WO2007092956A2 - Managed pressure and/or temperature drilling system and method - Google Patents
Managed pressure and/or temperature drilling system and method Download PDFInfo
- Publication number
- WO2007092956A2 WO2007092956A2 PCT/US2007/061929 US2007061929W WO2007092956A2 WO 2007092956 A2 WO2007092956 A2 WO 2007092956A2 US 2007061929 W US2007061929 W US 2007061929W WO 2007092956 A2 WO2007092956 A2 WO 2007092956A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wellbore
- drilling
- drill string
- string
- fluid
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 287
- 238000000034 method Methods 0.000 title claims abstract description 122
- 150000004677 hydrates Chemical class 0.000 claims abstract description 102
- 238000005520 cutting process Methods 0.000 claims abstract description 64
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 56
- 239000012530 fluid Substances 0.000 claims description 210
- 239000007789 gas Substances 0.000 claims description 144
- 238000004891 communication Methods 0.000 claims description 64
- 239000007788 liquid Substances 0.000 claims description 41
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 39
- 239000002826 coolant Substances 0.000 claims description 38
- 230000008878 coupling Effects 0.000 claims description 35
- 238000010168 coupling process Methods 0.000 claims description 35
- 238000005859 coupling reaction Methods 0.000 claims description 35
- 238000004519 manufacturing process Methods 0.000 claims description 33
- 239000007924 injection Substances 0.000 claims description 31
- 238000002347 injection Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 230000001939 inductive effect Effects 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 239000010779 crude oil Substances 0.000 claims description 15
- 239000003345 natural gas Substances 0.000 claims description 14
- 238000007789 sealing Methods 0.000 claims description 10
- 238000005086 pumping Methods 0.000 claims description 9
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000011435 rock Substances 0.000 claims description 6
- 239000003245 coal Substances 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 3
- 238000005755 formation reaction Methods 0.000 description 43
- 238000007667 floating Methods 0.000 description 26
- 239000007787 solid Substances 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 17
- 229920001971 elastomer Polymers 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000013535 sea water Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 238000012856 packing Methods 0.000 description 8
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 238000009844 basic oxygen steelmaking Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- 230000010349 pulsation Effects 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- 239000011269 tar Substances 0.000 description 6
- 230000002528 anti-freeze Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000004941 influx Effects 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- -1 Natural gas hydrates Chemical class 0.000 description 1
- XQCFHQBGMWUEMY-ZPUQHVIOSA-N Nitrovin Chemical compound C=1C=C([N+]([O-])=O)OC=1\C=C\C(=NNC(=N)N)\C=C\C1=CC=C([N+]([O-])=O)O1 XQCFHQBGMWUEMY-ZPUQHVIOSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/002—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/01—Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
- E21B21/065—Separating solids from drilling fluids
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
- E21B21/065—Separating solids from drilling fluids
- E21B21/066—Separating solids from drilling fluids with further treatment of the solids, e.g. for disposal
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
- E21B21/067—Separating gases from drilling fluids
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/08—Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/08—Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
- E21B21/085—Underbalanced techniques, i.e. where borehole fluid pressure is below formation pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/10—Valve arrangements in drilling-fluid circulation systems
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/12—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using drilling pipes with plural fluid passages, e.g. closed circulation systems
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/03—Well heads; Setting-up thereof
- E21B33/035—Well heads; Setting-up thereof specially adapted for underwater installations
- E21B33/0355—Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/001—Cooling arrangements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/003—Insulating arrangements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/005—Waste disposal systems
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0099—Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/103—Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
- E21B47/07—Temperature
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/13—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/13—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
- E21B47/135—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
Definitions
- the present invention relates to a managed pressure and/or temperature drilling system and method.
- Natural gas hydrates are individual molecules of natural gas, such as methane, ethane, propane, or isobutene, that are entrapped in a cage structure composed of water molecules.
- the hydrates are solid crystals with an "ice like" appearance.
- Gas hydrates exist in environments that are either high pressure or low temperature or both and have been found in subsea ocean floor deposits and in subsurface reservoirs both on and offshore.
- the amount of "in place” gas hydrates in the U. S is estimated at 2,000 trillion cubic feet which is equivalent to the produced or known natural gas deposits.
- FIG. 1 illustrates simplified disassociation boundaries for various gas hydrates.
- the curves may vary depending on the amount of gas trapped in an amount of hydrate.
- formed gas hydrates are in a solid phase.
- the hydrates will disassociate into gas gas (and water and/or ice).
- a disassociation curve and a formation curve (not shown) for a particular gas hydrate are not the same.
- a drop in pressure or an increase in temperature will weaken the lattice of water molecules encasing the gas molecules and allow the gas to liberate freely or disassociate and sublimate to gaseous state.
- Gas hydrates are a unique product because they may expand over one hundred times from their solid to gas form. This sublimation process can happen in the reservoir, the well bore, or on the surface.
- Gas hydrates are an unstable resource due to their expansion characteristics when produced from a reservoir. Gas hydrate deposits have traditionally been treated only as a drilling hazard located in between the surface and a well's prime reservoir target deeper down. In addition, conventional drilling lacks the capacity to manage large quantities of a product that expands hundreds of times as it sublimates. This is unique to gas hydrates and an important issue for drilling and production.
- the present invention relates to a managed pressure and/or temperature drilling system and method.
- a method for drilling a wellbore into a gas hydrates formation is disclosed. The method includes drilling the wellbore into the gas hydrates formation; returning gas hydrates cuttings to a surface of the wellbore and/or a drilling rig while controlling a temperature and/or a pressure of the cuttings to prevent or control disassociation of the hydrates cuttings.
- a method for drilling a wellbore into a crude oil and/or natural gas formation includes drilling the wellbore into the crude oil and/or natural gas formation with a drill string; and controlling the temperature and pressure of at least a portion of an annulus formed between the drill string and the wellbore while drilling.
- a method for drilling a wellbore into a coal bed methane formation includes drilling the wellbore into the coal bed methane formation with a drill string; and controlling the temperature and pressure of at least a portion of an annulus formed between the drill string and the wellbore while drilling.
- a method for drilling a wellbore into a tar sands or heavy crude oil formation includes drilling the wellbore into a tar sands or heavy crude oil formation with a drill string; and controlling the temperature and pressure of at least a portion of an annulus formed between the drill string and the wellbore while drilling.
- FIG. 1 illustrates simplified disassociation boundaries for various gas hydrates.
- FIG. 2A is a simplified disassociation curve for gas hydrates and illustrates the relationship between the disassociation curve and overbalanced and underbalanced drilling methods.
- Figure 2B is the simplified disassociation curve for the gas hydrates of FIG 2A illustrating the relationship between the disassociation boundary and a managed pressure and/or temperature MPD drilling method, according to one embodiment of the present invention.
- FIG. 3 illustrates an offshore drilling system, according to another embodiment of the present invention.
- FIG. 3A is an longitudinal sectional view of a concentric riser joint of the riser of FIG. 3, and with the section on the left hand side being cut at a 135 degree angle with respect to the right hand side.
- FIG. 3B is an longitudinal sectional view of a coupling joining an upper concentric riser joint to a lower concentric riser joint, and with the section on the left hand side being cut at a 135 degree angle with respect to the right hand side.
- FIG. 3C is an exemplary downhole configuration for use with drilling system of FIG. 3.
- FIG. 3D is an alternate downhole configuration for use with drilling system of FIG. 3.
- FIG. 3E is an enlargement of a portion of FIG. 3D.
- FIG. 3F is another alternate downhole configuration for use with drilling system of FIG. 3.
- FIG. 4 illustrates an offshore drilling system, according to another embodiment of the present invention.
- FIG. 4A is a section view of the RCD of FIG. 4.
- FIG. 5 illustrates an offshore drilling system, according to another embodiment of the present invention.
- FIG. 5A is a partial cross section of a joint of the dual-flow drill string 530.
- FIG. 5B is a cross section of a threaded coupling of the dual-flow drill string 530 illustrating the pin of the joint of FIG. 5 mated with a box of a second joint.
- FIG. 5C is an enlarged top view of FIG 5A.
- FIG. 5D is cross section taken along line 5D-5D of FIG. 5A.
- FIG. 5E is an enlarged bottom view of FIG. 5A.
- FIG. 6 illustrates an offshore drilling system, according to another embodiment of the present invention.
- FIG. 7 illustrates an offshore drilling system, according to another embodiment of the present invention.
- FIGS. 8A and 8B illustrate an offshore drilling system, according to another embodiment of the present invention.
- FIG. 8C is a detailed view of the RCD of FIG. 8A.
- FIG. 8D is a detailed view of the IRCH of FIG. 8B.
- FIGS. 9A and 9B illustrate an offshore drilling system, according to another embodiment of the present invention.
- FIG. 9C is a partial cross-section of the gas handler of FIG. 9A.
- FIG. 10 illustrates an offshore drilling system, according to another embodiment of the present invention.
- FIG. 11A-D illustrate a multi-lateral completion system, according to another embodiment of the present invention.
- FIG. 11A illustrates a first lateral wellbore of the completion system 1100.
- FIG. 11C illustrates a sectional view of the expandable liner of FIG. 11A in an unexpanded state.
- FIG. 11 B illustrates a sectional view of a portion of FIG. 11 C, in an expanded state.
- FIG. 11 D illustrates the completion system 1100 having a second lateral wellbore formed therein.
- FIG. 12 is an illustration of a rig separation system, according to one embodiment of the present invention.
- FIG. 2A is a simplified disassociation curve for gas hydrates and illustrates the relationship between the disassociation curve and overbalanced and underbalanced drilling methods.
- a disassociation boundary line DB divides the FIG. into two phase regions. To the left of the disassociation boundary DB is the region where the gas hydrates are in a solid form. To the right of the disassociation boundary DB is the region where the gas hydrates will disassociate and produce gas gas.
- Dynamic annulus profiles UB, OB represent pressure and temperature of points at various depths in annuli of respective wellbores being drilled with underbalanced UB and overbalanced OB methods.
- Three depths are provided for reference: a first depth near a surface Sf of the wellbore, a third depth near the total depth TD of the wellbore, and an intermediate second depth Di between the first and third depths.
- a fracture curve FP for the formations at the various depths is also illustrated in FIG. 2A.
- the hydrostatic fluid column significantly overbalances the formations being drilled. Although this generally achieves the objective of penetrating the deposits as safely as possible, this risks invasive mud and cuttings damage to the near wellbore and may render the gas hydrate pay zone to be unproduceable. Additionally, if the high overbalance causes rapid mud losses to other open formations, the resulting reduction in the hydrostatic head of the mud column may trigger dissociation in the near wellbore region, leading to influx into the wellbore and a well control incident.
- Underbalanced drilling invites an influx from the reservoir into the well bore, which is then eventually carried to the surface. Inviting an influx from a gas hydrate deposit while drilling risks losing control of the dissociation process, and may also affect wellbore stability.
- the pressure is not controlled throughout the process or production at least to the point of stabilizing, bringing product to surface, and transferring to production equipment. In a typical underbalanced drilling process, the amount of back pressure on the reservoir is limited.
- FIG. 2B is the simplified disassociation curve for the gas hydrates of FIG 2A illustrating the relationship between the disassociation boundary and a managed pressure and/or temperature MPD drilling method, according to one embodiment of the present invention.
- the fracture pressure is not only pressure dependent, but also temperature dependent. Therefore, for some gas hydrates formations, the annulus pressure and temperature profile will need to be controlled. For other formations, it may be sufficient to control just the annulus temperature or pressure profile.
- An alternative approach would instead allow sub-surface disassociation at a predetermined location, i.e. a separator, which is capable of controlling disassociation.
- Managed Pressure Drilling is an adaptive drilling process used to control the annulus pressure profile throughout the well bore. The objectives are to ascertain the downhole pressure environment limits and to manage the annulus hydraulic pressure profile accordingly. MPD may include control of backpressure, fluid density, fluid rheology, annulus fluid level, circulating friction, and hole geometry, or combinations thereof. MPD allows faster corrective action to deal with observed pressure variations. The ability to dynamically control annulus pressures facilitates drilling of what might otherwise be economically unattainable prospects. MPD techniques may be used to avoid formation influx. Any flow incidental to the operation will be safely contained using an appropriate process. Unlike underbalanced drilling, MPD does not invite an influx from the reservoir into the wellbore.
- annulus pressure control aids control over the dissociation of the gas hydrates and prevents damage to the reservoir.
- annulus pressure control allows balancing between the fracture pressure of the hydrate formation and the dissociation pressure of the hydrate, while also managing the temperature to also prevent dissociation, and therefore control of the gas hydrates drilling process. Further, managing the well bore pressure may also indirectly manage the temperature and the overall phase state of the Gas Hydrates.
- the disassociation boundary DB may be exceeded by a predetermined amount as long as the capabilities exist to return annulus conditions within the drilling window DW should disassociation become unstable.
- FIG. 3 illustrates an offshore drilling system 300, according to another embodiment of the present invention.
- a floating vessel 305 is shown but other offshore drilling vessels may be used.
- the drilling system 300 may be deployed for land-based operations in which case a land rig would be used instead and a riser would not be present.
- a concentric riser string 310 connects the floating vessel 305 and a wellhead 315 disposed on a floor 32Of (or mudline) of the sea 320.
- the riser string 310 is exaggerated for clarity.
- Also connected to the wellhead are two or more ram-blowout preventers (BOPs) 335r and an annular BOP 335a.
- BOPs ram-blowout preventers
- a riser diverter 345 is also connected to the wellhead 315.
- a coolant return line 340 extends from the diverter 345 to the floating vessel 305.
- the floating vessel 305 includes a drilling rig. Many of the components used on the rig such as a top drive and/or rotary table (with Kelly), power tongs, slips, draw works and other equipment are not shown for ease of depiction.
- a wellbore 350 has already been partially drilled, casing 355 set and cemented 352 into place.
- the casing 355 may not extend into the hydrates formation (not shown) and may be installed by conventional methods.
- the cement 352 may be a low exothermic cement.
- the casing string 355 extends from the wellhead 315 at the seafloor 32Of.
- a downhole deployment valve (DDV) 360 is installed in the casing 355 to isolate an upper longitudinal portion of the wellbore 350 from a lower longitudinal portion of the wellbore 350 (when the drillstring 330 is retracted into the upper longitudinal portion).
- DDV downhole deployment valve
- the drill string 330 includes a drill bit 330b disposed on a longitudinal end thereof.
- the drill string 330 may be made up of segments or joints of tubulars threaded together or coiled tubing.
- the drill string 330 may also include a bottom hole assembly (BHA) (not shown) that may include such equipment as a mud motor, a MWD/LWD sensor suite, and/or a check valve (to prevent backflow of fluid from the annulus), etc.
- BHA bottom hole assembly
- the drilling process requires the use of a drilling fluid 325d, which is stored in reservoir or mud tank (not shown).
- the drilling fluid 325d may be water, seawater, oil, foam, water/seawater or oil based mud, a mist, or a gas, such as nitrogen or natural gas.
- the reservoir is in fluid communication with one or more mud pumps (not shown, or a compressor if the drilling fluid is a gas or gas-based) which pump the drilling fluid 325d through conduit, such as pipe.
- the pipe is in fluid communication with an upper section of the drill string 330 that passes through a rotating control device (RCD) (not shown).
- RCD rotating control device
- the RCD provides an effective annular seal around the drill string 330 during drilling and tripping operations.
- the RCD achieves this by packing off around the drill string.
- the RCD includes a pressure-containing housing where one or more packer elements are supported between bearings and isolated by mechanical seals.
- the RCD may be the active type or the passive type.
- the active type RCD uses external hydraulic pressure to activate the sealing mechanism. The sealing pressure is normally increased as the annular pressure increases.
- the passive type RCD uses a mechanical seal with the sealing action activated by wellbore pressure. If the drillstring 330 is coiled tubing or segmented tubing using a mud motor, a stripper (not shown) may be used instead of the RCD.
- the floating vessel may also include BOPs, similar to the subsea BOPs 335a, r.
- the drilling fluid 325d is pumped into the drill string 330 via a Kelly, drilling swivel or top drive.
- the fluid 325d is pumped down through the drill string 330 and exits the drill bit 330b, where it circulates the cuttings away from the bit 330b and returns them up an annulus 390 defined between an inner surface of the casing 355 or wellbore 350 and an outer surface of the drill string 330.
- the return mixture 325r of drilling fluid 325d and cuttings exits the wellbore 350 and travels to the floating vessel 305 via an annulus 310a formed between an inner surface of the riser 310 and an outer surface of the drill string 330.
- the returns are diverted through an outlet line of the RCD and a control valve or variable choke valve into one or more separators.
- the variable choke valve allows adjustable back pressure to be exerted on the annulus and may be between the RCD and the separators or in an outlet line of one of the separators.
- the separators (see FIG. 12), discussed in detail below, remove cuttings from the drilling fluid, may control disassociation of the gas hydrates, and returns the drilling fluid to the mud pump.
- a flow meter (not shown) may be provided in the RCD outlet line.
- the flow meter may be a mass-balance type or other high-resolution flow meter. Utilizing the flow meter, an operator will be able to determine how much fluid 325d has been pumped into the wellbore 350 through drill string 330 and the amount of returns 325r leaving the wellbore 350. Based on differences in the amount of fluid 325d pumped versus mixture 325r returned, the operator is be able to determine whether fluid 325d is being lost to a formation surrounding the wellbore 350, which may indicate that formation fracturing has occurred, i.e., a significant negative fluid differential. Likewise, a significant positive differential would be indicative of formation fluid entering into the well bore (a kick).
- flow meters (not shown) may each be provided in the outlet line of the rig pump, and each outlet line from the separator.
- the density and/or viscosity of the drilling fluid 325d can be controlled by automated drilling fluid control systems. Not only can the density/viscosity of the drilling fluid be quickly changed, but there also may be a computer calculated schedule for drilling fluid density/viscosity increases and pumping rates so that the volume, density, and/or viscosity of fluid passing through the system is known. The pump rate, fluid density, viscosity, and/or choke orifice size can then be varied to control the annulus pressure profile.
- the provision of the concentric riser 310 allows for a coolant 325c to be circulated through an outer annulus 310c of the riser 310 during drilling, thereby providing temperature control of the returns 325r in the riser annulus 310a by controlling an injection temperature and injection rate of the coolant 325c.
- a refrigeration system (not shown) on the floating platform 305 refrigerates the coolant 325c which is then injected into the outer annulus 310c and receives heat energy from the returns 325r.
- the spent cooling fluid 325c flows through the riser diverter 345 and into the coolant return line 340 where it is transported to the floating platform 305 and recirculated through the refrigeration system.
- the coolant may be expelled into the sea 320.
- a thermally insulating material 31Oe may be disposed along an outer surface of an outer tubular 31Od of the riser string 310.
- Suitable coolants include seawater; water; antifreeze: such as a glycol (or a mixture of glycols), for example ethylene or propylene glycol; oil; alcohol, and a mixture of antifreeze and water or seawater.
- cooled refrigerant from the refrigeration system could be instead directly injected into the riser annulus.
- suitable refrigerant include gas, natural gas, propane, nitrogen, and any other known refrigerant (R-10 - R-2402).
- the refrigerant may even be supplied by the separator from the wellbore 350 or any other proximate wellbore. If nitrogen is used for the refrigerant, it may be supplied by a nitrogen generator.
- the drilling fluid 325d may be injected into the drill string at ambient temperature or may be cooled using the refrigeration system before injection into the drill string 330. Alternatively, any of the above listed coolants may be used as the drilling fluid 325d.
- the drilling fluid 325d and/or the coolant 325c may instead be heated.
- subsea and/or subsurface disassociation in a controlled manner would be encouraged.
- heating the drilling fluid 325d and/or the coolant 325c may be in response to a frigid ambient temperature.
- a heated drilling system may also be beneficial for drilling other formations, for example tar sands or heavy, viscous crude oil. Heating of the tar sand or heavy crude oil reduces the viscosity, which allows recovery from the formation.
- the casing string 355 may be a concentric casing string. Coolant 325c could then be circulated through an outer annulus to provide temperature control while drilling, similar to the concentric riser string 310. The coolant 325c could be return to the surface via a parasite string disposed along an outer surface of the casing string 355 or mixed with the returns 325r.
- the casing string 355 may be a concentric casing string for the subsea drilling system 300 as well to provide additional temperature control.
- separate coolant delivery and return lines could extend from the floating platform 305 to the wellhead 315 or the outer annulus be placed in fluid communication with the riser coolant circulation system.
- the use of a concentric string may also be used to transfer heat generated during a cementing operation to the surface instead of into a hydrates formation.
- the DDV 360 includes a tubular housing 365, a flapper 370 having a hinge at one end, and a valve seat in an inner diameter of the housing 365 adjacent the flapper 370.
- a more detailed discussion of the DDV 360 may be found in U.S. Pat. App. No. 10/288,229 (Atty Dock. No. WEAT/0259) and U.S. Pat. App. No. 10/677,135 (Atty Dock. No. WEAT/0259. P1 ) which are herein incorporated by reference in their entireties.
- a ball valve (not shown) may be used instead of the flapper 370.
- an instrumentation sub instead of the DDV 360, an instrumentation sub (see FIG.
- 3D including a pressure and temperature (PT) sensor without the valve
- the housing 365 may be connected to the casing string 355 with a threaded connection, thereby making the DDV 360 an integral part of the casing string 355 and allowing the DDV 360 to be run into the wellbore 350 along with the casing string 355 prior to cementing.
- the DDV 360 may be run in on a tie- back casing string.
- the housing 365 protects the components of the DDV 360 from damage during run in and cementing. Arrangement of the flapper 370 allows it to close in an upward fashion wherein pressure in a lower portion of the wellbore will act to keep the flapper 370 in a closed position.
- the DDV 360 is in communication with a rig control system (RCS) (not shown) to permit the flapper 370 to be opened and closed remotely from the floating vessel 305.
- RCS rig control system
- the DDV 360 further includes a mechanical- type actuator 375 (shown schematically), such as a piston, and one or more control lines 380a, b that can carry hydraulic fluid, electrical currents, and/or optical signals.
- line 380a includes a data line and a power line and line 380b is a hydraulic line.
- Clamps (not shown) can hold the control lines 380a, b next to the casing string 355 at regular intervals to protect the control lines 380a, b.
- the control lines 380a, b may be bundled together in an integrated conduit (not shown).
- the flapper 370 may be held in an open position by a tubular sleeve (not shown) coupled to the piston.
- the sleeve may be longitudinally moveable to force the flapper 370 open and cover the flapper 370 in the open position, thereby ensuring a substantially unobstructed bore through the DDV 370.
- the hydraulic piston is operated by pressure supplied from the control line 380b and actuates the sleeve.
- the sleeve may be actuated by interactions with the drill string based on rotational or longitudinal movements of the drill string.
- a series of slots and pins permits the DDV 360 to be selectively locked into an opened or closed position.
- a valve seat (not shown) in the housing 365 receives the flapper 370 as it closes.
- a biasing member (not shown) may bias the flapper 160 against the valve seat.
- the biasing member may be a spring.
- the DDV 360 may further include one or more PT sensors 385a, b. As shown, an upper PT sensor 385a is placed in an upper portion of the wellbore 350 (above the flapper 370) and a lower PT sensor 385b placed in the lower portion of the wellbore (below the flapper 370 when closed). Each of the PT sensors may be physically separate sensors. The upper PT sensor 385a and the lower PT sensor 385b can determine a fluid pressure and temperature within an upper portion and a lower portion of the wellbore, respectively.
- Additional sensors may optionally be located in the housing 365 of the DDV 150 to measure any wellbore condition or DDV parameter, such as a position of a sleeve (not shown) and the presence or absence of a drill string.
- the additional sensors may also/instead determine a fluid composition, such as a liquid to gas ratio.
- the sensors may be connected to a local controller (not shown) in the DDV 360. Power supply to the controller and data transfer therefrom to the RCS is achieved by the control line 380a. Alternatively, the DDV may be controlled by the RCS without a control line 380a.
- the upper portion of the wellbore 100 is isolated from the lower portion of the wellbore 100 and any pressure remaining in the upper portion can be bled out through the choke valve at the floating vessel 305. Isolating the upper portion of the wellbore facilitates operations such as inserting or removing a BHA. In later completion stages of the wellbore 350, equipment, such as perforating systems, screens, or slotted liner systems may also be inserted/removed in/from the wellbore 350 using the DDV 360.
- the DDV 360 may be located at a depth in the wellbore 350 which is greater than the length of the BHA or other equipment, the BHA or other equipment can be completely contained in the upper portion of the wellbore 100 while the upper portion is isolated from the lower portion of the wellbore 350 by the DDV 360 in the closed position.
- the sensors 385a, b may be electro-mechanical sensors or solid state piezoelectric or magnetostrictive materials.
- the sensors 385a, b may be optical sensors, such as those described in U.S. Pat. No. 6,422,084, which is herein incorporated by reference in its entirety.
- the optical sensors 385a, b may comprise an optical fiber, having the reflective element embedded therein; and a tube, having the optical fiber and the reflective element encased therein along a longitudinal axis of the tube, the tube being fused to at least a portion of the fiber.
- the optical sensor 362 may comprise a large diameter optical waveguide having an outer cladding and an inner core disposed therein.
- the sensors 165a,b may be Bragg grating sensors which are described in commonly- owned U.S. Pat. No. 6,072,567, entitled “Vertical Seismic Profiling System Having Vertical Seismic Profiling Optical Signal Processing Equipment and Fiber Bragg Grafting Optical Sensors", issued Jun. 6, 2000, which is herein incorporated by reference in its entirety. Construction and operation of the optical sensors suitable for use with the DDV 360, in the embodiment of an FBG sensor, is described in the U.S. Pat. No. 6,597,711 issued on JuI. 22, 2003 and entitled “Bragg Grating-Based Laser", which is herein incorporated by reference in its entirety. Each Bragg grating is constructed so as to reflect a particular wavelength or frequency of light propagating along the core, back in the direction of the light source from which it was launched. In particular, the wavelength of the Bragg grating is shifted to provide the sensor.
- the optical sensors 385a, b may also be FBG-based interferometer sensors.
- An embodiment of an FBG-based interferometer sensor which may be used as the optical sensors 165a,b is described in U.S. Pat. No. 6,175,108 issued on Jan. 16, 2001 and entitled "Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing", which is herein incorporated by reference in its entirety.
- the interferometer sensor includes two FBG wavelengths separated by a length of fiber. Upon change in the length of the fiber between the two wavelengths, a change in arrival time of light reflected from one wavelength to the other wavelength is measured. The change in arrival time indicates pressure and/or temperature measured by one of the sensors 385a, b.
- a continuous sensor for pressure and a continuous sensor for temperature may extend along an inner wall (or be embedded therein).
- the RCS may include a hydraulic pump and a series of valves utilized in operating the DDV 360 by fluid communication through the control line 380a.
- the RCS may also include a programmable logic controller (PLC) based system or a central processing unit (CPU) based system for monitoring and controlling the DDV and other parameters, circuitry for interfacing with downhole electronics, an onboard display, and standard RS-232 interfaces (not shown) for connecting external devices.
- PLC programmable logic controller
- CPU central processing unit
- the RCS outputs information obtained by the sensors and/or receivers in the wellbore to the display.
- the pressure differential between the upper portion and the lower portion of the wellbore can be monitored and adjusted to an optimum level for opening the DDV.
- the system can also include proximity sensors that describe the position of the sleeve in the valve that is responsible for retaining the valve in the open position. By ensuring that the sleeve is entirely in the open or the closed position, the valve can be operated more effectively.
- a separate computing device such as a laptop can optionally be connected to the RCS.
- a satellite, microwave, or other long-distance data transceiver or transmitter may be provided in electrical communication with the RCS for relaying information from the RCS to a satellite or other long-distance data transfer medium. The satellite relays the information to a second transceiver or receiver where it may be relayed to the Internet or an intranet for remote viewing by a technician or engineer.
- PT sensors 385c-e may be provided in the drill string 330 near the bit 330b and spaced along the riser 310 in fluid communication with the returns 325r.
- the sensors 385c-e may be any of the sensors discussed above for sensors 385a, b.
- a line provides electrical/optical communication between the sensors 385d, e and the RCS.
- the data provided by the sensors 385a-e will allow the RCS to monitor pressure and temperature in the annuli 310a, 390 to ensure that the temperature and pressure are either within the hydrates drilling window DW or disassociating at a manageable rate.
- Pressure and temperature control may be maintained during a tripping operation and/or while adding segments to the drill string 330 via the addition of a continuous circulation system (CCS) (not shown) on the floating vessel 305.
- CCS continuous circulation system
- the CCS allows circulation of drilling fluid 325d to be maintained while adding or removing joints to the drill string 330.
- a suitable CCS system is illustrated and described in U.S. Prov. App. No. 60/824,806 (Atty. Dock. No. WEAT/0765L), filed September 7, 2006, which is hereby incorporated by reference in its entirety.
- FIG. 3A is an longitudinal sectional view of a concentric riser joint 31Oj of the riser 310 of FIG. 3, and with the section on the left hand side being cut at a 135 degree angle with respect to the right hand side.
- FIG. 3B is an longitudinal sectional view of a coupling joining an upper concentric riser joint 31Oj' to a lower concentric riser joint 31Oj, and with the section on the left hand side being cut at a 135 degree angle with respect to the right hand side.
- the riser joint 31Oj includes an outer tubular 31Od having a longitudinal bore therethrough and an inner tubular 310b having a longitudinal bore 310a therethrough.
- the inner tubular 310b is mounted within the outer tubular 31Od.
- An annulus 310c is formed between the inner 310b and outer 31Od tubulars.
- the outer tubular 31Od has a pin 22 connected to a first end and a box 26 connected to a second end thereof.
- the box 26 has a longitudinal bore therethrough with an internal circumferential tapered shoulder.
- a nut 32 is installed on the box 26.
- the nut 32 has an internal circumferential shoulder cooperatively engaging an external circumferential shoulder of the box 26.
- the nut 32 is allowed to rotate relative to the box 26 while being limited in longitudinal movement by the abutting circumferential shoulders.
- the nut 32 includes an internally threaded end portion.
- One or more radial blind bores are formed in the nut 32 for receiving a spanner bar (not shown) to rotate the nut 32.
- the pin 22 has a longitudinal bore therethrough with an internal circumferential tapered shoulder.
- the pin 22 includes an externally threaded end portion corresponding to the internally threaded end portion of the nut 32.
- the box 26 includes a lower end face with a plurality of longitudinal blind bores therein.
- the pin 22 includes an upper end face with a plurality of longitudinal blind bores therein.
- the longitudinal blind bores of the box 26 are longitudinally aligned with the longitudinal blind bores of the pin end coupling 22.
- Alignment pins 58 are fixedly received in the blind bores of the box 26 and adapted to be slidably received in the blind bores of the pin 22.
- the inner tubular 310b has a first end and a second end.
- the first end has a stab portion 68 welded thereto.
- a seal sub 70 is welded to the second end of the inner tubular 310b.
- the seal sub 70 has a central longitudinal bore therethrough with a receiving end portion.
- a plurality of circumferentially spaced longitudinal passageways surround the central longitudinal bore.
- the receiving end portion includes a pair of internal circumferential grooves for receiving seal 78.
- seal 70 has an end face and an upper face.
- the seal sub 70 is partially received in the longitudinal bore of the box 26.
- the upper face of the seal sub 70 is positioned at the internal circumferential tapered shoulder of the box 26.
- the lower end face of the seal sub 70 extends beyond the lower end face of the box 26.
- the pair of box seals 88 provides a fluid tight seal between the box 26 and the seal sub 70.
- the seal sub 70 has a plurality of radial blind holes in longitudinal alignment with a plurality of radial holes extending through the box 26.
- the seal sub 70 is affixed to the box 26 by retaining pins 96 inserted into the radial holes and extending into the aligned radial blind holes. The retaining pins 96 prevent both longitudinal and rotational movement of the inner tubular 310b relative to the outer tubular assembly 31Od.
- a cylindrical retainer plate 100 is received in the longitudinal bore of the pin 22.
- the cylindrical retainer plate 100 has an inner bore for receiving the stab portion 68 of the inner tubular 310b therethrough.
- the retainer plate 100 further includes a plurality of circumferentially spaced longitudinal bores extending therethrough and surrounding the inner bore.
- the retainer plate 100 is restricted from rotational movement relative to the pin 22 by a pin 106 interconnecting the retainer plate 100 and the pin 22.
- the retainer plate 100 is installed in the pin 22 so that the plurality of longitudinal bores are in longitudinal alignment with the plurality of longitudinal passageways of the seal sub 70 installed in the box 26.
- the longitudinal movement of the retainer plate 100 relative to the pin 22 is restricted at the lower end of the retainer plate 100 by abutting contact with the internal circumferential tapered shoulder of the pin 22.
- the longitudinal movement of the retainer plate 100 relative to the pin 22 is restricted at its upper end by abutting contact with a retainer ring 108 inserted in a retainer ring groove.
- the stab portion 68 extends through the inner bore of the retainer plate 100 and is adapted to be slidably received in the receiving end portion of a seal sub 70 of an adjoining riser joint 31Oj 1 .
- the concentric riser joint 31Oj is merely an example of a suitable concentric riser. Any other known concentric riser may be used instead.
- FIG. 3C is an exemplary downhole configuration for use with drilling system 300.
- FIG. 3C illustrates data communication between PT sensor 385c and the DDV 360.
- the drill string 330 may further include a local controller 220 and EM gap sub 225.
- a suitable gap sub is disclosed in US Pat. App. Pub. 2005/0068703, which is hereby incorporated by reference in its entirety.
- the PT sensor 385c is in electrical or optical communication with the controller 220 via line 217b.
- the controller 220 receives an analog pressure and temperature signal from the sensor 285c, samples the pressure signal, modulates the signal, and sends the signal to a casing antenna 207a, b via the EM gap sub 225.
- the controller 220 is in electrical communication with the EM gap sub 225 via lines 217a,c.
- the controller may include a battery pack (not shown) as a power source.
- the casing antenna 207a, b may be disposed in the casing string 355 below the DDV 360.
- the casing antenna 207a, b may be a sub that attaches to the DDV 360 with a threaded connection.
- the EM casing antenna system 207a, b includes two annular or tubular members 207a, b that are mounted coaxially onto a casing joint.
- the two antenna members 207a, b may be substantially identical and may be made from a metal or alloy.
- the casing joint may be selected from a desired standard size and thread.
- a radial gap exists between each of the antenna members 207a, b and the casing joint, and is filled with an insulating material 208, such as epoxy.
- the antenna members 207a, b can act as both transmitter and receiver antenna elements.
- the antenna members 207a, b receive the signal and relay the signal to a local controller 210 via lines 209a, b.
- the controller 210 demodulates the signal, remodulates the signal for transmission to the RCS, and multiplexes the signal with signals from the PT sensors 385a ,b.
- the controller 210 may simply be an amplifier and have a dedicated control line to the RCS.
- the PT data my be transmitted to the RCS via mud-pulse (not-shown) or the drill string 330 may be wired.
- FIG. 3D is an alternate downhole configuration for use with the drilling system 300.
- FIG. 3E is an enlargement of a portion of FIG. 3D.
- a PT sensor 285a is included in the casing string 355 instead of the DDV 360.
- the DDV 360 may be included in the casing string 355.
- the PT sensor 285a is in electrical or optical communication with a local controller 230a via line 270c.
- a PT sensor 285b is disposed near a second longitudinal end of a liner 255.
- a DDV (or second DDV) may be included in the liner instead of just the PT sensor 265b.
- the liner DDV may have an electric actuator instead of a hydraulic actuator.
- the sensor 285b is in electrical or optical communication with the liner controller 230b via line 27Of.
- the liner 215a has been hung from the casing string 355 by anchor 220.
- the anchor 220 may also include a packing element.
- the liner 215a is cemented 352 in place.
- the casing controller 230a is in electrical communication with each part of the couplings 225a, b via lines 270a, b, respectively.
- One of the couplings 225a, b is used for power transfer and the other coupling 225a, b is used for data transfer.
- the liner controller 230b is in electrical communication with each part of the couplings via lines 27Od, e, respectively.
- only one inductive coupling may be used to transmit both power and data. In this alternative, the frequencies of the power and data signals would be different so as not to interfere with one another.
- the couplings 225a, b are an inductive energy/data transfer devices.
- the couplings 225a, b may be devoid of any mechanical contact between the two parts of each coupling.
- Each part of each of the couplings 225a, b include either a primary coil or a secondary coil.
- Each of the coils may be strands of wire made from a conductive material, such as aluminum or copper, wrapped around a groove formed in the casing 355 or liner 255.
- the wire is jacketed in an insulating polymer, such as a thermoplastic or elastomer.
- the coils are then encased in a polymer, such as epoxy.
- the couplings 225a, b each act similar to a common transformer in that they employ electromagnetic induction to transfer electrical energy/data from one circuit, via a primary coil, to another, via a secondary coil, and do so without direct connection between circuits.
- an alternating current (AC) signal generated by a sine wave generator included in each of the controllers 230a, b.
- the AC signal is generated by the casing controller 230a and for the data coupling the AC signal is generated by the liner controller 230b.
- the liner controller 230b also includes a rectifier and direct current (DC) voltage regulator (DCRR) to convert the induced AC current into a usable DC signal.
- the casing controller 230a may then demodulate the data signal and remodulate the data signal for transmission along the line 380a to the RCS (multiplexed with the signal from the PT sensor 285a).
- the couplings 225a, b are sufficiently longitudinally spaced to avoid interference with one another. Alternatively, or in addition to the couplings 225a, b, conventional slip rings, roll rings, or transmitters using fluid metal may be used.
- FIG. 3F is another alternate downhole configuration for use with the drilling system 300 of FIG. 2-2D.
- the string of casing 355 does not include the DDV.
- a liner 255I has been hung from the casing string 355 by anchor 220.
- the anchor 220 may also include a packing element.
- the liner 255I is also cemented 352 in place.
- Attached to the anchor 220 is a polished bore receptacle (PBR) 257.
- a tieback casing string 255t, including the DDV 360 is also hung from the wellhead and disposed within the casing string 355.
- a pressure sensor (without the valve) may be disposed in the tieback casing 255t.
- the sealing element 259 engages an inner surface of the PBR 257, thereby forming a seal therebetween and isolating an annulus 290 defined between an inner surface of the casing string 355 and an outer surface of the tieback string 255t from the annulus 390 defined between an inner surface of the tieback casing 255t/liner 255I and an outer surface of the drill string 330.
- the DDV 360 is able to isolate (with the drillstring 330 removed) a bore of the tieback casing 255t from a bore of the liner 255I, thereby effectively isolating an upper portion of the wellbore 350 from a lower portion of the wellbore 350 (the annulus 290 may not be isolated by the DDV 360 since it isolated by the seal 259 but may be isolated in an alternative embodiment).
- the return mixture 325r travels to the seafloor 32Of via the annulus 390.
- FIG. 4 illustrates an offshore drilling system 400, according to another embodiment of the present invention.
- the drilling system 400 is riserless so a drill ship 405 is shown but other offshore drilling vessels may be used.
- the drilling system 400 may be deployed for land- based operations in which case a land rig would be used instead of the drill ship 405.
- the drill ship 405 includes a drilling rig and may also include other associated components discussed above with reference to the floating vessel 305. Because the drilling system 400 is riserless, an RCD 410 is attached to the wellhead in sealing engagement with an outer surface of the drill string 330.
- the returns 325r are diverted by the RCD 410 to an outlet 415 of the RCD 410 which connects the annulus 390 to a wellbore line 425.
- the wellhead 315 may also include the BOPs 335a, r.
- the wellbore line 425 provides a fluid passageway between the annulus 390 and a multi-phase pump 420 disposed on the seafloor 32Of adjacent the wellhead 315.
- the returns 325r are pumped via the multiphase pump 200 through a discharge line 220 to the drill ship 405.
- An optional recirculation line having a variable choke valve 430 allows for pressure control of the discharge line 435.
- pressure control of the discharge line 435 may be provided as discussed above for the drilling system 300.
- a high-pressure power fluid is supplied through a high pressure fluid line 440 to operate the multiphase pump 420.
- the power fluid is seawater that is pumped from the drill ship 405 to the multiphase pump 420 at an initial operating pressure.
- the seawater increases in pressure due to a pressure gradient force of the seawater.
- the seawater is expelled to the sea 320.
- the high pressure fluid line 440 supplies power fluid to either one of plunger assemblies 42Od, e during a pumping cycle. For instance, as the first plunger assembly 42Od is expelling wellbore fluid into the discharge line 435, the fluid line 440 will supply power fluid to assembly 42Od via a fluid line 420a. Conversely, as the second plunger assembly 420c is expelling wellbore fluid into the discharge line 435, the fluid line 440 will supply power fluid to second plunger assembly 42Oe via a fluid line 420c.
- the multiphase pump 200 includes a first plunger (not shown) and a second plunger (not shown), each movable between an extended position and a retracted position within the plunger assemblies 42Od, e, respectfully.
- a first lower valve (not shown) and a first upper valve (not shown) controls the movement of the first plunger while the movement of the second plunger is controlled by a second lower valve (not shown) and a second upper valve (not shown).
- the upper and lower valves may be slide valves and can operate in the presence of solids.
- the upper and lower valves are synchronized and operated a controller (i.e., a local controller or the RCS).
- the lower valves allow returns 325r from the wellbore line 425 to fill and vent a first lower chamber and a second lower chamber, respectfully.
- the upper valves allow high pressure power fluid from the fluid lines 420a, b to fill and vent a first upper chamber and a second upper chamber, respectfully.
- the first plunger moves toward the extended position as the returns 425d enter through the first lower valve to fill the first lower chamber with fluid from the wellbore line 425.
- power fluid in the first upper chamber vents through an outlet of the first upper valve 260 into the surrounding sea 320.
- the second plunger moves in an opposite direction toward the retracted position as power fluid from the fluid line 420c flows through the second upper valve and fills the second upper chamber, thereby expelling the returns 325r in the second lower chamber through the second lower valve and into the discharge line 435.
- the second plunger reaches its full retracted position, thereby completing a cycle.
- the first plunger then moves toward the retracted position as power fluid from the fluid line 420a flows through the first upper valve and fills the first upper chamber, thereby expelling the returns in the first lower chamber into the discharge line 435, as the second plunger moves toward the extended position filling the second lower chamber with returns 325r from the line 425.
- the plungers operate as a pair of substantially counter synchronous fluid pumps.
- the plungers move in opposite directions causing continuous flow of returns 325r from the wellbore line 425 to the discharge line 435.
- the plungers will slow down, stop, and accelerate in the opposite direction. This pause of the plungers could introduce undesirable changes in the back pressure on the annulus 390, since the inlet flow line 425 is directly connected to the flow of returns 325r. Therefore, a pulsation control assembly 420b is employed in the multiphase pump 420 to control backpressure due to change of direction of plungers during the pump cycle.
- the pulsation control assembly 420b is a gas filled accumulator that is connected to the inlet line of both plunger assemblies 42Od, e by a pulsation port. During normal flow, the in flow pressure will enter through the port and slightly fill the pulsation control assembly 420b. As the first plunger starts to slow down near the end of its stroke, the flow coming from the annulus 390 will increase its pressure slightly driving an accumulator piston (not shown) further up and into pulsation control assembly 420b as it tries to balance pressures across the piston.
- the opposite plunger begins to increase its intake speed, causing the inlet pressure to drop slightly, which will allow the stored fluid in the pulsation control assembly 420b to come back out through port. This process will repeat itself throughout the pump cycle as each plunger reverses stroke.
- a seal assembly (not shown) is disposed around each of the plungers to accommodate the returns 325r as well as the power fluid.
- Each of the seal assemblies include a member to constantly scrape and polish the plungers, and can eliminate solid particles from the seal assembly 280 area thereby insuring its useful life and protecting the sealing elements.
- each seal assembly includes a ring that is disposed on either side of a sealant. During the operation of the multiphase pump 420, the rings scrape and polish the plungers. The sealant may be replenished locally or by remote injection during pump operations to replenish and improve its life expectancy.
- the multi-phase pump 420 further includes a first gas line and a second gas line disposed on the first plunger assembly and second plunger assembly, respectfully.
- the gas lines are used to prevent gas lock of the plungers during operation of the multi-phase pump 420.
- the first gas line connects an auxiliary gas port at the upper end of the first lower chamber to the discharge line 435.
- the second gas line connects an auxiliary gas port at the upper end of the second lower chamber to the discharge line 435. Gas entering the multiphase pump 420 from the wellbore line 425 will be compressed by the plungers and thereafter expelled from the lower chambers through the ports into the discharge line 435.
- the multiphase pump 420 may be a diaphragm pump, a jet pump, a Moineau pump, or an equivalent circulation density reduction tool (ECDRT).
- ECDRT is described in the U.S. Pat. Nos. 6,837,313 and U.S. Prov. App. 60/777,593, filed Feb. 28, 2006 (Atty. Dock. No. WEAT/0689L), which are hereby incorporated by reference in their entireties.
- the ECDRT includes a turbine, other fluid powered motor (i.e., Moineau motor), or an electric motor and a pump assembled as part of the drill string.
- the turbine harnesses energy from the drilling fluid and powers the pump. Returns are diverted from the annulus through the pump.
- the multiphase pump 420 will be disposed in the wellbore 350.
- the returns may be collected one or more containers, such as inflatable bladders.
- the containers may include a buoyancy source that is charged with a light medium when the containers are full, thereby floating the containers to the surface.
- an optional coolant line 445 is provided from the drill ship 405 to a second outlet 415b of the RCD 410.
- the coolant may be liquid nitrogen, natural gas, or any of the coolants 325c discussed above for the drilling system 300.
- the coolant may be refrigerated drilling fluid 325d. The coolant would mix with the returns 325r and would enter the multiphase pump therewith.
- the power fluid line 440, the wellbore line 425, and the discharge line 435 could each be concentric lines, similar to the riser 310, with additional lines connecting the outer annuli thereof to form a coolant circuit and coolant could then be circulated therein.
- coolant could be used as the power fluid and return to the drill ship 405 through a concentric discharge line 435 (and also be circulated through a concentric wellbore line 425.
- PT sensors 385d-f are provided in fluid communication with the wellbore line 425 and the discharge line 435.
- a line provides electrical/optical communication between the sensors 385d-f (and the choke valve 430) and the RCS. The data provided by the sensors 385d-f will allow the RCS to monitor pressure and temperature in the annulus 390 and the return lines 425, 435 to ensure that either within the hydrates drilling window DW or disassociating at a manageable rate.
- the riser 310 may be added to the drilling system.
- the multiphase pump 420 could be disposed on the seafloor 32Of or on the riser 310.
- the multiphase pump would discharge the returns 325r into the riser 310.
- U.S. Pat. No. 6,966,367 (Atty. Dock. No. WEAT/0392), which is hereby incorporated by reference in its entirety.
- any of the alternate downhole configurations illustrated in FIGS. 3C-3F may be used with the drilling system 400.
- FIG. 4A is a section view of the RCD 410 of FIG. 4.
- the RCD 410 includes a top rubber pot 456 containing a top stripper rubber 458.
- the top rubber pot 456 is mounted to a bearing assembly 460, having an inner member or barrel 462 and an outer barrel 464.
- the inner barrel 462 rotates with the top rubber pot 456 and its top stripper rubber 458 that seals with the drill string 330.
- a bottom stripper rubber 478 is also preferably attached to the inner barrel 462 to engage and rotate with the drill string 330.
- the inner barrel 462 and outer barrel 464 are received in a first opening of a housing 444.
- the outer barrel 464 clamped and locked to the housing 444 by clamp 442, remains stationary with the housing 444.
- Radial bearings 468a and 468b, thrust bearings 470a and 470b, plates 472a and 472b, and seals 474a and 474b provide the sealed bearing assembly 460 into which lubricant can be injected into fissures 476 at the top and bottom of the bearing assembly 460 to thoroughly lubricate the internal sealing components of the bearing assembly 460.
- a self contained lubrication unit (not shown) provides subsea lubrication of the bearing assembly 460. The lubrication unit would be pressurized by a spring-loaded piston inside the unit and pushed through tubing and flow channels to the bearings 468a, 468b and 470a, 470b.
- the lubrication unit would preferably be mounted on the housing 444.
- the chamber on the spring side of the piston which contains the lubricant forced into the bearing assembly 460, could be in communication with the housing 444 by means of a tube. This would assure that the force driving the piston is controlled by the spring, regardless of the water depth or internal well pressure. Alternately, the spring side of the piston could be vented to the sea 320.
- FIG. 5 illustrates an offshore drilling system 500, according to another embodiment of the present invention. Similar to the drilling system 400, the drilling system 500 is also riserless. However, instead of pumping the returns to the drill ship 405, a dual-flow drill string 530 is utilized. Alternatively, the multiphase pump 420 may be included to provide additional pressure control. Refrigerated drilling fluid 525d is injected into a second flow path 530b of the dual-flow drill string. The refrigerated drilling fluid 525d may be any of the drilling fluids 325d or coolants 325c, discussed above for the drilling system 300. The drilling fluid 525d travels through the second flow path until the dual flow drill string 530 transitions to a single flow BHA.
- the drilling fluid continues through the drill bit 330b and returns from the bit through the annulus.
- the returns 525r enter a first flow path 530a of the drill string 530 through a port 530c in fluid communication with the annulus 390.
- the returns travel through the first flow path 530a to the drill ship 405.
- the returns are isolated from the sea 320 by the RCD 410.
- Annulus pressure control is similar to the drilling system 300 and temperature control is provided by the controlling an injection temperature of the refrigerated drilling fluid 525d and/or the injection rate of the drilling fluid 525d.
- the drilling system 500 may be deployed for land-based operations in which case a land rig would be used instead.
- the drilling fluid 525d may instead be heated to provide for controlled subsea and/or subsurface disassociation of the hydrates.
- the drilling system 500 may also be implemented for tar sands and/or heavy crude oil formation in which the heated drilling fluid would be advantageous in reducing viscosity.
- FIG. 5A is a partial cross section of a joint 53Oj of the dual-flow drill string 530.
- FIG. 5B is a cross section of a threaded coupling of the dual-flow drill string 530 illustrating a pin 53Op of the joint 53Oj mated with a box 53Of of a second joint 53Oj'.
- FIG. 5C is an enlarged top view of FIG 5A.
- FIG. 5D is cross section taken along line 5D-5D of FIG. 5A.
- FIG. 5E is an enlarged bottom view of FIG. 5A.
- a partition is formed in a wall of the joint 53Oj and divides an interior of the drill string 530 into two flow paths 530a and 530b, respectively.
- a box 53Of is provided at a first longitudinal end of the joint 53Oj and the pin 53Op is provided at the second longitudinal end of the joint 53Oj.
- a face of one of the pin 53Op and box 53Of (box as shown) has a groove formed therein which receives a gasket 53Og.
- the face of one of the pin 53Op and box 53Of (pin as shown) may have an enlarged partition to ensure a seal over a certain angle ⁇ . This angle ⁇ allows for some thread slippage.
- a thermally insulating material 53Oi may be disposed along an outer surface of the dual-flow drill string 530.
- a concentric drill string may be used instead of the dual-flow drill string 530, similar to the concentric riser 310.
- FIG. 6 illustrates an offshore drilling system 600, according to another embodiment of the present invention.
- the drilling system 600 may be deployed for land-based operations.
- a first casing string 355 and wellhead 610 have been drilled and set in the wellbore.
- the first casing string 355 is not cemented in the wellbore 350.
- the first casing string 355 may be cemented in the wellbore 350.
- the first casing string 355 does not include a DDV 360.
- the first casing string 355 may include a DDV 360.
- the RCD 410 is installed on the wellhead 310.
- a second casing string 655 having a drill bit 610b disposed on a second longitudinal end thereof is being used to extend the wellbore 350.
- the drill bit 610b may be conventional, drillable, or retrievable by being latched to the second end of the second casing.
- the second casing string 655 is a concentric casing string, similar to the riser 330 having a bore 655a, an inner tubular 655b, an annulus 655c, and an outer tubular 655d.
- the second casing 655 string may be a conventional casing string.
- the second casing string bore is in fluid communication with the drill string 330 and the drill bit 630b.
- a casing head 620a is attached to the first longitudinal end of the second casing string 655.
- the casing head 620a is attached to the drill string 330 by a hanger/packer 620b.
- the drill string 330 is not used.
- the hanger/packer 620b seals an interface of the drill string 330 and the second casing string 655 from the sea 320.
- a return line 635 provides fluid communication with the outlet 415a of the RCD 410 and the drill ship 405.
- the return line 635 may be thermally insulated.
- Drilling may be accomplished by rotating the drill string and second casing string and/or by a mud motor disposed between the drill bit and the second casing string (in which case the drill string may be coiled tubing).
- Refrigerated drilling fluid 525d is injected into the drill string 330 and travels therethrough and through the bore of the second casing string to the drill bit 630b.
- the returns 525r travel from the bit 630b through the annulus 390 and are diverted into the return line 635 by the RCD 410.
- the returns 525r travel through the return line to the drill ship 405.
- Temperature and pressure control are similar to the drilling system 500.
- the second casing string may be cemented in the wellbore using the drill string 330.
- the anchor/packer 620b may be released and the drill string 330 may be retrieved to the drill ship.
- the wellbore may be completed by perforating the casing and/or drilling and lining one or more lateral wellbores into the hydrates formation (see FIGS. 11 A-D) and running production tubing.
- the drill ship may then be replaced by a production platform (not shown)
- the second casing string 655 includes a first port in fluid communication with the annulus 655c and the return line 635 in or near the casing head and a second port near the drill bit in fluid communication with the bore.
- the ports are sealed by a frangible member, such as a rupture disk.
- the rupture disks may be fractured, thereby exposing the ports and providing a fluid communication path from the bore 655a through the annulus 655c.
- a disassociation fluid may be injected through the return line from the production platform to cause disassociation of the hydrates in the formation.
- the disassociation fluid may be any of the antifreezes discussed for the drilling system 300, an alcohol, saltwater, or water.
- the disassociation fluid may be at ambient temperature or may be heated on the production platform. Alternatively, the disassociation fluid may be a heated gas, such as steam or natural gas . The resulting gas (and water) would flow through the production tubing to the production platform.
- the ability to inject heated fluid into the second casing string 655 would also be advantageous in producing from tar sands and/or heavy crude oil formations and would provide control over the viscosity for production.
- the drill string 330 may be replaced by the dual-flow drill string 530.
- the return line 635 may be omitted.
- the second flow path of the drill string would be in fluid communication with the second casing string bore.
- the second casing string bore would also in fluid communication with the drill bit 630b.
- the second casing string annulus would be in fluid communication with the wellbore annulus 390 and the first flow path 530a of the drill string via the hanger/packer 620b.
- Refrigerated drilling fluid would be injected into the second flow path of the drill string and flow through the second casing string bore. Returns would enter the second casing string annulus and travel to the surface via the first drill string flow path.
- the drill string 330 may be replaced by the dual-flow drill string 530.
- the second flow path of the drill string would be in fluid communication with the second casing string bore.
- the second casing string annulus still be sealed by the rupture disks but upon fracture fluid communication would be provided between the second casing string annulus and the first flow path of the dual-flow drill string.
- Refrigerated drilling fluid would be injected into the second flow path of the drill string and flow through the second casing string bore. In normal operation, returns would flow through the wellbore annulus and into the return line.
- a refrigerated kill fluid such as liquid nitrogen or antifreeze, would be maintained on the drill ship 600 and would be injected under pressure sufficient to fracture the rupture disks, thereby restoring well control until normal drilling operations could be resumed.
- FIG. 7 illustrates an offshore drilling system 700, according to another embodiment of the present invention. Similar to the drilling system 600, the drilling system 700 is a drilling with casing drilling system. However, the drilling system 600 is different from the drilling system 600 in that it includes a concentric riser 310, similar to the drilling system 300.
- the second casing string 655 having a BHA 730 disposed on a second longitudinal end thereof is being used to extend the wellbore 350.
- the BHA 730 includes a mud motor 730a, a drill bit 730b attached to an output shaft of the mud motor 730a, and a PT sensor 785 in fluid communication with the wellbore annulus 390 and/or the bore of the second casing string.
- the BHA 730 may be conventional, drillable, or retrievable by being latched to the second end of the second casing string (if removable, the PT sensor may be located in a separate, nonremovable instrumentation sub).
- a line 780 extending from the PT sensor 785 along an outer surface of the second casing 655 provides electrical/optical communication between the PT sensor 785 and the RCS on the floating vessel 305.
- Disposed between the casing head 620a and the second casing 655 is a DDV 760.
- the DDV 760 may be similar to the DDV 360 except that the housing includes one or more channels formed longitudinally therethrough in fluid communication with the second casing annulus 655c.
- the DDV 360 may be used instead of the DDV 760.
- the DDV sensors connect to line 780.
- the line 780 may also include a hydraulic line connected to the DDV actuator.
- Injection of the drilling fluid 525d is similar to the drilling system 600 with the exception that either the drilling fluid 325d or the refrigerated drilling fluid 525d may be used.
- the returns travel through the annulus 390 and into and through the inner annulus 330a of the riser to the floating vessel 305.
- Operation of the riser coolant is similar to the drilling system 300.
- Cementing of the second casing string, removal of the drill string, and installation of production tubing are similar to the drilling system 600 except for the additional installation of the return line 635 and the return line may be connected to the wellhead 315 instead of the RCD 410 which is not required in this system 700.
- the drilling system 700 may be deployed for land-based operations.
- FIGS. 8A and 8B illustrate an offshore drilling system 800, according to another embodiment of the present invention.
- a riser 810 is connected between a floating vessel 805 and the wellhead 315.
- the concentric riser 310 may be used instead of the riser 810.
- Vertical rotary beams B are disposed between two levels of the rig and support a rotary table RT.
- a choke line CL and kill line KL, are run along an outer surface of the riser 810.
- a conventional flexible choke line CL has been configured to communicate with a choke manifold CM. The drilling fluid then can flow from the manifold CM to a separator MB and a flare/gas treatment facility line.
- the drilling fluid can then be discharged to a shale shaker SS to mud pits and pumps MP.
- An example of some of the flexible conduits now being used with floating rigs are cement lines, vibrator lines, choke and kill lines, test lines, rotary lines and acid lines.
- An RCD 835r is attached above the riser 810.
- the slip joint SJ is locked into place, so that there is no relative vertical movement between the inner barrel and outer barrel of the slip joint SJ.
- the slip joint SJ may be removed from the riser 810 and the RCD 835r attached directly to the riser 810.
- An adapter may be positioned between the RCD 835r and the slip joint SJ.
- Tensioners T1 and T2 apply tension to the riser 810.
- the drill string 330 is positioned through the rotary table RT, through the rig floor F, through the RCD 835r and into the riser 810. Outlets 816 and 818 extend radially outwardly from the side the RCD 835r.
- a conduit 830 is connected to the outlet 816 of the RCD 835r for communicating the returns to the choke manifold CM.
- a conduit could be attached to connector 818 (shown capped), to discharge to the choke manifold CM or directly to a separator MB or shale shaker SS.
- Conduit 830 may be a elastomer hose; a rubber hose reinforced with steel; a flexible steel pipe or other flexible conduit.
- a first casing string 355 and wellhead 315 have been drilled and set in the wellbore 350.
- the first casing string 355 is cemented in the wellbore 350.
- the first casing string 355 may not be cemented in the wellbore 350.
- the first casing string 355 does not include the DDV 360.
- the first casing string 355 may include the DDV 360.
- Refrigerated drilling fluid 525d is injected through the drill string 330.
- the returns 525r travel through the annulus and the wellhead 315 where they are diverted by an internal riser RCD (IRCH) 835s is attached to the wellhead 315.
- IRCH internal riser RCD
- the returns 835s are diverted into a line 835a in fluid communication with an outlet of the IRCH 835s and an inlet of a separator 890.
- a variable choke valve 875 may be installed in the line 835a to provide additional pressure control over the annulus 390.
- the returns are transported into the separator 890.
- the separator 890 allows for controlled subsurface disassociation of hydrates in the returns 525r from the annulus.
- the separator 890 is shown as a horizontal separator. Alternatively, the separator 890 may be a vertical or spherical separator.
- a cuttings and liquid line 890I is in fluid communication with a cuttings and liquid outlet of the separator and an inlet of the multiphase pump 420.
- a gas line 835g is in fluid communication with a gas outlet of the separator 890 and an inlet of an optional vacuum pump 820 on the floating platform 805.
- the vacuum pump 820 provides additional control over the pressure in the separator 890 to control the disassociation of the hydrates.
- Solid hydrates will not travel in the liquid and cuttings line 8901 because the hydrates will float in a drilling fluid 525d level maintained in the separator 890.
- Liquid and rock cuttings discharged from the multiphase pump 420 travel through the line 435 and are returned to the riser 810 at an inlet above the IRCH 835s.
- the liquid and rock cuttings then travel to the floating vessel where they are diverted by RCD 835r, into outlet 816, through conduit 830, through the choke manifold CM, and into the separator MB.
- Gas discharged from the vacuum pump travels through a discharge line and meets a gas discharge line MBG from the vessel separator MB for transport to a flare or gas treatment facility.
- PT sensors 385a, c, d provide monitoring capability for the RCS as well as PT sensor and liquid level indicator 885 which is in fluid communication with the returns 525r in an interior of the separator 890.
- a heating coil may be included around or within the separator 890 to provide additional control over disassociation of the hydrates.
- heated seawater may be pumped from the floating platform 805 into tubing around or within the separator 890.
- a bypass line (not shown) may connect from a second outlet (not shown) of the IRCH 835s and into a second riser inlet (not shown) and have an automatic gate valve in communication with the RCS to provide an option to return to a drilling mode which discourages disassociation in the event of equipment failure or unstable disassociation.
- the multiphase pump 420 may be configured for gas separation.
- gas separation such a configuration is described and illustrated in FIGS. 7-11 of the '367 Patent (discussed and incorporated above).
- an enlarged inlet chamber is provided for each of the plunger assemblies.
- the returns are directed tangentially into the enlarged chamber to create a centrifugal force, thereby promoting gas separation.
- One or more gas outlet lines are provided in each of the plunger assemblies.
- an annulus is added to the first configuration between each plunger and a respective plunger chamber to permit gas to fill the annulus, thereby pressurizing the gas during pumping.
- a bore is provided through each of the plungers and connected to a separate gas outlet.
- a deflector plate is provided in an enlarged inlet chamber of each of the plunger assemblies to promote separation. The gas escapes through the bores and into the gas outlet.
- FIG. 8C is a detailed view of the RCD 835r.
- the RCD 835r includes a bearing and seal assembly 110 which includes a top rubber pot 134 connected to the bearing assembly 136, which is in turn connected to the bottom stripper rubber 138.
- the top housing 140 above the top stripper rubber 142 is also a component of the bearing and seal assembly 110. Additionally, a quick disconnect/connect clamp 144, is provided for connecting the bearing and seal assembly 110 to the seal housing or bowl 120. When the drill string 330 is tripped out of the RCD 835r, the clamp 144 can be quickly disengaged to allow removal of the bearing and seal assembly 110.
- the housing or bowl 120 includes first and second housing openings 120a, b opening to their respective outlet 816, 818.
- the housing 120 further includes holes 146, 148 for receiving locking pins and locating pins.
- the seal housing 120 is preferably attached to an adapter or crossover 112.
- the adapter 112 is connected between the seal housing flange 120C and the top of the inner barrel of the slip joint SJ.
- the inner barrel flange IBF is connected to the adapter bottom flange 112A.
- the head of the outer barrel HOB that contains the seal between the inner barrel and the outer barrel, stays fixed relative to the adapter 112.
- FIG. 8D is a detailed view of one embodiment of the IRCH 835s.
- IRCH 835s includes an upper head 160 and a lower body 162 with an outer body or first housing 164 therebetween.
- a piston 166 having a lower wall 166a moves relative to the first housing 164 between a sealed position and an open position, where the piston 166 moves downwardly until the end 166a' engages the shoulder 162a.
- the annular packing unit or seal 168 is disengaged from the internal housing 170 while the wall 166a blocks the discharge outlet 172.
- the internal housing 170 includes a continuous radially outwardly extending upset or holding member 174 proximate to one end of the internal housing 170.
- the seal 168 When the seal 168 is in the open position, it also provides clearance with the holding member 174.
- the upset 174 is preferably fluted with one or more bores to reduce hydraulic pistoning of the internal housing 170.
- the other end of the internal housing 170 preferably includes threads 170a.
- the internal housing includes two or more equidistantly spaced lugs 176a-d (only a and c shown).
- the bearing assembly 178 includes a top rubber pot 180 that is sized to receive a top stripper rubber or inner member seal 182.
- a bottom stripper rubber or inner member seal 184 is connected with the top seal 182 by the inner member 186 of the bearing assembly 178.
- the outer member 188 of the bearing assembly 178 is rotatably connected with the inner member 186.
- the outer member 188 includes two or more equidistantly spaced lugs 190a-d.
- the outer member 188 also includes outwardly-facing threads 188a corresponding to the inwardly-facing threads 170a of the internal housing 170 to provide a threaded connection between the bearing assembly 178 and the internal housing 170.
- both sets of lugs serve as guide/wear shoes when lowering and retrieving the threadedly connected bearing assembly 178 and internal housing 190
- both sets of lugs also serve as a tool backup for screwing the bearing assembly 178 and housing 190 on and off
- the lugs 176a-d on the internal housing 170 engage a shoulder 810s on the riser 810 to block further downward movement of the internal housing 170, and, therefore, the bearing assembly 178.
- the drill string 330 can be received through the bearing assembly 178 so that both inner member seals 182 and 184 engage the drill string 330.
- seal 168 the annulus A between the first housing 164 and the riser 810 and the internal housing 170 is sealed using seal 168.
- FIGS. 9A and 9B illustrate an offshore drilling system 900, according to another embodiment of the present invention. Similar to the drilling system 800, the drilling system 900 also provides for subsea disassociation of the hydrates. However, instead of using the separator 890, the drilling system 900 uses the riser 810 itself as a separator. Further, the drilling system 900 provides an option of returning to a more conventional drilling method if control of the subsea disassociation becomes unstable. Instead of the IRCH 835s, a baffle or weir 910 is installed in the wellhead 915.
- the BOPs 335a, r are not shown in FIG. 9B, they may be provided on the wellhead 915 below the weir 910.
- the weir 910 divides a lower portion of the riser into an inner annulus 910b and an outer annulus 910a. Returns 525r from the wellbore annulus 390 travel into the inner annulus 910b.
- An outlet line 91Oo is in fluid communication with the outer annulus 910a and an inlet of the multiphase pump 420. The reversal of flow of the returns 525r over the weir 910 allows any disassociated gas and solid hydrates to separate from the liquid and solids in the returns 525r and remain in the riser 810.
- the separated liquids and solids are discharged by the pump 420 to through the line 435 to the choke manifold CM or directly to the separator MB.
- the separated hydrates solids are allowed to disassociate in the riser 810 and the gas travels through the riser 810 to the RCD 835r where it is diverted via the outlet 816 into the conduit 830 to the choke manifold CM, the separator MB, or the gas outlet line MBG.
- BOPs such as gas handlers 935a, b.
- the gas handlers 935a, b are selectively actuatable to sealingly engage the drill string 330 and divert the gas in the riser 810 to an outlet.
- the outlets of the gas handlers may be connected to either the vacuum pump 820 or the gas line MBG.
- the gas handlers 935a, b are disengaged from the drill string allowing the gas to flow through the riser 810 to the floating vessel 805. If disassociation should become unstable, one of the gas handlers 935a, b would be actuated by a hydraulic line (not shown) to seal the drill string and divert the gas to either the vacuum pump or the gas line MBG.
- a disassociation fluid may be injected into the riser via a line (not shown, see FIG. 10) from the vessel 805.
- the disassociation fluid may be any of the antifreezes discussed for the drilling system 300, an alcohol, saltwater, or water.
- the disassociation fluid may be at ambient temperature or may be heated on the vessel 805.
- the disassociation fluid may be a heated gas, such as steam or natural gas,.
- a remotely actuated gate valve 975 in the riser outlet line 91Oo would be closed. All of the returns 525r would then travel from the wellbore annulus 390 via the riser 810 to the RCD 835r. The returns would continue through the conduit 830 to the choke manifold CM and into the separator MB.
- FIG. 9C is a partial cross-section of the gas handler 935a, b.
- the gas handler 935a, b includes a cylindrical housing or outer body 82 with a lower body 84 and an upper head 80 connected to the outer body 82 by means of bolts 61 and 62.
- Disposed within the housing 82 is an annular packing unit 88 and a piston 60 having a conical bowl shape 63 for urging the annular packing unit 88 radially inwardly upon the upward movement of piston 60.
- the lower wall 64 of piston 60 covers an outlet passage 86 in the lower body 84 when the piston 60 is in the lower position.
- FIG. 10 illustrates an offshore drilling system 1000, according to another embodiment of the present invention.
- the drilling system 1000 may be deployed for land-based operations.
- a first casing string 355 and wellhead 315 have been drilled and set in the wellbore 350.
- the first casing string 355 is cemented in the wellbore 350.
- the first casing string 355 may not be cemented in the wellbore 350.
- a second or tieback casing string 1055 has also been hung from the well head.
- neither the first casing string 355 nor the tieback casing string 1055 includes the DDV 360.
- the tieback casing string 1055 may include the DDV 360.
- annulus 1090 is formed between the tieback string 1055 and the first casing string 355.
- a first injection line 1045a is in fluid communication with the tieback annulus 1090 and extends from the wellhead, along the riser, to a pump, compressor, or other fluid source 1020 located on the floating vessel 805.
- a second injection line 1045b in fluid communication with the wellhead and a third injection line 1045c in fluid communication with an annulus formed between the drill string 330 and the riser 810 also extend to the fluid source 1020.
- a variable choke valve 1075a-c may be provided in each of the injection lines 1045a-c. The variable choke valves are in communication with the RCS.
- the drilling fluid 325d or the refrigerated drilling fluid 525d is injected through the drill string 330 and exits from the drill bit 330b.
- a flow rate of fluid such as a gas, determined by the RCS, is injected through the annulus 1090.
- the gas mixes with the returns 325r, 525r at a junction between annulus 390 and 1090, thereby lowering the density of the returns/gas mixture 1025m as compared to the density of the returns.
- the resulting lighter mixture lowers the annulus pressure that would otherwise be exerted by the column of drilling fluid.
- the annulus pressure can be controlled.
- the gas may be choked (i.e., through valves 1075a-c) so that the gas 1025f is cooled upon expansion through the choke and provides temperature control over the returns as well.
- the gas may be nitrogen, natural gas, or any of the other refrigerants, discussed above.
- the injection fluid may be any of the coolants 325c discussed for the drilling system 300 or a foam.
- the coolants would be refrigerated and would be used for temperature control rather than pressure control.
- microbeads may be injected.
- a different fluid may be provided in each of the lines.
- the mixture 1025m returns to the floating vessel 805 via the riser.
- the mixture 1025m is diverted to the conduit 830 via the RCD 835r and transported to the choke manifold CM and the separator MB.
- PT sensors 385 a, c-e are placed proximate each injection point in communication with the RCS for monitoring of the injection process.
- the dual drill string 530 may be used instead of the drill string 330 to provide an injection point near the drill bit 530b
- the injection lines 1045a-c one or more injection lines may extend into the wellbore 350 as parasite strings disposed along an outer surface of the casing string 355.
- any of the disassociation fluids discussed above for the drilling system 600 may be injected to provide controlled subsea and/or subsurface disassociation of the hydrates.
- the drilling system 1000 may be implemented for drilling heavy crude oil and/or tar sands formations using heated injection fluids and/or additives to provide viscosity control.
- FIG. 11A-D illustrate a multi-lateral completion system 1100, according to another embodiment of the present invention.
- FIG. 11A illustrates a first lateral wellbore of the completion system 1100.
- a lateral wellbore 1132a has been formed off of a cased 1102 and cemented 1101 primary wellbore 1125.
- the primary wellbore may be drilled using any of the drilling systems 300-1000.
- a whipstock (not shown), a deflector 1110, and an anchor 1115 are lowered into the primary wellbore 1100.
- the whipstock is properly oriented and located using conventional MWD, gyro, pipe tally, or radioactive tags.
- the anchor 1115 is set.
- a window is milled/drilled through the casing 1102 and the cement 1101 , using the whipstock (not shown) as a guide, and the drilling is continued until the lateral wellbore 1132a formed.
- the lateral wellbore 1132a may be drilled using any of the drilling systems 300-1000.
- the lateral wellbore 1132a may be under-reamed, such as with a bi-center or expandable bit, resulting in an inside diameter near that of the central wellbore 1100.
- the whipstock is removed and replaced by a deflector stem 1112.
- the deflector stem 1112 and deflector device 1110 may comprise a mating orientation feature (not shown), such as a key and keyway, for properly orientating the deflector stem into the deflector device.
- the anchor 1115 may include a packer or may be a separate anchor and packer.
- an expandable liner (unexpanded) 1135a is lowered through the primary wellbore 1125, along the deflector stem 1112, into the lateral wellbore 1132a.
- the liner 1135a is then expanded against the walls of the primary wellbore 1125 and the lateral wellbore 1132a using an expander tool.
- the expandable liner 1135a includes a PT sensor 1185a in fluid communication with a bore thereof.
- a line 1162a disposed in the expandable liner provides data communication between the PT sensor 1185a and part of an inductive coupling 1150a.
- the line 1162a may also provide power to the PT sensor 1185a.
- a first inductive coupling may be provided for data transfer and a second inductive coupling may be provided for power transfer.
- the other part of the inductive coupling 1150a is disposed within/around a wall of the casing string 1102. To facilitate optional placement of the lateral wellbore 1132a, parts of inductive couplings may be spaced along the casing 1125 at a selected interval.
- FIG. 11C illustrates a sectional view of the expandable liner of FIG. 11A in an unexpanded state.
- FIG. 11 B illustrates a sectional view of a portion of FIG. 11 C, in an expanded state.
- the expandable liner 1135a is constructed from three layers. These define a slotted structural base pipe 1140a, a layer of filter media 1140b, and an outer protecting sheath, or "shroud" 1140c. Both the base pipe 1140a and the outer shroud 1140c are configured to permit hydrocarbons to flow through perforations formed therein.
- the filter material 1140b is held between the base pipe 1140a and the outer shroud 1140c, and serves to filter sand and other particulates from entering the liner 1135a and a production tubular.
- a portion 1120 of the expandable liner 1135a proximate to a junction 1105 between the primary wellbore 1125 and the lateral wellbore 1132a may be a single layer (perforated or solid) material.
- a recess 1145r is formed in the outer layer 1140c of the expandable liner 1135.
- a conduit 1145c is disposed in the recess 1145r and may include arcuate inner and outer walls and side walls. The outer arcuate wall may include an opening.
- One ore more instrumentation lines 1162 are disposed within the conduit 1145c. The instrumentation lines may be housed in metal tubulars 1160.
- An optional filler material 1164 may also encase the instrumentation lines 1162 in order to maintain them within the conduit.
- the filler material 1164 may be an extrudable polymer or a hardenable foam material.
- FIG. 11 D illustrates the completion system 1100 having a second lateral wellbore 1132b formed therein.
- An opening in the expandable liner 1135a has been milled/drilled to restore access to the primary wellbore 1125.
- a second lateral wellbore 1132b has been formed from the primary wellbore 1125 in a similar manner to the first lateral wellbore 1132a.
- a string of production tubing 1170 has been lowered to through the opening formed in the first liner 1135a and to a second liner 1135b.
- Packers 1175a, b seal against an outer surface of the production tubing 1170 and an inner surface of the casing 1102, thereby isolating each lateral wellbore 1132a, b from the other and both lateral wellbores 1132a, b from a portion of an annulus between the casing 1102 and the production tubing 1170 in communication with a surface of the primary wellbore 1125.
- Production valves 1190a, b such as sliding sleeve valves, are disposed in the production tubing 1170 and provide selective fluid communication between the production tubing 1170 and a respective lateral wellbore 1132a, b (the production tubing may be capped and/or may extend to other lateral wellbores).
- the production valves 1190a, b may be variable. Also disposed in the production tubing 1170 in proximity to the production valves 1190a, b are respective PT sensors 1185c, d. Control lines 1195a, b are disposed along the production tubing 1170 to provide data communication between the RCS and the sensors 1185 c, d and control of the the valves 1190a, b. The packers 1175a, b provide for sealed passage of the control lines 1195a, b therethrough. Additionally, the string of production tubing 1170 may have the DDV 360 disposed therein. Alternatively, a string of production tubing may be run into each lateral wellbore 1132a, b and sealed therewith by a packer. Further, each of the strings of production tubing may have a DDV 360 disposed therein.
- the completion system 1100 may employ any number of lateral wellbores.
- FIG. 12 is an illustration of a rig separation system 1200, according to one embodiment of the present invention.
- the rig separation system 1200 may be used with the drilling systems 300-700 and 1000.
- the rig separation system 1200 may include separators 1205h, I, gas scrubbers 121Oh, I variable choke valves 1215a-h, flow meters 1220a-d, pumps 1225a-c, automatic gate valves 1230a-d, PT sensors 1285a, b, and level sensors 1285 c, d. Instrumentation lines provide communication between these components and the RCS.
- the returns 325r, 525r from the wellbore 350 enter an inlet line and pass through the variable choke valve 1215a and the flow meter 220a into a high pressure separator.
- the high pressure separator is a three phase separator having a gas outlet line, a liquid outlet line, and a solids outlet line.
- the variable choke valve 1215b and the flow meter 1220b are disposed in the gas outlet line of the high pressure separator 1205h.
- variable choke valve 1215a is maintained in a fully open position and the variable choke valve 1215b is used to control the pressure in the high pressure separator 1205h and thus the back pressure on the annulus 390 of the wellbore. This may be advantageous to avoid erosion and/or disassociation of the hydrates through the variable choke valve 1215a.
- a liquid level in the high pressure separator is maintained by variable choke valve 1215d and the pump 1225a disposed in the liquid outlet line of the high pressure separator.
- the liquid level in the high pressure separator may be maintained above or below the returns inlet line. It may be advantageous to maintain the liquid level above the returns inlet line because there may be a layer of solid hydrate cuttings floating on the liquid level. The hydrates may entrain rock cuttings if the return stream passes through them, thereby discouraging effective separation. Disassociation of the solid hydrates may be controlled in the high pressure separator as the solid hydrates may be trapped therein. This may be accomplished by heating the separator, by injecting a hydrates inhibitor in the separator, or by injecting heated drilling fluid in the separator.
- the pressure in the high pressure separator may be set at a pressure to encourage disassociation. If additional back pressure is required on the annulus, the variable choke valve 1215a may be used to provide a higher back pressure than the operating pressure of the high pressure separator 1205h.
- Gas from the high pressure separator enters the high pressure scrubber where additional liquid is separated thereform.
- the gas from the high pressure scrubber may then be transported to a flare or a gas treatment facility (GTF).
- GTF gas treatment facility
- the liquid level in the high pressure scrubber 121Oh is maintained by the variable choke valve 1215e disposed in a liquid outlet line thereof. Liquid is transported through this line to a storage facility. Liquid exits the high pressure separator 1205h though the valve 1215d where it may be pumped via the pump 1225a into the low pressure separator 12051. Whether the pump 1225a is required depends on the operating pressure of the high pressure separator.
- the low pressure separator 12051 is a four phase separator having a gas outlet, a light liquid outlet, a heavy liquid outlet, and a solids outlet.
- the light liquid exits the low pressure separator into an outlet line having a variable choke valve 1215g disposed therein which controls the level of the light liquid in the low pressure separator.
- a pump 1225b may be disposed in the outlet line. The light liquid may then travel to a drilling fluid reservoir or a storage facility, depending on whether it is being used as the drilling fluid.
- the heavy liquid exits the low pressure separator into an outlet line having a variable choke valve 1215h disposed therein which controls the level of the heavy liquid in the low pressure separator.
- a pump 1225c may be disposed in the outlet line.
- the heavy liquid may then travel to a drilling fluid reservoir or a storage facility, depending on whether it is being used as the drilling fluid.
- Gas from the low pressure separator 12051 enters the low pressure scrubber 12101 where additional liquid is separated thereform.
- the gas from the low pressure scrubber 12101 may then be transported to a flare or a gas treatment facility (GTF).
- GTF gas treatment facility
- the liquid level in the low pressure scrubber 12101 is maintained by the variable choke valve 1215f disposed in a liquid outlet line thereof. Liquid is transported through this line to a storage facility.
- Solids exit each of the high 1205h and low 12051 pressure separators through respective outlets into a slurry line.
- the pump 1225a injects water or seawater through the slurry line.
- the water/seawater is diverted from the slurry line through a set of nozzles that continually wash a portion of each separator to prevent clogging of the solids outlet.
- the solids are washed through each outlet into the slurry line and are transported to a shaker or solids treatment facility (STF) for disposal.
- STF solids treatment facility
- Automatic gate valves 1230a-d allow portions of the slurry line to be closed and maintained should the line become plugged.
- the specific separation system 1200 configuration may depend upon what fluid is used for the drilling fluid 325d, 525d, whether any coolants or injection fluids are added to the returns (i.e. drilling systems 400 and 1000), and whether any producing formations are drilled through to arrive at the hydrates formation. For example, if the drilling fluid is oil or oil-based, then oil will be the light liquid from the low pressure separator and water will be the heavy fluid from the separator. The oil would be recirculated to the drilling fluid reservoir MT and the water would be stored for proper disposal or other uses. If the drilling fluid was water or water based, then the low pressure separator may not be required since the liquid line from the high pressure separator may be routed directly to the drilling fluid reservoir MT.
- the drilling fluid were a mix of water and propylene glycol
- the water would be the light liquid and the glycol would be the heavy liquid and both liquids could be stored and mixed again in the drilling reservoir and/or the liquid line from the high pressure separator could be routed directly to the drilling fluid reservoir and additional glycol added to compensate dilution from the disassociated hydrates. Additionally, if more than two liquid phases are present in the returns, additional separators may be required. If the drilling fluid is a foam or gas, then the low pressure separator may not be required.
- a method uses the systems 300-1200 or a combination of some of the components from any of the systems 300-1200.
- a disassociation profile of the hydrates formation to be drilled is entered into the RCS. This profile may be constructed from empirical data and/or from analysis of samples collected from the hydrates formation. From this profile, a simulation may be run to aid in selection of the optimal system 300-1200 (or combination thereof).
- Another consideration in selection of the system is response time for pressure and/or temperature changes. For example, if a system is selected which allows only temperature control by refrigeration of the drilling fluid, then the response time will be relatively slow because the drilling fluid will have to circulate through the drill string and into the annulus (may not apply to the dual drill string embodiment(s)).
- a mode of operation of the system 300-1200 may be selected, for example, whether to allow subsea and/or subsurface disassociation of the hydrates cuttings. Drilling into the hydrates formation commences. During drilling, operation is monitored by the RCS and/or rig personnel using the PT sensors, flow meters, and/or operating conditions of the surface equipment to ensure that the wellbore is under control.
- annulus pressure and/or temperature may be adjusted to achieve this goal. For example, injection parameters of the riser coolant, refrigerated drilling fluid, operation of the subsea pump, back pressure on the annulus, operation of the subsea separator, operation of the vacuum pump, and/or injection of fluids into the annulus and/or riser may be adjusted to rectify the situation.
- the disassociation rate may be controlled by adjusting annulus pressure and/or temperature. This may be effected in a similar manner discussed above for the preventative mode. Further, the pressure and/or temperature may be adjusted for only portions of the returns path. For example, the annulus conditions may be acceptable but the disassociation in the riser may be occurring too rapidly. Then, the injection parameters of the riser coolant may be varied while maintaining the wellbore annulus conditions as they are. In this manner, disassociation may be controlled at discrete points along the returns path.
- heated/disassociation fluid may be injected at one or more injection points along the annulus to facilitate disassociation.
- the riser coolant parameters may accordingly be adjusted. It may even be advantageous to heat some portions of the returns path while cooling others. Similar scenarios may be envisioned for pressure control as well. Further, disassociation may be allowed for some points along the return path and not allowed for other points.
- drilling may commence in the preventative mode and then be transitioned into the disassociation mode upon successful control of the preventative mode.
- the disassociation profile may be adjusted to reflect actual conditions. Transition between the modes may be desired to accommodate changing drilling conditions.
- any of the drilling systems 300-1000 may be used for drilling to other formations besides hydrate formations, such as crude oil and/or natural gas formations or coal bed methane formations.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Electromagnetism (AREA)
- Earth Drilling (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2641596A CA2641596C (en) | 2006-02-09 | 2007-02-09 | Managed pressure and/or temperature drilling system and method |
US12/278,692 US8881843B2 (en) | 2006-02-09 | 2007-02-09 | Managed pressure and/or temperature drilling system and method |
GB0814509A GB2449010B (en) | 2006-02-09 | 2007-02-09 | Managed temperature drilling system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77162506P | 2006-02-09 | 2006-02-09 | |
US60/771,625 | 2006-02-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007092956A2 true WO2007092956A2 (en) | 2007-08-16 |
WO2007092956A3 WO2007092956A3 (en) | 2007-12-06 |
Family
ID=38117072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/061929 WO2007092956A2 (en) | 2006-02-09 | 2007-02-09 | Managed pressure and/or temperature drilling system and method |
Country Status (4)
Country | Link |
---|---|
US (1) | US8881843B2 (en) |
CA (2) | CA2641596C (en) |
GB (2) | GB2449010B (en) |
WO (1) | WO2007092956A2 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1898044A3 (en) * | 2006-09-07 | 2008-05-28 | Weatherford/Lamb Inc. | Annulus pressure control drilling systems and methods |
US7836946B2 (en) | 2002-10-31 | 2010-11-23 | Weatherford/Lamb, Inc. | Rotating control head radial seal protection and leak detection systems |
EP2295712A2 (en) | 2009-07-31 | 2011-03-16 | Weatherford Lamb, Inc. | Rotating control device for drilling wells |
US7926593B2 (en) | 2004-11-23 | 2011-04-19 | Weatherford/Lamb, Inc. | Rotating control device docking station |
US20110158824A1 (en) * | 2009-12-24 | 2011-06-30 | Wright David C | Subsea technique for promoting fluid flow |
WO2011085031A2 (en) | 2010-01-06 | 2011-07-14 | Weatherford/Lamb, Inc. | Rotating continuous flow sub |
US7997345B2 (en) | 2007-10-19 | 2011-08-16 | Weatherford/Lamb, Inc. | Universal marine diverter converter |
EP2378056A2 (en) | 2010-04-16 | 2011-10-19 | Weatherford Lamb, Inc. | Drilling fluid pressure control system for a floating rig |
EP2415960A2 (en) | 2007-07-27 | 2012-02-08 | Weatherford/Lamb, Inc. | Continuous flow drilling systems and methods |
US8286734B2 (en) | 2007-10-23 | 2012-10-16 | Weatherford/Lamb, Inc. | Low profile rotating control device |
US8322432B2 (en) | 2009-01-15 | 2012-12-04 | Weatherford/Lamb, Inc. | Subsea internal riser rotating control device system and method |
GB2491470A (en) * | 2011-05-31 | 2012-12-05 | Vetco Gray Inc | A bleed line in a wellbore heated by production fluids |
US8640778B2 (en) | 2008-04-04 | 2014-02-04 | Ocean Riser Systems As | Systems and methods for subsea drilling |
US8826988B2 (en) | 2004-11-23 | 2014-09-09 | Weatherford/Lamb, Inc. | Latch position indicator system and method |
US8844652B2 (en) | 2007-10-23 | 2014-09-30 | Weatherford/Lamb, Inc. | Interlocking low profile rotating control device |
NL2011156C2 (en) * | 2013-07-12 | 2015-01-13 | Ihc Holland Ie Bv | Riser flow control. |
WO2015164078A2 (en) | 2014-04-25 | 2015-10-29 | Weatherford Techology Holdings, Llc | System and method for managed pressure wellbore strengthening |
US9175542B2 (en) | 2010-06-28 | 2015-11-03 | Weatherford/Lamb, Inc. | Lubricating seal for use with a tubular |
US9222350B2 (en) | 2011-06-21 | 2015-12-29 | Diamond Innovations, Inc. | Cutter tool insert having sensing device |
EP2710216A4 (en) * | 2011-05-16 | 2016-01-13 | Halliburton Energy Services Inc | Mobile pressure optimization unit for drilling operations |
US9359853B2 (en) | 2009-01-15 | 2016-06-07 | Weatherford Technology Holdings, Llc | Acoustically controlled subsea latching and sealing system and method for an oilfield device |
EP3196401A1 (en) * | 2012-08-14 | 2017-07-26 | Weatherford Technology Holdings, LLC | Managed pressure drilling system having well control mode |
AU2016238952B2 (en) * | 2009-07-31 | 2018-01-18 | Weatherford Technology Holdings, Llc | Rotating control device |
WO2018084992A1 (en) * | 2016-11-07 | 2018-05-11 | Baker Hughes, A Ge Company, Llc | Prediction of methane hydrate production parameters |
WO2019078991A1 (en) | 2017-10-19 | 2019-04-25 | Safekick Americas Llc | Method and system for controlled delivery of unknown fluids |
CN110159259A (en) * | 2019-06-12 | 2019-08-23 | 湖南科技大学 | Static sounding signal wireless acoustic based on seabed drilling machine transmits receiver assembly |
EP3561220A1 (en) * | 2018-04-25 | 2019-10-30 | Prather, Joshua, Terry | Dual lock flow gate |
CN116624100A (en) * | 2023-07-17 | 2023-08-22 | 山东石油化工学院 | Single-bending reaming while drilling device |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130213656A1 (en) * | 2007-03-14 | 2013-08-22 | Halliburton Energy Services, Inc. | Aqueous-Based Insulating Fluids and Related Methods |
NO330288B1 (en) * | 2008-06-20 | 2011-03-21 | Norocean As | Slip connection with adjustable bias |
AU2009268461B2 (en) | 2008-07-09 | 2015-04-09 | Weatherford Technology Holdings, Llc | Apparatus and method for data transmission from a rotating control device |
US20100006281A1 (en) * | 2008-07-09 | 2010-01-14 | Air Wars Defense Lp | Harvesting hydrocarbons and water from methane hydrate deposits and shale seams |
NO330025B1 (en) * | 2008-08-07 | 2011-02-07 | Aker Subsea As | Underwater production plant, method for cleaning an underwater well and method for controlling flow in a hydrocarbon production system |
US9388686B2 (en) * | 2010-01-13 | 2016-07-12 | Halliburton Energy Services, Inc. | Maximizing hydrocarbon production while controlling phase behavior or precipitation of reservoir impairing liquids or solids |
US8403059B2 (en) * | 2010-05-12 | 2013-03-26 | Sunstone Technologies, Llc | External jet pump for dual gradient drilling |
WO2012006110A1 (en) | 2010-07-09 | 2012-01-12 | Halliburton Energy Services, Inc. | Systems and methods for killing a well |
US20120006559A1 (en) * | 2010-07-09 | 2012-01-12 | Brite Alan D | Submergible oil well sealing device with valves and method for installing a submergible oil well sealing device and resuming oil production |
WO2012058089A2 (en) * | 2010-10-28 | 2012-05-03 | Conocophillips Company | Reservoir pressure testing to determine hydrate composition |
WO2012059578A1 (en) * | 2010-11-04 | 2012-05-10 | Shell Internationale Research Maatschappij B.V. | System and method for radially expanding a tubular element comprising an emergency blow-out preventer |
US9172217B2 (en) | 2010-11-23 | 2015-10-27 | Woodward, Inc. | Pre-chamber spark plug with tubular electrode and method of manufacturing same |
US9476347B2 (en) | 2010-11-23 | 2016-10-25 | Woodward, Inc. | Controlled spark ignited flame kernel flow in fuel-fed prechambers |
US8584648B2 (en) | 2010-11-23 | 2013-11-19 | Woodward, Inc. | Controlled spark ignited flame kernel flow |
US8413724B2 (en) * | 2010-11-30 | 2013-04-09 | Hydril Usa Manufacturing Llc | Gas handler, riser assembly, and method |
AU2010366660B2 (en) | 2010-12-29 | 2015-09-17 | Halliburton Energy Services, Inc. | Subsea pressure control system |
US8781743B2 (en) * | 2011-01-27 | 2014-07-15 | Bp Corporation North America Inc. | Monitoring the health of a blowout preventer |
WO2012107108A1 (en) * | 2011-02-11 | 2012-08-16 | Statoil Petroleum As | Signal and power transmission in hydrocarbon wells |
US20120313741A1 (en) * | 2011-06-09 | 2012-12-13 | Hall David R | Data Transmission Apparatus Comprising a Helically Wound Conductor |
BR112014004638A2 (en) | 2011-09-08 | 2017-03-14 | Halliburton Energy Services Inc | method for maintaining a desired temperature at a location in a well, and, well system |
US20130111985A1 (en) * | 2011-11-07 | 2013-05-09 | Intelliserv, Llc | Method for efficient pressure and inflow testing of a fluid containment system through real time leak detection with quantification of pvt effects |
US9249646B2 (en) | 2011-11-16 | 2016-02-02 | Weatherford Technology Holdings, Llc | Managed pressure cementing |
US9243451B2 (en) * | 2012-02-10 | 2016-01-26 | Chevron U.S.A. Inc. | System and method for pre-conditioning a hydrate reservoir |
US9309732B2 (en) * | 2012-04-27 | 2016-04-12 | Weatherford Technology Holdings, Llc | Pump for controlling the flow of well bore returns |
US8983819B2 (en) * | 2012-07-11 | 2015-03-17 | Halliburton Energy Services, Inc. | System, method and computer program product to simulate rupture disk and syntactic foam trapped annular pressure mitigation in downhole environments |
BR112015008014B1 (en) * | 2012-10-15 | 2016-09-27 | Nat Oilwell Varco Lp | double gradient drilling system and method |
US9187976B2 (en) * | 2012-11-16 | 2015-11-17 | Vetco Gray Inc. | Apparatus and methods for releasing drilling rig and blowout preventer (BOP) prior to cement bonding |
BR112015012010A2 (en) | 2012-12-28 | 2017-07-11 | Halliburton Energy Services Inc | device and method of pressure management of a drilling system, and drilling fluid return system |
EP2912262A4 (en) | 2012-12-31 | 2016-07-13 | Halliburton Energy Services Inc | Monitoring a condition of a component in a rotating control device of a drilling system using embedded sensors |
US9856848B2 (en) | 2013-01-08 | 2018-01-02 | Woodward, Inc. | Quiescent chamber hot gas igniter |
US9249648B2 (en) * | 2013-02-06 | 2016-02-02 | Baker Hughes Incorporated | Continuous circulation and communication drilling system |
US9534604B2 (en) * | 2013-03-14 | 2017-01-03 | Schlumberger Technology Corporation | System and method of controlling manifold fluid flow |
US10533406B2 (en) | 2013-03-14 | 2020-01-14 | Schlumberger Technology Corporation | Systems and methods for pairing system pumps with fluid flow in a fracturing structure |
MX2015010965A (en) * | 2013-03-29 | 2015-10-26 | Halliburton Energy Services Inc | Aqueous-based insulating fluids and related methods. |
MX370937B (en) * | 2013-05-06 | 2020-01-10 | Halliburton Energy Services Inc | Wellbore drilling using dual drill string. |
US9765682B2 (en) | 2013-06-10 | 2017-09-19 | Woodward, Inc. | Multi-chamber igniter |
US8839762B1 (en) | 2013-06-10 | 2014-09-23 | Woodward, Inc. | Multi-chamber igniter |
EA034155B1 (en) * | 2013-09-05 | 2020-01-13 | Эволюшн Инжиниринг Инк. | Transmitting data across electrically insulating gaps in a drill string |
WO2015051222A1 (en) * | 2013-10-03 | 2015-04-09 | Schlumberger Canada Limited | System and methodology for monitoring in a borehole |
US9518434B1 (en) | 2013-10-23 | 2016-12-13 | Drill Cool Systems, Inc. | System for ascertaining and managing properties of a circulating wellbore fluid and method of using the same |
GB2537488A (en) * | 2013-11-18 | 2016-10-19 | Landmark Graphics Corp | Predictive vibration models under riserless condition |
US9631442B2 (en) * | 2013-12-19 | 2017-04-25 | Weatherford Technology Holdings, Llc | Heave compensation system for assembling a drill string |
WO2015142819A1 (en) | 2014-03-21 | 2015-09-24 | Canrig Drilling Technology Ltd. | Back pressure control system |
MX363811B (en) | 2014-05-01 | 2019-04-04 | Halliburton Energy Services Inc | Casing segment having at least one transmission crossover arrangement. |
AU2015253515B2 (en) | 2014-05-01 | 2017-06-15 | Halliburton Energy Services, Inc. | Multilateral production control methods and systems employing a casing segment with at least one transmission crossover arrangement |
BR112016025406B1 (en) | 2014-05-01 | 2022-11-01 | Halliburton Energy Services, Inc | INTERPOINT TOMOGRAPHY METHOD AND INTERPOINT TOMOGRAPHY SYSTEM |
KR101628861B1 (en) * | 2014-05-28 | 2016-06-21 | 대우조선해양 주식회사 | Dual gradient drilling system |
GB2542969A (en) * | 2014-06-10 | 2017-04-05 | Mhwirth As | Method for predicting hydrate formation |
US20170145763A1 (en) * | 2014-07-15 | 2017-05-25 | Endress + Hauser Messtechnik GmbH + Co. KG | Drilling Rig and Method of Operating It |
US10006270B2 (en) * | 2014-08-11 | 2018-06-26 | Halliburton Energy Services, Inc. | Subsea mechanism to circulate fluid between a riser and tubing string |
US20160053542A1 (en) * | 2014-08-21 | 2016-02-25 | Laris Oil & Gas, LLC | Apparatus and Method for Underbalanced Drilling and Completion of a Hydrocarbon Reservoir |
US9988866B2 (en) | 2014-12-12 | 2018-06-05 | Halliburton Energy Services, Inc. | Automatic choke optimization and selection for managed pressure drilling |
US10113415B2 (en) | 2014-12-15 | 2018-10-30 | Arthur H. Kozak | Methods and apparatuses for determining true vertical depth (TVD) within a well |
WO2016108821A1 (en) * | 2014-12-29 | 2016-07-07 | Halliburton Energy Services, Inc. | Optical coupling system for downhole rotation variant housing |
WO2016133470A1 (en) * | 2015-02-16 | 2016-08-25 | Göksel Osman Zühtü | A system and a method for exploitation of gas from gas-hydrate formations |
WO2016154056A1 (en) | 2015-03-20 | 2016-09-29 | Woodward, Inc. | Parallel prechamber ignition system |
US9653886B2 (en) | 2015-03-20 | 2017-05-16 | Woodward, Inc. | Cap shielded ignition system |
CA2982438C (en) | 2015-05-19 | 2019-10-29 | Halliburton Energy Services, Inc. | Determining the current state of cement in a wellbore |
US20180202281A1 (en) * | 2015-08-12 | 2018-07-19 | Halliburton Energy Services Inc. | Locating wellbore flow paths behind drill pipe |
GB2557521A (en) * | 2015-08-19 | 2018-06-20 | Drlg Tools Llc | Riserless well systems and methods |
WO2017052383A1 (en) * | 2015-09-23 | 2017-03-30 | Aker Subsea As | Subsea pump system |
US9890689B2 (en) | 2015-10-29 | 2018-02-13 | Woodward, Inc. | Gaseous fuel combustion |
US10344552B2 (en) * | 2015-12-15 | 2019-07-09 | Weatherford Technology Holdings, Llc | Rotating control device having a partition seal assembly |
CA3016460A1 (en) * | 2016-03-04 | 2017-09-08 | National Oilwell Varco, L.P. | Systems and methods for controlling flow from a wellbore annulus |
US11048017B2 (en) * | 2016-08-26 | 2021-06-29 | Halliburton Energy Services, Inc. | Cooled optical apparatus, systems, and methods |
US10273785B2 (en) * | 2016-11-11 | 2019-04-30 | Trendsetter Engineering, Inc. | Process for remediating hydrates from subsea flowlines |
WO2019014428A1 (en) * | 2017-07-14 | 2019-01-17 | Bp Corporation North America Inc. | Riserless managed pressure drilling systems and methods |
US10662762B2 (en) | 2017-11-02 | 2020-05-26 | Saudi Arabian Oil Company | Casing system having sensors |
CN108104776B (en) * | 2017-12-12 | 2019-10-29 | 大连理工大学 | A kind of water erosion method exploiting ocean natural gas hydrates device of combination decompression |
US10577905B2 (en) | 2018-02-12 | 2020-03-03 | Eagle Technology, Llc | Hydrocarbon resource recovery system and RF antenna assembly with latching inner conductor and related methods |
US10502041B2 (en) | 2018-02-12 | 2019-12-10 | Eagle Technology, Llc | Method for operating RF source and related hydrocarbon resource recovery systems |
US10577906B2 (en) | 2018-02-12 | 2020-03-03 | Eagle Technology, Llc | Hydrocarbon resource recovery system and RF antenna assembly with thermal expansion device and related methods |
US10767459B2 (en) | 2018-02-12 | 2020-09-08 | Eagle Technology, Llc | Hydrocarbon resource recovery system and component with pressure housing and related methods |
US10151187B1 (en) | 2018-02-12 | 2018-12-11 | Eagle Technology, Llc | Hydrocarbon resource recovery system with transverse solvent injectors and related methods |
US10273766B1 (en) * | 2018-03-08 | 2019-04-30 | Jle Inovaçao Tecnologica Ltda Epp | Plug and play connection system for a below-tension-ring managed pressure drilling system |
CN108758330B (en) * | 2018-08-27 | 2020-05-22 | 浙江大学 | Double-hydraulic-pump cooling circulation pressure maintaining system for pressure maintaining transfer |
US10807022B2 (en) * | 2018-10-01 | 2020-10-20 | CP Energy Services, LLC | Separator system and method |
US10954739B2 (en) | 2018-11-19 | 2021-03-23 | Saudi Arabian Oil Company | Smart rotating control device apparatus and system |
CN110159233B (en) * | 2019-06-10 | 2021-07-23 | 中国石油大学(华东) | Method for improving natural gas hydrate reservoir recovery ratio through artificial dense cover layer |
US11255144B2 (en) | 2019-12-08 | 2022-02-22 | Hughes Tool Company LLC | Annular pressure cap drilling method |
CN111236893B (en) * | 2020-01-02 | 2022-05-17 | 海洋石油工程股份有限公司 | Underwater production system expansion tie-back facility |
CN111550202B (en) * | 2020-06-17 | 2022-03-25 | 焦作煤业(集团)有限责任公司 | Crawler-type coal water-gas separation and metering conveying device |
CN113550738A (en) * | 2021-06-21 | 2021-10-26 | 王永夏 | Deep well cooling system and method |
US11702932B2 (en) * | 2022-06-01 | 2023-07-18 | Joe Fox | Wired pipe with telemetry adapter |
US11639656B1 (en) * | 2022-08-19 | 2023-05-02 | Total Gas Resource Recovery, Llc | Natural gas capture from a well stream |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4371045A (en) * | 1981-04-01 | 1983-02-01 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for recovering unstable cores |
US4422513A (en) * | 1981-07-06 | 1983-12-27 | Franklin Lindsay J | Gas hydrates drilling procedure |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3273660A (en) | 1966-09-20 | Method and apparatus for changing single drill pipe strings to | ||
US3559737A (en) * | 1968-05-06 | 1971-02-02 | James F Ralstin | Underground fluid storage in permeable formations |
US3638721A (en) | 1969-12-10 | 1972-02-01 | Exxon Production Research Co | Flexible connection for rotating blowout preventer |
US3881755A (en) | 1972-06-26 | 1975-05-06 | Siro Brunato | Drillstring structure |
US4067596A (en) | 1976-08-25 | 1978-01-10 | Smith International, Inc. | Dual flow passage drill stem |
US4626135A (en) | 1984-10-22 | 1986-12-02 | Hydril Company | Marine riser well control method and apparatus |
US5423575A (en) | 1993-07-30 | 1995-06-13 | Sonsub, Inc. | Concentric riser joint with self-aligning coupling |
US6216799B1 (en) | 1997-09-25 | 2001-04-17 | Shell Offshore Inc. | Subsea pumping system and method for deepwater drilling |
US6415877B1 (en) * | 1998-07-15 | 2002-07-09 | Deep Vision Llc | Subsea wellbore drilling system for reducing bottom hole pressure |
US6197095B1 (en) * | 1999-02-16 | 2001-03-06 | John C. Ditria | Subsea multiphase fluid separating system and method |
FR2816350B1 (en) | 2000-11-08 | 2002-12-20 | Inst Francais Du Petrole | METHOD FOR DETERMINING A THERMAL PROFILE OF A WELLBORE FLUID IN A WELL |
US6932161B2 (en) | 2001-09-26 | 2005-08-23 | Weatherford/Lams, Inc. | Profiled encapsulation for use with instrumented expandable tubular completions |
US6877553B2 (en) | 2001-09-26 | 2005-04-12 | Weatherford/Lamb, Inc. | Profiled recess for instrumented expandable components |
GB0123409D0 (en) * | 2001-09-28 | 2001-11-21 | Atkinson Stephen | Method for the recovery of hydrocarbons from hydrates |
US7178592B2 (en) | 2002-07-10 | 2007-02-20 | Weatherford/Lamb, Inc. | Closed loop multiphase underbalanced drilling process |
NO336220B1 (en) | 2002-11-07 | 2015-06-22 | Weatherford Lamb | Device and method for completing wellbore connections. |
NO322819B1 (en) * | 2004-06-24 | 2006-12-11 | Statoil Asa | Method of removing deposits such as hydrate plugs |
US7165621B2 (en) * | 2004-08-10 | 2007-01-23 | Schlumberger Technology Corp. | Method for exploitation of gas hydrates |
US7836973B2 (en) | 2005-10-20 | 2010-11-23 | Weatherford/Lamb, Inc. | Annulus pressure control drilling systems and methods |
US7441599B2 (en) | 2005-11-18 | 2008-10-28 | Chevron U.S.A. Inc. | Controlling the pressure within an annular volume of a wellbore |
US7546880B2 (en) * | 2006-12-12 | 2009-06-16 | The University Of Tulsa | Extracting gas hydrates from marine sediments |
CN101787867B (en) | 2010-01-28 | 2012-09-26 | 吉林大学 | Drilling mud forced cooling and circulating system |
-
2007
- 2007-02-09 GB GB0814509A patent/GB2449010B/en not_active Expired - Fee Related
- 2007-02-09 WO PCT/US2007/061929 patent/WO2007092956A2/en active Search and Examination
- 2007-02-09 CA CA2641596A patent/CA2641596C/en not_active Expired - Fee Related
- 2007-02-09 GB GB1104020A patent/GB2476002B/en not_active Expired - Fee Related
- 2007-02-09 US US12/278,692 patent/US8881843B2/en active Active
- 2007-02-09 CA CA2734546A patent/CA2734546C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4371045A (en) * | 1981-04-01 | 1983-02-01 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for recovering unstable cores |
US4422513A (en) * | 1981-07-06 | 1983-12-27 | Franklin Lindsay J | Gas hydrates drilling procedure |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7934545B2 (en) | 2002-10-31 | 2011-05-03 | Weatherford/Lamb, Inc. | Rotating control head leak detection systems |
US7836946B2 (en) | 2002-10-31 | 2010-11-23 | Weatherford/Lamb, Inc. | Rotating control head radial seal protection and leak detection systems |
US8353337B2 (en) | 2002-10-31 | 2013-01-15 | Weatherford/Lamb, Inc. | Method for cooling a rotating control head |
US8714240B2 (en) | 2002-10-31 | 2014-05-06 | Weatherford/Lamb, Inc. | Method for cooling a rotating control device |
US8113291B2 (en) | 2002-10-31 | 2012-02-14 | Weatherford/Lamb, Inc. | Leak detection method for a rotating control head bearing assembly and its latch assembly using a comparator |
US8826988B2 (en) | 2004-11-23 | 2014-09-09 | Weatherford/Lamb, Inc. | Latch position indicator system and method |
US9784073B2 (en) | 2004-11-23 | 2017-10-10 | Weatherford Technology Holdings, Llc | Rotating control device docking station |
US9404346B2 (en) | 2004-11-23 | 2016-08-02 | Weatherford Technology Holdings, Llc | Latch position indicator system and method |
US7926593B2 (en) | 2004-11-23 | 2011-04-19 | Weatherford/Lamb, Inc. | Rotating control device docking station |
US8701796B2 (en) | 2004-11-23 | 2014-04-22 | Weatherford/Lamb, Inc. | System for drilling a borehole |
US8939235B2 (en) | 2004-11-23 | 2015-01-27 | Weatherford/Lamb, Inc. | Rotating control device docking station |
US8408297B2 (en) | 2004-11-23 | 2013-04-02 | Weatherford/Lamb, Inc. | Remote operation of an oilfield device |
US7836973B2 (en) | 2005-10-20 | 2010-11-23 | Weatherford/Lamb, Inc. | Annulus pressure control drilling systems and methods |
EP1898044A3 (en) * | 2006-09-07 | 2008-05-28 | Weatherford/Lamb Inc. | Annulus pressure control drilling systems and methods |
EP2415960A2 (en) | 2007-07-27 | 2012-02-08 | Weatherford/Lamb, Inc. | Continuous flow drilling systems and methods |
EP2532829A2 (en) | 2007-07-27 | 2012-12-12 | Weatherford/Lamb Inc. | Continuous flow drilling systems and methods |
EP2532828A2 (en) | 2007-07-27 | 2012-12-12 | Weatherford/Lamb Inc. | Continuous flow drilling systems and methods |
US7997345B2 (en) | 2007-10-19 | 2011-08-16 | Weatherford/Lamb, Inc. | Universal marine diverter converter |
US8286734B2 (en) | 2007-10-23 | 2012-10-16 | Weatherford/Lamb, Inc. | Low profile rotating control device |
US9004181B2 (en) | 2007-10-23 | 2015-04-14 | Weatherford/Lamb, Inc. | Low profile rotating control device |
US10087701B2 (en) | 2007-10-23 | 2018-10-02 | Weatherford Technology Holdings, Llc | Low profile rotating control device |
US8844652B2 (en) | 2007-10-23 | 2014-09-30 | Weatherford/Lamb, Inc. | Interlocking low profile rotating control device |
US9222311B2 (en) | 2008-04-04 | 2015-12-29 | Ocean Riser Systems AS Lilleakerveien 2B | Systems and methods for subsea drilling |
US8640778B2 (en) | 2008-04-04 | 2014-02-04 | Ocean Riser Systems As | Systems and methods for subsea drilling |
US9359853B2 (en) | 2009-01-15 | 2016-06-07 | Weatherford Technology Holdings, Llc | Acoustically controlled subsea latching and sealing system and method for an oilfield device |
US8322432B2 (en) | 2009-01-15 | 2012-12-04 | Weatherford/Lamb, Inc. | Subsea internal riser rotating control device system and method |
US8770297B2 (en) | 2009-01-15 | 2014-07-08 | Weatherford/Lamb, Inc. | Subsea internal riser rotating control head seal assembly |
AU2016238952B2 (en) * | 2009-07-31 | 2018-01-18 | Weatherford Technology Holdings, Llc | Rotating control device |
EP2295712A2 (en) | 2009-07-31 | 2011-03-16 | Weatherford Lamb, Inc. | Rotating control device for drilling wells |
US9334711B2 (en) | 2009-07-31 | 2016-05-10 | Weatherford Technology Holdings, Llc | System and method for cooling a rotating control device |
US8347983B2 (en) | 2009-07-31 | 2013-01-08 | Weatherford/Lamb, Inc. | Drilling with a high pressure rotating control device |
US8636087B2 (en) | 2009-07-31 | 2014-01-28 | Weatherford/Lamb, Inc. | Rotating control system and method for providing a differential pressure |
US20110158824A1 (en) * | 2009-12-24 | 2011-06-30 | Wright David C | Subsea technique for promoting fluid flow |
US10161238B2 (en) | 2009-12-24 | 2018-12-25 | Wright's Well Control Services, Llc | Subsea technique for promoting fluid flow |
US9435185B2 (en) * | 2009-12-24 | 2016-09-06 | Wright's Well Control Services, Llc | Subsea technique for promoting fluid flow |
EP2757228A1 (en) | 2010-01-06 | 2014-07-23 | Weatherford/Lamb Inc. | Rotating continuous flow sub |
WO2011085031A2 (en) | 2010-01-06 | 2011-07-14 | Weatherford/Lamb, Inc. | Rotating continuous flow sub |
US8863858B2 (en) | 2010-04-16 | 2014-10-21 | Weatherford/Lamb, Inc. | System and method for managing heave pressure from a floating rig |
US9260927B2 (en) | 2010-04-16 | 2016-02-16 | Weatherford Technology Holdings, Llc | System and method for managing heave pressure from a floating rig |
US8347982B2 (en) | 2010-04-16 | 2013-01-08 | Weatherford/Lamb, Inc. | System and method for managing heave pressure from a floating rig |
EP2378056A2 (en) | 2010-04-16 | 2011-10-19 | Weatherford Lamb, Inc. | Drilling fluid pressure control system for a floating rig |
EP2845994A2 (en) | 2010-04-16 | 2015-03-11 | Weatherford/Lamb Inc. | Drilling fluid pressure control system for a floating rig |
US9175542B2 (en) | 2010-06-28 | 2015-11-03 | Weatherford/Lamb, Inc. | Lubricating seal for use with a tubular |
EP2710216A4 (en) * | 2011-05-16 | 2016-01-13 | Halliburton Energy Services Inc | Mobile pressure optimization unit for drilling operations |
GB2491470A (en) * | 2011-05-31 | 2012-12-05 | Vetco Gray Inc | A bleed line in a wellbore heated by production fluids |
US8794332B2 (en) | 2011-05-31 | 2014-08-05 | Vetco Gray Inc. | Annulus vent system for subsea wellhead assembly |
US9222350B2 (en) | 2011-06-21 | 2015-12-29 | Diamond Innovations, Inc. | Cutter tool insert having sensing device |
EP3196401A1 (en) * | 2012-08-14 | 2017-07-26 | Weatherford Technology Holdings, LLC | Managed pressure drilling system having well control mode |
US10329860B2 (en) | 2012-08-14 | 2019-06-25 | Weatherford Technology Holdings, Llc | Managed pressure drilling system having well control mode |
WO2015005782A1 (en) * | 2013-07-12 | 2015-01-15 | Ihc Holland Ie B.V. | Riser flow control |
NL2011156C2 (en) * | 2013-07-12 | 2015-01-13 | Ihc Holland Ie Bv | Riser flow control. |
WO2015164078A2 (en) | 2014-04-25 | 2015-10-29 | Weatherford Techology Holdings, Llc | System and method for managed pressure wellbore strengthening |
US10227836B2 (en) | 2014-04-25 | 2019-03-12 | Weatherford Technology Holdings, Llc | System and method for managed pressure wellbore strengthening |
GB2571866A (en) * | 2016-11-07 | 2019-09-11 | Baker Hughes A Ge Co Llc | Prediction of methane hydrate production parameters |
WO2018084992A1 (en) * | 2016-11-07 | 2018-05-11 | Baker Hughes, A Ge Company, Llc | Prediction of methane hydrate production parameters |
GB2571866B (en) * | 2016-11-07 | 2021-07-14 | Baker Hughes A Ge Co Llc | Prediction of methane hydrate production parameters |
WO2019078991A1 (en) | 2017-10-19 | 2019-04-25 | Safekick Americas Llc | Method and system for controlled delivery of unknown fluids |
EP3698010A4 (en) * | 2017-10-19 | 2021-07-07 | Safekick Americas LLC | Method and system for controlled delivery of unknown fluids |
AU2018351846B2 (en) * | 2017-10-19 | 2022-04-28 | Safekick Americas Llc | Method and system for controlled delivery of unknown fluids |
EP3561220A1 (en) * | 2018-04-25 | 2019-10-30 | Prather, Joshua, Terry | Dual lock flow gate |
CN110159259A (en) * | 2019-06-12 | 2019-08-23 | 湖南科技大学 | Static sounding signal wireless acoustic based on seabed drilling machine transmits receiver assembly |
CN110159259B (en) * | 2019-06-12 | 2022-12-06 | 湖南科技大学 | Static sounding signal wireless acoustic transmission receiver assembly based on submarine drilling rig |
CN116624100A (en) * | 2023-07-17 | 2023-08-22 | 山东石油化工学院 | Single-bending reaming while drilling device |
CN116624100B (en) * | 2023-07-17 | 2023-09-29 | 山东石油化工学院 | Single-bending reaming while drilling device |
Also Published As
Publication number | Publication date |
---|---|
GB2449010B (en) | 2011-04-20 |
CA2641596C (en) | 2012-05-01 |
GB2476002A (en) | 2011-06-08 |
WO2007092956A3 (en) | 2007-12-06 |
GB2476002B (en) | 2011-07-13 |
US20090236144A1 (en) | 2009-09-24 |
GB2449010A (en) | 2008-11-05 |
CA2734546A1 (en) | 2007-08-16 |
CA2641596A1 (en) | 2007-08-16 |
GB0814509D0 (en) | 2008-09-17 |
GB201104020D0 (en) | 2011-04-20 |
US8881843B2 (en) | 2014-11-11 |
CA2734546C (en) | 2014-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2734546C (en) | Managed pressure and/or temperature drilling system and method | |
US10890048B2 (en) | Signal operated isolation valve | |
US8122975B2 (en) | Annulus pressure control drilling systems and methods | |
US9328575B2 (en) | Dual gradient managed pressure drilling | |
EP2900898B1 (en) | Drilling method for drilling a subterranean borehole | |
US6138774A (en) | Method and apparatus for drilling a borehole into a subsea abnormal pore pressure environment | |
US11891861B2 (en) | Multi-mode pumped riser arrangement and methods | |
US11365594B2 (en) | Non-stop circulation system for maintaining bottom hole pressure | |
US10822908B2 (en) | Continuous circulation system for rotational drilling | |
US20240218746A1 (en) | Multi-mode pumped riser arrangement and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2641596 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 0814509 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20070209 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0814509.6 Country of ref document: GB Ref document number: 814509 Country of ref document: GB |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07763510 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12278692 Country of ref document: US |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |