Nothing Special   »   [go: up one dir, main page]

WO2007055320A1 - 超音波探触子及び超音波診断装置 - Google Patents

超音波探触子及び超音波診断装置 Download PDF

Info

Publication number
WO2007055320A1
WO2007055320A1 PCT/JP2006/322467 JP2006322467W WO2007055320A1 WO 2007055320 A1 WO2007055320 A1 WO 2007055320A1 JP 2006322467 W JP2006322467 W JP 2006322467W WO 2007055320 A1 WO2007055320 A1 WO 2007055320A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reception sensitivity
voltage
ultrasonic probe
vibration
Prior art date
Application number
PCT/JP2006/322467
Other languages
English (en)
French (fr)
Inventor
Masanao Kondou
Katsunori Asafusa
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US12/093,154 priority Critical patent/US7872399B2/en
Priority to CN2006800421729A priority patent/CN101304691B/zh
Priority to JP2007544194A priority patent/JP4822453B2/ja
Priority to EP06832513.3A priority patent/EP1949856B1/en
Publication of WO2007055320A1 publication Critical patent/WO2007055320A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2406Electrostatic or capacitive probes, e.g. electret or cMUT-probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/5205Means for monitoring or calibrating

Definitions

  • the present invention relates to an ultrasonic probe in which a plurality of transducers that transmit and receive ultrasonic waves to and from a subject are arranged.
  • An ultrasound probe converts an electrical signal supplied from an ultrasound diagnostic apparatus into ultrasound and transmits it to a subject, and also receives a reflected echo generated from the subject and receives it as a received signal.
  • a plurality of transducers to be converted are arranged.
  • this vibrator a vibrator using a vibration element whose ultrasonic transmission / reception sensitivity changes according to an applied bias voltage is known.
  • the transmission / reception sensitivity of the ultrasonic wave can be controlled by controlling the bias voltage applied to the electrode of the vibration element.
  • Patent Document 1 JP 2004-274756 A
  • Patent Document 1 discloses that residual voltage is adjusted by adjusting a bias voltage applied to an ultrasonic transducer (cMUT: Capacitive Micromachined Ultrasonic Transducers) made by ultrafine processing that constitutes a vibrating element or vibrator. It has been suggested that variations in transmission / reception sensitivity for each vibration element caused by stress can be corrected. However, no specific means for adjusting the bias voltage and adjustment method are described.
  • a plurality of small electronic switches are connected in series to an ultrasonic driver, an ultrasonic transducer is connected between each electronic switch, and an ultrasonic switch is controlled by controlling the electronic switch group.
  • a high-voltage switching circuit that selectively drives the transducer is provided. It has been proposed. However, this switching circuit is a circuit for selecting an ultrasonic transducer to be driven, and does not correct variations in transmission / reception sensitivity of each ultrasonic transducer.
  • an object of the present invention is to provide specific means and methods for correcting variations in transmission / reception sensitivity among a plurality of vibration elements, vibration element groups, or vibrators constituting an ultrasonic probe. Is to provide.
  • An ultrasonic probe according to the present invention for solving the above-described problems includes a plurality of vibrations that transmit and receive ultrasonic waves by mutually converting ultrasonic waves and electrical signals in a state where a bias voltage is applied.
  • a plurality of transducers with elements are arranged, and the bias voltage applied to at least two of the plurality of vibration elements is independently adjusted to reduce the transmission / reception sensitivity variation of the at least two vibration elements. It is characterized by having transmission / reception sensitivity correction means for correcting.
  • an ultrasonic diagnostic apparatus of the present invention for solving the above-described problem is a vibration that transmits and receives ultrasonic waves by mutually converting ultrasonic waves and electrical signals in a state where a bias voltage is applied.
  • An electrical signal is transmitted between an ultrasonic probe comprising a plurality of transducers each having at least one element, a bias means for generating a DC voltage for supplying a bias voltage, and a plurality of vibration elements.
  • a transmission / reception control means for performing transmission and reception, and independently adjusting a bias voltage applied to the at least two vibration elements between the bias means and at least two vibration elements of the plurality of vibration elements.
  • a transmission / reception sensitivity correction means for correcting a fluctuation in transmission / reception sensitivity of the at least two vibration elements.
  • the transmission / reception sensitivity correction method of the present invention for solving the above-described problems is a plurality of transmission / reception of ultrasonic waves by mutually converting ultrasonic waves and electrical signals in a state where a bias voltage is applied.
  • An ultrasonic probe comprising a plurality of transducers each having a plurality of vibration elements, bias means for generating a DC voltage for supplying a bias voltage, and at least two vibrations of the plurality of vibration elements A step of measuring the capacity of each of at least two vibration elements, and at least two of the vibration elements.
  • Step to select the reference vibration element And a step for obtaining a correction coefficient for correcting variation in transmission / reception sensitivity of each of the at least two vibration elements based on the capacity of the other vibration element with respect to the capacity of the reference vibration element, and at least two vibration elements
  • one preferred embodiment of the preferred transmission / reception sensitivity correction method is further based on transmission / reception of ultrasonic waves of each of at least two vibration elements in a state where the same bias voltage is applied to each of at least two vibration elements. Detecting a received signal, determining a change in transmission / reception sensitivity of each of the at least two vibrating elements based on each received signal of the at least two vibrating elements, and at least two vibrating elements Updating and storing the control data so as to correct each change amount of each of the at least two vibration elements, and adjusting each of the at least two vibration elements based on the updated control data of each of the at least two vibration elements Applying an applied bias voltage and transmitting and receiving ultrasonic waves.
  • the vibration element is set as a vibration element group or a vibrator or a vibrator group.
  • the present invention it is possible to easily and accurately correct variations in transmission / reception sensitivity among a plurality of vibration elements, vibration element groups, or vibrators constituting the ultrasonic probe. . As a result, a high-quality ultrasonic image can be acquired.
  • FIG. 1 is a diagram showing an ultrasonic probe and an ultrasonic diagnostic apparatus to which the first embodiment of the present invention is applied.
  • the ultrasonic probe includes a vibrating element 1 whose ultrasonic transmission / reception sensitivity changes according to an applied bias voltage, an upper electrode 1-a provided between the vibrating element 1 and a lower part.
  • the electrode 1-b is formed.
  • a transmission / reception sensitivity control circuit 7 that corrects variations in transmission / reception sensitivity of the vibration element 1 is disposed between the vibration element 1 and the bias means 2.
  • the vibration element 1 is generally referred to as a cell, and the number of vibration elements 1 is not limited to one and can be increased as necessary.
  • the ultrasonic probe configured as described above includes a transmission unit 4 that supplies an electrical signal provided in the ultrasonic diagnostic apparatus, and a reception unit that processes a reception signal output from the ultrasonic probe. 5 and a noise means 2 having a bias power source (DC power source) for applying a bias voltage to the ultrasonic probe.
  • the transmission unit 4 and the reception unit 5 transmit and receive signals to and from the ultrasonic probe via the transmission / reception separating unit 6.
  • a signal line and a signal return line force AC are coupled between the transmission / reception separating means 6 and the vibration element 1.
  • the vibration element 1 of the present embodiment is an ultrasonic transducer in which the electromechanical coupling coefficient changes according to the bias voltage to be applied.
  • Fig. 1 shows an example in which cMUT is applied as vibration element 1.
  • the cMUT has a so-called capacitor structure in which a vibration film is formed in a drum shape on a semiconductor substrate, and the semiconductor substrate and the vibration film are sandwiched between an upper electrode 1-a and a lower electrode 1-b.
  • a bias voltage is applied to the cMU T from the bias means 2
  • an electric field is generated between the upper electrode 1-a and the lower electrode 1-b, and the vibrating membrane is in a tension state.
  • the intensity of the ultrasonic wave transmitted from the cMUT to the subject is weighted by controlling the bias voltage.
  • the bias voltage it is possible to control the intensity of the ultrasonic waves.
  • the reception sensitivity with which the cMUT receives reflected ultrasound from the subject.
  • the bias voltage and the transmission intensity or reception sensitivity are in a substantially proportional relationship. That is, when the bias voltage is increased, the transmission intensity or reception sensitivity increases, and when the bias voltage is decreased, the transmission intensity or reception sensitivity decreases.
  • the force described by taking cMUT as an example is not limited to these, and can also be applied to an element formed using an electrostrictive material having a characteristic that an electromechanical coupling coefficient changes according to a bias voltage. .
  • the upper electrode 1-a is formed at the top and the lower electrode 1-b is formed at the bottom.
  • the upper electrode 1-a is connected to the positive electrode side of the bias means 2 via the terminal 2-a.
  • the lower electrode 1-b is connected to the negative electrode side of the noise means 2 via a terminal 2-b.
  • a transmission / reception sensitivity control circuit 7 is provided.
  • the transmission / reception sensitivity control circuit 7 is provided on the conducting wire so as to be positioned closer to the bias means 2 than the connection position where the transmission means 4 or the reception means 5 and the transmission / reception separation means 6 are connected to the vibration element 1.
  • the equivalent circuit of the vibration element 1 is represented by a model in which a capacitor Ccell and a resistor Rcell are connected in parallel.
  • the capacitance Ccap of the capacitor Ccell is expressed by the following equation (1) where the dielectric constant ⁇ , the electrode area S, and the electrode interval d are given.
  • the electrode spacing or the electrode area is affected by the residual stress generated in the process such as the spottering during the manufacturing stage of the cMUT cell.
  • a vibration element slightly different from the reference vibration element may be completed. If the capacitance component in this case is C ′ cap, the charge Q ′ possessed by the vibration element whose electrode spacing or electrode area is slightly different from the reference vibration element is expressed by the following equation (3).
  • Equation (2) is transformed using Equations (3) and (4) to obtain Equation (5).
  • FIG. 1 shows a first embodiment of the transmission / reception sensitivity control circuit 7 of the present invention.
  • a resistance element is arranged between the vibration element and the bias means, and the bias voltage applied to the vibration element is adjusted, thereby correcting the transmission / reception sensitivity fluctuation of the vibration element.
  • a resistor 9 having a resistance value Rs is arranged in series between the positive electrodes of the vibration element 1 and the bias means 2.
  • the bias voltage is Vdc
  • the interelectrode voltage of vibration element 1 is V
  • the resistance value of vibration element 1 is Rcell
  • V is expressed by the following equation (7).
  • V RcellVdc / (Rs + Rcell) (7)
  • the voltage V which is lower than Vdc, is applied to the vibration element by dividing the series resistance Rs and the resistance Rcell of the vibration element (that is, the bias voltage applied to the vibration element is controlled by the voltage drop of the series resistance Rs). Do). Therefore, the noise voltage V applied to the vibration element 1 can be controlled by adjusting the resistance value of the resistor Rs. As a result, the variation in charge accumulated in each vibration element is corrected to be the same as the charge accumulated in the reference vibration element, and variation in transmission / reception sensitivity among a plurality of vibration elements can be suppressed. . As a result, a high-quality ultrasonic image can be acquired. Resistance value of resistor Rs This will be described later.
  • Equation (8) From Equations (5) and (7), k becomes the following Equation (8).
  • the vibration element having the smallest capacity Ccell is selected as the reference vibration element. That is, other vibration elements are adapted to the vibration element having the smallest capacity.
  • the present invention can also be applied to a vibrator 8 configured by collecting a plurality of vibration element groups 3. That is, since the vibration element group 3 is a collection of a plurality of vibration elements 1 and the vibrator 8 is a collection of a plurality of vibration element groups 3, it can be regarded as one large vibration element as a whole.
  • a transmission / reception sensitivity control circuit 7 is provided between the electrode of the vibration element group 3 or the vibrator 8 and the bias means 2, and the transmission / reception sensitivity of the vibration element group 3 or the vibrator 8 is controlled by controlling the bias voltage applied thereto. Can also be controlled.
  • the transducer can be adapted to transducers for 1D (D stands for Dimension), 1.5D, and 2D array probes by changing the connection pattern of vibrating element group 3. It has become.
  • the 1D array refers to a structure in which ultrasonic transducers are arranged on a one-dimensional line (straight line, curve).
  • 1.5D has a structure in which ultrasonic transducers are arranged on a two-dimensional surface (plane, curved surface) consisting of a direction (short axis direction) orthogonal to the one-dimensional arrangement direction (long axis direction), and Ultrasonic scanning and focus control in the major axis direction (one-dimensional array direction) and focus control in the minor axis direction (direction orthogonal to the major axis direction) are performed.
  • 2D refers to a structure in which ultrasonic transducers are arranged on a two-dimensional surface (a plane or a curved surface) and performs ultrasonic scanning and focus control in an arbitrary direction.
  • all the vibration element groups 3 on the vibrator are connected to form a 1D array vibrator, and the vibration element group 3 is handled independently to form a 1.5D array vibrator, which is divided into smaller vibration element groups. It can be used as a transducer for 2D array probes.
  • the type of vibrator to be used is determined by changing the connection pattern of the vibrating elements that make up the vibrator at the vibrator manufacturing stage! Determined. Note that aluminum wiring or the like is used to connect the vibration element groups constituting the vibrator.
  • FIG. 4 shows another example of arrangement in which a transmission / reception sensitivity control circuit 7 is connected to each of a plurality of transducers.
  • FIG. 5 shows a transducer group 24 composed of a plurality of transducers. Shows the case where one transmission / reception sensitivity control circuit 7 is connected. Similarly to the above, it is also possible to control the transmission / reception sensitivity of the transducer group 24 by controlling the bias voltage applied to the transducer group 24.
  • FIG. 6 shows the case where the transmission / reception sensitivity for each vibration element is individually controlled to correct the fluctuation in transmission / reception sensitivity, and the description of the transmission means 4, the reception means 5 and the transmission / reception separation means 6 is omitted.
  • the transmission / reception sensitivity for each vibration element is controlled by adding a resistance Rsx (x is an index for each vibration element) corresponding to each vibration element.
  • the resistance Rsx corresponding to each element is added for each vibration element group or each vibrator, and the configuration for correcting the transmission / reception sensitivity variation for each vibration element group or vibrator is the same. It is. The adjustment of the resistance value of the resistor Rsx will be described later.
  • the vibrator is formed by connecting a plurality of vibration element groups manufactured and arranged on a strip-shaped semiconductor wafer. Therefore, the transmission / reception sensitivity of the vibrator 8 formed on the wafer varies depending on the place where it is formed. In other words, variation occurs in each vibrator 8. Therefore, after forming the transducer 8 on the wafer, or in the process of assembling and mounting the completed transducer 8 on the probe, measure the capacitance characteristics with respect to the bias voltage of the vibrating element group 3 forming the transducer 8. To do. An example of the measurement results is shown in Figs. 7A and 7B. FIG.
  • FIG. 7A is a graph showing the change in capacity with respect to the bias voltage of the vibration element groups d to g
  • FIG. 7B is a graph showing the bias voltage at which the capacity of each vibration element group is maximized. From this measurement result, the vibration element group with the smallest bias voltage that maximizes the capacity is selected. In this case, the vibration element group g having the minimum bias voltage Vg is selected.
  • a voltage value set slightly lower than the minimum bias voltage Vg (hereinafter referred to as an allowable voltage value) is recorded in a memory arranged with the vibrator in the probe. Other vibrations The same measurement is performed on the child, and the allowable voltage value is recorded in the memory located in each probe. In this way, the permissible voltage value unique to the transducer can be found for each probe. In addition, by grasping this voltage value, it is also possible to grasp the distribution of the allowable working voltage of each vibrator made on the same wafer.
  • Fig. 7C is a graph showing the distribution of allowable voltage values for each transducer in the wafer.
  • the sensitivity variation between the vibrators is controlled. Specifically, the vibrator having the lowest allowable use voltage value is selected, and control is performed so that the allowable use voltage values of all the other vibrators are equal to the allowable use voltage value of the selected vibrator. That is, the upper limit value of the bias voltage controlled for each vibrator in order to correct the variation in transmission / reception sensitivity of each vibrator is set as the allowable use voltage value of the vibrator having the lowest allowable use voltage value.
  • Fig. 7C is a graph showing the distribution of allowable voltage values for each transducer in the wafer.
  • the allowable operating voltage value of vibrator G is the minimum, so oscillator G is selected and this allowable operating voltage value is set as the upper limit of the bias voltage.
  • This control is possible by attaching the above-mentioned transmission / reception sensitivity control circuit to the vibrator for which the allowable voltage is to be adjusted and controlling the bias voltage applied to the vibrator. Adjustment of the resistance value in the control circuit will be described later.
  • the transmission / reception sensitivity of each transducer has been corrected.
  • the transmission / reception sensitivity of each transducer can be corrected to be the transmission / reception sensitivity of the standard probe.
  • the standard probe is as follows. On the same wafer, a plurality of transducer groups (hereinafter referred to as probe transducer groups) mounted on the probe are formed. For each transducer group for the probe, the transmission / reception sensitivity variation (dispersion) is measured, and the average value of the dispersion is obtained. The transducer for the probe having the transmission / reception sensitivity variation closest to the average value of the dispersion is taken as the standard probe.
  • the vibration element, the vibration element group, the vibrator, and the vibrator group are represented as a vibrator, but the same can be said if the vibration element, the vibration element group, and the vibrator group are replaced. Please specify.
  • FIG. 8 shows a second embodiment of the transmission / reception sensitivity control circuit 7 of the present invention.
  • the transmission / reception sensitivity control circuit 7 is composed of a transistor 10 and variable resistors R (11) and R (12).
  • This is a constant voltage circuit using a luminitter follower, and is placed between the bias means 2 and the vibrator 8. In this circuit, the ratio of the resistance values of the variable resistors R (11) and R (12) is adjusted.
  • the vibrator having the smallest capacity is selected as the reference vibrator.
  • the selection of the vibrator having the smallest capacitance as the reference vibrator is the same in other embodiments described later.
  • FIG. 9 shows a third embodiment of the transmission / reception sensitivity control circuit 7 of the present invention.
  • the transmission / reception sensitivity control circuit 7 is composed of an operational amplifier 13 and variable resistors R (14) and R (15).
  • the constant voltage circuit is arranged between the bias means 2 and the vibrator 8.
  • the resistance values of the variable resistors R (14) and R (15) are the same as in the first and second embodiments.
  • the bias voltage V applied to the vibrator 8 can be controlled, and variations in transmission / reception sensitivity between the vibrators can be suppressed. Adjustment of the resistance values of these variable resistors R (14) and R (15) will be described later.
  • FIG. 10 shows a fourth embodiment of the transmission / reception sensitivity control circuit 7 of the present invention.
  • the transmission / reception sensitivity control circuit 7 is composed of a variable resistor R (16) and a Zener diode 17.
  • the voltage limit circuit is arranged between the bias means 2 and the vibrator 8.
  • This voltage limit circuit uses the Zener voltage, which is a characteristic of Zener diodes, and controls the bias voltage applied to the vibrator 8. In other words, it is possible to adjust the resistance value of the variable resistor R (16).
  • a transmission / reception sensitivity control circuit 7 is connected to a resistor 18 as shown in FIG.
  • the diode 17 and the constant current source 19 may be used.
  • the current flowing through the Zener diode 17 is the sum of the current flowing through the bias power source of the biasing means 2 and the constant current source 19 that can adjust the amount of current, so the constant current source 19
  • the zener voltage Vz can be controlled by adjusting the amount of current that flows from the Z. The adjustment of the current value of the constant current source 19 will be described later.
  • FIG. 12 shows a fifth embodiment of the transmission / reception sensitivity control circuit 7 of the present invention.
  • the transmission / reception sensitivity control circuit 7 comprises a resistor 18, a constant current source 19, and a variable resistor R (20).
  • the bias voltage V applied to the vibrator 8 can be controlled, and variations in transmission and reception sensitivity among multiple vibrators can be suppressed. .
  • the adjustment of the resistance value of the variable resistor R (20) will be described later.
  • This adjustment means includes a variable resistor as a variable means for adjusting the bias voltage and a memory in which the transmission / reception sensitivity characteristics of the vibration element are stored, and adjusts the variable means according to information read from the memory. The value is used to correct variations in transmission / reception sensitivity.
  • the adjusting means is not limited to a variable resistor as a variable means, and can be similarly applied as long as it can adjust other bias voltages.
  • a predetermined bias voltage is applied to the vibrator during manufacturing, and the reactance at a predetermined frequency is measured by the impedance meter 21.
  • This reactance component is equivalent to the vibration element or the capacitance between the electrodes of the vibrator and the parasitic capacitance in parallel.
  • the capacity at this time is given by equation (9).
  • the capacity of the vibrator can be obtained from the actual measurement result of the reactance component of the vibrator.
  • the correction coefficient k is determined by comparing the obtained capacity with the capacity of the reference vibrator. Based on this correction coefficient k, a bias voltage applied to the vibrator and a resistance value for obtaining the bias voltage are determined. As shown in Fig. 13, prefabricated on the same wafer as the vibrator The resistance pattern thus obtained is subjected to trimming processing using a laser generator 22 shown in Japanese Patent Application Laid-Open No. 2004-273679 and the like, thereby obtaining a desired resistance value.
  • a variable resistance element such as a temperature coefficient thermistor is manufactured on a wafer, and the resistance value can be adjusted by controlling the resistance value of the thermistor itself and the temperature and current flowing therethrough.
  • This utilizes the characteristics of a thermistor whose resistance changes with temperature, and can be realized by creating a temperature coefficient thermistor and a heater on a semiconductor wafer.
  • An example of the heater is one using a Peltier element and a constant current circuit.
  • the Peltier element is an element that can control the heating and cooling of the element according to the direction of the current and the degree of the current according to the amount of current.
  • a thermistor is shown as a variable resistor.
  • the gate-source voltage Vgs such as T may be controlled by a DAC or the like to adjust the switch-on resistance value or the resistance value by controlling the current flowing through the diode.
  • FIG. 14 shows a first control example of the transmission / reception sensitivity control circuit 7 of the present invention.
  • the transmission / reception sensitivity control circuit 7 includes a control means 25, a memory 23, a digital-analog converter (hereinafter referred to as DAC) 26, and a variable resistor 27 composed of a thermistor or the like.
  • the memory 23 stores control data and is connected to the control means 25 via a data bus (hereinafter referred to as Bus).
  • the data output of memory 23 is input to DAC26.
  • the DAC 26 converts the digital data from the memory 23 into an analog signal and outputs it, and is connected to a variable resistor 27 composed of a thermistor or the like.
  • the other structures are the same as the structure shown in FIG.
  • This operation example includes a transducer manufacturing process, a probe assembly process, and an operation process.
  • Programs corresponding to the following steps are stored in advance, and the steps are executed automatically or semi-automatically by reading and executing the program corresponding to each step.
  • step 601 the variation adjustment of transmission / reception sensitivity for each vibration element is corrected.
  • step 601 the reactance of the vibration element at a predetermined frequency is measured in the wafer generation process, and the capacity of each vibration element is obtained from the measurement result.
  • a reference vibration element for correcting variation in transmission / reception sensitivity for each vibration element is selected.
  • a reference vibration element for example, a vibration element having a minimum capacity is selected.
  • a correction coefficient k for correcting variation in transmission / reception sensitivity for each vibration element is obtained. That is, the correction coefficient k for each vibration element is obtained from the ratio between the selected reference vibration element capacity and the other vibration element capacity.
  • step 604 the resistance value (Rs) of the resistance element for correcting the variation in transmission / reception sensitivity is obtained for each vibration element based on the correction coefficient k.
  • the resistance value (Rs) is calculated from equation (8) from the correction coefficient k and the resistance value (Rcell) of the vibration element.
  • step 605 a resistance element having the resistance value (Rs) obtained in step 604 is mounted on the same wafer for each vibration element.
  • the mounting method obtains a desired resistance value by performing a trimming process using the laser generator 22 shown in, for example, Japanese Patent Application Laid-Open No. 2004-273679.
  • step 606 the transducer group for the probe is cut and extracted from the wafer.
  • Step 607 the transducer group for the probe cut and extracted in Step 606 is incorporated into the probe.
  • step 608 the reactance of the vibrator at a predetermined frequency is measured, and the capacity of each vibrator is obtained from the measurement result.
  • a reference vibrator for correcting variation in transmission / reception sensitivity for each vibrator is selected.
  • the reference vibrator for example, the vibrator having the smallest capacity is selected.
  • step 610 a correction coefficient k for correcting variation in transmission / reception sensitivity for each transducer is obtained.
  • the vibration is calculated from the ratio of the selected reference oscillator capacity to the capacity of other oscillators. Find the correction factor k for each element.
  • control data for the noise voltage applied to each transducer is calculated based on the correction coefficient k for each transducer, and stored in the memory via the bus.
  • control data for each transducer and its creation date and time are recorded in the log file 23. That is, the current value, voltage value, or thermal value for controlling a control factor such as a resistance value from a correction coefficient k to a control device such as a variable resistor 27 (for example, a thermistor) of the transmission / reception sensitivity control circuit 7.
  • Control data such as quantity (current value, which is a control factor when using a Peltier element as a heat source) is calculated. Then, the control data is stored in the memory 23 via the bus. This control data is also used to compensate for variations in transmission / reception sensitivity after product shipment.
  • an ultrasonic wave is transmitted and received by applying a bias voltage adjusted for each transducer based on the control data.
  • the control means 25 reads the control data stored in the memory 23 and outputs it to the DAC 26 when transmitting and receiving ultrasonic waves.
  • the DAC 26 controls the resistance value of the variable resistor 27 by controlling the current value according to the value of the input control data. Specifically, when the variable resistor 27 is composed of a negative temperature coefficient thermistor and a Peltier element, a current controlled by the DAC 26 is passed through the Peltier element, thereby allowing direct temperature control of the negative temperature coefficient thermistor. The resistance value can be controlled indirectly.
  • the voltage applied to both ends of the vibrator 8 is a divided value of the resistance value Rs of the variable resistor 27 and the resistance value R of the vibrator 8 with respect to the voltage value supplied by the bias means 2. That is, the variation in ultrasonic transmission / reception sensitivity is corrected by adjusting the electromechanical coupling coefficient depending on the electric field strength, and each transducer is controlled to have the same transmission / reception sensitivity.
  • transmission / reception sensitivity correction is performed, a display indicating that sensitivity correction is in progress may be displayed on the screen of the ultrasonic diagnostic apparatus.
  • step 613 transmission / reception sensitivity for each transducer is measured. After the product is shipped, it is technically difficult to directly measure the capacity of the transducer incorporated in the ultrasound probe. Therefore, the transmission and reception sensitivity of the transducer is measured indirectly. As an example, an ultrasonic probe is attached to a predetermined fan. The control means 25 can measure the transmission / reception sensitivity for each transducer by detecting the voltage of the response signal to the bias voltage input for each transducer while being in contact with Tom. .
  • step 614 it is determined whether or not it is necessary to correct transmission / reception sensitivity variation for each transducer. For example, it is determined whether or not the transmission / reception sensitivity of each transducer is within a threshold range (for example, the average transmission / reception sensitivity of each transducer obtained in step 613). It is determined that correction is necessary, and the process proceeds to Step 615. On the other hand, if it is within the threshold value range, it is determined that it is not necessary, and the routine proceeds to step 618.
  • a threshold range for example, the average transmission / reception sensitivity of each transducer obtained in step 613
  • a reference oscillator for correcting a deviation in transmission / reception sensitivity variation correction for each oscillator is selected. For example, an oscillator with the lowest transmission / reception sensitivity is selected as the reference oscillator.
  • a correction coefficient k for correcting a deviation in transmission / reception sensitivity variation correction for each transducer is obtained. That is, the correction coefficient k for each vibration element is obtained from the ratio between the transmission / reception sensitivity of the selected reference transducer and the transmission / reception sensitivity of other transducers.
  • step 617 based on the correction coefficient k for each transducer, the control data of the bias voltage applied to each transducer is updated and stored in the memory 23 via the bus. Specifically, the control data is changed so that the bias voltage applied to the vibrator is increased for the vibrator having a lowered sensitivity. On the other hand, for the vibrator with increased sensitivity, the control data is updated so that the bias voltage applied to the vibrator is reduced.
  • the control means 25 can always perform highly accurate transmission / reception sensitivity variation correction by appropriately updating the control data stored in advance in the memory 23 as described above. After updating the control data, return to step 613 and measure the transmission / reception sensitivity for each transducer again.
  • control data When the control data is updated, the control data and update date and time for each transducer are recorded in the log file and recorded in the data force S memory 23.
  • the control data for controlling the control device is updated as appropriate according to changes in the transmission / reception sensitivity of the vibrator over time.
  • the frequency and cycle of the update are calculated in the control means 25 based on the log file created at the time of update. This calculation result can be displayed on the device screen by pressing a button arranged on the console of the ultrasonic diagnostic device.
  • updating the control data display the relative values of the transmission / reception sensitivities of other transducers with respect to the transmission / reception sensitivity of the reference transducer, and update the control data on the screen. Also good.
  • FIG. 17 shows an example in which a data list 701 of change with time in transmission / reception sensitivity variation of each vibrator and two control buttons 702 and 703 are displayed on the screen.
  • the data list 701 shows the ID number of each transducer, the change over time of the relative value of the transmission / reception sensitivity with respect to the reference transducer, and the calibration amount (%) of the control data.
  • the change in the relative value of the transmission / reception sensitivity over time is the time-series display of the initial value at the time of manufacture or assembly and the relative value of the transmission / reception sensitivity measured after that.
  • the measurement button 702 When the measurement button 702 is pressed in this state, the above steps 613 to 616 are executed, the relative value of the transmission / reception sensitivity for each transducer is measured, and the control data calibration amount for setting the relative value to 1 ( %) Is calculated and displayed.
  • the application button 703 When the application button 703 is pressed after the measurement of the relative values of the transmission / reception sensitivities of all the transducers and the calculation of the control data calibration amount are completed, the calculated calibration amount is reflected in the control data.
  • the measured relative value of the transmission / reception sensitivity is stored in the storage unit together with the measurement date / time data, and is displayed on the screen when the control data is updated next time.
  • step 618 based on the updated control data, a bias voltage adjusted for each transducer is applied to transmit and receive ultrasonic waves.
  • step 619 If it is determined in step 619 that the deviation in the transmission / reception sensitivity variation adjustment for each transducer based on the temporal change in the transmission / reception sensitivity of the transducer is repeated at regular intervals or irregularly, return to step 613. Step 613 to Step 618 are repeated.
  • the transmission / reception sensitivity is controlled by using the updated control data to transmit / receive ultrasonic waves, so that the image quality is always high with high accuracy and correction of variation in transmission / reception sensitivity. It is possible to acquire an ultrasonic image of In the above description of the probe manufacturing process and operation process, an example is shown in which the reference transducer is selected and the variation in transmission / reception sensitivity of each transducer is corrected. However, the reference is the transmission / reception sensitivity of the standard probe. By doing so, it is also possible to correct variations in the transmission / reception sensitivity between the probes.
  • the force positive temperature coefficient thermistor shown in the example using the negative temperature coefficient thermistor may be used.
  • a temperature coefficient thermistor and a resistance using a Peltier element A force showing an example of value control It is also possible to pass a current directly through a self-current control thermistor. Note that if correction of changes over time in Steps 613 to 617 is not performed, only control data for the wafer generation process or the probe thread setting process after chip formation is required. The function can be limited to reading with a non-volatile memory element such as ROM, and the circuit scale can be reduced.
  • the thermistor Peltier element constitutes the control device, the doping material of semiconductor process (impurities to be mixed, such as boron (dope), SiC (thin film), Ge (thin film), Ni (metal) It is easy to adjust the temperature characteristics by type, amount, or thin film.
  • FIG. 15 shows a second control example of the transmission / reception sensitivity control circuit 7 of the present invention.
  • the difference from the first control example is that the data latch circuit 28 is used instead of the DAC 26, and a plurality of analog switches composed of MOS switches or mechanical relays are used instead of the thermistor as the variable resistance method.
  • An analog switch switching type variable resistor that controls the resistance value by switching is used.
  • These variable resistors can be realized by, for example, micro relays based on MEMS technology or ladder resistors. Except for these, the transducer 8 and the bias means 2 are not shown because they are the same as the first control example.
  • control means 25 stores the control data in the memory 23 in the same manner as in the first control example.
  • control data stored in the memory 23 is for switching the analog switch switching variable switch. Control data.
  • the control means 25 reads the control data stored in the memory 23 and outputs it to the data latch circuit 28 when transmitting and receiving ultrasonic waves.
  • the data latch circuit 28 holds the values of a plurality of control data inputted at the timing of the latch clock, and changes the resistance value of the variable resistance by changing the opening and closing of the analog switch according to the values of the plurality of control data. To control.
  • the variation correction corresponding to the temporal change of each element can be performed. it can.
  • This second control example makes it possible to correct fluctuations in transmission / reception sensitivity for each transducer without receiving external factors such as ambient temperature.
  • the first and second control examples can be performed either online or offline.
  • the ultrasonic diagnostic apparatus includes communication means that can communicate with external control means (for example, a host computer in a remote center) disposed outside the apparatus via a network. Then, it connects to the host computer that holds the correction information of the probe's transmission / reception sensitivity via the network, confirms the transmission / reception sensitivity status due to the time-dependent change of the probe, and the control data unique to the probe. Updates and transmission / reception sensitivity variation correction processing are performed.
  • external control means for example, a host computer in a remote center
  • transmission / reception sensitivity variation correction for each vibration element, each vibration element group, or each vibrator is shown.
  • transmission / reception sensitivity for each vibration element, each vibration element group, or each vibrator is shown. It is also possible to correct so that becomes the sensitivity of the standard probe.
  • FIG. 1 is a diagram showing a first embodiment of an ultrasonic probe, an ultrasonic diagnostic apparatus, and a transmission / reception sensitivity control circuit to which the present invention is applied.
  • FIG. 2 is a diagram showing the vibration element of FIG. 1 as a vibration element group.
  • FIG. 3 is a diagram showing the vibration element of FIG. 1 as a vibrator.
  • FIG. 4 is a diagram showing a case where a transmission / reception sensitivity control circuit 7 is connected to each of a plurality of vibrators.
  • FIG. 5 is a diagram showing the vibration element of FIG. 1 as a vibrator group.
  • FIG. 6 is a diagram showing a case where a control resistor Rx is connected to each of a plurality of vibration elements.
  • FIG. 7A is a diagram showing a voltage-capacitance measurement result of a vibration element group.
  • FIG. 7B is a diagram showing the maximum applied voltage value of each vibration element group.
  • FIG. 7C is a diagram showing an allowable use voltage value of each vibrator.
  • FIG. 8 is a diagram showing a second example of the transmission / reception sensitivity control circuit.
  • FIG. 9 is a diagram showing a third example of the transmission / reception sensitivity control circuit.
  • FIG. 10 is a diagram showing a fourth example of the transmission / reception sensitivity control circuit.
  • FIG. 11 is a diagram showing a modification of the fourth embodiment of the transmission / reception sensitivity control circuit.
  • FIG. 12 is a diagram showing a fifth example of the transmission / reception sensitivity control circuit.
  • FIG. 13 A diagram in which a resistance generated on the same wafer as the vibration element is subjected to a trimming process by a laser generator.
  • FIG. 14 is a diagram showing a first control example of the transmission / reception sensitivity control circuit of the present invention.
  • FIG. 15 is a diagram showing a second control example of the transmission / reception sensitivity control circuit of the present invention.
  • FIG. 16 is a flowchart showing a specific operation of the first control example of the transmission / reception sensitivity control circuit shown in FIG. 14.
  • FIG. 17 is a diagram showing a list of relative values of transmission / reception sensitivities of other vibrators with respect to transmission / reception sensitivities of reference vibrators.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Gynecology & Obstetrics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 超音波探触子を構成する複数の振動要素又は振動子の相互間の送受信感度のバラツキを補正する。  本発明に係る超音波探触子は、バイアス電圧が印加された状態で超音波と電気信号とを相互に変換することにより超音波の送受信を行う複数の振動要素を備えた振動子を複数配列して成り、複数の振動要素の内の少なくとも2つの振動要素に印加するバイアス電圧を独立に調整して、該少なくとも2つの振動要素の送受信感度のバラツキを補正する送受信感度補正手段を備えていることを特徴とする。

Description

明 細 書
超音波探触子及び超音波診断装置
技術分野
[0001] 本発明は、被検体との間で超音波を送受する振動子が複数配列された超音波探 触子に関する。
背景技術
[0002] 超音波探触子は、超音波診断装置から供給される電気信号を超音波に変換して 被検体に送波するとともに、被検体から発生した反射エコーを受波して受信信号に 変換する振動子が複数配列されている。この振動子として、印加するバイアス電圧に 応じて超音波送受信感度が変化する振動要素を用いたものが知られている。
[0003] これによれば、振動要素の電極に印加するバイアス電圧を制御することにより、超 音波の送受信感度を制御することができる。(例えば、特許文献 1参照)
特許文献 1:特開 2004-274756号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上記の従来技術では、振動要素の製造上のバラツキや残留応力等 により、同じバイアス電圧を印力!]しても、複数の振動要素又は振動子の相互間で送 受信感度のバラツキが発生する。これによつて超音波画像には画像ムラ、画質の低 下、アーチファクト現象が発生する。
[0005] また、特許文献 1には、振動要素又は振動子を構成する超微細加工によって作ら れた超音波トランスデューサ (cMUT : Capacitive Micromachined Ultrasonic Transduc ers)に印加するバイアス電圧を調整することで、残留応力等により発生する振動要素 毎の送受信感度のバラツキを補正できることが示唆されている。しかし、具体的なバ ィァス電圧を調整する手段及び調整方法については記載されていない。なお、特許 文献 1には、超音波ドライバに小型電子スィッチを複数直列接続し、それらの電子ス イッチ間にそれぞれ超音波トランスデューサを接続し、それらの電子スィッチ群を制 御することにより、超音波トランスデューサを選択的に駆動する高電圧切換回路が提 案されている。しかし、この切換回路は、駆動する超音波トランスデューサを選択する ための回路であって、各超音波トランスデューサの送受信感度のバラツキを補正する ものではない。
[0006] そこで、本発明の課題は、超音波探触子を構成する複数の振動要素、振動要素群 又は振動子の相互間の送受信感度のバラツキを補正するための具体的な手段及び 方法を提供することである。
課題を解決するための手段
[0007] 上記課題を解決するための本発明の超音波探触子は、バイアス電圧が印加された 状態で超音波と電気信号とを相互に変換することにより超音波の送受信を行う複数 の振動要素を備えた振動子を複数配列して成り、複数の振動要素の内の少なくとも 2 つの振動要素に印加するバイアス電圧を独立に調整して、該少なくとも 2つの振動要 素の送受信感度のバラツキを補正する送受信感度補正手段を備えていることを特徴 とする。
[0008] また、上記課題を解決するための本発明の超音波診断装置は、バイアス電圧が印 カロされた状態で超音波と電気信号とを相互に変換することにより超音波の送受信を 行う振動要素を少なくとも一つ備えた振動子を複数配列して成る超音波探触子と、バ ィァス電圧を供給するための DC電圧を発生するバイアス手段と、複数の振動要素と の間で電気信号の送受を行う送受信制御手段と、を有し、バイアス手段と複数の振 動要素の内の少なくとも 2つの振動要素との間に、該少なくとも 2つの振動要素に印 加するバイアス電圧を独立に調整して、該少なくとも 2つの振動要素の送受信感度の ノ ラツキを補正する送受信感度補正手段を備えていることを特徴とする。
[0009] また、上記課題を解決するための本発明の送受信感度補正方法は、バイアス電圧 が印加された状態で超音波と電気信号とを相互に変換することにより超音波の送受 信を行う複数の振動要素を備えた振動子を複数配列して成る超音波探触子と、バイ ァス電圧を供給するための DC電圧を発生するバイアス手段と、複数の振動要素の内 の少なくとも 2つの振動要素の送受信感度のノ ラツキを補正する送受信感度補正手 段と、を備えている超音波診断装置において、少なくとも 2つ振動要素の各々の容量 を計測するステップと、少なくとも 2つ振動要素の内から基準振動要素を選択するステ ップと、基準振動要素の容量に対する他の振動要素の容量に基づいて、少なくとも 2 つ振動要素の各々の送受信感度のバラツキを補正するための補正係数を求めるス テツプと、少なくとも 2つ振動要素の各々の補正係数に基づいて、ノィァス電圧を調 整するための制御データを算出して記憶するステップと、制御データに基づいて、少 なくとも 2つ振動要素の各々に調整されたバイアス電圧を印カロして超音波の送受信を 行うステップと、を含むことを特徴とする。
[0010] また、好ましい送受信感度補正方法の一実施形態は、さらに、少なくとも 2つ振動要 素の各々に同じバイアス電圧を印加した状態で、少なくとも 2つ振動要素の各々の超 音波の送受信に基づく受信信号を検出するステップと、少なくとも 2つ振動要素の各 々の受信信号に基づ!、て、該少なくとも 2つ振動要素の各々の送受信感度の変化量 を求めるステップと、少なくとも 2つ振動要素の各々の変化量を補正するように制御デ ータを更新して記憶するステップと、少なくとも 2つ振動要素の各々の更新された制御 データに基づいて、該少なくとも 2つ振動要素の各々に調整されたバイアス電圧を印 加して超音波の送受信を行うステップと、を有することを特徴とする。
なお、上記説明にお!、て振動要素を振動要素群又は振動子又は振動子群とおき 力えても同様のことが!/、える。
発明の効果
[0011] 本発明によれば、超音波探触子を構成する複数の振動要素、振動要素群又は振 動子の相互間の送受信感度のバラツキを容易且つ高精度に補正することが可能に なる。その結果、高画質の超音波画像を取得することが可能になる。
発明を実施するための最良の形態
[0012] 以下、本発明を適用した超音波探触子の実施例について図面を参照して説明する 第 1の実施例
[0013] 図 1は、本発明の第 1の実施例を適用した超音波探触子と、超音波診断装置を示す 図である。
図 1に示すように、超音波探触子は、印加するバイアス電圧に応じて超音波送受信 感度が変化する振動要素 1と、振動要素 1を挟んで設けられた上部電極 1-a及び下部 電極 1-bを有して形成されて 、る。
ここで、本実施例の超音波探触子は、振動要素 1の送受信感度のバラツキを補正 する送受信感度制御回路 7が振動要素 1とバイアス手段 2との間に配設されている。な お、振動要素 1は一般的にセルと称されており、振動要素 1の数は、 1つに限らず必要 に応じて増やすことができる。
[0014] このように構成される超音波探触子は、超音波診断装置に設けられた電気信号を 供給する送信手段 4と、超音波探触子から出力された受信信号を処理する受信手段 5と、超音波探触子にバイアス電圧を印加するためのバイアス電源 (DC電源)を有する ノ ィァス手段 2に接続される。なお、送信手段 4及び受信手段 5は、送受分離手段 6を 介して超音波探触子との間で信号を送受する。例えば、送受分離手段 6と振動要素 1 との間に信号線と信号のリターン線力AC結合されている。
[0015] ここで、本実施例の振動要素 1は、印加するバイアス電圧に応じて電気機械結合係 数が変化する超音波トランスデューサである。例えば図 1は、 cMUTを振動要素 1とし て適用した例である。
[0016] cMUTは、半導体基板上に太鼓状に振動膜を形成し、半導体基板と振動膜とを上 部電極 1-aと下部電極 1-bとで挟んだ 、わばコンデンサ構造を有する。このような cMU Tに対してバイアス手段 2からバイアス電圧が印加されると、上部電極 1-aと下部電極 1 -b間に電界が発生して振動膜が緊張状態となる。
このような状態において、送信手段 4から送信される電気信号が上部電極 1-aと下 部電極 1-b間に印加されると振動膜が振動し、その振動膜の振動に由来して超音波 が被検体に送波される。また、被検体から発生した反射エコーが cMUTに入力すると 、振動膜が振動して内部空間が変化するため、 cMUTの容量変化を電気信号として 取り出すことができる。
[0017] また、 cMUTに印加するバイアス電圧に応じて振動膜の緊張度が変わるため、バイ ァス電圧を制御することにより、 cMUTから被検体に送波される超音波の強度に重み を付けて、超音波の強弱を制御することができる。同様にバイアス電圧を制御するこ とにより、 cMUTが被検体からの反射超音波を受信する受信感度を制御することがで きる。定性的には、バイアス電圧と送波強度又は受信感度とは、略比例関係にある。 つまり、バイアス電圧を高くすると送波強度又は受信感度は増大し、バイアス電圧を 低くすると送波強度又は受信感度は減少する。
なお、 cMUTを例に説明した力 本発明は、これらに限られるものではなぐバイアス 電圧に応じて電気機械結合係数が変化する特性を有する電歪材などを用いて形成 される素子にも適用できる。
[0018] 振動要素 1は、上部電極 1-aが頂部に形成されるとともに、下部電極 1-bが底部に形 成されている。上部電極 1-aは、バイアス手段 2の正極側に端子 2-aを介して接続され ている。下部電極 1-bはノ ィァス手段 2の負極側に端子 2-bを介して接続されている。 このような振動要素 1とバイアス手段 2との間であって、バイアス手段 2から供給される DC電圧に基づ 、て振動要素 1にバイアス電圧を印加するための導線上に、送受信 感度補正手段としての送受信感度制御回路 7が配設されている。好ましくは、送受信 感度制御回路 7は、この導線上において、送信手段 4又は受信手段 5並びに送受分 離手段 6が振動要素 1に接続する接続位置よりもバイアス手段 2側に位置させて設け られる。
[0019] 振動要素 1の等価回路は、図 1に示すように、コンデンサ Ccellと抵抗 Rcellを並列に 接続したモデルで表される。コンデンサ Ccellの容量 Ccapは、誘電率 ε、電極面積 S、 電極間隔 dとすると、次式 (1)で表される。
Ccap= ε - S/d (1)
[0020] コンデンサ Ccellに蓄積される電荷 Qは、振動要素 1の容量 Ccapとバイアス手段 2か ら供給される電圧 Vdcによって Q = Ccap · Vdcと 、う関係が成立するので、式 (1)を用い ると次式 (2)を得る。
Q = Ccap -Vdc= ε - (S/d) -Vdc (2)
[0021] ここで、式 (2)を基準振動要素の特性とすると、 cMUTセルの製造段階にぉ 、て、ス ノ ッタリングなどの工程で生じる残留応力等の影響により、電極間隔あるいは電極面 積等が基準振動要素と若干異なった振動要素が出来上がる場合がある。この場合の 容量成分を C ' capとすると、電極間隔あるいは電極面積などが基準振動要素と若干 異なった振動要素が有する電荷 Q 'は次式 (3)となる。
Q' =C' cap -Vdc (3) [0022] つまり、振動要素毎にその容量が若干異なるので、蓄積される電荷も若干異なるこ とになる。そこで、送受信感度のノ ツキの影響を無くすためには、電荷 Q 'を制御し て基準となる電荷 Qへ近づける必要がある。そこで、ある係数 kを用いて Qと Q 'の関 係を表わすと以下の式 (4)となる。ここで、 kは振動要素間の補正係数である。
Q=k- Q' (4)
[0023] 次に、式 (3)(4)を用いて、式 (2)を変形すると式 (5)を得る。
Q = Ccap -Vdc
=k' Q, =k- (C' cap -Vdc) = C' cap - (k-Vdc) (5)
式 (5)より、基準振動要素と容量が異なった振動要素であっても、この振動要素に印 加するバイアス電圧を k'Vdcなるように制御することで振動要素間の送受信感度バラ ツキを抑えることが可能となることが理解される。そして式 (5)より、 kは一般的に k=し cap/し cap (6)
となり、基準振動要素の容量と他の振動要素の容量との比で定まることになる。
[0024] 図 1に、本発明の送受信感度制御回路 7の第 1の実施例を示す。本実施例は、振動 要素とバイアス手段との間に抵抗素子を配置して振動要素に印加するバイアス電圧 を調整することにより、振動要素の送受信感度のノ ツキを補正する。
具体的には、図 1に示すように、振動要素 1とバイアス手段 2との正電極間に直列に 抵抗値が Rsである抵抗 9が配置される。この場合、バイアス電圧を Vdc、振動要素 1の 電極間電圧を V、振動要素 1の抵抗値を Rcellとすると、 Vは以下の式 (7)で表わされる
V = Rcell · Vdc/(Rs + Rcell) (7)
つまり、直列抵抗 Rsと振動要素の抵抗 Rcellとの分圧により、 Vdcよりも低下した電圧 V が振動要素に印加される (つまり直列抵抗 Rsの電圧降下によって振動要素に印加す るバイアス電圧を制御する)。したがって、抵抗 Rsの抵抗値を調整することによって、 振動要素 1に印加するノィァス電圧 Vを制御することが可能となる。これにより、各振 動要素に蓄積される電荷のバラツキが補正されて、基準振動要素に蓄積される電荷 と同じになり、複数の振動要素の相互間の送受信感度のバラツキを抑えることができ る。その結果、高画質の超音波画像を取得することが可能になる。抵抗 Rsの抵抗値 の調整につ!、ては後述する。
[0025] なお、式 (5)(7)より、 kは次式 (8)となる。
k = Rcell/(Rs + Rcell) (8)
つまり、本実施例のように抵抗 Rsを直列に挿入することによるバイアス電圧の補正の 場合には、 k≤lとなるので、式 (6)より、 Ccap≤C' capとなる。そこで、本実施例では、 容量 Ccellが最小の振動要素を基準振動要素として選択する。即ち、容量が最小の 振動要素に他の振動要素を適応させることになる。
[0026] 以上は、図 1の振動要素 1について述べたものであるが、図 2に示した複数の振動 要素 1で電極を共通にして構成される振動要素群 3や、図 3に示したように振動要素 群 3を複数個集めて構成される振動子 8にも適用することが可能である。つまり、振動 要素群 3は振動要素 1を複数個集めたものであり、振動子 8は振動要素群 3を複数個 集めたものであるので、全体として 1つの大きな振動要素と見なすことができる。振動 要素群 3の電極又は振動子 8の電極とバイアス手段 2との間に送受信感度制御回路 7 を設け、これらに印加するバイアス電圧を制御することで振動要素群 3又は振動子 8 の送受信感度も制御することが可能となる。
[0027] さらに振動子は、振動要素群 3の接続パターンを変えることで、 1D(Dは Dimensionの 略で次元を意味する。)や 1.5Dや 2Dアレイ探触子用振動子に対応できるようになって いる。ここで、 1Dアレイは、超音波振動子を 1次元的な線 (直線、曲線)上に配列した 構造のことをいう。また、 1.5Dは、超音波振動子を 1次元配列方向 (長軸方向)に直交 する方向 (短軸方向)からなる 2次元的な面 (平面、曲面)上に配列した構造で、かつ、 長軸方向 (1次元配列方向)に超音波走査及びフォーカス制御、短軸方向 (長軸方向 に直交する方向)にフォーカス制御を行うことを 、う。
また、 2Dは、超音波振動子を 2次元的な面 (平面、曲面)上に配列した構造で、かつ 、任意方向に超音波走査及びフォーカス制御を行うことをいう。つまり、振動子上の 振動要素群 3をすベて接続することで 1Dアレイ振動子となり、振動要素群 3を独立に 扱うことで 1.5Dアレイ振動子となり、より細かい振動要素群に分割することによって 2D アレイ探触子用振動子とすることも可能である。どのような振動子にするかは、振動子 製作段階にお!、て、振動子を構成する振動要素群の接続パターンを変えることで決 定される。なお、振動子を構成する振動要素群の接続にはアルミ配線などを用いる。
[0028] 図 4には、他の配置例として複数の振動子の各々にそれぞれ送受信感度制御回路 7を接続した場合を示し、図 5には、複数の振動子で構成される振動子群 24に対して 1つの送受信感度制御回路 7を接続した場合を示す。上記と同様に、振動子群 24に 印加するバイアス電圧を制御することで振動子群 24の送受信感度を制御することも 可能である。
[0029] 或いは、振動要素毎、振動要素群毎、又は振動子毎に送受信感度をそれぞれ個 別に制御して、送受信感度のバラツキを制御することも可能である。その例を図 6に 示す。図 6は、振動要素毎の送受信感度をそれぞれ個別に制御して送受信感度の ノ ツキを補正する場合を示しており、送信手段 4、受信手段 5並びに送受分離手段 6の記載は省略してある。この構成では、振動要素毎にそれに対応した抵抗 Rsx(xは 振動要素毎のインデックス)を付加することで、振動要素毎の送受信感度を制御して いる。勿論、振動要素毎の代わりに、振動要素群毎や振動子毎にそれぞれの素子に 対応した抵抗 Rsxを付加して、振動要素群毎や振動子毎の送受信感度のバラツキを 補正する構成も同様である。なお、抵抗 Rsxの抵抗値の調整については後述する。
[0030] ここで、振動子毎の送受信感度のバラツキについて説明する。振動子は、短冊状 にした半導体ウェハ上に複数の振動要素群を製造して配置したものを接続すること によって形成される。そのため、ウェハ上に形成された振動子 8は、形成された場所 によっても送受信感度のバラツキが発生する。つまり、振動子 8毎にもバラツキが生じ る。そこで、ウェハ上に振動子 8を形成後、もしくは完成した振動子 8を探触子に組立 実装する工程で、振動子 8を形成している振動要素群 3のバイアス電圧に対する容量 の特性を計測する。計測結果の一例を図 7Aと図 7Bに示す。図 7Aは、振動要素群 d 〜gのバイアス電圧に対する容量の変化を示すグラフであり、図 7Bは振動要素群毎 の容量が最大となるバイアス電圧を示したグラフである。この計測結果より、容量が最 大となるバイアス電圧が最小の振動要素群を選択する。この場合は最小のバイアス 電圧 Vgを有する振動要素群 gが選択される。
[0031] 次に、この最小のバイアス電圧 Vgより若干低めに設定された電圧値 (以下、使用許 容電圧値)を、探触子内にこの振動子と共に配置されるメモリに記録する。他の振動 子に関しても同様な計測を行い、使用許容電圧値をそれぞれの探触子内に配置す るメモリに記録する。こうすると、探触子毎に振動子固有の使用許容電圧値が分かる 。また、この電圧値を把握することで、同一ウェハ上で作られた各振動子の許容使用 電圧の分布も把握できる。
その一例を図 7Cに示す。図 7Cは、ウェハ内振動子毎の使用許容電圧値の分布を 示すグラフである。この使用許容電圧値の分布特性を用いて、振動子間の感度ばら つきを制御する。具体的には、最も低い許容使用電圧値を有する振動子を選択し、 この選択された振動子の許容使用電圧値に他の全ての振動子の許容使用電圧値が 等しくなるように制御する。つまり、各振動子の送受信感度のバラツキを補正するため に振動子毎に制御されるバイアス電圧の上限値を、最も低い許容使用電圧値を有す る振動子の許容使用電圧値とする。図 7Cに示す場合では、振動子 Gの許容使用電 圧値が最小なので、振動子 Gを選択してこの許容使用電圧値をバイアス電圧の上限 とする。これにより、安全に同一ウェハ間での振動子の送受信感度のバラツキを抑え ることができる。この制御は、上記の送受信感度制御回路を使用許容電圧の調整を 行いたい振動子に取り付け、振動子に印加されるバイアス電圧を制御すれば可能で ある。制御回路内の抵抗値の調整については後述する。
[0032] なお、上記説明では、振動子毎の送受信感度の補正について示したが、各振動子 の送受信感度が標準探触子の送受信感度になるように補正することも可能である。こ こで、標準探触子とは次の様なものである。同一ウェハ上では、探触子に装着される 状態の振動子群 (以下、探触子用振動子群という)が複数形成される。この、探触子 用振動子群毎に、送受信感度のバラツキ (分散)を計測してそれら分散の平均値を求 める。この分散の平均値に一番近い送受信感度のバラツキを有する探触子用振動 子を標準探触子とする。
以下、振動要素、振動要素群、振動子、及び振動子群を、振動子と代表して表記 するが、振動要素、振動要素群、および振動子群に置き換えても同様のことが言える ことを明記しておく。
第 2の実施例
[0033] 図 8に、本発明の送受信感度制御回路 7の第 2の実施例を示す。図のように、本実 施例は、送受信感度制御回路 7をトランジスタ 10と可変抵抗 R (11)、 R (12)で構成され
1 2
るェミッタフォロワによる定電圧回路とし、バイアス手段 2と振動子 8の間に配置したも のである。この回路では可変抵抗 R (11)、 R (12)の抵抗値の比率を調整することによ
1 2
つて振動子 8に印加するバイアス電圧 Vを制御でき、複数の振動子の相互間の送受 信感度のバラツキを抑えることができる。これらの可変抵抗 R (11)、 R (12)の抵抗値の
1 2
調整については後述する。
なお、本実施例でも、振動子 8に印加するバイアス電圧 Vは、バイアス手段 2のバイ ァス電圧よりも低下するので、容量が最小の振動子を基準振動子として選択する。こ の容量が最小の振動子を基準振動子として選択することは、後述する他の実施例で も同様である。
第 3の実施例
[0034] 図 9に、本発明の送受信感度制御回路 7の第 3の実施例を示す。図のように、本実 施例は、送受信感度制御回路 7をオペアンプ 13と可変抵抗 R (14), R (15)で構成され
3 4
る定電圧回路とし、バイアス手段 2と振動子 8間に配置したものである。この実施例に おいても、第 1の実施例及び第 2の実施例と同様に可変抵抗 R (14), R (15)の抵抗値
3 4
を調整することによって振動子 8に印加するバイアス電圧 Vを制御することができ、複 数の振動子の相互間の送受信感度のバラツキを抑えることができる。これらの可変抵 抗 R (14), R (15)の抵抗値の調整については後述する。
3 4
第 4の実施例
[0035] 図 10に、本発明の送受信感度制御回路 7の第 4の実施例を示す。図のように、本実 施例は、送受信感度制御回路 7を可変抵抗 R (16)とツエナーダイオード 17で構成され
5
る電圧リミット回路とし、バイアス手段 2と振動子 8間に配置したものである。この電圧リ ミット回路はツエナーダイオードの特徴であるツエナー電圧を利用し、振動子 8に印加 するバイアス電圧を制御する。つまり、可変抵抗 R (16)の抵抗値を調整することによつ
5
てツエナーダイオード 17に流れる電流量を調整し、ツエナー電圧 Vzを制御し、複数の 振動子の相互間の送受信感度バラツキを抑えることができる。この可変抵抗 R (16)の
5 抵抗値の調整については後述する。
本実施例 4の変形として、図 11に示すように、送受信感度制御回路 7を抵抗 18とツエ ナーダイオード 17と定電流源 19で構成してもよい。この場合には、ツエナーダイォー ド 17に流れる電流は、バイアス手段 2のバイアス電源力 流れる電流と、電流量を調 整可能な定電流源 19力 流れる電流との加算分になるので、定電流源 19から流れる 電流量を調整することで、ツエナー電圧 Vzを制御することができる。この定電流源 19 の電流値の調整については後述する。
第 5の実施例
[0036] 図 12に、本発明の送受信感度制御回路 7の第 5の実施例を示す。図のように、本実 施例は、送受信感度制御回路 7を抵抗 18と定電流源 19と可変抵抗 R (20)で構成し、
6
ノィァス手段 2と振動子 8間に配置したものである。この回路では、実施例 4の変形の 回路と同様に、定電流源 19カゝら流れる電流量を調整することで、可変抵抗 R (20)に流
6 す電流を調整し、又は、可変抵抗 20の抵抗値を調整することによって振動子 8に印加 するバイアス電圧 Vを制御でき、複数の振動子の相互間の送受信感度バラツキを抑 えることができる。この可変抵抗 R (20)の抵抗値の調整については後述する。
6
[0037] 次に、第 1〜5の実施例で使用する可変抵抗の抵抗値の調整手段及び方法につい て以下に述べる。なお、第 4実施例における定電流源 19の電流値の調整についても 同様である。本調整手段は、バイアス電圧を調整する可変手段としての可変抵抗と、 振動要素の送受信感度特性が記憶されたメモリを有して構成され、メモリから読み出 される情報により可変手段を調整して、送受信感度のバラツキを補正する値にする。 なお、本調整手段は、可変手段として可変抵抗に限らず、他のバイアス電圧を調整 できる手段であれば同様に適用することが可能である。
[0038] 製造時に振動子に所定のバイアス電圧を印加し、所定周波数時のリアクタンスをィ ンピーダンスメータ 21で計測する。このリアクタンス成分は振動要素もしくは振動子の 電極間容量と寄生容量の並列に等価となる。このときの容量は式 (9)となる。
C= I 1/ ωΧ I ω :角周波数 (9)
式 (9)より、振動子のリアクタンス成分の実測結果より、振動子の容量が得られる。式 (6)により、得られた容量と、基準となる振動子の容量とを比較し、補正係数 kが定まる 。この補正係数 kに基づき、振動子に印加するバイアス電圧と、そのバイアス電圧を 得るための抵抗値を決定する。図 13に示すように、予め振動子と同一ウェハ上に作ら れて ヽた抵抗パターンを、特開 2004-273679号公報などに示されて ヽるレーザ発生 装置 22などを用いたトリミング処理をすることで所望の抵抗値を得る。
[0039] また、例えば温度係数サーミスタのような可変抵抗素子をウェハ上に作製し、サーミ スタ自身の抵抗値を、その温度やそれに流す電流を制御することでも抵抗値の調整 は可能である。これは、温度変化によって抵抗値が変化するサーミスタの特性を利用 したものであり、半導体ウェハに正ほたは負)温度係数サーミスタとヒータを作成する ことで実現可能となる。ヒータの一例としては、ペルチェ素子と定電流回路を用いたも のが挙げられる。ペルチェ素子は、電流の向きにより素子の加温、冷却が制御でき、 電流量によりその程度を制御することができる素子である。定電流回路とペルチェ素 子を組み合わせることで所望の温度のヒータを得ることができ、サーミスタの抵抗値の 調整が可能となる。なお、本実施例は可変抵抗としてサーミスタの例を示したが、 FE
Tなどのゲート'ソース間電圧 Vgsを DACなどで制御することにより、スィッチオン抵抗 の値を調整したり、ダイオードに流れる電流を制御することで抵抗値を調整しても良 い。
[0040] 次に、図 14に本発明の送受信感度制御回路 7の第 1の制御例を示す。送受信感度 制御回路 7は、制御手段 25と、メモリ 23と、デジタルアナログコンバータ (以下、 DAC)2 6と、サーミスタなどで構成される可変抵抗 27と、を有して成る。メモリ 23は、制御デー タを記憶し、データバス (以下、 Bus)を介して制御手段 25と接続されている。また、メモ リ 23のデータ出力は DAC26へ入力される。 DAC26は、メモリ 23からのデジタルデータ をアナログ信号に変換して出力し、サーミスタなどで構成される可変抵抗 27に接続さ れる。その他の構造は、図 3で示した構造と同様なので説明を省略する。
[0041] ここで、第 1の制御例の具体的動作を図 16に示すフローチャートに基づいて説明す る。この動作例は、振動子製造工程、探触子組立て工程、及び運用工程とから成る。 以下の各ステップに対応するプログラムが予め記憶されており、ステップ毎に対応す るプログラムが読み出されて実行されること〖こより、自動又は半自動でそのステップが 実施される。
最初に、振動子製造工程 601〜605を説明する。振動子製造工程では、振動要素 毎の送受信感度のバラツキ調整を補正する。 [0042] ステップ 601で、ウェハ生成工程で、振動要素の所定周波数時でのリアクタンスを計 測し、この計測結果より各振動要素の容量を取得する。
ステップ 602で、振動要素毎の送受信感度のバラツキを補正するための基準振動 要素を選択する。基準振動要素として、例えば、容量が最小の振動要素を選択する ステップ 603で、振動要素毎の送受信感度のバラツキを補正するための補正係数 k を求める。つまり、選択された基準振動要素の容量と他の振動要素の容量との比から 振動要素毎の補正係数 kを求める。
ステップ 604で、振動要素毎に、補正係数 kに基づいて、送受信感度のバラツキを 補正するための抵抗素子の抵抗値 (Rs)を求める。抵抗値 (Rs)は補正係数 kと振動要 素の抵抗値 (Rcell)とから、式 (8)より、
Rs={(l -k) /k}Rcell (10)
と求めることがでさる。
ステップ 605で、振動要素毎に、ステップ 604で求めた抵抗値 (Rs)を有する抵抗素 子を同一ウェハ上に実装する。実装方法は、前述した通り、例えば特開 2004-273679 号公報などに示されているレーザ発生装置 22などを用いたトリミング処理をすること で所望の抵抗値を得る。
ステップ 606で、ウェハから探触子用振動子群を切削抽出する。
[0043] 次に、探触子組立て工程 607〜612を説明する。探触子組立て工程では、振動子 毎の送受信感度のバラツキ調整を補正する。
ステップ 607で、ステップ 606で切削抽出された探触子用振動子群を探触子に組み 込む。
ステップ 608で、振動子の所定周波数時でのリアクタンスを計測し、この計測結果よ り各振動子の容量を取得する。
ステップ 609で、振動子毎の送受信感度のバラツキを補正するための基準振動子を 選択する。基準振動子として、例えば、容量が最小の振動子を選択する。
ステップ 610で、振動子毎の送受信感度のバラツキを補正するための補正係数 kを 求める。つまり、選択された基準振動子の容量と他の振動子の容量との比から振動 要素毎の補正係数 kを求める。
[0044] ステップ 611で、振動子毎の補正係数 kに基づいて、振動子毎に印加するノィァス 電圧の制御データを算出して Busを介してメモリに記憶する。また、振動子毎の制御 データ及びその作成日時カ モリ 23内のログファイルに記録される。つまり、補正係 数 kから、送受信感度制御回路 7の可変抵抗 27(例えば、サーミスタ)などの制御デバ イスに対して、抵抗値などの制御因子を制御するための電流値、電圧値若しくは、熱 量 (熱源としてペルチェ素子を使用する場合は、制御因子である電流値)などの制御 データを算出する。そして、 Busを介して制御データをメモリ 23に記憶させる。この制 御データは、製品出荷後の送受信感度のバラツキ補正にも使用する。
[0045] ステップ 612で、制御データに基づ 、て、振動子毎に調整されたバイアス電圧を印 加して超音波を送受信する。制御手段 25は、超音波を送受信する際に、メモリ 23に 記憶しておいた制御データを読み出し、 DAC26へ出力する。 DAC26は、入力された 制御データの値に応じて電流値などを制御することにより、可変抵抗 27の抵抗値を 制御する。具体的には、可変抵抗 27が負温度係数サーミスタとペルチェ素子で構成 される場合には、 DAC26に制御された電流をペルチヱ素子に流すことにより、負温度 係数サーミスタの直接的な温度制御を介して抵抗値を間接的に制御することができ る。
ここで、振動子 8の両端に印加される電圧は、バイアス手段 2が供給する電圧値に 対して、可変抵抗 27の抵抗値 Rsと振動子 8の抵抗値 Rとによる分圧値となる。つまり、 電界強度による電気機械結合係数を調節することによって超音波の送受信感度バラ ツキを補正して、各振動子が同じ送受信感度を有するように制御する。なお、送受信 感度補正を行っているときは超音波診断装置の画面上に、感度補正中を示す表示 を映しておいても良い。
最後に、運用工程 613〜618を説明する。運用工程では、振動子の送受信感度の 経時変化に基づぐ振動子毎の送受信感度のバラツキ調整のずれを補正する。
[0046] ステップ 613で、振動子毎の送受信感度を測定する。製品出荷後には、超音波探 触子に組み込まれた振動子の容量を直接計測することは技術的に困難なので、間 接的に振動子の送受信感度を計測する。一例として、超音波探触子を所定のファン トムに当接させた状態で、制御手段 25は、振動子毎に入力したバイアス電圧に対す る応答信号の電圧を検出することにより、振動子毎の送受信感度を測定することが可 能である。
ステップ 614で、振動子毎の送受信感度のバラツキの補正が必要力否かを判断す る。例えば、各振動子の送受信感度が閾値の範囲 (例えば、ステップ 613で求めた各 振動子の送受信感度の平均値の士 ldB)内である力否かを判定し、範囲外であれば ノ ツキ補正が必要と判断してステップ 615に移行する。他方、閾値の範囲内であれ ば必要無しと判断して、ステップ 618に移行する。
ステップ 615で、振動子毎の送受信感度のバラツキ補正のずれを補正するための基 準振動子を選択する。基準振動子として、例えば、送受信感度が最小の振動子を選 択する。
ステップ 616で、振動子毎の送受信感度のバラツキ補正のずれを補正するための補 正係数 kを求める。つまり、選択された基準振動子の送受信感度と他の振動子の送 受信感度との比から振動要素毎の補正係数 kを求める。
[0047] ステップ 617で、振動子毎の補正係数 kに基づ 、て、振動子毎に印加するバイアス 電圧の制御データを更新して Busを介してメモリ 23に記憶する。具体的には、感度が 低下した振動子に対しては、この振動子に印加されるバイアス電圧が増大されるよう に制御データが変更される。一方、感度が上昇した振動子に対しては、この振動子 に印加されるバイアス電圧が減少されるように制御データが更新される。制御手段 25 は、予めメモリ 23に記憶していた制御データを上記の様に適宜更新することにより、 常に精度の良い送受信感度のバラツキ補正を行うことができる。制御データの更新 後に、ステップ 613に戻って再び振動子毎の送受信感度を測定する。
[0048] 制御データの更新の際には、ログファイルに振動子毎の制御データ及び更新日時 が記録され、そのデータ力 Sメモリ 23に記録される。振動子の送受信感度の経時変化 により、制御デバイスを制御するための制御データを適宜更新する。更新の頻度や 周期は、更新の際に作成されたログファイルを基に制御手段 25内で計算する。この 計算結果は、超音波診断装置操作卓上に配置したボタンを押下することで、装置画 面上に表示することが可能である。 [0049] 或いは、制御データの更新の際、基準振動子の送受信感度に対する他の振動子 の送受信感度の相対値を、画面上にそれぞれ表示して、画面上で制御データの更 新を行っても良い。その一例を図 17に示す。図 17は、各振動子の送受信感度のバラ ツキの経時変化のデータリスト 701と、 2つの制御ボタン 702, 703を画面上に表示して いる例を示す。データリスト 701は、各振動子の、 ID番号と、基準振動子に対する送受 信感度の相対値の経時変化と、制御データの較正量 (%)と、を示している。送受信感 度の相対値の経時変化は、製造時又は組立て時の初期値と、その後に計測された 送受信感度の相対値を時系列に表示したものである。この状態で計測ボタン 702を 押下すると、上記ステップ 613〜616が実行されて、振動子毎の送受信感度の相対値 が計測されると共に、その相対値を 1にするための制御データの較正量 (%)が計算さ れて表示される。全ての振動子の送受信感度の相対値の計測及び制御データの較 正量の計算が終了した後に、適用ボタン 703を押下すると、計算された較正量が制御 データに反映される。また、計測された送受信感度の相対値は計測日時データととも に記憶手段に記憶されて、次回の制御データの更新時に画面上に表示される。
[0050] ステップ 618で、更新された制御データに基づいて、振動子毎に調整されたバイァ ス電圧を印加して超音波を送受信する。
ステップ 619で、振動子の送受信感度の経時変化に基づぐ振動子毎の送受信感 度のバラツキ調整のずれの補正を、一定期間毎に、又は不定期に繰り返すのであれ ば、ステップ 613に戻って、ステップ 613〜ステップ 618を繰り返す。
[0051] 以上の様にして、更新された制御データを用いて送受信感度を制御して超音波を 送受信することにより、常に精度の良 、送受信感度のバラツキ補正が行われた状態 で、高画質の超音波画像を取得することが可能になる。なお、上記探触子製造工程 及び運用工程の説明では、基準振動子を選択し、各振動子の送受信感度のバラッ キを補正する例を示したが、基準を標準探触子の送受信感度とすることにより、探触 子間の送受信感度のバラツキを補正することも可能である。
以上迄が、第 1の制御例の具体的動作フローの説明である。
[0052] 本例では、負温度係数サーミスタを用いた例で示した力 正温度係数サーミスタを 用いても良い。また、本例では、温度係数サーミスタと、ペルチェ素子を用いた抵抗 値制御の例を示した力 自己電流制御サーミスタに直接電流を流すことでも良い。な お、ステップ 613〜617の経時的変化の補正を行わない場合は、ウェハ生成工程、又 は、チップ化後の探触子糸且立て工程時の制御データしか必要ないので、メモリ 23は、 ROMなどの不揮発性記憶素子力もの読み出しに機能限定することができ、回路規模 を低減することができる。
以上、本第 1の制御例によれば、振動子毎の送受信感度のバラツキの補正を連続 的に且つ常に最良となるように行うことができる。また、サーミスタゃペルチェ素子によ り制御デバイスが構成されるので、半導体プロセスのドープ物質 (混ぜる不純物、例と してボロン (ドープ)、 SiC (薄膜)、 Ge (薄膜)、 Ni (金属》の種類や量、または、薄膜により 温度特性の調整をおこなうことが容易になる。
[0053] 次に、図 15に本発明の送受信感度制御回路 7の第 2の制御例を示す。第 1の制御 例と異なるのは、 DAC26の代わりにデータラッチ回路 28を用いることと、可変抵抗の 方式として、サーミスタの代わりに、 MOSスィッチやメカ-カルリレーなどにより構成さ れる複数のアナログスィッチを切り替えることにより抵抗値を制御するアナログスイツ チ切替方式可変抵抗を用いることである。これらの可変抵抗は、例えば MEMS技術に よるマイクロリレーや、ラダー抵抗などにより実現することが可能である。これら以外は 、第 1の制御例と同様なので、振動子 8とバイアス手段 2の図示は省略する。
[0054] ここで、第 2の制御例の具体的動作に関して説明する。ただし、第 2の制御例の動作 フローは、前述の第 1の制御例と同様である力 ステップ 611の制御データの内容及 びステップ 612の内容が異なるので、以下異なる部分についてのみ説明する。
ステップ 611で、制御手段 25がメモリ 23へ制御データを記憶する動作は、第 1の制御 例と同様であるが、メモリ 23に記憶する制御データは、アナログスィッチ切替方式可 変抵抗のスィッチ切替用制御データである。
ステップ 612で、制御手段 25は、超音波を送受信する際に、メモリ 23に記憶しておい た制御データを読み出し、データラッチ回路 28へ出力する。データラッチ回路 28は、 ラッチクロックのタイミング時に入力された複数の制御データの値を保持し、この複数 の制御データの値に応じてアナログスィッチの開閉を変化させることにより、可変抵 抗の抵抗値を制御する。 なお、第 2の制御例においても第 1の制御方法と同様に、組立て工程後に各振動子 8の送受信信号強度を計測すれば、各素子の経時的変化に応じたバラツキ補正を行 うことができる。
この第 2の制御例により、周囲温度など外的要因を受けることなく振動子毎の送受 信感度のノ ラツキを補正することが可能になる。
なお、上記第 1及び第 2の制御例は、いずれもオンライン 'オフラインのいずれかで 行うことが可能である。
[0055] 製品出荷後における送受信感度のバラツキ補正の他の一例として、リモートで探触 子の送受信感度のバラツキ状況の確認および送受信感度のバラツキの補正処理を 行うことも可能である。そのためには、超音波診断装置は、装置外に配設されている 外部制御手段 (例えば、リモートセンター内のホストコンピュータ)とネットワークを介し て通信できる通信手段を備える。そして、ネットワークを介して、探触子の送受信感度 の補正情報を保有しているホストコンピュータに接続し、探触子の経時変化による送 受信感度状況の確認やその探触子固有の制御データの更新や送受信感度のバラ ツキの補正処理などを行うものである。
最後に上記本発明の説明では、振動要素毎、振動要素群毎、又は振動子毎の送 受信感度のバラツキ補正について示したが、振動要素毎、振動要素群毎、又は振動 子毎の送受信感度が標準探触子の感度になるように補正することも可能である。 図面の簡単な説明
[0056] [図 1]本発明を適用した超音波探触子と超音波診断装置と送受信感度制御回路の 第 1の実施例を示す図である。
[図 2]図 1の振動要素を振動要素群として示した図である。
[図 3]図 1の振動要素を振動子として示した図である。
[図 4]複数の振動子にそれぞれ送受信感度制御回路 7を接続した場合を示した図で ある。
[図 5]図 1の振動要素を振動子群として示した図である。
[図 6]複数の振動要素にそれぞれ制御用抵抗 Rxを接続した場合を示した図である。
[図 7A]振動要素群の電圧一容量計測結果を示した図である。 [図 7B]各振動要素群の最大印加電圧値を示した図である。
[図 7C]各振動子の許容使用電圧値を示した図である。
[図 8]送受信感度制御回路の第 2の実施例を示す図である。
[図 9]送受信感度制御回路の第 3の実施例を示す図である。
[図 10]送受信感度制御回路の第 4の実施例を示す図である。
[図 11]送受信感度制御回路の第 4の実施例の変形を示す図である。
[図 12]送受信感度制御回路の第 5の実施例を示す図である。
[図 13]振動要素と同一ウェハ上に作られていた抵抗にレーザ発生装置によるトリミン グ処理を行って 、る図である。
[図 14]本発明の送受信感度制御回路の第 1の制御例を示す図である。
[図 15]本発明の送受信感度制御回路の第 2の制御例を示す図である。
[図 16]図 14示す送受信感度制御回路の第 1の制御例の具体的動作示すフローチヤ ート図である。
[図 17]基準振動子の送受信感度に対する他の振動子の送受信感度の相対値のリス トを示す図である。
符号の説明
1 振動要素
1 -a 上部電極
1 b 下部電極
2 バイアス手段
4 送信手段
5 受信手段
6 送受分離手段
7 送受信感度制御回路

Claims

請求の範囲
[1] ノィァス電圧が印加された状態で超音波と電気信号とを相互に変換することにより 超音波の送受信を行う複数の振動要素を備えた振動子を複数配列して成る超音波 探触子において、
前記複数の振動要素の内の少なくとも 2つの振動要素に印加する前記バイアス電 圧を独立に調整して、該少なくとも 2つの振動要素の送受信感度のノ ツキを補正す る送受信感度補正手段を備えていることを特徴とする超音波探触子。
[2] 請求項 1記載の超音波探触子において、
前記送受信感度補正手段は、前記少なくとも 2つの振動要素の各々の送受信感度 に対応して、外部に配設されたバイアス手段から供給される DC電圧を該 DC電圧と異 なる電圧のノィァス電圧に変換して、前記少なくとも 2つの振動要素の各々に前記変 換されたバイアス電圧を印加することを特徴とする超音波探触子。
[3] 請求項 2記載の超音波探触子において、
前記送受信感度補正手段は、前記少なくとも 2つの振動要素の内から選択された 基準振動要素の容量と他の振動要素の容量とに基づいて、前記 DC電圧から該他の 振動要素に印加するバイアス電圧に変換することを特徴とする超音波探触子。
[4] 請求項 2記載の超音波探触子にお 、て、
前記送受信感度補正手段は、少なくとも一つの抵抗素子を有して、該少なくとも一 つの抵抗素子の内の少なくとも一つの抵抗素子の抵抗値を調整することにより、前記 DC電圧から変換するバイアス電圧の電圧を調整することを特徴とする超音波探触子
[5] 請求項 4記載の超音波探触子にお 、て、
前記送受信感度補正手段は、前記調整される少なくとも一つの抵抗素子を用いて 、前記 DC電圧を分圧して前記バイアス電圧に変換することを特徴とする超音波探触 子。
[6] 請求項 4記載の超音波探触子にお 、て、
前記送受信感度補正手段は、前記調整される少なくとも一つの抵抗素子とトランジ スタとを有して成るェミッタフォロア回路を用いて、前記 DC電圧力 前記バイアス電 圧に変換することを特徴とする超音波探触子。
[7] 請求項 4記載の超音波探触子にお 、て、
前記送受信感度補正手段は、前記調整される少なくとも一つの抵抗素子とォペア ンプとを有して成る定電圧回路を用いて、前記 DC電圧力 前記バイアス電圧に変換 することを特徴とする超音波探触子。
[8] 請求項 4記載の超音波探触子にお 、て、
前記送受信感度補正手段は、前記調整される少なくとも一つの抵抗素子どツエナ 一ダイオードとを有して成る電圧リミット回路を用いて、前記 DC電圧から前記バイアス 電圧に変換することを特徴とする超音波探触子。
[9] 請求項 4記載の超音波探触子にお 、て、
前記送受信感度補正手段は、前記調整される少なくとも一つの抵抗素子と定電流 源とを用いて、前記 DC電圧から前記バイアス電圧に変換することを特徴とする超音 波探触子。
[10] 請求項 2記載の超音波探触子において、
前記送受信感度補正手段は、少なくとも一つの抵抗素子とツエナーダイオードと定 電流源とを有して、前記定電流源を制御することにより、前記 DC電圧から前記バイァ ス電圧に変換することを特徴とする超音波探触子。
[11] 請求項 4記載の超音波探触子において、
前記調整される少なくとも一つの抵抗素子は、可変抵抗素子を有して成り、 前記送受信感度補正手段は、前記可変抵抗素子の抵抗値を制御する抵抗値制御 手段を有して、前記可変抵抗素子の抵抗値を制御することにより、前記 DC電圧から 変換するバイアス電圧の電圧を調整することを特徴とする超音波探触子。
[12] 請求項 11記載の超音波探触子において、
前記可変抵抗素子は、温度によって抵抗値が変化するサーミスタを有し、 前記抵抗値制御手段は、前記サーミスタの温度を制御する手段を有することを特 徴とする超音波探触子。
[13] 請求項 4記載の超音波探触子において、
前記抵抗素子は、複数のアナログスィッチを有し、 前記抵抗値制御手段は、前記スィッチを切り替えることにより前記抵抗素子の抵抗 値を制御することを特徴とする超音波探触子。
[14] 請求項 11記載の超音波探触子において、
前記抵抗素子は、前記振動要素と同じウェハ上に形成されて、事前に調整された 抵抗値を有することを特徴とする超音波探触子。
[15] 請求項 1記載の超音波探触子において、
前記複数の振動要素の各々は電極を有し、
前記複数の振動要素の内の少なくとも一つ振動要素の電極が共通に接続されて 成る振動要素群が少なくとも一つ形成され、
前記送受信感度補正手段は、前記少なくとも一つの振動要素群に備えられて、該 少なくとも一つの振動要素群の各々の共通電極に前記バイアス電圧をそれぞれ印 加することを特徴とする超音波探触子。
[16] 請求項 1記載の超音波探触子において、
前記複数の振動要素の各々は電極を有し、
前記振動子を構成する複数の振動要素は電極が共通に接続され、
前記送受信感度補正手段は、前記複数の振動子の内の少なくとも一つの振動子 に備えられて、該少なくとも一つの振動子の各々の共通電極に前記バイアス電圧を それぞれ印加することを特徴とする超音波探触子。
[17] ノ ィァス電圧が印加された状態で超音波と電気信号とを相互に変換することにより 超音波の送受信を行う振動要素を少なくとも一つ備えた振動子を複数配列して成る 超音波探触子と、
前記ノ ィァス電圧を供給するための DC電圧を発生するバイアス手段と、 前記複数の振動要素との間で前記電気信号の送受を行う送受信制御手段と、 を有する超音波診断装置において、
前記バイアス手段と前記複数の振動要素の内の少なくとも 2つの振動要素との間に
、該少なくとも 2つの振動要素に印加する前記バイアス電圧を独立に調整して、該少 なくとも 2つの振動要素の送受信感度のバラツキを補正する送受信感度補正手段を 備えて!/、ることを特徴とする超音波診断装置。
[18] 請求項 17記載の超音波診断装置において、
前記送受信感度補正手段は、前記少なくとも 2つの振動要素の各々の送受信感度 に対応して、前記バイアス手段から供給される DC電圧を該 DC電圧と異なる電圧のバ ィァス電圧に変換して、前記少なくとも 2つの振動要素の各々に前記変換されたノ ィ ァス電圧を印加することを特徴とする超音波診断装置。
[19] 請求項 17記載の超音波診断装置において、
前記送受信感度補正手段は、前記バイアス電圧を調整する可変手段と、前記振動 要素の送受信感度特性が記憶されたメモリとを有し、前記メモリから読み出される情 報により前記可変手段を調整して前記送受信感度のバラツキを補正することを特徴 とする超音波診断装置。
[20] 請求項 17記載の超音波診断装置において、
超音波診断装置とは別の場所に設けられた外部制御装置との間で通信を行う通信 手段を備え、
前記送受信感度補正手段は、前記外部制御装置からの情報に基づいて、前記少 なくとも 2つの振動要素の各々の送受信感度のバラツキの補正を行うことを特徴とす る超音波診断装置。
PCT/JP2006/322467 2005-11-11 2006-11-10 超音波探触子及び超音波診断装置 WO2007055320A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/093,154 US7872399B2 (en) 2005-11-11 2006-11-10 Ultrasonic probe and ultrasonic diagnosis apparatus
CN2006800421729A CN101304691B (zh) 2005-11-11 2006-11-10 超声波探头及超声波诊断装置
JP2007544194A JP4822453B2 (ja) 2005-11-11 2006-11-10 超音波探触子及び超音波診断装置
EP06832513.3A EP1949856B1 (en) 2005-11-11 2006-11-10 Ultrasonic probe and ultrasonographic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-327364 2005-11-11
JP2005327364 2005-11-11

Publications (1)

Publication Number Publication Date
WO2007055320A1 true WO2007055320A1 (ja) 2007-05-18

Family

ID=38023315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322467 WO2007055320A1 (ja) 2005-11-11 2006-11-10 超音波探触子及び超音波診断装置

Country Status (5)

Country Link
US (1) US7872399B2 (ja)
EP (1) EP1949856B1 (ja)
JP (1) JP4822453B2 (ja)
CN (1) CN101304691B (ja)
WO (1) WO2007055320A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027985A (ja) * 2008-07-23 2010-02-04 National Institute Of Advanced Industrial & Technology 太陽光発電システムにおける電流電圧特性測定装置。
US20100268081A1 (en) * 2007-12-13 2010-10-21 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic probe
JP2011004281A (ja) * 2009-06-19 2011-01-06 Canon Inc 電気機械変換装置および電気機械変換装置の感度ばらつき検出方法
JP2011004280A (ja) * 2009-06-19 2011-01-06 Canon Inc 静電容量型の電気機械変換装置
JP2013539715A (ja) * 2010-10-13 2013-10-28 マウイ イマギング,インコーポレーテッド 凹面超音波トランスデューサ及び3dアレイ
JP2014017567A (ja) * 2012-07-06 2014-01-30 Canon Inc 静電容量型トランスデューサ及びその製造方法
JP2014197846A (ja) * 2014-04-18 2014-10-16 キヤノン株式会社 静電容量型の電気機械変換装置
JPWO2013125626A1 (ja) * 2012-02-23 2015-07-30 日立アロカメディカル株式会社 超音波診断装置及び超音波探触子
JP2018042896A (ja) * 2016-09-16 2018-03-22 コニカミノルタ株式会社 超音波プローブおよび当該超音波プローブの補正方法
CN109363720A (zh) * 2013-07-19 2019-02-22 维拉声学公司 波形生成的方法和系统
JP2022044904A (ja) * 2020-09-08 2022-03-18 富士フイルム株式会社 超音波検査システム
US12144681B2 (en) 2020-09-08 2024-11-19 Fujifilm Corporation Ultrasonography system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092054A2 (en) 2006-02-06 2007-08-16 Specht Donald F Method and apparatus to visualize the coronary arteries using ultrasound
WO2008051639A2 (en) 2006-10-25 2008-05-02 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
US10226234B2 (en) 2011-12-01 2019-03-12 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
US20090183350A1 (en) * 2008-01-17 2009-07-23 Wetsco, Inc. Method for Ultrasound Probe Repair
US8721550B2 (en) * 2008-10-30 2014-05-13 Texas Instruments Incorporated High voltage ultrasound transmitter with symmetrical high and low side drivers comprising stacked transistors and fast discharge
FR2938918B1 (fr) * 2008-11-21 2011-02-11 Commissariat Energie Atomique Procede et dispositif d'analyse acoustique de microporosites dans un materiau tel que le beton a l'aide d'une pluralite de transducteurs cmuts incorpores dans le materiau
JP5485373B2 (ja) 2009-04-14 2014-05-07 マウイ イマギング,インコーポレーテッド 複数開口の超音波アレイ位置合せ装置
JP5424847B2 (ja) * 2009-12-11 2014-02-26 キヤノン株式会社 電気機械変換装置
US8749294B2 (en) * 2010-01-15 2014-06-10 Supertex, Inc. Low pin count high voltage ultrasound transmitter and method therefor
KR102121040B1 (ko) 2010-02-18 2020-06-09 마우이 이미징, 인코포레이티드 초음파 이미지를 구성하는 방법 및 이를 위한 다중-개구 초음파 이미징 시스템
CN102469983B (zh) * 2010-04-12 2013-04-24 奥林巴斯医疗株式会社 超声波诊断装置
JP5499938B2 (ja) * 2010-06-25 2014-05-21 セイコーエプソン株式会社 超音波センサー、測定装置、プローブ、および測定システム
WO2012051305A2 (en) 2010-10-13 2012-04-19 Mau Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
DE102010042875A1 (de) * 2010-10-25 2012-04-26 Siemens Aktiengesellschaft Verfahren zur Regelung einer Vorspannung für einen kapazitiven mikromechanischen Ultraschallwandler
WO2013101988A1 (en) 2011-12-29 2013-07-04 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
US8792295B2 (en) * 2012-01-31 2014-07-29 General Electric Company Method and system for monitoring a transducer array in an ultrasound system
WO2013126559A1 (en) 2012-02-21 2013-08-29 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
KR102103137B1 (ko) 2012-03-26 2020-04-22 마우이 이미징, 인코포레이티드 가중 인자들을 적용함으로써 초음파 이미지 품질을 향상시키는 시스템들 및 방법들
CN103576719B (zh) * 2012-07-20 2015-09-30 东北林业大学 木材超声波速度测量的温控装置
US9572549B2 (en) 2012-08-10 2017-02-21 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
EP2887879B1 (en) 2012-09-06 2021-05-26 Maui Imaging, Inc. Method of ultrasound imaging
CN103829972B (zh) * 2012-11-26 2015-12-09 飞依诺科技(苏州)有限公司 超声诊断设备的探头自动矫正方法及系统
JP6102284B2 (ja) * 2013-01-29 2017-03-29 セイコーエプソン株式会社 超音波測定装置、超音波ヘッドユニット、超音波プローブ及び超音波画像装置
WO2014160291A1 (en) 2013-03-13 2014-10-02 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
KR102209757B1 (ko) * 2013-12-27 2021-01-29 삼성메디슨 주식회사 초음파 진단장치 관리 시스템
KR102430449B1 (ko) 2014-08-18 2022-08-05 마우이 이미징, 인코포레이티드 네트워크-기반 초음파 이미징 시스템
WO2016030717A1 (en) * 2014-08-25 2016-03-03 B-K Medical Aps Transducer array cmut element biasing
EP3408037A4 (en) 2016-01-27 2019-10-23 Maui Imaging, Inc. ULTRASONIC IMAGING WITH DISTRIBUTED NETWORK PROBES
US10730073B2 (en) * 2017-02-24 2020-08-04 Stmicroelectronics S.R.L. Electronic circuit, corresponding ultrasound apparatus and method
FR3076395B1 (fr) * 2017-12-28 2020-01-17 Thales Dispositif de controle thermique d'un composant, systeme electronique et plate-forme associes
CN109270172B (zh) * 2018-09-13 2020-04-28 中南大学 校验超声水浸压电探头的方法及装置
CN111374696B (zh) * 2018-12-28 2023-09-05 深圳迈瑞生物医疗电子股份有限公司 超声诊断设备及超声成像方法
US20230258476A1 (en) * 2020-07-29 2023-08-17 Georgia Tech Research Corporation Systems and methods for adaptively reducing acoustic reflections in capacitive transducers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1023549A (en) 1962-10-26 1966-03-23 Nat Res Dev Apparatus comprising piezo-electric elements and circuits used in conjunction therewith
JPH09122125A (ja) * 1995-09-01 1997-05-13 Fujitsu Ltd 超音波モジュールおよび超音波診断システム
US6461299B1 (en) 1999-12-22 2002-10-08 Acuson Corporation Medical diagnostic ultrasound system and method for harmonic imaging with an electrostatic transducer
JP2002303612A (ja) * 2001-04-05 2002-10-18 Hitachi Eng Co Ltd 超音波探傷装置の遅延時間補正方法および装置
JP2004274756A (ja) 2003-03-06 2004-09-30 General Electric Co <Ge> 超微細加工超音波トランスデューサを用いたモザイク型アレイ
WO2005032374A1 (ja) 2003-10-02 2005-04-14 Hitachi Medical Corporation 超音波探触子、超音波撮像装置および超音波撮像方法
US20050094490A1 (en) 2003-03-06 2005-05-05 Thomenius Kai E. Integrated interface electronics for reconfigurable sensor array

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727112A (en) * 1969-08-29 1973-04-10 Surgical Design Corp Generator for producing ultrasonic energy
US5585546A (en) * 1994-10-31 1996-12-17 Hewlett-Packard Company Apparatus and methods for controlling sensitivity of transducers
US6381197B1 (en) * 1999-05-11 2002-04-30 Bernard J Savord Aperture control and apodization in a micro-machined ultrasonic transducer
US6795374B2 (en) * 2001-09-07 2004-09-21 Siemens Medical Solutions Usa, Inc. Bias control of electrostatic transducers
JP3964334B2 (ja) * 2003-02-06 2007-08-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
CN100411304C (zh) * 2003-09-08 2008-08-13 通用电气公司 用于超声转换器阵列的高电压开关的方法和装置
EP1806098A4 (en) * 2004-10-15 2012-08-15 Hitachi Medical Corp ultrasonograph
WO2006041114A1 (ja) * 2004-10-15 2006-04-20 Hitachi Medical Corporation 超音波診断装置
JP5399632B2 (ja) * 2005-05-09 2014-01-29 株式会社日立メディコ 超音波診断装置
EP2130495A4 (en) * 2007-03-20 2012-03-28 Hitachi Medical Corp ULTRASONIC PROBE, METHOD FOR MANUFACTURING SAME, AND ULTRASONIC DIAGNOSTIC DEVICE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1023549A (en) 1962-10-26 1966-03-23 Nat Res Dev Apparatus comprising piezo-electric elements and circuits used in conjunction therewith
JPH09122125A (ja) * 1995-09-01 1997-05-13 Fujitsu Ltd 超音波モジュールおよび超音波診断システム
US6461299B1 (en) 1999-12-22 2002-10-08 Acuson Corporation Medical diagnostic ultrasound system and method for harmonic imaging with an electrostatic transducer
JP2002303612A (ja) * 2001-04-05 2002-10-18 Hitachi Eng Co Ltd 超音波探傷装置の遅延時間補正方法および装置
JP2004274756A (ja) 2003-03-06 2004-09-30 General Electric Co <Ge> 超微細加工超音波トランスデューサを用いたモザイク型アレイ
US20050094490A1 (en) 2003-03-06 2005-05-05 Thomenius Kai E. Integrated interface electronics for reconfigurable sensor array
WO2005032374A1 (ja) 2003-10-02 2005-04-14 Hitachi Medical Corporation 超音波探触子、超音波撮像装置および超音波撮像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAFT C. ET AL.: "Microfabricated Ultrasonic Transducers Monolithically Integrated with High Voltage Electronics", 2004 IEEE ULTRASONICS SYMPOSIUM, 23 August 2004 (2004-08-23), pages 493 - 496, XP010783991 *
See also references of EP1949856A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089874B2 (en) * 2007-12-13 2015-07-28 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic probe
US20100268081A1 (en) * 2007-12-13 2010-10-21 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic probe
JP2010027985A (ja) * 2008-07-23 2010-02-04 National Institute Of Advanced Industrial & Technology 太陽光発電システムにおける電流電圧特性測定装置。
JP2011004281A (ja) * 2009-06-19 2011-01-06 Canon Inc 電気機械変換装置および電気機械変換装置の感度ばらつき検出方法
JP2011004280A (ja) * 2009-06-19 2011-01-06 Canon Inc 静電容量型の電気機械変換装置
US9774276B2 (en) 2009-06-19 2017-09-26 Canon Kabushiki Kaisha Capacitive electromechanical transducer
US9321080B2 (en) 2009-06-19 2016-04-26 Canon Kabushiki Kaisha Electromechanical transducer and method for detecting sensitivity variation of electromechanical transducer
US8928203B2 (en) 2009-06-19 2015-01-06 Canon Kabushiki Kaisha Capacitive electromechanical transducer
JP2013539715A (ja) * 2010-10-13 2013-10-28 マウイ イマギング,インコーポレーテッド 凹面超音波トランスデューサ及び3dアレイ
JPWO2013125626A1 (ja) * 2012-02-23 2015-07-30 日立アロカメディカル株式会社 超音波診断装置及び超音波探触子
JP2014017567A (ja) * 2012-07-06 2014-01-30 Canon Inc 静電容量型トランスデューサ及びその製造方法
CN109363720A (zh) * 2013-07-19 2019-02-22 维拉声学公司 波形生成的方法和系统
CN109363720B (zh) * 2013-07-19 2021-10-19 维拉声学公司 波形生成的方法和系统
JP2014197846A (ja) * 2014-04-18 2014-10-16 キヤノン株式会社 静電容量型の電気機械変換装置
JP2018042896A (ja) * 2016-09-16 2018-03-22 コニカミノルタ株式会社 超音波プローブおよび当該超音波プローブの補正方法
JP2022044904A (ja) * 2020-09-08 2022-03-18 富士フイルム株式会社 超音波検査システム
JP7345447B2 (ja) 2020-09-08 2023-09-15 富士フイルム株式会社 超音波検査システム
US11857366B2 (en) 2020-09-08 2024-01-02 Fujifilm Corporation Ultrasonography system
US12144681B2 (en) 2020-09-08 2024-11-19 Fujifilm Corporation Ultrasonography system

Also Published As

Publication number Publication date
CN101304691A (zh) 2008-11-12
JPWO2007055320A1 (ja) 2009-04-30
US7872399B2 (en) 2011-01-18
US20090251025A1 (en) 2009-10-08
CN101304691B (zh) 2011-10-26
EP1949856A1 (en) 2008-07-30
JP4822453B2 (ja) 2011-11-24
EP1949856B1 (en) 2014-08-06
EP1949856A4 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2007055320A1 (ja) 超音波探触子及び超音波診断装置
US9476861B2 (en) Ultrasound diagnostic device and ultrasound probe
US9101958B2 (en) Electromechanical transducer
CN110411560B (zh) 振动传感器和方法
US7274002B2 (en) Heating element induction of time-varying thermal gradient in elongated beam to cause one or more elongated beam oscillations
US6392327B1 (en) Sonic transducer and feedback control method thereof
CN109690263A (zh) 电子振动传感器的电子系统的至少一个部件的相移的补偿
KR102020628B1 (ko) 초음파 센서의 구동 주파수 최적화 장치 및 그 방법
EP2442919B1 (en) Electromechanical transducer and method for detecting sensitivity variation of electromechanical transducer
JP2006078429A (ja) センシング装置
JP5225284B2 (ja) 電気機械変換素子の電気機械特性検査方法
JP3998589B2 (ja) 音圧測定装置及び圧測定方法
JP2000074733A (ja) センサ装置、ピエゾ抵抗型センサ装置、及び振動波検出装置
US20230375436A1 (en) Method of evaluating natural frequency of piezoelectric vibrator, method of driving transducer, signal transmitting/receiving device, and drive system
US20230408367A1 (en) Method of evaluating natural frequency of piezoelectric vibrator, method of driving transducer, signal transmitting/receiving device, and drive system
US20220365040A1 (en) Microelectromechanical sensing apparatus with calibration function
CN112326018B (zh) 振动传感器的测试方法及振动传感器
KR101842350B1 (ko) 멤브레인의 기계적 공진 특성을 이용한 컨덴서형 멤브레인 센서용 측정 장치 및 방법
JP5226141B1 (ja) 超音波洗浄装置及びその電力制御方法
JP2023055329A (ja) 超音波センサ制御装置、超音波センサ
CN117110713A (zh) 压电振子单晶的大功率阻抗特性的测试系统及方法
RU2538034C2 (ru) Бездемонтажный способ поверки виброакустических приемников
JP2002257619A (ja) 物質の微小質量変化を測定するための方法及び装置
JPS62118238A (ja) 振動式トランスジユ−サ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042172.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006832513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12093154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE