 3 days to about 7 days, before the beginning of treatment with the Type I or Type III interferon receptor agonist. This period of time is referred to as the "priming" phase.
- the Type II interferon receptor agonist treatment is continued throughout the entire period of treatment with the Type I or Type III interferon receptor agonist.
- the Type II interferon receptor agonist treatment is discontinued before the end of treatment with the Type I or Type III interferon receptor agonist.
- the total time of treatment with Type II interferon receptor agonist (including the "priming" phase) is from about 2 days to about 30 days, from about 4 days to about 25 days, from about 8 days to about 20 days, from about 10 days to about 18 days, or from about 12 days to about 16 days.
- the Type II interferon receptor agonist treatment is discontinued once Type I or a Type III interferon receptor agonist treatment begins.
- the Type I or Type III interferon receptor agonist is administered in single dosing regimen.
- the dose of CIFN is generally in a range of from about 3 ⁇ g to about 15 ⁇ g, or from about 9 ⁇ g to about 15 ⁇ g.
- the dose of Type I or a Type III interferon receptor agonist is generally administered daily, every other day, three times a week, every other week, three times per month, once monthly, or substantially continuously.
- the dose of the Type I or Type III interferon receptor agonist is administered for a period of time, which period can be, for example, from at least about 24 weeks to at least about 48 weeks, or longer.
- a "priming" dose of a Type II interferon receptor agonist (e.g., IFN-?) is included.
- IFN-? is administered for a period of time from about 1 day to about 14 days, from about 2 days to about 10 days, or from about 3 days to about 7 days, before the beginning of treatment with the Type I or Type III interferon receptor agonist. This period of time is referred to as the "priming" phase.
- the Type II interferon receptor agonist treatment is continued throughout the entire period of treatment with the Type I or Type III interferon receptor agonist.
- the Type II interferon receptor agonist treatment is discontinued before the end of treatment with the Type I or Type III interferon receptor agonist.
- the total time of treatment with the Type II interferon receptor agonist (including the "priming" phase) is from about 2 days to about 30 days, from about 4 days to about 25 days, from about 8 days to about 20 days, from about 10 days to about 18 days, or from about 12 days to about 16 days.
- Type II interferon receptor agonist treatment is discontinued once Type I or a Type III interferon receptor agonist treatment begins.
- an NS3 inhibitor compound, a Type I or III interferon receptor agonist, and a Type II interferon receptor agonist are co-administered for the desired duration of treatment in the methods described herein.
- an NS3 inhibitor compound, an interferon-a, and an interferon-? are co-administered for the desired duration of treatment in the methods described herein.
- the invention provides methods using an amount of a Type I or Type III interferon receptor agonist, a Type II interferon receptor agonist, and an NS3 inhibitor compound, effective for the treatment of HCV infection in a patient.
- Some embodiments provide methods using an effective amount of an IFN-a, IFN-?, and an NS3 inhibitor compound in the treatment of HCV infection in a patient.
- One embodiment provides a method using an effective amount of a consensus IFN-a, IFN-? and an NS3 inhibitor compound in the treatment of HCV infection in a patient.
- an effective amount of a consensus interferon (CIFN) and IFN- ? suitable for use in the methods of the embodiments is provided by a dosage ratio of 1 ⁇ g CIFN: 10 ⁇ g IFN-?, where both CIFN and IFN-? are unPEGylated and imglycosylated species.
- the invention provides any of the above-described methods modified to use an effective amount of INFERGEN® consensus IFN- a and IFN-? in the treatment of HCV infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 1 ⁇ g to about 30 ⁇ g, of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 10 ⁇ g to about 300 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of INFERGEN®consensus IFN-a and IFN-? in the treatment of virus infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 1 . ⁇ g to about 9 ⁇ g, of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 10 ⁇ g to about 100 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of INFERGEN®consensus IFN-a and IFN-? in the treatment of virus infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 1 ⁇ g of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 10 ⁇ g to about 50 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of INFERGEN®consensus IFN-a and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 9 ⁇ g of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 90 ⁇ g to about 100 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of INFERGEN®consensus IFN-a and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 30 ⁇ g of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 200 ⁇ g to about 300 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGylated consensus BFN-a and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGylated consensus IFN-a (PEG-CIFN) containing an amount of about 4 ⁇ g to about 60 ⁇ g of CIFN amino acid weight per dose of PEG-CIFN, subcutaneously qw, qow, three times per month, or monthly, in combination with a total weekly dosage of IFN-?
- PEG-CIFN PEGylated consensus IFN-a
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGylated consensus IFN-a and IFN-?
- PEG-CIFN PEGylated consensus IFN-a
- an effective amount of IFN-a 2a or 2b or 2c and IFN-? suitable for use in the methods of the embodiments is provided by a dosage ratio of 1 million Units (MU) IFN-a 2a or 2b or 2c : 30 ⁇ g IFN-?, where both IFN-a 2a or 2b or 2c and IFN-? are unPEGylated and unglycosylated species.
- MU 1 million Units
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-a 2a or 2b or 2c and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of IFN-a 2a, 2b or 2c containing an amount of about 1 MU to about 20 MU of drug per dose of IFN-a 2a, 2b or 2c subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 30 ⁇ g to about 600 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-a 2a or 2b or 2c and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of IFN-a 2a, 2b or 2c containing an amount of about 3 MU of drug per dose of IFN-a 2a, 2b or 2c subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, in combination with a dosage of IFN-?
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-a 2a or 2b or 2c and IFN-?
- a dosage of IFN-a 2 a, 2b or 2c containing an amount of about 10 MU of drug per dose of IFN-a 2a, 2b or 2c subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, in combination with a dosage of IFN-? containing an amount of about 300 ⁇ g of drug per dose of IFN-?, subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGASYS®PEGylated IFN-a2a and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGAS YS® containing an amount of about 90 ⁇ g to about 360 ⁇ g, of drug per dose of PEGASYS®, subcutaneously qw, qow, three times per month, or monthly, in combination with a total weekly dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 30 ⁇ g to about 1,000 ⁇ g, of drug per week administered in divided doses subcutaneously qd, qod, tiw, or biw, or administered substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGASYS®PEGylated IFN-a2a and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGASYS® containing an amount of about 180 ⁇ g of drag per dose of PEGASYS®, subcutaneously qw, qow, three times per month, or monthly, in combination with a total weekly dosage of IFN-? containing an amount of about 100 ⁇ g to about 300 ⁇ g, of drug per week administered in divided doses subcutaneously qd, qod, tiw, or biw, or administered substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEG-INTRON®PEGylated IFN-a2b and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEG-INTRON® containing an amount of about 0.75 ⁇ g to about 3.0 ⁇ g of drug per kilogram of body weight per dose of PEG-INTRON®, subcutaneously qw, qow, three times per month, or monthly, in combination with a total weekly dosage of IFN-?
- NS3 inhibitor compound containing an amount of about 30 ⁇ g to about 1,000 ⁇ g of drug per week administered in divided doses subcutaneously qd, qod, tiw, or biw, or administered substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEG-INTRON®PEGylated IFN-a2b and IFN-? in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEG-INTRON® containing an amount of about 1.5 ⁇ g of drug per kilogram of body weight per dose of PEG-INTRON®, subcutaneously qw, qow, three times per month, or monthly, in combination with a total weekly dosage of IFN-?
- NS 3 inhibitor compound containing an amount of about 100 ⁇ g to about 300 ⁇ g of drug per week administered in divided doses subcutaneously qd, qod, tiw, or biw, or administered substantially continuously or continuously, for the desired duration of treatment with an NS 3 inhibitor compound.
- One embodiment provides any of the. above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw, and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; 50 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; 100 ⁇ g Actimmune® human IFN-?lb administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more,.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; and 50 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; and 100 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; 25 ⁇ g Actimmune® human IFN-?lb administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks, hi this embodiment, ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; 200 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; and 25 ⁇ g Actimmune® human IFN-?lb administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 9 ⁇ g INFERGEN® consensus IFN-a administered subcutaneously qd or tiw; and 200 ⁇ g Actimmune® human IFN-?lb administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 100 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw, and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 100 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; 50 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 100 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; 100 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 100 ⁇ g monoPEG(30 kD, ⁇ inear)-ylated consensus IFN-a- administered subcutaneously every 10 days or qw; and 50 ⁇ g Actimmune® human IFN-?lb administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 100 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; and 100 ⁇ g Actimmune® human IFN-?lb . administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 150 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw, and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 150 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; 50 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 150 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; 100 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 150 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; and 50 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 150 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; and 100 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 200 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw, and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 200 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; 50 ⁇ g Actimmune® human IFN-?lb administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks.
- ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 200 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; 100 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw; and ribavirin administered orally qd, where the duration of therapy is 48 weeks, hi this embodiment, ribavirin is administered in an amount of 1000 mg for individuals weighing less than 75 kg, and 1200 mg for individuals weighing 75 kg or more.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 200 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; and 50 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- One embodiment provides any of the above-described methods modified to comprise administering to an individual having an HCV infection an effective amount of an NS3 inhibitor; and a regimen of 200 ⁇ g monoPEG(30 kD, linear)-ylated consensus IFN-a administered subcutaneously every 10 days or qw; and 100 ⁇ g Actimmune® human IFN-? Ib administered subcutaneously tiw, where the duration of therapy is 48 weeks.
- any of the above-described methods involving administering an NS3 inhibitor, a Type I interferon receptor agonist (e.g., an IFN-a), and a Type II interferon receptor agonist (e.g., an IFN-?), can be augmented by administration of an effective amount of a TNF-a antagonist (e.g., a TNF-a antagonist other than pirfenidone or a pirfenidone analog).
- a TNF-a antagonists e.g., a TNF-a antagonist other than pirfenidone or a pirfenidone analog.
- Exemplary, non-limiting TNF-a antagonists that are suitable for use in such combination therapies include ENBREL®, REMICADE®, and HUMIRATM.
- One embodiment provides a method using an effective amount of ENBREL®; an effective amount of IFN-a; an effective amount of IFN-?; and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage ENBREL® containing an amount of from about 0.1 ⁇ g to about 23 mg per dose, from about 0.1 ⁇ g to about 1 ⁇ g, from about 1 ⁇ g to about 10 ⁇ g, from about 10 ⁇ g to about 100 ⁇ g, from about 100 ⁇ g to about 1 mg, from about 1 mg to about 5 mg, from about 5 mg to about 10 mg, from about 10 mg to about 15 mg, from about 15 mg to about 20 mg, or from about 20 mg to about 23 mg of ENBREL®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or once every other month, or per day substantially continuously or continuously, for the desired duration of treatment.
- One embodiment provides a method using an effective amount of REMICADE®, an effective amount of IFN-a; an effective amount of IFN-?; and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage of REMIC ADE® containing an amount of from about 0.1 mg/kg to about 4.5 mg/kg, from about 0.1 mg/kg to about 0.5 mg/kg, from about 0.5 mg/kg to about 1.0 mg/kg, from about 1.0 mg/kg to about 1.5 mg/kg, from about 1.5 mg/kg to about 2.0 mg/kg, from about 2.0 mg/kg to about 2.5 mg/kg, from about 2.5 mg/kg to about 3.0 mg/kg, from about 3.0 mg/kg to about 3.5 mg/kg, from about 3.5 mg/kg to about 4.0 mg/kg, or from about 4.0 mg/kg to about 4.5 mg/kg per dose of REMICADE®, intravenously qd, qod, tiw, biw,
- One embodiment provides a method using an effective amount of HUMIRATM, an effective amount of IFN-a; an effective amount of IFN-?; and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage of HUMIRATM containing an amount of from about 0.1 ⁇ g to about 35 mg, from about 0.1 ⁇ g to about 1 ⁇ g, from about 1 ⁇ g to about 10 ⁇ g, from about 10 ⁇ g to about 100 ⁇ g, from about.100 ⁇ g to about 1 mg, from about 1 mg to about 5 mg, from about 5 mg to about 10 mg, from about 10 mg to about 15 mg, from about 15 mg.to about 20 mg, from about 20 mg to about 25 mg, from about 25 mg to about 30 mg, or from about 30 mg to about 35 mg per dose of a HUMIRATM, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly,
- the methods provide for combination therapy comprising administering an NS3 inhibitor compound as described above, and an effective amount of pirfenidone or a pirfenidone analog.
- an NS3 inhibitor compound, one or more interferon receptor agonist(s), and pirfenidone or pirfenidone analog are co-administered in the treatment methods of the embodiments.
- an NS3 inhibitor compound, a Type I interferon receptor agonist, and pirfenidone (or a pirfenidone analog) are co-administered.
- an NS3 inhibitor compound, a Type I interferon receptor agonist, a Type II interferon receptor agonist, and pirfenidone (or a pirfenidone analog) are co-administered.
- Type I interferon receptor agonists suitable for use herein include any IFN-a, such as interferon alfa-2a, interferon alfa-2b, interferon alfacon-1, and PEGylated IFN-a 's, such as peginterferon alfa-2a, peginterferon alfa-2b, and PEGylated consensus interferons, such as monoPEG (30 kD, linear)-ylated consensus interferon.
- Type II interferon receptor agonists suitable for use herein include any interferon-
- Pirfenidone or a pirfenidone analog can be administered once per month, twice per month, three times per month, once per week, twice per week, three times per week, four times per week, five times per week, six times per week, daily, or in divided daily doses ranging from once daily to 5 times daily over a period of time ranging from about one day to about one week, from about two weeks to about four weeks, from about one month to about two months, from about two months to about four months, from about four months to about six months, from about six months to about eight months, from about eight months to about 1 year, from about 1 year to about 2 years, or from about 2 years to about 4 years, or more.
- Effective dosages of pirfenidone or a specific pirfenidone analog include a weight-based dosage in the range from about 5 mg/kg/day to about 125 mg/kg/day, or a fixed dosage of about 400 mg to about 3600 mg per day, or about 800 mg to about 2400 rng per day, or about 1000 mg to about 1800 mg per day, or about 1200 mg to about 1600 mg per day, administered orally in one to five divided doses per day.
- Other doses and formulations of pirfenidone and specific pirfenidone analogs suitable for use in the treatment of fibrotic diseases are described in U.S. Pat. Nos., 5,310,562; 5,518,729; 5,716,632; and 6,090,822.
- One embodiment provides any of the above-described methods modified to include co-administering to the patient a therapeutically effective amount of pirfenidone or a pirfenidone analog for the duration of the desired course of NS3 inhibitor compound treatment.
- Combination therapies with TNF-a antagonists include co-administering to the patient a therapeutically effective amount of pirfenidone or a pirfenidone analog for the duration of the desired course of NS3 inhibitor compound treatment.
- the methods provide for combination therapy comprising administering an effective amount of an NS3 inhibitor compound as described above, and an effective amount of TNF-a antagonist, in combination therapy for treatment of an HCV infection.
- Effective dosages of a TNF-a antagonist range from OJ ⁇ g to 40 mg per dose, e.g., from about 0.1 ⁇ g to about 0.5 ⁇ g per dose, from about 0.5 ⁇ g to about 1.0 ⁇ g per dose, from about 1.0 ⁇ g per dose to about 5.0 ⁇ g per dose, from about 5.0 ⁇ g to about 10 ⁇ g per dose, from about 10 ⁇ g to about 20 ⁇ g per dose, from about 20 ⁇ g per dose to about 30 ⁇ g per dose, from about 30 ⁇ g per dose to about 40 ⁇ g per dose, from about 40 ⁇ g per dose to about 50 ⁇ g per dose, from about 50 ⁇ g per dose to about 60 ⁇ g per dose, from about 60 ⁇ g per dose to about 70 ⁇ g per dose, from about 70 ⁇ g to about 80 ⁇ g per dose, from about 80 ⁇ g per dose to about 100 ⁇ g per dose, from about 100 ⁇ g to about 150 ⁇ g per dose, from about 150 ⁇
- effective dosages of a TNF-a antagonist are expressed as mg/kg body weight.
- effective dosages of a TNF-a antagonist are from about 0.1 mg/kg body weight to about 10 mg/kg body weight, e.g., from about OJ mg/kg body weight to about 0.5 mg/kg body weight, from about 0.5 mg/kg body weight to about 1.0 mg/kg body weight, from about 1.0 mg/kg body weight to about 2.5 mg/kg body weight, from about 2.5 mg/kg body weight to about 5.0 mg/kg body weight, from about 5.0 mg/kg body weight to about 7.5 mg/kg body weight, or from about 7.5 mg/kg body weight to about 10 mg/kg body weight.
- a TNF-a antagonist is administered for a period of about 1 day to about 7 days, or about 1 week to about 2 weeks, or about 2 weeks to about 3 weeks, or about 3 weeks to about 4 weeks, or about 1 month to about 2 months, or about 3 months to about 4 months, or about 4 months to about 6 months, or about 6 months to about 8 months, or about 8 months to about 12 months, or at least one year, and may be administered over longer periods of time.
- the TNF-a antagonist can be administered tid, bid, qd, qod, biw, tiw, qw, qow, three times per month, once monthly, substantially continuously, or continuously.
- a TNF-a antagonist is administered once per month, twice per month, three times per month, every other week (qow), once per week (qw), twice per week .
- a TNF-a antagonist and an NS3 inhibitor are generally administered in separate formulations.
- a TNF-a antagonist and an NS3 inhibitor may be administered substantially simultaneously, or within about 30 minutes, about 1 hour, about 2 hours, about 4 hours, about 8 hours, about 16 hours, about 24 hours, about 36 hours, about 72 hours, about 4 days, about 7 days, or about 2 weeks of one another.
- One embodiment provides a method using an effective amount.of a TNF-a antagonist and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- One embodiment provides a method using an effective amount of ENBREL® and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage ENBREL® containing an amount of from about 0.1 ⁇ g to about 23 mg per dose, from about 0.1 ⁇ g to about 1 ⁇ g, from about 1 ⁇ g to about 10 ⁇ g, from about 10 ⁇ g to about 100 ⁇ g, from about 100 ⁇ g to about 1 mg, from about 1 mg to about 5 mg, from about 5 mg to about 10 mg, from about 10 mg to about 15 mg, from about 15 mg to about 20 mg, or from about 20 mg to about 23 mg of ENBREL®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or once every other month, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- One . embodiment provides a method using an effective amount of REMICADE® and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage of REMICADE® containing an amount of from about 0.1 mg/kg to about 4.5 mg/kg, from about 0.1 mg/kg to about 0.5 mg/kg, from about 0.5 mg/kg to about 1.0 mg/kg, from about 1.0 mg/kg to about 1.5 mg/kg, from about 1.5 mg/kg to about 2.0 mg/kg, from about 2.0 mg/kg to about 2.5 mg/kg, from about 2.5 mg/kg to about 3.0 mg/kg, from about 3.0 mg/kg to about 3.5 mg/kg, from about 3.5 mg/kg to about 4.0 mg/kg, or from about 4.0 mg/kg to about 4.5 mg/kg per dose of REMICADE®, intravenously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or once every
- One embodiment provides a method using an effective amount of HUMIRATM and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage of HUMIRATM containing an amount of from about 0.1 ⁇ g to about 35 mg, from about 0.1 ⁇ g to about 1 ⁇ g, from about 1 ⁇ g to about 10 ⁇ g, from about 10 ⁇ g to about 100 ⁇ g, from about 100 ⁇ g to about 1 mg, from about 1 mg to about 5 mg, from about 5 mg to about 10 mg, from about 10 ' mg to about 15 mg, from about 15 mg to about 20 mg, from about 20 mg to about 25 mg, from about 25 mg to about 30 mg, or from about 30 mg to about 35 mg per dose of a HUMIRATM, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or once every other month, or per day substantially continuously or continuously, for the desired duration of
- the .methods provide for combination therapy comprising administering an effective amount of an NS3 inhibitor compound as described above, and an effective amount of thymosin-a, in combination therapy for treatment of an HCV infection.
- Effective dosages of thymosin-a range from about 0.5 mg to about 5 mg, e.g., from about 0.5 mg to about 1.0 mg, from about 1.0 mg to about 1.5 mg, from about 1.5 mg to about 2.0 mg, from about 2.0 mg to about 2.5 mg, from about 2.5 mg to about 3.0 mg, from about 3.0 mg to about 3.5 mg, from about 3.5 mg to about 4.0 mg, from about 4.0 mg to about 4.5 mg, or from about 4.5 mg to about 5.0 mg.
- thymosin-a is administered in dosages containing an amount of 1.0 mg or 1.6 mg.
- One embodiment provides a method using an effective amount of ZADAXINTM thymosin-a and an effective amount of an NS3 inhibitor in the treatment of an HCV infection in a patient, comprising administering to the patient a dosage of ZADAXINTM containing an amount of from about 1.0 mg to about 1.6 mg per dose, subcutaneously twice per week for the desired duration of treatment with the NS3 inhibitor compound.
- Some embodiments provide a method of treating an HCV infection in an individual having an HCV infection, the method comprising administering an effective amount of an NS3 inhibitor, and effective amount of a TNF-a antagonist, and an effective amount of one or more interferons.
- One embodiment provides any of the above-described methods modified to use an effective amount of IFN-? and an effective amount of a TNF-a antagonist in the treatment of HCV infection in a patient comprising administering to the patient a dosage of IFN-?
- a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- One embodiment provides any of the above-described methods modified to use an effective amount of IFN-? and an effective amount of a TNF-a antagonist in the treatment of HCV infection in a patient comprising administering to the patient a dosage of IFN-?
- a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-? and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a total weekly dosage of IFN-?
- a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-? and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a total weekly dosage of IFN-?
- a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS 3 inhibitor compound.
- One embodiment provides any of the above-described methods modified to use an effective amount of INFERGEN® consensus IFN-a and a TNF-a antagonist in the treatment of HCV infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 1 ⁇ g to about 30 ⁇ g, of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- LUJioj ⁇ ne embodiment provides any of the above-described methods modified to. use an effective amount of INFERGEN® consensus IFN-a and a TNF-a antagonist in the treatment of HCV infection in a patient comprising administering to the patient a dosage of INFERGEN® containing an amount of about 1 ⁇ g to about 9 ⁇ g, of drug per dose of INFERGEN®, subcutaneously qd, qod, tiw, biw, qw, qow, three times per month, once monthly, or per day substantially continuously or continuously, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS 3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGylated consensus IFN-a and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGylated consensus IFN-a (PEG-CIFN) containing an amount of about 4 ⁇ g to about 60 ⁇ g of CIFN amino acid weight per dose of PEG-CIFN, subcutaneously qw, qow, three times per month, or monthly, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- PEG-CIFN PEGylated consensus IFN-a
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGylated consensus IFN-a and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGylated consensus IFN-a (PEG-CIFN) containing an amount of about 18 ⁇ g to about 24 ⁇ g of CIFN amino acid weight per dose of PEG-CIFN, subcutaneously qw, qow, three times per month, or monthly, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with anNS3 inhibitor compound.
- PEG-CIFN PEGylated consensus IFN-a
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-a 2a Or 2b or 2c and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of IFN-a 2a, 2b or 2c containing an amount of about 1 MU to about 20 MU of drag per dose of IFN-a 2a, 2b or 2c subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-a 2a or 2b or 2c and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of IFN-a 2a, 2b or 2c containing an amount of about 3 MU of drug per dose of IFN-a 2a, 2b or 2c subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of IFN-a 2a or 2b or 2c and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of IFN-a 2a, 2b or 2c containing an amount of about 10 MU of drug per dose of IFN-a 2a, 2b or 2c subcutaneously qd, qod, tiw, biw, or per day substantially continuously or continuously, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGASYS®PEGylated IFN-a2a and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGASYS® containing an amount of about 90 ⁇ g to about 360 ⁇ g, of drug per dose of PEGASYS®, subcutaneously qw, qow, three times per month, or monthly, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEGASYS®PEGylated IFN-a2a and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEGASYS® containing an amount of about 180 ⁇ g, of drug per dose of PEGASYS®, subcutaneously qw, qow, three times per month, or monthly, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS 3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEG-INTRON®PEGylated IFN-a2b and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEG-INTRON® containing an amount of about 0.75 ⁇ g to about 3.0 ⁇ g of drug per kilogram of body weight per dose of PEG-INTRON®, subcutaneously qw, qow, three times per month, or monthly, in combination with a dosage of a TNF-a antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Another embodiment provides any of the above-described methods modified to use an effective amount of PEG-INTRON®PEGylated IFN-a2b and an effective amount of a TNF-a antagonist in the treatment of a virus infection in a patient comprising administering to the patient a dosage of PEG-INTRON® containing an amount of about 1.5 ⁇ g of drug per kilogram of body weight per dose of PEG-INTRON®, subcutaneously qw, qow, three times per month, or monthly, in combination with a dosage of a TNF-a "antagonist containing an amount of from about 0.1 ⁇ g to about 40 mg per dose of a TNF-a antagonist, subcutaneously qd, qod, tiw, or biw, or per day substantially continuously or continuously, for the desired duration of treatment with an NS3 inhibitor compound.
- Combination therapies with other antiviral agents with other antiviral agents
- HCV NS3 helicase Other agents such as inhibitors of HCV NS3 helicase are also attractive drugs for combinational therapy, and are contemplated for use in combination therapies described herein.
- Ribozymes such as HeptazymeTM and phosphorothioate oligonucleotides which are complementary to HCV protein sequences and which inhibit the expression of viral core proteins are also suitable for use in combination therapies described herein.
- the additional antiviral agent(s) is administered during the entire course of treatment with the NS3 inhibitor compound described herein, and the beginning and end of the treatment periods coincide. In other embodiments, the additional antiviral agent(s) is administered for a period of time that is overlapping with that of the NS3 inhibitor compound treatment, e.g., treatment with the additional antiviral agent(s) begins before the NS3 inhibitor compound treatment begins and ends before the NS3 inhibitor compound treatment ends; treatment with the additional antiviral agent(s) begins after the NS3 inhibitor compound treatment begins and ends after the NS3 inhibitor compound treatment ends; treatment with the additional antiviral agent(s) begins after the NS3 inhibitor compound treatment begins and ends before the NS3 inhibitor compound treatment ends; or treatment with the additional antiviral agent(s) begins before the NS3 inhibitor compound treatment begins and ends after the NS3 inhibitor compound treatment ends.
- the NS3 inhibitor compound can be administered together with (i.e., simultaneously in separate formulations; simultaneously in the same formulation; administered in separate formulations and within about 48 hours, within about 36 hours, within about 24 hours, within about 16 hours, within about 12 hours, within about S hours, within about 4 hours, within about 2 hours, within about 1 hour, within about 30 minutes, or within about 15 minutes or less) one or more additional antiviral agents.
- any of the above-described methods featuring an IFN-a regimen can be modified to replace the subject IFN-a regimen with a regimen of monoPEG (30 kD, linear) ⁇ ylated consensus IFN-a comprising administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 100 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a regimen can be modified to replace the subject IFN-a regimen with a regimen of monoPEG (30 kD, linear)-ylated consensus IFN-a comprising administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 150 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a regimen can be modified to replace the subject IFN-a regimen with a regimen of monoPEG (30 kD, linear)-ylated consensus IFN-a comprising administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 200 ⁇ g of drug per dose, subcutaneously once weekly, once every S days, or once every 10 days for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a regimen can be modified to replace the subject IFN-a regimen with a regimen of INFERGEN® interferon alfacon-1 comprising administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily, or three times per week for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a regimen can be modified to replace the subject IFN-a regimen with a regimen of INFERGEN® interferon alfacon-1 comprising administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily or three times per week for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-? regimen can be modified to replace the subject IFN-? regimen with a regimen of IFN-? comprising administering a dosage of IFN-? containing an amount of 25 ⁇ g of drug per dose, subcutaneously three times per week for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-? regimen can be modified to replace the subject IFN-? regimen with a regimen of IFN-? comprising administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-? regimen can be modified to replace the subject IFN-? regimen with a regimen of IFN-? comprising administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 100 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring a TNF antagonist regimen can be modified to replace the subject TNF antagonist regimen with a TNF antagonist regimen comprising administering a dosage of a TNF antagonist selected from the group of: (a) etanercept in an amount of 25 mg of drug per dose subcutaneously twice per week, (b) infliximab in an amount of 3 mg of drug per kilogram of body weight per dose intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter, or (c) adalimumab in an amount of 40 mg of drug per dose subcutaneously once weekly or once every 2 weeks; for the desired treatment duration with an NS 3 inhibitor compound.
- a TNF antagonist selected from the group of: (a) etanercept in an amount of 25 mg of drug per dose subcutaneously twice per week, (b) infliximab in an amount of 3 mg of drug per kilogram of body weight per dose intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter, or (c) adalimumab in
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 100 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of monoPEG (30 IcD 5 linear)-ylated consensus IFN-a containing an amount of 150 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 150 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 200 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every- 10 days; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with anNS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 200 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously three times per week; and (b) administering a dosage of IFN-? containing an amount of 25 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously three times per week; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously three times per week; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily; and (b) administering a dosage of IFN-? containing an amount of 25 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- IU.348J AS non-nminng examples any of the above-described methods featuring an IFN-a and IFN-?
- combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously three times per week; and (b) administering a dosage of IFN-? containing an amount of 25 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with anNS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously three times per week; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously three times per week; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily; and (b) administering a dosage of IFN-? containing an amount of 25 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily; and (b) administering a dosage of IFN-? containing an amount of 50 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS 3 inhibitor compound.
- any of the above-described methods- featuring an IFN-a and IFN-? combination regimen can be modified to replace the subject IFN-a and IFN-? combination regimen with an IFN-a and IFN-? combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily; and (b) administering a dosage of IFN-? containing an amount of 100 ⁇ g of drug per dose, subcutaneously three times per week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 100 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, Iinear)-ylated consensus IFN-a containing an amount of 100 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 150 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; (b) administering a dosage of IFN-?
- TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 150 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and • TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 200 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)-ylated consensus IFN-a containing an amount of 200. ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in ' an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously three times per week; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage, of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously three times per week; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject UhJN-a, JLbJN-'/ and INF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously three times per week; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with ah NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks O, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously three times per week; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of MFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously three times per week; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously three times per week; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a, IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-a, IFN-? and TNF antagonist combination regimen with an IFN-a, PN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily; (b) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and TNF antagonist combination regimen can be modified to replace the subject IFN-a and TNF antagonist combination regimen with an IFN-a and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)- ylated consensus IFN-a containing an amount of 100 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and TNF antagonist combination regimen can be modified to replace the subject IFN-a and TNF antagonist combination regimen with an IFN-a and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)- ylated consensus IFN-a containing an amount of 150 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and TNF antagonist combination regimen can be modified to replace the subject IFN-a and TNF antagonist combination regimen with an IFN-a and TNF antagonist combination regimen comprising: (a) administering a dosage of monoPEG (30 kD, linear)- ylated consensus IFN-a containing an amount of 200 ⁇ g of drug per dose, subcutaneously once weekly, once every 8 days, or once every 10 days; and (b) administering a dosage of a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-a and TNF antagonist combination regimen can be modified to replace the subject IFN-a and TNF antagonist combination regimen with an IFN-a and TNF antagonist coniDinauon regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose, subcutaneously once daily or three times per week; and (b) administering a dosage of a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- a dosage of INFERGEN® interferon alfacon-1 containing an amount of 9 ⁇ g of drug per dose
- any of the above-described methods featuring an IFN-a and TNF antagonist combination regimen can be modified to replace the subject IFN-a and TNF antagonist combination, regimen with an IFN-a and TNF antagonist combination regimen comprising: (a) administering a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously once daily or three times per week; and (b) administering a dosage of a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- a dosage of INFERGEN® interferon alfacon-1 containing an amount of 15 ⁇ g of drug per dose, subcutaneously
- any of the above-described methods featuring an IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-? and TNF antagonist combination regimen with an IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of IFN-?
- a TNF- antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-? and TNF antagonist combination regimen with an IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an IFN-? and TNF antagonist combination regimen can be modified to replace the subject IFN-? and TNF antagonist combination regimen with an IFN-? and TNF antagonist combination regimen comprising: (a) administering a dosage of IFN-?
- a TNF antagonist selected from (i) etanercept in an amount of 25 mg subcutaneously twice per week, (ii) infliximab in an amount of 3 mg of drug per kilogram of body weight intravenously at weeks 0, 2 and 6, and every 8 weeks thereafter or (iii) adalimumab in an amount of 40 mg subcutaneously once weekly or once every other week; for the desired treatment duration with an NS 3 inhibitor compound.
- any of the above-described methods that includes a regimen of monoPEG (30 kD, linear)-ylated consensus IFN-a can be modified to replace the regimen of monoPEG (30 kD, linear)-ylated consensus IFN-a with a regimen of peginterferon alfa-2a comprising administering a dosage of peginterferon alfa-2a containing an amount of 180 ⁇ g of drug per dose, subcutaneously once weekly for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods that includes a regimen of monoPEG (30 kD, linear)-ylated consensus IFN-a can be modified to replace the regimen of monoPEG (30 kD, linear)-ylated consensus IFN-a with a regimen of peginterferon alfa-2b comprising administering a dosage of peginterferon alfa-2b containing an amount of 1.0 ⁇ g to 1.5 ⁇ g of drug per kilogram of body weight per dose, subcutaneously once or twice weekly for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods can be modified to include administering a dosage of ribavirin containing an amount of 400 mg, 800 mg, 1000 mg or 1200 mg of drug orally per day, optionally in two or more divided doses per day, for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods can be modified to include administering a dosage of ribavirin containing (i) an amount of 1000 mg of drug orally per day for patients having a body weight of less than 75 kg or (ii) an amount of 1200 mg of drug orally per day for patients having a body weight of greater than or equal to 75 kg, optionally in two or more divided doses per day, for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods can be modified to replace the subject NS3 inhibitor regimen with an NS3 inhibitor regimen comprising administering a dosage of 0.01 mg to 0.1 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with the NS3 inhibitor compound.
- any of the above-described methods can be modified to replace the subject NS3 inhibitor regimen with an NS3 inhibitor regimen comprising administering a dosage of 0.1 mg to 1 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with the NS3 inhibitor compound.
- any of the above-described methods can be modified to replace the subject NS3 inhibitor regimen with an NS3 inhibitor regimen comprising administering a dosage of 1 mg to 10 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with the NS3 inhibitor compound.
- any of the above-described methods can be modified to replace the subject NS3 inhibitor regimen with an NS3 inhibitor regimen comprising administering a dosage of 10 mg to 100 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with the NS3 inhibitor compound.
- any of the above-described methods featuring an NS5B inhibitor regimen can be modified to replace the subject NS5B inhibitor regimen with an NS5B inhibitor regimen comprising administering a dosage of 0.01 mg to 0.1 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an NS5B inhibitor regimen can be modified to replace the subject NS5B inhibitor regimen with an NS5B inhibitor regimen comprising administering a dosage of 0.1 mg to 1 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with an NS3 inhibitor compound.
- any of the above-described methods featuring an NS5B inhibitor regimen can be modified to replace the subject NS5B inhibitor regimen with an NS5B inhibitor regimen comprising administering a dosage of 1 mg to 10 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with anNS3 inhibitor compound.
- any of the above-described methods featuring an NS5B inhibitor regimen can be modified to replace the subject NS5B inhibitor regimen with an NS5B inhibitor regimen comprising administering a dosage of 10 mg to 100 mg of drug per kilogram of body weight orally daily, optionally in two or more divided doses per day, for the desired treatment duration with an NS3 inhibitor compound.
- the specific regimen of drug therapy used in treatment of the HCV patient is selected according to certain disease parameters exhibited by the patient, such as the initial viral load, genotype of the HCV infection in the patient, liver histology and/or stage of liver fibrosis in the patient.
- some embodiments provide any of the above-described methods for the treatment of HCV infection in which the subject method is modified to treat a treatment failure patient for a duration of 48 weeks.
- HCVL high viral load
- One embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having advanced or severe stage liver fibrosis as measured by a Knodell score of 3 or 4 and then (2) administering to the patient the drug therapy of the subject method for a time period of about 24 weeks to about 60 weeks, or about 30 weeks to about one year, or about 36 weeks to about 50 weeks, or about 40 weeks to about 48 weeks, or at least about 24 weeks, or at least about 30 weeks, or at least about 36 weeks, or at least about 40 weeks, or at least about 48 weeks, or at least about 60 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having advanced or severe stage liver fibrosis as measured by a Knodell score of 3 or 4 and then (2) administering to the patient the drug therapy of the subject method for a time period of about 40 weeks to about 50 weeks, or about 48 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of greater than 2 million viral genome copies per ml of patient serum and then (2) administering to the patient the drag therapy of the subject method for a time period of about 24 weeks to about 60 weeks, or about 30 weeks to about one year, or about 36 weeks to about 50 weeks, or about 40 weeks to about 48 weeks, or at least about 24 weeks, or at least about 30 weeks, or at least about 36 weeks, or at least about 40 weeks, or at least about 48 weeks, or at least about 60 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of greater than 2 million viral genome copies per ml of patient serum and then (2) administering to the patient the drag therapy of the subject method for a time period of about 40 weeks to about 50 weeks, or about 48 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of greater than 2 million viral genome copies per ml of patient serum and no or early stage liver fibrosis as measured by a Knodell score of 0, I 3 or 2 and then (2) administering to the patient the drug therapy of the subject method for a time period of about 24 weeks to about 60 weeks, or about 30 weeks to about one year, or about 36 weeks to about 50 weeks, or about 40 weeks to about 48 weeks, or at least about 24 weeks, or at least about 3.0 weeks, or at least about 36 weeks, or at least about 40 weeks, or at least about 48 weeks, or at least about 60 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of greater than 2 million viral genome copies per ml of patient serum and no or early stage liver fibrosis as measured by a Knodell score of 0, 1, or 2 and then (2) administering to the patient the drug therapy of the subject method for a time period of about 40 weeks to about 50 weeks, or about 48 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of less than or equal to 2 million viral genome copies per ml of patient serum and then (2) administering to the patient the drug therapy of the subject method for a time period of about 20 weeks to about 50 weeks, or about 24 weeks to about 48 weeks, or about 30 weeks to about 40 weeks, or up to about 20 weeks, or up to about 24 weeks, or up to about 30 weeks, or up to about 36 weeks, or up to about 48 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of less than or equal to 2 million viral genome copies per ml of patient serum and then (2) administering to the patient the drug therapy of the subject method for a time period of about 20 weeks to about 24 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 infection and an initial viral load of less than or equal to 2 million viral genome copies per ml of patient serum and then (2) administering to the patient the drug therapy of the subject method for a time period of about 24 weeks to about 48 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 2 or 3 infection and then (2) administering to the patient the drug therapy of the subject method for a time period of about 24 weeks to about 60 weeks, or about 30 weeks to about one year, or about 36 weeks to about 50 weeks, or about 40 weeks to about 48 weeks, or at least about 24 weeks, or at least about 30 weeks, or at least about 36 weeks, or at least about 40 weeks, or at least about 48 weeks, or at least about 60 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 2 or 3 infection and then (2) administering to the patient the drug therapy of the subject method for a time period of about 20 weeks to about 50 weeks, or about 24 weeks to about 48 weeks, or about 30 weeks to about 40 weeks, or up to about 20 weeks, or up to about 24 weeks, or up to about 30 weeks, or up to about 36 weeks, or up to about 48 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 2 or 3 infection and then (2) administering to the patient the drug therapy of the subject method for a time period of about 20 weeks to about 24 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 2 or 3 infection and then (2) administering to the patient the drug therapy of the subject method for a time period of at least about 24 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV genotype 1 or 4 infection and then (2) administering to the patient the drug therapy of the subject method for a time period of about 24 weeks to about 60 weeks, or about 30 weeks to about one year, or about 36 weeks to about 50 weeks, or about 40 weeks to about 48 weeks, or at least about 24 weeks, or at least about 30 weeks, or at least about 36 weeks, or at least about 40 weeks, or at least about 48 weeks, or at least about 60 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (.1) identifying a patient having an HCV infection characterized by any of HCV genotypes 5, 6, 7, 8 and 9 and then (2) administering to the patient the drug therapy of the subject method for a time period of about 20 weeks to about 50 weeks.
- Another embodiment provides any of the above-described methods for the treatment of an HCV infection, where the subject method is modified to include the steps of (1) identifying a patient having an HCV infection characterized by any of HCV genotypes 5, 6, 7, 8 and 9 and then (2) administering to the patient the drug therapy of the subject method for a time period of at least about 24 weeks and up to about 48 weeks.
- Any of the above treatment regimens can be administered to individuals who have been diagnosed with an HCV infection. Any of the above treatment regimens can be administered to individuals who have failed previous treatment for HCV infection ("treatment failure patients," including non-responders and relapsers).
- Individuals who have been clinically diagnosed as infected with HCV are of particular interest in many embodiments.
- Individuals who are infected with HCV are identified as having HCV RNA in their blood, and/or having anti-HCV antibody in their serum.
- Such individuals include anti-HCV ELISA-positive individuals, and individuals with a positive recombinant immunoblot assay (RIBA).
- RIBA positive recombinant immunoblot assay
- naive individuals e.g., individuals not previously treated for HCV, particularly those who have not previously received IFN-a-based and/or ribavirin-based therapy
- individuals who have failed prior treatment for HCV (“treatment failure" patients).
- Treatment failure patients include non-responders (i.e., individuals in whom the HCV titer was not significantly or sufficiently reduced by a previous treatment for HCV, e.g., a previous IFN-a monotherapy, a previous IFN-a and ribavirin combination therapy, or a previous pegylated IFN-a and ribavirin combination therapy); and relapsers (i.e., individuals who were previously treated for HCV, e.g., who received a previous IFN-a monotherapy, a previous IFN-a and ribavirin combination therapy, or a previous pegylated IFN-a and ribavirin combination therapy, whose HCV titer decreased, and subsequently increased).
- non-responders i.e., individuals in whom the HCV titer was not significantly or sufficiently reduced by a previous treatment for HCV, e.g., a previous IFN-a monotherapy, a previous IFN-a and ribavirin combination therapy,
- individuals have an HCV titer of at least about 10 5 , at least about 5 x 10 5 , or at least about 10 6 , or at least about 2 x 10 6 , genome copies of HCV per milliliter of serum.
- the patient may be infected with any HCV genotype (genotype 1, including Ia and Ib, 2, 3, 4, 6, etc. and subtypes (e.g., 2a, 2b, 3a, etc.)), particularly a difficult to treat genotype such as HCV genotype 1 and particular HCV subtypes and quasispecies.
- HCV-positive individuals (as described above) who exhibit severe fibrosis or early cirrhosis (non-decompensated, Child' s-Pugh class A or less), or more advanced cirrhosis (decompensated, Child's-Pugh class B or C) due to chronic HCV infection and who are viremic despite prior anti-viral treatment with IFN-a-based therapies or who cannot tolerate IFN-a-based therapies, or who have a contraindication to such therapies.
- HCV-positive individuals with stage 3 or 4 liver fibrosis according to the METAVIR scoring system are suitable for treatment with the methods described herein.
- individuals suitable for treatment with the methods of the embodiments are patients with decompensated cirrhosis with clinical manifestations, including patients with far-advanced liver cirrhosis, including those awaiting liver transplantation.
- individuals suitable for treatment with the methods described herein include patients with milder degrees of fibrosis including those with early fibrosis (stages 1 and 2 in the METAVIR, Ludwig, and Scheuer scoring systems; or stages 1, 2, or 3 in the Ishak scoring system.).
- NS 3 inhibitors in the following sections can be prepared according to the procedures and schemes shown in each section.
- the numberings in each Preparation of NS3 Inhibitor Section are meant for that specific section only, and should not be construed as or confused with same numberings in other sections.
- HCV protease inhibitors in the following sections can be prepared according to the procedures and schemes shown in each section. Certain compounds and intermediates used in the syntheses have been described elsewhere. For instance, in Scheme 1 of Section I below, the syntheses of intermediates l(i?)- ⁇ er!:-butoxycarbonylammo-2(5)- vinyl-cyclopropanecarboxylic acid ethyl ester (Ia) and 2( ⁇ S)-tert-butoxycarbonylamino-non-8- enoic acid (Ic), and the ring-closing-metathesis of tripeptide 4 were carried out in a manner similar to that described in International Application PCT/US2004/033970 (International Publication No.
- Step 1 Synthesis of 2S-(l-EthoxycarbonvI-2-vin ⁇ l-eyelopropylcarbamoyr)-4R- hydroxy-pyrrolidine-l-carboxylic acid tert-butyl ester (3)
- Step 2 Synthesis of li?- ⁇ [l-(2iS-tert-Butoxycarbonylanuno-non-8-enoyl)-4J?-hydroxy- pyrrolidine-2»S'-carbonyl]-amino ⁇ -2tS'-vinyl-cycIopropanecarboxylic acid ethyl ester (9)
- Step 3 Synthesis of (IS, 4R, 6S, US, 18 J ff)-14-tert-Butoxycarbonylamino-18-hydroxy- 2,15-dioxo-3,16-diaza-tricyclo[14.3.0.0 4 ' 6 ]nonadec-7-ene-4-carboxylic acid ethyl ester (10)
- Step 4 Synthesis Of (IS 1 , 4Jt, 6S, US, 18i?)-14-tert-Butoxycarbonylamino-18-(l,3- dihydro-isoindole-2-carbonyloxy)-2,15-dioxo-3,16-diaza-tricyclo[14.3.0.0 4 ' 6 ]nonadec-7- ene-4-carboxylic acid ethyl ester (11)
- the macrocyclic intermediate 10 (110 mg, 0.22 mmol) was dissolved in DCM (2.2 mL), followed by addition of CDI (45 mg, 0.27 mmol) in one portion. The reaction was stirred at rt overnight. After 15 h, the reaction was complete as monitored by TLC (DCM/MeOH 9:1). 2,3-Dihydro-lH-isoindole (0.14 mL, 1.1 mmol) was added to the reaction drop-wise, and the reaction was stirred at rt overnight. After 22h, TLC showed reaction complete. The reaction was diluted with DCM (6 mL) and washed with IN aq. HCl (2 x 2 mL), sat.
- Step 5 Synthesis of (IS, 4R, 6S. 14S. 18RV14-tert-Butoxyearbonylamino-18- (1.3-dihvdro-isoindoIe-2-carbonyloxy)-2,15-dioxo-3.,16-diaza-tricvcIo[143.0.0 4 ' 6 lnonadec-7-ene-4-carboxylic acid
- the macrocyclic ester 11 (60 mg, 0.092 mmol) was dissolved in 0.9 mL of a mixed solvent (THF/MeOH/H2O 2:1:1), followed by addition of LiOH-H 2 O (23 mg, 6 equiv). The mixture was stirred at rt for overnight. After 18h, TLC (DCM/MeOH 9:1) showed a clean new spot with a lower Rf. The reaction was concentrated down to almost dryness and partitioned between IN aq. HCl (15 mL) and DCM (20 mL). The aqueous layer was extracted with DCM (2 x 10 mL).
- Step 6 Synthesis of (IS. 4R. 6S. 14S. 18RV1.3-Dihvdro-isoindole-2-carboxyIie acid 14-tert-butoxycarbonylamino-4-(l-methvIcycIopropane-l- sulfonyl)aminocarbonyI-2 ⁇ 15-dioxo-3.,16-diaza-tricycIo[14.3.0.0 4 ' 6 lnonadec-7-en- 18-yl ester (Compound 100)
- NS3 inhibitors described in this section were prepared in a manner similar to that described for Compound 300 below (Scheme 4), substituting cyclopropanes ⁇ lfonamide with other appropriate sulfonamides in Step E instead.
- Step A Synthesis of (SVtert-butyl 2-rfflR.2S)-l-(ethoxycarbonyl)-2- vinylcvclopropyl)carbamoyl)pyrrolidine-l-carboxylate (Ib).
- Step B Synthesis of (lR,2S)-ethyl l-((S)-l-((S)-2-(tert-butoxycarbonyl)non-8- enoyl)pyrrolidine-5-carboxamido)-2-vinylcyclopropanecarboxylate (Id)
- Step C Synthesis of (15, 4R, 6S, 145) 14-tert-Butoxycarbonylamino-2,15-dioxo-3,16- diaza-tricyclo[14.3.0.0 4 ' 6 ]nonadec-7-ene-4-carboxylic acid ethyl ester (Ie)
- Step D Synthesis of (15, 4R, 65, 145) 14-tert-Butoxycarbonylamino-2,15-dioxo-3,16- diaza-tricyclo[14.3.0.0 4 ' 6 ]nonadec-7-ene-4-carboxylic acid (If)
- Step E Synthesis of (IS, 4R, 6S, 14S) tot-butyl 4-Cyclopropanesulfonylaminocarbonyl- 2,15-dioxo-3,16-diaza- tricyclo[14.3.0.0 4 ' 6 ]iionadec-7-ene-14-yl carbamate (Compound
- Step 1 Ethylltriphenyl phosphonium bromide (8.17 g, 22 mmol) in THF (25 ml) was added 1 M solution of potassium ⁇ -butoxide in THF (22 ml) at room temperature. After Ih stirring, it was added a solution of the ketone 46a (2.9 g, 8.8 mmol), which was prepared according to a literature procedure from (2S,4i?)-l-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-2- carboxylic acid (J. Org. Chem.2003, 68, 3923-3931), in THF (5 ml) and stirred for 3h. TLC (15% EtOAc-H exane) showed complete conversion.
- Step 2 To a solution of the silyl ether 46b (3 g, 8.78 mmol) in THF (60 ml) was added solid TBAF.3H 2 O (5.54 g, 17.57 mmol) and stirred for 16 h. Reaction mixture concentrated and purified by column chromatography (25, 40% EtOAc-Hexane) to give 46c, 1.98 g (98%). MS (APCI+): m/z 128.1 (M-Boc+1).
- Step 3 The alcohol 46c (1.98 g, 8.71 mmol) in CH 2 Cl 2 (174 ml, 0.2 M) was treated with Ir(COD)PyPCy 3 PF 6 (Crabtree catalyst) (0.21 g, 0.26 mmol) for 24h under H 2 . Reaction mixture concentrated to remove solvent and purified by column chromatography (40% EtOAc-Hexane) to give 46d as an orange oil,l .94 g (97%).
- the second one comprised of 0.26 ml of bleach (NaOCl) diluted with 4 ml of water.
- the alcohol 46d (1 g, 4.36 mmol) was dissolved in 3:2 (30 ml : 20 ml) mixture of CH 3 CNrNaH 2 PO 4 buffer (pH 6.6, 0.67 M) and warmed to 45 0 C.
- the reaction mixture was treated with TEMPO (0.07 g, 0.44 mmol) followed by the drop wise, simultaneous addition (over Ih) of the 2-oxidant solutions. After stirring for 15h at 45 0 C, the reaction mixture was cooled to room temperature and a sat. Na 2 SO 3 solution was added drop wise until the reaction mixture became color less.
- NS3 inhibitors in Table 3 were prepared in a manner similar to that described for Compound 300 above, substituting cyclopropanesulfonamide with other appropriate sulfonamides in Step E (Scheme 4), or substituting (S)-l-(tert- butoxycarbonyl)pyrrolidine-2-carboxylic acid with (2,S,4i?)-l-(tert-butoxycarbonyl)-4- ethylpyrrolidine-2-carboxylic acid in Step A (Scheme 4) instead.
- the sulfonamides used were either purchased from commercial sources or prepared by bubbling anhydrous ammonia gas through a THF solution of the corresponding sulfonyl chlorides at -10 0 C, followed by filtration to remove the inorganic salt and concentration to yield the clean product, which was generally used, directly in the following step without further purification.
- NS-3 inhibitor compounds described in this section and summarized in Table 4 below may be synthesized in a manner similar to that described in Scheme 4 of previous section, substituting the sulfonamide in the last coupling step with a sulfamide.
- the sulfamides used were either purchased from commercial sources or prepared through Routes A or B described in the following scheme. Similar methods to that of Route A have been described in literature (e.g. Heteroatom Chemistry, 2001, 12 (J), 1-5).
- the sulfamoylating reagent a in Route B was prepared according to a literature procedure (Winum, J-Y et al, Organic Letters, 2001, 3, 2241-2243).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Endocrinology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Steroid Compounds (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006800272902A CN101263156A (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis C virus replication |
JP2008523949A JP5249028B2 (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitor of hepatitis C virus replication |
BRPI0613962-0A BRPI0613962A2 (en) | 2005-07-25 | 2006-07-17 | innovative macrocyclic hepatitis c virus replication inhibitors |
CA2615666A CA2615666C (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication |
EA200800413A EA015752B1 (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication |
AU2006276246A AU2006276246B2 (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis C virus replication |
KR1020087004379A KR101294467B1 (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication |
NZ565059A NZ565059A (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitus C virus replication |
US11/996,902 US20090148407A1 (en) | 2005-07-25 | 2006-07-17 | Novel Macrocyclic Inhibitors of Hepatitis C Virus Replication |
MX2008001166A MX2008001166A (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication. |
NZ594105A NZ594105A (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication |
EP06800088A EP1924594A2 (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication |
IL188693A IL188693A (en) | 2005-07-25 | 2008-01-09 | Macrocyclic inhibitors of hepatitis c virus replication |
IL221361A IL221361A (en) | 2005-07-25 | 2008-01-09 | Macrocyclic inhibitors of hepatitis c virus replication |
TNP2008000022A TNSN08022A1 (en) | 2005-07-25 | 2008-01-18 | Novel macrocyclic inhibitors of hepatitis c virus replication |
NO20080875A NO20080875L (en) | 2005-07-25 | 2008-02-19 | New macrocyclic inhibitors of hepatitis C virus replication |
US13/450,885 US8299021B2 (en) | 2005-07-25 | 2012-04-19 | Macrocyclic inhibitors of hepatitis C virus replication |
IL221361A IL221361A0 (en) | 2005-07-25 | 2012-08-08 | Novel macrocyclic inhibitors of hepatitis c virus replication |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70219505P | 2005-07-25 | 2005-07-25 | |
US60/702,195 | 2005-07-25 | ||
US72553305P | 2005-10-11 | 2005-10-11 | |
US60/725,533 | 2005-10-11 | ||
US78980006P | 2006-04-06 | 2006-04-06 | |
US60/789,800 | 2006-04-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/996,902 A-371-Of-International US20090148407A1 (en) | 2005-07-25 | 2006-07-17 | Novel Macrocyclic Inhibitors of Hepatitis C Virus Replication |
US13/450,885 Continuation US8299021B2 (en) | 2005-07-25 | 2012-04-19 | Macrocyclic inhibitors of hepatitis C virus replication |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007015824A2 true WO2007015824A2 (en) | 2007-02-08 |
WO2007015824A3 WO2007015824A3 (en) | 2007-07-19 |
Family
ID=37433829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/027738 WO2007015824A2 (en) | 2005-07-25 | 2006-07-17 | Novel macrocyclic inhibitors of hepatitis c virus replication |
Country Status (23)
Country | Link |
---|---|
US (4) | US20090148407A1 (en) |
EP (6) | EP2305697A3 (en) |
JP (2) | JP5249028B2 (en) |
KR (1) | KR101294467B1 (en) |
CN (2) | CN101263156A (en) |
AR (1) | AR055095A1 (en) |
AU (1) | AU2006276246B2 (en) |
BR (1) | BRPI0613962A2 (en) |
CA (1) | CA2615666C (en) |
CU (1) | CU23794B7 (en) |
EA (2) | EA015752B1 (en) |
EC (1) | ECSP088208A (en) |
GE (1) | GEP20105124B (en) |
IL (3) | IL188693A (en) |
MA (1) | MA29746B1 (en) |
MX (1) | MX2008001166A (en) |
MY (1) | MY148690A (en) |
NO (1) | NO20080875L (en) |
NZ (2) | NZ594105A (en) |
SG (1) | SG166791A1 (en) |
TN (1) | TNSN08022A1 (en) |
TW (1) | TW200740851A (en) |
WO (1) | WO2007015824A2 (en) |
Cited By (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007056120A1 (en) * | 2005-11-03 | 2007-05-18 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
WO2008005511A2 (en) * | 2006-07-05 | 2008-01-10 | Intermune, Inc. | Novel inhibitors of hepatitis c virus replication |
WO2008064057A1 (en) * | 2006-11-16 | 2008-05-29 | Bristol-Myers Squibb Company | Macrocyclic peptides as hepatitis c virus inhibitors |
WO2008070358A2 (en) * | 2006-11-16 | 2008-06-12 | Phenomix Corporation | N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain |
WO2008086161A1 (en) * | 2007-01-08 | 2008-07-17 | Phenomix Corporation | Macrocyclic hepatitis c protease inhibitors |
WO2008067981A3 (en) * | 2006-12-04 | 2008-10-02 | Dsm Ip Assets Bv | Whole-cell catalytic system comprising a hydantoinase, a racemase and a carbamoylase |
WO2008121634A2 (en) | 2007-03-30 | 2008-10-09 | Pharmasset, Inc. | Nucleoside phosphoramidate prodrugs |
WO2008137779A2 (en) | 2007-05-03 | 2008-11-13 | Intermune, Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
WO2009005676A2 (en) * | 2007-06-29 | 2009-01-08 | Gilead Sciences, Inc. | Antiviral compounds |
WO2009005677A2 (en) * | 2007-06-29 | 2009-01-08 | Gilead Sciences, Inc. | Antiviral compounds |
WO2009005690A2 (en) * | 2007-06-29 | 2009-01-08 | Gilead Sciences, Inc. | Antiviral compounds |
WO2009080542A1 (en) * | 2007-12-21 | 2009-07-02 | F. Hoffmann-La Roche Ag | Process for the preparation of a macrocycle |
WO2009099596A2 (en) | 2008-02-04 | 2009-08-13 | Idenix Pharamaceuticals, Inc. | Macrocyclic serine protease inhibitors |
WO2009124853A1 (en) | 2008-04-11 | 2009-10-15 | F. Hoffmann-La Roche Ag | New ruthenium complexes as catalysts for metathesis reactions |
WO2009140500A1 (en) * | 2008-05-15 | 2009-11-19 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
WO2009142842A2 (en) * | 2008-04-15 | 2009-11-26 | Intermune, Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
WO2010015545A1 (en) * | 2008-08-07 | 2010-02-11 | F. Hoffmann-La Roche Ag | Process for the preparation of a macrocycle |
WO2010075517A2 (en) | 2008-12-23 | 2010-07-01 | Pharmasset, Inc. | Nucleoside analogs |
WO2010075554A1 (en) | 2008-12-23 | 2010-07-01 | Pharmasset, Inc. | Synthesis of purine nucleosides |
WO2010075549A2 (en) | 2008-12-23 | 2010-07-01 | Pharmasset, Inc. | Nucleoside phosphoramidates |
US7763584B2 (en) | 2006-11-16 | 2010-07-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
JP2010526834A (en) * | 2007-05-10 | 2010-08-05 | インターミューン・インコーポレーテッド | Novel peptide inhibitors of hepatitis C virus replication |
US7772180B2 (en) | 2006-11-09 | 2010-08-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2010135569A1 (en) | 2009-05-20 | 2010-11-25 | Pharmasset, Inc. | N- [ (2 ' r) -2 ' -deoxy-2 ' -fluoro-2 ' -methyl-p-phenyl-5 ' -uridylyl] -l-alanine 1-methylethyl ester and process for its production |
WO2011017389A1 (en) | 2009-08-05 | 2011-02-10 | Idenix Pharmaceuticals, Inc. | Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv |
US7888464B2 (en) | 2006-11-16 | 2011-02-15 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7906619B2 (en) | 2006-07-13 | 2011-03-15 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US7915291B2 (en) | 2002-05-20 | 2011-03-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2011038293A1 (en) | 2009-09-28 | 2011-03-31 | Intermune, Inc. | Cyclic peptide inhibitors of hepatitis c virus replication |
WO2011038283A1 (en) * | 2009-09-28 | 2011-03-31 | Hoffmann-La Roche Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
US7935670B2 (en) | 2006-07-11 | 2011-05-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7964560B2 (en) | 2008-05-29 | 2011-06-21 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2011075615A1 (en) | 2009-12-18 | 2011-06-23 | Idenix Pharmaceuticals, Inc. | 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors |
WO2011123645A2 (en) | 2010-03-31 | 2011-10-06 | Pharmasset, Inc. | Nucleoside phosphoramidates |
WO2011123672A1 (en) | 2010-03-31 | 2011-10-06 | Pharmasset, Inc. | Purine nucleoside phosphoramidate |
US8044087B2 (en) | 2008-09-29 | 2011-10-25 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8044023B2 (en) | 2008-05-29 | 2011-10-25 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8163921B2 (en) | 2008-04-16 | 2012-04-24 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8202996B2 (en) | 2007-12-21 | 2012-06-19 | Bristol-Myers Squibb Company | Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide |
US8207341B2 (en) | 2008-09-04 | 2012-06-26 | Bristol-Myers Squibb Company | Process or synthesizing substituted isoquinolines |
US8232246B2 (en) | 2009-06-30 | 2012-07-31 | Abbott Laboratories | Anti-viral compounds |
WO2012109398A1 (en) | 2011-02-10 | 2012-08-16 | Idenix Pharmaceuticals, Inc. | Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections |
WO2012135581A1 (en) | 2011-03-31 | 2012-10-04 | Idenix Pharmaceuticals, Inc. | Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor |
US8283310B2 (en) | 2008-12-15 | 2012-10-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8343477B2 (en) | 2006-11-01 | 2013-01-01 | Bristol-Myers Squibb Company | Inhibitors of hepatitis C virus |
US8372802B2 (en) | 2008-03-20 | 2013-02-12 | Enanta Pharmaceuticals, Inc. | Fluorinated macrocyclic compounds as hepatitis C virus inhibitors |
US8383583B2 (en) | 2007-10-26 | 2013-02-26 | Enanta Pharmaceuticals, Inc. | Macrocyclic, pyridazinone-containing hepatitis C serine protease inhibitors |
CN102971322A (en) * | 2010-05-20 | 2013-03-13 | 阵列生物制药公司 | Macrocyclic compounds as TRK kinase inhibitors |
WO2012072713A3 (en) * | 2010-11-30 | 2013-04-04 | Oryzon Genomics, S.A. | Lysine demethylase inhibitors such as cyclylcyclopropanamine derivatives for use in the treatment of diseases and disorders associated with flaviviridae |
US8420596B2 (en) | 2008-09-11 | 2013-04-16 | Abbott Laboratories | Macrocyclic hepatitis C serine protease inhibitors |
US8524717B2 (en) | 2008-10-17 | 2013-09-03 | Oryzon Genomics, S.A. | Oxidase inhibitors and their use |
US8563505B2 (en) | 2008-09-29 | 2013-10-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8614180B2 (en) | 2008-12-10 | 2013-12-24 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US8618076B2 (en) | 2009-05-20 | 2013-12-31 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
US8691757B2 (en) | 2011-06-15 | 2014-04-08 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8722743B2 (en) | 2010-04-19 | 2014-05-13 | Oryzon Genomics S.A. | Lysine specific demethylase-1 inhibitors and their use |
WO2014075146A1 (en) * | 2012-11-16 | 2014-05-22 | Adelaide Research & Innovation Pty Ltd | Macrocyclic compounds and uses thereof |
US8785487B2 (en) | 2010-01-25 | 2014-07-22 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
US8859555B2 (en) | 2009-09-25 | 2014-10-14 | Oryzon Genomics S.A. | Lysine Specific Demethylase-1 inhibitors and their use |
US8889159B2 (en) | 2011-11-29 | 2014-11-18 | Gilead Pharmasset Llc | Compositions and methods for treating hepatitis C virus |
US8933110B2 (en) | 2010-01-25 | 2015-01-13 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
US8937041B2 (en) | 2010-12-30 | 2015-01-20 | Abbvie, Inc. | Macrocyclic hepatitis C serine protease inhibitors |
US8946296B2 (en) | 2009-10-09 | 2015-02-03 | Oryzon Genomics S.A. | Substituted heteroaryl- and aryl-cyclopropylamine acetamides and their use |
US8951964B2 (en) | 2010-12-30 | 2015-02-10 | Abbvie Inc. | Phenanthridine macrocyclic hepatitis C serine protease inhibitors |
WO2015042375A1 (en) | 2013-09-20 | 2015-03-26 | Idenix Pharmaceuticals, Inc. | Hepatitis c virus inhibitors |
US8993808B2 (en) | 2009-01-21 | 2015-03-31 | Oryzon Genomics, S.A. | Phenylcyclopropylamine derivatives and their medical use |
US9006449B2 (en) | 2010-07-29 | 2015-04-14 | Oryzon Genomics, S.A. | Cyclopropylamine derivatives useful as LSD1 inhibitors |
US9006423B2 (en) | 2013-03-15 | 2015-04-14 | Achillion Pharmaceuticals Inc. | Process for making a 4-amino-4-oxobutanoyl peptide cyclic analogue, an inhibitor of viral replication, and intermediates thereof |
US9061991B2 (en) | 2010-02-16 | 2015-06-23 | Api Corporation | Method for producing 1-amino-1-alkoxycarbonyl-2-vinylcyclopropane |
US9061966B2 (en) | 2010-10-08 | 2015-06-23 | Oryzon Genomics S.A. | Cyclopropylamine inhibitors of oxidases |
US9085607B2 (en) | 2013-03-15 | 2015-07-21 | Achillion Pharmaceuticals, Inc. | ACH-0142684 sodium salt polymorph, composition including the same, and method of manufacture thereof |
US9115175B2 (en) | 2013-03-14 | 2015-08-25 | Achillion Pharmaceuticals, Inc. | Processes for Producing sovaprevir |
US9127013B2 (en) | 2008-10-22 | 2015-09-08 | Array Biopharma, Inc. | Method of treatment using substituted pyrazolo[1,5-a] pyrimidine compounds |
WO2015134560A1 (en) | 2014-03-05 | 2015-09-11 | Idenix Pharmaceuticals, Inc. | Solid forms of a flaviviridae virus inhibitor compound and salts thereof |
WO2015134561A1 (en) | 2014-03-05 | 2015-09-11 | Idenix Pharmaceuticals, Inc. | Pharmaceutical compositions comprising a 5,5-fused heteroarylene flaviviridae inhibitor and their use for treating or preventing flaviviridae infection |
US9181198B2 (en) | 2010-07-29 | 2015-11-10 | Oryzon Genomics S.A. | Arylcyclopropylamine based demethylase inhibitors of LSD1 and their medical use |
US9186337B2 (en) | 2010-02-24 | 2015-11-17 | Oryzon Genomics S.A. | Lysine demethylase inhibitors for diseases and disorders associated with Hepadnaviridae |
US9227975B2 (en) | 2008-09-22 | 2016-01-05 | Array Biopharma, Inc. | Method of treatment using substituted imidazo[1,2B]pyridazine compounds |
US9227952B2 (en) | 2013-03-15 | 2016-01-05 | Achillion Pharmaceuticals, Inc. | Sovaprevir polymorphs and methods of manufacture thereof |
US9296782B2 (en) | 2012-07-03 | 2016-03-29 | Gilead Sciences, Inc. | Inhibitors of hepatitis C virus |
US9333204B2 (en) | 2014-01-03 | 2016-05-10 | Abbvie Inc. | Solid antiviral dosage forms |
US9334279B2 (en) | 2012-11-02 | 2016-05-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9409943B2 (en) | 2012-11-05 | 2016-08-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9469597B2 (en) | 2011-10-20 | 2016-10-18 | Oryzon Genomics S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US9487512B2 (en) | 2011-10-20 | 2016-11-08 | Oryzon Genomics S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US9499550B2 (en) | 2012-10-19 | 2016-11-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9573978B2 (en) | 2010-08-12 | 2017-02-21 | S&T Global, Inc. | Cyclosporin derivatives for the treatment and prevention of a viral infection |
US9580463B2 (en) | 2013-03-07 | 2017-02-28 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9598433B2 (en) | 2012-11-02 | 2017-03-21 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9616058B2 (en) | 2010-02-24 | 2017-04-11 | Oryzon Genomics, S.A. | Potent selective LSD1 inhibitors and dual LSD1/MAO-B inhibitors for antiviral use |
US9617310B2 (en) | 2013-03-15 | 2017-04-11 | Gilead Sciences, Inc. | Inhibitors of hepatitis C virus |
US9643999B2 (en) | 2012-11-02 | 2017-05-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9682979B2 (en) | 2009-07-09 | 2017-06-20 | Array Biopharma, Inc. | Substituted pyrazolo [1,5-A] pyrimidine compounds as TRK kinase inhibitors |
US9782414B2 (en) | 2014-11-16 | 2017-10-10 | Array Biopharma, Inc. | Crystalline form of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-A]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide hydrogen sulfate |
US9890198B2 (en) | 2010-12-03 | 2018-02-13 | S&T Global Inc. | Cyclosporin derivatives and uses thereof |
US9908859B2 (en) | 2011-02-08 | 2018-03-06 | Oryzon Genomics, S.A. | Lysine demethylase inhibitors for myeloproliferative disorders |
US10045991B2 (en) | 2016-04-04 | 2018-08-14 | Loxo Oncology, Inc. | Methods of treating pediatric cancers |
US10137127B2 (en) | 2016-04-04 | 2018-11-27 | Loxo Oncology, Inc. | Liquid formulations of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-A]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide |
US10201584B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
US10370727B2 (en) | 2015-10-26 | 2019-08-06 | Loxo Oncology, Inc. | Point mutations in TRK inhibitor-resistant cancer and methods relating to the same |
US10688100B2 (en) | 2017-03-16 | 2020-06-23 | Array Biopharma Inc. | Macrocylic compounds as ROS1 kinase inhibitors |
US11091486B2 (en) | 2016-10-26 | 2021-08-17 | Array Biopharma, Inc | Process for the preparation of pyrazolo[1,5-a]pyrimidines and salts thereof |
US11116783B2 (en) | 2013-08-27 | 2021-09-14 | Gilead Pharmasset Llc | Combination formulation of two antiviral compounds |
US11214571B2 (en) | 2016-05-18 | 2022-01-04 | Array Biopharma Inc. | Process for the preparation of (S)-N-(5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-pyrazolo[1,5-a]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide and salts thereof |
US12083099B2 (en) | 2020-10-28 | 2024-09-10 | Accencio LLC | Methods of treating symptoms of coronavirus infection with viral protease inhibitors |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7867516B2 (en) | 2001-01-29 | 2011-01-11 | Shionogi & Co., Ltd. | Medicinal preparation containing 5-methyl-1-phenyl-2-(1h)-pyridone as active ingredient |
JP2003007697A (en) * | 2001-06-21 | 2003-01-10 | Hitachi Kokusai Electric Inc | Method for manufacturing semiconductor device, method and apparatus for processing substrate |
US7491794B2 (en) * | 2003-10-14 | 2009-02-17 | Intermune, Inc. | Macrocyclic compounds as inhibitors of viral replication |
NZ594105A (en) * | 2005-07-25 | 2013-02-22 | Intermune Inc | Novel macrocyclic inhibitors of hepatitis c virus replication |
NZ591443A (en) * | 2005-09-22 | 2013-04-26 | Intermune Inc | Granule formation of pirfenidone and pharmaceutically acceptable excipients |
WO2007044893A2 (en) | 2005-10-11 | 2007-04-19 | Intermune, Inc. | Compounds and methods for inhibiting hepatitis c viral replication |
ES2531315T3 (en) * | 2006-07-07 | 2015-03-12 | Gilead Sciences Inc | Antiviral Phosphinate Compounds |
US7605126B2 (en) * | 2006-08-11 | 2009-10-20 | Enanta Pharmaceuticals, Inc. | Acylaminoheteroaryl hepatitis C virus protease inhibitors |
CN101568336B (en) * | 2006-11-16 | 2012-07-04 | 百时美施贵宝公司 | Macrocyclic peptides as hepatitis c virus inhibitors |
MX2009006526A (en) * | 2006-12-18 | 2009-06-30 | Intermune Inc | Method of providing pirfenidone therapy to a patient. |
MX2007009796A (en) | 2007-08-14 | 2009-02-25 | Cell Therapy And Technology S | Gel containing pirfenidone. |
US8419332B2 (en) * | 2007-10-19 | 2013-04-16 | Atlas Bolt & Screw Company Llc | Non-dimpling fastener |
WO2009053828A2 (en) * | 2007-10-22 | 2009-04-30 | Enanta Pharmaceuticals, Inc. | P3 hydroxyamino macrocyclic hepatitis c serine protease inhibitors |
CL2008003384A1 (en) | 2007-11-14 | 2009-12-11 | Enanta Pharm Inc | Macrocyclic quinoxaline derived compounds, serine protease inhibitors; pharmaceutical composition comprising them; and its use in the treatment of hepatitis c. |
EP2224942A4 (en) | 2007-12-05 | 2012-01-25 | Enanta Pharm Inc | Fluorinated tripeptide hcv serine protease inhibitors |
WO2009073719A1 (en) | 2007-12-05 | 2009-06-11 | Enanta Pharmaceuticals, Inc. | Quinoxalinyl derivatives |
AU2015224437B2 (en) * | 2007-12-21 | 2017-05-25 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US8309685B2 (en) | 2007-12-21 | 2012-11-13 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
TW201546079A (en) * | 2007-12-21 | 2015-12-16 | Celgene Avilomics Res Inc | HCV protease inhibitors and uses thereof |
JP5755449B2 (en) * | 2007-12-21 | 2015-07-29 | セルジーン アビロミクス リサーチ, インコーポレイテッド | HCV protease inhibitors and uses thereof |
US8293705B2 (en) | 2007-12-21 | 2012-10-23 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
WO2009152051A1 (en) * | 2008-06-12 | 2009-12-17 | Phenomix Corporation | Synthesis of a macrocyclic hcv protease inhibitor |
US8188137B2 (en) | 2008-08-15 | 2012-05-29 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
EP2341924A4 (en) | 2008-10-02 | 2013-01-23 | David Gladstone Inst | Methods of treating hepatitis c virus infection |
KR20110075019A (en) * | 2008-10-15 | 2011-07-05 | 인터뮨, 인크. | Therapeutic antiviral peptides |
US7566729B1 (en) | 2008-11-10 | 2009-07-28 | Intermune, Inc. | Modifying pirfenidone treatment for patients with atypical liver function |
US7635707B1 (en) | 2008-11-10 | 2009-12-22 | Intermune, Inc. | Pirfenidone treatment for patients with atypical liver function |
KR20110114684A (en) * | 2009-01-26 | 2011-10-19 | 인터뮨, 인크. | Methods for treating acute myocardial infarctions and associated disorders |
US8102720B2 (en) * | 2009-02-02 | 2012-01-24 | Qualcomm Incorporated | System and method of pulse generation |
AR075584A1 (en) * | 2009-02-27 | 2011-04-20 | Intermune Inc | THERAPEUTIC COMPOSITIONS THAT INCLUDE beta-D-2'-DESOXI-2'-FLUORO-2'-C-METHYLYCTIDINE AND A CARDIEX ISOINDOL ACID DERIVATIVE AND ITS USES. COMPOUND. |
EP2403860B1 (en) | 2009-03-04 | 2015-11-04 | IDENIX Pharmaceuticals, Inc. | Phosphothiophene and phosphothiazole as hcv polymerase inhibitors |
JP2012523419A (en) | 2009-04-08 | 2012-10-04 | イデニク プハルマセウティカルス,インコーポレイテッド | Macrocyclic serine protease inhibitor |
TW201119667A (en) * | 2009-10-19 | 2011-06-16 | Enanta Pharm Inc | Bismacrocyclic compounds as hepatitis C virus inhibitors |
US20110117055A1 (en) | 2009-11-19 | 2011-05-19 | Macdonald James E | Methods of Treating Hepatitis C Virus with Oxoacetamide Compounds |
US8084475B2 (en) | 2009-12-04 | 2011-12-27 | Intermune, Inc. | Pirfenidone therapy and inducers of cytochrome P450 |
US7816383B1 (en) | 2009-12-04 | 2010-10-19 | Intermune, Inc. | Methods of administering pirfenidone therapy |
US8324212B2 (en) * | 2010-02-25 | 2012-12-04 | Bristol-Myers Squibb Company | Compounds for the treatment of hepatitis C |
US8563530B2 (en) | 2010-03-31 | 2013-10-22 | Gilead Pharmassel LLC | Purine nucleoside phosphoramidate |
EA029145B1 (en) * | 2010-09-21 | 2018-02-28 | Энанта Фармасьютикалз, Инк. | Macrocyclic proline derived hcv serine protease inhibitors hcv |
EP3042910B1 (en) | 2010-11-30 | 2019-01-09 | Gilead Pharmasset LLC | 2'-spiro-nucleosides for use in the therapy of hepatitis c |
EP4059499A1 (en) | 2011-01-31 | 2022-09-21 | Avalyn Pharma Inc. | Aerosol pirfenidone and pyridone analog compounds and uses thereof |
US10105356B2 (en) | 2011-01-31 | 2018-10-23 | Avalyn Pharma Inc. | Aerosol pirfenidone and pyridone analog compounds and uses thereof |
US8957203B2 (en) | 2011-05-05 | 2015-02-17 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
MX2011007675A (en) | 2011-07-19 | 2012-07-11 | Cell Therapy And Technology S A De C V | Process for manufacturing a pharmaceutical composition in a sustained-release tablet form containing pirfenidone and the application thereof in the regression of chronic renal failure, breast capsular contracture and liver fibrosis in humans. |
DE202012013382U1 (en) | 2011-09-16 | 2016-08-23 | Gilead Pharmasset Llc | Compositions for the treatment of HCV |
WO2013106631A1 (en) | 2012-01-11 | 2013-07-18 | Abbvie Inc. | Processes for making hcv protease inhibitors |
MX346763B (en) | 2012-03-28 | 2017-03-31 | Cell Therapy And Tech S A De C V | Semi-solid topical composition which contains pirfenidone and modified diallyl disulphide oxide (m-ddo) for eliminating or preventing acne. |
MX356551B (en) | 2012-08-23 | 2018-06-04 | Grupo Medifarma S A De C V Star | Antiseptic, antiseborrheic, exfoliating composition for getting rid of or preventing acne. |
CA2819967C (en) | 2012-08-31 | 2016-03-22 | Intermune, Inc. | Use of pirfenidone concomitantly with ciprofloxacin |
MX2015004411A (en) * | 2012-10-08 | 2016-04-06 | Abbvie Inc | Compounds useful for making hcv protease inhibitors. |
US20140212491A1 (en) | 2013-01-31 | 2014-07-31 | Gilead Pharmasset Llc | Combination formulation of two antiviral compounds |
US11484534B2 (en) | 2013-03-14 | 2022-11-01 | Abbvie Inc. | Methods for treating HCV |
NZ722927A (en) | 2014-01-10 | 2022-07-29 | Avalyn Pharma Inc | Aerosol pirfenidone and pyridone analog compounds and uses thereof |
CN107043405B (en) * | 2016-02-05 | 2021-11-19 | 爱博新药研发(上海)有限公司 | Crystal form of polycyclic heterocyclic compound, preparation method, application and composition thereof |
CA2937365C (en) | 2016-03-29 | 2018-09-18 | F. Hoffmann-La Roche Ag | Granulate formulation of 5-methyl-1-phenyl-2-(1h)-pyridone and method of making the same |
CN108299506A (en) * | 2018-01-29 | 2018-07-20 | 中国科学院成都有机化学有限公司 | N- heterocycle carbine ruthenium complexs and its preparation method and application |
GB201818750D0 (en) * | 2018-11-16 | 2019-01-02 | Institute Of Cancer Res Royal Cancer Hospital | Lox inhibitors |
CN110041262B (en) | 2019-01-02 | 2020-03-27 | 成都开美思商务信息咨询中心(有限合伙) | Nitrogen heterocyclic carbene ligand and ruthenium catalyst, preparation method and application thereof |
AU2022297768A1 (en) | 2021-06-23 | 2024-01-18 | Orion Corporation | Process for the preparation of a cyp11a1 inhibitor and intermediates thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000059929A1 (en) * | 1999-04-06 | 2000-10-12 | Boehringer Ingelheim (Canada) Ltd. | Macrocyclic peptides active against the hepatitis c virus |
WO2005010029A1 (en) * | 2003-07-03 | 2005-02-03 | Enanta Pharmaceuticals, Inc. | Aza-peptide macrocyclic hepatitis c serine protease inhibitors |
WO2005037214A2 (en) * | 2003-10-14 | 2005-04-28 | Intermune, Inc. | Macrocyclic carboxylic acids and acylsulfonamides as inhibitors of hcv replication |
Family Cites Families (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3547119A (en) | 1967-12-08 | 1970-12-15 | Baxter Laboratories Inc | Catheter assembly |
US4211771A (en) | 1971-06-01 | 1980-07-08 | Robins Ronald K | Treatment of human viral diseases with 1-B-D-ribofuranosyl-1,2,4-triazole-3-carboxamide |
US3798209A (en) * | 1971-06-01 | 1974-03-19 | Icn Pharmaceuticals | 1,2,4-triazole nucleosides |
US4311137A (en) | 1980-04-30 | 1982-01-19 | Sherwood Medical Industries Inc. | Infusion device |
US4531937A (en) | 1983-01-24 | 1985-07-30 | Pacesetter Systems, Inc. | Introducer catheter apparatus and method of use |
CS263951B1 (en) | 1985-04-25 | 1989-05-12 | Antonin Holy | 9-(phosponylmethoxyalkyl)adenines and method of their preparation |
DK224286A (en) | 1985-05-15 | 1986-11-16 | Wellcome Found | 2 ', 3'-dideoxy nucleosides |
US4806347A (en) | 1985-12-11 | 1989-02-21 | Schering Corporation | Interferon combinations |
US4755173A (en) | 1986-02-25 | 1988-07-05 | Pacesetter Infusion, Ltd. | Soft cannula subcutaneous injection set |
CS264222B1 (en) | 1986-07-18 | 1989-06-13 | Holy Antonin | N-phosphonylmethoxyalkylderivatives of bases of pytimidine and purine and method of use them |
US5082659A (en) | 1986-10-06 | 1992-01-21 | Board Of Regents, The University Of Texas System | Methods and compositions employing interferon-gamma |
ES2039276T3 (en) | 1987-01-20 | 1993-09-16 | Schering Corporation | USE OF A COMBINATION OF INTERFERON GAMMA AND INTERFERON ALPHA FOR THE PREPARATION OF A MEDICINAL PRODUCT FOR THE TREATMENT OF CERTAIN LEUKEMIA. |
US5190751A (en) | 1987-01-20 | 1993-03-02 | Schering Corporation | Treatment of certain leukemias with a combination of gamma interferon and alpha interferon |
WO1988009673A1 (en) | 1987-06-02 | 1988-12-15 | Schering Corporation | Treatment of chronic type b hepatitis with a combination of recombinant human alpha and gamma interferons |
US4904770A (en) | 1988-03-24 | 1990-02-27 | Bristol-Myers Company | Production of 2',3'-dideoxy-2',3'-didehydronucleosides |
US5130421A (en) | 1988-03-24 | 1992-07-14 | Bristol-Myers Company | Production of 2',3'-dideoxy-2',3'-didehydronucleosides |
GB8815265D0 (en) | 1988-06-27 | 1988-08-03 | Wellcome Found | Therapeutic nucleosides |
US5552558A (en) | 1989-05-23 | 1996-09-03 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US5354866A (en) | 1989-05-23 | 1994-10-11 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US5232928A (en) * | 1989-07-25 | 1993-08-03 | Boehringer Ingelheim Pharmaceuticals, Inc. | Tetrahydroisoquinoline amides |
GB8918806D0 (en) | 1989-08-17 | 1989-09-27 | Shell Int Research | Chiral compounds,their preparation and use |
US5518729A (en) | 1989-11-22 | 1996-05-21 | Margolin; Solomon B. | Compositions and methods for reparation and prevention of fibrotic lesions |
US5310562A (en) | 1989-11-22 | 1994-05-10 | Margolin Solomon B | Composition and method for reparation and prevention of fibrotic lesions |
US5716632A (en) | 1989-11-22 | 1998-02-10 | Margolin; Solomon B. | Compositions and methods for reparation and prevention of fibrotic lesions |
ATE167679T1 (en) | 1990-09-14 | 1998-07-15 | Acad Of Science Czech Republic | PHOSPHONATE PRECURSORS |
US5372808A (en) | 1990-10-17 | 1994-12-13 | Amgen Inc. | Methods and compositions for the treatment of diseases with consensus interferon while reducing side effect |
DE4121214A1 (en) | 1991-06-27 | 1993-01-14 | Bayer Ag | 7-AZAISOINDOLINYL CHINOLONE AND NAPHTHYRIDONE CARBONIC ACID DERIVATIVES |
US5610054A (en) | 1992-05-14 | 1997-03-11 | Ribozyme Pharmaceuticals, Inc. | Enzymatic RNA molecule targeted against Hepatitis C virus |
US5382657A (en) | 1992-08-26 | 1995-01-17 | Hoffmann-La Roche Inc. | Peg-interferon conjugates |
ATE143262T1 (en) | 1992-12-29 | 1996-10-15 | Abbott Lab | RETROVIRAL PROTEASE INHIBITORS |
US5545143A (en) | 1993-01-21 | 1996-08-13 | T. S. I. Medical | Device for subcutaneous medication delivery |
DK0730470T3 (en) | 1993-11-10 | 2002-06-03 | Enzon Inc | Improved interferon polymer conjugates |
US5624949A (en) * | 1993-12-07 | 1997-04-29 | Eli Lilly And Company | Protein kinase C inhibitors |
US6693072B2 (en) * | 1994-06-02 | 2004-02-17 | Aventis Pharmaceuticals Inc. | Elastase inhibitors |
US5500208A (en) | 1994-06-07 | 1996-03-19 | The Procter & Gamble Company | Oral compositions comprising a novel tripeptide |
US5847135A (en) * | 1994-06-17 | 1998-12-08 | Vertex Pharmaceuticals, Incorporated | Inhibitors of interleukin-1β converting enzyme |
US5756466A (en) * | 1994-06-17 | 1998-05-26 | Vertex Pharmaceuticals, Inc. | Inhibitors of interleukin-1β converting enzyme |
US5824784A (en) | 1994-10-12 | 1998-10-20 | Amgen Inc. | N-terminally chemically modified protein compositions and methods |
IL116730A0 (en) | 1995-01-13 | 1996-05-14 | Amgen Inc | Chemically modified interferon |
US6090822A (en) | 1995-03-03 | 2000-07-18 | Margolin; Solomon B. | Treatment of cytokine growth factor caused disorders |
GB9517022D0 (en) | 1995-08-19 | 1995-10-25 | Glaxo Group Ltd | Medicaments |
US5908621A (en) | 1995-11-02 | 1999-06-01 | Schering Corporation | Polyethylene glycol modified interferon therapy |
US5980884A (en) | 1996-02-05 | 1999-11-09 | Amgen, Inc. | Methods for retreatment of patients afflicted with Hepatitis C using consensus interferon |
US5908121A (en) | 1996-03-11 | 1999-06-01 | Dardashti; Shahriar | Adjustable display assembly |
US5633388A (en) | 1996-03-29 | 1997-05-27 | Viropharma Incorporated | Compounds, compositions and methods for treatment of hepatitis C |
JPH11513890A (en) | 1996-05-10 | 1999-11-30 | シェーリング コーポレイション | Synthetic inhibitor of hepatitis C virus NS3 protease |
UA79749C2 (en) | 1996-10-18 | 2007-07-25 | Vertex Pharma | Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease |
GB9623908D0 (en) | 1996-11-18 | 1997-01-08 | Hoffmann La Roche | Amino acid derivatives |
US6232333B1 (en) | 1996-11-21 | 2001-05-15 | Abbott Laboratories | Pharmaceutical composition |
US5968895A (en) * | 1996-12-11 | 1999-10-19 | Praecis Pharmaceuticals, Inc. | Pharmaceutical formulations for sustained drug delivery |
WO1998046597A1 (en) | 1997-04-14 | 1998-10-22 | Emory University | Serine protease inhibitors |
GB9707659D0 (en) | 1997-04-16 | 1997-06-04 | Peptide Therapeutics Ltd | Hepatitis C NS3 Protease inhibitors |
EP1012180B1 (en) | 1997-08-11 | 2004-12-01 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis c inhibitor peptide analogues |
JP4354632B2 (en) | 1997-08-11 | 2009-10-28 | ベーリンガー インゲルハイム (カナダ) リミテッド | Hepatitis C inhibitor peptide |
US6767991B1 (en) * | 1997-08-11 | 2004-07-27 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis C inhibitor peptides |
US6172046B1 (en) | 1997-09-21 | 2001-01-09 | Schering Corporation | Combination therapy for eradicating detectable HCV-RNA in patients having chronic Hepatitis C infection |
US5985263A (en) | 1997-12-19 | 1999-11-16 | Enzon, Inc. | Substantially pure histidine-linked protein polymer conjugates |
IT1299134B1 (en) | 1998-02-02 | 2000-02-29 | Angeletti P Ist Richerche Bio | PROCEDURE FOR THE PRODUCTION OF PEPTIDES WITH PROTEAS INHIBITING THE NS3 PROTEASIS OF THE HCV VIRUS, PEPTIDES SO OBTAINABLE AND PEPTIDES |
WO1999050230A1 (en) | 1998-03-31 | 1999-10-07 | Vertex Pharmaceuticals Incorporated | Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease |
GB9812523D0 (en) | 1998-06-10 | 1998-08-05 | Angeletti P Ist Richerche Bio | Peptide inhibitors of hepatitis c virus ns3 protease |
US6323180B1 (en) * | 1998-08-10 | 2001-11-27 | Boehringer Ingelheim (Canada) Ltd | Hepatitis C inhibitor tri-peptides |
AR022061A1 (en) | 1998-08-10 | 2002-09-04 | Boehringer Ingelheim Ca Ltd | INHIBITING PEPTIDES OF HEPATITIS C, A PHARMACEUTICAL COMPOSITION CONTAINING THEM, THE USE OF THE SAME TO PREPARE A PHARMACEUTICAL COMPOSITION, THE USE OF AN INTERMEDIATE PRODUCT FOR THE PREPARATION OF THESE PEPTIDES AND A PROCEDURE FOR THE PREPARATION OF ANOGRAPH . |
US6277830B1 (en) | 1998-10-16 | 2001-08-21 | Schering Corporation | 5′-amino acid esters of ribavirin and the use of same to treat hepatitis C with interferon |
US7157430B2 (en) * | 1998-10-22 | 2007-01-02 | Idun Pharmaceuticals, Inc. | (Substituted)acyl dipeptidyl inhibitors of the ICE/CED-3 family of cysteine proteases |
US6245740B1 (en) | 1998-12-23 | 2001-06-12 | Amgen Inc. | Polyol:oil suspensions for the sustained release of proteins |
US6608027B1 (en) | 1999-04-06 | 2003-08-19 | Boehringer Ingelheim (Canada) Ltd | Macrocyclic peptides active against the hepatitis C virus |
ES2300262T3 (en) | 1999-05-04 | 2008-06-16 | Boehringer Ingelheim (Canada) Ltd. | SYSTEM BASED ON SUBSTITUTE CELLS AND METHOD TO ANALYZE THE ACTIVITY OF THE NS3 PROTEASE OF HEPATITIS VIRUS C. |
US7256005B2 (en) | 1999-08-10 | 2007-08-14 | The Chancellor, Masters And Scholars Of The University Of Oxford | Methods for identifying iminosugar derivatives that inhibit HCV p7 ion channel activity |
EP1268519B1 (en) * | 2000-04-03 | 2005-06-15 | Vertex Pharmaceuticals Incorporated | Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease |
PL359359A1 (en) * | 2000-04-05 | 2004-08-23 | Schering Corporation | Macrocyclic ns3-serine protease inhibitors of hepatitis c virus comprising n-cyclic p2 moieties |
CN1935833A (en) * | 2000-04-19 | 2007-03-28 | 先灵公司 | Macrocyclic ns-3 serine protease inhibitors of hepatitis c virus comprising alkyl and aryl alanine p2 moieties |
US7244721B2 (en) * | 2000-07-21 | 2007-07-17 | Schering Corporation | Peptides as NS3-serine protease inhibitors of hepatitis C virus |
SK288064B6 (en) * | 2000-07-21 | 2013-04-03 | Merck Sharp & Dohme Corp. | Peptide compounds, pharmaceutical compositions comprising them and their use |
ATE327246T1 (en) * | 2000-11-20 | 2006-06-15 | Bristol Myers Squibb Co | HEPATITIS C TRIPEPTIDE INHIBITORS |
AU2002305450A1 (en) * | 2001-05-08 | 2002-11-18 | Yale University | Proteomimetic compounds and methods |
JP4455056B2 (en) * | 2001-07-11 | 2010-04-21 | バーテックス ファーマシューティカルズ インコーポレイテッド | Cross-linked bicyclic serine protease inhibitor |
US6867185B2 (en) * | 2001-12-20 | 2005-03-15 | Bristol-Myers Squibb Company | Inhibitors of hepatitis C virus |
CA2369711A1 (en) | 2002-01-30 | 2003-07-30 | Boehringer Ingelheim (Canada) Ltd. | Macrocyclic peptides active against the hepatitis c virus |
US7119072B2 (en) * | 2002-01-30 | 2006-10-10 | Boehringer Ingelheim (Canada) Ltd. | Macrocyclic peptides active against the hepatitis C virus |
US7091184B2 (en) * | 2002-02-01 | 2006-08-15 | Boehringer Ingelheim International Gmbh | Hepatitis C inhibitor tri-peptides |
CA2370400A1 (en) | 2002-02-01 | 2003-08-01 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis c inhibitor tri-peptides |
CA2369970A1 (en) | 2002-02-01 | 2003-08-01 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis c inhibitor tri-peptides |
US6642204B2 (en) | 2002-02-01 | 2003-11-04 | Boehringer Ingelheim International Gmbh | Hepatitis C inhibitor tri-peptides |
CA2370396A1 (en) | 2002-02-01 | 2003-08-01 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis c inhibitor tri-peptides |
US6828301B2 (en) | 2002-02-07 | 2004-12-07 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions for hepatitis C viral protease inhibitors |
NZ575692A (en) * | 2002-04-11 | 2009-10-30 | Vertex Pharma | Inhibitors of Serine Proteases, Particularly Hepatitis C Virus NS3-NS4 Protease |
BR0309573A (en) * | 2002-04-26 | 2005-02-01 | Gilead Sciences Inc | Cellular accumulation of phosphonate analogs of hiv protease inhibiting compounds |
US20040033970A1 (en) | 2002-04-30 | 2004-02-19 | Clark Richard F. | Antibacterial compounds with improved pharmacokinetic profiles |
EP1506000B9 (en) * | 2002-05-20 | 2011-08-31 | Bristol-Myers Squibb Company | Heterocyclicsulfonamide hepatitis c virus inhibitors |
ATE503764T1 (en) | 2002-05-20 | 2011-04-15 | Bristol Myers Squibb Co | HEPATITIS C VIRUS INHIBITORS |
MY140680A (en) * | 2002-05-20 | 2010-01-15 | Bristol Myers Squibb Co | Hepatitis c virus inhibitors |
PL213029B1 (en) * | 2002-05-20 | 2012-12-31 | Bristol Myers Squibb Co | Substituted cycloalkyl p1' hepatitis c virus inhibitors |
US20040033959A1 (en) | 2002-07-19 | 2004-02-19 | Boehringer Ingelheim Pharmaceuticals, Inc. | Pharmaceutical compositions for hepatitis C viral protease inhibitors |
US20040138109A1 (en) * | 2002-09-30 | 2004-07-15 | Boehringer Ingelheim Pharmaceuticals, Inc. | Potent inhibitor of HCV serine protease |
PL199412B1 (en) * | 2002-10-15 | 2008-09-30 | Boehringer Ingelheim Int | Ruthenium new complexes as (pre) catalytic agents of permutation reaction, new derivatives of 2-alkoxy-5-nitrostyrene as intermediate compounds and method of their receiving |
US20050075279A1 (en) * | 2002-10-25 | 2005-04-07 | Boehringer Ingelheim International Gmbh | Macrocyclic peptides active against the hepatitis C virus |
US7601709B2 (en) * | 2003-02-07 | 2009-10-13 | Enanta Pharmaceuticals, Inc. | Macrocyclic hepatitis C serine protease inhibitors |
US20040180815A1 (en) | 2003-03-07 | 2004-09-16 | Suanne Nakajima | Pyridazinonyl macrocyclic hepatitis C serine protease inhibitors |
JP2007524576A (en) | 2003-02-07 | 2007-08-30 | エナンタ ファーマシューティカルズ インコーポレイテッド | Macrocyclic hepatitis C serine protease inhibitor |
CA2516016C (en) * | 2003-03-05 | 2012-05-29 | Boehringer Ingelheim International Gmbh | Hepatitis c inhibiting compounds |
UY28240A1 (en) | 2003-03-27 | 2004-11-08 | Boehringer Ingelheim Pharma | CRYSTAL PHASES OF A POWERFUL HCV INHIBITOR |
MXPA05010338A (en) * | 2003-04-02 | 2005-11-17 | Boehringer Ingelheim Int | Pharmaceutical compositions for hepatitis c viral protease inhibitors. |
CA2521835A1 (en) | 2003-04-10 | 2004-10-21 | Boehringer Ingelheim International Gmbh | Process for the preparation of macrocyclic compounds by ruthenium complex catalysed metathesis reaction |
JP4231524B2 (en) * | 2003-04-10 | 2009-03-04 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Process for producing macrocyclic compounds |
TW200510391A (en) * | 2003-04-11 | 2005-03-16 | Vertex Pharma | Inhibitors of serine proteases, particularly HCV NS3-NS4A protease |
ES2320771T3 (en) * | 2003-04-16 | 2009-05-28 | Bristol-Myers Squibb Company | PEPTIDIC INHIBITORS OF MACROCICLIC ISOQUINOLINE VIRUS OF HEPATITIS C. |
PT1615613E (en) * | 2003-04-18 | 2010-02-09 | Enanta Pharm Inc | Quinoxalinyl macrocyclic hepatitis c serine protease inhibitors |
US7176208B2 (en) * | 2003-04-18 | 2007-02-13 | Enanta Pharmaceuticals, Inc. | Quinoxalinyl macrocyclic hepatitis C serine protease inhibitors |
WO2004096285A2 (en) | 2003-04-25 | 2004-11-11 | Gilead Sciences, Inc. | Anti-infective phosphonate conjugates |
ATE490788T1 (en) | 2003-04-25 | 2010-12-15 | Gilead Sciences Inc | ANTIVIRAL PHOSPHONATE ANALOGUE |
EP1622870A2 (en) * | 2003-05-05 | 2006-02-08 | Prosidion Ltd. | Glutaminyl based dp iv-inhibitors |
US7273851B2 (en) * | 2003-06-05 | 2007-09-25 | Enanta Pharmaceuticals, Inc. | Tri-peptide hepatitis C serine protease inhibitors |
UY28500A1 (en) * | 2003-09-05 | 2005-04-29 | Vertex Pharma | INHIBITORS OF SERINE PROTEASES, IN PARTICULAR PROTEASA NS3-NS4A HCV. |
TW200526686A (en) * | 2003-09-18 | 2005-08-16 | Vertex Pharma | Inhibitors of serine proteases, particularly HCV NS3-NS4A protease |
AU2004274051A1 (en) * | 2003-09-22 | 2005-03-31 | Boehringer Ingelheim International Gmbh | Macrocyclic peptides active against the hepatitis C virus |
DE602004031298D1 (en) * | 2003-09-26 | 2011-03-17 | Schering Corp | MACROCYCLIC INHIBITORS OF THE NS3 SERINE PROTEASE OF HEPATITIS C VIRUS |
CA2541634A1 (en) * | 2003-10-10 | 2005-04-28 | Vertex Pharmaceuticals Incorporated | Inhibitors of serine proteases, particularly hcv ns3-ns4a protease |
US7491794B2 (en) * | 2003-10-14 | 2009-02-17 | Intermune, Inc. | Macrocyclic compounds as inhibitors of viral replication |
WO2005042570A1 (en) * | 2003-10-27 | 2005-05-12 | Vertex Pharmaceuticals Incorporated | Hcv ns3-ns4a protease resistance mutants |
US7132504B2 (en) * | 2003-11-12 | 2006-11-07 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
EP1687021B1 (en) * | 2003-11-20 | 2013-11-06 | Boehringer Ingelheim International GmbH | Method of removing transition metals, especially from metathesis reaction products |
WO2005051980A1 (en) * | 2003-11-20 | 2005-06-09 | Schering Corporation | Depeptidized inhibitors of hepatitis c virus ns3 protease |
US7309708B2 (en) * | 2003-11-20 | 2007-12-18 | Birstol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7135462B2 (en) * | 2003-11-20 | 2006-11-14 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
DE602004019973D1 (en) | 2003-12-08 | 2009-04-23 | Boehringer Ingelheim Int | SEPARATION OF RUTHENIUM BY-PRODUCTS BY TREATMENT WITH SUPERCRITICAL LIQUIDS |
US7485625B2 (en) * | 2003-12-11 | 2009-02-03 | Schering Corporation | Inhibitors of hepatitis C virus NS3/NS4a serine protease |
CA2549851C (en) * | 2004-01-21 | 2012-09-11 | Boehringer Ingelheim International Gmbh | Macrocyclic peptides active against the hepatitis c virus |
ATE416187T1 (en) * | 2004-01-28 | 2008-12-15 | Boehringer Ingelheim Int | METHOD FOR REMOVAL OF TRANSITION METALS FROM REACTION SOLUTIONS CONTAINING TRANSITION METAL BYPRODUCTS |
ATE461209T1 (en) | 2004-01-30 | 2010-04-15 | Medivir Ab | HCV NS-3 SERINE PROTEASE INHIBITORS |
US7683033B2 (en) * | 2004-02-04 | 2010-03-23 | Vertex Pharmaceuticals Incorporated | Inhibitors of serine proteases, particularly HCV NS3-NS4A protease |
EP1737821B1 (en) * | 2004-02-27 | 2009-08-05 | Schering Corporation | 3,4-(cyclopentyl)-fused proline compounds as inhibitors of hepatitis c virus ns3 serine protease |
RU2006134002A (en) * | 2004-02-27 | 2008-04-10 | Шеринг Корпорейшн (US) | NEW COMPOUNDS OPERATING AS NS3 SERIN PROTEASE INHIBITORS HEPATITIS C VIRUS |
US7816326B2 (en) * | 2004-02-27 | 2010-10-19 | Schering Corporation | Sulfur compounds as inhibitors of hepatitis C virus NS3 serine protease |
BRPI0508217A (en) * | 2004-02-27 | 2007-07-17 | Schering Corp | cyclic p4's ketamides as inhibitors of hepatitis c virus ns3 serine protease |
JP4745327B2 (en) * | 2004-02-27 | 2011-08-10 | シェーリング コーポレイション | Inhibitor of hepatitis C virus NS3 protease |
MXPA06010389A (en) | 2004-03-15 | 2007-01-19 | Boehringer Ingelheim Int | Process for preparing macrocyclic dipeptides which are suitable for the treatment of hepatitis c viral infections. |
JP4950026B2 (en) | 2004-03-30 | 2012-06-13 | インターミューン・インコーポレーテッド | Macrocyclic compounds as viral replication inhibitors |
WO2005097820A1 (en) | 2004-04-06 | 2005-10-20 | Korea Research Institute Of Bioscience And Biotechnology | Peptides for inhibiting mdm2 function |
MXPA06013404A (en) * | 2004-05-20 | 2007-01-23 | Schering Corp | Substituted prolines as inhibitors of hepatitis c virus ns3 serine protease. |
JP5156374B2 (en) * | 2004-05-25 | 2013-03-06 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for preparing acyclic HCV protease inhibitor |
WO2006000085A1 (en) | 2004-06-28 | 2006-01-05 | Boehringer Ingelheim International Gmbh | Hepatitis c inhibitor peptide analogs |
US7939538B2 (en) * | 2004-06-28 | 2011-05-10 | Amgen Inc. | Compounds, compositions and methods for prevention and treatment of inflammatory and immunoregulatory disorders and diseases |
DE102004033312A1 (en) * | 2004-07-08 | 2006-01-26 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Continuous metathesis process with ruthenium catalysts |
EA200700336A1 (en) * | 2004-07-16 | 2009-12-30 | Джилид Сайэнс, Инк. | ANTI-VIRUS COMPOUNDS |
UY29016A1 (en) * | 2004-07-20 | 2006-02-24 | Boehringer Ingelheim Int | ANALOGS OF INHIBITING DIPEPTIDES OF HEPATITIS C |
ES2366478T3 (en) * | 2004-07-20 | 2011-10-20 | Boehringer Ingelheim International Gmbh | PEPTIDE ANALOGS INHIBITORS OF HEPATITIS C. |
CA2577812A1 (en) * | 2004-08-27 | 2006-03-09 | Schering Corporation | Acylsulfonamide compounds as inhibitors of hepatitis c virus ns3 serine protease |
CA2577831A1 (en) * | 2004-09-17 | 2006-03-30 | Boehringer Ingelheim International Gmbh | Process for preparing macrocyclic hcv protease inhibitors |
JP2008513452A (en) * | 2004-09-17 | 2008-05-01 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Ring closure metathesis in supercritical fluids |
US8093273B2 (en) | 2004-10-20 | 2012-01-10 | Resverlogix Corp. | Flavanoids and isoflavanoids for the prevention and treatment of cardiovascular diseases |
DE102005002336A1 (en) * | 2005-01-17 | 2006-07-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for conducting continuous olefin-ring closure metathesis in compressed carbon dioxide |
US7323447B2 (en) * | 2005-02-08 | 2008-01-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7524831B2 (en) * | 2005-03-02 | 2009-04-28 | Schering Corporation | Treatments for Flaviviridae virus infection |
AU2006220887B2 (en) * | 2005-03-04 | 2010-11-04 | The Rockefeller University | Infectious, chimeric Hepatitis C Virus, methods of producing the same and methods of use thereof |
US7608614B2 (en) * | 2005-03-08 | 2009-10-27 | Boehringer Ingelheim International Gmbh | Process for preparing macrocyclic compounds |
US20060252698A1 (en) * | 2005-04-20 | 2006-11-09 | Malcolm Bruce A | Compounds for inhibiting cathepsin activity |
US7879797B2 (en) * | 2005-05-02 | 2011-02-01 | Merck Sharp & Dohme Corp. | HCV NS3 protease inhibitors |
MX2007014889A (en) | 2005-05-26 | 2008-02-19 | Schering Corp | Interferon-igg fusion. |
US20060275366A1 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Controlled-release formulation |
MX2007015270A (en) * | 2005-06-02 | 2008-02-21 | Schering Corp | Combination of hcv protease inhibitors with a surfactant. |
WO2006130666A2 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Medicaments and methods combining a hcv protease inhibitor and an akr competitor |
WO2006130688A2 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Compounds for inhibiting cathepsin activity |
WO2006130553A2 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Hcv protease inhibitors |
US20060276407A1 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Methods of treating hepatitis C virus |
US20060281689A1 (en) * | 2005-06-02 | 2006-12-14 | Schering Corporation | Method for modulating activity of HCV protease through use of a novel HCV protease inhibitor to reduce duration of treatment period |
WO2006130627A2 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Methods for treating hepatitis c |
CA2610167A1 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Administration of hcv protease inhibitors in combination with food to improve bioavailability |
WO2006130687A2 (en) * | 2005-06-02 | 2006-12-07 | Schering Corporation | Liver/plasma concentration ratio for dosing hepatitis c virus protease inhibitor |
US7608592B2 (en) * | 2005-06-30 | 2009-10-27 | Virobay, Inc. | HCV inhibitors |
US7601686B2 (en) * | 2005-07-11 | 2009-10-13 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
TWI389908B (en) * | 2005-07-14 | 2013-03-21 | Gilead Sciences Inc | Antiviral compounds |
TW200738742A (en) * | 2005-07-14 | 2007-10-16 | Gilead Sciences Inc | Antiviral compounds |
US7470664B2 (en) * | 2005-07-20 | 2008-12-30 | Merck & Co., Inc. | HCV NS3 protease inhibitors |
NZ594105A (en) * | 2005-07-25 | 2013-02-22 | Intermune Inc | Novel macrocyclic inhibitors of hepatitis c virus replication |
JP2009503084A (en) | 2005-08-01 | 2009-01-29 | フェノミックス コーポレーション | Hepatitis C serine protease inhibitor and use thereof |
AU2006275413B2 (en) | 2005-08-02 | 2012-07-19 | Vertex Pharmaceuticals Incorporated | Inhibitors of serine proteases |
AR055395A1 (en) | 2005-08-26 | 2007-08-22 | Vertex Pharma | INHIBITING COMPOUNDS OF THE ACTIVITY OF SERINA PROTEASA NS3-NS4A OF HEPATITIS C VIRUS |
US7964624B1 (en) | 2005-08-26 | 2011-06-21 | Vertex Pharmaceuticals Incorporated | Inhibitors of serine proteases |
WO2007044893A2 (en) * | 2005-10-11 | 2007-04-19 | Intermune, Inc. | Compounds and methods for inhibiting hepatitis c viral replication |
US7772183B2 (en) * | 2005-10-12 | 2010-08-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7741281B2 (en) * | 2005-11-03 | 2010-06-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7705138B2 (en) * | 2005-11-11 | 2010-04-27 | Vertex Pharmaceuticals Incorporated | Hepatitis C virus variants |
EP1981524A2 (en) | 2006-02-09 | 2008-10-22 | Schering Corporation | Combinations comprising hcv protease inhibitor(s) and hcv polymerase inhibitor(s), and methods of treatment related thereto |
MX2008011868A (en) | 2006-03-16 | 2008-12-15 | Vertex Pharma | Deuterated hepatitis c protease inhibitors. |
WO2007111866A2 (en) | 2006-03-23 | 2007-10-04 | Schering Corporation | Combinations of hcv protease inhibitor(s) and cyp3a4 inhibitor(s), and methods of treatment related thereto |
NZ571826A (en) | 2006-04-11 | 2012-01-12 | Novartis Ag | HCV/HIV inhibitors and their uses |
US20080187516A1 (en) * | 2006-06-06 | 2008-08-07 | Ying Sun | Acyclic oximyl hepatitis c protease inhibitors |
US9526769B2 (en) * | 2006-06-06 | 2016-12-27 | Enanta Pharmaceuticals, Inc. | Macrocylic oximyl hepatitis C protease inhibitors |
US7728148B2 (en) * | 2006-06-06 | 2010-06-01 | Enanta Pharmaceuticals, Inc. | Acyclic oximyl hepatitis C protease inhibitors |
US20090203008A1 (en) * | 2006-06-08 | 2009-08-13 | Ludmerer Steven W | Rapid method to determine inhibitor sensitivity of NS3/4A protease sequences cloned from clinical samples |
UY30437A1 (en) * | 2006-06-26 | 2008-01-31 | Enanta Pharm Inc | QUINOXALINIL MACROCECLIC INHIBITORS OF SERINE PROTEASE VIRUS OF HEPATITIS C |
KR20090024834A (en) * | 2006-07-05 | 2009-03-09 | 인터뮨, 인크. | Novel inhibitors of hepatitis c virus replication |
US7935670B2 (en) * | 2006-07-11 | 2011-05-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
MX2009000486A (en) * | 2006-07-13 | 2009-01-27 | Achillion Pharmaceuticals Inc | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication. |
AU2008247509A1 (en) * | 2007-05-03 | 2008-11-13 | Array Biopharma, Inc. | Novel macrocyclic inhibitors of hepatitis C virus replication |
CL2008001381A1 (en) * | 2007-05-10 | 2008-11-03 | Intermune Inc Y Array Biopharma Inc | Compounds derived from tripeptides containing nitrogen heterocycles; pharmaceutical composition comprising said compounds; and use to treat a hepatitis c or hiv infection. |
SG175692A1 (en) | 2008-04-15 | 2011-11-28 | Intermune Inc | Novel macrocyclic inhibitors of hepatitis c virus replication |
KR20110075019A (en) * | 2008-10-15 | 2011-07-05 | 인터뮨, 인크. | Therapeutic antiviral peptides |
AR075584A1 (en) * | 2009-02-27 | 2011-04-20 | Intermune Inc | THERAPEUTIC COMPOSITIONS THAT INCLUDE beta-D-2'-DESOXI-2'-FLUORO-2'-C-METHYLYCTIDINE AND A CARDIEX ISOINDOL ACID DERIVATIVE AND ITS USES. COMPOUND. |
CN102712644A (en) * | 2009-09-28 | 2012-10-03 | 豪夫迈·罗氏有限公司 | Novel macrocyclic inhibitors of hepatitis C virus replication |
AU2010298028A1 (en) * | 2009-09-28 | 2012-04-19 | Intermune, Inc. | Cyclic peptide inhibitors of hepatitis C virus replication |
TW201116540A (en) * | 2009-10-01 | 2011-05-16 | Intermune Inc | Therapeutic antiviral peptides |
WO2011146401A1 (en) | 2010-05-17 | 2011-11-24 | Intermune, Inc. | Novel inhibitors of hepatitis c virus replication |
-
2006
- 2006-07-17 NZ NZ594105A patent/NZ594105A/en not_active IP Right Cessation
- 2006-07-17 GE GEAP200610529A patent/GEP20105124B/en unknown
- 2006-07-17 CN CNA2006800272902A patent/CN101263156A/en active Pending
- 2006-07-17 CA CA2615666A patent/CA2615666C/en not_active Expired - Fee Related
- 2006-07-17 EP EP11151031A patent/EP2305697A3/en not_active Withdrawn
- 2006-07-17 CN CN2012102790551A patent/CN102816170A/en active Pending
- 2006-07-17 MX MX2008001166A patent/MX2008001166A/en unknown
- 2006-07-17 KR KR1020087004379A patent/KR101294467B1/en active IP Right Grant
- 2006-07-17 AU AU2006276246A patent/AU2006276246B2/en not_active Ceased
- 2006-07-17 SG SG201007886-3A patent/SG166791A1/en unknown
- 2006-07-17 NZ NZ565059A patent/NZ565059A/en not_active IP Right Cessation
- 2006-07-17 EP EP11151034A patent/EP2305698A3/en not_active Withdrawn
- 2006-07-17 EA EA200800413A patent/EA015752B1/en not_active IP Right Cessation
- 2006-07-17 EP EP06800088A patent/EP1924594A2/en not_active Withdrawn
- 2006-07-17 JP JP2008523949A patent/JP5249028B2/en active Active
- 2006-07-17 EA EA201170969A patent/EA019888B1/en not_active IP Right Cessation
- 2006-07-17 WO PCT/US2006/027738 patent/WO2007015824A2/en active Application Filing
- 2006-07-17 BR BRPI0613962-0A patent/BRPI0613962A2/en not_active Application Discontinuation
- 2006-07-17 EP EP09164272A patent/EP2103623A3/en not_active Withdrawn
- 2006-07-17 US US11/996,902 patent/US20090148407A1/en not_active Abandoned
- 2006-07-17 EP EP11151028A patent/EP2305696A3/en not_active Withdrawn
- 2006-07-17 EP EP11151014A patent/EP2305695A3/en not_active Ceased
- 2006-07-21 MY MYPI20063490A patent/MY148690A/en unknown
- 2006-07-21 US US11/491,126 patent/US7829665B2/en not_active Expired - Fee Related
- 2006-07-25 TW TW095127122A patent/TW200740851A/en unknown
- 2006-07-25 AR ARP060103210A patent/AR055095A1/en unknown
-
2008
- 2008-01-09 IL IL188693A patent/IL188693A/en not_active IP Right Cessation
- 2008-01-09 IL IL221361A patent/IL221361A/en not_active IP Right Cessation
- 2008-01-18 TN TNP2008000022A patent/TNSN08022A1/en unknown
- 2008-01-23 CU CU20080010A patent/CU23794B7/en not_active IP Right Cessation
- 2008-02-19 NO NO20080875A patent/NO20080875L/en not_active Application Discontinuation
- 2008-02-20 EC EC2008008208A patent/ECSP088208A/en unknown
- 2008-02-22 MA MA30670A patent/MA29746B1/en unknown
- 2008-04-18 US US12/106,234 patent/US20090169510A1/en not_active Abandoned
-
2012
- 2012-04-19 US US13/450,885 patent/US8299021B2/en not_active Expired - Fee Related
- 2012-05-22 JP JP2012116528A patent/JP2012214476A/en not_active Withdrawn
- 2012-08-08 IL IL221361A patent/IL221361A0/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000059929A1 (en) * | 1999-04-06 | 2000-10-12 | Boehringer Ingelheim (Canada) Ltd. | Macrocyclic peptides active against the hepatitis c virus |
WO2005010029A1 (en) * | 2003-07-03 | 2005-02-03 | Enanta Pharmaceuticals, Inc. | Aza-peptide macrocyclic hepatitis c serine protease inhibitors |
WO2005037214A2 (en) * | 2003-10-14 | 2005-04-28 | Intermune, Inc. | Macrocyclic carboxylic acids and acylsulfonamides as inhibitors of hcv replication |
Non-Patent Citations (4)
Title |
---|
BEAULIEU P L ET AL: "Synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxy lic acid vinyl-ACCA derivatives: Key intermediates for the preparation of inhibitors of the hepatitis C virus NS3 protease" JOURNAL OF ORGANIC CHEMISTRY 22 JUL 2005 UNITED STATES, vol. 70, no. 15, 22 July 2005 (2005-07-22), pages 5869-5879, XP002415438 ISSN: 0022-3263 * |
BELOKON Y N ET AL: "GENERAL METHOD FOR THE ASYMMETRIC SYNTHESIS OF ANTI-DIASTEREOISOMERS OF BETA SUBSTITUTED L-2 AMINOBUTANOIC ACIDS VIA CHIRAL NICKEL-II SCHIFF'S BASE COMPLEXES OF DEHYDROAMINOBUTANOIC ACID X-RAY CRYSTAL AND MOLECULAR STRUCTURE OF THE NICKEL-II" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, CHEMICAL SOCIETY. LETCHWORTH, GB, no. 8, 1990, pages 2301-2310, XP008072303 ISSN: 0300-922X * |
GALGOCI M ET AL: "A convenient synthesis of methyl (Z)-1-carbamoyl-2-ethenylcyclopropan ecarboxylate and (Z)-1-carbamoyl-2-ethenylcyclopropanecarbo xylic acid" SYNTHETIC COMMUNICATIONS 1994 UNITED STATES, vol. 24, no. 17, 1994, pages 2477-2483, XP008072283 ISSN: 0039-7911 * |
TSANTRIZOS Y S ET AL: "Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection" ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, WILEY VCH VERLAG, WEINHEIM, DE, vol. 42, no. 12, 28 March 2003 (2003-03-28), pages 1356-1360, XP002278992 ISSN: 1433-7851 * |
Cited By (228)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9636375B2 (en) | 2002-05-20 | 2017-05-02 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7915291B2 (en) | 2002-05-20 | 2011-03-29 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8299094B2 (en) | 2002-05-20 | 2012-10-30 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2007056120A1 (en) * | 2005-11-03 | 2007-05-18 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
US7741281B2 (en) | 2005-11-03 | 2010-06-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2008005511A3 (en) * | 2006-07-05 | 2008-07-31 | Intermune Inc | Novel inhibitors of hepatitis c virus replication |
JP2009542690A (en) * | 2006-07-05 | 2009-12-03 | インターミューン・インコーポレーテッド | Novel inhibitor of hepatitis C virus replication |
WO2008005511A2 (en) * | 2006-07-05 | 2008-01-10 | Intermune, Inc. | Novel inhibitors of hepatitis c virus replication |
US7935670B2 (en) | 2006-07-11 | 2011-05-03 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8785378B2 (en) | 2006-07-13 | 2014-07-22 | Achillion Pharmaceuticals, Inc. | Macrocyclic peptides as inhibitors of viral replication |
US9610317B2 (en) | 2006-07-13 | 2017-04-04 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US7906619B2 (en) | 2006-07-13 | 2011-03-15 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US9233136B2 (en) | 2006-07-13 | 2016-01-12 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US8343477B2 (en) | 2006-11-01 | 2013-01-01 | Bristol-Myers Squibb Company | Inhibitors of hepatitis C virus |
US7772180B2 (en) | 2006-11-09 | 2010-08-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7888464B2 (en) | 2006-11-16 | 2011-02-15 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7763584B2 (en) | 2006-11-16 | 2010-07-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2008070358A3 (en) * | 2006-11-16 | 2008-11-06 | Phenomix Corp | N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain |
US8003604B2 (en) | 2006-11-16 | 2011-08-23 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2008070358A2 (en) * | 2006-11-16 | 2008-06-12 | Phenomix Corporation | N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain |
WO2008064057A1 (en) * | 2006-11-16 | 2008-05-29 | Bristol-Myers Squibb Company | Macrocyclic peptides as hepatitis c virus inhibitors |
EP2267144A3 (en) * | 2006-12-04 | 2011-05-25 | DSM IP Assets B.V. | Whole-cell catalytic system comprising a hydantoinase, a racemase and a carbamoylase |
WO2008067981A3 (en) * | 2006-12-04 | 2008-10-02 | Dsm Ip Assets Bv | Whole-cell catalytic system comprising a hydantoinase, a racemase and a carbamoylase |
WO2008086161A1 (en) * | 2007-01-08 | 2008-07-17 | Phenomix Corporation | Macrocyclic hepatitis c protease inhibitors |
DE202008018643U1 (en) | 2007-03-30 | 2017-03-16 | Gilead Pharmasset Llc | Nucleosidphosphoramidat prodrugs |
US12121529B2 (en) | 2007-03-30 | 2024-10-22 | Gilead Sciences, Inc. | Nucleoside phosphoramidate prodrugs |
WO2008121634A2 (en) | 2007-03-30 | 2008-10-09 | Pharmasset, Inc. | Nucleoside phosphoramidate prodrugs |
US11642361B2 (en) | 2007-03-30 | 2023-05-09 | Gilead Sciences, Inc. | Nucleoside phosphoramidate prodrugs |
US8906880B2 (en) | 2007-03-30 | 2014-12-09 | Gilead Pharmasset Llc | Nucleoside phosphoramidate prodrugs |
US9085573B2 (en) | 2007-03-30 | 2015-07-21 | Gilead Pharmasset Llc | Nucleoside phosphoramidate prodrugs |
US8735372B2 (en) | 2007-03-30 | 2014-05-27 | Gilead Pharmasset Llc | Nucleoside phosphoramidate prodrugs |
US10183037B2 (en) | 2007-03-30 | 2019-01-22 | Gilead Pharmasset Llc | Nucleoside phosphoramidate prodrugs |
US8580765B2 (en) | 2007-03-30 | 2013-11-12 | Gilead Pharmasset Llc | Nucleoside phosphoramidate prodrugs |
JP2010528987A (en) * | 2007-05-03 | 2010-08-26 | インターミューン・インコーポレーテッド | Novel macrocyclic inhibitor of hepatitis C virus replication |
WO2008137779A3 (en) * | 2007-05-03 | 2009-01-08 | Intermune Inc | Novel macrocyclic inhibitors of hepatitis c virus replication |
EP2177523A1 (en) | 2007-05-03 | 2010-04-21 | Intermune, Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
WO2008137779A2 (en) | 2007-05-03 | 2008-11-13 | Intermune, Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
JP2010526834A (en) * | 2007-05-10 | 2010-08-05 | インターミューン・インコーポレーテッド | Novel peptide inhibitors of hepatitis C virus replication |
WO2009005690A3 (en) * | 2007-06-29 | 2009-03-05 | Gilead Sciences Inc | Antiviral compounds |
US8178491B2 (en) | 2007-06-29 | 2012-05-15 | Gilead Sciences, Inc. | Antiviral compounds |
WO2009005690A2 (en) * | 2007-06-29 | 2009-01-08 | Gilead Sciences, Inc. | Antiviral compounds |
WO2009005676A3 (en) * | 2007-06-29 | 2009-03-05 | Gilead Sciences Inc | Antiviral compounds |
WO2009005677A3 (en) * | 2007-06-29 | 2009-03-05 | Gilead Sciences Inc | Antiviral compounds |
WO2009005677A2 (en) * | 2007-06-29 | 2009-01-08 | Gilead Sciences, Inc. | Antiviral compounds |
WO2009005676A2 (en) * | 2007-06-29 | 2009-01-08 | Gilead Sciences, Inc. | Antiviral compounds |
AP2874A (en) * | 2007-06-29 | 2014-03-31 | Gilead Sciences Inc | Antiviral compounds |
US8809266B2 (en) | 2007-06-29 | 2014-08-19 | Gilead Sciences, Inc. | Antiviral compounds |
EA025794B1 (en) * | 2007-06-29 | 2017-01-30 | Джилид Сайэнс, Инк. | Antiviral compounds |
TWI395746B (en) * | 2007-06-29 | 2013-05-11 | Gilead Sciences Inc | Antiviral compounds |
EA019749B1 (en) * | 2007-06-29 | 2014-06-30 | Джилид Сайэнс, Инк. | Antiviral compounds |
US8513186B2 (en) | 2007-06-29 | 2013-08-20 | Gilead Sciences, Inc. | Antiviral compounds |
US8809267B2 (en) | 2007-06-29 | 2014-08-19 | Gilead Sciences, Inc. | Antiviral compounds |
US8383583B2 (en) | 2007-10-26 | 2013-02-26 | Enanta Pharmaceuticals, Inc. | Macrocyclic, pyridazinone-containing hepatitis C serine protease inhibitors |
WO2009080542A1 (en) * | 2007-12-21 | 2009-07-02 | F. Hoffmann-La Roche Ag | Process for the preparation of a macrocycle |
KR101629523B1 (en) | 2007-12-21 | 2016-06-10 | 에프. 호프만-라 로슈 아게 | Process for the preparation of a macrocycle |
US8338606B2 (en) | 2007-12-21 | 2012-12-25 | Bristol-Myers Squibb Company | Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N-((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide |
KR20100106411A (en) * | 2007-12-21 | 2010-10-01 | 에프. 호프만-라 로슈 아게 | Process for the preparation of a macrocycle |
US8202996B2 (en) | 2007-12-21 | 2012-06-19 | Bristol-Myers Squibb Company | Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide |
JP2011508729A (en) * | 2007-12-21 | 2011-03-17 | エフ.ホフマン−ラ ロシュ アーゲー | Manufacturing method for large rings |
WO2009099596A2 (en) | 2008-02-04 | 2009-08-13 | Idenix Pharamaceuticals, Inc. | Macrocyclic serine protease inhibitors |
US8372802B2 (en) | 2008-03-20 | 2013-02-12 | Enanta Pharmaceuticals, Inc. | Fluorinated macrocyclic compounds as hepatitis C virus inhibitors |
WO2009124853A1 (en) | 2008-04-11 | 2009-10-15 | F. Hoffmann-La Roche Ag | New ruthenium complexes as catalysts for metathesis reactions |
WO2009142842A3 (en) * | 2008-04-15 | 2010-04-01 | Intermune, Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
WO2009142842A2 (en) * | 2008-04-15 | 2009-11-26 | Intermune, Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
US8163921B2 (en) | 2008-04-16 | 2012-04-24 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
CN102099359A (en) * | 2008-05-15 | 2011-06-15 | 百时美施贵宝公司 | Hepatitis c virus inhibitors |
WO2009140500A1 (en) * | 2008-05-15 | 2009-11-19 | Bristol-Myers Squibb Company | Hepatitis c virus inhibitors |
JP2011520906A (en) * | 2008-05-15 | 2011-07-21 | ブリストル−マイヤーズ スクイブ カンパニー | Hepatitis C virus inhibitor |
US7964560B2 (en) | 2008-05-29 | 2011-06-21 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8044023B2 (en) | 2008-05-29 | 2011-10-25 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
AU2009278075B2 (en) * | 2008-08-07 | 2013-07-04 | F. Hoffmann-La Roche Ag | Process for the preparation of a macrocycle |
WO2010015545A1 (en) * | 2008-08-07 | 2010-02-11 | F. Hoffmann-La Roche Ag | Process for the preparation of a macrocycle |
JP2011529935A (en) * | 2008-08-07 | 2011-12-15 | エフ.ホフマン−ラ ロシュ アーゲー | Process for producing macrocyclic compounds |
CN102112442A (en) * | 2008-08-07 | 2011-06-29 | 弗·哈夫曼-拉罗切有限公司 | Process for preparation of macrocycle |
US8357806B2 (en) | 2008-09-04 | 2013-01-22 | Bristol-Myers Squibb Company | Process for synthesizing substituted isoquinolines |
US8877929B2 (en) | 2008-09-04 | 2014-11-04 | Bristol-Myers Squibb Company | Process for synthesizing substituted isoquinolines |
US8207341B2 (en) | 2008-09-04 | 2012-06-26 | Bristol-Myers Squibb Company | Process or synthesizing substituted isoquinolines |
US8642538B2 (en) | 2008-09-11 | 2014-02-04 | Abbvie, Inc. | Macrocyclic hepatitis C serine protease inhibitors |
US9309279B2 (en) | 2008-09-11 | 2016-04-12 | Abbvie Inc. | Macrocyclic hepatitis C serine protease inhibitors |
US8420596B2 (en) | 2008-09-11 | 2013-04-16 | Abbott Laboratories | Macrocyclic hepatitis C serine protease inhibitors |
US9796723B2 (en) | 2008-09-22 | 2017-10-24 | Array Biopharma, Inc. | Method of treatment using substituted imidazo[1,2b]pyridazine compounds |
US10011604B2 (en) | 2008-09-22 | 2018-07-03 | Array Biopharma, Inc. | Method of treatment using substituted imidazo[1,2b]pyridazine compounds |
US9227975B2 (en) | 2008-09-22 | 2016-01-05 | Array Biopharma, Inc. | Method of treatment using substituted imidazo[1,2B]pyridazine compounds |
US10590139B2 (en) | 2008-09-22 | 2020-03-17 | Array Biopharma Inc. | Method of treatment using substituted imidazo[1,2b]pyridazine compounds |
US9795611B2 (en) | 2008-09-22 | 2017-10-24 | Array Biopharma, Inc. | Method of treatment using substituted imidazo[1,2b]pyridazine compounds |
US8044087B2 (en) | 2008-09-29 | 2011-10-25 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8563505B2 (en) | 2008-09-29 | 2013-10-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8524717B2 (en) | 2008-10-17 | 2013-09-03 | Oryzon Genomics, S.A. | Oxidase inhibitors and their use |
US9447104B2 (en) | 2008-10-22 | 2016-09-20 | Array Biopharma, Inc. | Method of treatment using substituted pyrazolo[1,5-a]pyrimidine compounds |
US10774085B2 (en) | 2008-10-22 | 2020-09-15 | Array Biopharma Inc. | Method of treatment using substituted pyrazolo[1,5-A] pyrimidine compounds |
US9676783B2 (en) | 2008-10-22 | 2017-06-13 | Array Biopharma, Inc. | Method of treatment using substituted pyrazolo[1,5-A] pyrimidine compounds |
US10005783B2 (en) | 2008-10-22 | 2018-06-26 | Array Biopharma Inc. | Method of treatment using substituted pyrazolo[1,5-a] pyrimidine compounds |
US11267818B2 (en) | 2008-10-22 | 2022-03-08 | Array Biopharma Inc. | Method of treatment using substituted pyrazolo[1,5-a] pyrimidine compounds |
US10047097B2 (en) | 2008-10-22 | 2018-08-14 | Array Biopharma Inc. | Method of treatment using substituted pyrazolo[1,5-a] pyrimidine compounds |
US9127013B2 (en) | 2008-10-22 | 2015-09-08 | Array Biopharma, Inc. | Method of treatment using substituted pyrazolo[1,5-a] pyrimidine compounds |
US8614180B2 (en) | 2008-12-10 | 2013-12-24 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US9133115B2 (en) | 2008-12-10 | 2015-09-15 | Achillion Pharmaceuticals, Inc. | 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication |
US8283310B2 (en) | 2008-12-15 | 2012-10-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2010075549A2 (en) | 2008-12-23 | 2010-07-01 | Pharmasset, Inc. | Nucleoside phosphoramidates |
EP3222628A1 (en) | 2008-12-23 | 2017-09-27 | Gilead Pharmasset LLC | Nucleoside phosphoramidates |
WO2010075554A1 (en) | 2008-12-23 | 2010-07-01 | Pharmasset, Inc. | Synthesis of purine nucleosides |
EP2671888A1 (en) | 2008-12-23 | 2013-12-11 | Gilead Pharmasset LLC | 3',5'-cyclic nucleoside phosphate analogues |
WO2010075517A2 (en) | 2008-12-23 | 2010-07-01 | Pharmasset, Inc. | Nucleoside analogs |
US8993808B2 (en) | 2009-01-21 | 2015-03-31 | Oryzon Genomics, S.A. | Phenylcyclopropylamine derivatives and their medical use |
US8633309B2 (en) | 2009-05-20 | 2014-01-21 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
EP2610264A2 (en) | 2009-05-20 | 2013-07-03 | Gilead Pharmasset LLC | N-[(2'r)-2'-deoxy-2'-fluoro-2'-methyl-p-phenyl-5'-uridylyl]-l-alanine 1-methylethyl ester and process for its production |
US8642756B2 (en) | 2009-05-20 | 2014-02-04 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
WO2010135569A1 (en) | 2009-05-20 | 2010-11-25 | Pharmasset, Inc. | N- [ (2 ' r) -2 ' -deoxy-2 ' -fluoro-2 ' -methyl-p-phenyl-5 ' -uridylyl] -l-alanine 1-methylethyl ester and process for its production |
US8629263B2 (en) | 2009-05-20 | 2014-01-14 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
US8618076B2 (en) | 2009-05-20 | 2013-12-31 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
US9284342B2 (en) | 2009-05-20 | 2016-03-15 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
US8735569B2 (en) | 2009-05-20 | 2014-05-27 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
US9637512B2 (en) | 2009-05-20 | 2017-05-02 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
EP2910562A1 (en) | 2009-05-20 | 2015-08-26 | Gilead Pharmasset LLC | N-[(2'r)-2'-deoxy-2 '-fluoro-2'-methyl-p-phenyl-5 '-uridylyl]-l-alanine 1-methylethyl ester in crystalline form |
EP3321275A1 (en) | 2009-05-20 | 2018-05-16 | Gilead Pharmasset LLC | Crystalline form of sofosbuvir |
US9206217B2 (en) | 2009-05-20 | 2015-12-08 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
EP2913337A1 (en) | 2009-05-20 | 2015-09-02 | Gilead Pharmasset LLC | N-[(2'r)-2'-deoxy-2'-fluoro-2'-methyl-p-phenyl-5'-uridylyl]-l-alanine 1-methylethyl ester and process for its production |
US8232246B2 (en) | 2009-06-30 | 2012-07-31 | Abbott Laboratories | Anti-viral compounds |
US10758542B2 (en) | 2009-07-09 | 2020-09-01 | Array Biopharma Inc. | Substituted pyrazolo[l,5-a]pyrimidine compounds as Trk kinase inhibitors |
US10251889B2 (en) | 2009-07-09 | 2019-04-09 | Array BioPharm Inc. | Substituted pyrazolo[1,5-a]pyrimidine compounds as Trk kinase inhibitors |
US9796724B2 (en) | 2009-07-09 | 2017-10-24 | Array Biopharma, Inc. | Substituted pyrazolo[1,5-a]pyrimidine compounds as Trk kinase inhibitors |
US9682979B2 (en) | 2009-07-09 | 2017-06-20 | Array Biopharma, Inc. | Substituted pyrazolo [1,5-A] pyrimidine compounds as TRK kinase inhibitors |
US9782415B2 (en) | 2009-07-09 | 2017-10-10 | Array Biopharma, Inc. | Substituted pyrazolo[1,5-a]pyrimidine compounds as Trk kinase inhibitors |
WO2011017389A1 (en) | 2009-08-05 | 2011-02-10 | Idenix Pharmaceuticals, Inc. | Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv |
US8859555B2 (en) | 2009-09-25 | 2014-10-14 | Oryzon Genomics S.A. | Lysine Specific Demethylase-1 inhibitors and their use |
CN102712644A (en) * | 2009-09-28 | 2012-10-03 | 豪夫迈·罗氏有限公司 | Novel macrocyclic inhibitors of hepatitis C virus replication |
WO2011038283A1 (en) * | 2009-09-28 | 2011-03-31 | Hoffmann-La Roche Inc. | Novel macrocyclic inhibitors of hepatitis c virus replication |
WO2011038293A1 (en) | 2009-09-28 | 2011-03-31 | Intermune, Inc. | Cyclic peptide inhibitors of hepatitis c virus replication |
US8946296B2 (en) | 2009-10-09 | 2015-02-03 | Oryzon Genomics S.A. | Substituted heteroaryl- and aryl-cyclopropylamine acetamides and their use |
WO2011075615A1 (en) | 2009-12-18 | 2011-06-23 | Idenix Pharmaceuticals, Inc. | 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors |
US8785487B2 (en) | 2010-01-25 | 2014-07-22 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
US8933110B2 (en) | 2010-01-25 | 2015-01-13 | Enanta Pharmaceuticals, Inc. | Hepatitis C virus inhibitors |
US9061991B2 (en) | 2010-02-16 | 2015-06-23 | Api Corporation | Method for producing 1-amino-1-alkoxycarbonyl-2-vinylcyclopropane |
US9616058B2 (en) | 2010-02-24 | 2017-04-11 | Oryzon Genomics, S.A. | Potent selective LSD1 inhibitors and dual LSD1/MAO-B inhibitors for antiviral use |
US9186337B2 (en) | 2010-02-24 | 2015-11-17 | Oryzon Genomics S.A. | Lysine demethylase inhibitors for diseases and disorders associated with Hepadnaviridae |
EP3290428A1 (en) | 2010-03-31 | 2018-03-07 | Gilead Pharmasset LLC | Tablet comprising crystalline (s)-isopropyl 2-(((s)-(((2r,3r,4r,5r)-5-(2,4-dioxo-3,4-dihydropyrimidin-1 (2h)-yl)-4-fluoro-3-hydroxy-4-methyltetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)amino)propanoate |
EP2752422A1 (en) | 2010-03-31 | 2014-07-09 | Gilead Pharmasset LLC | Stereoselective synthesis of phosphorus containing actives |
EP2609923A2 (en) | 2010-03-31 | 2013-07-03 | Gilead Pharmasset LLC | Nucleoside Phosphoramidates |
WO2011123668A2 (en) | 2010-03-31 | 2011-10-06 | Pharmasset, Inc. | Stereoselective synthesis of phosphorus containing actives |
US8859756B2 (en) | 2010-03-31 | 2014-10-14 | Gilead Pharmasset Llc | Stereoselective synthesis of phosphorus containing actives |
WO2011123645A2 (en) | 2010-03-31 | 2011-10-06 | Pharmasset, Inc. | Nucleoside phosphoramidates |
WO2011123672A1 (en) | 2010-03-31 | 2011-10-06 | Pharmasset, Inc. | Purine nucleoside phosphoramidate |
US10202330B2 (en) | 2010-04-19 | 2019-02-12 | Oryzon Genomics, Sa | Lysine specific demethylase-1 inhibitors and their use |
US9149447B2 (en) | 2010-04-19 | 2015-10-06 | Oryzon Genomics S.A. | Lysine specific demethylase-1 inhibitors and their use |
US8722743B2 (en) | 2010-04-19 | 2014-05-13 | Oryzon Genomics S.A. | Lysine specific demethylase-1 inhibitors and their use |
US9902741B2 (en) | 2010-05-20 | 2018-02-27 | Array Biopharma Inc. | Macrocyclic compounds as TRK kinase inhibitors |
US9750744B2 (en) * | 2010-05-20 | 2017-09-05 | Array Biopharma, Inc. | Macrocyclic compounds as Trk kinase inhibitors |
US9493476B2 (en) | 2010-05-20 | 2016-11-15 | Array Biopharma, Inc. | Macrocyclic compounds as trk kinase inhibitors |
US9718822B2 (en) | 2010-05-20 | 2017-08-01 | Array Biopharma, Inc. | Macrocyclic compounds as Trk kinase inhibitors |
CN105693720A (en) * | 2010-05-20 | 2016-06-22 | 阵列生物制药公司 | Macrocyclic compounds as TRK kinase inhibitors |
US10647730B2 (en) | 2010-05-20 | 2020-05-12 | Array Biopharma Inc. | Macrocyclic compounds as TRK kinase inhibitors |
US8933084B2 (en) | 2010-05-20 | 2015-01-13 | Array Biopharma Inc. | Macrocyclic compounds as Trk kinase inhibitors |
US9840519B2 (en) | 2010-05-20 | 2017-12-12 | Array Biopharma, Inc. | Macrocyclic compounds as TRK kinase inhibitors |
CN102971322B (en) * | 2010-05-20 | 2016-02-17 | 阵列生物制药公司 | As the macrocylc compound of TRK kinase inhibitor |
CN105693720B (en) * | 2010-05-20 | 2019-01-18 | 阵列生物制药公司 | Macrocyclic compound as TRK kinase inhibitor |
CN102971322A (en) * | 2010-05-20 | 2013-03-13 | 阵列生物制药公司 | Macrocyclic compounds as TRK kinase inhibitors |
US9006449B2 (en) | 2010-07-29 | 2015-04-14 | Oryzon Genomics, S.A. | Cyclopropylamine derivatives useful as LSD1 inhibitors |
US9181198B2 (en) | 2010-07-29 | 2015-11-10 | Oryzon Genomics S.A. | Arylcyclopropylamine based demethylase inhibitors of LSD1 and their medical use |
US9708309B2 (en) | 2010-07-29 | 2017-07-18 | Oryzon Genomics, S.A. | Arylcyclopropylamine based demethylase inhibitors of LSD1 and their medical use |
US10233178B2 (en) | 2010-07-29 | 2019-03-19 | Oryzon Genomics, S.A. | Arylcyclopropylamine based demethylase inhibitors of LSD1 and their medical use |
US9676701B2 (en) | 2010-07-29 | 2017-06-13 | Oryzon Genomics, S.A. | Cyclopropylamine derivatives useful as LSD1 inhibitors |
US9573978B2 (en) | 2010-08-12 | 2017-02-21 | S&T Global, Inc. | Cyclosporin derivatives for the treatment and prevention of a viral infection |
US9061966B2 (en) | 2010-10-08 | 2015-06-23 | Oryzon Genomics S.A. | Cyclopropylamine inhibitors of oxidases |
WO2012072713A3 (en) * | 2010-11-30 | 2013-04-04 | Oryzon Genomics, S.A. | Lysine demethylase inhibitors such as cyclylcyclopropanamine derivatives for use in the treatment of diseases and disorders associated with flaviviridae |
US9790196B2 (en) | 2010-11-30 | 2017-10-17 | Oryzon Genomics S.A. | Lysine demethylase inhibitors for diseases and disorders associated with Flaviviridae |
US10647747B2 (en) | 2010-12-03 | 2020-05-12 | S&T Global Inc. | Cyclosporin derivatives and uses thereof |
US9890198B2 (en) | 2010-12-03 | 2018-02-13 | S&T Global Inc. | Cyclosporin derivatives and uses thereof |
US8937041B2 (en) | 2010-12-30 | 2015-01-20 | Abbvie, Inc. | Macrocyclic hepatitis C serine protease inhibitors |
US8951964B2 (en) | 2010-12-30 | 2015-02-10 | Abbvie Inc. | Phenanthridine macrocyclic hepatitis C serine protease inhibitors |
US9908859B2 (en) | 2011-02-08 | 2018-03-06 | Oryzon Genomics, S.A. | Lysine demethylase inhibitors for myeloproliferative disorders |
WO2012109398A1 (en) | 2011-02-10 | 2012-08-16 | Idenix Pharmaceuticals, Inc. | Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections |
WO2012135581A1 (en) | 2011-03-31 | 2012-10-04 | Idenix Pharmaceuticals, Inc. | Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor |
US10201541B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
US10201584B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
US8691757B2 (en) | 2011-06-15 | 2014-04-08 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9469597B2 (en) | 2011-10-20 | 2016-10-18 | Oryzon Genomics S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US10329256B2 (en) | 2011-10-20 | 2019-06-25 | Oryzon Genomics, S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US9487512B2 (en) | 2011-10-20 | 2016-11-08 | Oryzon Genomics S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US9944601B2 (en) | 2011-10-20 | 2018-04-17 | Oryzon Genomics, S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US9670136B2 (en) | 2011-10-20 | 2017-06-06 | Oryzon Genomics S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US10214477B2 (en) | 2011-10-20 | 2019-02-26 | Oryzon Genomics S.A. | (Hetero)aryl cyclopropylamine compounds as LSD1 inhibitors |
US8889159B2 (en) | 2011-11-29 | 2014-11-18 | Gilead Pharmasset Llc | Compositions and methods for treating hepatitis C virus |
US9296782B2 (en) | 2012-07-03 | 2016-03-29 | Gilead Sciences, Inc. | Inhibitors of hepatitis C virus |
US10335409B2 (en) | 2012-07-03 | 2019-07-02 | Gilead Pharmasset Llc | Inhibitors of hepatitis C virus |
US10603318B2 (en) | 2012-07-03 | 2020-03-31 | Gilead Pharmasset Llc | Inhibitors of hepatitis C virus |
US9499550B2 (en) | 2012-10-19 | 2016-11-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9334279B2 (en) | 2012-11-02 | 2016-05-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9643999B2 (en) | 2012-11-02 | 2017-05-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9598433B2 (en) | 2012-11-02 | 2017-03-21 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9409943B2 (en) | 2012-11-05 | 2016-08-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2014075146A1 (en) * | 2012-11-16 | 2014-05-22 | Adelaide Research & Innovation Pty Ltd | Macrocyclic compounds and uses thereof |
US9580463B2 (en) | 2013-03-07 | 2017-02-28 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US9115175B2 (en) | 2013-03-14 | 2015-08-25 | Achillion Pharmaceuticals, Inc. | Processes for Producing sovaprevir |
US9481708B2 (en) | 2013-03-14 | 2016-11-01 | Achillion Pharmaceuticals, Inc. | Process for producing Sovaprevir |
US9006423B2 (en) | 2013-03-15 | 2015-04-14 | Achillion Pharmaceuticals Inc. | Process for making a 4-amino-4-oxobutanoyl peptide cyclic analogue, an inhibitor of viral replication, and intermediates thereof |
US9085607B2 (en) | 2013-03-15 | 2015-07-21 | Achillion Pharmaceuticals, Inc. | ACH-0142684 sodium salt polymorph, composition including the same, and method of manufacture thereof |
US9617310B2 (en) | 2013-03-15 | 2017-04-11 | Gilead Sciences, Inc. | Inhibitors of hepatitis C virus |
US9540346B2 (en) | 2013-03-15 | 2017-01-10 | Achillion Pharmaceuticals, Inc. | Sovaprevir polymorphs and methods of manufacture thereof |
US9227952B2 (en) | 2013-03-15 | 2016-01-05 | Achillion Pharmaceuticals, Inc. | Sovaprevir polymorphs and methods of manufacture thereof |
US11707479B2 (en) | 2013-08-27 | 2023-07-25 | Gilead Sciences, Inc. | Combination formulation of two antiviral compounds |
US11116783B2 (en) | 2013-08-27 | 2021-09-14 | Gilead Pharmasset Llc | Combination formulation of two antiviral compounds |
WO2015042375A1 (en) | 2013-09-20 | 2015-03-26 | Idenix Pharmaceuticals, Inc. | Hepatitis c virus inhibitors |
US9333204B2 (en) | 2014-01-03 | 2016-05-10 | Abbvie Inc. | Solid antiviral dosage forms |
US10105365B2 (en) | 2014-01-03 | 2018-10-23 | Abbvie Inc. | Solid antiviral dosage forms |
US9744170B2 (en) | 2014-01-03 | 2017-08-29 | Abbvie Inc. | Solid antiviral dosage forms |
WO2015134561A1 (en) | 2014-03-05 | 2015-09-11 | Idenix Pharmaceuticals, Inc. | Pharmaceutical compositions comprising a 5,5-fused heteroarylene flaviviridae inhibitor and their use for treating or preventing flaviviridae infection |
WO2015134560A1 (en) | 2014-03-05 | 2015-09-11 | Idenix Pharmaceuticals, Inc. | Solid forms of a flaviviridae virus inhibitor compound and salts thereof |
US9782414B2 (en) | 2014-11-16 | 2017-10-10 | Array Biopharma, Inc. | Crystalline form of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-A]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide hydrogen sulfate |
US10813936B2 (en) | 2014-11-16 | 2020-10-27 | Array Biopharma, Inc. | Crystalline form of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-YL)-pyrazolo[1,5-A]pyrimidin-3-YL)-3-hydroxypyrrolidine-1-carboxamide hydrogen sulfate |
US10799505B2 (en) | 2014-11-16 | 2020-10-13 | Array Biopharma, Inc. | Crystalline form of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-A]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide hydrogen sulfate |
US10285993B2 (en) | 2014-11-16 | 2019-05-14 | Array Biopharma Inc. | Crystalline form of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-a]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide hydrogen sulfate |
US10172861B2 (en) | 2014-11-16 | 2019-01-08 | Array Biopharma Inc. | Crystalline form of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-A]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide hydrogen sulfate |
US10724102B2 (en) | 2015-10-26 | 2020-07-28 | Loxo Oncology, Inc. | Point mutations in TRK inhibitor-resistant cancer and methods relating to the same |
US10378068B2 (en) | 2015-10-26 | 2019-08-13 | Loxo Oncology, Inc. | Point mutations in TRK inhibitor-resistant cancer and methods relating to the same |
US10370727B2 (en) | 2015-10-26 | 2019-08-06 | Loxo Oncology, Inc. | Point mutations in TRK inhibitor-resistant cancer and methods relating to the same |
US10655186B2 (en) | 2015-10-26 | 2020-05-19 | Loxo Oncology, Inc. | Point mutations in TRK inhibitor-resistant cancer and methods relating to the same |
US10907215B2 (en) | 2015-10-26 | 2021-02-02 | Loxo Oncology, Inc. | Point mutations in TRK inhibitor-resistant cancer and methods relating to the same |
US10045991B2 (en) | 2016-04-04 | 2018-08-14 | Loxo Oncology, Inc. | Methods of treating pediatric cancers |
US11191766B2 (en) | 2016-04-04 | 2021-12-07 | Loxo Oncology, Inc. | Methods of treating pediatric cancers |
US10588908B2 (en) | 2016-04-04 | 2020-03-17 | Loxo Oncology, Inc. | Methods of treating pediatric cancers |
US11484535B2 (en) | 2016-04-04 | 2022-11-01 | Loxo Oncology, Inc. | Liquid formulations of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-a] pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide |
US10668072B2 (en) | 2016-04-04 | 2020-06-02 | Loxo Oncology, Inc. | Liquid formulations of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-a]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide |
US10137127B2 (en) | 2016-04-04 | 2018-11-27 | Loxo Oncology, Inc. | Liquid formulations of (S)-N-(5-((R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-A]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide |
US11214571B2 (en) | 2016-05-18 | 2022-01-04 | Array Biopharma Inc. | Process for the preparation of (S)-N-(5-((R)-2-(2,5-difluorophenyl)pyrrolidin-1-yl)-pyrazolo[1,5-a]pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide and salts thereof |
US11091486B2 (en) | 2016-10-26 | 2021-08-17 | Array Biopharma, Inc | Process for the preparation of pyrazolo[1,5-a]pyrimidines and salts thereof |
US10688100B2 (en) | 2017-03-16 | 2020-06-23 | Array Biopharma Inc. | Macrocylic compounds as ROS1 kinase inhibitors |
US10966985B2 (en) | 2017-03-16 | 2021-04-06 | Array Biopharma Inc. | Macrocyclic compounds as ROS1 kinase inhibitors |
US12083099B2 (en) | 2020-10-28 | 2024-09-10 | Accencio LLC | Methods of treating symptoms of coronavirus infection with viral protease inhibitors |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7829665B2 (en) | Macrocyclic inhibitors of hepatitis C virus replication | |
AU2005228894B2 (en) | Macrocyclic compounds as inhibitors of viral replication | |
US7781474B2 (en) | Inhibitors of hepatitis C virus replication | |
US20050267018A1 (en) | Macrocyclic compounds as inhibitors of viral replication | |
AU2004281780A1 (en) | Macrocyclic carboxylic acids and acylsulfonamides as inhibitors of HCV replication | |
AU2008251425A1 (en) | Novel peptide inhibitors of hepatitis C virus replication | |
BLATT et al. | Patent 2657035 Summary |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680027290.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 188693 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 565059 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 2615666 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12008500128 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: AP/P/2008/004312 Country of ref document: AP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008010115 Country of ref document: EG |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/001166 Country of ref document: MX Ref document number: 2008523949 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2008000043 Country of ref document: DZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08015831 Country of ref document: CO |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006276246 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1510/DELNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087004379 Country of ref document: KR Ref document number: 200800413 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10529 Country of ref document: GE Ref document number: a200802340 Country of ref document: UA Ref document number: 2006800088 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006276246 Country of ref document: AU Date of ref document: 20060717 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11996902 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0613962 Country of ref document: BR Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 221361 Country of ref document: IL |