WO2006134580A2 - Micro-electro-mechanical transducer having an insulation extension - Google Patents
Micro-electro-mechanical transducer having an insulation extension Download PDFInfo
- Publication number
- WO2006134580A2 WO2006134580A2 PCT/IB2006/051948 IB2006051948W WO2006134580A2 WO 2006134580 A2 WO2006134580 A2 WO 2006134580A2 IB 2006051948 W IB2006051948 W IB 2006051948W WO 2006134580 A2 WO2006134580 A2 WO 2006134580A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive layer
- substrate
- insulation
- transducer
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 273
- 238000000034 method Methods 0.000 claims abstract description 167
- 239000012212 insulator Substances 0.000 claims abstract description 59
- 230000002463 transducing effect Effects 0.000 claims abstract description 53
- 239000012528 membrane Substances 0.000 claims abstract description 46
- 239000010410 layer Substances 0.000 claims description 494
- 239000000758 substrate Substances 0.000 claims description 178
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 94
- 229910052710 silicon Inorganic materials 0.000 claims description 94
- 239000010703 silicon Substances 0.000 claims description 94
- 239000000463 material Substances 0.000 claims description 47
- 239000011810 insulating material Substances 0.000 claims description 44
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 40
- 229920005591 polysilicon Polymers 0.000 claims description 40
- 238000005530 etching Methods 0.000 claims description 28
- 150000004767 nitrides Chemical class 0.000 claims description 27
- 239000002346 layers by function Substances 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 238000000059 patterning Methods 0.000 claims description 17
- 238000000151 deposition Methods 0.000 claims description 12
- 230000005284 excitation Effects 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000000153 supplemental effect Effects 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- 230000036961 partial effect Effects 0.000 claims description 4
- 239000011343 solid material Substances 0.000 claims description 4
- 239000011800 void material Substances 0.000 claims description 4
- 238000005304 joining Methods 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 2
- 230000008569 process Effects 0.000 description 65
- 230000003647 oxidation Effects 0.000 description 31
- 238000007254 oxidation reaction Methods 0.000 description 31
- 238000000926 separation method Methods 0.000 description 22
- 238000013461 design Methods 0.000 description 18
- 230000015556 catabolic process Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000004020 conductor Substances 0.000 description 10
- 238000002513 implantation Methods 0.000 description 10
- 230000003071 parasitic effect Effects 0.000 description 10
- 238000002604 ultrasonography Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000026683 transduction Effects 0.000 description 7
- 238000010361 transduction Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000012774 insulation material Substances 0.000 description 5
- 238000005459 micromachining Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 238000003957 acoustic microscopy Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/002—Electrostatic motors
- H02N1/006—Electrostatic motors of the gap-closing type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0018—Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
- B81B3/0021—Transducers for transforming electrical into mechanical energy or vice versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/0292—Electrostatic transducers, e.g. electret-type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2406—Electrostatic or capacitive probes, e.g. electret or cMUT-probes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
- H10N30/2047—Membrane type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
Definitions
- the present invention relates to micro-electro-mechanical devices that have a movable mechanical part for energy transformation, particularly to micromachined ultrasonic transducers (MUT) such as capacitive micromachined ultrasonic transducers (cMUT).
- MUT micromachined ultrasonic transducers
- cMUT capacitive micromachined ultrasonic transducers
- Micro-electro-mechanical transducers usually share a common feature which includes a movable mechanical part used for energy transformation.
- a movable mechanical part used for energy transformation.
- One example of such micro-electro-mechanical transducers is micromachined ultrasonic transducers (MUT).
- An ultrasound transducer performs a chain of energy transformation to realize its function of a transducer.
- the acoustic energy of ultrasound waves propagating in a medium where the transducer is placed is transformed to mechanical energy of a movable part (conventionally a vibrating membrane) in the transducer.
- the motion of the movable part is then transformed to a detectable electromagnetic (usually electrical) signal.
- the reverse chain of energy transformation takes place.
- Ultrasonic transducers can operate in a variety of media including liquids, solids and gas. These transducers are commonly used for medical imaging for diagnostics and therapy, biochemical imaging, non-destructive evaluation of materials, sonar, communication, proximity sensors, gas flow measurements, in-situ process monitoring, acoustic microscopy, underwater sensing and imaging, and many others.
- ultrasound transducer arrays containing multiple transducers have been also developed. For example, two- dimensional arrays of ultrasound transducers are developed for imaging applications.
- the MUT Compared to the widely used piezoelectric (PZT) ultrasound transducer, the MUT has advantages in device fabrication method, bandwidth and operation temperature. For example, making arrays of conventional PZT transducers involves dicing and connecting individual piezoelectric elements. This process is fraught with difficulties and high expenses, not to mention the large input impedance mismatch problem presented by such elements to transmit/receiving electronics. In comparison, the micro- machining techniques used in fabricating MUTs are much more capable in making such arrays. In terms of performance, the MUT demonstrates a dynamic performance comparable to that of PZT transducers. For these reasons, the MUT is becoming an attractive alternative to the piezoelectric (PZT) ultrasound transducers.
- PZT piezoelectric
- FIG. 1 shows a cross-sectional view of a basic structure of a prior art cMUT.
- the cMUT 10 of FIGS. 1 is built on a substrate 11.
- Each cMUT cell has a parallel plate capacitor consisting of a rigid bottom electrode 12 and a top electrode 14 residing on or within a flexible membrane 16 that is used to transmit or receive an acoustic wave in the adjacent medium.
- the flexible membrane 16 in each cell is supported by the anchor 18.
- the membrane 16 is spaced from the substrate 11 and the top electrode 12 to define a transducing space 19 therebetween.
- a DC bias voltage is applied between the electrodes 12 and 14 to deflect the membrane 16 to an optimal position for cMUT operation, usually with the goal of maximizing sensitivity and bandwidth.
- an AC signal is applied to the transducer.
- the alternating electrostatic force between the top electrode and the bottom electrode actuates the membrane 16 in order to deliver acoustic energy into the medium (not shown) surrounding the cMUT 10.
- the impinging acoustic wave vibrates the membrane 16, thus altering the capacitance between the two electrodes.
- An electronic circuit detects this capacitance change.
- the anchor 18 which can be made of an insulating material, and at the same time provides support between the two electrodes 12 and 14.
- another insulation layer (not shown) may also placed between the two electrodes 12 and 14 of the cMUT 10 to prevent electric shorting during transducer operation.
- the separation gap of the two cMUT electrodes 12 and 14 affects transduction performance of the cMUT, while the thickness of the insulate layer and height of the anchor 18 affect the breakdown voltage and the parasitic capacitance of the cMUT transducer, in a competitive manner.
- the cMUT design is often a trade-off between these two competing factors with a compromise to the cMUT performance.
- This patent application discloses a micro-electro-mechanical transducer (such as a cMUT) having two conductive layers (e.g., electrodes) separated by an insulator with an insulation extension.
- the two conductive layers define a transducing gap therebetween.
- the insulator has an insulating support disposed generally between the two conductive layers and an insulation extension extending into at least one of two conductive layers. The use of the insulation extension increases the effective insulation without having to increase the transducing gap.
- This patent application also discloses methods for fabricating the micro-electro-mechanical transducer.
- the inventive techniques may be used in both conventional membrane-based cMUTs and cMUTs having embedded springs transporting a rigid top plate.
- the host conductive layer (the conductive layer into which the insulation extension is extended) is thicker than the insulation extension such that the insulation extension is contained in the conductive layer.
- the conductive layer may include a base conductive layer and a supplemental conductive layer having conductivity significantly higher than that of the base conductive layer. The two layers may be formed on a silicon wafer with different doping levels.
- the base conductive layer is a silicon layer and the supplemental conductive layer is a metal layer.
- the insulation extension extends into the conductive layer(s) by a depth that measures at least 25% of the transducing gap, thus significantly increasing the effective insulation without increasing the transducing gap.
- the insulating support and the insulation extension may be formed of either the same or any combination of different insulating materials.
- the insulating support may be either separated or connected to the insulation extension.
- the insulation extension is disposed in a cavity formed in the host conductive layer.
- the insulation extension may be a solid material either completely filling the cavity or partially filling the cavity leaving a partial void therein.
- the insulation extension may include two extension ends, a first extension end extending into the first conductive layer and a second extension end extending into the second conductive layer.
- the two extension ends may have either the same or different insulating materials.
- the insulation extension is located at a position where the two conductive layers are most likely to contact or come close to contact each other during operation.
- a motion stopper extending partially across the transducing gap to limit the maximum transducing distance may also be used.
- the micro-electro-mechanical transducer in accordance with the present invention can be a capacitive micromachined ultrasonic transducer, wherein the first conductive layer serves as a bottom electrode and the second conductive layer serves as a movable top electrode.
- a conductive substrate such as a silicon wafer may serve as the bottom electrode.
- the second conductive layer may have a resilient membrane supported by the insulating support.
- the insulation extension is incorporated in a micro-electro-mechanical transducer having embedded springs.
- the transducer comprises: (1) a substrate; (2) a middle spring layer placed over the substrate, the substrate and the middle spring layer defining a cavity therebetween, the cavity being bordered by a sidewall, wherein the middle spring layer extends from the sidewall to cover the cavity; (3) an insulating connector on the middle spring layer; (4) a top plate placed over the insulating connector, which separates the top plate from the middle spring layer to define a transducing gap below the top plate; and (5) an insulation extension extending beyond the transducing gap.
- the top plate comprises a conductive layer and the insulation extension extends into the conductive layer.
- the top plate may have a silicon/polysilicon layer, and the insulation extension extends into the silicon/ polysilicon layer.
- the top plate may further include a metal layer.
- the middle spring layer comprises a conductive layer and the insulation extension extends into the conductive layer.
- the substrate may be conductive and the insulation extension extends into the conductive substrate.
- the micro-electro-mechanical transducer having embedded springs may be a capacitive micromachined ultrasonic transducer having a bottom electrode and a top electrode.
- the bottom electrode may be part of the substrate and/or the middle spring, while the top electrode may be a part of the top plate.
- the sidewall of the substrate may be conductive, and the bottom electrode may include at least a part of the sidewall of the substrate.
- the bottom electrode may also include a separate conductive layer deposited on the middle spring layer or in the substrate.
- the top plate is significantly more rigid than the middle spring layer and is substantially unbent when transported by the vertical displacement of the insulating connectors.
- the maximum vertical displacement the top plate can be transported through the transducing space may be limited by a motion stopper.
- a capacitive micromachined ultrasonic transducer comprises: (1) a lower layer including a substantially static substrate and serving as a bottom electrode; (2) a top layer including a membrane and serving as a top electrode, the membrane being adapted for vibrating in relation to the static substrate a transducing excitation, the top layer and the lower layer defining a transducing gap therebetween; and (3) an insulator having a main portion and an insulation extension, the main portion being generally disposed between and supporting the lower layer and the top layer, and the insulation extension extending into at least one of the lower layer and the top layer.
- At least one of the lower layer and the top layer has a conductive layer thicker than the insulation extension such that the insulation extension is contained within the conductive layer.
- Another aspect of the present invention relates to a method for fabricating a micro- electro-mechanical transducer having two electrodes separated by an insulator with an insulation extension.
- the method comprises the steps of: (1) forming a recess on a major surface of a first conductive layer; (2) forming a standing feature of an insulating material, the standing feature extending from the recess to a free end above the major surface of the first wafer material; and (3) placing a second conductive layer over the free end of the standing feature.
- the first conductive layer may comprise a silicon/polysilicon layer.
- the step of forming a recess may comprise a direct etching process, a differential oxidation process, or any combination thereof.
- the step of forming the standing feature may comprise growing an insulation layer over the recess, and patterning and etching the insulation layer.
- the step of placing the second conductive layer over the free end of the standing feature may comprise bonding an SOI wafer to the free end of the standing feature and etching back the SOI wafer to leave a desired portion of the SOI layer on the standing feature.
- the step of placing the second conductive layer may further comprise depositing a metal layer over the remaining layer of the SOI wafer.
- the desired portion of the SOI wafer remaining on the standing feature may comprise a silicon/polysilicon layer which forms at least part of the second conductive layer.
- the desired portion of the SOI layer remaining on the standing feature provides a membrane layer adapted for vibrating in relation to the first conductive layer upon a suitable transducing excitation.
- a wafer carrying a functional layer such as a nitride, oxide, metal, parylene or other polymer layer to serve as a desired membrane layer can be used.
- the step of placing the second conductive layer over the free end of the standing feature comprises: (1) depositing a sacrificial layer over the first conductive layer and the standing feature; (2) depositing a functional layer over the sacrificial layer; and (3) removing the sacrificial layer to leave the functional layer over the free end of the standing feature.
- the step of placing the second conductive layer may further comprise depositing a metal layer over the functional layer.
- the functional layer may include a silicon/polysilicon layer which forms at least part of the second conductive layer.
- the functional layer on the standing feature may be a membrane layer adapted for vibrating in relation to the first conductive layer upon a suitable transducing excitation.
- Another method for fabricating a micro-electro-mechanical transducer having two electrodes separated by an insulator with an insulation extension comprises the steps of: (1) forming a patterned trench over a major surface of a substrate by removing material of the substrate, wherein the patterned trench comprises thin lines of unremoved material of the substrate; (2) oxidizing the thin lines of unremoved material of the substrate in the patterned trench such that the patterned trench constitutes an insulator; (3) patterning and etching the major surface of the silicon/polysilicon substrate such that the insulator in the trench having a top end standing above the substrate; and (4) placing a top conductive layer over the top end of the insulator.
- An alternative method for fabricating a similar micro-electro-mechanical transducer comprises the steps of: (1) forming a trench over a major surface of a substrate by removing material of the substrate; (2) filling the trench with an insulating material; (3) patterning and etching the major surface of the silicon/polysilicon substrate such that the insulating material in the trench having a top end standing above the substrate; and (4) placing a top conductive layer over the top end of the insulator.
- the method is also used for incorporating the insulation extension in accordance with the present invention in a micro-electro-mechanical transducer having embedded springs.
- An exemplary method for fabricating such a transducer comprises the steps of: (1) providing a top plate, a middle spring layer and a substrate; (2) forming a standing feature of an insulating material on a major surface of a host layer, which may be either the top plate or the middle spring layer, wherein the standing feature extends from a point below the major surface to a free end beyond the major surface; and (3) joining the top plate, the middle spring layer and the substrate, such that the top plate and the middle spring layer are connected by the standing feature at the free end thereof, and the middle spring layer is connected to the substrate at an opposing side.
- the substrate and the middle spring layer define a cavity therebetween, the cavity is bordered by a sidewall, and the middle spring layer extends from the sidewall to cover the cavity.
- the host layer comprises a silicon/polysilicon layer
- the step of forming the standing feature comprises (1) forming a recess on a major surface of the silicon/polysilicon layer; and (2) forming the standing feature by introducing an insulating material over the recess.
- the step of forming the standing feature comprises the steps of: (1) forming a patterned trench over the silicon/ polysilicon layer by removing silicon/polysilicon material, wherein the patterned trench comprises thin lines of unremoved material of the silicon/polysilicon layer; (2) oxidizing the thin lines of unremoved material of the silicon/polysilicon layer in the patterned trench such that the patterned trench contains an electrically nonconductive structure; and (3) patterning and etching the silicon/polysilicon layer to form the standing feature from the electrically nonconductive structure in the trench.
- a simple trench (without fine internal structures such as thin lines of unremoved material) may be formed and filled using an insulating material.
- FlG. 1 shows a cross-sectional view of a basic structure of a prior art cMUT.
- FlG. 2 shows an enlarged portion of a prior art cMUT to illustrate the relationship between the height of insulation anchor and the separation between the two electrodes.
- FlG. 3 shows an enlarged portion of another prior art cMUT to further illustrate the relationship between the height of insulation anchor and the separation between the two electrodes.
- FlG. 4 shows an enlarged portion of an electrostatic transducer in accordance with the present invention.
- FIGS. 4a and 4b show two variations of the insulation extension concept shown in
- FIGS. 5-7 show additional variations of the insulation extension concept shown in
- FlG. 8 is a cross-section view of a cMUT structure using an insulation extension in accordance with the present invention.
- FIGS. 9-14 are cross-section views of variations of cMUT structures using an insulation extension in accordance with the present invention.
- FlG. 15 is an enlarged view of a selected portion of an embedded spring micro- electro-mechanical transducer (ESMUT).
- FIG. 16 is an enlarged view of a different selected ESMUT portion of a complete ESMUT element.
- FIG. 17 shows an ESMUT structure using an insulation extension in accordance with the present invention.
- FIG. 18 shows another ESMUT structure using an insulation extension in accordance with the present invention.
- FIGS. 19.1 - 19.9a show an exemplary process flow to incorporate insulation extensions of the present invention into a conventional membrane-based cMUT using wafer-bonding technique.
- FIGS. 20.1 - 20.3 show an exemplary process for forming a recess on a surface of an oxidizable layer using oxidation process.
- FIGS. 21.1 - 21.3 show another exemplary process for forming a recess on a surface of an oxidizable layer using oxidation process.
- FIGS. 22.1 - 22.5 show another exemplary process for forming a recess pattern having different recess depths on a substrate using oxidation process.
- FIGS. 23.1 - 23.5 show another exemplary process to fabricate a desired recess pattern on a silicon substrate using O2 implantation and oxidation process.
- FIGS. 24.1 - 24.5 show another process to fabricate a desired recess pattern on a silicon substrate using O2 implantation and Local Oxidation of Silicon (LOCOS).
- FIGS. 25.1 - 25.7 show an exemplary method to form very deep insulation extensions in a conventional cMUT with a flexible membrane surface.
- FIGS. 26.1 - 26.7 show another method to form deep insulation extensions by etching.
- FIGS. 27.1 - 27.16 show a wafer-bonding process for fabricating an ESMUT having insulation extensions in accordance with the present invention.
- micro-electro-mechanical transducer such as a capacitive micromachined ultrasonic transducer (cMUT) of the present invention will be described in detail along with the figures, in which like parts are denoted with like reference numerals or letters.
- micro-electro-mechanical transducer may be fabricated using any suitable methods, particularly using the methods disclosed in the several patent applications identified herein.
- the invention has been described below with reference to specific embodiments. In most cases, a cMUT structure is used to illustrate the invention. It is appreciated, however, that the present invention is not limited to cMUTs. It will be apparent to those skilled in the art that various modifications may be made and other embodiments can be used without departing from the broader scope of the inventions. Therefore, these and other variations upon the specific embodiments are intended to be covered by the present inventions. Those skilled in the art will recognize that various features disclosed in connection with the embodiments may be used either individually or jointly.
- a conductive material is defined as one having a resistivity less than 1 x 10 4 ⁇ -cm. Silicon and poly silicon materials are therefore considered conductive materials in this context.
- a good conductive material preferably has a resistivity less than 1 ⁇ -cm.
- the terms 'insulation material', 'insulating material' and 'dielectric material' are used interchangeably unless noted otherwise, and are defined as one having a resistivity greater than 1 x 10 4 ⁇ -cm.
- a good insulation/insulating material preferably has a resistivity greater than 1 x 10 ⁇ -cm.
- An insulator generally comprises an insulating material but in special cases may include air and vacuum.
- the terms 'transducer' and 'transducing member' are used in a broad sense in the present description to not only include devices that perform both actuation and sensing functions but also include devices that perform either an actuation function or an sensing function. It is also noted that the term 'cantilever' is used in this description in a broad sense to describe a structure that has an anchored end, a resilient portion extending from the anchored, and to an exerting end to activate or move the resilient portion.
- a cantilever thus does not necessarily suggest a literal one- dimensional beam-like cantilever, but also includes similar structures have multibeams extending in different directions such as a bridge, or a crossbar, and most definitely also includes area or plane springs (two-dimensional 'cantilevers') in which the anchored end is an extended line which may be a closed perimeter of an area or a portion thereof, the resilient portion is an extended area, and the exerting end may be a single point, a small area, or an extended line (close ended, open-ended, or segmented).
- FIG. 2 shows an enlarged portion of a prior art cMUT to illustrate the relationship b etween the height of insulation anchor and the separation between the two electrodes.
- H insulator is the height of anchor insulator 28 and is dictated or limited by the electrode separation gap H between the electrodes 22 and 24.
- height of insulator H insulator is the same as the electrode separation gap
- FIG. 3 shows an enlarged portion of another prior art cMUT to further illustrate the relationship between the height of insulation anchor and the separation between the two electrodes.
- another insulation layer 33 is also placed between two electrodes 32 and 34 of the cMUT to prevent electric shorting between the electrodes 32 and 34 during transducer operation.
- the total height of insulator H insulator is dictated or limited by the electrode separation gap H gap between the electrodes 32 and 34. In the configuration shown in FlG. 3, total height of insulator H insulator is the same as the electrode separation gap H gap .
- the separation gap H of the two electrodes in an electrostatic transducer affects transduction performance of the transducer. In general, smaller separation gap H results in better transduction performance.
- the gap height of insulator H insulator affects the breakdown voltage and the parasitic capacitance of the transducer. Usually, a thicker insulation layer and taller anchor (i.e., greater H insulator ) is desired for increasing the breakdown voltage and decreasing the parasitic ca- pacitance. But because in conventional designs of electrostatic transducer H insulator is inherently dictated or limited by H , there is often a trade-off between these two gap competitive factors with a compromise or limitation to the transducer performance.
- FIG. 4 shows an enlarged portion of an electrostatic transducer in accordance with the present invention.
- the electrostatic transducer has the bottom electrode 410 and a top electrode 420 separated from each other by separation gap H The separation of gap the bottom electrode 410 the top electrode 420 defines a transducing gap therebetween.
- An insulating support portion 430 is disposed generally between the bottom electrode 410 and the top electrode 420.
- the electrostatic transducer further has an insulation extension 440 extending into the bottom electrode 410.
- H insulator gap insulator is the sum of the height of insulating support portion 430 and the thickness of the insulation extension 440. Although the height of insulating support portion 430 is still limited by the electrode separation gap H the thickness of the insulation extension gap,
- the added insulation extension 440 does not affect the separation between two gap electrodes of 410 and 420, it can be freely designed to have any desired thickness to achieve the desired breakdown voltage and parasitic capacitance without scarifying the device transduction performance.
- the transducer performance can be improved by optimizing the transducer electrode separation H , while at the same time the breakdown voltage and the parasitic ca- gap pacitance can also be optimized without any trade-off between them.
- This novel design can be used in a variety of electrostatic transducers, and is particularly important to improve the performance of high frequency cMUTs.
- the insulation extension 440 may be formed in the electrode 410 in a variety of ways.
- a cavity is first formed in the electrode 410 and an insulating material is then introduced into the cavity to form the insulation extension 440.
- the insulating material may be a solid material completely filling the cavity, but may also be any other insulating material either completely filling the cavity or partially filling the cavity leaving a partial void therein.
- the insulation extension 440 and the insulating support portion 430 may either be made of the same insulating material or any combination of different insulating materials.
- the bottom electrode 410 is thicker than the insulation extension 440 such that the insulation extension 440 is contained within the bottom electrode 410.
- the insulation extension 440 may extend beyond the bottom electrode 410, particularly if the bottom electrode 410 is a part of a thicker combined layer that contains the insulation extension 440.
- the bottom electrode 410 may comprise multiple conductive layers or a conductive layer on a dielectric substrate.
- the bottom electrode 410 may have a base conductive layer and a supplemental conductive layer. This may be the case when a silicon substrate is used as the base conductive layer and a supplemental conductive layer having a conductivity significantly higher than that of the silicon substrate (the base conductive layer) is used to make a more effective electrode.
- a supplemental layer include a polysilicon layer, a metal layer, or a contiguous part of the same silicon substrate but with a higher doping level. In such a case, the insulation extension 440 may extend beyond the supplemental layer and further into the silicon substrate.
- the insulation extension 440 may have a depth that measures at least 25% of the transducing gap to ensure noticeable improvement.
- the insulation extension 440 is shown to be wider in its cross-sectional dimension than the insulation support portion 430. Such a configuration may be preferred for the purpose of optimizing breakdown voltage and parasitic capacitance without having too great a support area, but is not required.
- the insulation extension 440 and the insulating support portion 430 may be directly connected to each other as shown in FlG. 4 (and in some embodiments may even be portions of the same contiguous piece of an insulating material), or intervened by another insulation layer 435 for as shown in two alternative configurations in FIGS. 4a and 4b.
- FIGS. 5-7 show variations of the concept shown in FlG. 4.
- FlG. 5 shows an electrostatic transducer similar to that of FlG. 4 except that the insulator in FlG. 5 has two insulation extensions 540 and 550, extending into the bottom electrode 510 and the top electrode 520, respectively. Similar to that in FlG. 4, bottom electrode 510 and top electrode 520 are separated from each other by separation gap H The separation gap of the bottom electrode 510 the top electrode 520 defines a transducing gap therebetween.
- An insulating support portion 530 is disposed generally between the bottom electrode 510 and the top electrode 520.
- H insulator is the sum of the height of insulating support portion 530 and the thicknesses of the insulation extensions 540 and 550.
- the total height of the gap insulator H may be optimized by adjusting the thickness of either insulation extension 540 or insulation extension 550, or both.
- FlG. 6 shows another electrostatic transducer similar to that of FlG. 4 except that in
- the insulation extension in bottom electrode 610 includes a first portion 640 and a second portion 645, which may be made of different insulating materials.
- the first portion 640 of the insulation extension is structured to define certain voids (occupied by the second portion 645 as shown).
- the first portion 640 is contiguous with the insulation support portion 630, while the second portion 645 of the insulation extension occupies voids defined by the structured first portion 640.
- the second portion 645 comprises air or sealed vacuum.
- FlG. 7 shows another electrostatic transducer similar to that of FlG. 5 in having two insulation extensions extending into the bottom electrode 710 and the top electrode 720.
- the insulation extension in bottom electrode 710 includes a first portion 740 and a second portion 745, which may be made of different insulating materials.
- the insulation extension in top electrode 720 includes a first portion 750 and a second portion 755.
- the first portions 740 and 750 of the insulation extensions are contiguous with the insulation support portion 730, while the second portions 745 and 755 of the insulation extensions each occupies voids defined by the first portions 740 and 750.
- the second portions 745 and 755 each comprises air or sealed vacuum.
- insulation extensions may be embodied in a variety of micro-electro-mechanical transducers as illustrated below with reference to FIGS. 8-18 using cMUT as an example.
- it may be used in a capacitive mi- cromachined ultrasonic transducer that comprises: (1) a lower layer including a substantially static substrate and serving as a bottom electrode; (2) a top layer including a membrane or a plate and serving as a top electrode, the membrane or plate being adapted for vibrating in relation to the static substrate a transducing excitation, the top layer and the lower layer defining a transducing gap therebetween; and (3) an insulator having a main portion and an insulation extension, the main portion being generally disposed between and supporting the lower layer and the top layer, and the insulation extension extending into at least one of the lower layer and the top layer.
- FlG. 8 is a cross-section view of a cMUT structure using an insulation extension in accordance with the present invention.
- the cMUT element 800 is built on a substrate wafer 801 and has a bottom electrode layer 810 and a membrane layer 819 carrying a top electrode layer 820.
- Insulating supports (anchors) 830 are disposed between the bottom electrode layer 810 and the membrane layer 819 (with the top electrode layer 820) to support the membrane layer 819, which is fixed or clamped at top ends of the insulating supports (anchors) 830.
- the membrane layer 819 and the bottom electrode layer 810 define a transducing gap 815.
- the membrane layer 819 vibrates in relation to the substrate through the transducing 815 upon receiving a transducing excitation to perform transducing function.
- the bottom electrode layer 810 is not required to be a separate layer from the substrate 801.
- the substrate 801 and the bottom electrode 810 may be a single conductive layer which serves as the bottom electrode.
- substrate 801 may be a conductive silicon substrate and the bottom electrode 810 a contiguous portion of the same substrate 801 but with a higher doping level.
- the insulation extensions 840 and 842 are formed in bottom electrode layer 810 to extend the total insulator height.
- the insulation extensions 840 are each connected to a corresponding insulating supports (anchors) 830, while the insulation extensions 842 are not connected to an insulating support (anchor) but is positioned at a location where the top electrode 820 and the bottom electrode 810 are most likely to contact or come close to contact each other during operation of the transducer. Such positions are usually, but not always, near the middle of each cMUT cell defined by two opposing insulation sports (anchors) 830.
- the insulation extension 842 is, by way of illustration, positioned in the middle of the two insulation extensions 840. Any design of insulation extensions illustrated above may be used as a substitute of the insulation extensions 840 and 842 shown.
- FlG. 9 is a cross-section view of another cMUT structure using an insulation extension in accordance with the present invention.
- the cMUT structure 900 is similar to the cMUT structure 800 shown in FlG. 8 except that insulation extensions 940 and 942 extend beyond the bottom electrode 910 into the substrate 901.
- This configuration may be benefiting when the substrate 901 itself is made of a material that is either conductive or not highly insulative.
- the substrate 901 may be a silicon wafer which is considered conductive in the context of the present invention.
- the conductive substrate 901 functions as a part of the bottom electrode together with the bottom electrode layer 910 which is preferably more conductive than the substrate 901.
- FlG. 10 is a cross-section view of another cMUT structure using an insulation extension in accordance with the present invention.
- the cMUT structure 1000 is similar to the cMUT structure 900 shown in FlG. 9 except that the cMUT structure 1000 further includes an insulation layer 950 between the insulating supports (anchors) 930 and the insulation extensions 940 and 942. It is appreciated that the insulation layer 950 may also be placed between the membrane layer 919 and the insulating supports (anchors) 930.
- FlG. 11 is a cross-section view of another cMUT structure using an insulation extension in accordance with the present invention.
- the cMUT structure 1100 is similar to the cMUT structure 1000 shown in FlG. 10 except for the following differences: (1) the insulation layer 1150 is patterned in the cMUT structure 1100 to cover only areas above insulation extensions 940 and 942; and (2) conductive substrate 1101 alone functions as the bottom electrode without an additional conductive layer.
- One suitable material for conductive substrate 1101 is a doped silicon wafer.
- FlG. 12 is a cross-section view of another cMUT structure using an insulation exte nsion in accordance with the present invention.
- the cMUT structure 1200 is similar to the cMUT structure 1100 shown in FlG. 11 except that the cMUT structure 1200 further includes motion stoppers 1230 placed above insulation extensions 942.
- insulation extensions 942 are placed near a middle of each cMUT cell where the electrodes are most likely to contact or come close to contact each other during operation. (In a particular configuration of FlG.
- the bottom electrode comprises the conductive substrate 1201, while the top electrode 920 comprises a patterned conductive layer carried by the membrane layer 919.)
- Motion stoppers 1230 placed at such locations help to limit the maximum displacement of the top electrode 920 in relation to the bottom electrode during operation and thus prevents direct shorting between the electrodes.
- FlG. 13 is a cross-section view of the cMUT structure that achieves a similar effect of an insulation extension in accordance with the present invention.
- the cMUT structure 1300 is built on substrate 1301 and has a patterned bottom electrode layer 1310 placed over the substrate 1301.
- An insulation layer 1350 covers the top surface of the substrate 1301 and the bottom electrode 1310.
- the patterned bottom electrode layer 1310 defines voids 1340, which may serve as at least a part of the insulation extension if they contain sealed vacuum or air.
- the voids 1340 are partially filled with insulation layer 1350.
- the remaining empty areas of the voids 1340 and the portions of the insulation layer 1350 filled in the voids 1340 together serve as insulation extensions.
- the substrate 1301 may be made of insulation material, a conductive material, or a conductive material covered by an insulation material.
- the substrate 1301, if made of a conductive material, may also serve as at least a part of the bottom electrode.
- FlG. 14 is a cross-section view of another cMUT structure that achieves a similar effect of an insulation extension in accordance with the present invention.
- the cMUT structure 1400 is similar to the cMUT structure 1300 shown in FlG. 13 except that the cMUT structure 1400 further includes motion stoppers 1430 placed over additional insulation extensions 1442, and the insulation layer 1450 is patterned and does not cover large portions of the bottom electrodes 1410.
- the top electrode may also be patterned such that the top electrode and the bottom electrode do not overlap with each other at certain selected locations such as near where the insulation supports (anchors) 930 are located and where the top electrode and the bottom electrode are most likely to contact or come close to contact each other during operation.
- the insulation extension in accordance with the present invention may also be used in micro-electro-mechanical transducers having embedded springs as described in the several PCT patent applications referenced herein.
- the insulation extension may be used in a micro-electro-mechanical transducer having a movable mechanical part to transform energy.
- An exemplary transducer comprises: (1) a substrate; (2) a middle spring layer placed over the substrate, the substrate and the middle spring layer defining a cavity therebetween, the cavity being bordered by a sidewall, wherein the middle spring layer extends from the sidewall to cover the cavity; (3) an insulating connector on the middle spring layer; (4) a top plate placed over the insulating connector, which separates the top plate from the middle spring layer to define a transducing gap below the top plate; and (5) an insulation extension extending beyond the transducing gap.
- FlG. 15 is an enlarged view of a selected portion of an embedded spring micro- electro-mechanical transducer (ESMUT).
- the ESMUT portion 1500 is a part of a complete ESMUT element (not shown). The structure of the selected ESMUT portion 1500 provides a basis to understand the complete ESMUT element as described in the several PCT patent applications referenced herein.
- ESMUT element or device may use only one basic unit like ESMUT portion 1500. For other applications, it may be preferred to use a combination of multiple basic units shown in HG. 15 and/or HG. 16.
- the ESMUT portion 1500 is built on a substrate 1501, on top of which there is a standing feature (referred to as 'sidewall anchor' hereinafter) 1503 having two sidewalls on two opposing sides bordering cavities 1502 and 1502a, respectively.
- the standing feature (sidewall anchor) 1503 may be an integrated part of the substrate 1501 formed as a result of forming the cavities 1502 and 1502a, but may also be an additional structure added onto a separate substrate. In one embodiment, for example, the sidewall anchor 1503 is part of the middle spring layer 1520.
- the substrate of 1501 may be made of either a nonconductive material or a conductive material such as silicon or polysilicon.
- conductivity of the sidewall anchor 1503 may be the same as or different from that of the substrate 1501.
- the substrate 1501 may be made of a nonconductive material while the sidewall anchor 1503 a conductive material such as metal, silicon or polysilicon.
- the ESMUT structure shown also has the second cavity 1502a long the other side of sidewall anchor 1503.
- the second cavity 1502a may either belong to a different and separate cavity, or just another portion of a same circular or extended cavity as the cavity 1502.
- the selected ESMUT portion 1500 also has a second connector 1530a in the other half. Again, depending on how and where the ESMUT portion 1500 is taken from the ESMUT element 1500, the second connector 1530a may either be a part of a different and separate connector, or just another portion of a same circular or extended connector as the connector 1530.
- the ESMUT structure portion 1500 further has these components: (a) a middle spring layer 1520 which is preferably an elastic membrane; (b) a bottom electrode 1525 placed on the middle spring layer 1520, connectors 1530 and 1530a which stand on top of the middle spring layer 1520; (c) an insulation layer 1535 sitting over the connector 1530; (d) a top plate 1540 connected to the connectors 1530 and 1530a through an intervening insulation layer 1535; and (e) a top electrode 1550.
- a middle spring layer 1520 which is preferably an elastic membrane
- a bottom electrode 1525 placed on the middle spring layer 1520, connectors 1530 and 1530a which stand on top of the middle spring layer 1520
- an insulation layer 1535 sitting over the connector 1530
- a top plate 1540 connected to the connectors 1530 and 1530a through an intervening insulation layer 1535
- a top electrode 1550 a top electrode 1550.
- the bottom side of the top plate 1540 faces the top side of the middle spring layer 1520, and the bottom side of the middle spring layer 1520 faces the front side of the substrate wafer, whereby the connector 1530 stands out from the middle spring layer 1520 to define a transducing space 1560 below the top plate 1540.
- the transducing space 1560 is generally defined between the top plate layer 1540 and the top surface of the middle spring layer 1520 or the top surface of the sidewall anchor 1503, whichever is higher. Where there is an intervening layer between the top plate layer 1540 and the top surface of the middle spring layer 1520 or the top surface of the sidewall anchor 1503, the available transducing space may be reduced.
- the top surface of the sidewall anchor is defined as the uncovered surface of the layer deposited over the sidewall anchor 1503.
- the actual height of the available transducing space 1560 may be reduced by the thicknesses of the insulation layer 1535, the bottom electrode 1525 and the middle spring layer 1520.
- the insulation layer may be removed if other features (e.g. motion stopper) are used to prevent from electric shorting between two electrodes); a conductive substrate wafer may itself be used to effectuate a bottom electrode on the substrate (e.g., on the sidewall anchor 1503) without requiring a separate electrode layer; and cantilevers may be made with segments of middle spring layers connected to the sidewall anchor 1503 at sides flush with or lower than the top surface of the sidewall anchor 1503, instead of using a continuous middle spring layer placed on top of the sidewall anchor 1503.
- other features e.g. motion stopper
- a conductive substrate wafer may itself be used to effectuate a bottom electrode on the substrate (e.g., on the sidewall anchor 1503) without requiring a separate electrode layer
- cantilevers may be made with segments of middle spring layers connected to the sidewall anchor 1503 at sides flush with or lower than the top surface of the sidewall anchor 1503, instead of using a continuous middle spring layer placed on top of the sidewall anchor 1503.
- the substrate 1501 may serve as a conductor to access the conductive middle spring layer 1520, while the middle spring layer 1520 may serve as the bottom electrode.
- the connectors 1530 and 1530a stand on the middle spring layer 1520 and each have a substantially identical connector height.
- the connectors 1530 and 1530a are each horizontally distanced from the respective sidewall of the sidewall anchor 1503 by a sufficient length. This defines two cantilevers each anchored at the respective side of sidewall anchor 1503 with a back-to-back double cantilever formation.
- the cantilevers are activated through the respective connector (1530 or 1530a) at an exerting end (e.g., 1522 on the left side cantilever) where the connector (1530 or 1530a) is located.
- the cantilevers and the respective cavities 1502 and 1502a enable a vertical displacement of the connectors 1530 and 1530a, which transport the top plate 1540 substantially vertically with a piston-like motion, thus changing the transducing space 1560.
- the vertical piston-like motion is further assured.
- top surface of the sidewall anchor 1503 is covered by the middle spring layer 1520, which in turn is covered by the bottom electrode 1525. Furthermore, the top plate 1540 and the connector 1530 do not connect with each other directly but are intervened by the insulation layer 1535 therebetween.
- the transducing space 1560 is therefore partially occupied by the middle spring layer 1520, the bottom electrode 1525 and the insulation layer 1535.
- the part of the middle spring layer 1520 covering the top surface of the sidewall anchor 1503, the bottom electrode 1525 and the insulation layer 1535 are optional. In any event, in order to achieve the intended energy transformation, the transducing space 1560 should not be entirely occupied by these extra layers if they are included in the structure.
- FIG. 16 is an enlarged view of a different selected ESMUT portion 1600, which is another part of the complete ESMUT element (not shown).
- the selected ESMUT portion 1500 shown in FIG. 15 and the selected ESMUT portion 1600 may be taken from the same ESMUT element at shifted locations.
- the selected ESMUT portion 1600 is built on a substrate 1601, which has a cavity 1602 bordered by two sidewall anchors 1603 and 1603a on two opposite sides.
- the ESMUT structure portion 1600 further has these components: middle spring layer 1620, bottom electrode 1625 placed on middle spring layer 1620, connector 1630 which stands on top of the middle spring layer 1620, insulation layer 1635 sitting over the connector 1630, top plate 1640 connected to the connector 1630 through an intervening insulation layer 1635, and top electrode 1650.
- the connector 1630 stands on the middle spring layer 1620, and is horizontally distanced from the sidewalls of both the sidewall anchor 1603 and the sidewall anchor 1603a.
- the middle spring layer 1620 between the sidewall anchor 1603 and the sidewall anchor 1603a defines a double-cantilever anchored at the sidewall anchor 1603 and the sidewall anchor 1603a.
- the double-cantilever is connected head-to-head at location 1622 where the connector 1630 is positioned to form a bridge.
- the top plate 1640 is placed over the connector 1630, which separates the top plate
- the double-cantilever and the cavity 1602 enable a vertical displacement of the connector 1630, which transports the top plate 1640 substantially vertically, thus changing the transducing space and activating a transducing member in the transducer for energy transformation.
- the above ESMUT designs can be used as a basic building unit for constructing a variety of micro-electro-mechanical transducers that have a movable mechanical part to transform energy.
- the ESMUT structure essentially did away with the conventional concept of the cell insulation wall which divides a cMUT element into cells and is required to support and clamp the membrane at the perimeter of each cMUT cell.
- the insulation extension in accordance with the present invention may be incorporated in the ESMUT to further improve its performance.
- FIG. 17 shows an ESMUT structure using an insulation extension in accordance with the present invention.
- the ESMUT structure 1700 is based on the ESMUT structure 1500 and shares most of the components of the ESMUT structure 1500.
- the ESMUT structure 1700 has insulation extensions 1742 and 1744 extending into the top plate 1540 to provide additional insulation without increasing the transducing space 1560.
- insulation extensions 1742 are aligned with connectors 1530 and 1530a and connected thereto through the optional insulation layer 1535.
- the connectors 1530 and 1530a are made of an insulating material and are equivalents of insulating support portions in FIGS. 4-7 and insulation supports or insulation anchors in FIGS. 8-14.
- the insulation extension 1744 is placed between the insulation extensions 1742 near a middle position where the top plate 1540 including the optional intervening insulation layer 1535 is most likely to contact or come close to contact the bottom electrode 1525.
- FIG. 18 shows another ESMUT structure using an insulation extension in accordance with the present invention.
- the ESMUT structure 1800 is based on the ESMUT structure 1600 and shares most of the components of the ESMUT structure 1600.
- the ESMUT structure 1800 has insulation extensions 1742 and 1844 extending into the top plate 1640 to provide additional insulation without increasing the transducing space 1660.
- insulation extension 1842 is aligned with connector 1630 and connected thereto through the optional insulation layer 1635.
- the connector 530 is made of an insulating material and is an equivalent of insulating support portions in FIGS. 4-7 and insulation supports or insulation anchors in FIGS. 8-14.
- the insulation extensions 1844 are placed at positions where the top plate 1640 including the optional intervening insulation layer 1635 is most likely to contact or come close to contact the bottom electrode 1625.
- the insulation extensions 1742, 1744, 1842 and 1844 in the above embodiments allow maximizing breakdown voltage and minimizing parasitic capacitance without reducing transaction performance of the transducer.
- the insulation extensions 1744 and 1844 are optional if the maximum displacement of the top plate 1540/1640 is limited by other components, such as motion stoppers, to avoid contact between the top plate 1540/1640 (or an intervening layer such as 1535/1635) and the middle spring layer 1520/1620 (or an intervening layer such as 1525/1625).
- the extra insulation effect of the insulation extensions is particularly helpful when the top plate 1550 or 1650 is a conductive layer (such as a silicon or polysilicon layer) or a nonconductive layer but without sufficient insulation power.
- insulation extensions may be alternatively or additionally built in the middle spring layer 1520 or 1620 and/or the substrate anchor 1503 or 1603.
- a method for fabricating a micro- electro-mechanical transducer having two electrodes separated by an insulator with an insulation extension comprises the steps of: (1) forming a recess on a major surface of a first conductive layer; (2) forming a standing feature of an insulating material, the standing feature extending from the recess to a free end above the major surface of the first wafer material; and (3) placing a second conductive layer over the free end of the standing feature.
- An exemplary method comprises the steps of: (1) forming a patterned trench over a major surface of a substrate by removing material of the substrate, wherein the patterned trench comprises thin lines of unremoved material of the substrate; (2) oxidizing the thin lines of unremoved material of the substrate in the patterned trench such that the patterned trench constitutes an insulator; (3) patterning and etching the major surface of the substrate such that the insulator has a top end standing above the substrate; and (4) placing a top conductive layer over the top end of the insulator.
- a suitable substrate for this method is an oxidizable substrate such as a silicon wafer.
- the method may also comprise the steps of: (1) forming a trench over a major surface of a substrate by removing material of the substrate; (2) filling the trench with an insulating material; (3) patterning and etching the major surface of the substrate such that the insulating material in the trench has a top end standing above the substrate; and (4) placing a top conductive layer over the top end of the insulator.
- a suitable substrate for this method is a silicon wafer.
- An exemplary method for fabricating an ESMUT in accordance with the present invention comprises the steps of: (1) providing a top plate, a middle spring layer and a substrate; (2) forming a standing feature of an insulating material on a major surface of one of the top plate and the middle spring layer, the standing feature extending from a point below the major surface to a free end beyond the major surface; and (3) joining the top plate, the middle spring layer and the substrate, such that the top plate and the middle spring layer are connected by the standing feature at the free end thereof, and the middle spring layer is connected to the substrate at an opposing side.
- the substrate and the middle spring layer define a cavity therebetween, the cavity is bordered by a sidewall, and the middle spring layer extends from the sidewall to cover the cavity.
- FIGS. 19-27 The process to form insulation extensions can be incorporated into regular fabrication process of a micro-electro-mechanical transducer such as cMUT process by adding a few steps to form the insulation extensions. As will be shown below, incorporating the steps of forming desirable recesses or cavities with desired patterns on a substrate is an important element of the methods.
- FIGS. 19.1-19.9a show a process flow to incorporate insulation extensions of the present invention into a conventional membrane-based cMUT using wafer-bonding technique. The major steps of the process are described as follows.
- step one desired recess pattern including recesses 1905 and 1906 are formed on the substrate 1901.
- recesses of two different depths one (1905) for insulation extensions of insulation supports (anchors) and the other (1906) for insulation extensions at locations where the two electrodes may contact during the transducer operation.
- the two types of recesses 1905 and 1906 may either be formed in a single step at the same time or formed separately using two steps.
- an insulation layer 1931 e.g., thermal oxide, LTO, nitride,
- TEOS, and SOG is introduced into the recesses 1905 and 1906 to the desired thickness.
- step three the insulation layer 1931 is patterned and etched to form insulation supports (anchors) 1932 and motion stoppers 1934, each of which stands in the recesses 1905 and 1906 and extends to a free end.
- step four (FIG. 19.4), another insulation layer 1933 is grown if needed.
- step five the insulation layer 1933 is patterned if needed leaving a layer 1935 in each recess 1905 and 1906 to form a part of insulation extension.
- step six an SOI wafer with a desired membrane layer 1919 is bonded over the free ends of the insulation supports (anchors) 1932 and motion stoppers 1934. The SOI wafer is then annealed and etched back to leave the membrane layer 1919 on the insulation supports (anchors) 1932. In this step, vias may be etched to access the bottom electrode if needed (not shown).
- a wafer carrying a functional layer such as a nitride, oxide, metal, parylene or other polymer layer to serve as a desired membrane layer 1919 can be used with a suitable bonding technique to accomplish the above step six.
- step seven the metal layer 1920 is deposited to form the top electrode.
- the membrane layer 1919 between the neighboring cMUT elements may be etched to separate the individual cMUT elements if needed (not shown).
- a sacrificial layer 1939 is deposited over the free ends of the insulation supports (anchors) 1932 and motion stoppers 1934.
- step seven the membrane layer 1919 is deposited and patterned as desired.
- step eight (FlG. 19.8a), vias (not shown) are etched if necessary, and the sacrificial layer 1939 is then removed. Thereafter, the vias are sealed with a proper material.
- step nine the metal layer 1920 is deposited to form the top electrode.
- the resultant structure is similar to that in FlG. 19.7.
- the desired recess pattern may also be formed using other methods such as the differential oxidation methods described below with reference to FIGS. 20-22.
- a pattern e.g., recesses
- a nitride layer can essentially block oxidation underneath, and an oxide layer can slow down the oxidation underneath.
- oxide or nitride layers as oxidation masks oxidation with different thickness can be formed at desired locations on the conductive (e.g. silicon) material surface.
- oxidation process consumes the oxidized material, it can be viewed as an equivalent to directly etching of the material. However, oxidation process is generally easier to control and has better accuracy than direct etching. Therefore, using oxidation method to form recesses may be preferred over direct etching processes for fabricating transducers (such as cMUTs) that require high accuracy and uniformity of patterns, recesses and material distributions on an electrode surface and substrate.
- FIGS. 20.1 - 20.3 show an exemplary process for forming a recess on a substrate.
- the method is particularly suitable for forming a recess on an oxidizable substrate such as silicon substrate.
- the process can also be used to form a recess on an oxidizable top plate layer or middle spring layer.
- step one (FlG. 20.1), a first oxide layer 2010 is grown over a major surface of the substrate 2001.
- the oxide layer 2010 is patterned and has an opening 2015 where the substrate is uncovered by oxide.
- step two a second oxide layer 2020 is grown over the first oxide layer 2010 (including the opening 2015).
- the second oxide layer 2020 has a first depth 2030 reaching into the substrate 2001 at where the opening 2015 is located, and a second depth reaching into the substrate 2001 at positions covered by the first oxide layer 2020. Because the first oxide layer 2020 slows down the oxidation process, the first depth 2030 will be greater than the second depth. The difference between the two depths will be the basis for forming a recess in the next step.
- step three the first oxide layer 2010 and the second oxide layer 2020 are removed to form a recess 2040.
- FIGS. 21.1 - 21.3 show another exemplary process for forming a recess on a substrate.
- the method is particularly suitable for forming a recess on an oxidizable substrate such as silicon substrate.
- the process can also be used to form a recess on an oxidizable top plate layer or middle spring layer.
- step one (FlG. 21.1), a first oxide layer 2110 and a nitride layer 2120 are grown over a major surface of the substrate 2101.
- the oxide layer 2110 is patterned and has an opening 2115 where the substrate is uncovered by oxide.
- the nitride layer 2120 has an opening coincide with the opening 2115 of the first oxide layer 2110.
- step two (FlG. 21.2), a second oxide layer 2130 is grown over the first oxide layer 2110 and the nitride layer (including the opening 2115).
- the second oxide layer reaches a desired depth into the substrate 2001 at where the opening 2015 is located.
- the nitride layer 2120 essentially stops further oxidation in other areas. The depth of the second oxide layer will be the basis for forming a recess in the next step.
- step three the nitride layer 2120, the first oxide layer 2110 and the second oxide layer 2130 are removed to form a recess 2140.
- FIGS. 22.1-22.5 show a process to fabricate a desired recess pattern on a silicon substrate using oxidation process. This method can also be applied to other substrates that can be oxidized. The major steps of the process are described below.
- step one (FlG. 22.1), a thermal oxide layer 2231 is formed, and patterned if desired, on the substrate 2201 to a desired thickness.
- step two (FlG. 22.2)
- another thermal oxide layer 2232 is grown over the patterns of the first thermal oxide layer 2231 to a desired thickness.
- step three the resultant thermal oxide layer is 2231 and 2232 are further patterned to a desired pattern for forming the desired recess is in the next steps.
- step four (FlG. 22.4), another thermal oxide layer 2233 is formed over the oxide pattern to a desired thickness. This is to further define the different depths of the desired recesses to be formed.
- step five the remaining oxide is removed to form the desired recess pattern on silicon substrate 2201.
- the recess pattern includes recesses of two different depths, one (2205) for forming insulation extensions of insulation supports (anchors) and the other (2206) for insulation extensions at locations where the two electrodes may contact during the transducer operation.
- FIGS. 23.1- 23.5 show another process to fabricate a desired recess pattern on a silicon substrate using O2 implantation and oxidation process. This method can also be applied to other substrates that can be oxidized. The major steps of the process are described below.
- step one patterned (selective) O2 implantation is performed over the silicon substrate 2301 using a patterned mask 2309.
- step two (FlG. 23.2), thermal oxidation is performed over the silicon substrate
- the thermal oxidation forms an oxide layer 2331 that has thicker oxide formation in the selective areas where O2 implantation has taken place.
- step three the oxide layer 2331 is patterned.
- step four In step four (FlG. 23.4), further thermal oxidation is performed over the patent oxide layer 2331.
- step five (FlG. 23.5) the existing oxide is removed to form the desired recess pattern on silicon substrate 2301.
- the recess pattern includes recesses of two different depths, one (2305) for forming insulation extensions of insulation supports (anchors) and the other (2306) for insulation extensions at locations where the two electrodes may contact during the transducer operation.
- FIGS. 24.1- 24.5 show another process to fabricate a desired recess pattern on a silicon substrate using O2 implantation and Local Oxidation of Silicon (LOCOS). This method can also be applied to other substrates that can be oxidized. The major steps of the process are described below.
- LOCOS Local Oxidation of Silicon
- step one patterned (selective) O2 implantation is performed over the silicon substrate 2401 using a patterned mask 2409.
- step two a patterned nitride protection layer 2431 is deposited over the silicon substrate 2401 which has been treated with O2 implantation.
- a LOCOS process is then performed over the silicon substrate 2401 the patterned nitride protection layer 2431.
- the LOCOS process forms an oxide pattern that has two types of localized oxidation areas, including a thicker oxide formation 2032 in the selective areas where O2 implantation has taken place and a thinner oxide formation 2034 in the other unprotected areas where no O2 implementation has taken place.
- the above process can be replaced with two separate LOCOS processes with desired oxide thickness to form the two types of localized oxidation separately.
- step three the nitride and the oxide are removed to form the desired recess pattern on silicon substrate 2401.
- the recess pattern includes recesses of two different depths, one (2405) for forming insulation extensions of insulation supports (anchors) and the other (2406) for insulation extensions at locations where the two electrodes may contact during the transducer operation.
- insulation extensions are fabricated by growing or depositing an insulating material.
- the thickness of the insulation extensions is thus limited by the film deposition or film growth process. In some applications, however, a very thick insulation may be needed to prevent the electrical breakdown. Therefore, a different process is needed to fabricate very thick insulation extensions in micro- electro-mechanical transducers.
- FIGS. 25.1 - 25.7 show an exemplary method to form very deep insulation extensions in a conventional cMUT with a flexible membrane surface.
- the exemplary method forms deep insulation extensions by etching a desired pattern on the substrate, and then to totally oxidizing the pattern.
- the patterned area on the substrate may be filled by a thermal oxide with a well-designed pattern.
- the major steps of the exemplary method are described as follows. [163] In step one (FlG. 25.1), a desired recess pattern 2531 is first formed on substrate
- the recess pattern 2531 may be formed by a variety of techniques, including direct etch process, oxidation or LOCOS. This step is optional.
- step two a desired silicon pattern is etched over the surface of the substrate 2501 and the recess pattern 2531.
- the silicon pattern has multiple deep patterned trenches etched to a desired thickness at selected locations including over the recesses of the recess pattern 2531.
- Each patterned trench has voids where the original material of the substrate 2501 has been removed but also has narrow lines 2537 of unremoved original material of the substrate 2501.
- step three the patterned trenches having narrow lines 2532 of unremoved substrate material is completely oxidized using thermal oxidation to form an oxide layer 2533 which has variable depths.
- the oxide layer 2533 has deep oxide portions 2532 and 2534 filling the spaces that used to be deep patterned trenches.
- a filler material may be added if the thermal oxide did not totally fill the trenches.
- the surface of the oxide layer 2533 may be polished if needed. If step one of FIG. 25.1 is not done previously to create the desired variation of surface heights, the oxide at locations corresponding to recesses 2531 in FlG. 25 may be etched to the desired height in this step.
- step four the oxide layer 2533 is patterned and selected portions the substrate 2501 under the oxide layer 2533 is etched to a desired thickness. After this step, the deep oxide portions 2532 and 2534 remain in the substrate 2501. Besides direct etch process, oxidation or LOCOS process may be used to etch the substrate in the step.
- step five the remaining oxide is again patterned and the underlying substrate is etched to a desired thickness to form a clearer formation of the deep oxide portions 2532 and 2534 which are to become insulation supports (anchors) and insulation extensions. If needed, a thin oxidation layer may be grown and patterned after this step.
- step six an SOI wafer is bonded over the free ends of deep oxide portions 2532 and 2534.
- the handle wafer and box layer (not shown) of the SOI wafer are removed to leave the membrane layer 2519.
- deep oxide portions 2532 each provides an insulation support (anchor) above the substrate 2501 and a deep insulation extension extending into the substrate 2501
- deep oxide portions 2534 each provides a deep insulation extension extending into the substrate 2501 at locations in the middle of neighboring insulation supports (anchors).
- anchors an insulation support
- deep oxide portions 2534 may also have a section above the substrate 2501 to form motion stoppers.
- step seven the metal layer 2520 is deposited and patterned if desired to form the top electrode.
- the membrane layer is then etched to separate individual cMUT elements if needed.
- the above method defines the thickness of the insulation extensions by the etching process.
- the insulation extensions may be fabricated to a much greater range of thickness, practically as thick as whatever thickness the cMUTs design optimization may require.
- the above method can be easily adapted to cMUT designs.
- similar insulation extensions may be formed on either the rigid top plate or the middle spring layer of ESMUT (cMUT with embedded springs as shown FIGS. 15-18) using the same method.
- the host layer (the layer of the ESMUT in which the insulation extensions are formed) may be made of any material (e.g., silicon, Ge, GaAs or any other semiconductor material) that can be oxidized.
- FIGS. 26.1 - 26.7 show another method to form deep insulation extensions by etching. The major steps of the method are described as follows.
- step one (FIG. 26.1), trenches 2631 are etched on the substrate 2601
- step two trenches 2631 are filled with a desired dielectric material
- 2633 e.g., glass frit, LTO, SOG, silicon nitride, PSG or combination of multiple layers of those materials.
- step three the surface of the dielectric material 2632 is polished if needed.
- step four patterning and etching is performed on the filler material
- step five the substrate 2601 is etched to a desired thickness to further define the insulators 2632 and 2634.
- Each insulator 2632 or 2634 now has two portions well defined. A first portion is an insulation extension extending into the substrate 2601 and the second abortion an insulation support or anchor extending above the substrate 2601.
- step six (FlG. 26.6), additional etching is performed on the substrate 2601 to form peripheral trenches 2635 surrounding the insulation extensions.
- step seven an SOI wafer is first bonded over the free ends of insulators 2632, and the handle wafer and box oxide layer (not shown) are then removed to from the membrane 2619.
- a metal layer 2620 is then deposited and patterned if needed to form the top electrode.
- the membrane layer 2019 maybe etched to separate the cMUT elements if needed.
- the above method defines the insulation extension thickness by the etch depth instead of the thickness of a deposition material. This method can thus make very thick insulation extensions, which may be essential to make high temperature cMUTs or cMUTs with very large breakdown voltage.
- a wide range of filler materials such as fret glass, SOG, LTO, nitride, TEOS, etc., are available to be used in the method to fill the trenches.
- the trenches may also be filled with a combination of multiple layers of the materials, at least one of which should be an insulating material.
- FIGS. 19-26 are examples of incorporating the insulation extensions of the present invention in a conventional cMUT (a cMUT with a flexible membrane).
- the methods can be easily adapted to other cMUT designs.
- similar insulation extensions may be formed on either the top plate or middle spring layer of an ESMUT (a CMUT with embedded springs as disclosed in the several PCT patent applications referenced herein) using the same methods.
- the host layer in which the insulation extensions are formed may be made of any suitable material, but the insulation extensions are particularly benefiting if the host layer is made of the conductive material such as silicon, Ge, GaAs or other semiconductor material.
- FIGS. 27.1 - 27.16 show a wafer-bonding process for fabricating an ESMUT having insulation extensions in accordance with the present invention.
- the ESMUT also has a self-alignment feature incorporated in the fabrication process, but the self alignment feature is included for illustration only and is not required by insulation extensions.
- the process may also incorporate other features such as trench sealing. The steps of the process are described below.
- step one (FIG. 27.1) process starts with an SOI wafer 2780 carrying a silicon layer 2740 which is to become the top plate layer 2740 of the resultant cMUT structure.
- An oxide layer 2781 and a nitride layer 2782 are grown on the bottom of the top plate 2740.
- this step may start with a prime wafer, which can be ground and polished to a desired thickness for the top plate layer in a later step.
- step two the oxide layer 2781 and nitride layer 2782 are patterned according to the cMUT design to expose certain areas of the top plate layer 2740.
- step three the exposed areas of the top plate layer 2740 is oxidized to a desired thickness.
- step four the nitride and oxide layers are removed to form recesses
- the recesses 2741 will be the bases to receive insulators including insulation extensions and insulation supports (contractors).
- step five standing features 2731 of an insulation material are formed over the recesses 2741 of the top plate layer 2740.
- These standing features 2731 will provide both the plate-spring connectors 2730 (which are insulators) and the insulation extensions within the recesses.
- One way to form such standing features 2731 is to grow an oxide layer.
- step six (FlG. 27.6), another oxide layer 2732 is grown over the recesses 2741 of the top plate layer 2740.
- This optional oxide layer 2732 may be patterned to become an additional part of the insulation extension within the recesses 2741.
- the optional oxide layer 2732 may improve the insulation by preventing electrical leaking on the surface.
- step seven (FlG. 27.7), another SOI wafer 2785 carrying a silicon layer 2721 is bonded to the plate-spring connectors 2730.
- the silicon layer 2721 is to become the middle spring layer 2720 in the final ESMUT structure to form the embedded springs (cantilevers).
- the silicon layer 2721 should have a proper thickness.
- step eight SOI wafer 2785 is etched back to remove the carrier layer and the oxide layer to leave the silicon layer 2721 which is to become the middle spring layer 2720. If needed, silicon doping can be done in selected areas of the silicon layer 2721 in this step.
- step nine an oxide layer 2786 and a nitride layer 2787 are formed and patterned over the silicon layer 2721, leaving selected areas 2788 of the silicon layer 2721 accessible.
- step ten the accessible areas 2788 of the silicon layer 2721 are oxidized to a desired thickness.
- step eleven the oxide and nitride layers are removed at selected locations leaving remaining oxide and nitride on top of areas 2713 of the silicon layer 2721.
- the areas 2713 will become sidewall anchors 2703 in the final ESMUT structure.
- the other uncovered areas of silicon layer 2721 are now exposed for the next step.
- step twelve the exposed areas of the silicon layer 2721 is oxidized to a desired thickness.
- step thirteen both the oxide and nitride layers over areas 2713 and the new oxidized layer formed in step twelve are removed to form the middle spring layer 2720 having thicker part features that will become the sidewall anchors in 2703 and cantilever dividers 2722.
- the cantilever dividers 2725 may have two functions at the same time: (1) serving as motion stoppers; and (2) defining the length of the spring with 2703.
- step fourteen (FlG. 27.14), a prime wafer 2701 with a desired thickness is bonded. This layer becomes the substrate 2701 for the final ESMUT structure.
- the process to finish the fabrication is similar to the final steps of some of the other exemplary fabrication methods described in this description. One example is briefly described below.
- step fifteen the top SOI wafer 2780 is etched back to remove the carrier layer and the oxide layer to form the top plate 2740.
- metal layer 2750 is deposited and patterned if needed to form interconnections. Trenches 2715 are formed between ESMUT elements to separate the individual ESMUT elements.
- a processed wafer with through-wafer interconnections formed therein may be for fusion bonded to the middle spring layer 2720.
- the processed wafer and the middle spring layer 2720 define a cavity pattern which corresponds to the shapes of cantilever-forming areas.
- This step may also be done with other wafer- bonding technologies (e.g. eutectic bonding, thermal compression bonding, and anodic bonding.)
- PCB board with desired circuits may be bonded to the middle spring layer 2720.
- the wafer may be made of materials such as glass, sapphire, or silicon.
- a silicon wafer having integrated circuits (ICs) built therein is bonded to the middle spring layer 2720.
- the similar process may be performed to make insulation extensions on the middle spring layer 2720.
- the material selection and process method selection in each step for the fabrication methods shown above in FIGS. 27.1 - 27.16 are similar to those described herein in association with fabrication methods with other micro-electro-mechanical structures. Again, although a cMUT is used for the purpose of illustration in the above described processes, the methods are not limited to such.
- the micro-electro-mechanical structures can also by fabricated by using only a part of each process, or different step sequences of the processes shown in FIGS. 27.1 -27.16.
- the middle spring layer of the micro-electro-mechanical structures having embedded springs can be made of a silicon wafer with highly doped layer or silicon wafer. Cantilever areas on the middle spring layer can be subsequently formed using selective silicon etching.
- the micro-electro-mechanical transducer in accordance with the present invention has been described in detail along with the figures and exemplary embodiments.
- the transducer potentially can alleviate or eliminate a number of problems with existing technology.
- the invention has eliminated the necessity of forming an addressable transducer element using a great number of smaller cells. Using the technology, either a much fewer cells are just a single cell may be necessary for each addressable transducer element.
- the design of the micro-electro-mechanical transducer of the present invention is particularly suitable for application in capacitive micromachined ultrasonic transducers (cMUT), but can also be used for other micro- electro-mechanical devices which have a movable mechanical part to transform energy.
- cMUT capacitive micromachined ultrasonic transducers
- the micro-electro-mechanical transducer in accordance with the present invention may be fabricated using the fabrication methods or incorporated in the micro-electro-mechanical transducer as disclosed in international patent applications (PCT) No. PCT/IB2006/051566, entitled THROUGH-WAFER INTERCONNECTION, filed on May 18, 2006; No. PCT/IB2006/051567, entitled METHODS FOR FABRICATING MICRO-ELECTRO-MECHANICAL DEVICES, filed on May 18, 2006; No. PCT/IB2006/051568, entitled MICRO- ELECTRO-MECHANICAL TRANSDUCERS, filed on May 18, 2006; and No. PCT/ IB2006/051569, entitled MICRO-ELECTRO-MECHANICAL TRANSDUCERS, filed on May 18, 2006.
- PCT/ IB2006/051569 entitled MICRO-ELECTRO-MECHANICAL TRANSDUCERS, filed on May 18, 2006.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Micromachines (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008516496A JP5128470B2 (en) | 2005-06-17 | 2006-06-16 | Microelectromechanical transducer with insulation extension |
CA002608164A CA2608164A1 (en) | 2005-06-17 | 2006-06-16 | Micro-electro-mechanical transducer having an insulation extension |
EP06756136A EP1907133A4 (en) | 2005-06-17 | 2006-06-16 | Micro-electro-mechanical transducer having an insulation extension |
CN200680021083.6A CN101558552B (en) | 2005-06-17 | 2006-06-16 | Micro-electro-mechanical transducer with insulation extension |
US11/917,666 US8796901B2 (en) | 2005-06-17 | 2006-06-16 | Micro-electro-mechanical transducer having an insulation extension |
US12/574,504 US8004373B2 (en) | 2005-08-03 | 2009-10-06 | MEMS ultrasonic device having a PZT and cMUT |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69203805P | 2005-06-17 | 2005-06-17 | |
US60/692,038 | 2005-06-17 | ||
US70560605P | 2005-08-03 | 2005-08-03 | |
US60/705,606 | 2005-08-03 | ||
US74424206P | 2006-04-04 | 2006-04-04 | |
US60/744,242 | 2006-04-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006134580A2 true WO2006134580A2 (en) | 2006-12-21 |
WO2006134580A3 WO2006134580A3 (en) | 2009-04-16 |
Family
ID=37532693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2006/051948 WO2006134580A2 (en) | 2005-06-17 | 2006-06-16 | Micro-electro-mechanical transducer having an insulation extension |
Country Status (6)
Country | Link |
---|---|
US (3) | US8796901B2 (en) |
EP (1) | EP1907133A4 (en) |
JP (1) | JP5128470B2 (en) |
CN (1) | CN101558552B (en) |
CA (1) | CA2608164A1 (en) |
WO (1) | WO2006134580A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009290155A (en) * | 2008-06-02 | 2009-12-10 | Canon Inc | Structure having plural conductive regions, and process for production thereof |
US7745248B2 (en) | 2007-10-18 | 2010-06-29 | The Board Of Trustees Of The Leland Stanford Junior University | Fabrication of capacitive micromachined ultrasonic transducers by local oxidation |
FR2982414A1 (en) * | 2011-11-09 | 2013-05-10 | Commissariat Energie Atomique | IMPROVED METHOD FOR PRODUCING A CAVITY DEVICE FORMED BETWEEN A SUSPENDED ELEMENT BASED ON SEMI-BURST INSULATING PLATES IN A SUBSTRATE AND THIS SUBSTRATE |
EP2595412A1 (en) * | 2011-03-24 | 2013-05-22 | Olympus Medical Systems Corp. | Ultrasonic oscillator and ultrasonic diagnosis device |
IT201700124348A1 (en) * | 2017-10-31 | 2019-05-01 | St Microelectronics Srl | MEMIE DEVICE OF PIEZOELECTRIC TYPE WITH SUSPENDED MEMBRANE AND ITS MANUFACTURING PROCESS |
WO2021038288A1 (en) * | 2019-08-30 | 2021-03-04 | Vermon Sa | Cmut transducer with motion-stopping structure and cmut transducer forming method |
US11173520B2 (en) | 2020-01-20 | 2021-11-16 | The Board Of Trustees Of The Leland Stanford Junior University | Pulse train excitation for capacative micromachined ultrasonic transducer |
CN113728659A (en) * | 2019-04-18 | 2021-11-30 | 弗劳恩霍夫应用研究促进协会 | Micromechanical acoustic transducer |
US12016726B2 (en) | 2020-08-13 | 2024-06-25 | Korea Institute Of Science And Technology | Flexible ultrasound transducer and method for manufacturing the same |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI119794B (en) * | 2005-04-28 | 2009-03-13 | Panphonics Oy | Electrostatic converter, method of its connection and method of manufacture |
WO2006123300A2 (en) * | 2005-05-18 | 2006-11-23 | Kolo Technologies, Inc. | Micro-electro-mechanical transducers |
CN101578686B (en) * | 2005-05-18 | 2012-07-18 | 科隆科技公司 | Methods for fabricating micro-electro-mechanical devices |
JP5128470B2 (en) * | 2005-06-17 | 2013-01-23 | コロ テクノロジーズ インコーポレイテッド | Microelectromechanical transducer with insulation extension |
US7514851B2 (en) * | 2005-07-13 | 2009-04-07 | Siemens Medical Solutions Usa, Inc. | Curved capacitive membrane ultrasound transducer array |
US7500954B2 (en) * | 2005-09-22 | 2009-03-10 | Siemens Medical Solutions Usa, Inc. | Expandable ultrasound transducer array |
WO2007115283A2 (en) * | 2006-04-04 | 2007-10-11 | Kolo Technologies, Inc. | Modulation in micromachined ultrasonic transducers |
US8193685B2 (en) * | 2007-07-03 | 2012-06-05 | Koninklijke Philips Electronics N.V. | Thin film detector for presence detection |
US7843022B2 (en) * | 2007-10-18 | 2010-11-30 | The Board Of Trustees Of The Leland Stanford Junior University | High-temperature electrostatic transducers and fabrication method |
CN101874287B (en) * | 2007-12-03 | 2012-08-29 | 科隆科技公司 | Through-wafer interconnections in electrostatic transducer and array |
EP2215854A1 (en) * | 2007-12-03 | 2010-08-11 | Kolo Technologies, Inc. | Stacked transducing devices |
WO2009073692A1 (en) * | 2007-12-03 | 2009-06-11 | Kolo Technologies, Inc. | Packaging and connecting electrostatic transducer arrays |
US8767514B2 (en) * | 2007-12-03 | 2014-07-01 | Kolo Technologies, Inc. | Telemetric sensing using micromachined ultrasonic transducer |
US20100262014A1 (en) * | 2007-12-03 | 2010-10-14 | Yongli Huang | Ultrasound Scanner Built with Capacitive Micromachined Ultrasonic Transducers (CMUTS) |
EP2217148A1 (en) * | 2007-12-03 | 2010-08-18 | Kolo Technologies, Inc. | Dual-mode operation micromachined ultrasonic transducer |
US20090190254A1 (en) * | 2008-01-29 | 2009-07-30 | Seagate Technology Llc | Micromachined mover |
JP5438983B2 (en) * | 2008-02-08 | 2014-03-12 | 株式会社東芝 | Ultrasonic probe and ultrasonic diagnostic apparatus |
WO2009111351A2 (en) * | 2008-02-29 | 2009-09-11 | Stc.Unm | Therapeutic ultrasound transducer chip with integrated ultrasound imager and methods of making and using the same |
US8197413B2 (en) * | 2008-06-06 | 2012-06-12 | Boston Scientific Scimed, Inc. | Transducers, devices and systems containing the transducers, and methods of manufacture |
JP2009291514A (en) * | 2008-06-09 | 2009-12-17 | Canon Inc | Method for manufacturing capacitive transducer, and capacitive transducer |
US8402831B2 (en) * | 2009-03-05 | 2013-03-26 | The Board Of Trustees Of The Leland Standford Junior University | Monolithic integrated CMUTs fabricated by low-temperature wafer bonding |
JP5495918B2 (en) * | 2009-07-24 | 2014-05-21 | キヤノン株式会社 | Electromechanical transducer and method for producing electromechanical transducer |
US8710599B2 (en) | 2009-08-04 | 2014-04-29 | Fairchild Semiconductor Corporation | Micromachined devices and fabricating the same |
US8563345B2 (en) | 2009-10-02 | 2013-10-22 | National Semiconductor Corporated | Integration of structurally-stable isolated capacitive micromachined ultrasonic transducer (CMUT) array cells and array elements |
US8324006B1 (en) * | 2009-10-28 | 2012-12-04 | National Semiconductor Corporation | Method of forming a capacitive micromachined ultrasonic transducer (CMUT) |
JP5473579B2 (en) | 2009-12-11 | 2014-04-16 | キヤノン株式会社 | Control device for capacitive electromechanical transducer and control method for capacitive electromechanical transducer |
JP5404365B2 (en) * | 2009-12-16 | 2014-01-29 | キヤノン株式会社 | Electromechanical converter and manufacturing method thereof |
US8530985B2 (en) * | 2010-03-18 | 2013-09-10 | Chia-Ming Cheng | Chip package and method for forming the same |
CN102336388B (en) * | 2010-07-22 | 2014-04-16 | 上海华虹宏力半导体制造有限公司 | Preparation method of pressure-sensitive transducer |
JP5702966B2 (en) * | 2010-08-02 | 2015-04-15 | キヤノン株式会社 | Electromechanical transducer and method for manufacturing the same |
EP2616388A4 (en) | 2010-09-18 | 2014-08-13 | Fairchild Semiconductor | HERMETIC ENCLOSURE FOR MICROELECTROMECHANICAL SYSTEMS |
US9278846B2 (en) | 2010-09-18 | 2016-03-08 | Fairchild Semiconductor Corporation | Micromachined monolithic 6-axis inertial sensor |
EP2616822B1 (en) | 2010-09-18 | 2015-07-01 | Fairchild Semiconductor Corporation | Micromachined 3-axis accelerometer with a single proof-mass |
US8813564B2 (en) | 2010-09-18 | 2014-08-26 | Fairchild Semiconductor Corporation | MEMS multi-axis gyroscope with central suspension and gimbal structure |
DE112011103124T5 (en) | 2010-09-18 | 2013-12-19 | Fairchild Semiconductor Corporation | Bearing for reducing quadrature for resonant micromechanical devices |
WO2012037492A2 (en) | 2010-09-18 | 2012-03-22 | Janusz Bryzek | Multi-die mems package |
EP2619130A4 (en) | 2010-09-20 | 2014-12-10 | Fairchild Semiconductor | Through silicon via with reduced shunt capacitance |
US10065851B2 (en) | 2010-09-20 | 2018-09-04 | Fairchild Semiconductor Corporation | Microelectromechanical pressure sensor including reference capacitor |
US8716816B2 (en) | 2010-10-12 | 2014-05-06 | Micralyne Inc. | SOI-based CMUT device with buried electrodes |
KR20120047599A (en) * | 2010-11-04 | 2012-05-14 | 삼성전자주식회사 | Cell and channel of ultrasonic transducer, and ultrasonic transducer including the channel |
EP2455133A1 (en) * | 2010-11-18 | 2012-05-23 | Koninklijke Philips Electronics N.V. | Catheter comprising capacitive micromachined ultrasonic transducers with an adjustable focus |
EP2688686B1 (en) * | 2011-03-22 | 2022-08-17 | Koninklijke Philips N.V. | Ultrasonic cmut with suppressed acoustic coupling to the substrate |
US8421170B2 (en) * | 2011-04-11 | 2013-04-16 | Baris Bayram | Method for microfabrication of a capacitive micromachined ultrasonic transducer comprising a diamond membrane and a transducer thereof |
EP2728904A4 (en) * | 2011-06-27 | 2015-03-04 | Ingen Msl Inc | VIBRANT ELEMENT AND METHOD FOR PRODUCING VIBRANT ELEMENT |
US9239386B2 (en) | 2011-10-05 | 2016-01-19 | Infineon Technologies Ag | Sonic sensors and packages |
EP2768396A2 (en) | 2011-10-17 | 2014-08-27 | Butterfly Network Inc. | Transmissive imaging and related apparatus and methods |
KR101813183B1 (en) * | 2011-12-19 | 2017-12-29 | 삼성전자주식회사 | cell, element of ultrasonic transducer, ultrasonic transducer including the sames, and method of manufacturing the sames |
CN102538850A (en) * | 2012-01-04 | 2012-07-04 | 无锡智超医疗器械有限公司 | Capacitor micro-electromechanical ultrasonic sensor and manufacturing method thereof |
US9062972B2 (en) | 2012-01-31 | 2015-06-23 | Fairchild Semiconductor Corporation | MEMS multi-axis accelerometer electrode structure |
US8978475B2 (en) | 2012-02-01 | 2015-03-17 | Fairchild Semiconductor Corporation | MEMS proof mass with split z-axis portions |
US9128289B2 (en) | 2012-12-28 | 2015-09-08 | Pixtronix, Inc. | Display apparatus incorporating high-aspect ratio electrical interconnects |
US8754694B2 (en) | 2012-04-03 | 2014-06-17 | Fairchild Semiconductor Corporation | Accurate ninety-degree phase shifter |
US9488693B2 (en) | 2012-04-04 | 2016-11-08 | Fairchild Semiconductor Corporation | Self test of MEMS accelerometer with ASICS integrated capacitors |
US8742964B2 (en) | 2012-04-04 | 2014-06-03 | Fairchild Semiconductor Corporation | Noise reduction method with chopping for a merged MEMS accelerometer sensor |
KR102058489B1 (en) | 2012-04-05 | 2019-12-23 | 페어차일드 세미컨덕터 코포레이션 | Mems device front-end charge amplifier |
EP2647955B8 (en) | 2012-04-05 | 2018-12-19 | Fairchild Semiconductor Corporation | MEMS device quadrature phase shift cancellation |
EP2647952B1 (en) | 2012-04-05 | 2017-11-15 | Fairchild Semiconductor Corporation | Mems device automatic-gain control loop for mechanical amplitude drive |
US9069006B2 (en) | 2012-04-05 | 2015-06-30 | Fairchild Semiconductor Corporation | Self test of MEMS gyroscope with ASICs integrated capacitors |
US9625272B2 (en) | 2012-04-12 | 2017-04-18 | Fairchild Semiconductor Corporation | MEMS quadrature cancellation and signal demodulation |
KR101999745B1 (en) | 2012-04-12 | 2019-10-01 | 페어차일드 세미컨덕터 코포레이션 | Micro-electro-mechanical-system(mems) driver |
US10517569B2 (en) | 2012-05-09 | 2019-12-31 | The Regents Of The University Of Michigan | Linear magnetic drive transducer for ultrasound imaging |
US9221077B2 (en) | 2012-05-09 | 2015-12-29 | Kolo Technologies, Inc. | CMUT assembly with acoustic window |
RU2627282C2 (en) * | 2012-05-31 | 2017-08-04 | Конинклейке Филипс Н.В. | Semiconductor plate and method of its manufacture |
DE102013014881B4 (en) | 2012-09-12 | 2023-05-04 | Fairchild Semiconductor Corporation | Enhanced silicon via with multi-material fill |
US20140071142A1 (en) * | 2012-09-13 | 2014-03-13 | Pixtronix, Inc. | Display apparatus incorporating vertically oriented electrical interconnects |
US10549127B2 (en) * | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
WO2014077106A1 (en) | 2012-11-15 | 2014-05-22 | オリンパス株式会社 | Ultrasonic transducer element and ultrasonic endoscope |
CN103367004B (en) * | 2012-12-21 | 2016-01-20 | 北京纳米能源与系统研究所 | Button and keyboard |
WO2014123922A1 (en) | 2013-02-05 | 2014-08-14 | Butterfly Network, Inc. | Cmos ultrasonic transducers and related apparatus and methods |
US9586233B2 (en) * | 2013-02-22 | 2017-03-07 | The Board Of Trustees Of The Leland Stanford Junior University | Capacitive micromachined ultrasound transducers with pressurized cavities |
US9857457B2 (en) * | 2013-03-14 | 2018-01-02 | University Of Windsor | Ultrasonic sensor microarray and its method of manufacture |
AU2014234071B2 (en) | 2013-03-15 | 2018-05-17 | Butterfly Network, Inc. | Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same |
JP6279706B2 (en) | 2013-03-15 | 2018-02-14 | バタフライ ネットワーク,インコーポレイテッド | Ultrasonic device and ultrasonic system |
US9667889B2 (en) | 2013-04-03 | 2017-05-30 | Butterfly Network, Inc. | Portable electronic devices with integrated imaging capabilities |
TWI682817B (en) | 2013-07-23 | 2020-01-21 | 美商蝴蝶網路公司 | Interconnectable ultrasound transducer probes and related methods and apparatus |
JP2015023994A (en) * | 2013-07-26 | 2015-02-05 | セイコーエプソン株式会社 | Ultrasonic measurement device, ultrasonic head unit, ultrasonic probe, and ultrasonic imaging device |
US9437802B2 (en) * | 2013-08-21 | 2016-09-06 | Fujifilm Dimatix, Inc. | Multi-layered thin film piezoelectric devices and methods of making the same |
US9475093B2 (en) | 2013-10-03 | 2016-10-25 | Fujifilm Dimatix, Inc. | Piezoelectric ultrasonic transducer array with switched operational modes |
EP3069382B1 (en) * | 2013-11-15 | 2021-09-29 | Koninklijke Philips N.V. | Integrated circuit array and method for manufacturing an array of integrated circuits |
US9525119B2 (en) * | 2013-12-11 | 2016-12-20 | Fujifilm Dimatix, Inc. | Flexible micromachined transducer device and method for fabricating same |
CN106659464B (en) | 2014-04-18 | 2020-03-20 | 蝴蝶网络有限公司 | Ultrasonic transducers in Complementary Metal Oxide Semiconductor (CMOS) wafers and related devices and methods |
CN106461767B (en) | 2014-04-18 | 2019-05-28 | 蝴蝶网络有限公司 | Framework, relevant device and the method for single substrate supersonic imaging device |
TWI671059B (en) | 2014-04-18 | 2019-09-11 | 美商蝴蝶網路公司 | Ultrasonic imaging compression methods and apparatus |
US9067779B1 (en) | 2014-07-14 | 2015-06-30 | Butterfly Network, Inc. | Microfabricated ultrasonic transducers and related apparatus and methods |
JP2016097033A (en) * | 2014-11-20 | 2016-05-30 | キヤノン株式会社 | Capacitance type transducer and subject information acquisition device |
JP2016101417A (en) * | 2014-11-28 | 2016-06-02 | キヤノン株式会社 | Capacitance-type acoustic wave transducer and subject information acquisition apparatus with the same |
DE102014225934B4 (en) * | 2014-12-15 | 2017-08-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electrostatically deflectable micromechanical component and method for its production |
EP3235353B1 (en) * | 2014-12-15 | 2022-09-21 | Robert Bosch GmbH | Modular deformable platform |
CN104655261A (en) * | 2015-02-06 | 2015-05-27 | 中国科学院半导体研究所 | Capacitive ultrasonic sensor and manufacturing method thereof |
US10065854B2 (en) | 2015-05-20 | 2018-09-04 | uBeam Inc. | Membrane bonding with photoresist |
US10058892B2 (en) | 2015-05-20 | 2018-08-28 | uBeam Inc. | Membrane bonding |
US10315224B2 (en) | 2015-05-20 | 2019-06-11 | uBeam Inc. | Ultrasonic transducer |
KR101684375B1 (en) * | 2015-06-26 | 2016-12-09 | 울산과학기술원 | Self-powered nondestructive inspection for crack detection |
JP6604626B2 (en) | 2015-08-21 | 2019-11-13 | 国立大学法人東北大学 | Detection device |
DE102015216200A1 (en) * | 2015-08-25 | 2017-03-02 | Robert Bosch Gmbh | Acoustic sensor with a housing and a membrane element arranged on this housing |
CN105207517B (en) | 2015-08-26 | 2017-08-25 | 京东方科技集团股份有限公司 | Triboelectricity device and its manufacture method |
US11084062B2 (en) * | 2015-11-02 | 2021-08-10 | Koninklijke Philips N.V. | Ultrasound transducer array, probe and system |
US10413938B2 (en) | 2015-11-18 | 2019-09-17 | Kolo Medical, Ltd. | Capacitive micromachined ultrasound transducers having varying properties |
US9987661B2 (en) | 2015-12-02 | 2018-06-05 | Butterfly Network, Inc. | Biasing of capacitive micromachined ultrasonic transducers (CMUTs) and related apparatus and methods |
US10109784B2 (en) * | 2016-03-01 | 2018-10-23 | Qualcomm Incorporated | Sensor device |
EP3258258B1 (en) * | 2016-06-13 | 2024-07-31 | Airbus Defence and Space GmbH | Sensor skin |
US10062636B2 (en) * | 2016-06-27 | 2018-08-28 | Newport Fab, Llc | Integration of thermally conductive but electrically isolating layers with semiconductor devices |
US10618078B2 (en) | 2016-07-18 | 2020-04-14 | Kolo Medical, Ltd. | Bias control for capacitive micromachined ultrasonic transducers |
US11047979B2 (en) | 2016-07-27 | 2021-06-29 | Sound Technology Inc. | Ultrasound transducer array |
US10399121B2 (en) | 2016-09-12 | 2019-09-03 | Kolo Medical, Ltd. | Bias application for capacitive micromachined ultrasonic transducers |
WO2018125839A1 (en) * | 2016-12-28 | 2018-07-05 | Knowles Electronics, Llc | Microelectromechanical system microphone |
KR101915255B1 (en) | 2017-01-11 | 2018-11-05 | 삼성메디슨 주식회사 | Method of manufacturing the ultrasonic probe and the ultrasonic probe |
US10196261B2 (en) | 2017-03-08 | 2019-02-05 | Butterfly Network, Inc. | Microfabricated ultrasonic transducers and related apparatus and methods |
WO2018236956A1 (en) | 2017-06-21 | 2018-12-27 | Butterfly Network, Inc. | Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections |
US10613058B2 (en) | 2017-06-27 | 2020-04-07 | Kolo Medical, Ltd. | CMUT signal separation with multi-level bias control |
FI20175691A1 (en) | 2017-07-14 | 2019-01-15 | Senseg Oy | Electrostatic actuator structure |
EP3729020B1 (en) | 2017-12-19 | 2024-09-18 | The University of British Columbia | Layered structure and method for fabricating same |
US11828730B2 (en) * | 2018-02-19 | 2023-11-28 | The Boeing Company | Vacuum bag having integral ultrasonic transducers |
JP7153985B2 (en) * | 2018-09-05 | 2022-10-17 | 株式会社日立製作所 | capacitive and piezoelectric devices |
WO2020100112A1 (en) * | 2018-11-16 | 2020-05-22 | Vermon S.A. | Capacitive micromachined ultrasonic transducer and method of manufacturing the same |
KR102196437B1 (en) * | 2019-01-29 | 2020-12-30 | 한국과학기술연구원 | Capacitive Micromachined Ultrasonic Transducer |
JP2019075831A (en) * | 2019-02-12 | 2019-05-16 | キヤノン株式会社 | Capacitance-type acoustic wave transducer and subject information acquisition apparatus with the same |
US11738369B2 (en) | 2020-02-17 | 2023-08-29 | GE Precision Healthcare LLC | Capactive micromachined transducer having a high contact resistance part |
CN112452695B (en) * | 2020-10-29 | 2023-02-17 | 北京京东方技术开发有限公司 | Acoustic wave transduction structure and preparation method thereof and acoustic wave transducer |
US11472537B2 (en) * | 2020-12-07 | 2022-10-18 | Gregory Hubert Piesinger | Artificial buoyancy method and apparatus |
US20230372970A1 (en) * | 2022-05-18 | 2023-11-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transducer device and method of manufacture |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2975307A (en) * | 1958-01-02 | 1961-03-14 | Ibm | Capacitive prime mover |
US4889832A (en) | 1987-12-23 | 1989-12-26 | Texas Instruments Incorporated | Method of fabricating an integrated circuit with metal interconnecting layers above and below active circuitry |
US4996627A (en) | 1989-01-30 | 1991-02-26 | Dresser Industries, Inc. | High sensitivity miniature pressure transducer |
JPH0365084A (en) | 1989-08-02 | 1991-03-20 | Hitachi Ltd | Electrostatic secondary actuator, and optical head and optical disc device |
US5146435A (en) | 1989-12-04 | 1992-09-08 | The Charles Stark Draper Laboratory, Inc. | Acoustic transducer |
JPH0547916A (en) | 1991-08-20 | 1993-02-26 | Fujitsu Ltd | Method for manufacturing semiconductor device |
US5186177A (en) * | 1991-12-05 | 1993-02-16 | General Electric Company | Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels |
FR2700003B1 (en) * | 1992-12-28 | 1995-02-10 | Commissariat Energie Atomique | Method for manufacturing a pressure sensor using silicon on insulator technology and sensor obtained. |
US5619476A (en) | 1994-10-21 | 1997-04-08 | The Board Of Trustees Of The Leland Stanford Jr. Univ. | Electrostatic ultrasonic transducer |
US5894452A (en) | 1994-10-21 | 1999-04-13 | The Board Of Trustees Of The Leland Stanford Junior University | Microfabricated ultrasonic immersion transducer |
FR2744285B1 (en) | 1996-01-25 | 1998-03-06 | Commissariat Energie Atomique | METHOD FOR TRANSFERRING A THIN FILM FROM AN INITIAL SUBSTRATE TO A FINAL SUBSTRATE |
WO1997039464A1 (en) | 1996-04-18 | 1997-10-23 | California Institute Of Technology | Thin film electret microphone |
US5680863A (en) * | 1996-05-30 | 1997-10-28 | Acuson Corporation | Flexible ultrasonic transducers and related systems |
US5857974A (en) * | 1997-01-08 | 1999-01-12 | Endosonics Corporation | High resolution intravascular ultrasound transducer assembly having a flexible substrate |
JPH1187736A (en) * | 1997-09-11 | 1999-03-30 | Hitachi Ltd | Semiconductor sensor and its manufacture |
DE69830153T2 (en) | 1998-01-20 | 2005-10-13 | Seiko Epson Corp. | OPTICAL SWITCHING DEVICE AND PICTURE DISPLAY |
US6002117A (en) | 1998-03-10 | 1999-12-14 | Pak; Il Young | Electric heating cord with non-heating core-conducting element and reduced EMF emissions |
JP3532788B2 (en) | 1999-04-13 | 2004-05-31 | 唯知 須賀 | Semiconductor device and manufacturing method thereof |
JP4569167B2 (en) | 1999-04-19 | 2010-10-27 | 株式会社村田製作所 | Manufacturing method of external force detection sensor |
JP2001015721A (en) | 1999-04-30 | 2001-01-19 | Canon Inc | Method for separating composite member and method for producing thin film |
US6314057B1 (en) | 1999-05-11 | 2001-11-06 | Rodney J Solomon | Micro-machined ultrasonic transducer array |
US6719694B2 (en) * | 1999-12-23 | 2004-04-13 | Therus Corporation | Ultrasound transducers for imaging and therapy |
FR2805709B1 (en) | 2000-02-28 | 2002-05-17 | Commissariat Energie Atomique | ELECTRICAL CONNECTION BETWEEN TWO FACES OF A SUBSTRATE AND METHOD OF MAKING |
US6283601B1 (en) | 2000-04-14 | 2001-09-04 | C Speed Corporation | Optical mirror system with multi-axis rotational control |
EP1151962B1 (en) | 2000-04-28 | 2007-06-13 | STMicroelectronics S.r.l. | Structure for electrically connecting a first body of semiconductor material overlaid by a second body of semiconductor material, composite structure using the electric connection structure, and manufacturing process thereof |
US6646364B1 (en) | 2000-07-11 | 2003-11-11 | Honeywell International Inc. | MEMS actuator with lower power consumption and lower cost simplified fabrication |
US6467879B1 (en) | 2000-10-16 | 2002-10-22 | Xerox Corporation | Method and apparatus for preventing degradation of electrostatically actuated devices |
US6512625B2 (en) | 2000-11-22 | 2003-01-28 | Ball Semiconductor, Inc. | Light modulation device and system |
US6613005B1 (en) * | 2000-11-28 | 2003-09-02 | Insightec-Txsonics, Ltd. | Systems and methods for steering a focused ultrasound array |
US6558330B1 (en) | 2000-12-06 | 2003-05-06 | Acuson Corporation | Stacked and filled capacitive microelectromechanical ultrasonic transducer for medical diagnostic ultrasound systems |
US6737740B2 (en) | 2001-02-08 | 2004-05-18 | Micron Technology, Inc. | High performance silicon contact for flip chip |
JP2002250665A (en) | 2001-02-23 | 2002-09-06 | Omron Corp | Capacitance-type sensor and its manufacturing method |
US6600587B2 (en) | 2001-04-23 | 2003-07-29 | Memx, Inc. | Surface micromachined optical system with reinforced mirror microstructure |
JP4929538B2 (en) | 2001-06-29 | 2012-05-09 | 株式会社デンソー | Manufacturing method of semiconductor device |
US6585653B2 (en) * | 2001-07-31 | 2003-07-01 | Koninklijke Philips Electronics N.V. | Micro-machined ultrasonic transducer (MUT) array |
JP4703061B2 (en) | 2001-08-30 | 2011-06-15 | 富士通株式会社 | Thin film circuit board manufacturing method and via forming board forming method |
US6750516B2 (en) | 2001-10-18 | 2004-06-15 | Hewlett-Packard Development Company, L.P. | Systems and methods for electrically isolating portions of wafers |
EP2560199B1 (en) | 2002-04-05 | 2016-08-03 | STMicroelectronics S.r.l. | Process for manufacturing a through insulated interconnection in a body of semiconductor material |
US6767751B2 (en) | 2002-05-28 | 2004-07-27 | Silicon Light Machines, Inc. | Integrated driver process flow |
US6958255B2 (en) * | 2002-08-08 | 2005-10-25 | The Board Of Trustees Of The Leland Stanford Junior University | Micromachined ultrasonic transducers and method of fabrication |
US6822798B2 (en) | 2002-08-09 | 2004-11-23 | Optron Systems, Inc. | Tunable optical filter |
US6865140B2 (en) | 2003-03-06 | 2005-03-08 | General Electric Company | Mosaic arrays using micromachined ultrasound transducers |
US20040190377A1 (en) * | 2003-03-06 | 2004-09-30 | Lewandowski Robert Stephen | Method and means for isolating elements of a sensor array |
US7443765B2 (en) | 2003-03-06 | 2008-10-28 | General Electric Company | Reconfigurable linear sensor arrays for reduced channel count |
SE526366C3 (en) | 2003-03-21 | 2005-10-26 | Silex Microsystems Ab | Electrical connections in substrate |
TW567355B (en) * | 2003-04-21 | 2003-12-21 | Prime View Int Co Ltd | An interference display cell and fabrication method thereof |
TWI232333B (en) * | 2003-09-03 | 2005-05-11 | Prime View Int Co Ltd | Display unit using interferometric modulation and manufacturing method thereof |
US20050075572A1 (en) * | 2003-10-01 | 2005-04-07 | Mills David M. | Focusing micromachined ultrasonic transducer arrays and related methods of manufacture |
US7030536B2 (en) | 2003-12-29 | 2006-04-18 | General Electric Company | Micromachined ultrasonic transducer cells having compliant support structure |
US7285897B2 (en) * | 2003-12-31 | 2007-10-23 | General Electric Company | Curved micromachined ultrasonic transducer arrays and related methods of manufacture |
US7052464B2 (en) * | 2004-01-01 | 2006-05-30 | General Electric Company | Alignment method for fabrication of integrated ultrasonic transducer array |
WO2005120130A1 (en) | 2004-06-03 | 2005-12-15 | Olympus Corporation | Electrostatic capacity type ultrasonic vibrator, manufacturing method thereof, and electrostatic capacity type ultrasonic probe |
US7545075B2 (en) | 2004-06-04 | 2009-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Capacitive micromachined ultrasonic transducer array with through-substrate electrical connection and method of fabricating same |
US20060004289A1 (en) * | 2004-06-30 | 2006-01-05 | Wei-Cheng Tian | High sensitivity capacitive micromachined ultrasound transducer |
US7489593B2 (en) | 2004-11-30 | 2009-02-10 | Vermon | Electrostatic membranes for sensors, ultrasonic transducers incorporating such membranes, and manufacturing methods therefor |
TW200644165A (en) | 2005-05-04 | 2006-12-16 | Icemos Technology Corp | Silicon wafer having through-wafer vias |
CN101578686B (en) | 2005-05-18 | 2012-07-18 | 科隆科技公司 | Methods for fabricating micro-electro-mechanical devices |
WO2006123300A2 (en) | 2005-05-18 | 2006-11-23 | Kolo Technologies, Inc. | Micro-electro-mechanical transducers |
JP5128470B2 (en) * | 2005-06-17 | 2013-01-23 | コロ テクノロジーズ インコーポレイテッド | Microelectromechanical transducer with insulation extension |
US7514851B2 (en) * | 2005-07-13 | 2009-04-07 | Siemens Medical Solutions Usa, Inc. | Curved capacitive membrane ultrasound transducer array |
US7612635B2 (en) | 2005-08-03 | 2009-11-03 | Kolo Technologies, Inc. | MEMS acoustic filter and fabrication of the same |
US7305883B2 (en) * | 2005-10-05 | 2007-12-11 | The Board Of Trustees Of The Leland Stanford Junior University | Chemical micromachined microsensors |
EP2215854A1 (en) | 2007-12-03 | 2010-08-11 | Kolo Technologies, Inc. | Stacked transducing devices |
-
2006
- 2006-06-16 JP JP2008516496A patent/JP5128470B2/en not_active Expired - Fee Related
- 2006-06-16 US US11/917,666 patent/US8796901B2/en active Active
- 2006-06-16 CN CN200680021083.6A patent/CN101558552B/en active Active
- 2006-06-16 WO PCT/IB2006/051948 patent/WO2006134580A2/en not_active Application Discontinuation
- 2006-06-16 EP EP06756136A patent/EP1907133A4/en not_active Withdrawn
- 2006-06-16 CA CA002608164A patent/CA2608164A1/en not_active Abandoned
- 2006-06-19 US US11/425,128 patent/US8926517B2/en active Active
-
2014
- 2014-12-29 US US14/584,495 patent/US9660554B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of EP1907133A4 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7745248B2 (en) | 2007-10-18 | 2010-06-29 | The Board Of Trustees Of The Leland Stanford Junior University | Fabrication of capacitive micromachined ultrasonic transducers by local oxidation |
JP2009290155A (en) * | 2008-06-02 | 2009-12-10 | Canon Inc | Structure having plural conductive regions, and process for production thereof |
US8928042B2 (en) | 2008-06-02 | 2015-01-06 | Canon Kabushiki Kaisha | Structure having plural conductive regions and process for production thereof |
EP2595412A1 (en) * | 2011-03-24 | 2013-05-22 | Olympus Medical Systems Corp. | Ultrasonic oscillator and ultrasonic diagnosis device |
EP2595412A4 (en) * | 2011-03-24 | 2013-07-03 | Olympus Medical Systems Corp | ULTRASONIC OSCILLATOR AND ULTRASONIC DIAGNOSTIC DEVICE |
US8512251B2 (en) | 2011-03-24 | 2013-08-20 | Olympus Medical Systems Corp. | Ultrasound transducer and ultrasound diagnostic apparatus |
FR2982414A1 (en) * | 2011-11-09 | 2013-05-10 | Commissariat Energie Atomique | IMPROVED METHOD FOR PRODUCING A CAVITY DEVICE FORMED BETWEEN A SUSPENDED ELEMENT BASED ON SEMI-BURST INSULATING PLATES IN A SUBSTRATE AND THIS SUBSTRATE |
WO2013068474A1 (en) | 2011-11-09 | 2013-05-16 | Commissariat à l'énergie atomique et aux énergies alternatives | Improved process for producing a device comprising cavities formed between a suspended element resting on insulating pads semi-buried in a substrate and this substrate |
US9029178B2 (en) | 2011-11-09 | 2015-05-12 | Commissariat à l'énergie atomique et aux énergies alternatives | Method for producing a device comprising cavities formed between a suspended element resting on insulating pads semi-buried in a substrate and this substrate |
EP3477715A1 (en) * | 2017-10-31 | 2019-05-01 | STMicroelectronics S.r.l. | Piezoelectric mems device having a suspended diaphragm and manufacturing process thereof |
IT201700124348A1 (en) * | 2017-10-31 | 2019-05-01 | St Microelectronics Srl | MEMIE DEVICE OF PIEZOELECTRIC TYPE WITH SUSPENDED MEMBRANE AND ITS MANUFACTURING PROCESS |
US11427463B2 (en) | 2017-10-31 | 2022-08-30 | Stmicroelectronics S.R.L. | Piezoelectric MEMS device having a suspended diaphragm and manufacturing process thereof |
CN113728659A (en) * | 2019-04-18 | 2021-11-30 | 弗劳恩霍夫应用研究促进协会 | Micromechanical acoustic transducer |
CN113728659B (en) * | 2019-04-18 | 2023-08-18 | 弗劳恩霍夫应用研究促进协会 | Micromachined Acoustic Transducer |
WO2021038288A1 (en) * | 2019-08-30 | 2021-03-04 | Vermon Sa | Cmut transducer with motion-stopping structure and cmut transducer forming method |
CN114401798A (en) * | 2019-08-30 | 2022-04-26 | 维蒙股份公司 | CMUT transducer with stop structure and method for forming CMUT transducer |
CN114401798B (en) * | 2019-08-30 | 2024-03-26 | 维蒙股份公司 | CMUT transducer with stop structure and CMUT transducer forming method |
US12145838B2 (en) | 2019-08-30 | 2024-11-19 | Vermon Sa | CMUT transducer with motion-stopping structure and CMUT transducer forming method |
US11173520B2 (en) | 2020-01-20 | 2021-11-16 | The Board Of Trustees Of The Leland Stanford Junior University | Pulse train excitation for capacative micromachined ultrasonic transducer |
US11260424B2 (en) | 2020-01-20 | 2022-03-01 | The Board Of Trustees Of The Leland Stanford Junior University | Contoured electrode for capacitive micromachined ultrasonic transducer |
US11731164B2 (en) | 2020-01-20 | 2023-08-22 | The Board Of Trustees Of The Leland Stanford Junior University | Pulse train excitation for capacitive micromachined ultrasonic transducer |
US12016726B2 (en) | 2020-08-13 | 2024-06-25 | Korea Institute Of Science And Technology | Flexible ultrasound transducer and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2006134580A3 (en) | 2009-04-16 |
US20080290756A1 (en) | 2008-11-27 |
EP1907133A2 (en) | 2008-04-09 |
CN101558552B (en) | 2017-05-31 |
JP2009508367A (en) | 2009-02-26 |
US9660554B2 (en) | 2017-05-23 |
US20150326146A1 (en) | 2015-11-12 |
CA2608164A1 (en) | 2006-12-21 |
US20070013269A1 (en) | 2007-01-18 |
EP1907133A4 (en) | 2012-05-09 |
CN101558552A (en) | 2009-10-14 |
US8796901B2 (en) | 2014-08-05 |
US8926517B2 (en) | 2015-01-06 |
JP5128470B2 (en) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8796901B2 (en) | Micro-electro-mechanical transducer having an insulation extension | |
US7880565B2 (en) | Micro-electro-mechanical transducer having a surface plate | |
US8008105B2 (en) | Methods for fabricating micro-electro-mechanical devices | |
US8105941B2 (en) | Through-wafer interconnection | |
WO2007015219A2 (en) | Micro-electro-mechanical transducer having a surface plate | |
US8429808B2 (en) | Method for fabrication an electrical transducer | |
RU2607720C2 (en) | Ultrasound transducer device and method of manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680021083.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2608164 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006756136 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11917666 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008516496 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2006756136 Country of ref document: EP |