WO2007094395A1 - 診断用組換えプロテオリポソームの作製法 - Google Patents
診断用組換えプロテオリポソームの作製法 Download PDFInfo
- Publication number
- WO2007094395A1 WO2007094395A1 PCT/JP2007/052699 JP2007052699W WO2007094395A1 WO 2007094395 A1 WO2007094395 A1 WO 2007094395A1 JP 2007052699 W JP2007052699 W JP 2007052699W WO 2007094395 A1 WO2007094395 A1 WO 2007094395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recombinant
- receptor
- proteoribosome
- ribosome
- tshr
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/5432—Liposomes or microcapsules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/564—Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14111—Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
- C12N2710/14141—Use of virus, viral particle or viral elements as a vector
- C12N2710/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/80—Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
- C12N2810/85—Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian
- C12N2810/855—Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian from receptors; from cell surface antigens; from cell surface determinants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/01—DNA viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2469/00—Immunoassays for the detection of microorganisms
- G01N2469/20—Detection of antibodies in sample from host which are directed against antigens from microorganisms
Definitions
- the present invention relates to a diagnostic recombinant proteoribosome.
- Patent Document 1 it is reported that a recombinant baculovirus budding virus expressing a G protein-coupled receptor was prepared, and that the receptor on the virus envelope exhibits a binding activity to hormones. .
- Patent Document 1 Japanese Patent Application Laid-Open No. 2003-52370
- Patent Document 1 has room for further improvement.
- the present invention has been made in view of the above problems, and provides a method for producing a recombinant proteoribosome suitable for diagnosis.
- the inventors of the present invention fused the ribosome with a recombinant baculovirus budding virus expressing the membrane receptor to produce a recombinant proteoribosome, thereby producing a membrane receptor. It was found that the binding ability between the target substance and the target substance is remarkably improved. Thus, the present invention has been basically completed. The reason why the binding ability is improved is not necessarily clear, but we found that the membrane receptor expressed on the envelope of the recombinant baculovirus became a cell membrane-like environment by fusing baculovirus and ribosome. , Structure I think that the specific binding ability of the target substance may have increased as a result of making the natural state easier to construct.
- the method for producing a recombinant proteoribosome according to the first invention for solving the above-mentioned problems is characterized by including the following steps (1) to (3).
- proteoribosome generally means a target protein expressed and reconstituted into a liposome.
- the target protein is a membrane receptor expressed on an envelope. Therefore, “recombinant proteoribosome” means a proteoribosome provided with a membrane receptor, which is a recombinant protein, on the ribosome membrane.
- Baculovirus is an insect pathogenic virus that has circular double-stranded DNA as a gene.
- Nucleopolyhedrovirus NPVs
- GVs Geanulovirus
- NPV nuclear polyhedrosis virus
- baculovirus means NPV.
- Infection with baculovirus begins when the virus particles embedded in the polyhedron are taken up by the larvae. After that, a polyhedron is formed in the infected cell through a two-stage fusion process with Occluded virus (OV) or Budded virus (BV) showing different properties, and finally infection occurs. Cells die.
- NPV Occluded virus
- BV Budded virus
- NPV polyhedra are taken up by insects and then dissolved by the action of alkaline digestive juices and proteases in the midgut.
- 0V embedded in the polygon is released.
- OV then fuses with the midgut microvillous membrane and is released into body fluids by budding from the midgut basement membrane.
- the released BV contains blood cells and adipocytes.
- BV enters cells by endocytosis.
- This cell entry process requires the membrane glycoprotein gp64, which has a membrane fusion-inducing ability specific to BV, and gp64 activated in a low pH environment in the endosome induces fusion with the endosomal membrane. It will be shown.
- a transfer vector for expressing the target membrane receptor and baculovirus DNA are used in appropriate cells (for example, insect cultured cells ( Sf9) The force that can be applied by co-transformation to S).
- a membrane receptor is expressed on the envelope of the virus sprouting from the infected cell.
- This budding virus is prepared. Since the budding virus is contained in the culture supernatant, the culture supernatant can be used as it is. However, it is preferable to purify a fraction containing budding virus from the culture supernatant.
- a purification method for example, an ultracentrifugation method, a gel filtration method, or the like is used.
- the budding virus and ribosome can be fused by adjusting the osmolarity of the ribosome solution and stirring and mixing in the budding virus suspension and an appropriate fusion condition solution.
- Membrane receptor means a receptor having a site penetrating a lipid membrane.
- Membrane receptors accept various ligands. Examples of the ligand include low-molecular organic compounds, steroids, amino acids and derivatives thereof, peptides, and proteins. Ligand diversity is in stark contrast, whereas all receptors are proteins. Examples of membrane receptors include 1-transmembrane receptor, 4-transmembrane receptor, and 7-transmembrane receptor.
- single transmembrane receptors examples include type I cytoforce-in receptors and enzyme-coupled receptors that have enzyme activity on the cytoplasm side.
- this type of receptor the degree of phosphorylation of the receptor is changed by the binding of the ligand, and the effects of enzyme activities such as kinase activity and phosphatase activity are expressed.
- Tyrosine kinase, serine 'threonine kinase activity There are receptors.
- quadruple transmembrane receptor is one that forms a subunit structure and functions as an ion channel.
- the ion channel type receptor when the ligand is bound, the ion channel is opened, and the inflow and outflow of ions occur, and a specific effect appears.
- G protein-coupled receptors include biological amines such as dopamine and serotonin, lipid derivatives such as prostaglandins, nucleic acids such as adenosine, amino acids such as GABA, and bioactive peptides (eg, angiotensin II, bradykinin, It forms a receptor family with ligands such as cholestocun).
- GPCs include biological amines such as dopamine and serotonin, lipid derivatives such as prostaglandins, nucleic acids such as adenosine, amino acids such as GABA, and bioactive peptides (eg, angiotensin II, bradykinin, It forms a receptor family with ligands such as cholestocun).
- GPC G protein-coupled receptors
- R is also a receptor for in vitro information mediators related to light, taste and smell.
- GP CR is an important membrane protein that plays a central role in information transmission.
- the seven-transmembrane receptor include muscarinic acetylcholine receptor, A1 adrenergic receptor, dopamine receptor, serotonin receptor, histamine receptor, group I metabotropic gnoretamic acid receptor (mGluRl / 5), GABAB receptor, ATP receptor, leukotriene receptor, platelet activating factor (PAF) receptor, opioid receptor, olexin receptor, endothelin receptor, neuropeptide PACAP receptor, CRH receptor , Chemokine receptor, non-neuronal muscarinic receptor, adrenergic receptor, 3 adrenergic receptor, prostanoid receptor, prostaglandin E receptor, prostaglandin E2 receptor, nociceptin receptor, angiotensin II receptor Body, calcitonin receptor, bradykinin receptor, glucagon family peptide hormone receptor, There are other Ofan 7-transmembrane receptors.
- the 7-transmembrane receptor binds to various ligands and is deeply involved in diseases and pharmaceuticals, so that the present invention can be suitably used.
- the membrane receptor may be involved in autoantibody-related diseases. And are preferred.
- autoantibody-related disease means a disease in which autoantibodies are recognized as a cause or a result of the onset of a specific disease. Examples of such diseases include Graves' disease, myasthenia gravis, dilated cardiomyopathy, persistent atrial fibrillation, insulin resistant diabetes, self-immune hepatitis, and thymoma patients with myasthenia gravis. Can be mentioned.
- TSHR thyroid Stimulating Hormone Receptors
- TSH thyroid stimulating hormone
- the molecular weight of the extracellular domain is about 45000.
- Graves' disease autoantibodies against thyroid components have emerged, which have been shown to cause the production and secretion of thyroid hormones, eventually leading to thyroid tissue breakdown.
- Antigens for diagnosis of thyroid autoimmune diseases represented by Graves' disease include thyroid peroxidase (TPO), thyroglobulin (Tg), and TSHR. Diagnosis of Graves' disease has been carried out using autoantibodies against these antigens as markers.
- TPO thyroid peroxidase
- Tg thyroglobulin
- TSHR thyroglobulin
- JP-A-11 106397 and JP-A 2000-232880 As techniques for solving these problems, there are JP-A-11 106397 and JP-A 2000-232880. However, a complete measurement system has not yet been developed.
- acetylcholine receptors There are four types of acetylcholine receptors: channel-type nicotinic receptors consisting of five types of four-transmembrane subunits (two, ⁇ , ⁇ ), and seven-transmembrane muscarinic receptors. Exists. Of these, the nicotinic receptor is the acetylcholine receptor (AChR) present in the postsynaptic membrane at the neuromuscular junction of skeletal muscle.
- AChR acetylcholine receptor
- MG myasthenia gravis
- ACh acetylcholine
- Myasthenia gravis is a myasthenia gravis (MG) that has a symptom of weakness, especially when the same action is repeated.
- the prevalence of myasthenia gravis is about 5 per 100,000 population in Japan, and the male-female ratio is 1: 2.
- Anti-AChR antibodies have been identified in 85% of these patients.
- Anti-AChR antibodies can be measured by detecting anti-AChR antibodies based on the activity that inhibits the binding of AChR to neurotoxin (inhibitory type) and anti-AChRs that bind to the AChR-neurotoxic complex There is a method for measuring antibodies (non-inhibitory type).
- the Concanavalin A_s mark harose method Con A method
- the immunoprecipitation method IP method: anti-human IgG method
- insulin-resistant diabetes involves autoantibodies to the insulin receptor.
- the binding of insulin to the receptor is inhibited or the receptor is decreased by binding of autoantibodies to the hormonal receptor chain. If insulin does not act, the blood sugar level does not decrease and diabetes occurs. This case is more common among blacks but is also more common among Japanese.
- fasting blood glucose levels and glucose tolerance range from normal to diabetic levels. Blood insulin levels range from 5 to 100 times normal. However, blood insulin levels are more than 5 times normal (50 ⁇ ⁇ / ⁇ 1) even in those with low blood pressure, and half of them are higher than ⁇ ⁇ ⁇ / ml.
- the diagnostic criteria are that the symptoms and laboratory findings associated with melanoma and autoimmune disease are positive, and if hyperglycemia with severe hyperinsulinemia is observed, this disease is suspected, and the anti-insulin receptor antibody Confirm when is detected. Treatment often requires large amounts of insulin. In Japanese patients, spontaneous remission is often reported in 2 to 3 years. However, complications can lead to poor prognosis. For this disease, a measurement system that can easily measure autoantibodies has been desired.
- Autoimmune hepatitis is considered to be a disease caused by autoantibodies to the calcilloglycoprotein receptor (AGPR).
- AGPR calcilloglycoprotein receptor
- the estimated annual number of patients for this disease is 1,400.
- the age of onset is unimodal, centered around 50 years old. Many patients develop after middle age. In recent years, an aging age has been observed.
- the gender ratio of the sick is about 1: 7 and there are many female patients.
- AGPR is a membrane protein that is specifically expressed in liver parenchymal cells, and has a function of taking up cashmere glycoproteins in serum for degradation in the liver.
- the present invention is not limited to the diseases exemplified above, but can be applied to other autoantibody related diseases relating to membrane receptors.
- Ribosome means a closed vesicle comprising a lipid bilayer containing phospholipid (PL) and having an aqueous phase inside.
- the ribosome is composed of multi-layered ribosomes (MLV, multilamellar) in which lipid bilayers are layered in two or more layers. vesicles) and lipid bilayers are divided into a single layer of ribosomes (UV, unilamellar vesicles). UV is classified into small unilamellar vesicle (SUV) and large unilamellar vesicle (LUV) depending on the particle size. In the method of the present invention, either MLV or UV can be used.
- MLV multi-layered ribosomes
- LUV is preferable because when the recombinant proteoribosome is prepared, the membrane receptor is well located throughout the proteoribosome, and hence there is less variation in the subsequent data. While UV is often prepared using sonication or an etastruder, MLV is easy to prepare, so there is an advantage that less labor is required to prepare proteolibosomes. I like it.
- Phospholipid means a substance containing phosphoric acid and lipid. Depending on the component, it is classified into a glyce mouth phospholipid having a glyce mouth skeleton and a sphingo phospholipid having a sphingosin skeleton.
- the glyceport phospholipid include phosphatidinorecholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG), Examples thereof include phosphatidylglycerol (cardiolipin) and phosphatidic acid (PA).
- PC phosphatidinorecholine
- PE phosphatidylethanolamine
- PS phosphatidylserine
- PI phosphatidylinositol
- PG phosphatidylglycerol
- Examples thereof include phosphatidylglycerol (cardiolipin
- the ribosome used in the present invention may be a mixture of the above various phospholipid components in an arbitrary ratio.
- PC can be the main component (eg, a ratio of about 40% to about 100% of the total phospholipid).
- PS is a receptor for baculovirus g p64, membrane fusion between baculovirus and ribosome can be carried out smoothly.
- the mixing ratio of PS is about 0.1 parts by mass to about 1 part by mass (preferably about 0.2 parts by mass to about 18 parts by mass) with respect to 1 part by mass of PC.
- an appropriate anchoring substance for example, piotin
- a binding substance for example, avidin
- the recombinant proteoribosome prepared by the above method is applied to a membrane receptor expressed on the membrane surface of the recombinant proteoribosome by coating a detection plate.
- a detection plate Can be used in a system for detecting the presence or absence of autoantibodies.
- a substance capable of binding between the ribosome and the plate surface (the same substance may be used for the ribosome and the plate surface, or different substances may be used.
- an avidin-piotin system can be exemplified, and in the present invention, it is preferable to arrange a variety of substances without being limited to these substances.
- the recombinant proteoribosome can be smoothly immobilized on the plate surface by precipitating the lipid constituting the ribosome and coating the plate surface with avidin.
- the recombinant proteoribosome is preferably coated on the detection plate via a linker-containing substance.
- the linker is placed between the lipid and piotin.
- a linker for example, polyethylene glycol (PEG) can be used.
- Ribosomes with the surface of the ribosome covered with the hydrophilic polymer polyethylene glycol (PEG) have a structure that suppresses nonspecific adsorption of biological components such as blood proteins.
- biotinylated PEG phospholipid using PEG as a linker it may act as a mere PEG phospholipid, and non-specific color development is suppressed when an ELISA system is constructed.
- the N ratio is improved and the specificity of the ELISA system is further improved.
- the detection plate comprises the detection plate, a dilution buffer for diluting serum for evaluating the presence or absence of autoantibodies, a washing buffer, and a secondary antibody that recognizes and is labeled with the autoantibodies.
- Kits can be provided.
- the detection kit is preferably provided with a dilution buffer in which serum is diluted, and an antibody-removing ribosome that is added dropwise to the well of the plate or mixed with the dilution buffer. It is preferable to use such a ribosome that has the same components as the solid-phased ribosome and does not express a membrane receptor. If serum contains an anti-ribosome antibody or an antibody that non-specifically adsorbs to ribosome, it binds to the antibody and is removed from the measurement system. This reduces the data baseline and improves the signal-to-noise ratio.
- microtiter plates such as 8-, 48-, 96-, or 384-holes can be used.
- detection method include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay, radioreceptor assay, and fluorescence immunity.
- ELISA enzyme-linked immunosorbent assay
- radioimmunoassay radioimmunoassay
- radioreceptor assay radioreceptor assay
- fluorescence immunity examples include epidemiological measurements and chemiluminescence assays.
- measurement methods using a non-radioactive labeling system for example, EILSA measurement and fluorescence immunoassay are preferred.
- an antibody is labeled with an enzyme, and a substance (antigen) that binds to the antibody is detected.
- a method for detecting an antigen protein it is widely used as an analysis method for detecting an antigen protein in a specimen or an antibody that binds to a specific antigen protein using an antigen-antibody reaction.
- An antibody (autoantibody or primary antibody) that reacts with the antigen to be measured can be enzyme-labeled as it is.
- an unlabeled primary antibody is allowed to act on the antigen coated on the test plate, and a secondary antibody against the primary antibody is allowed to act.
- the secondary antibody is preliminarily chemically bound with an enzyme such as peroxidase or galactosidase.
- the presence or amount of the target antigen is detected by adding a substrate that develops color by the enzyme reaction.
- the desired serum is generally diluted with a dilution buffer and allowed to act on the detection plate.
- the autoantibody in the diluted serum becomes the primary antibody.
- the labeled anti-human antibody is allowed to act on the detection plate as a secondary antibody, washed again with the washing buffer, and then the enzyme activity is detected by colorimetry or the like. To detect.
- labeling enzyme in the ELISA method there is no particular limitation on the labeling enzyme in the ELISA method.
- enzymes such as alkaline phosphatase, peroxidase, j3-galactosidase, and luciferase can be used.
- the method for monitoring the therapeutic effect of a therapeutic agent for diseases includes thyroid disease or Graves' disease, myasthenia gravis, dilated cardiomyopathy, persistent atrial fibrillation, insulin resistant diabetes, autoimmune hepatitis, severe muscle.
- the serum of any patient in a disease group consisting of thymoma complications in asthenia is measured using the detection plate or detection kit described above.
- Chest of thyroid disease or Graves' disease according to the present invention, myasthenia gravis, dilated cardiomyopathy, persistent atrial fibrillation, insulin resistant diabetes, autoimmune hepatitis, myasthenia gravis
- the screening method for the presence or absence of any disease in the disease group consisting of adenoma complications is characterized by measuring human serum using the detection plate or detection kit described above.
- a diagnostic recombinant proteoribosome capable of qualitatively and quantitatively evaluating the presence or absence of a binding substance (for example, an autoantibody) to a membrane receptor without using radioactivity. It can.
- a detection plate and a detection kit can be prepared. This detection plate can be used for the presence or absence of autoantibodies.
- Figs. 1 to 3 show an outline of a method for producing the diagnostic recombinant proteoribosome of this embodiment and a method for preparing an ELISA (Enzyme-linked immunosorbent assay) system using the proteoribosome. .
- Preparation of an ELISA system using proteoribosome can be roughly divided into three steps. (1) A step of preparing a baculovirus having a gene encoding the target receptor (see Fig. 1), (2) A fusion of this baculovirus and a liposome to prepare a recombinant proteoribosome And (3) applying the recombinant proteoribosome to ELISA (see FIG. 3). These steps will be described in order.
- a gene encoding a target membrane receptor is prepared.
- the gene of interest is obtained by cloning a gene encoding a membrane receptor from cDNA library 1. In that case, for example, a PCR method using an appropriate primer can be used.
- the resulting gene is incorporated into a transfer vector 2 and cotransfected into insect cultured cells (eg, Sf9 cells) 4 together with baculovirus DNA3. Fuxion.
- insect cultured cells eg, Sf9 cells
- Fuxion insect cultured cells
- the cultured virus 6 is again infected with the recombinant virus 5 budding from the insect cultured cells. Since transfer vectors and baculovirus DNA undergo homologous recombination in insect cells, recombinant baculovirus budding virus 7 with the gene of interest appears in the supernatant. Therefore, the baculovirus germinated in the culture supernatant is purified. The target membrane receptor 7A is expressed on the envelope of the purified virus 7. The obtained recombinant baculovirus 7 is again infected with insect culture cells as necessary, purified and amplified, and then used for the next step.
- this budding baculovirus 7 and ribosome 8 are fused to prepare recombinant proteoribosome 9. Fusion of viruses 7 and ribosomes 8, via a membrane fusion protein g p64 7B on Roh Kyurou I pulse envelope occurs at an acidic pH of about pH 4.
- a membrane fusion protein g p64 7B on Roh Kyurou I pulse envelope occurs at an acidic pH of about pH 4.
- the ribosome either SUV, LUV, or MLV may be used. However, it is preferable to use MLV which is easy to prepare.
- a preferred embodiment is obtained when it is immobilized on a plate.
- budding baculovirus 7 and ribosome 8 are fused, they can be used as they are. However, it is preferable to purify and recover the recombinant proteoribosome 9 by a known method such as ultracentrifugation and gel filtration.
- the recombinant proteoribosome 9 is coated on the surface of the well 11 of the plate 10.
- the streptavidin 12 is immobilized on the surface of the uenore 11 in advance.
- a commercially available streptavidin-coated microplate can be used.
- the solution containing the piotinylated proteoliposome 9 is left in contact with the well 11 of the plate 10 for several hours, preferably overnight.
- the concentration of proteoribosome in the solution is 0.01 ⁇ g / ml or more, preferably 0.5 z ⁇ / 1111 to 20 ⁇ g / ml as the protein concentration.
- an ELISA system for easily evaluating the presence or absence of autoantibodies 14 in serum can be constructed using ELISA plate 18 in which recombinant proteoribosome 9 is immobilized. This ELISA system is used for screening patients. Used for.
- reference numeral 15 is a secondary antibody
- 16 is a substance before color development
- 17 is a substance colored by enzyme 15A.
- the concentration of autoantibodies may be related to the disease state and therapeutic effect, so monitoring the therapeutic effect or improvement status of the therapeutic agent by measuring the serum autoantibody concentration in serum. Can also be used.
- KCl (pH 6.2)] is added to the suspension, and the mixture is suspended in a sucrose density gradient [10%, 15%, 20%, 25%, 30% sucrose (w / v in PBS pH 6.2)] and ultracentrifuged. (13,000 X g, 30 min, 15 ° C). The band thus obtained (virus envelope not containing nucleic acid but only virus membrane protein) was recovered. This band is diluted with PBS (pH 6.2), ultracentrifuged (35,000 X g, 60 min, 15 ° C), and the resulting precipitate is suspended in lOmM Tris-HCl / 10 mM NaCl (pH 7.5). Stored in ice.
- Protein concentration was determined by the Bradford method. Add 10 mM Tris-HCl / 10 mM NaCl ( ⁇ 7 ⁇ 5) to 10 ⁇ 1 and 4 ⁇ of the collected virus solution to adjust the total volume to 1.3 ml, and add protein assay reagent (BIO-RAD) was added and vortexed. After standing at room temperature for 5 minutes, the absorbance was measured at 595 awakes to determine the protein concentration. As a control, 2, 4, 6, 8 / i 1 of 2 mg / ml BSA solution was used, and the same operation as above was performed.
- the lipids used to prepare the ribosomes were phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatide acid (PA), and phosphatidic acid (PA). It was gyrinositol (phosphatidylinositol, PI). These lipids re-entered Avanti Pol ar Lipids.
- LUV large unilamellar vesicle
- the reverse phase evaporation method was used (Maezawa, S., Yoshimura, T., Hong, K., Duzgunes, N., and Papahadjopoulos, D. (1989) Mechanism of protein-induced membrane fusion: fusion of phospholipid vesicles by clathrin associated with its membrane binding and conformational change. Biochemistry 28: 1422-1 428).
- the black mouth form with the phospholipid dissolved therein was removed by reflux under reduced pressure using a rotary evaporator.
- the phospholipid was completely dissolved by adding 10 / mol / ml of jetyl ether to the thin film of phospholipid.
- the diethyl ether was removed with a rotary evaporator.
- the gelled phospholipid was crushed by vortexing, and the residual jetyl ether was removed with a rotary evaporator.
- the same buffer as above was added so that the phospholipid concentration was 10 zmol / ml, and the jetyl ether was completely removed with a rotary evaporator.
- the ribosome diameter was adjusted to 0.1 ⁇ m by pressure filtration through a polycarbonate membrane filter.
- the prepared LUV was filled with argon gas and stored at 4 ° C.
- MLV multi lamellar vesicle
- Chloroform in which phospholipid was dissolved was removed by reflux under reduced pressure using a rotary evaporator, and 10 ml of 10 mM Tris-HCl / 10 mM NaCl (pH 7.5) was added to the thin film of phospholipid, followed by vortexing for 30 seconds.
- the prepared ribosome was filtered under pressure through a 0.4 ⁇ m polycarbonate membrane filter.
- centrifugation 6,000 X g, 20 min, 4 ° C
- the precipitate obtained by centrifugation was suspended in a buffer solution, and the obtained supernatant and its suspension were centrifuged again under the same conditions as described above.
- the obtained precipitate was suspended in a buffer solution and centrifuged under the same conditions as described above.
- the supernatant obtained by centrifuging the suspension solution and the precipitate obtained by centrifuging the previous supernatant were mixed and centrifuged under the same conditions as described above.
- the same operation was repeated several times to remove ribosomes other than MLV.
- the prepared MLV is filled with argon gas4. Saved with C.
- the ribosome concentration was expressed as a phospholipid concentration.
- the phospholipid concentration was measured by wet-decomposing phospholipid with hydrogen peroxide and sulfuric acid and coloring the inorganic phosphorus in the resulting decomposition solution with Fiske-Subbarow reagent. First, the sample and KH P used as a control
- R18 is self-quenched in the labeling film, and the degree of quenching is proportional to the abundance ratio in the film.
- the abundance of R18 in the membrane is reduced, and fluorescence recovery is observed.
- BV labeled with R18 was diluted 10-fold with a buffer solution, placed in a fluorescence cell, and the fluorescence intensity was measured using a fluorimeter (HITACHI F-2500) while stirring (excitation wavelength: 560 nm, fluorescence). Wavelength 580nm).
- unlabeled liposome was added to the fluorescent cell, and the fluorescence intensity was measured for 50 seconds while stirring.
- Fusion rate (%) 100 X (F-F) / (F-F)
- F is the fluorescence intensity after adding ribosome
- F is the fluorescence intensity of R18-labeled BV only
- proteins, phospholipids, etc. were measured using the same method as used for the wild-type AcNPV proteoribosome test unless otherwise stated.
- the A ChR ⁇ chain translation region was cloned by PCR using pfu polymerase using two PCR primers.
- primer 1 SEQ ID NO: 1 gtagcatatggagccctggcctctcct
- primer 2 SEQ ID NO: 2 tttc £ i £ g tccttgctgatttaattcaatgag
- the underlined part of IJIJ indicates the added restriction enzyme sites (Ndel and Xhol).
- the obtained 1.4 kbp DNA fragment was deleted at the Ndel and Xhol restriction enzyme sites added to the primer and ligated to Nde I and Xho I of Novagen's PET-30a (+) multicloning site.
- the obtained clone (PET / AChR) was sequenced using a DNA sequencer and registered as Ac ⁇ ⁇ ⁇ 00762, which matches the AChR a gene translation region. It was confirmed that the DNA fragment was obtained.
- PCR was performed using TaKaRa Ex Taq with the following primers.
- Primers 3 cathode U number 3: cggaattceatatggagccctggcctctc
- primer 4 self-column number 4: gctctagagctttgttagcagccggatc
- the recognition sites (underlined portions) of restriction enzymes EcoR I and Xba I were added to the 5 ′ end of both primers, respectively.
- the His-Tag derived from PET_30a (+) is fused to the C-terminus of the AChR mouse, making it easy to confirm the expression of the AChR mouse with the anti-His-Tag antibody.
- the obtained DNA fragment was digested with EcoRI and XbaI and ligated to the EcoRI and XbaI sites of the multicloning site of BD Biosciences baculovirus transfer vector PVL1392.
- the ligation product was transformed into a competent cell to obtain plasmid DNA.
- the obtained clone (pVL / AChR a) was confirmed to be recombined with the pVL1392 vector by the DNA sequencer using the AChR a translation region and His-Tag sequence.
- AChR a recombinant transfer vector and baculovirus DNA were cotransfected into Sf9 cells using CELLFECTIN Re agent (Invitrogen), and AChR a recombinant baculovirus (by homologous recombination in Sf9 cells ( AChR a recombinant AcNPV) was prepared.
- AChR a recombinant AcNPV by homologous recombination in Sf9 cells
- AChR a recombinant AcNPV was prepared.
- Sf9 cells were newly infected and detected by anti-His-Tag antibody.
- SCh9 cells and AChR ⁇ recombinant AcNPV budding virus were infected with AChR ⁇ .
- the obtained AChR ⁇ recombinant baculovirus was purified by plaque method and used for production of recombinant ribosome.
- TSHR translated region (Clontech Co.) following PCR primers from human thyroid cDNA was performed by PCR using pf u polymerase.
- primer 5 (item I [number 5: agtcggatccaccatgagccggcggacttgct and puffima ' ⁇ 6 (tgttctc gagcaaaaccgtttgcatatactctt) was used.
- the underlined part of the sequence is the added restriction enzyme site (BamH I and Xho I).
- the resulting 2.3 kbp DNA fragment was digested with B ⁇ HI and XhoI restriction enzyme sites added to the primer, and labeled with BamHI and XhoI at the multiple cloning site of Novagen PET-28a (+). I got a gig.
- the nucleotide sequence of the obtained clone (PET / TSHR) was determined using a DNA sequencer, and it was registered as Acc.No. A34990. confirmed.
- primer 7 (Tatsumi I [number 7: agtcggatccaccatgagccggcggacttgct) and primer 8 (Tetsugi No. 8: ttcggaattcgttagcagccggatctcagt) were used.
- the recognition sites (underlined parts) of restriction enzymes BamH I and EcoR I were added to the 5 'end of both primers, respectively.
- the obtained DNA fragment was digested with BamH I and EcoR I and ligated to the BamHI and EcoR I sites of the BD Biosciences baculovirus transfer vector PVL1393.
- the obtained clone (pVL / TSHR) was confirmed to have been recombined into the TSHR translation region and His-Tag sequencing ability 3 ⁇ 4VL1393 vector using a DNA sequencer.
- Both TSHR recombinant transfer vector and baculovirus DNA were cotransfected into Sf9 cells by the calcium phosphate method, and TSHR recombinant baculovirus (TSHR recombinant AcNPV) was prepared by homologous recombination in Sf9 cells. .
- TSHR recombinant Ac NPV was infected to High Five cells and detected with an anti-His-Tag antibody, it was confirmed that TSHR was expressed in High Five cells.
- Plaque purification and virus titer measurement of TSHR recombinant AcNPV and AChR recombinant AcNPV were performed as follows. 1.0 ⁇ 10 6 Sf9 cells were seeded in each well of the 6-well plate, and the medium was removed after the cells had adhered to the bottom surface.
- the virus solution is Carlson solution [0.12M NaC 1, 1.4mM CaCl 1.7mM NaH PO, 2.7mM KCl, 0.5mM MgCl, 1.4mM NaHCO, 8g / l
- Glucose, 5 ⁇ g / ml Gentamysin] (or Sf_900II SFM medium) was diluted serially with 500 ⁇ l of this virus solution, rocked every 15 minutes, and infected for 1 hour. After infection, remove virus dilution and contain Sf- containing 0.5% SeaPlaque agarose (FMC Bioproducts) 900II SFM medium was added and allowed to stand at room temperature until the medium solidified. After the medium was solidified, it was cultured at 27 ° C for several days.
- Plaques formed by virus-infected cells were removed together with the agar medium using a Pasteur pipette, and the virus in the agar medium was released into the liquid by pipetting in 1 ml of Carlson liquid or Sf-900II SFM medium.
- the resulting virus solution derived from a single plaque was propagated by infecting Sf9 cells. If the titer is low, the infection can be repeated to amplify the titer. Thereafter, the culture solution of the infected cells is collected, centrifuged (1,700 X g, lOmin), and the filtrate obtained by filtering the supernatant with a 0.2 zm filter is used as a recombinant baculovirus stock solution.
- Recombinant baculovirus for the preparation of recombinant proteoribosome.
- the virus stock solution should be appropriately dispensed and thawed from one dispensed stock stored at _80 ° C, and the titer of the recombinant virus can be determined by the plaque method in the same manner as the above-mentioned purification of wineless. The number of plaques formed one week after infection was counted.
- 12% separation gel [12% acrylamide, 0.41% bisacrylamide, 0.1% SDS, 375 mM Tris-HCl (pH 8.8), 0.01% APS, 0.001% TEMED] and concentration gel [3.8 9% acrylamide , 0.11% bisacrylamide, 0.1% SDS, 125 mM Tris-HCl (pH 6.8), 0.01% APS, 0.001% TEMED] and a buffer for electrophoresis (Running buffer) [0.1% SDS, 25 mM Tris, 52mM 83 ⁇ 4 ⁇ ! 1 ⁇ 2 ( ⁇ 3 ⁇ 4.3)] is set in the electrophoresis tank (Haccho 0) and the sample is injected into the injection hole of the concentrated gel. Electrophoresis was performed. After electrophoresis, the gel was immersed in Bio-Safe Coomassie (BI ⁇ _RAD) for 1 hour to stain the separated protein.
- Bio-Safe Coomassie BI ⁇ _RAD
- Silver staining II kit Wako was used for silver staining. First, the gel after SDS-PAGE (before staining) was immersed in fixative_1 and shaken for 10 minutes. Next, discard fixative-1 and fix the gel Immerse in liquid-2 and shake for 10 minutes. Thereafter, Fixative-2 was discarded, the gel was immersed in the sensitizer, and shaken for 10 minutes. The sensitizing solution was discarded, and the gel was shaken with deionized water for 5 minutes and then shaken with the coloring solution for 15 minutes to detect the protein.
- PVDF membrane was immersed in aCl, (pH 7.2)] and blocked at room temperature for 2 hours. Next, the PVDF membrane was washed with PBST [PBS (pH 7.2) + 0.05% Triton X-100] solution (5 minutes x 3 times) and immersed in the primary antibody solution for 1 hour. Thereafter, the PVDF membrane was washed with PBST solution (5 minutes ⁇ 3 times) and immersed in the secondary antibody solution for 1 hour. Wash the PVDF membrane again with PBST solution (3 x 5 min), and use the Konica Immunostin HRP-1000 kit (Seikagaku Corporation) to develop color with the peroxidase that binds the protein transferred on the membrane to the antibody. Detected by reaction.
- PBST PBS (pH 7.2) + 0.05% Triton X-100
- an anti-His-Tag antibody (rabbit Anti-His-Tag; MBL) solution diluted 1000 times with PBS (pH 7.2) was used.
- MBL mouse Anti-His-Tag
- MBL goat Anti-Rabbit IgG (H + L chain) -Peroxidase (MBL) solution diluted 1000 times with PBS ( PH 7.2) was added.
- MBL Anti-Rabbit IgG (H + L chain) -Peroxidase
- TSHR recombinant baculovirus (TSHR recombinant AcNPV) and AChR ⁇ recombinant baculovirus (AChR a recombinant AcNPV) budding virus were prepared by the following procedure for the production of recombinant proteolibosomes. .
- Sf-900II SFM medium (Invitrogen) Add 10 ml of the subcultured Sf9 cell suspension to 10 T-75 culture flasks to which 11 ml was added, and then recombine with TSHR recombinant AcNPV or AChR.
- AcNPV was infected with a multiplicity of infection (MOI) of 1.
- MOI multiplicity of infection
- the culture supernatant was ultracentrifuged (40,000 Xg, 30 minutes, 15 ° C) using an ultracentrifuge (Beckman LP-70: rotor is SW28), the supernatant was discarded, and the resulting budding was obtained PBS (pH 6.2) was added to the virus precipitate and suspended.
- the suspension was centrifuged (1,000 X g, 15 minutes, 4 ° C) to remove unnecessary precipitates, and then ultracentrifuged (40,000 X g, 30 minutes, 15 ° C).
- the budding virus precipitate was suspended in PBS (pH 6.2).
- the protein concentration of the budding virus suspension was quantified by protein assay (Bradford method) using BSA as a standard sample.
- the suspension was stored in ice and used for preparation of recombinant proteoliposomes as appropriate.
- Biotin-PE 1: 1: 0.066 (total amount of phospholipid 10.33 mol), Biotin-PE, here N — (Biotinoyl) — 1,2—dihexadecanoy ⁇ sn—glycero— 3—phosphoethanolamine, tnetnylammonium salt (Biotm PE, Molecular Probes: ⁇ ) ⁇ 3 ⁇ 4 ⁇ .
- the vacuum is manually reduced from 700 mmHg to 500 mmHg by about 100 mmHg every 1-2 minutes, then from 500 mmHg to 100 mmHg, it is lowered by about 50 mmHg and further from 100 mmHg. Decrease by 25 mmHg and finally 10-20 mmHg.
- the filtrate containing MLV was centrifuged several times as follows to purify MLV.
- the filtrate was transferred to an Eppendorf tube and centrifuged in a small refrigerated centrifuge (10,000 mm, 20 minutes, 4 ° C).
- the obtained centrifugal supernatant was transferred to another Eppendorf tube, and the MLV precipitate was resuspended with 1 ml buffer, and the same centrifugation was performed on both the supernatant and the precipitate.
- the supernatant obtained by re-centrifugation of the supernatant is added to the precipitate supernatant suspension and suspended, and 1 ml of buffer is added to the centrifuged precipitate. In addition, it was resuspended again. This operation was repeated once, and 0.5 ml of buffer was added to each of the resulting precipitates and suspended, and 1 ml of MLV suspension was obtained.
- inorganic phosphorus in the decomposition solution wet-decomposed with hydrogen peroxide and sulfuric acid was quantified by the Fiske-Subbarow method.
- the MLV suspension prepared in this way was used for preparation of recombinant proteoribosomes.
- the MLV suspension was filled with argon gas and stored at 4 ° C.
- the osmotic pressure was adjusted by adding loin, and the osmotic pressure was adjusted to the osmotic pressure (about 35 mosmol / 1) of the ribosome preparation buffer.
- a fusion buffer and a budding virus suspension of TSHR recombinant AcNPV (or AChR recombinant ANPV) were added to the container and mixed, and then the MLV suspension was added and stirred at room temperature for 10 minutes with a stir bar. With respect to 1 ml of this mixed solution, final concentrations were added such that the amount of budding virus was 10 zg in terms of protein, and that of MLV was 200 nmol in terms of phosphorus.
- the fusion buffer volume was adjusted so that the total volume of the mixture was 1 ml.
- the recombinant AcNPV budding virus and MLV are fused.
- Theoliosome is included.
- This mixture was centrifuged in a small refrigerated centrifuge (5,000 ⁇ m, 20 minutes, 4 ° C), and the supernatant was removed and diluted 10-fold into a centrifugal precipitate containing recombinant proteoribosomes. 8 ⁇ (0.1? 83, pH 7.2) was added and suspended.
- the obtained recombinant ribosome suspension was stored at 4 ° C. until it was subjected to antibody measurement (ELISA). It was assumed that the recombinant proteoliposome precipitate after the fusion would incorporate 50% of the original viral load.
- Example 16 Recombinant Virus—Silver Staining in MLV Fusion Ribosome
- Example 14 MLV prepared with a composition not containing piotin monophosphatidylethanolamine was used, and a recombinant proteosome was prepared according to the procedure of Example 15. However, in the final sample, the precipitate after centrifugation in Example 15 was suspended in the same pH 4.0 or pH 7.5 buffer as in the fusion treatment. Using these, silver staining was carried out by the method described in Example 11.
- AChR a recombinant proteoribosome is diluted to 1.0 ⁇ g / ml with PBST [0.05% Triton X-100, PBS (pH7.2)], and streptavidin 'coated' microplates (Streptavidin Coated Microplates) ( Thermo ELECTRON CORPORATION) was placed at 100 ⁇ l / well and left at 4 ° C for adsorption onto the plate. After removing the sample and washing the plate 3 times with PBST to remove unadsorbed proteoribosomes, then blocking buffer (1% BSA, 5% Sucrose, PBS ( ⁇ 7 ⁇ 2)) was blocked at room temperature for 2 hours.
- the value of each color developed is determined by measuring A and A with a microplate reader.
- the receptor does not express, ribosome only, and TSHR recombination Using proteolibosome, the same procedure as for the above AChRct recombinant proteoribosome was performed, and color development of the well was confirmed.
- PEG was used as a linker between piotin and lipid.
- each of the above phospholipids was dissolved in black mouth form. Place each black mouth form solution (about 5 ml) in a glass screw cap test tube with the cap removed, transfer the test tube to a glass receiver with glycerin as a heating medium, and connect to a rotary evaporator. Then, the pressure was appropriately reduced to about 680-700 mmHg and fixed. The position was determined so that the receiver was immersed in the water bath, the rotary evaporator was rotated, nitrogen gas (1 kg ⁇ m 2 ) was not fed, and the solvent chloroform was removed under reduced pressure. Depressurization is reduced manually from 700 mmHg to 500 mmHg by approx.
- the filtrate containing MLV was centrifuged several times as follows to purify MLV.
- the filtrate was transferred to 10 Eppendorf tubes and centrifuged in a small refrigerated centrifuge (12,000 Xg, 20 minutes, 4 ° C).
- the obtained centrifugation supernatant was transferred to another Eppendorf tube, the MLV precipitate was resuspended with 1 ⁇ buffer, and the same centrifugation was performed on both the supernatant and the precipitate.
- the precipitate obtained by re-centrifugation of the supernatant is suspended by adding the centrifugal supernatant of the precipitate resuspension, and 1 ml of buffer is added to the centrifugal precipitate of the precipitate resuspension. I was frightened and resuspended again. This operation was performed once more, and 0.5 ml of buffer was added to each of the resulting precipitates and suspended respectively. Both were combined to obtain 1 ml of MLV suspension.
- a polycarbonate membrane (pore size 0.4 ⁇ m) was attached to the pressure filter, and the MLV suspension was pressure filtered with argon gas. All Eppendorf tube forces
- inorganic phosphorus in the decomposition solution obtained by wet decomposition of the suspension with hydrogen peroxide and sulfuric acid was quantified by the Fiske-Subbarow method.
- the MLV suspension prepared in this way was used for preparation of recombinant proteoribosomes.
- the MLV suspension was filled with argon gas and stored at 4 ° C.
- an antibody removing ribosome was prepared to remove the antibody bound to the ribosome.
- dioleoylphosphatidylcholine DOPC: COATSOME MC-8181, manufactured by NOF Corporation
- DOPS_Na COATSOME MS-8181LS, Nippon Oil & Fats
- This phospholipid is manipulated according to the same procedure as above, and the antibody removing ribosome ( 17.3 mM) was obtained.
- a plate not sensitized with nothing (BSA) and a plate sensitized with TSHR recombinant baculovirus were prepared in the same manner as described above.
- Fig. 2 shows the process of producing recombinant proteoribosomes using this baculovirus.
- gp64 has been shown to induce fusion with insect cell endosomal membranes. It has been suggested that PS of acidic phospholipid, the lipid that composes endosomal membrane, may be the main receptor for gp64 during fusion (Tani, H., Nishijima, M., Ushijima, H , Miyamu ra, T., and Matsuura, Y. (2001 Characterization of cell-surface determinants import ant for baculovirus infection. Virology 279: 343-53) Therefore, we can examine whether other acidic phospholipids can substitute for PS.
- (1: 1), PC / PI (1: 1), and L, phospholipid composition LUVs were prepared, and the results of comparison of fusion rates with BV in these LUVs are shown in Fig. 5.
- the PC / PS composition LUV had a slightly high fusion rate, the strength S, and the LUV of all four lipid compositions had a low fusion rate.
- LUV possesses the properties of biological membranes with a high substance encapsulation rate, and can be said to be suitable for various research purposes that intend to use ribosomes.
- LUV is complicated to prepare and purify.
- MLV can be prepared by simply applying mechanical vibration to the lipid membrane, and can be easily separated by low-speed centrifugation, and is easy to prepare and purify. Is preferred. Therefore, we examined whether it can be used instead of MLV force LUV.
- the R18_dequenching assay was performed in the above examination methods (1), (2), and (3) in the same manner as the fusion measurement of wild-type BV and LUV.
- MLV with a lipid composition of PC / PS (1: 1) was prepared, and BV and MLV when the pH of the fusion buffer was ⁇ 3.0, ⁇ 4.0, ⁇ 4.5, ⁇ 5.0, ⁇ 6.5
- the fusion rate of was measured. As shown in Figure 4, the fusion rate was low at pH 5.0 or higher. Very high fusion rate was shown at pH 4.0 or lower, and it fused efficiently with the virus under relatively mild conditions of pH around 4. I understood.
- An MLV with a lipid composition of PC / PS (1: 1) was prepared, and the fusion rate was measured when the concentration of MLV to be fused was varied with the pH of the fusion buffer being 4.0 and the amount of BV being constant. As a result, MLV When the concentration was changed from 5 ⁇ M to 100 / M, an increase in the fusion rate was observed, but at higher concentrations, the fusion rate was almost constant.
- Human AChR is a pentamer consisting of five subunits of ⁇ y ⁇ , which are arranged in a ring to form a cation-selective ion channel, which is a glycoprotein (? 3 ⁇ 4> ⁇ ⁇ , as shown in Unwin, N. (200D Refined structure of the nicotinic acetylcholine rec sign tor at 4 angstrom resolution. J. Mol. Biol. 346: 967-989 ⁇ )
- Four ⁇ helices per subunit penetrate the cell membrane, and the ⁇ subunit in these subunits has a molecular weight of about 50 kDa, and this ⁇ subunit is the binding site for anti-ACh R antibodies. It is considered.
- Figure 9 Shows a schematic diagram of the three-dimensional structure of human TSHR as seen from the membrane cross section.
- Human TSHR is synthesized as a single polypeptide seven-transmembrane protein, and then the N-terminal is two subunits: one subunit 30 is the extracellular domain and the other is the transmembrane and cytoplasmic domain / 3 subunit 40. It is cleaved at the cleavage region 50 between to form a receptor.
- the molecular weight is about 87 kDa. It is thought that leucine-rich repeats 60 present in spleen subunit 30 is the reactive site for anti-TSHR antibody.
- AChR recombinant AcNPV-infected cells and budding virus envelope The cell fraction and BV fraction collected from the cell culture medium of Sf9 cells infected with AChR recombinant AcNPV were subjected to SDS-PAGE, followed by silver staining and Western blotting with an anti-His-Tag antibody. If AChR is expressed in cells and AC hR is displayed on the budding virus envelope, an anti-His-Tag antibody that specifically binds to 6 X His-Tag attached to AChR is used. AChR is detected by Western blot.
- the BV of wild-type AcNPV is located at the position corresponding to the molecular weight of AChR in the ribosome precipitation fraction.
- a band not observed in the fractions was observed.
- the centrifugation operation performed at the time of fusion did not precipitate the BV particles alone, indicating that they were fused with the BV-force S ribosome displaying AChR.
- a band was detected at a position corresponding to a molecular weight of about 87 kDa in the TSHR recombinant BV fraction, and TSHR was displayed on the budding virus envelope.
- TSHR was displayed on the budding virus envelope.
- a band was detected at a position higher than the molecular weight of TSHR. This is because in the cell fraction, TSHR expressed on the cell membrane causes aggregation with cell debris such as the cell membrane, and when electrophoresis is performed, it is difficult to move through a separation gel with a high acrylamide concentration, that is, a gel with small pores.
- BV fraction was displayed on the TSHR force 3 ⁇ 4V without cell debris.
- Human TSHR is expressed on the thyroid cell membrane and then cleaved into two subunits When expressed in heterologous cells, it is known that cleavage does not occur and remains a monomer. Matches.
- FIG. 15 shows 10 myasthenia gravis patients (MG01-10) and 5 patients using a microplate on which ribosomes only, TSHR recombinant proteoribosomes, and AChR recombinant proteoribosomes were immobilized.
- the results of measuring human serum from healthy individuals are shown.
- FIG. 16 shows signal values (AChR_TSHR or AC hR proteoribosome-ribosome) based on these data.
- anti-ACh in patient serum There was a tendency for high levels of Ra antibody (AchR-TSHR or AchR proteoribosome-ribosome).
- FIG. 17 is a fluorescence micrograph showing whether or not anti-AchR antibodies are observed in the human sera of the above 15 individuals. The value of the anti-AChR antibody and the degree of fluorescence in the fluorescence micrograph seemed to show an appropriate correlation.
- Figure 18 shows human serum (on Graves' disease patients and healthy subjects) on a streptavidin 'coated' microplate adsorbed with TSHR recombinant proteoribosome or TSHR recombinant AcNPV budding virus (a lysosome fused with ribosome). The results of the ELISA system when humans were reacted were shown. The horizontal axis of the graph shows the ID number of each human serum sample, and the vertical axis shows the result of measuring A. Human serum samples that begin with B or T (39 samples from the left) are thyroid serum, and those that begin with B are diagnosed as Bazedo's disease by the RIA method. Patient serum. Nineteen samples from the first letter that begins with N is serum from healthy individuals.
- the right end is a buffer.
- the 58 samples were each measured by TSHR recombinant proteoribosome-coated ELISA method (open rectangle) and TSHR recombinant AcNPV budding virus coat ELISA method (black rectangle).
- TSHR recombinant proteoribosome-coated ELISA method open rectangle
- TSHR recombinant AcNPV budding virus coat ELISA method black rectangle
- solid triangles solid triangles
- the RIA method According to the RIA method, sera from 39 patients with thyroid disease obtained positive data (20 cases beginning with the letter B), and those for which positive data was not obtained (head The letter is divided into 19 cases starting with T. Since the RIA method is a competitive method, if the TSHR recognition site of the patient's autoantibody does not compete with the recognition site of the antibody used in the RIA method, the data may not be positive. For this reason, 19 patients with thyroid disease that begin with the letter T cannot obtain positive data using the RIA method, and this method also provides positive data for autoantibody carriers that are not competitive with TSH ligands. Therefore, it seems that they were able to screen.
- the ELISA system coated with TSHR recombinant proteoribosome showed a higher response to thyroid serum than the ELISA system coated with TSHR recombinant AcN PV budding virus. Therefore, the ELIS A system coated with TSHR recombinant proteoribosomes has a TSHR-specific binding of autoantibodies from thyroid disease patients that have not been successfully detected because TSHR is structurally easy to take its natural state. As the performance recovered, the S / N ratio also increased for the detection of autoantibodies in the group of patients with Basedow's disease.
- the measurement system of the present embodiment can provide a novel test kit for screening thyroid diseases including thyroid diseases other than Graves' disease, and is a very effective Atsy system.
- FIG. 19 shows the results of measuring Graves' disease patient serum (B33), healthy human serum (NHS58, NHS59), and control (Buffer) using various solid-phase plates. Plates fixed with TSHR recombinant baculovirus showed sufficiently high values in patient serum compared to control plates (BSA). However, some healthy human sera were found to show high measured values.
- the TSHR recombinant proteoribosome in the figure was prepared in Example 15. This liposome is composed of a phospholipid force obtained by extraction from a natural product, while the PEG ( ⁇ ) TSHR recombinant proteoribosome is composed of a synthetic phospholipid. In any liposome, there was no significant difference in the data.
- FIG. 20 shows the results when measurement was performed by adding 0 to 64 / il of antibody-removing ribosome (1 7.3 mM) to the solution when human serum was added to each well. This is an experiment to evaluate whether it is possible to reduce background data by removing antibodies that bind to PEG (-) liposomes in serum.
- the data for Graves' disease patient serum (B22) is about 0.2
- the data for healthy human serum (NHS58) is about 0.2 for both PEG (-) and PEG (+) TSHR recombinant proteoribosomes. It was about 0.05.
- Figure 21 shows a streptavidin-coated microplate adsorbed with PEG (-) TSHR recombinant proteoribosome, or a streptavidin 'coated' microplate adsorbed with PEG (+) TSHR recombinant proteolivosome.
- the results of the ELISA system when human serum (Grassow's disease patient, Hashimoto disease patient, and healthy person) was reacted to the plate are shown.
- the horizontal axis of the graph shows the ID number of each human serum sample, and the vertical axis shows the result of measuring A.
- the meaning of the initial letter of the human serum sample is the same as “Development of an anti-TSHR antibody measurement system 1”, and is omitted (however, data from persons different from those shown in FIG. 15 are included).
- a diagnostic recombinant proteoribosome capable of qualitatively and quantitatively evaluating the presence or absence of a binding substance (for example, an autoantibody) to a membrane receptor without using radioactivity.
- a binding substance for example, an autoantibody
- an ELISA plate and an ELISA kit can be easily prepared. This ELISA plate can be used for the presence or absence of autoantibodies.
- FIG. 1 is a process chart (1) showing a method for preparing the ELISA system of the present embodiment.
- FIG. 2 is a process chart (2) showing a method for preparing the ELISA system of the present embodiment.
- FIG. 3 is a process diagram (3) showing a method for preparing the ELISA system of the present embodiment.
- FIG. 4 is a graph showing the results when the effect of pH on membrane fusion of wild-type AcNPV BV-ribosome was confirmed.
- FIG. 5 is a graph showing the results of confirming the effects of lipid composition and pH on the fusion rate with BV (% Fusion) at an LUV concentration of 200 / i M.
- FIG. 6 is a graph showing the results of confirming the effects of lipid composition and ⁇ on the fusion rate with BV at an MLV concentration of 200 ⁇ M.
- FIG. 7 is a graph comparing the fusion rate of LUV and MLV with BV.
- FIG. 8 is a diagram schematically showing the three-dimensional structure of human AchR (the left side is a diagram seen from above the membrane, and the right side is a diagram seen from the membrane cross section).
- FIG. 9 is a schematic view of the three-dimensional structure of human TSHR as seen from the membrane cross section.
- FIG. 10 is a photograph of a gel when the gel is silver-stained after SDS-PAGE of AChR recombinant BV.
- FIG. 11 A photograph of Western blotting of AChR recombinant AcNPV-infected cells and BV.
- FIG. 12 is a photograph of a gel when the AChR BV-MLV fusion ribosome is stained with silver after SDS-PAGE.
- FIG. 13 is a photograph of a gel when the gel is stained with Coomasie after SDS-PAGE of TSHR recombinant AcNPV-infected cells and BV.
- FIG. 14 is a photograph of Western blotting of TSHR recombinant AcNPV-infected cells and BV.
- FIG.15 Streptavidin 'coat' microplate adsorbed with AChR ⁇ recombinant proteoribosome and human serum from 10 myasthenia gravis patients (MG01-MG10) and 5 healthy subjects 3 is a graph showing the results of an ELISA system when human sera of humans (NHS24, 29, 51, 58, 59) were reacted. The graph shows data from (A) ribosomes not expressing the receptor and microplates sensitized to ribosomes. (B) TSHR proteoribosomes sensitized TSHR recombinant proteoribosomes.
- AchR proteoribosome force The data tested on microplates sensitized with SAChRa recombinant proteoribosome are shown respectively. “AchR proteoribosome-ribosome” indicates the value of O ⁇ A), and “AchR_TSHR” indicates the value of (C) _ (B).
- FIG. 16 is a graph showing the data “AchR_TSHR” of (C)-(B) and the data “AchR proteoribosome-one ribosome” of (C) _ (A) among the data shown in FIG. .
- FIG. 17 Anti-AchR antibodies observed in 10 human sera from myasthenia gravis (MG01 to MG10) and 5 healthy sera (NHS2, 4,29,51, 58,59) FIG.
- FIG. 18 is a graph showing the results of an ELISA system when sera of Graves' disease patients and sera of healthy subjects were reacted with an ELISA plate adsorbed with TSHR recombinant proteoliposome.
- FIG. 19 is a graph showing the results of measurement of Graves' disease patient serum (B33), healthy human serum (NHS58, NHS59), and control (Buffer) using various solid-phase plates. 20] This is a graph showing the measurement results when antibody-removing ribosome is added together with human serum.
- FIG. 21 Reaction of Graves' disease patient serum, Hashimoto's disease patient serum, and healthy subject serum to an ELISA plate adsorbed with PEG (-) T SHR recombinant proteoribosome or PEG (+) TSHR recombinant proteoribosome
- PEG (-) T SHR recombinant proteoribosome PEG (+) TSHR recombinant proteoribosome
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Virology (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Rehabilitation Therapy (AREA)
- Rheumatology (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
Abstract
【課題】 診断用に適した組換えプロテオリポソームを作製する方法、組換えプロテオリポソームをコートした検出用プレート、及び検出用キット等を提供すること。 【解決手段】 エンベロープ上に目的とする膜受容体(例えば、自己抗体関連疾患に関与するヒト甲状腺刺激ホルモン受容体、アセチルコリン受容体、インスリン受容体、β1-アドレナリン受容体、アシアログリコプロテイン受容体など)を発現させた組換えバキュロウイルス出芽ウイルスと、リポソームとを融合させた組換えプロテオリポソームを調製する。このプロテオリポソームは、組換えバキュロウイルスに比べて、自己抗体に対する結合性能が向上しているので、容易に検出用キットを製造することができる。
Description
明 細 書
診断用組換えプロテオリボソームの作製法
技術分野
[0001] 本発明は、診断用組換えプロテオリボソームに関する。
背景技術
[0002] バキュロウィルス DNAと、外来遺伝子を導入したトランスファーベクターとを昆虫細 胞にコトランスフエクシヨンさせることにより、外来遺伝子がその昆虫細胞内でバキュ口 ウィルス DNAに取り込まれる。その結果、外来遺伝子がコードするタンパク質が、組 換えバキュロウィルスの出芽ウィルスエンベロープ上に発現される(例えば、特許文 献 1)。特許文献 1には、 Gタンパク質共役型受容体を発現する組換えバキュ口ウィル ス出芽ウィルスを調製し、このウィルスエンベロープ上の受容体がホルモンとの結合 活性を示すことが報告されてレ、る。
[0003] 特許文献 1 :特開 2003— 52370号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、発現された受容体の構造は、十分な天然構造とはいえないので、受容体と 各種結合物との結合活性は、診断用に用いるためには十分なものではなかった。こ のため、特許文献 1には、更なる改良を行う余地があった。
本発明は、上記課題に鑑みてなされたものであり、診断用に適した組換えプロテオ リボソームを作製する方法等を提供することである。
課題を解決するための手段
[0005] 本発明者らは、鋭意検討の結果、リボソームと、膜受容体を発現した組換えバキュ ロウィルス出芽ウィルスとを融合させて、組換えプロテオリボソームを製造することによ り、膜受容体と目的物質との結合能が格段に向上することを見出した。こうして、基本 的には本発明を完成させるに至った。結合能が向上した理由は必ずしも明確ではな いが、我々は、組換えバキュロウィルスのエンベロープ上に発現された膜受容体が、 バキュロウィルスとリボソームとが融合されることにより、細胞膜類似の環境となり、構
造的に天然の状態を取りやすくなつた結果、 目的物質の特異的結合能が増加したの ではないかと考える。
上記課題を解決するための第 1の発明に係る組換えプロテオリボソーム製造法は、 以下(1)〜(3)のステップを含むことを特徴とする。
(1)組換えバキュロウィルスの出芽ウィルスエンベロープ上に膜受容体を発現させ るステップ、
(2)膜受容体を発現した組換えバキュロウィルス出芽ウィルスを調製するステップ、
(3)出芽ウィルスとリボソームとを融合させてプロテオリボソームを製造するステップ
「プロテオリボソーム」とは、一般的には、 目的とするタンパク質を発現させ、リポソ一 ムに再構成したものを意味する。本発明では、 目的とするタンパク質は、ェンベロー プ上に発現される膜受容体である。このため、「組換えプロテオリボソーム」とは、組換 えタンパク質である膜受容体をリボソームの膜上に備えたプロテオリボソームのことを 意味する。
バキュロウィルスは、環状二本鎖 DNAを遺伝子としてもつ昆虫の病原ウィルスであ る。具体的には、 Nucleopolyhedrovirus(NPVs)と Geanulovirus(GVs)の 2種類に加えて 、 non-occluded virusesが知られている。このうち、 NPV (核多角体病ウィルス)は、感 染した細胞の核内に核多角体と呼ばれる封入体を全細胞タンパク質の 40〜50%に 達するほど大量につくるので、バイオテクノロジーに多用されている。以下、特にこと わらない限り、バキュロウィルスは、 NPVを意味する。
バキュロウィルスの感染は、多角体に包埋されたウィルス粒子が幼虫に取込まれる ことによって開始する。その後、異なった性状を示す包埋ウィルス(Occluded virus; O V)、又は出芽ウィルス(Budded virus; BV)による二段階の融合過程を経て、感染細 胞内で多角体が形成され、最終的に感染細胞は死に至る。 NPVは、経口感染により 広がるといわれている。 NPVの多角体は、昆虫の体内に取り込まれた後、中腸内のァ ルカリ性の消化液とプロテアーゼの働きにより溶ける。ここで、多角体に包埋されてい た〇Vが放出される。その後、 OVは中腸微絨毛膜と融合し、中腸基底膜から出芽す ることにより体液中に放出される。次に、放出された BVは血球細胞や脂肪細胞を含
む細胞に融合後に増殖する。感染末期になると、多角体に包埋された OVが細胞内 に大量に形成され、細胞が死ぬと同時に体外に放出されて別の個体に感染する。 これまでの研究の結果、 BVはエンドサイト一シスにより細胞内に侵入する。この細 胞内侵入過程には、 BVに特異的な膜融合誘起能をもつ膜糖タンパク質 gp64が必須 であり、エンドソーム内の低 pH環境において活性化した gp64がエンドソーム膜との融 合を誘起することが示されてレ、る。
[0007] バキュロウィルスのエンベロープ上に膜受容体を発現させるには、例えば、 目的と する膜受容体を発現するためのトランスファーベクターと、バキュロウィルス DNAとを 適当な細胞(例えば、昆虫培養細胞(Sf9) )にコトランスフエクシヨンさせることにより実 施すること力 Sできる。
この細胞から出芽してきた組換えバキュロウィルスを再度別の細胞に感染させると、 その感染細胞から出芽してきたウィルスのエンベロープ上には、膜受容体が発現さ れている。この出芽ウィルスを調製する。出芽ウィルスは、培養上清中に含まれてい るので、その培養上清をそのまま用いることもできる。但し、培養上清から出芽ウィル スを含む画分を精製することが好ましい。精製方法としては、例えば超遠心法、ゲル 濾過法などが用いられる。
出芽ウィルスとリボソームとの融合は、リボソーム溶液のモル浸透圧を調整し、出芽 ウィルス懸濁液と適当な融合条件溶液中で、攪拌し混和させることで行える。
[0008] 「膜受容体」とは、脂質膜を貫通する部位を備えた受容体を意味する。膜受容体は 、種々のリガンドを受容する。リガンドとしては、例えば、低分子の有機化合物、ステロ イド、アミノ酸やその誘導体、ペプチド、タンパク質などがある。受容体がすべてタン パク質であるのに対して、リガンドの多様性は、きわめて対照的である。膜受容体とし ては、例えば 1回膜貫通型受容体、 4回膜貫通型受容体、 7回膜貫通型受容体がある
1回膜貫通型受容体の例としては、 I型サイト力イン受容体、細胞質側で酵素活性を 持つ酵素共役型受容体が挙げられる。このタイプの受容体では、リガンドの結合によ つて受容体のリン酸化の程度が変化し、キナーゼ活性やホスファターゼ活性などの 酵素活性の作用が発現する。チロシンキナーゼ、セリン 'スレオニンキナーゼ活性を
持つ受容体がある。
4回膜貫通型受容体の例としては、サブユニット構造を形成し、イオンチャンネルと しての機能をもつものが挙げられる。イオンチャネル型受容体は、リガンドが結合する と、イオンチャネルが開き、イオンの流入や流出が起こって、特有の効果が発現する
[0009] 7回膜貫通型受容体の例としては,各種 Gタンパク質と共役して作用を発現するもの が挙げられる。 Gタンパク質共役型レセプター(GPCR)は、ドーパミンゃセロトニンなど の生体ァミン、プロスタグランジンなどの脂質誘導体、アデノシンなどの核酸、 GABA などのアミノ酸、生理活性ペプチド類(例えば、アンジォテンシン II、ブラジキニン、コ レシストキュンなど)をリガンドとするレセプターファミリーを形成している。さらに、 GPC
Rは光、味覚、臭覚に関連する生体外情報伝達物質のレセプターともなつている。 GP CRは、情報伝達の中核を担う重要な膜タンパク質である。ヒトゲノム配列を解析する ことにより、 GPCRに属するォーファンレセプターが多く見出されるものと期待されてい る。このような GPCRに対応するリガンドの発見によって、有効な医薬品開発が可能に なると考えられている。
[0010] 7回膜貫通型受容体の具体例としては、ムスカリン性アセチルコリン受容体、 A 1アド レナリン受容体、ドーパミン受容体、セロトニン受容体、ヒスタミン受容体、グループ I 代謝調節型グノレタミン酸受容体 (mGluRl/5)、 GABAB受容体、 ATP受容体、ロイコト リエン受容体、血小板活性化因子 (PAF)受容体、ォピオイド受容体、ォレキシン受容 体、エンドセリン受容体、ニューロペプチド PACAP受容体、 CRH受容体、ケモカイン 受容体、非神経性ムスカリン受容体、アドレナリン受容体、 3アドレナリン受容体、プ ロスタノイド受容体、プロスタグランジン E受容体、プロスタグランジン E2受容体、ノシ セプチン受容体、アンジォテンシン II受容体、カルシトニン受容体、ブラジキニン受容 体、グルカゴンファミリーペプチドホルモン受容体、その他のォーファン 7回膜貫通型 受容体がある。
上記の膜受容体のうち、特に 7回膜貫通型受容体は、多種なリガンドに結合し、疾 患や医薬品への関与が深レ、ことから、本発明を好適に利用することができる。
[0011] また、本発明においては、膜受容体が、自己抗体関連疾患に関与するものであるこ
とが好ましい。 「自己抗体関連疾患」とは、特定の疾患の発症原因或いは結果として 、自己抗体が認められる疾患を意味する。そのような疾患として、例えばバセドウ病、 重症筋無力症、拡張性心筋症、持続性心房細動、インスリン抵抗性糖尿病、自己免 疫性肝炎、重症筋無力症のなかの胸腺腫合併患者などが挙げられる。
バセドウ病は、ヒト甲状腺刺激ホルモン受容体(Thyroid Stimulating Hormone Rece ptor: TSHR)に対する自己抗体が関与する疾患である。 TSHRは、甲状腺細胞膜上 に存在する甲状腺刺激ホルモン (TSH)の受容体である。脳下垂体から分泌される TS Hが、甲状腺の細胞膜にある TSHRに結合すると、甲状腺は代謝機能の調節ホルモ ンである Tおよび Tを分泌する。 TSHRは、分子量 87000の 7回膜貫通型レセプターで
3 4
、細胞外ドメインの分子量は約 45000である。
バセドウ病では、甲状腺成分に対する自己抗体が出現し、これが甲状腺ホルモン の生成、分泌を引き起こし、最終的に甲状腺組織崩壊に至ることが明らかになつてい る。バセドウ病に代表される甲状腺自己免疫疾患診断用の抗原としては、甲状腺ぺ ルォキシダーゼ(TPO)、サイログロブリン(Tg)、 TSHR等がある。これらの抗原に対す る自己抗体をマーカーとしたバセドウ病の診断が行われている。特に、抗 TSHR自己 抗体はバセドウ病に伴う甲状腺機能の異常を最も強く反映することが知られているの で、 TSHRを抗原として検出できる抗 TSHR自己抗体のマーカーとしての重要性が注 目されてレ、る。抗 TSHR自己抗体の測定法として、スミスらによって開発された方法が 知られている(Methods in Enzymology, 74, 405-420, 1981、または Endocr.Rev., 9, 1 06-120, 1988)。この方法は、 ΤΒΠ測定法(Thyrotropinbinding inhibition immunoglob ulin)と呼ばれており、 ΤΒΠ測定キットとして試薬キットが市販されている(商品名: TRA B「コスミック」Π、株式会社コスミックコーポレーション製)。この方法は、 TSHと TSHRの 反応を利用したラジオレセプターアツセィ法に基づレ、てレ、る。可溶化ブタ甲状腺細胞 膜画分 TSHRと1251標識ゥシ TSHと被検血清を加えて反応させ、 TSHRと1251標識 TSHの 結合反応物をポリエチレングリコールで沈殿させ、その放射能量 (cpm)を測定する。 被検血清中に抗 TSHR自己抗体が存在すると、 TSHと TSHRとの結合反応が阻害され 、沈殿物中の放射能量が低下する。この放射能量の低下の度合いを125I_TSHの TS HRへの結合阻害率(ΤΒΠ値)という。 ΤΒΠ値は、抗 TSHR自己抗体の値を反映すると
考えられている。
[0013] 市販されている抗 TSHR自己抗体測定用の試薬では、放射性同位元素が標識物 質として使用されているので、保存条件や実施条件等が厳しく規定されている。この ため、試薬の取扱いが面倒である、測定後の廃液まで厳密に管理しなければならな い等の問題点がある。また、市販の試薬では、ブタの甲状腺膜画分中の TSHRを必 須の成分とするため、工業的な量産が困難であるという問題もある。更に、ブタの甲 状腺膜画分中の TSHRと測定対象物であるヒトの抗 TSHR自己抗体との反応性が、ヒト の TSHRとヒトの抗 TSHR自己抗体との反応性と同一ではないことから、測定系に掛か らない自己抗体が存在するという問題もある。さらに、従来の TBII法では、患者が持 つている自己抗体の TSHR認識部位と、 RIAに用いる抗体の認識部位とが競合してい ない場合には、データがポジティブとならず、バセドウ病以外の甲状腺疾患をスクリー ユングする検查としては使用できなかった。
これらの問題を解決するための技術として、特開平 11 106397号公報、特開 20 00— 232880力 Sある。し力し、未だに完全な測定系は開発されていない。
[0014] 重症筋無力症は、アセチルコリン受容体に対する抗体が関与することが知られてい る。アセチルコリン受容体には、 4種類 5個の 4回膜貫通型サブユニット(2ひ、 β γ、 δ )からなるチャネル型のニコチン性受容体と、 7回膜貫通型のムスカリン性受容体と が存在する。このうち、ニコチン性受容体は、骨格筋の神経筋接合部のシナプス後 膜に存在するアセチルコリン受容体 (AChR)である。このレセプターに対する自己抗 体ができると、神経から筋肉への指令伝達が円滑に行われず、アセチルコリン (ACh) が十分に作用できず筋収縮力 まくいかなくなる。筋力が弱くなり、著しく疲れ易くな るほカ 特に同じ動作を繰り返すと力がなくなる症状をもつ重症筋無力症 (myasthenia gravis, MG)となる。重症筋無力症の有病率は、 日本人では人口 10万あたり 5人程度 であり、男女比は 1:2である。この患者の 85%に抗 AChR抗体が確認されている。抗 A ChR抗体の測定には、 AChRと神経毒との結合を阻害する活性に基づいて抗 AChR 抗体を検出する方法(阻害型)と、 AChR-神経毒複合物に結合するタイプの抗 ACh R抗体を測定する方法(非阻害型)がある。前者では Concanavalin A_s印 harose法(C onA法)、後者では immunoprecipitation法(IP法:抗ヒト IgG法)が一般的である。このう
ち、最も汎用されているのは IP法である。 IP法は ト α -Bungarotoxinと結合させた AC hR (AchR-125I_ ct -BuTx複合物)に、 MG患者血清を作用させ、その後に抗ヒト IgG血 清と反応させ、免疫沈降物中の1251の放射活性を測定する。抗 AChR自己抗体測定用 の試薬では、放射性同位元素が標識物質として使用されているため、保存条件や実 施条件等、試薬の取扱いが面倒であり、測定後の廃液まで厳密に管理しなければな らない等の問題点があった。このため、未だに完全な測定系は開発されていなかつ た。
また、重症筋無力症のなかの胸腺腫合併患者には、リアノジン受容体に対する自 己抗体が認められる。この自己抗体を測定する適当な測定系は開発されていない。
[0015] インスリン抵抗性糖尿病には、インスリン受容体に対する自己抗体が関与すること が知られている。この疾患では、ホルモン受容体のひ鎖に自己抗体が結合すること で、インスリンの受容体への結合が阻害されたり、受容体の減少を招いたりする。イン スリンが作用しないと、血糖値が下がらず糖尿病となる。この症例は黒人に多いが、 日本人にも比較的多いとされる。男性よりも女性に多ぐ年齢には特徴がない。空腹 時血糖値と耐糖能は、正常範囲から糖尿病とされる値まで拡がっている。血中インス リン値は、正常の 5倍〜 100倍と幅広い。但し、血中インスリン値は、低い者でも正常 値の 5倍以上(50 μ υ/πι1)を示し、半数が ΙΟΟ μ υ/ml以上の高値となる。診断基準は 、黒色皮膚腫や自己免疫疾患に伴う諸症状や検査所見が陽性を示し、かつ高度の 高インスリン血症を伴う高血糖を認めた場合に本疾患を疑い、抗インスリン受容体抗 体が検出されたときに確定する。治療には、大量のインスリンを必要とする場合が多 レ、。 日本人の患者では、 2〜3年で自然寛解することも多いとされる。但し、合併症に より予後不良となる場合もある。この疾患に対して、容易に自己抗体を測定できる測 定系が望まれていた。
[0016] 拡張型心筋症では、 β 1アドレナリン受容体に結合する自己抗体が表れることが知 られている。心臓におけるアドレナリン受容体の 70%〜80%は /3 1受容体である。拡 張型心筋症患者血清中には、高頻度 (31%)に j3 1受容体のセカンド細胞外ループに 対する自己抗体が検出される。この自己抗体が心筋刺激作用を有し、心毒性作用を 発揮することが報告されているので、 自己抗体が拡張型心筋症による心不全の病態
に関与している可能性が指摘されている。拡張型心筋症以外の慢性心不全患者に おいても、頻度は少ないものの、抗心筋自己抗体が認められている。また、拡張型心 筋症患者血清中に、高頻度 (38%)に M2受容体のセカンド細胞外ループに対する自 己抗体が検出される。非持続性心室頻拍は、杭 1アドレナリン受容体抗体ゃ抗 Na- K_ATPase抗体と関連している。持続性心房細動は、抗 M2ムスカリン受容体抗体と関 連している。拡張性心筋症を治療しない場合には、心臓のポンプ能力が低下して心 臓能力を大いに減退させる。カロえて、 自己抗体の浸潤による心筋組織の膨張を生じ る。しかし、疾患の初期段階で透析によって患者の血液から自己抗体を除去すると、 1年以内に心筋が再生し、心筋能力が劇的に向上し、正常値にほぼ回復する。この 疾患に対する簡易な自己抗体測定系が開発されることが望まれている。
[0017] 自己免疫性肝炎は、ァシァログリコプロテイン受容体 (AGPR)に対する自己抗体に よる疾患であると考えられている。この疾患の年間推定患者数は 1,400症例とされて いる。近年には、症例数が増加傾向を示している。発症年齢は 50歳を中心とする一 峰性を示す。多くの患者は、中年以降に発症する。近年には、発症年齢の高齢化が 認められる。疾患者の男女比は、約 1 : 7で女性の患者が多い。 AGPRは、肝実質細胞 特異的に発現する膜タンパク質であり、血清中のァシァ口糖タンパク質を肝臓に於い て分解するために取り込む機能を有している。肝硬変、肝癌、再生肝などの肝臓病 態に応じて、 AGPRの発現が減少することが報告されている(Stadalnik et al., J.Nucl. Med. 26 : 1233-1242, 1985)。また、一部の血清中に、 AGPR自体が存在していること が報告されている(勝木等、アルコール代謝と肝:第 12卷 p65〜p68,1992)。 自己抗体 を測定する方法として、抗ァシァロ糖タンパク質受容体抗体 (ASGPR)を発現したヒト 培養細胞株を使用する方法、大腸菌組換え抗原を用いる方法などが試みられている ものの、未だに良好な測定系は確立されていない。
本発明は、上記に例示した疾患に限られず、その他の膜受容体に関する自己抗体 関連疾患に応用することができる。
[0018] 「リボソーム」とは、リン脂質 (PL, phospholipid)を含有する脂質二重層を含み、内部 に水相を備えた閉鎖小胞を意味する。リボソームの形態としては、脂質二重層が二 層以上の複数に渡ってタマネギ状に重なった多重層リボソーム(MLV, multilamellar
vesicle)と、脂質二重層が一層のリボソーム(UV, unilamellar vesicle)とに分けられる 。 UVは、粒子径によって、小さな一枚膜リボソーム(SUV, small unilamellar vesicle)と 、大きな一枚膜リボソーム(LUV, large unilamellar vesicle)とに分類される。本発明の 方法では、 MLVまたは UVのいずれを用いることもできる。
LUVを用いると、組換えプロテオリボソームを調製したときに、膜受容体がプロテオ リボソームの全体に良好に配置されることから、後のデータのバラツキが少なくなるの で好ましい。 UVは超音波処理やエタストルーダーを用いて調製することが多い一方 、 MLVは調製方法が簡易であるので、プロテオリボソームの調製法に掛かる手間が 少なくて済むとレ、う利点があることから好ましレ、。
[0019] リン脂質とは、リン酸と脂質とを含む物質を意味する。構成成分に応じて、グリセ口 ール骨格を有するグリセ口リン脂質と、スフインゴシン骨格を有するスフインゴリン脂質 とに分類される。グリセ口リン脂質としては、例えば、ホスファチジノレコリン (PC)、ホス ファチジルエタノールァミン(PE)、ホスファチジルセリン(PS)、ホスファチジルイノシト ール(PI)、ホスファチジルグリセロール(PG)、ジホスファチジルグリセロール(カルジ オリピン)、ホスファチジン酸 (PA)等を例示できる。また、スフインゴリン脂質としては、
[0020] 本発明に用いるリボソームは、上記各種リン脂質成分を任意の比で混合したものを 用いることができる。例えば、 PCを主たる成分(例えば、リン脂質全体の約 40%〜約 1 00%の割合)とすることができる。 PCに加えて、 PSを添カ卩することが好ましい。 PSは、 バキュロウィルスの gp64のレセプターであるため、バキュロウィルスとリボソームとの膜 融合が円滑に行われる。この場合に、 PSの混合割合としては、 PCの 1質量部に対し て、約 0.1質量部〜約 1質量部(好ましくは約 0.2質量部〜約 18質量部)とする。本発 明のリボソームを調製するに当たっては、構成脂質に適当なアンカー用物質 (例えば 、ピオチン)を結合しておくことが好ましい。そのようにすれば、アンカー用物質に結 合する結合物質 (例えば、アビジン)を用いることにより、プロテオリボソームを検出用 プレートに結合する処理を行い易レ、からである。
[0021] 上記方法によって調製された組換えプロテオリボソームは、検出用プレートにコート することにより、組換えプロテオリボソームの膜表面上に発現された膜受容体に対す
る自己抗体の有無を検出するためのシステムに用いることができる。プレート上に組 換えプロテオリボソームをコートするには、リボソームとプレート表面との間を結合でき る物質(リボソームとプレート表面には、同一物質を用いても良いし、別々の物質を用 いても良い。このような物質として、例えばアビジン一ピオチン系を例示できる。本発 明においては、これらの物質には限定されずに、各種のものを使用できる)を配置し ておくことが好ましい。例えば、リボソームを構成する脂質をピオチンィ匕しておき、プレ ート表面にアビジンをコートしておくことにより、組換えプロテオリボソームをプレート表 面に円滑に固定することができる。また、このとき組換えプロテオリボソームは、リンカ 一含有物質を介して、検出用プレートにコートすることが好ましい。リンカ一は、脂質 とピオチンとの間に配置される。そのようなリンカ一として、例えばポリエチレングリコ ール (PEG)を用いることができる。リボソームの表面を親水性高分子ポリエチレンダリ コール (PEG)で覆ったリボソームは血中蛋白質などの生体成分の非特異的吸着を抑 制する構造になる。そのため、リンカ一として PEGを用いたビォチン化 PEGリン脂質が 含まれると単なる PEGリン脂質として作用する可能性があり、 ELISA系を構築したとき に、非特異的な発色が抑えられて、 S/N比が向上し、 ELISA系の特異性が更に向 上する。
また、上記検出用プレートと、 自己抗体の有無を評価する血清を希釈する希釈用 緩衝液と、洗浄用緩衝液と、前記自己抗体を認識すると共に標識された二次抗体と を備えることにより検出用キットを提供することができる。検出用キットには、血清を希 釈した希釈用緩衝液と共に、プレートのゥエルに滴下或いは希釈用緩衝液に混合す るための抗体除去用リボソームを備えることが好ましい。そのようなリボソームは、固相 化されたリボソームと同じ成分を備え、かつ膜受容体を発現していなレ、ものを用いる ことが好ましい。血清中に抗リボソーム抗体或いはリボソームに非特異的に吸着する 抗体が存在する場合には、その抗体に結合して測定系から取り除く。このため、デー タのベースラインを低下させ、 S/N比を向上させる。
検出用プレートとしては、 8穴、 48穴、 96穴、または 384穴などのマイクロタイタープレ ートが使用できる。その検出法としては、例えば、酵素免疫(ELISA: Enzyme-linked i mmunosorbent assay)測定、ラジオィムノアツセィ、ラジオレセプターアツセィ、蛍光免
疫測定、化学発光アツセィが挙げられる。本発明の利点に鑑みれば、非放射性の標 識系を用いる測定法、例えば、 EILSA測定、蛍光免疫測定が好ましい。
ELISA測定法は、抗体を酵素で標識し、その抗体と結合する物質 (抗原)を検出す る方法である。抗原タンパク質の検出方法として、抗原抗体反応を利用して検体中の 抗原タンパク質、或いは特定の抗原タンパク質に結合する抗体を検出する分析方法 として広く用いられる。測定対象とする抗原と反応する抗体(自己抗体、または一次 抗体)をそのまま酵素標識することもできる。通常は、標識のない一次抗体を検查プ レートにコートした抗原に対し作用させ、その一次抗体に対する二次抗体を作用させ る。二次抗体は、予めペルォキシダーゼやガラクトシダーゼ等の酵素を化学的に結 合させている。一次抗体に結合した二次抗体の酵素活性に基づき、その酵素反応に よって発色等する基質を加えることで、 目的とする抗原の有無や量を検出する。 ヒトにおける自己抗体の検查用 ELISA法キットの場合には、一般的に目的とする血 清を希釈用緩衝液で希釈し検出用プレートに作用させる。このとき、希釈された血清 中の自己抗体が一次抗体となる。洗浄用緩衝液で検出用プレートを洗浄した後、標 識された抗ヒト抗体を二次抗体として検出用プレートに作用させ、再度洗浄用緩衝液 で洗浄した後、酵素活性検出を比色等により検出する。
ELISA法の標識酵素としては、特に限定はない。例えば、アルカリホスファターゼ、 ペルォキシダーゼ、 j3 -ガラクトシダーゼ、ルシフェラーゼなどの酵素を用いることが できる。
二次抗体を蛍光で検出する蛍光免疫測定の場合には、例えば、 Cy3、 Cy5、フルォ レセイン (FITCなど)のような蛍光物質で二次抗体を標識したものが使用できる。 本発明において、疾患治療剤の治療効果をモニタリングする方法は、甲状腺疾患 またはバセドウ病、重症筋無力症、拡張性心筋症、持続性心房細動、インスリン抵抗 性糖尿病、自己免疫性肝炎、重症筋無力症のなかの胸腺腫合併症からなる疾患群 のいずれかの疾患患者の血清を、上記の検出用プレートまたは検出用キットを用い て測定することを特徴とする。
本発明に係る甲状腺疾患またはバセドウ病、重症筋無力症、拡張性心筋症、持続 性心房細動、インスリン抵抗性糖尿病、 自己免疫性肝炎、重症筋無力症のなかの胸
腺腫合併症からなる疾患群のいずれかの疾患の有無についてスクリーニングする方 法は、ヒト血清を上記の検出用プレートまたは検出用キットを用いて測定することを特 徴とする。
発明の効果
[0024] 本発明によれば、放射能を用いることなぐ膜受容体に対する結合物質 (例えば、 自己抗体)の有無を定性的 ·定量的に評価可能な診断用組換えプロテオリボソーム を提供することができる。このプロテオリボソームを用いることにより、検出用プレート 及び検出用キットを調製することができる。この検出用プレートは、 自己抗体の存在 の有無に用いることができる。
発明を実施するための最良の形態
[0025] 本発明の実施形態について、図面を参照しつつ詳細に説明する。本発明の技術 的範囲は、下記実施形態によって限定されるものではなぐその要旨を変更すること なぐ様々に改変して実施することができる。本発明の技術的範囲は、均等の範囲に まで及ぶ。
[0026] 図 1〜図 3には、本実施形態の診断用組換えプロテオリボソームの作製法、及びそ のプロテオリボソームを用いた ELISA (Enzyme-linked immunosorbent assay)系の調 製法の概要を示した。
本実施形態に関するプロテオリボソームを用いた ELISA系を調製するには、大きく 3 つのステップに分けられる。すなわち、 (1)対象とする受容体をコードする遺伝子を持 つバキュロウィルスを調製するステップ(図 1を参照)、(2)このバキュロウィルスとリポ ソームとを融合させて組換えプロテオリボソームを調製するステップ(図 2を参照)、及 び(3)その組換えプロテオリボソームを ELISAに応用するステップ(図 3を参照)である 。これらのステップについて、順に説明する。
[0027] まず、図 1に示すように、対象とする膜受容体をコードする遺伝子を調製する。多く の場合には、 目的とする遺伝子は、 cDNAライブラリー 1から膜受容体をコードする遺 伝子をクローニングすることにより得られる。その場合には、例えば、適当なプライマ 一を用いた PCR法を利用できる。得られた遺伝子をトランスファーベクターに組み込 み 2、バキュロウィルス DNA3と共に、昆虫培養細胞(例えば、 Sf9細胞) 4にコトランス
フエクシヨンする。対象とする遺伝子をトランスファーベクターに組み込む際には、後 の精製に都合がよいように、適当なタグ (例えば、 His-Tag)を付加しておくことが好ま しい。この昆虫培養細胞から出芽した組換えウィルス 5を再度培養細胞 6に感染させ る。トランスファーベクターとバキュロウィルス DNAは、昆虫細胞内で相同組換えを起 こすので、対象となる遺伝子をもつ組換えバキュロウィルスの出芽ウィルス 7が上清に 出現する。そこで、培養上清中に発芽したバキュロウィルスを精製する。精製されたゥ ィルス 7のエンベロープ上には、 目的とする膜受容体 7Aが発現されている。得られた 組換えバキュロウィルス 7は、必要に応じて再度昆虫培養細胞に感染させ純化 ·増幅 を行い、次のステップに供する。
次に、図 2に示すように、この出芽バキュロウィルス 7とリボソーム 8とを融合させて、 組換えプロテオリボソーム 9を調製する。ウィルス 7とリボソーム 8の融合は、ノ キュロウ ィルスエンベロープ上の膜融合タンパク質 gp64 7Bを介して、 pH4程度の酸性 pHで 起こる。リボソームは、 SUV、 LUV、または MLVのいずれを用いても良い。但し、調製 が容易な MLVを用いることが好ましい。また、リボソームを構成する物質のいずれか をピオチンィ匕しておくと、プレートに固相化する際に好ましい実施形態となる。出芽バ キュロウィルス 7とリボソーム 8とを融合させた後には、そのまま用いることもできる。但 し、超遠心'ゲル濾過法等の周知の方法により、組換えプロテオリボソーム 9を精製 · 回収して用いることが好ましい。
次に、図 3に示すように、プレート 10のゥエル 11表面上に組換えプロテオリボソーム 9をコートする。このとき、リボソーム 9にピオチン 13が含まれている場合には、ウエノレ 1 1の表面に予めストレプトアビジン 12を固定しておく。この場合に、市販のストレプトァ ビジン.コート.マイクロプレートを使用することができる。ピオチン化プロテオリポソ一 ム 9をストレプトアビジンコートプレートに固定するには、ピオチン化プロテオリポソ一 ムを含む溶液を数時間、好ましくは 1晩の間、プレート 10のゥエル 11内に接触させて おく。溶液中のプロテオリボソーム濃度は、タンパク質濃度として 0.01 μ g/ml以上であ り、好ましくは 0.5 z §/1111〜20 ^ g/mlである。こうして、組換えプロテオリボソーム 9を固 相化した ELISAプレート 18を用いて、血清中の自己抗体 14の有無を容易に評価す る ELISAシステムを構築できる。この ELISAシステムは、患者のスクリーニング用検查
に用いられる。図中の符号は、 15が二次抗体であり、 16が発色前の物質、 17が酵 素 15Aによって発色した物質である。
さらに、 自己免疫性疾患においては、 自己抗体の濃度が病状及び治療効果などと も関連する場合があるので、血清中の自己抗体濃度を測定することにより、治療剤の 治療効果或いは改善状態のモニタリングにも使用できる。
次に、実施例を説明することにより、本発明を更に詳細に説明する。
実施例
[0029] く野生型 AcNPVプロテオリボソームの試験方法 >
実施例 1 野生型 AcNPVの感染及び出芽ウィルス (BV)の回収
Sf-900II SFM培地 11mlを加えた T-75培養フラスコに、継代していた Sf9細胞溶液 1 mlを加え、その後野生型 AcNPVを MOI (感染多重度) = 1で感染させた。感染 120時 間後の細胞培養液を遠心(1,000 X g、 5min、 4°C)し、培養上清を細胞沈殿から分離 回収した。次に、培養上清を超遠心機(Beckman L_70:ローターとして SW28を用いた )を用いて、超遠心(35,000 X g、 60min、 15°C)した。得られた BV粒子を含む沈殿に、 リン酸緩衝塩類溶液(PBS) [lmM Na HPO、 10.5mM KH PO、 140mM NaCl、 40mM
2 4 2 4
KCl (pH6.2) ]を加えて懸濁し、ショ糖密度勾配[10%,15%,20%,25%,30% sucrose (w/v in PBS pH6.2) ]に重層して超遠心(13,000 X g、 30min、 15°C)した。このようにして得ら れたバンド (核酸を含まずウィルスの膜タンパク質のみを含むウィルスエンベロープ) を回収した。このバンドを PBS (pH6.2)で希釈後、超遠心(35,000 X g、 60min、 15°C) を行い、得られた沈殿を lOmM Tris-HCl/10mM NaCl (pH7.5)に懸濁し、氷中に保存 した。
[0030] 実施例 2 タンパク質濃度の測定
タンパク質濃度は Bradford法により決定した。回収したウィルス溶液の 10 μ 1、及び 4 Ο μ ΐに、 10mM Tris-HCl/10mM NaCl (ρΗ7·5)を加えて全体の体積を 1.3mlに調製し 、プロテインアツセィ試薬(BIO-RAD)を 0.2ml加え、ボルテックスした。室温にて 5分間 静置した後、吸光度を 595醒で測定し、タンパク質の濃度を決定した。コントロールと して、 2mg/mlの BSA溶液の 2、 4、 6、 8 /i 1を用レ、、上記と同様の操作を行った。
実施例 3 Octadecyl Rhodamine B Chloride (R18)標識法
R18 (Molecular Probes)を溶かしたクロ口ホルム/メタノール(1: 1)溶液にアルゴンガ スを吹き付け、 R18を乾固させた。ここに、 R18濃度が 4mMになるようにエタノールをカロ えた。次に、 R18のエタノール溶液を BVのタンパク量 lmgあたり 40nmolの R18量になる ように、 BVをカ卩え、ボルテックス処理した。この溶液を室温で 1時間遮光した状態で静 置した後、 10mM Tris-HCl/lOmM NaCl (pH7.5, 4。C)で平衡化した S印 hadex G-50力 ラム(Amersham Biosciences)にアプライし、上記と同じ緩衝液で溶出し、分画した。 溶出速度は 5分あたり lmlに設定した。 R18標識 BVを含む画分は、遮光し氷中に保存 した。
実施例 4 リボソームの調製
リボソームを調製するために使用した脂質は、ホスファチジルコリン (phosphatidylcho line, PC)、ホスファチジルセリン(phosphatidylserine, PS)、ホスファチジルグリセロー ル(phosphatidylglycerol, PG)、ホスファチジン酸(phosphatide acid, PA)、及びホスフ ァチジルイノシトール(phosphatidylinositol, PI)であった。これらの脂質は、 Avanti Pol ar Lipids力ら貝再入した。
LUV (large unilamellar vesicle)の調製には、逆相蒸発法を用いた(Maezawa,S., Y oshimura,T. , Hong,K. , Duzgunes,N., and Papahadjopoulos, D . (1989) Mechanism o f protein-induced membrane fusion: fusion of phospholipid vesicles by clathrin associ ated with its membrane binding and conformational change. Biochemistry 28: 1422-1 428)。
リン脂質を溶力したクロ口ホルムをロータリーエバポレーターで減圧還流により除去 した。薄膜状になったリン脂質にジェチルエーテルを 10 / mol/ml加え、リン脂質を完 全に溶解した。リン脂質とジェチルエーテルとの比が 1 : 3となるように、 10mM Tris-H Cl/10mM NaCl (pH7.5)を加えた後、アルゴンガスを封入し、浴槽型ソニケ一ターで 2 分間超音波処理をして w/oェマルジヨンを得た。次に、ロータリーエバポレーターでジ ェチルエーテルを除去した。ゲル状になったリン脂質をボルテックス処理で破砕した 後、ロータリーエバポレーターで残留ジェチルエーテルを除去した。リン脂質濃度が 10 z mol/mlとなるように、上記と同じ緩衝液を加え、ロータリーエバポレーターで完全 にジェチルエーテルを除去した。調製したリボソームを 0.4 μ m、 0.2 μ m、 0.1 μ mの順
にポリカルボネートメンブレンフィルターで加圧濾過し、リボソームの直径を 0.1 μ mに 揃えた。調製した LUVは、アルゴンガスを充填し 4°Cで保存した。
[0032] MLV (multi lamellar vesicle)は、次の方法で調製した。リン脂質を溶かしたクロロホ ルムをロータリーエバポレーターで減圧還流により除去し、薄膜状になったリン脂質 に 10mM Tris-HCl/10mM NaCl (pH7.5)を lml加え、ボルテックスを 30秒行った。調製 したリボソームを 0.4 μ mのポリカルボネートメンブレンフィルターで加圧濾過した。 ML V以外のリボソームを除去するために、遠心(6,000 X g、 20min、 4°C)を行った。
遠心で得られた沈殿物を緩衝液に懸濁し、得られた上清とその懸濁溶液を再度上 記と同じ条件で遠心した。得られた沈殿物を緩衝液に懸濁し、上記と同じ条件で遠 心した。一方、懸濁溶液の遠心で得られた上清と先の上清の遠心で得られた沈殿物 とを混合し、上記と同じ条件で遠心した。同様の操作を数回繰り返して、 MLV以外の リボソームを除去した。調製した MLVは、アルゴンガスを充填し 4。Cで保存した。
[0033] 実施例 5 リボソーム濃度の決定
リボソームの濃度は、リン脂質濃度で表示した。リン脂質濃度は、リン脂質を過酸化 水素と硫酸により湿式分解し、得られた分解液中の無機リンを Fiske-Subbarow試薬 により発色させることで測定した。まず、サンプルと、コントロールとして使用した KH P
0溶液とのそれぞれに、 4mmolの H SOをカロえ、 170°Cで 30分以上加熱し、空冷した
。その後、過酸化水素を 6%となるように加え、 170°Cで 30分間加熱した。次に、空冷し たサンプル及びコントロールに、 0.25N H SOに溶解した 0.22% (NH ) Mo 0 ·4Η Ο をモリブデン酸アンモニゥムの最終濃度が 0.044%となるように加え、ボルテックスを行 レヽ、発色試薬(30mg ANSA(1-ァミノ- 2-ナフトール- 4-スルホン酸)、 lmg Na SO )をカロ えてボルテックスを行った後、沸騰水中で 10分間加熱した。空冷したサンプル及びコ ントロールとして使用した KH POの吸光度を 830nmで測定し、サンプル中のリン含量 を決定した。
[0034] 実施例 6 膜融合測定(R18- dequenching assay)
融合用緩衝液は、 pHに応じて各種のものを用いた。すなわち、 pH3.0では 10mM C H COOH-HCl/10mM NaCl、 ρΗ4·0_ 5·0では 10mM CH COOH-CH COONa/lOmM
NaCl、 pH6.5では lOmM MES-NaOH/10mM NaCl、 pH7.5では lOmM Tris— HCl/lOm
M NaClの緩衝液を用いた。全ての緩衝液の浸透圧は、適量のスクロースを加えて 10 mM Tris-HCl/10mM NaCl (pH7.5)の浸透圧に揃えた。このとき、浸透圧測定装置ォ ズモスタツ (ARKRAY)を使用した。
R18は標識膜中では自己消光し、消光度は膜中における存在比に比例する。 R18 で標識されたサンプノレと非標識のサンプルとが融合すると、膜中での R18の存在比が 低下するため、蛍光の回復が観察される。まず、 R18で標識された BVを緩衝液で 10 倍に希釈し、蛍光セルに入れ、攪拌しながら蛍光光度計 (HITACHI F-2500)を使用 して蛍光強度を測定した (励起波長 560nm、蛍光波長 580nm)。次に、非標識のリポソ ームを蛍光セル中に加え、攪拌しながら 50秒間、蛍光強度を測定した。さらに、ポリ ォキシエチレンラウリルエーテルを最終濃度が 1%になるように加え、攪拌しながら室 温で放置し、蛍光強度を測定した。膜の融合率(%)は、次式に従って算出した。 融合率 (%) = 100 X (F - F ) / (F - F )
s 0 t O
ここで、 Fはリボソームを加えた後の蛍光強度、 Fは R18標識 BVのみの蛍光強度、 F
s 0
はポリオキシエチレンラウリルエーテルを加えた後の蛍光強度である。
t
<組換え AcNPVプロテオリボソームの試験方法 >
組換え AcNPVプロテオリボソームの試験については、特にことわらない限り、野生 型 AcNPVプロテオリボソームの試験で用いた方法と同じ方法を用いて、タンパク質、 リン脂質等を測定した。
実施例 7 AChR組換えバキュロウィルス AcNPVの調製
Clontech社のヒト骨格筋 cDNAライブラリーを用レ、、 2本の PCRプライマーを用いて A ChR α鎖翻訳領域のクローニングを pfu polymeraseを用いた PCR法により行った。 P CR法には、プライマー 1 (配列番号 1: gtagcatatggagccctggcctctcct)と、プライマー 2 ( 配列番号 2 : tttc£i£g tccttgctgatttaattcaatgag)とを用いた。酉己歹 IJのうち、下線部分 は付加した制限酵素部位 (Ndel及び Xhol)を意味する。
得られた 1.4kbpの DNA断片をプライマーに付加した Ndel、 Xhol制限酵素部位で消 化し、 Novagen社 PET-30a(+)のマルチクローニングサイトの Nde I、 Xho Iにライゲー シヨンした。得られたクローン (PET/AChR )を DNAシーケンサ一により塩基配列を決 定し、 Ac Νο·Υ00762として登録されてレ、る AChR a遺伝子翻訳領域と一致した配列
の DNA断片が得られたことを確認した。
[0036] PET/AChR aをテンプレートとしてバキュロウィルストランスファーベクターを作製す るために、次のプライマーにより TaKaRa Ex Taq用いて PCR法を行った。プライマーと して、プライマー 3 (配歹 U番号 3: cggaattceatatggagccctggcctctc)、及びプライマー 4 ( 酉己列番号 4: gctctagagctttgttagcagccggatc)を用いた。両プライマーの 5 '末端側には 、それぞれ制限酵素 EcoR I及び Xba Iの認識部位(下線部分)を付加した。これらの プライマーを用いることにより、 PET_30a(+)由来の His-Tagが AChRひの C末端に融合 されるので、抗 His-Tag抗体により AChRひの発現確認が容易となる。
得られた DNA断片を EcoR I、 Xba Iで消化し、 BD Biosciences社バキュロウィルストラ ンスファーベクター PVL1392のマルチクローニングサイトの EcoR I、 Xba I部位にライゲ ーシヨンした。ライゲーシヨン産物をコンビテントセルに形質転換し、プラスミド DNAを 得た。得られたクローン(pVL/AChR a )は、 DNAシーケンサ一により AChR a翻訳領 域および His-Tag配列が pVL1392ベクターに組み換えられていることを確認した。
[0037] AChR a組換えトランスファーベクターとバキュロウィルス DNAを、 CELLFECTIN Re agent (Invitrogen社)を用いて Sf9細胞にコトランスフエクシヨンし、 Sf9細胞内での相同 組換えにより AChR a組換えバキュロウィルス(AChR a組換え AcNPV)を作製した。 得られた AChR α組換え AcNPVを含む培養上清を用いて、新たに Sf9細胞に感染さ せ、抗 His-Tag抗体により検出したところ、 Sf9細胞と AChR α組換え AcNPV出芽ウイ ルスに AChR αが発現していた。得られた AChR α組換えバキュロウィルスは、プラー ク法により純化し、組換えリボソーム作製用に供した。
[0038] 実施例 8 TSHR組換えバキュロウィルスの調製
Clontech社ヒト甲状腺 cDNAより以下の PCRプライマーを用いて TSHR翻訳領域のク ローニングを pfu polymeraseを用いた PCR法により行った。 PCR法には、プライマー 5 ( 目歹 I [番号 5: agtcggatccaccatgagccggcggacttgct と、プフィマ' ~り (酉己歹 兮 6 : tgttctc gagcaaaaccgtttgcatatactctt)とを用いた。配列の下線部分は、付加した制限酵素部位 (BamH I及び Xho I)を意味する。
得られた 2.3kbpの DNA断片をプライマーに付加した B纖 H I、 Xho I制限酵素部位 で消化し、 Novagen社 PET-28a(+)のマルチクローニングサイトの BamH I、 Xho Iにラ
ィゲーシヨンした。得られたクローン (PET/TSHR)を DNAシーケンサ一により塩基配列 を決定し、 Acc.No.A34990として登録されてレ、る TSHR遺伝子翻訳領域と一致した配 列の DNA断片が得られたことを確認した。
[0039] PET/TSHRをテンプレートとしてバキュロウィルストランスファーベクターを作製する ために、次のプライマーにより pfh polymeraseを用いた PCR法を行った。プライマーと して、プライマー 7 (酉己歹 I [番号 7: agtcggatccaccatgagccggcggacttgct)、及びプライマー 8 (酉己列番号 8: ttcggaattcgttagcagccggatctcagt)を用いた。両プライマーの 5'末端側 には、それぞれ制限酵素 BamH I及び EcoR Iの認識部位(下線部分)を付加した。こ れらのプライマーを用いることにより、 PET_28a(+)由来の His-Tagが TSHRの C末端に 融合されるので、抗 His-Tag抗体により TSHRの発現確認が容易となる。
[0040] 得られた DNA断片を BamH I、 EcoR Iで消化し、 BD Biosciences社バキュロウィルス トラスファーベクター PVL1393のマルチクローニングサイト、 BamH I、 EcoR I部位にラ ィゲーシヨンした。得られたクローン (pVL/TSHR)は、 DNAシーケンサ一により TSHR翻 訳領域および His-Tag配列力 ¾VL1393ベクターに組み換えられている事を確認した
TSHR組換えトランスファーベクターとバキュロウィルス DNAとの両者を Sf9細胞にリン 酸カルシウム法によりコトランスフエクシヨンし、 Sf9細胞内での相同組換えにより TSHR 組換えバキュロウィルス(TSHR組換え AcNPV)を作製した。得られた TSHR組換え Ac NPVを High Five細胞に感染して、抗 His-Tag抗体にて検出したところ、 High Five細 胞にて TSHRが発現していることを確認した。
[0041] 実施例 9 プラーク純化及びウィルス力価の測定
TSHR組換え AcNPVと AChR組換え AcNPVのプラーク純化及びウィルス力価の測定 は、以下のように行った。 6穴プレートの各ゥエルに 1.0 X 106個の Sf9細胞をまき、細胞 が底面に付着するのを待って培地を取り除いた。ウィルス液を Carlson液 [0.12M NaC 1, 1.4mM CaCl 1.7mM NaH PO, 2.7mM KCl, 0.5mM MgCl , 1.4mM NaHCO, 8g/l
2, 2 4 2 3
Glucose, 5 μ g/ml Gentamysin] (または Sf_900II SFM培地)で段階希釈し、このウイ ルス液を各ゥヱルに 500 μ ΐカ卩え、 15分毎にロッキングし、 1時間感染させた。感染後、 ウィルス希釈液を除去し、 0.5%の SeaPlaque agarose (FMC Bioproducts社)を含む Sf-
900II SFM培地を加え、培地が固化するまで室温に静置した。培地の固化後、 27°C で数日間培養した。ウィルス感染細胞が形成するプラークをパスツールピペットにより 寒天培地ごと抜き取り、 1mlの Carlson液または Sf-900II SFM培地中でピペッティング することにより、寒天培地中のウィルスを液中に放出させた。得られた単一プラーク由 来のウィルス液を Sf9細胞に感染させて増殖させた。力価が低い場合には、感染を繰 り返して、力価を増幅できる。その後、感染細胞の培養液を回収し、遠心分離(1,700 X g、 lOmin)し、上清を 0.2 z mフィルタ一により濾過して得られた濾液を、組換えバキ ュロウィルスストック液として組換えプロテオリボソーム調製用組換えバキュロウィルス 出芽ウィルス調製に供した。ウィルスストック液は、適当に分注し、 _80°Cで保存した 分注したストック一本について解凍し、組換えウィルスの力価(Titer)を、上記のウイ ノレス純化と同様の方法でプラーク法を行レ、、感染後 1週間目に形成したプラークを計 数することで求めた。
[0042] 実施例 10 SDS-PAGE電気泳動
タンパク質サンプルに等量のサンプル緩衝液 [114mM Tris-HCl (PH6.8) , 3.64% SD S、 25.4% glycerol 9% β -mercaptoethano 0.02% bromophenol blue] 加 、 5分間 煮沸して変性させた。次に、 12%分離用ゲル [12% acrylamide, 0.41% bisacrylamide, 0 .1% SDS、 375mM Tris-HCl (pH8.8)、 0.01% APS、 0.001% TEMED]と濃縮用ゲル [3.8 9% acrylamide, 0.11% bisacrylamide, 0.1% SDS、 125mM Tris-HCl (pH6.8)、 0.01% AP S、 0.001% TEMED]からなるミニスラブゲルと電気泳動用緩衝液(Running buffer ) [0.1 % SDS、 25mM Tris、 52mM 8¾^!½ ( ^¾.3) ]を泳動槽(八丁丁0)にセットし、サンプルを 濃縮ゲルの注入孔に注入後、ゲル 文につき 30mAの定電流で約 60分間通電し、電 気泳動を行った。電気泳動後、ゲルを Bio-Safe Coomassie (BI〇_RAD)に 1時間浸漬 し、分離されたタンパク質を染色した。
次に述べる銀染色及びウェスタンプロット分析には、染色前のゲルを用いた。
[0043] 実施例 11 銀染色
銀染色には、銀染色 IIキットヮコー (Wako)を用いた。まず、 SDS-PAGE後(染色前) のゲルを固定液 _1に浸漬し、 10分間振盪した。次に、固定液- 1を捨て、ゲルを固定
液- 2に浸漬し、 10分間振盪した。その後、固定液- 2を捨て、ゲルを増感液に浸漬し、 10分間振盪した。増感液を捨て、ゲルを脱イオン水で 5分間振盪した後、発色液で 15 分間振盪し、タンパク質を検出した。
実施例 12 ウェスタンブロット分析
まず、 SDS- PAGE後(染色前)のゲルを転写バッファー(48mM Tris、 39mM glycine, 20% methanol)に 20分間浸漬し平衡化した。トランスブロット SDセル(BIO-RAD)の電 極板の間に、転写バッファーに浸漬した濾紙、メタノールに浸漬した polyvinyliden difl uoride (PVDF)膜、ゲル、濾紙の順に陰極から陽極に向かって重ね合わせた。 20Vの 定電圧で 90分間通電し、ゲル中のタンパク質を PVDF膜に転写した。転写後、 1%ゼラ チンを含むリン酸緩衝塩類溶液(PBS) [20mM NaH PO、 20mM Na HPO、 140mM N
2 4 2 4
aCl、 (pH7.2) ]に PVDF膜を浸漬し、室温で 2時間ブロッキングを行った。次に、 PVDF 膜を PBST [PBS (pH7.2) +0.05% Triton X-100]溶液で洗浄(5分間 X 3回)し、 1次抗 体液中に 1時間浸漬させた。その後、 PVDF膜を PBST溶液で洗浄 (5分間 X 3回)し、 2 次抗体液中に 1時間浸漬させた。再度 PVDF膜を PBST溶液で洗浄(5分間 X 3回)し、 コニカイムノスティン HRP-1000キット(生化学工業)を用いて、膜上に転写されたタン パク質を抗体に結合したペルォキシダーゼによる発色反応で検出した。 1次抗体液と して、 PBS (pH7.2)で 1000倍に希釈した抗 His-Tag抗体(rabbit Anti-His-Tag; MBL) 液を用いた。 2次抗体液には、 PBS (PH7.2)で 1000倍に希釈した西洋ヮサビペルォキ シダーゼ(HRP)標識抗ゥサギ IgG抗体(goat Anti-Rabbit IgG(H+L chain)-Peroxidase ; MBL)液を用いた。
実施例 13 組換えプロテオリボソーム調製用組換えバキュロウィルス AcNPV出芽ゥ ィルスの調製
組換えプロテオリボソームの作製に用レ、る TSHR組換えバキュロウィルス (TSHR組換 え AcNPV)および AChR α組換えバキュロウィルス(AChR a組換え AcNPV)の出芽ゥ ィルスは、ともに次の手順により調製した。
Sf-900II SFM培地(Invitrogen社) 11 mlを加えた T-75培養フラスコ 10個に、継代培 養していた Sf9細胞懸濁液を各 1 ml加えた後、 TSHR組換え AcNPVあるいは AChR組 換え AcNPVを感染多重度(MOI)が 1となるように感染させた。感染 72時間後の細胞
培養液を遠心(1,000 X g、 15分間、 4°C)し、培養上清を細胞沈殿から分離回収した。 次に、培養上清を超遠心機(Beckman LP-70:ローターは SW28)を用いて超遠心(40, 000 X g、 30分間、 15°C)し、上清を捨て、得られた出芽ウィルスの沈殿に PBS (pH 6.2 )をカ卩えて懸濁した。その懸濁液を、遠心(1,000 X g、 15分間、 4°C)して不用物であ る沈殿を除去後、超遠心 (40,000 X g、 30分間、 15°C)し、得られた出芽ウィルス沈殿 を PBS (pH 6.2)に懸濁した。
出芽ウィルス懸濁液のタンパク質濃度をプロテインアツセィ (Bradford法)により BSA を標準サンプルとして定量した。懸濁液は、氷中に保存し、適宜、組換えプロテオリ ポソーム調製に供した。
[0045] 実施例 14 組換えプロテオリボソーム調製用ピオチン標識多重層リボソーム(MLV )の調製
リン脂質の混合物として、ホスファチジルコリン (PC ) Iホスファチジルセリン (PS ) I ビォチン一ホスファチジルエタノールァミン(Biotin-PE ) = 1 : 1 :0.066 (リン脂質総量 1 0.33 mol)、 Biotin— PEとしてここでは N— (biotinoyl)— 1,2— dihexadecanoy卜 sn— glycero— 3— phosphoethanolamine, tnetnylammonium salt (Biotm PE, Molecular Probes社:^) ·¾τ用 いた。このリン脂質の混合物を溶力したクロ口ホルム溶液 (約 2 ml)を、キャップを外し たガラス製スクリューキャップ試験管に入れ、その試験管を熱媒体としてグリセリンを 加えたガラス製受器に移し、ロータリーエバポレーターに接続し、 680_700mmHg程度 まで適当に減圧して固定した。ウォーターバスに受器が浸るように位置を決め、ロー タリーエバポレーターを回転させ、窒素ガス(1 kgん m2)を送り込みながら溶媒のクロ 口ホルムを減圧除去した。減圧は、マニュアル操作により、 700 mmHgから 500 mmHg まで、 1-2分毎に、約 100 mmHgずつ下げ、次に、 500 mmHgから 100 mmHgまでは、 約 50 mmHgずつ下げていき、更に 100 mmHgから 25 mmHgずつ下げ、最後に 10-20 mmHgとした。クロ口ホルムが除去され薄膜を形成した後、更に 30分程度、減圧下に 置き、十分にクロ口ホルムを除去した。減圧を停止し、窒素ガスを送り込み、大気圧ま で昇圧した後に、受器を取り外し、内壁と底面にリン脂質薄膜が形成されたスクリュー キャップ試験管を取り出した。
[0046] リボソーム調製用バッファー [10 mM Tris-HCl- 10 mM NaCl (pH 7.5)]を1 ml加え、
アルゴンガス(不活性ガス)で置換した後、スクリューキャップをしつ力 り閉め、ボルテツ タスミキサー(強度最大)で 30秒から 1分程度、薄膜が完全に剥がれるまで、ボルテツ タスし、乳白色の MLV懸濁液(リン脂質濃度約 10 / mol/ml)を得た。加圧濾過器に ポリカーボネートメンブレン (孔径 0.4 μ πι)を装着し、 MLV懸濁液をアルゴンガスにより 加圧濾過した。
MLVを含む濾液に、次のように複数回遠心操作を施し、 MLVを精製した。濾液をェ ッペンドルフチューブに移し、小型冷却遠心機で遠心した(10,000卬 m、 20分間、 4°C )。得られた遠心上清を別のエツペンドルフチューブに移し、 MLV沈殿物は 1 mlバッ ファーを力卩ぇ再懸濁し、上清と沈殿物の両者に対して同様の遠心操作を行った。次 に、上清の再遠心により得られた沈殿物に沈殿物再懸濁液の遠心上清をカ卩えて懸 濁し、沈殿物再懸濁液の遠心沈殿物には新たにバッファーを 1 ml加えて再々懸濁し た。この操作を更に一度行レ、、得られた各沈殿物にバッファー 0.5 mlをカ卩え、それぞ れ懸濁し、両者を併せ 1 mlの MLV懸濁液を得た。
リボソーム濃度をリン脂質濃度で表すため、懸濁液に過酸化水素と硫酸により湿式 分解した分解液中の無機リンを Fiske-Subbarow法で定量した。こうして調製した MLV 懸濁液を、組換えプロテオリボソーム調製に供した。 MLV懸濁は、アルゴンガスを充 填し、 4°Cで保存した。
[0047] 実施例 15 組換え AcNPV出芽ウィルスと MLVの融合による組換えプロテオリポソ一 ムの調製
融合バッファ一として、 10 mM CH COOH-CH COONa/lOmM NaCト ρΗ4·0にスク
3 3
ロースを添加して浸透圧を調整し、リボソーム調製用バッファーのモル浸透圧 (約 35m osmol/1)に合わせたものを用いた。
容器に融合バッファーと TSHR組換え AcNPV (または AChRひ組換え AcNPV)の出 芽ウィルス懸濁液を加え混合した後、 MLV懸濁液を入れ、撹拌子により室温にて 10 分間撹拌した。この混合液 lmlに対して、最終濃度が、出芽ウィルス量はタンパク質 量で 10 z g、 MLVはリン量で 200 nmolとなるように、それぞれを加えた。混合液の全 量が 1 mlとなるように融合バッファー容量を調整した。
[0048] 撹拌後の混合液には、組換え AcNPV出芽ウィルスと MLVとが融合した組換えプロ
テオリオソームが含まれている。この混合液を小型冷却遠心機で遠心(5,000卬 m、 20 分間、 4°C)し、遠心上清を除き組換えプロテオリボソームを含む遠心沈殿物に 10倍 に希釈した?8≤(0.1 ?83、 pH 7.2)を加え懸濁した。得られた組換えリボソーム懸濁 液は、抗体測定 (ELISA)に供するまで 4°Cで保存した。融合後の組換えプロテオリポ ソーム沈殿物には、当初のウィルス量の 50%が取り込まれるものと仮定した。
[0049] 実施例 16 組換えウィルス— MLV融合リボソームにおける銀染色
実施例 14中の操作において、ピオチン一ホスファチジルエタノールアミンを含まな い組成で調製した MLVを用レ、、実施例 15の操作手順に従って、組換えプロテオリポ ソームを調製した。但し、最終のサンプルは実施例 15における遠心分離後の沈殿物 を、融合処理時と同様の pH4.0あるいは pH7.5の緩衝液で懸濁した。これらを用いて、 実施例 1 1に記載の方法で銀染色した。
[0050] 実施例 17 抗 AChR a抗体測定系の開発
AChR a組換えプロテオリボソームを PBST[0.05% Triton X- 100, PBS (pH7.2)]で 1.0 μ g/mlとなるように希釈し、ストレプトアビジン 'コート'マイクロプレート(Streptavidin C oated Microplates) (Thermo ELECTRON CORPORATION)に 100 μ 1/wellずつ入れ 、 4°Cでー晚静置し、プレートに吸着させた。サンプノレを除去し、吸着していないプロ テオリボソームを除去するために、 PBSTで 3回プレートを洗浄し後、次に、ブロッキン グバッファー(1% BSA, 5% Sucrose, PBS (ρΗ7·2))を 200 μ 1/well加え、室温にて 2時間 静置してブロッキングを行った。その後、 PBSTでプレートを 3回洗浄し、反応用緩衝 液 [10mMリン酸ニナトリウム, 0.2M NaCl, 0.15% Tween 20, 1%カ卩水分解カゼイン pH7 .4]で 101倍希釈したヒト血清を 100 /i 1/well加え、 25°Cで 1時間反応させた。 PBSTで 3 回洗浄した後に、酵素標識抗体液 [20mM HEPES, 1% BSA, 0.135M NaCl]で 5000倍 希釈した HRP標識抗ヒト IgG ( y鎖)(MBL code:208)を 100 μ 1/well加え、 25°Cで 1時 間反応させた。更に PBSTで 3回洗浄した後に、 100 z l 3,3,,5,5,- Tetramethylbenzidi ne/H O solutionをカロえ、 25°Cで 1時間発色させて、 IN H SO で発色を停止した。
2 2 2 4
発色した各ゥエルの値はマイクロプレートリーダーで A と A を測定することで求め
450 620
た。
コントローノレとして、レセプターを発現していなレ、リボソームのみ、及び TSHR組換え
プロテオリボソームを用い、上記 AChR ct組換えプロテオリボソームと同様の手順を行 レ、、ゥエルの発色を確認した。
[0051] また、上記で使用したヒト血清について、抗 AchR抗体が観察されるか否かを確認し た。ヒト血清を PBSにて 40倍に希釈した溶液 40 μ ΐを、サル由来筋肉のスライドの各ゥ エルに載せた。 25°C、 20分静置した後、ヒト血清を除去し、スライドグラスを 500mlの PB Sで 5分間洗浄した。 SCIMEDX社 IFA用希釈済み FITC-抗ヒト IgG抗体を 40 x l/well加 え、 25°Cで 20分間反応させた。抗体を除去した後、スライドグラスを 500mlの PBSで 5分 間洗浄した後に、マウント液(SCIMEDX社)を載せ、カバーグラスをかけて、倍率 100 倍にて、蛍光顕微鏡で蛍光が認められるか否かを観察した。
[0052] 実施例 18 抗 TSHR抗体測定系の開発 1
TSHR組換えプロテオリボソームを PBST[0.05% Triton X_100,PBS]で 0.5 μ g/mlに希 釈し、 Streptavidin Coated Microplate (Thermo ELECTRON CORPORATION)に 100 μ 1/wellにて 4°Cでー晚感作した。感作したプレートから吸着していないプロテオリポ ソームを除去するために PBSTで 3回プレートを洗浄した後、 [1% BSA, 5% Sucrose, PB S]を 200 μ 1/wellに加え、室温で 2時間静置させてブロッキングを行った。その後 PBS Tで 3回プレートを洗浄し、反応用緩衝液 [10mMリン酸ニナトリウム, 0.2M NaCl, 0.15 % Tween 20, 1%加水分解カゼイン pH7.4]で 101倍希釈したヒト血清を 100 μ 1/wellカロ え、 25°Cで 1時間反応させた。 PBSTで 3回洗浄した後に、酵素標識抗体液 [20mM HE PES,1% BSA, 0.135M NaCl]で 5000倍希釈した HRP標識抗ヒト IgG ( γ鎖)(MBL code :208)を 100 /i 1/well加え、 25°Cで 1時間反応させた。更に PBSTで 3回洗浄した後に、 100 μ 1 3,3' ,5,5' -Tetramethylbenzidine/H O solutionをカ卩え、 25。Cで 1時間発色さ
2 2
せて、 IN H SO で発色を停止した。発色した各ゥエルの値はマイクロプレートリーダ
2 4
一で A を測定することで求めた。
450
[0053] 実施例 19 組換え AcNPV出芽ウィルスとリンカ一付ピオチン標識多重層リボソーム
(MLV)の融合による PEG含有組換えプロテオリボソームの調製
リボソームをピオチン化するに際し、ピオチンと脂質との間にリンカ一として PEGを用 いたものを評価した。
(1)リボソームの調製
プロテオリボソームの調製に先立ち、リンカ一のないリボソーム(以下、 PEG (-)リポソ ームという)と、リンカ一としての PEGを用いたリボソーム(以下、 PEG(+)リボソームとレヽ う)とを調製した。
PEG (-)リボソームを構成するリン脂質の混合物として、ジォレオイルホスファチジル コリン(DOPC:COATSOME MC-8181, 日本油脂製) Zジォレオイルホスファチジル セリン一ナトリウム(D〇PS- Na:COATSOME MS-8181LS, 日本油脂製) /ピオチン一 ホスファチジルエタノールァミン(18:1 Biotin-PE ) = 1:1:0.066 (リン脂質総量 206.6 z mol)を用レヽた。 18:1 Biotin— PEには、 1,2— Dioleoyl-sn— Glycero-3-Phosphoethanola mine— N-Biotinyl (Sodium Salt) (Avanti Polar Lipids社製)を用いた。
[0054] 一方、 PEG(+)リボソームを構成するリン脂質の混合物として、ジォレオイルホスファ チジルコリン(DOPC:COATSOME MC-8181, 日本油脂製)/ジォレオイルホスファ チジルセリン一ナトリウム(DOPS_Na:COATSOME MS-8181LS, 日本油脂製) /ピオ チン一 PEG (2000)—ホスファチジルエタノールァミン(DSPE-PEG(2000)Biotin) = 1:1: 0.066 (リン脂質総量 206.6 μ πιοΐ)を用いた。 DSPE_PEG(2000)Biotinには、 l,2_Disear oyl-sn-Glycero-3-Phosphoethanolamine-N-[Biotmyl(Polyethylene Glycol) 2000] ( Ammonium Salt) (Avanti Polar Lipids社製)を用いた。このリボソームでは、ピオチン 力 SPEGを介して結合されている。このため、 PEG(+)組換えプロテオリボソームは、 PEG (-)組換えプロテオリボソームに比べると、プレート表面よりも離れた位置に結合された 状態となる。
[0055] 上記リン脂質のそれぞれをクロ口ホルムに溶解した。各クロ口ホルム溶液(約 5 ml)を 、キャップを外したガラス製スクリューキャップ試験管に入れ、その試験管を熱媒体と してグリセリンをカ卩えたガラス製受器に移し、ロータリーエバポレーターに接続し、 680 -700 mmHg程度まで適当に減圧して固定した。ウォーターバスに受器が浸るように位 置を決め、ロータリーエバポレーターを回転させ、窒素ガス(1 kgん m2)を送り込みな 力 ¾溶媒のクロ口ホルムを減圧除去した。減圧は、マニュアル操作により、 700 mmHg から 500 mmHgまで、 1-2分毎に、約 100 mmHgずつ下げ、次に、 500 mmHg力、ら 100 m mHgまでは、約 50 mmHgずつ下げていき、更に 100 mmHg力、ら 25 mmHgずつ下げ、 最後に 10-20 mmHgとした。クロ口ホルムが除去され薄膜を形成した後、更に 30分程
度、減圧下に置き、十分にクロ口ホルムを除去した。減圧を停止し、窒素ガスを送り込 み、大気圧まで昇圧した後に、受器を取り外し、内壁と底面にリン脂質薄膜が形成さ れたスクリューキャップ試験管を取り出した。
[0056] リボソーム調製用バッファー [10 mM Tris-HCl- 10 mM NaCl (pH 7.5)]を 10 ml加え 、アルゴンガス(不活性ガス)で置換した後、スクリューキャップをしつ力、り閉め、ボルテ ックスミキサー(強度最大)で 30秒から 1分程度、薄膜が完全に剥がれるまで、ボルテ ッタスし、乳白色の MLV懸濁液(リン脂質濃度約 20 x mol/ml)を得た。
MLVを含む濾液に、次のように複数回遠心操作を施し、 MLVを精製した。濾液を 10 本のエツペンドルフチューブに移し、小型冷却遠心機で遠心した(12,000 X g、 20分 間、 4°C)。得られた遠心上清を別のエツペンドルフチューブに移し、 MLV沈殿物は 1 πバッファーを力卩ぇ再懸濁し、上清と沈殿物の両者に対して同様の遠心操作を行つ た。次に、上清の再遠心により得られた沈殿物に沈殿物再懸濁液の遠心上清を加え て懸濁し、沈殿物再懸濁液の遠心沈殿物には新たにバッファーを 1 mlカ卩えて再々懸 濁した。この操作を更に一度行い、得られた各沈殿物にバッファー 0.5 mlを加え、そ れぞれ懸濁し、両者を併せ 1 mlの MLV懸濁液を得た。加圧濾過器にポリカーボネー トメンブレン (孔径 0.4 μ m)を装着し、 MLV懸濁液をアルゴンガスにより加圧濾過した。 すべてのエツペンドルフチューブ力 得られたものを混合し、バッファ一により全量を
10mlとした。
[0057] リボソーム濃度をリン脂質濃度で表すため、懸濁液に過酸化水素と硫酸により湿式 分解した分解液中の無機リンを Fiske-Subbarow法で定量した。こうして調製した MLV 懸濁液を、組換えプロテオリボソーム調製に供した。 MLV懸濁は、アルゴンガスを充 填し、 4°Cで保存した。
こうして、 PEG (-)リボソーム、及び PEG(+)リボソームを調製した。
また、リボソームに結合する抗体を除去するための抗体除去用リボソームを調製し た。抗体除去用リボソームを構成するリン脂質の混合物として、ジォレオイルホスファ チジルコリン(DOPC:COATSOME MC- 8181, 日本油脂製)/ジォレオイルホスファ チジルセリン一ナトリウム(DOPS_Na:COATSOME MS-8181LS, 日本油脂製) = 1:1 を用いた。このリン脂質を上記と同様の手順に従って操作し、抗体除去用リボソーム(
17.3mM)を得た。
(2)PEG含有組換えプロテオリボソームの調製
上記 PEG (-)リボソームまたは PEG(+)リボソームと、 TSHR組換え AcNPVとを用レ、、実 施例 15に従って、 PEG (-) TSHR組換えプロテオリボソームと、 PEG(+)TSHR組換えプ 口テオリボソームとを調製した。
[0058] 実施例 20 抗 TSHR抗体測定系の開発 2 (PEGを使用した測定系)
ストレプトアビジンコートマイクロプレートに感作する PEG (-)または PEG(+)TSHR組換 えプロテオリボソームの濃度を 0.5 μ g/mlから 1.0 a g/mlにした以外は、実施例 18に 従って、ヒト血清中の抗 TSHR抗体の測定を行った。
対照として、何も感作しないプレート(BSA)と、 TSHR組換えバキュロウィルスを感作 したプレートを上記と同様の操作で調製した。
[0059] 試験結果
<野生型 AcNPV—リボソーム膜融合条件の検討〉
本発明者らは、 BmNPVの BVを用いてウィルスとリボソームとの間の融合を試みた結 果、 BVとリボソームとが融合することを確認した。また、膜タンパク質である GPIアンカ 一型膜結合酵素 AchEが BV上にディスプレイされることを見出した。さらに、 BVとリポ ソームとの融合を行った結果、 AchEが再構成された組換えプロテオリボソームの作製 に成功した。このバキュロウィルスを用いた組換えプロテオリボソームの作製過程は 図 2に示す通りである。
次いで、 AcNPVを用いた組換えプロテオリボソーム作製法の開発の検討を行った。 最初の段階として、野生型 AcNPVの BVを用いてリボソーム膜との融合条件の検討を 行った。組換え AcNPVの組換えタンパク質の遺伝子はポリヘドリン遺伝子と置換した ものであり、ポリヘドリンは膜への感染やウィルスの増殖には必須ではないため、 BV の融合能に変化はなぐ野生型 AcNPVの BVとリボソームとの融合条件と組換え AcNP Vの BVとリボソームとの融合条件に差異はないであろうと考えたためである。
[0060] 野生型 AcNPVの BVと LUVリボソームとの融合の挙動を明らかにするため、(1)BV_ LUV間融合の pH依存性、(2) LUVの脂質組成による比較、及び (3) BV—LUV間融合 のリポソーム濃度依存性に関して Rl 8-dequenching assayを行つた。
(1) BV— LUV間融合の pH依存性
バキュロウィルスエンベロープに存在する gp64は、弱酸性の pHで細胞との融合を 誘起することが報告されている(Blissard,G.W. and WenzJ.R. (1992) Baculovirus gp6 4 envelope Glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol 66:6829-6835)。そこで、 AcNPVの BVとリボソームの融合時の pHによって融合 率に変化があるかを調べるために、 PC/PS(1:1)の脂質組成の LUVを作製し、融合緩 衝液の pHを pH3.0、 pH4.0、 pH4.5、 pH5.0、 pH6.5、 pH7.5とした場合の BVと LUVとの 融合率を測定した。
結果を図 4に示した。図より明らかなように、 pH5.0以上では融合率は低かった力 p H4.0以下では非常に高い融合率が示され、 pH力 程度の比較的穏やかな条件下で ウィルスと効率良く融合することが判った。これは、 pH5付近を転移点として融合率の 変化が起こっており、 gp64を介してリボソームとの融合が誘起されたと考えられた。
(2) LUVの脂質組成による比較
gp64は昆虫細胞のエンドソーム膜との融合を誘起することが示されている。エンドソ 一ム膜を構成する脂質である酸性リン脂質の PSが、融合時の gp64の主なレセプター となっている可能性が示唆されている(Tani,H. , Nishijima,M. , Ushijima,H., Miyamu ra,T. , and Matsuura,Y. (2001 Characterization of cell-surface determinants import ant for baculovirus infection. Virology 279:343-53)。そこで、他の酸性リン脂質が PS の代用となり得るかを調べるために、中性リン脂質である PCと、酸性リン脂質である PS 、 PG、 PAあるいは PIを用いて、 PC/PS(1: 1)、 PC/PG(1:1)、 PC/PA(1:1)、 PC/PI(1: 1)と レ、う脂質組成の LUVを作製し、これらの LUVにおける BVとの融合率の比較を行った 結果を図 5に示した。図より明らかなように、 pH7.5の場合、 PC/PS組成の LUVが僅 かに融合率が高力、つた力 S、 4種類全ての脂質組成の LUVにおレ、て融合率は低かった 。一方、 pH4.0の場合、 PC/PS組成の LUVが最も融合率が高ぐ PC/PG(1:1)、 PC/PA (1:1)、 PC/PI(1:1)組成の順に融合率は減少した。したがって、やはり PSが gp64に対す るレセプター因子としての働きをし、他の脂質組成の LUVでは融合の効率が下がると 考えられた。
[0062] (3) BV— LUV間融合のリボソーム濃度依存性
次に、 PCと PSを用いて PC/PS(1:1)の脂質組成の LUVを作製し、融合緩衝液の pHを 4.0、 BV量を一定として、融合させる LUVの濃度を変化させた場合の融合率を測定し た。その結果、 LUV濃度を 5 μ Mから 100 μ Mまで変化させた場合、融合率の急激な 増加が観察されたが、それ以上の濃度では融合率はほぼ一定となり、飽和状態とな つたと考えられた。
LUVは物質封入率が高ぐ生体膜のもつ性質を保有し、リボソームを利用しようとす る様々な研究目的に適しているといえる。しかし、 LUVは、調製や精製が繁雑である 。これに対して、 MLVは、脂質薄膜に機械的振動を与えるだけで調製できる上、低速 遠心により簡単に分離可能であり調製や精製も容易であるため、汎用性が高く実用 化を試みる際には好ましい。したがって、 MLV力 LUVの代わりに使用できるか検討し た。
[0063] 野生型 BVと MLVとの融合条件に関して、野生型 BVと LUVとの融合測定と同様に、 上記検討法(1)、(2)、(3)において R18_dequenching assayを行った。
(1) BV— MLV間融合の pH依存性
PC/PS(1: 1)の脂質組成の MLVを作製し、融合緩衝液の pHを ρΗ3·0、 ρΗ4.0、 ρΗ4.5 、 ρΗ5.0、 ρΗ6.5とした場合の BVと MLVとの融合率を測定した。図 4に示す通り、 pH5. 0以上では融合率は低かった力 pH4.0以下では非常に高い融合率が示され、 pHが 4程度の比較的穏やかな条件下でウィルスと効率良く融合することが判った。
(2) MLVの脂質組成による比較
中性リン脂質である PCと、酸性リン脂質である PSあるいは PGを用いて、 PC/PS(1:1) 、 PC/PG(1:1)という脂質組成の MLVを作製し、これらの MLVにおける BVとの融合率 の比較を行った。結果を図 6に示した。図より明らかなように、 pH6.5の場合、 PC/PS 組成と PC/PG組成共に融合率は低かった。一方、 pH4.0の場合、 PC/PS組成と PC/P G組成共に高い融合率を示した。
[0064] (3) BV—MLV間融合のリボソーム濃度依存性
PC/PS(1: 1)の脂質組成の MLVを作製し、融合緩衝液の pHを 4.0、 BV量を一定とし て、融合させる MLVの濃度を変化させた場合の融合率を測定した。その結果、 MLV
濃度を 5 μ Mから 100 / Mまで変化させた場合、融合率の増加が観察されたが、それ 以上の濃度では融合率はほぼ一定となった。
以上の結果より、 R18の蛍光の増大が見られたことから、野生型 AcNPVの BVとリポソ ームとの融合が誘起されたことが示された。また、野生型 AcNPVの BVと MLVとの融合 率と、野生型 AcNPVの BVと LUVとの融合率は、 BV—リボソーム間融合のリボソーム 濃度依存性、 BV—リボソーム間融合の pH依存性、及びリボソームの脂質組成におい て、同様の傾向が示され、 PSを含むリボソームと低 pH領域で融合率が高くなることが 確認された。 LUVの結果と MLVの結果を比較すると、図 7に示すとおり、両者の融合 率にはほとんど差が認められな力、つた。したがって、組換えプロテオリボソーム作製に MLVを用いたとしても、性状に変わりはないと考えた。
[0065] <組換え AcNPV感染 Sf9細胞発現膜タンパク質の解析 >
ヒト AChRはひ β y δの 5個のサブユニットから成る五量体で、それらが環状に配置 してカチオン選択性のイオンチャネルを形成してレ、る、分子量約 290kDaの糖タンパク 質 (?¾>·θ。凶 8 (Unwin, N. (200D Refined structure of the nicotinic acetylcholine rec 印 tor at 4 angstrom resolution. J. Mol. Biol. 346: 967—989·)に示すように、各サブュ ニットは 1サブユニットあたり 4本の αヘリックスが細胞膜を貫通している。これらのサブ ユニットの中の αサブユニットは分子量約 50kDaであり、この αサブユニットが抗 ACh R抗体との結合部位であると考えられている。
図 9 (Ando, T., Latif, R., Daniel, S" Eguchi, K" and Davies, T. F. (2004) Dissectin g linear and conformational epitopes on the native thyrotropin receptor. Endocrinolo gy 145: 5185 - 5193.)には、ヒト TSHRの立体構造を膜断面から見たときの模式図を 示した。ヒト TSHRはシングルポリペプチドの 7回膜貫通タンパク質として合成された後 、 N末端が細胞外ドメインであるひサブユニット 30と膜貫通及び細胞質ドメインである /3サブユニット 40の 2個のサブユニットとの間の開裂領域 50で開裂されレセプターを 形成する。分子量は約 87kDaである。 ひサブユニット 30に存在するロイシンに富んだ 繰返し構造(leucine-rich repeats) 60が抗 TSHR抗体との反応部位ではなレ、かと考え られている。
[0066] AChR組換え AcNPV感染細胞及び出芽ウィルスエンベロープの膜タンパク質分析
AChR組換え AcNPVを感染させた Sf9細胞の細胞培養液から回収した細胞画分及 び BV画分において、 SDS-PAGE後に銀染色及び抗 His-Tag抗体によるウェスタンブ ロットを行った。細胞に AChRが発現され、さらに出芽ウィルスエンベロープ上にも AC hRがディスプレイされてレ、れば、 AChRに付カロされた 6 X His-Tagと特異的に結合する 抗 His-Tag抗体を用いたウェスタンブロットによって、 AChRが検出される。
銀染色の結果、図 10に示すように、 AChR組換え BV画分において、野生型 BV画分 には見られないバンドが検出され、それは AChRの分子量約 50kDaに相当する位置 であった。従って、出芽ウィルスエンベロープ上に AChRがディスプレイされたことが 判った。
さらに、ウェスタンブロットを行った結果、図 11に示すように、 BV画分において ACh Rの分子量に相当する位置にバンドが検出され、 AChRが出芽ウィルスエンベロープ 上にディスプレイされることが判明した。細胞画分において、 AChRの分子量約に相 当する位置にバンドが検出された力 それ以外の場所にもマルチバンドとして検出さ れた。これは、細胞膜上に発現した AChRが細胞デブリと凝集したものや断片化した ものが泳動されたためと考えられる。これに対して、 BV画分では AChRの分子量約に 相当する位置にシングルバンドとして検出され、出芽ウィルスエンベロープ上に ACh Rが断片化されたものはなぐ全長を保持した AChRのみがディスプレイされていた。
AChR組換えウィルス MLV融合リポソームにおける銀染色
AChR組換え AcNPVの BVと MLVとを融合させたリボソームを用いて銀染色を行った 結果、図 12に示すように、リボソーム沈殿画分において AChRの分子量に相当する 位置に、野生型 AcNPVの BV画分には見られないバンドが観察された。融合時に行 つた遠心分離操作では、 BV粒子単体は沈殿しないので、 AChRをディスプレイしてい る BV力 Sリボソームと融合したことが判った。また、融合用緩衝液が pH4.0の場合と pH7. 5の場合の上清画分において、 pH7.5の上清画分はタンパク質が濃く検出されたのに 対して PH4.0の上清画分はタンパク質が薄く検出されたため、 pH4.0におけるリポソ一 ム沈殿画分にタンパク質成分のほとんどが取り込まれていることが判った。これらの結 果より、野生型 AcNPV—リボソーム膜融合条件の検討で示された結果と同様に、組 換え膜タンパク質でもこの融合条件が最も適切であると見なされた。
[0068] TSHR組換え AcNPV感染細胞及び出芽ウィルスエンベロープの膜タンパク質分析 TSHR組換え AcNPVを感染させた Sf9細胞の細胞培養液から回収した細胞画分及 び BV画分において、 SDS-PAGE後に Bio-Safe Coomassie染色及び抗 His-Tag抗体 によるウェスタンブロットを行った。細胞に TSHRが発現され、さらに出芽ウィルスェン ベロープ上にも TSHRがディスプレイされていれば、 Bio-Safe Coomassie染色及び TS HRに付加された 6 X His-Tagと特異的に結合する抗 His-Tag抗体を用いたウェスタン ブロットによって、 TSHRが検出される。
Bio-Safe Coomassie染色の結果、図 13に示すように、野生型 BV画分において、 gp6 4とウィルスキヤプシドタンパク質である vp39のバンドが検出された。一方、 TSHR組換 え BV画分にぉレ、て、 gp64と vp39のバンド以外に gp64よりも高レ、分子量の位置にバン ドが検出された。これらのデータより、出芽ウィルスエンベロープ上に TSHRがデイス プレイされたことが判った。
[0069] さらに、ウェスタンブロットを行った結果、図 14に示すように、 TSHR組換え BV画分 において TSHRの分子量約 87kDaに相当する位置にバンドが検出され、 TSHRが出芽 ウィルスエンベロープ上にディスプレイされることが判明した。一方、細胞画分におい て、 TSHRの分子量より高い位置にバンドが検出された。この理由として、細胞画分で は細胞膜上に発現した TSHRが細胞膜等の細胞デブリと凝集を起こし、電気泳動を 行った際、アクリルアミド濃度が高い分離用ゲル、すなわち孔が小さいゲルを移動し 難かったためと考えた。これに対して、 BV画分では細胞デブリを含んでいない TSHR 力 ¾V上にディスプレイされたためと考えた。ヒト TSHRは甲状腺細胞膜上に発現され た後、 2個のサブユニットに開裂する力 異種細胞において発現させた場合、開裂は 起こらず単量体のままであることが知られており、上記の結果と一致する。
[0070] 抗 AChR a抗体測定系の開発
図 15には、リボソームのみ、 TSHR組換えプロテオリボソーム、及び AChRひ組換え プロテオリボソームを固相化したマイクロプレートを用いて、 10名の重症筋無力症患 者(MG01-10)と 5名の健常者(NHS24,29,51,58,59)のヒト血清を測定した結果を示し た。図 16には、これらのデータに基づき、シグナルとなる値 (AChR_TSHR、または AC hRプロテオリボソーム-リボソーム)を示した。全体として、患者血清において、抗 ACh
R a抗体の値(AchR-TSHRまたは AchRプロテオリボソーム-リボソーム)が高レ、傾向が 認められた。
図 17には、上記 15名のヒト血清中に、抗 AchR抗体が観察されるか否かを確認した 蛍光顕微鏡写真図である。抗 AChRひ抗体の値と、蛍光顕微鏡写真中の蛍光の程度 とは、適当な相関を示しているように見られた。
これらの結果は、本実施形態による測定系に基づいて、抗 AChRひ抗体を良好に 測定可能であり、この測定系が MGの診断に使用できることを示唆している。
[0071] 抗 TSHR抗体測定系の開発 1
図 18には、 TSHR組換えプロテオリボソーム、又は TSHR組換え AcNPV出芽ウィルス (リボソームと融合させてレヽなレ、もの)を吸着させたストレプトアビジン'コート'マイクロ プレートにヒト血清 (バセドウ病患者及び健常人)を反応させたときの ELISA系の結果 を示した。グラフの横軸には、各ヒト血清サンプノレの ID番号を示し、縦軸には、 A を 測定した結果を示した。ヒト血清サンプルは、頭文字が B又は Tで始まるもの (左端か ら 39サンプル分)は、甲状腺疾患の血清であり、このうち頭文字が Bで始まるものが RI A法によってバゼドウ病と診断された患者血清である。頭文字が Nで始まるもの の 隣から 19サンプル分)は、健常人の血清である。また、右端は緩衝液(Buffer)である 。 58個のサンプルについて、それぞれ TSHR組換えプロテオリボソームコート ELISA 法(白抜き長方形)、及び TSHR組換え AcNPV出芽ウィルスコート ELISA法(黒塗り長 方形)によって測定を行った。また、バセドウ病患者については、現行の RIA法(黒塗 り三角形)によって測定した結果を示した。
[0072] RIA法では、 39例の甲状腺疾患患者の血清にっレ、て、ポジティブデータが得られた もの(頭文字が Bで始まる 20例)と、ポジティブデータが得られなかったもの(頭文字が Tで始まる 19例)とに分かれた。 RIA法は競合法であることから、患者が持っている自 己抗体の TSHR認識部位と、 RIA法に用いる抗体の認識部位とが競合していなけれ ば、データがポジティブとならないと考えられる。このため、頭文字が Tで始まる 19例 の甲状腺疾患患者については、 RIA法でポジティブデータが得られず、本法では TS Hリガンドと非競合的な自己抗体の保有者もポジティブデータとして得られたため、ス クリーニングできたものと思われた。
[0073] 一方、 TSHR組換えプロテオリボソーム、又は TSHR組換え AcNPV出芽ウィルスをコ ートした ELISA系においては、 RIA法ではポジティブとならなかった血清(頭文字下の 系歹 IJ)についても、いずれも甲状腺疾患患者血清に対してポジティブデータが得られ たことから、 TSHR自己抗体を良好に認識できることが分ると共に、現在の RIA法では 測定不能な TSHR自己抗体が存在することも明らかとすることが出来た。
更に、 TSHR組換えプロテオリボソームをコートした ELISA系では、 TSHR組換え AcN PV出芽ウィルスをコートした ELISA系に比べても、甲状腺疾患患者血清に対して、高 い反応が認められた。このこと力ら、 TSHR組換えプロテオリボソームをコートした ELIS A系は、 TSHRが構造的に天然の状態を取りやすくなつたため、従来うまく検出できな かった甲状腺疾患患者の自己抗体の TSHR特異的結合能が回復すると共に、バセド ゥ病の患者群の自己抗体検出に関しても S/N比が高くなつていた。
これらのデータより、本実施形態の測定系は、バセドウ病以外の甲状腺疾患も含め た新規な甲状腺疾患スクリーニング用検査キットの提供も可能であり、非常に有効な アツセィ系であることが分かった。
[0074] 抗 TSHR抗体測定系の開発 2
図 19には、バセドウ病患者血清(B33)、健常人血清(NHS58,NHS59)、及びコント口 ール(Buffer)を各種の固相化プレートを用いて測定したときの結果を示した。 TSHR 組換えバキュロウィルスを固定したプレートでは、患者血清において、コントロールの プレート(BSA)に比較して、十分に高い値を示した。但し、一部の健常人血清におい ては、高い測定値を示すものが認められた。
図中の TSHR組換えプロテオリボソームは、実施例 15で調製したものである。このリ ポソームは、天然物から抽出して得られたリン脂質力 構成されている一方、 PEG (-) TSHR組換えプロテオリボソームは、合成リン脂質から構成されている。いずれのリポ ソームにおいても、データに大きな相違は認められな力、つた。
PEG (-) TSHR組換えプロテオリボソーム及び PEG(+)TSHR組換えプロテオリボソーム を固定したプレートでは、いずれも患者血清において高い値を示し、健常人血清で は低値を示した。更に、 PEG(+)TSHR組換えプロテオリボソームを固定したプレートで は、 PEG (-) TSHR組換えプロテオリボソームを固定したプレートに比較して、健常人血
清のデータが低下し、 S/N比が良好となった。
[0075] 図 20には、各ゥエルにヒト血清を添加する際に溶液中に、抗体除去用リボソーム(1 7.3mM)を 0〜64 /i l添加して測定したときの結果を示した。これは、血清中の PEG (-)リ ポソームと結合する抗体を除去することで、バックグラウンドデータを減少させることが 可能か否かを評価した実験である。リボソーム抗体を吸収すると、 PEG (-)及び PEG(+) TSHR組換えプロテオリボソームのいずれにおいても、バセドウ病患者血清(B22)の データは約 0.2程度に、健常人血清(NHS58)のデータは約 0.05程度となった。このと き、 PEG (-) TSHR組換えプロテオリボソームを用いると、データが定常値に至るために より多くの PEG (-)リボソームが必要であるのに対し、 PEG(+)TSHR組換えプロテオリポ ソームを用いると、より少量の PEG (-)リボソームでデータが定常値に至ることが判った
[0076] 図 21には、 PEG (-) TSHR組換えプロテオリボソームを吸着させたストレプト 'アビジン •コート.マイクロプレート、又は PEG(+)TSHR組換えプロテオリボソームを吸着させた ストレプトアビジン 'コート'マイクロプレートにヒト血清(バセドウ病患者、橋本病患者 及び健常人)を反応させたときの ELISA系の結果を示した。グラフの横軸には、各ヒト 血清サンプルの ID番号を示し、縦軸には、 A を測定した結果を示した。ヒト血清サン プルの頭文字の意味は、「抗 TSHR抗体測定系の開発 1」と同じであるため省略する( 但し、図 15に示す者とは異なる者のデータが含まれている)。
[0077] 健常人血清の発色の平均 + 3SDでカットオフラインを作ったところ、 PEG (-) TSHR組 換えプロテオリボソームの場合には、カットオフライン付近の発色しか示さな力 た患 者血清 (T-4)が、 PEG(+)TSHR組換えプロテオリボソームの場合には、明らかな陽性と なった。また、 PEG (-) TSHR組換えプロテオリボソームの場合には、カットオフライン付 近まで発色していた健常人血清 (NHS61)が、 PEG(+)TSHR組換えプロテオリボソーム の場合には、明らかな陰性となった。このように、 PEG(+)TSHR組換えプロテオリポソ ームを用いると、 ELISA系の特異性が更に向上することが判った。
このように本実施形態によれば、放射能を用いることなぐ膜受容体に対する結合 物質 (例えば、自己抗体)の有無を定性的 '定量的に評価可能な診断用組換えプロ テオリボソームを提供することができる。このプロテオリボソームを用いることにより、容
易に ELISAプレート及び ELISAキットを調製することができる。この ELISAプレートは、 自己抗体の存在の有無に用いることができる。
図面の簡単な説明
[図 1]本実施形態の ELISAシステムを調製するための方法を示す工程図(1)である。
[図 2]本実施形態の ELISAシステムを調製するための方法を示す工程図(2)である。
[図 3]本実施形態の ELISAシステムを調製するための方法を示す工程図(3)である。
[図 4]野生型 AcNPV BV—リボソームの膜融合に及ぼす pHの影響を確認したときの結 果を示すグラフである。
[図 5]LUV濃度 200 /i Mにおける BVとの融合率 (% Fusion)に対して、脂質組成及び p Hが与える影響を確認したときの結果を示すグラフである。
[図 6]MLV濃度 200 μ Mにおける BVとの融合率に対して、脂質組成及び ρΗが与える 影響を確認した結果を示すグラフである。
[図 7]LUV及び MLVの BVとの融合率を比較するグラフである。
[図 8]ヒト AchRの立体構造を模式的に示す図である (左側は膜上方から見た図、右側 は膜断面から見た図である)。
[図 9]ヒト TSHRの立体構造を膜断面から見たときの模式図である。
[図 10]AChR組換え BVについて SDS-PAGEを行った後にゲルを銀染色したときのゲ ル写真図である。
[図 ll]AChR組換え AcNPV感染細胞及び BVについてウェスタンブロットを行ったとき の写真図である。
[図 12]AChR BV-MLV融合リボソームについて SDS-PAGEを行った後にゲルを銀染 色したときのゲル写真図である。
[図 13]TSHR組換え AcNPV感染細胞及び BVについて SDS-PAGEを行った後にゲル を Coomasie染色したときのゲル写真図である。
[図 14]TSHR組換え AcNPV感染細胞及び BVについてウェスタンブロットを行ったとき の写真図である。
[図 15]AChR α組換えプロテオリボソームを吸着させたストレプトアビジン 'コート'マイ クロプレートに 10名の重症筋無力症患者(MG01〜MG10)のヒト血清と、 5名の健常
者(NHS24,29, 51 , 58,59)のヒト血清を反応させたときの ELISA系の結果を示すグラフ である。グラフは、(A)「リボソーム」がレセプターを発現していなレ、リボソームを感作し たマイクロプレートで試験したデータを、(B)「TSHRプロテオリボソーム」が TSHR組換 えプロテオリボソームを感作したマイクロプレートで試験したデータを、(C)「AchRプロ テオリボソーム」力 SAChR a組換えプロテオリボソームを感作したマイクロプレートで試 験したデータを、それぞれ示している。 「AchRプロテオリボソーム一リボソーム」はO¬A)の値を、「AchR_TSHR」は (C)_(B)の値を、それぞれ示している。
[図 16]図 15に示したデータのうち、(C)-(B)のデータ「AchR_TSHR」と、(C)_(A)のデー タ「AchRプロテオリボソーム一リボソーム」を示したグラフである。
[図 17] 10名の重症筋無力症患者(MG01〜MG10)のヒト血清と、 5名の健常者(NHS2 4,29,51 ,58,59)のヒト血清とについて、抗 AchR抗体が観察されることを確認した蛍光 顕微鏡写真図である。
[図 18]バセドウ病患者血清及び健常人血清について、 TSHR組換えプロテオリポソ一 ムを吸着させた ELISAプレートに反応させたときの ELISA系の結果を示すグラフであ る。
[図 19]バセドウ病患者血清(B33)、健常人血清(NHS58,NHS59)、及びコントロール( Buffer)を各種の固相化プレートを用いて測定したときの結果を示すグラフである。 園 20]ヒト血清と共に抗体除去用リボソームを添加したときの測定結果を示すグラフ である。
[図 21]バセドウ病患者血清、橋本病患者血清、及び健常人血清について、 PEG (-) T SHR組換えプロテオリボソーム、又は PEG(+)TSHR組換えプロテオリボソームを吸着さ せた ELISAプレートに反応させたときの ELISA系の結果を示すグラフである。グラフ中 の横線のうち、実線は PEG (-) TSHR組換えプロテオリボソームを用いた系でのカットォ フラインを、点線は PEG(+)TSHR組換えプロテオリボソームを用いた系でのカットオフ ラインを示す。
Claims
(1)組換えバキュロウィルスの出芽ウィルスエンベロープ上に膜受容体を発現させ るステップ、
(2)膜受容体を発現した組換えバキュロウィルス出芽ウィルスを調製するステップ、
(3)出芽ウィルスとリボソームとを融合させて組換えプロテオリボソームを製造するス テツプ。
[2] 前記膜受容体が、 自己抗体関連疾患に関与するものであることを特徴とする請求項 1に記載の組換えプロテオリボソーム製造法。
[3] 前記膜受容体が、ヒト甲状腺刺激ホルモン受容体、アセチルコリン受容体、リアノジン 受容体、インスリン受容体、 β 1アドレナリン受容体、 Μ2ムスカリン受容体、ァシァログ リコプロテイン受容体からなる群のうちのいずれか一つであることを特徴とする請求項
2に記載に組換えプロテオリボソーム製造法。
[4] 前記膜受容体が、膜貫通型のものであることを特徴とする請求項 1〜3のいずれかに 記載の組換えプロテオリボソーム製造法。
[5] 前記リボソーム力 多重層リボソームであることを特徴とする請求項 1〜4のいずれか に記載の組換えプロテオリボソーム製造法。
[6] 前記リボソーム力 一枚膜リボソームであることを特徴とする請求項 1〜4のいずれか に記載の組換えプロテオリボソーム製造法。
[7] エンベロープ上に目的とする膜受容体を発現させた組換えバキュロウィルス出芽ウイ ノレスとリボソームとを融合させた組換えプロテオリボソームをコートしたことを特徴とす る検出用プレート。
[8] 前記組換えプロテオリボソームは、リンカ一含有物質を介して、前記検出用プレート にコートされていることを特徴とする請求項 7に記載の検出用プレート。
[9] 前記リンカ一は、ポリエチレングリコール (PEG)であることを特徴とする請求項 8に記 載の検出用プレート。
[10] 請求項 7〜9のいずれかに記載の検出用プレートと、自己抗体の有無を評価する血 清を希釈する希釈用緩衝液と、洗浄用緩衝液と、前記自己抗体を認識すると共に標
識された二次抗体とを備えたことを特徴とする検出用キット。
[11] 前記検出用キットにおいて、前記希釈用緩衝液と共に用いられる抗体除去用リポソ ームを備えることを特徴とする請求項 10に記載の検出用キット。
[12] 甲状腺疾患またはバセドウ病、重症筋無力症、拡張性心筋症、持続性心房細動、ィ ンスリン抵抗性糖尿病、 自己免疫性肝炎、重症筋無力症のなかの胸腺腫合併症から なる疾患群のいずれかの疾患患者の血清を、請求項 7〜9のいずれかに記載の検出 用プレートまたは請求項 10若しくは 11に記載の検出用キットを用いて測定し、疾患 治療剤の治療効果をモニタリングする方法。
[13] ヒト血清を請求項 7〜9のいずれかに記載の検出用プレートまたは請求項 10若しくは 12に記載の検出用キットを用いて測定することにより、甲状腺疾患またはバセドウ病 、重症筋無力症、拡張性心筋症、持続性心房細動、インスリン抵抗性糖尿病、 自己 免疫性肝炎、重症筋無力症のなかの胸腺腫合併症からなる疾患群のいずれかの疾 患の有無についてスクリーニングする方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/223,975 US8563291B2 (en) | 2006-02-15 | 2007-02-15 | Method of constructing recombinant proteoliposome for diagnostic use |
JP2008500540A JP5266459B2 (ja) | 2006-02-15 | 2007-02-15 | 診断用組換えプロテオリポソームの作製法 |
EP07714229.7A EP1992688B1 (en) | 2006-02-15 | 2007-02-15 | Method of constructing recombinant proteoliposome for diagnostic use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-038076 | 2006-02-15 | ||
JP2006038076 | 2006-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007094395A1 true WO2007094395A1 (ja) | 2007-08-23 |
Family
ID=38371574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/052699 WO2007094395A1 (ja) | 2006-02-15 | 2007-02-15 | 診断用組換えプロテオリポソームの作製法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8563291B2 (ja) |
EP (1) | EP1992688B1 (ja) |
JP (1) | JP5266459B2 (ja) |
WO (1) | WO2007094395A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012173184A1 (ja) * | 2011-06-15 | 2012-12-20 | 株式会社リポソーム工学研究所 | 組換えプロテオリポソームを用いたLELIA(Liposome-based Enzyme-Linked ImmunoAssay)技術 |
JP2017181518A (ja) * | 2009-09-14 | 2017-10-05 | バンヤン・バイオマーカーズ・インコーポレーテッド | ニューロン損傷診断のためのマイクロrna、自己抗体およびタンパク質マーカー |
US11994522B2 (en) | 2008-08-11 | 2024-05-28 | Banyan Biomarkers, Inc. | Biomarker detection process and assay of neurological condition |
US12077601B2 (en) | 2016-10-28 | 2024-09-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1404011B1 (it) | 2010-12-03 | 2013-11-08 | Uni Degli Studi Magna Graecia Di Catanzaro | Nanovettore coniugato con tsh per il trattamento del cancro della tiroide |
EP2631653A1 (en) | 2012-02-24 | 2013-08-28 | Charité - Universitätsmedizin Berlin | Identification of modulators of binding properties of antibodies reactive with a member of the insulin receptor family |
DE102014226663A1 (de) | 2014-12-19 | 2016-06-23 | Charité Universitätsmedizin Berlin | Brückenassays zum Nachweis von Antikörpern gegen Mitglieder der kardialen Rezeptorfamilie |
WO2017189483A1 (en) | 2016-04-25 | 2017-11-02 | The Johns Hopkins University | Znt8 assays for drug development and pharmaceutical compositions |
WO2019014044A1 (en) * | 2017-07-12 | 2019-01-17 | The Johns Hopkins University | ZNT8 AUTO-ANTIGEN BASED ON PROTEOLIPOSOMES FOR THE DIAGNOSIS OF TYPE 1 DIABETES |
US12103968B2 (en) | 2018-08-16 | 2024-10-01 | The Johns Hopkins University | Antibodies to human ZnT8 |
US20240192198A1 (en) * | 2022-11-11 | 2024-06-13 | Worcester Polytechnic Institute | Biomimetic liposomes and methods of making and using the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03137932A (ja) * | 1988-08-29 | 1991-06-12 | Canon Inc | プロテオリポソームの形成方法 |
JPH0564739A (ja) * | 1991-09-05 | 1993-03-19 | Canon Inc | 巨大リポソームの調製方法 |
JPH05226637A (ja) * | 1991-06-28 | 1993-09-03 | Oki Electric Ind Co Ltd | 微細物の配列方法並びにこれを用いたバイオ素子の製造方法、超微粒子の配列方法、微細配線法及び偏光子の製造方法 |
JPH05325570A (ja) * | 1992-05-18 | 1993-12-10 | Oki Electric Ind Co Ltd | リポソームの固定方法 |
JPH11106397A (ja) | 1997-10-02 | 1999-04-20 | Eiken Chem Co Ltd | 組換えヒト甲状腺刺激ホルモンレセプターの可溶化方法、並びにそれを用いたヒト甲状腺刺激ホルモンレセプターに対する自己抗体の測定方法 |
JP2000232880A (ja) | 1999-02-15 | 2000-08-29 | Tosoh Corp | 昆虫細胞を用いる遺伝子組換えヒト甲状腺刺激ホルモン受容体又はその誘導体の製造方法 |
WO2004035610A2 (de) * | 2002-10-11 | 2004-04-29 | M-Phasys Gmbh | Rückfaltung von ionenkanalproteinen |
JP2007024705A (ja) * | 2005-07-19 | 2007-02-01 | Dainippon Sumitomo Pharma Co Ltd | リアノジン受容体安定化剤のスクリーニング方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543439A (en) * | 1982-12-13 | 1985-09-24 | Massachusetts Institute Of Technology | Production and use of monoclonal antibodies to phosphotyrosine-containing proteins |
US5789152A (en) * | 1991-04-30 | 1998-08-04 | Basil T. Hone | Composition and method for detecting HIV with baculovirus derived vesicles |
JP3137932B2 (ja) | 1997-09-10 | 2001-02-26 | 神戸樹脂工業株式会社 | 耐火性被覆管及びその製造方法とその製造装置 |
US6562563B1 (en) * | 1999-11-03 | 2003-05-13 | Mitokor | Compositions and mehtods for determining interactions of mitochondrial components, and for identifying agents that alter such interactions |
WO2003001249A2 (en) * | 2001-06-22 | 2003-01-03 | Ut-Battelle, Llc | Modulating photoreactivity in a cell |
JP2003052370A (ja) * | 2001-08-16 | 2003-02-25 | Sentan Kagaku Gijutsu Incubation Center:Kk | 発芽バキュロウィルスを用いた機能を有する膜型受容体蛋白質の発現法 |
US7474379B2 (en) | 2005-06-28 | 2009-01-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
-
2007
- 2007-02-15 US US12/223,975 patent/US8563291B2/en not_active Expired - Fee Related
- 2007-02-15 JP JP2008500540A patent/JP5266459B2/ja not_active Expired - Fee Related
- 2007-02-15 WO PCT/JP2007/052699 patent/WO2007094395A1/ja active Application Filing
- 2007-02-15 EP EP07714229.7A patent/EP1992688B1/en not_active Not-in-force
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03137932A (ja) * | 1988-08-29 | 1991-06-12 | Canon Inc | プロテオリポソームの形成方法 |
JPH05226637A (ja) * | 1991-06-28 | 1993-09-03 | Oki Electric Ind Co Ltd | 微細物の配列方法並びにこれを用いたバイオ素子の製造方法、超微粒子の配列方法、微細配線法及び偏光子の製造方法 |
JPH0564739A (ja) * | 1991-09-05 | 1993-03-19 | Canon Inc | 巨大リポソームの調製方法 |
JPH05325570A (ja) * | 1992-05-18 | 1993-12-10 | Oki Electric Ind Co Ltd | リポソームの固定方法 |
JPH11106397A (ja) | 1997-10-02 | 1999-04-20 | Eiken Chem Co Ltd | 組換えヒト甲状腺刺激ホルモンレセプターの可溶化方法、並びにそれを用いたヒト甲状腺刺激ホルモンレセプターに対する自己抗体の測定方法 |
JP2000232880A (ja) | 1999-02-15 | 2000-08-29 | Tosoh Corp | 昆虫細胞を用いる遺伝子組換えヒト甲状腺刺激ホルモン受容体又はその誘導体の製造方法 |
WO2004035610A2 (de) * | 2002-10-11 | 2004-04-29 | M-Phasys Gmbh | Rückfaltung von ionenkanalproteinen |
JP2007024705A (ja) * | 2005-07-19 | 2007-02-01 | Dainippon Sumitomo Pharma Co Ltd | リアノジン受容体安定化剤のスクリーニング方法 |
Non-Patent Citations (7)
Title |
---|
BLISSARD, G.W.; WENZ, J.R.: "Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion", J. VIROL., vol. 66, 1992, pages 6829 - 6835 |
KATSUKI ET AL., ALCOHOL METABOLISM AND LIVER, vol. 12, 1992, pages 65 - 68 |
MAEZAWA, S. ET AL., MECHANISM OF PROTEIN-INDUCED MEMBRANE FUSION, 1989 |
NOZAKI T. ET AL.: "(P) Idenshi Kumikae Gijutsu o Riyo shita Atarashii Proteoliposome Sakuseiho no Kaihatsu", DAI 75 KAI THE JAPANESE BIOCHEMICAL SOCIETY TAIKAI HAPPYO SHOROKUSHU, 25 August 2002 (2002-08-25), pages 783, 2P-474, XP003016800 * |
See also references of EP1992688A4 * |
STANDALNIK ET AL., J. NUCL. MED., vol. 26, 1985, pages 1233 - 1242 |
TANI, H. ET AL.: "Characterization of cell-surface determinants important for baculovirus infection.", VIROLOGY, vol. 279, 2001, pages 343 - 53 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11994522B2 (en) | 2008-08-11 | 2024-05-28 | Banyan Biomarkers, Inc. | Biomarker detection process and assay of neurological condition |
JP2017181518A (ja) * | 2009-09-14 | 2017-10-05 | バンヤン・バイオマーカーズ・インコーポレーテッド | ニューロン損傷診断のためのマイクロrna、自己抗体およびタンパク質マーカー |
US10041959B2 (en) | 2009-09-14 | 2018-08-07 | Banyan Biomarkers, Inc. | Micro-RNA, autoantibody and protein markers for diagnosis of neuronal injury |
WO2012173184A1 (ja) * | 2011-06-15 | 2012-12-20 | 株式会社リポソーム工学研究所 | 組換えプロテオリポソームを用いたLELIA(Liposome-based Enzyme-Linked ImmunoAssay)技術 |
US12077601B2 (en) | 2016-10-28 | 2024-09-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
Also Published As
Publication number | Publication date |
---|---|
US20090186364A1 (en) | 2009-07-23 |
JP5266459B2 (ja) | 2013-08-21 |
JPWO2007094395A1 (ja) | 2009-07-09 |
EP1992688A4 (en) | 2010-04-14 |
EP1992688A1 (en) | 2008-11-19 |
EP1992688B1 (en) | 2016-06-22 |
US8563291B2 (en) | 2013-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5266459B2 (ja) | 診断用組換えプロテオリポソームの作製法 | |
KR101396673B1 (ko) | 측정 대상 성분의 면역 측정법 | |
EP3523653B1 (en) | Rep protein as protein antigen for use in diagnostic assays | |
US20130078658A1 (en) | Method of quantifying recovery rate of exosome | |
JP2021101705A (ja) | 赤血球タンパク質を生産するための方法 | |
JP2003516128A (ja) | ミトコンドリア成分の相互作用の決定およびこのような相互作用を変更する薬剤を同定するための組成物および方法 | |
JP6042937B2 (ja) | 可溶性インターロイキン−2受容体の測定方法及び測定用試薬 | |
WO2012173184A1 (ja) | 組換えプロテオリポソームを用いたLELIA(Liposome-based Enzyme-Linked ImmunoAssay)技術 | |
JP6797427B2 (ja) | 被検者が膵臓癌に罹患している可能性を試験する方法 | |
JP2009216704A (ja) | 受容体特異的結合物質測定方法 | |
US20240125782A1 (en) | Liposome-receptor-assay | |
Tsumoto et al. | Recombinant proteoliposomes prepared using baculovirus expression systems | |
Moussa et al. | Requirement of cholesterol for calcium-dependent vesicle fusion by strengthening synaptotagmin-1-induced membrane bending | |
EP3234615A1 (en) | Methods for the detection of antibodies against members of the cardiac receptor family | |
JP2011501757A (ja) | Trpcドメイン及びsestd1ドメインの複合体並びにこれを必要とする方法及び使用 | |
US20030175810A1 (en) | Assay method and system for identification of P2Y receptor agonists and antagonists | |
JP7253198B2 (ja) | 脂質膜デバイスの製造方法 | |
EP3686601A1 (en) | Serological detection of plasmodium antibodies | |
EP2708897A1 (en) | Compositions and methods for detecting and analyzing vesicles | |
CN117120841A (zh) | 展示细胞表面蛋白质的生物囊泡及其相关方法 | |
JP2001343389A (ja) | Mdm2に対する自己抗体の測定によるがんの検査方法およびその試薬 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007714229 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008500540 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12223975 Country of ref document: US |