Nothing Special   »   [go: up one dir, main page]

WO2006120763A1 - アンテナ構造およびそれを備えた無線通信機 - Google Patents

アンテナ構造およびそれを備えた無線通信機 Download PDF

Info

Publication number
WO2006120763A1
WO2006120763A1 PCT/JP2005/012946 JP2005012946W WO2006120763A1 WO 2006120763 A1 WO2006120763 A1 WO 2006120763A1 JP 2005012946 W JP2005012946 W JP 2005012946W WO 2006120763 A1 WO2006120763 A1 WO 2006120763A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitance
resonance frequency
ground
loading
Prior art date
Application number
PCT/JP2005/012946
Other languages
English (en)
French (fr)
Inventor
Satoru Hirano
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007514942A priority Critical patent/JP4103936B2/ja
Priority to GB0718977A priority patent/GB2439863C/en
Publication of WO2006120763A1 publication Critical patent/WO2006120763A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • Antenna structure and wireless communication device including the same
  • the present invention relates to an antenna structure in which a base on which a radiation electrode is formed is mounted on a circuit board, and a radio communication device including the antenna structure.
  • antennas provided in a wireless communication device there is a surface mount antenna that is mounted on a circuit board of a wireless communication device and accommodated in a housing of the wireless communication device.
  • This surface-mounted antenna has, for example, a configuration in which a radiation electrode for performing antenna operation is formed on a dielectric substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-209733
  • Patent Document 2 JP 2002-141739 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-335117
  • the frequency characteristics (return loss characteristics) of radio waves from a radio communication device with a surface-mounted antenna mounted on a circuit board are not determined only by the radiation electrode of the surface-mounted antenna. This is determined by the involvement of various elements such as the ground electrode and parts of the circuit board on which the is mounted. For this reason, the resonance frequency of the radio communication radio wave of the radio communication device is shifted from the resonance frequency of the radiation electrode of the surface mount antenna. As a result, even if the same surface mount antenna is mounted, for example, if the wireless communication device model is different, the resonance frequency of the radio communication radio wave of the wireless communication device (hereinafter referred to as the antenna resonance frequency) is different. A problem occurs.
  • the size and shape of the ground electrode (Dalland) formed on the circuit board is different, or the components disposed around the surface mount antenna are different.
  • the state of the surface mount antenna is different, such as the type and the distance between the surface mount antenna and the surrounding parts, and the housing material of the radio communication device is different. Different. Since the ambient frequency of such a surface mount antenna is involved in a complicated manner and the resonance frequency of the antenna is determined, the type of radio communication device on which the surface mount antenna is mounted differs. If the ambient conditions are different, the same surface-mount antenna is provided, and the resonance frequency of the antenna is different.
  • the circuit board circuit electrically connected to the surface-mounted antenna is changed for each wireless communication device model.
  • a method has been proposed in which the part is custom-designed and the resonance frequency of the antenna is adjusted to the set resonance frequency (see, for example, Patent Documents 1 to 3).
  • the conventional methods for adjusting the resonance frequency of the antenna with the circuit on the circuit board have a problem in that the current loss increases and the antenna gain decreases.
  • a component with capacitance or inductance to adjust the resonance frequency of the antenna, for example, if a general-purpose component is also used for cost, the value of V or some numerical value of capacitance or inductance Only parts with values (capacitor parts or inductor parts) can be prepared. For this reason, since it is often impossible to obtain capacitor components and inductor components having optimum values, it is difficult to accurately adjust the resonance frequency of the antenna to the set resonance frequency.
  • the present invention has the following configuration as means for solving the above problems. That is, one of the configurations of the antenna structure of the present invention is that a radiation electrode that performs antenna operation is provided on a base, and the base is mounted on a circuit board, and the radiation electrode is a substrate surface of the circuit board. In the antenna structure having a configuration provided on the base so as to face each other with a gap therebetween,
  • the circuit board is placed facing the radiation electrode of the base and has a capacitance between it and the radiation electrode.
  • a grounding electrode is formed on the circuit board, and a grounding electrode is formed on the circuit board via a space between the grounding capacitor loading electrode and the grounding electrode, avoiding the formation region of the grounding capacity loading electrode.
  • a resonance frequency adjusting element is provided to connect between the capacitance loading electrode and the ground electrode, and the resonance frequency adjusting element adjusts the resonance frequency of the antenna structure to a resonance frequency set in advance. It is characterized by having a capacitance or inductance to achieve this.
  • the wireless communication device of the present invention is characterized in that an antenna structure having a configuration specific to the present invention is provided.
  • the base body provided with the radiation electrode is mounted on the circuit board, and the circuit board is disposed opposite to the radiation electrode of the base body and has a capacitance between the ground electrode and the ground electrode.
  • a mass loading electrode is formed.
  • the circuit board is provided with a ground electrode via a gap between the electrode for loading capacitance between grounds and an element for adjusting a resonance frequency for connecting between the electrode for loading capacitance between grounds and the ground electrode.
  • the resonance frequency adjusting element has a capacity or inductance.
  • the radiation electrode is connected to the ground electrode via the capacitance between the capacitance loading electrode and the capacitance or inductance of the resonance frequency adjusting element.
  • the impedance of the circuit (hereinafter referred to as the resonance frequency adjusting circuit) in which the capacitance between the radiation electrode and the electrode for capacitive loading between the ground and the capacitance or inductance of the resonance frequency adjusting element is connected in series is It is concerned with the electrical length of the radiation electrode which determines the resonance frequency of the radiation electrode. For this reason, by variably adjusting the capacitance or inductance value of the resonant frequency adjusting element, the impedance of the resonant frequency adjusting circuit is varied and the electrical length of the radiation electrode is varied.
  • the resonance frequency of the radiation electrode (that is, the resonance frequency of the antenna structure) can be variably adjusted.
  • the resonant frequency of the antenna structure can be variably adjusted without changing the design of the shape of the radiation electrode of the base body, etc., simply by changing the capacitance or inductance value of the resonant frequency adjusting element. Can do.
  • a component (antenna component) in which the radiation electrode is formed on the base can be used in common for a plurality of types of wireless communication devices, and the component can be shared. This makes it possible to reduce the cost of antenna parts and wireless communication devices. It becomes easy to plan.
  • the capacitance of the element for adjusting the resonant frequency or The amount of change in the resonance frequency of the antenna structure with respect to the amount of change in inductance value can be increased.
  • the capacitance size or inductance of the resonance frequency adjusting element is reduced as the electrode area of the electrode for loading capacitance between grounds is reduced to reduce the capacitance between the electrode for loading capacitance between grounds and the radiation electrode.
  • the amount of change in the resonant frequency of the antenna structure with respect to the amount of change in value can be reduced.
  • a general-purpose capacitor component or inductor component is used as the resonance frequency adjustment element, and the capacitance size or inductance value of the resonance frequency adjustment element is discontinuous. Even if it can only be variably adjusted, it is possible to change the capacitance between the radiation electrode and the electrode for capacitive loading by changing the electrode area of the electrode for loading the capacitance between grounds, thereby resonating the antenna structure. The frequency change width can be reduced, and the resonance frequency of the antenna structure can be finely adjusted. This makes it easy to obtain the required resonance frequency of the radiation electrode and improve the reliability of the wireless communication device having the antenna structure of the present invention for wireless communication.
  • the electrode for loading capacitance between grounds is provided on the circuit board and is not provided on the base on which the radiation electrode is formed. For this reason, when it is desired to change the capacitance between the radiation electrode and the electrode for loading capacitance between grounds due to a design change, etc., it is only necessary to change the electrode area of the electrode for loading capacitance between the grounds formed on the circuit board. There is no need to change the design of the component (antenna component) formed by forming the radiation electrode on the base. In other words, it is possible to use the same antenna components after the design change as before the design change. As described above, the configuration in which the electrode for ground capacitance loading is provided on the circuit board is also an important element that can promote the common use of the antenna components.
  • a ground-capacitance capacity loading electrode is temporarily provided on the side of the base.
  • the virtual plane along the electrode surface of the radiation electrode and the electrode of the electrode for loading capacitance between grounds Since the virtual plane along the pole surface has, for example, an orthogonal relationship or a substantially orthogonal relationship, the capacitance between the radiation electrode and the electrode for loading capacitance between grounds is small.
  • the electrode for loading the capacitance between the grounds must be enlarged, and the substrate (that is, the antenna component) is The problem of increasing the size occurs.
  • the grounding capacity loading electrode is formed on the circuit board surface portion facing the radiation electrode, so that the facing area between the grounding capacity loading electrode and the radiation electrode is reduced. It becomes easy to form a large capacity between the electrode for loading capacitance between ground and the radiation electrode.
  • the electrode for loading capacitance between grounds is not provided on the base, the size of the base (antenna component) can be reduced by not providing the electrodes for loading capacitance between grounds on the base.
  • the capacitance loading electrode between the grounds is formed on the circuit board surface portion facing the radiation electrode, and a large capacitance can be formed between the capacitance loading electrode between the ground and the radiation electrode. Due to the configuration, it is possible to variably adjust the resonance frequency of the antenna structure while preventing the antenna gain from being deteriorated.
  • FIG. La is a schematic plan view for explaining the antenna structure of the first embodiment.
  • FIG. Lb is a schematic perspective view of the antenna structure of FIG. La.
  • FIG. Lc is a schematic plan view for explaining a configuration example of a circuit board constituting the antenna structure of FIG. La.
  • FIG. 2 is a graph for explaining an example of a change in the return loss characteristic of the antenna structure due to a change in the capacitance of the resonant frequency adjusting element constituting the antenna structure of the first embodiment.
  • FIG. 3 is a graph for explaining an example of a change in the return loss characteristic of the antenna structure due to a change in the inductance value of the resonant frequency adjusting element constituting the antenna structure of the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of a slit of the ground electrode constituting the antenna structure of the first embodiment. It is a figure for clarification.
  • FIG. 5 is a graph for explaining an example of a change in the return loss characteristic of the antenna structure with respect to a change in the length of the resonance frequency adjusting slit provided in the ground electrode.
  • FIG. 6a is a model diagram for explaining the effect of obtaining the component power of the first embodiment.
  • FIG. 6b is a model diagram for explaining the problems of the conventional example.
  • FIG. 6c is a model diagram for explaining the problems of the conventional example together with FIG. 6b.
  • FIG. 7a is a sectional view for explaining one of the other embodiments together with FIG. 7b.
  • FIG. 7b is a cross-sectional view for explaining one of the other embodiments together with FIG. 7a.
  • Fig. La shows a schematic plan view of a first embodiment of an antenna structure according to the present invention.
  • Fig. Lb shows a schematic perspective view of the antenna structure of Fig. La
  • Fig. Lc shows a schematic plan view of a conductor pattern form of the circuit board constituting the antenna structure of Fig. La. ing.
  • the antenna structure 1 of the first embodiment includes a base 2 made of a dielectric, a radiation electrode 3 and a feed electrode 4 formed on the dielectric base 2, and the dielectric base 2 mounted on the surface.
  • the device 8 includes a power supply line 9 formed on the circuit board 5 and electrically connected to the power supply electrode 4 of the dielectric substrate 2.
  • the dielectric substrate 2 has a rectangular parallelepiped shape.
  • a schematic cross-sectional view of this dielectric substrate 2 is shown in FIG. 6a.
  • the radiation electrode 3 is formed from the top surface of the dielectric substrate 2 so as to wrap around the edge of the bottom surface through the right end surface of FIG.
  • the edge force on the bottom surface of the dielectric substrate 2, for example, the feed electrode 4 is extended to a position passing through the left end surface in FIG. !
  • the corner of the circuit board 5 forms an antenna component, and a ground-loading electrode 7 and a power supply line 9 are formed on the board surface of the corner of the circuit board 5.
  • the ground electrode 6 is formed in almost the entire area avoiding the formation area of the inter-ground capacitance loading electrode 7 and the power supply line 9.
  • the dielectric substrate 2 on which the radiating electrode 3 and the feeding electrode 4 are formed has a posture in which the bottom surface is directed to the circuit board 5 side, and the radiating electrode 3 is formed, for example, on the right end of FIG. With the part disposed on the ground electrode 6, it is mounted (surface mounted) on the antenna component at the corner of the circuit board 5.
  • the end portion far from the feeding electrode 4 that is, the right end portion in FIG.
  • the radiation electrode 3 that is directly joined to the ground electrode 6 and provided on the upper surface of the dielectric substrate 2 is in a state of being disposed opposite to the substrate surface of the circuit board 5.
  • One end of the power supply line 9 is electrically connected to the power supply electrode 4. Further, the other end side of the power supply line 9 is electrically connected to, for example, a high-frequency circuit 10 for wireless communication of a wireless communication device. That is, the power supply line 9 electrically connects the high-frequency circuit 10 for wireless communication and the power supply electrode 4.
  • the feeding line 9 is provided with a matching element 11 constituting a matching circuit for impedance matching between the feeding electrode 4 side and the high-frequency circuit 10 side.
  • the power supply electrode 4 is formed with a gap from the radiation electrode 3, and the power supply electrode 4 and the radiation electrode 3 are electromagnetically coupled through a capacitor.
  • a radio transmission signal is transmitted to the power feeding electrode 4 from the radio communication high frequency circuit 10 through the power feeding line 9.
  • a signal for wireless transmission is transmitted from the feeding electrode 4 to the radiation electrode 3 by capacitive coupling between the feeding electrode 4 and the radiation electrode 3.
  • the radiation electrode 3 is a capacitive feed type radiation electrode.
  • the circuit board 5 is provided with a ground-capacitance loading electrode 7 at a portion facing the radiation electrode 3 with a gap from the ground electrode 6 (see Fig. Lc). .
  • the ground-loading capacity loading electrode 7 has a bow I protruding portion 7a formed by being drawn out from the region where the dielectric substrate 2 is mounted to the outside of the region.
  • the resonant frequency adjusting element 8 is composed of a capacitor part or an inductor part, and is mounted on the circuit board 5 in such a manner that the lead part 7a of the electrode 7 for loading capacitance between the ground and the ground electrode 6 is connected.
  • the dielectric substrate 2 provided with the radiation electrode 3 is of the ground mounting type.
  • the ground electrode 6 is formed on the portion of the circuit board 5 on which the dielectric substrate 2 is mounted. However, in order to form the capacitance loading electrode 7 and the power supply line 9, the ground electrode 6 is not formed on the substrate surface in the formation region of the capacitance loading electrode 7 and the power supply line 9. It becomes the composition.
  • the grounding capacity loading electrode 7 is disposed opposite to the radiation electrode 3 so that a capacity is formed between the grounding electrode 3 and the grounding capacity loading electrode. 7 is connected to the ground electrode 6 through a resonant frequency adjusting element 8.
  • the radiation electrode 3 is a circuit (resonance frequency adjustment) in which a capacitance between the radiation electrode 3 and the electrode for loading capacitance between grounds 7 and a capacitance or inductance of the resonance frequency adjustment element 8 are connected in series. It is connected to the ground electrode 6 through a circuit).
  • the impedance of the resonance frequency adjusting circuit is related to the electrical length of the radiation electrode 3, that is, the resonance frequency.
  • the resonant frequency of the radiating electrode 3 (antenna structure) can be adjusted by variably adjusting the impedance or the inductance value of the resonant frequency adjusting element 8 and adjusting the impedance of the resonant frequency adjusting circuit. 1 resonance frequency) can be variably adjusted.
  • the resonant frequency of the antenna structure 1 can be made lower than when the resonant frequency adjusting element 8 is not provided. it can.
  • the amount of decrease in the resonance frequency increases as the capacitance of the resonance frequency adjusting element (capacitor component) 8 increases.
  • FIG. 2 shows examples of return loss characteristics of five types of antenna structures 1 having the same configuration except for the configuration related to the resonance frequency adjusting element 8. That is, the dotted line A in the drawing of FIG. 2 is an example of the return loss characteristic of the antenna structure 1 when the resonance frequency adjusting element 8 is not provided.
  • the solid line B is the resonance frequency.
  • the solid line C is an example when the capacitance of the resonance frequency adjustment element 8 is lpF
  • the solid line D is a capacitance of the resonance frequency adjustment element 8 of 3 pF.
  • the solid line E is an example when the capacitance of the resonant frequency adjusting element 8 is 6 pF.
  • the resonant frequency of the antenna structure 1 is lower by providing the resonant frequency adjusting element (capacitor component) 8 than when the resonant frequency adjusting element 8 is not provided. Become. Further, the amount of decrease in the resonance frequency of the antenna structure 1 ⁇ ⁇ , ⁇ ⁇ ,
  • ⁇ ⁇ and ⁇ ⁇ increase as the capacitance of the resonance frequency adjusting element 8 increases.
  • the resonant frequency adjusting element 8 when the resonant frequency adjusting element 8 is formed of an inductor component, the resonant frequency of the antenna structure 1 can be increased compared to the case where the resonant frequency adjusting element 8 is not provided. it can.
  • the amount of increase in the resonance frequency is such that as the inductance value of the resonance frequency adjustment element (inductor component) 8 decreases, the influence of the resonance frequency adjustment element 8 increases, and the resonance frequency of the antenna structure 1 increases. Become.
  • FIG. 3 shows examples of return loss characteristics of five types of antenna structures 1 having the same configuration except for the configuration related to the resonant frequency adjusting element 8. That is, the dotted line a in the drawing of FIG. 3 is an example of the return loss characteristic of the antenna structure 1 when the resonance frequency adjusting element 8 is not provided. Also, the solid lines b to e in the graph of FIG. 3 are examples of the return loss characteristics of the antenna structure 1 when an inductor component is provided as the resonance frequency adjusting element 8, and the solid line b is the resonance frequency.
  • the adjustment element 8 is an example when the inductance value is 6.8 nH, and the solid line c is an example when the resonance frequency adjustment element 8 has an inductance value of 4.7 nH, and the solid line d is for resonance frequency adjustment.
  • the element 8 is an example when the inductance value is 3.9 nH, and the solid line e is an example when the inductance value of the resonance frequency adjusting element 8 is 2.7 nH. Resonance circumference so that the graph force in Fig. 3 is also divided.
  • the wave number adjusting element (inductor component) 8 By providing the wave number adjusting element (inductor component) 8, the resonance frequency of the antenna structure 1 becomes higher than when the resonant frequency adjusting element 8 is not provided. Further, the amount of increase Afb, Afc, Afd, Afe of the resonance frequency of the antenna structure 1 increases as the inductance value of the resonance frequency adjusting element 8 decreases.
  • the resonance frequency adjusting circuit in which the capacitance between the radiation electrode 3 and the ground-capacitance loading electrode 7 and the capacitance or inductance of the resonance frequency adjusting element 8 are connected in series is the radiation electrode 3
  • the amount of change in the impedance of the resonance frequency adjustment circuit with respect to the amount of change in the capacitance or the inductance value of the resonance frequency adjustment element 8 differs depending on the capacitance between the capacitor and the electrode 7 for loading capacitance between grounds.
  • the capacitance of the resonant frequency adjusting element 8 can be adjusted by variably adjusting the capacitance between the radiation electrode 3 and the grounded capacitance loading electrode 7, that is, by adjusting the electrode area of the grounded capacitance loading electrode 7.
  • the resonant frequency of the antenna structure 1 can be variably adjusted by adjusting the amount of change in the impedance of the resonance frequency adjusting circuit with respect to the amount of change or the amount of change in inductance value.
  • the resonance frequency adjusting element 8 As the electrode area of the capacitance loading electrode 7 between the grounds is reduced and the capacitance between the capacitance loading electrode 7 and the radiation electrode 3 is reduced, the resonance frequency adjusting element 8 The amount of change in the resonance frequency of the antenna structure 1 with respect to the amount of change in capacitance or inductance value is small. In other words, the capacitance of the resonant frequency adjusting element 8 increases as the electrode area of the electrode 7 for loading capacitance between grounds increases and the capacitance between the electrode 7 for loading capacitance between grounds and the radiation electrode 3 increases. The change in the resonance frequency of the antenna structure 1 with respect to the change in the inductance value or the inductance value becomes large.
  • the variation width of the resonance frequency of the antenna structure 1 depends on the electrode area of the electrode 7 for capacitive load between grounds. Change.
  • the electrode area of the electrode 7 for loading the capacitance between the grounds is reduced, and conversely, the resonance frequency of the antenna structure 1 is greatly changed.
  • the electrode area of the electrode 7 for capacity loading between grounds is increased.
  • a slit 13 is formed in the ground electrode 6 so as to extend from a portion joined to the radiation electrode 3.
  • the slit 13 is for causing a part of the ground electrode 6 connected to the radiation electrode 3 to function as a part of the radiation electrode 3.
  • the slit 13 The portion of the ground electrode 6 that functions as a part of the electrode 3 is formed to be separated from the other portions of the ground electrode 6.
  • the resonance frequency of the antenna structure 1 can be changed. That is, for example, as the length of the slit 13 is extended as indicated by the dotted line from the length of the slit 13 as indicated by the solid line in FIG.
  • the solid line in the graph of 5 changes from L a ⁇ solid line Lb ⁇ solid line Lc ⁇ solid line Ld ⁇ solid line Le ⁇ solid line Lf. That is, the resonance frequency of the antenna structure 1 can be lowered as the length of the slit 13 increases and the equivalent electrical length of the radiation electrode 3 increases.
  • the resonance frequency of the antenna structure 1 can be set to, for example, a unit of about 10 MHz by variable adjustment of the capacitance or inductance value of the resonance frequency adjusting element 8 and variable adjustment of the electrode area of the capacitance loading electrode 7 between grounds. Alternatively, depending on the electrode area of the electrode 7 for loading capacitance between grounds, it can be variably adjusted in units of 1 MHz or several MHz. On the other hand, the resonance frequency of the antenna structure 1 can be variably adjusted, for example, in units of about 100 MHz by variably adjusting the slit 13.
  • the resonance frequency of the antenna structure 1 is roughly adjusted by the slit 13, and the resonance frequency adjusting element 8 and the electrode area of the capacitance loading electrode 7 are adjusted depending on the electrode area.
  • the resonance frequency of the antenna structure 1 can be adjusted with high accuracy.
  • the capacity size or inductance value of the resonant frequency adjusting element 8 and the electrode area of the grounding capacity loading electrode 7 can be variably adjusted by variably adjusting the capacitance between the radiation electrode 3 and the length and shape of the slit 13. From this, the magnitude or inductance value of the resonance frequency adjusting element 8 and the electrode of the ground-to-ground capacity loading electrode 7 are set so that the resonance frequency of the antenna structure 1 becomes a resonance frequency set in advance. Area and The length and shape of the slit 13 are appropriately adjusted and set.
  • the electrode 7 for loading capacitance between the grounds is formed on the substrate surface portion of the circuit board 5 facing the radiation electrode 3, the increase in size of the dielectric substrate 2 can be suppressed. And you can get the effect. That is, for example, as shown in the schematic cross-sectional view of FIG. 6b, an electrode 14 for forming a capacitance between the radiation electrode 3 and the ground electrode 6 is formed on the end surface of the dielectric substrate 2.
  • the left side force of FIG. 6b is a view of the end face configuration of the dielectric substrate 2, and the electrode 14 is formed on the end surface of the dielectric substrate 2 in addition to the feeding electrode 4, as shown in FIG. 6c. It will be.
  • the dielectric substrate 2 must be enlarged, and the antenna structure 1 is enlarged.
  • the electrode 14 and the radiation electrode 3 are not arranged to face each other, the capacitance between the electrode 14 and the radiation electrode 3 is small.
  • the electrode 14 is formed to extend toward the radiation electrode 3 and the gap (gap) between the electrode 14 and the radiation electrode 3 is reduced. It is conceivable to increase the capacitance between 14 and the radiation electrode 3.
  • the electrode area of the electrode 14 is increased in order to increase the capacitance between the electrode 14 and the radiation electrode 3, the dielectric substrate 2 must be enlarged, and the antenna structure 1 has a large size. The problem of inviting it occurs.
  • the ground-capacitance capacity loading electrode 7 is the substrate of the circuit board 5 facing the radiation electrode 3.
  • the composition was formed on the surface.
  • the capacitance loading electrode 7 is disposed opposite to the radiation electrode 3, it is easy to obtain a large capacity between the radiation electrode 3.
  • the electrode 7 for loading capacitance between grounds is formed on the substrate surface of the circuit board 5 and is not provided on the dielectric substrate 2, but the surface of the circuit board on which the electrodes 7 for loading capacitance between the grounds are formed. Part is dielectric This is a powerful dead space that has been used up to now with the substrate 2 mounted. From these facts, in order to increase the capacitance between the grounding capacitance loading electrode 7 and the radiation electrode 3, the dielectric substrate 2 is increased in size (i.e., the antenna Increase in size of structure 1) can be suppressed.
  • the resonance frequency adjusting element 8 is provided as shown in the first embodiment, fluctuations in the antenna gain can be suppressed to a small value. This has been confirmed by experiments of the present inventors.
  • three types of antenna structures 1 (samples ⁇ , ⁇ , ⁇ ) were prepared under the same conditions except for the configuration related to the resonance frequency adjusting element 8. That is, the sample a is not provided with the resonance frequency adjusting element 8.
  • the sample is provided with a capacitor component having a capacity of 6 pF, for example, as the resonant frequency adjusting element 8.
  • an inductor component having an inductance value of 3.9 nH is provided as the resonance frequency adjusting element 8.
  • Table 1 relates to Sampnore
  • Table 2 relates to Sampnore] 3
  • Table 3 relates to sample ⁇ .
  • Table 1 showing the antenna gain of sample a (which is provided with the resonant frequency adjusting element 8) and samples i8 and y (provided with the resonant frequency adjusting element 8). As shown in the comparison with Table 2 and Table 3 showing the antenna gain, even if the resonant frequency adjustment element 8 is provided, the same antenna gain as when the resonant frequency adjustment element 8 is not provided is obtained. It can be confirmed that
  • the second embodiment relates to a radio communication device.
  • the wireless communication device of the second embodiment is provided with the antenna structure 1 shown in the first embodiment.
  • the wireless communication device There are various configurations of the wireless communication device, and any configuration of the wireless communication device other than the antenna structure 1 may be adopted, and the description thereof is omitted here.
  • redundant description thereof is omitted.
  • the present invention is not limited to the forms of the first and second embodiments, but can take various forms.
  • the slit 13 for causing one part of the ground electrode 6 to function as a part of the radiation electrode 3 is provided.
  • the resonance frequency of the antenna structure 1 can be adjusted to the set resonance frequency without providing the slit 13, the slit 13 may be omitted.
  • FIG. 7a a schematic cross-sectional view of Fig. 7a is also shown on the bottom surface portion of the dielectric substrate facing the inter-ground capacitance loading electrode 7 of the circuit board 5.
  • FIG. 7b which is an exploded view thereof, an electrode 7 ′ for loading capacitance between grounds may be provided.
  • the grounding-capacitance loading electrode 7 ′ on the dielectric substrate 2 side is joined to the grounding-capacitance loading electrode 7 on the circuit board 5 side by a conductive joining material such as solder.
  • a part of the conductive bonding material is interposed between the dielectric substrate 2 and the circuit board 5.
  • the amount of the intervening material varies depending on various conditions such as the heating state and the molten state of the conductive bonding material when the dielectric substrate 2 is mounted on the circuit board 5 with the conductive bonding material. For this reason, the distance between the dielectric substrate 2 and the circuit board 5 varies. As a result, the distance between the radiation electrode 3 of the dielectric substrate 2 and the grounded capacitance loading electrode 7 of the circuit board 5 varies. For example, in the case of the configuration shown in FIG. The capacitance between the radiation electrode 3 of the substrate 2 and the ground-capacitance loading electrode 7 of the circuit board 5 also varies.
  • the distance between the radiation electrode 3 and the electrode for loading capacitance between the grounds 7 ′ is approximately as designed with high accuracy. can do. For this reason, the gap between the dielectric substrate 2 and the circuit board 5 is bonded to the capacitance loading electrode 7 ′ of the circuit board 5 via the conductive bonding material. Even if there is variation, it is possible to suppress the variation in capacitance between the radiation electrode 3 and the electrodes 7 and 7 'for grounding capacitance loading. Thereby, the antenna performance can be further improved.
  • the dielectric substrate 2 has a rectangular parallelepiped shape, but may have another shape such as a columnar shape or a polygonal column shape.
  • the radiation electrode 3 may have a shape other than the shape shown in FIG. 1, for example, as long as it is a radiation electrode of a capacitive power supply type.
  • the circuit board 5 The electrode 7 for capacitive loading between the grounds is formed on the surface of the electrode, and the electrode 7 for capacitive loading between the grounds is formed.
  • the ground electrode 6 may be formed on the inner layer of the back surface of the part of the circuit board 5 that is V.
  • the dielectric substrate 2 having the radiation electrode 3 is mounted on the ground region.
  • the present invention is also applied to a configuration in which the dielectric substrate having the radiation electrode is mounted on the non-ground region. It can be applied.
  • the present invention can easily adjust the resonance frequency of the antenna structure to the set resonance frequency with high accuracy while suppressing an increase in the size of the antenna structure and the badness of the antenna gain. It is effective to apply to structures and wireless communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

 放射電極3を設けた基体2を回路基板5に搭載して成るアンテナ構造1において、放射電極3は回路基板面に間隔を介して対向するように基体2に設けられている構成と成す。回路基板5には、基体2の放射電極3に対向配置して放射電極3との間に容量を持つ接地間容量装荷用電極7を形成する。また、回路基板5には、接地間容量装荷用電極7と間隔を介して接地電極6を形成する。さらに、接地間容量装荷用電極7と接地電極6との間を接続する共振周波数調整用素子8を設ける。共振周波数調整用素子8は、アンテナ構造1の共振周波数を予め定められた設定の共振周波数に調整するための容量あるいはインダクタンスを有する。

Description

明 細 書
アンテナ構造およびそれを備えた無線通信機
技術分野
[0001] 本発明は、放射電極が形成されている基体が回路基板に搭載されて成るアンテナ 構造およびそれを備えた無線通信機に関するものである。
背景技術
[0002] 無線通信機に設けられるアンテナの一つとして、無線通信機の回路基板に搭載さ れ無線通信機の筐体内に収容配置される表面実装型アンテナがある。この表面実 装型アンテナは、例えば、誘電体の基体に、アンテナ動作を行う放射電極が形成さ れている構成を備えている。
[0003] 特許文献 1 :特開平 10— 209733号公報
特許文献 2 :特開 2002— 141739号公報
特許文献 3:特開 2002— 335117号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、回路基板に表面実装型アンテナが搭載されている無線通信機の電波の 周波数特性 (リターンロス特性)は、表面実装型アンテナの放射電極だけで定まるも のではなぐ表面実装型アンテナが搭載されている回路基板の接地電極や部品等の 様々な要素が関与して定まるものである。このため、無線通信機の無線通信用電波 の共振周波数は、表面実装型アンテナの放射電極の共振周波数からずれたものと なる。これにより、同じ表面実装型アンテナが搭載されていても、例えば、無線通信 機の機種が異なると、無線通信機の無線通信用電波の共振周波数 (以下、アンテナ の共振周波数と記す)が異なるという問題が発生する。
[0005] つまり、無線通信機の機種が異なると、回路基板に形成されている接地電極 (ダラ ンド)の大きさや形状が異なったり、表面実装型アンテナの周囲に配設されている部 品の種類や、表面実装型アンテナとその周辺の部品との間の間隔が異なったり、無 線通信機の筐体の材質が異なるというように、表面実装型アンテナの周囲の状態が 異なる。そのような表面実装型アンテナの周囲状態が複雑に関与してアンテナの共 振周波数が定まるものであることから、表面実装型アンテナが搭載される無線通信機 の種類が異なって表面実装型アンテナの周囲状態が異なると、同じ表面実装型アン テナが設けられて 、るのにも拘わらず、アンテナの共振周波数が異なる。
[0006] このように同じ表面実装型アンテナを設けても、無線通信機の機種が異なると同じ アンテナの共振周波数を得ることができない。このため、要求されるアンテナの共振 周波数が同じでも、例えば、無線通信機の機種が異なると、同じ表面実装型アンテ ナを設けることができず、無線通信機の機種毎に表面実装型アンテナの例えば放射 電極の大きさ等をカスタム設計する必要があり、面倒であった。
[0007] また、表面実装型アンテナではなぐ例えば、表面実装型アンテナに電気的に接続 されている回路基板の回路を無線通信機の機種毎に変更する等というように表面実 装型アンテナ以外の部分をカスタム設計して、アンテナの共振周波数を設定の共振 周波数に調整するという手法が提案されている(例えば特許文献 1〜3参照)。
[0008] し力しながら、回路基板の回路でもってアンテナの共振周波数を調整する今までの 手法では、電流損失が増加して、アンテナ利得が低下するという問題があった。また 、アンテナの共振周波数の調整に容量あるいはインダクタンスを持つ部品を利用す る場合に、例えばコストの問題力も汎用の部品を使用することにすると、予め定まった V、くつかの数値の容量又はインダクタンス値を持つ部品(コンデンサ部品又はインダ クタ部品)しか用意できない。このために、最適な数値のコンデンサ部品やインダクタ 部品を得ることができないことが多いので、アンテナの共振周波数を精度良く設定の 共振周波数に調整することが難しかった。
課題を解決するための手段
[0009] この発明は次に示す構成をもって前記課題を解決するための手段としている。すな わち、この発明のアンテナ構造の構成の一つは、アンテナ動作を行う放射電極が基 体に設けられ、その基体は回路基板に搭載されており、前記放射電極は回路基板の 基板面に間隔を介して対向するように基体に設けられている構成を備えたアンテナ 構造において、
回路基板には、基体の放射電極に対向配置して放射電極との間に容量を持つ接 地間容量装荷用電極が形成され、また、回路基板には、その接地間容量装荷用電 極の形成領域を避け接地間容量装荷用電極と間隔を介して接地電極が形成され、 さらに、接地間容量装荷用電極と接地電極との間を接続する共振周波数調整用素 子が設けられており、その共振周波数調整用素子は、アンテナ構造の共振周波数を 予め定められた設定の共振周波数に調整するための容量あるいはインダクタンスを 有していることを特徴としている。また、この発明の無線通信機は、この発明において 特有の構成を持つアンテナ構造が設けられて 、ることを特徴として 、る。
発明の効果
[0010] この発明によれば、放射電極が設けられた基体は回路基板に搭載され、その回路 基板には、基体の放射電極に対向配置して放射電極との間に容量を持つ接地間容 量装荷用電極が形成されている。また、回路基板には、接地間容量装荷用電極と間 隔を介して接地電極が形成され、さらに、接地間容量装荷用電極と接地電極との間 を接続する共振周波数調整用素子が設けられている。その共振周波数調整用素子 は容量又はインダクタンスを有する構成とした。すなわち、この発明では、放射電極 は、接地間容量装荷用電極との間の容量と、共振周波数調整用素子の容量又はィ ンダクタンスとを介して接地電極に接続されて ヽる。その放射電極と接地間容量装荷 用電極との間の容量と、共振周波数調整用素子の容量又はインダクタンスとが直列 接続されて成る回路 (以下、共振周波数調整用回路と記す)のインピーダンスは、放 射電極の共振周波数を決定する放射電極の電気的な長さに関与するものである。こ のことから、共振周波数調整用素子の容量の大きさ又はインダクタンス値を可変調整 することにより、共振周波数調整用回路のインピーダンスが可変して放射電極の電気 的な長さが可変し、これにより、放射電極の共振周波数 (つまり、アンテナ構造の共 振周波数)を可変調整できる。
[0011] このように、共振周波数調整用素子の容量の大きさ又はインダクタンス値を可変す るだけで、基体の放射電極の形状等を設計変更することなぐアンテナ構造の共振 周波数を可変調整することができる。これにより、放射電極が基体に形成されて成る 部品 (アンテナ部品)を複数種の無線通信機に共通に使用することができて、部品の 共通化を図ることができる。このことにより、アンテナ部品や無線通信機の低コストィ匕 を図ることが容易となる。
[0012] また、接地間容量装荷用電極の電極面積を大きくして当該接地間容量装荷用電 極と放射電極との間の容量を大きくするに従って、共振周波数調整用素子の容量の 大きさ又はインダクタンス値の変化量に対するアンテナ構造の共振周波数の変化量 を大きくすることができる。換言すれば、接地間容量装荷用電極の電極面積を小さく して当該接地間容量装荷用電極と放射電極との間の容量を小さくするに従って、共 振周波数調整用素子の容量の大きさ又はインダクタンス値の変化量に対するアンテ ナ構造の共振周波数の変化量を小さくすることができる。
[0013] このため、例えば、低コストィ匕のために、汎用のコンデンサ部品又はインダクタ部品 を共振周波数調整用素子として使用することとし、共振周波数調整用素子の容量の 大きさ又はインダクタンス値を不連続的にしか可変調整することができない場合でも、 接地間容量装荷用電極の電極面積を可変調整して放射電極と接地間容量装荷用 電極との間の容量を変化させることにより、アンテナ構造の共振周波数の変化幅を小 さくすることができてアンテナ構造の共振周波数の微調整を行うことが可能である。こ のことにより、要求にあった放射電極の共振周波数を得ることが容易となり、この発明 のアンテナ構造を備えた無線通信機の無線通信に対する信頼性を向上させることが できる。
[0014] さらに、この発明では、接地間容量装荷用電極は回路基板に設けられ、放射電極 が形成されている基体に設けられているものではない。このことから、設計変更等に より放射電極と接地間容量装荷用電極との間の容量を変更したい場合に、回路基板 に形成されている接地間容量装荷用電極の電極面積を変更するだけでよぐ放射電 極が基体に形成されて成る部品(アンテナ部品)を設計変更しなくて済む。つまり、設 計変更後も設計変更前と同じアンテナ部品を用いることが可能である。このように、接 地間容量装荷用電極を回路基板に設ける構成も、アンテナ部品の共通化を促進さ せることができる重要な要素となる。
[0015] さらに、放射電極が回路基板の基板面に間隔を介して対向するように基体に設けら れている場合に、仮に、接地間容量装荷用電極を基体の側面に設ける構成とする。 この場合には、放射電極の電極面に沿う仮想平面と、接地間容量装荷用電極の電 極面に沿う仮想平面とは、例えば直交関係又は略直交関係となることから、放射電 極と接地間容量装荷用電極との間の容量は小さい。このため、放射電極と接地間容 量装荷用電極との間に大きな容量が要求される場合には、接地間容量装荷用電極 を拡大形成しなければならず、基体 (つまり、アンテナ部品)が大型化してしまうという 問題が発生する。
[0016] これに対して、この発明では、接地間容量装荷用電極は、放射電極に対向する回 路基板面部分に形成することから、接地間容量装荷用電極と放射電極との対向面積 を大きくできて接地間容量装荷用電極と放射電極との間に大きな容量を形成するこ とが容易となる。また、接地間容量装荷用電極は基体に設けないので、接地間容量 装荷用電極を基体に設けない分、基体 (アンテナ部品)の小型化を図ることができる
[0017] さらに、接地間容量装荷用電極は、放射電極に対向する回路基板面部分に形成さ れ、接地間容量装荷用電極と放射電極との間には大きな容量を形成することができ る構成であることから、アンテナ利得の悪ィ匕を防止しながら、アンテナ構造の共振周 波数の可変調整を行うことができる。
図面の簡単な説明
[0018] [図 la]図 laは、第 1実施例のアンテナ構造を説明するための模式的な平面図である
[図 lb]図 lbは、図 laのアンテナ構造の模式的な斜視図である。
[図 lc]図 lcは、図 laのアンテナ構造を構成する回路基板の構成例を説明するため の模式的な平面図である。
[図 2]図 2は、第 1実施例のアンテナ構造を構成する共振周波数調整用素子の容量 の大きさの変化によるアンテナ構造のリターンロス特性の変化例を説明するためのグ ラフである。
[図 3]図 3は、第 1実施例のアンテナ構造を構成する共振周波数調整用素子のインダ クタンス値の変化によるアンテナ構造のリターンロス特性の変化例を説明するための グラフである。
[図 4]図 4は、第 1実施例のアンテナ構造を構成する接地電極のスリットの構成例を説 明するための図である。
[図 5]図 5は、接地電極に設けた共振周波数調整用のスリットの長さの変化に対する アンテナ構造のリターンロス特性の変化例を説明するためのグラフである。
[図 6a]図 6aは、第 1実施例の構成力も得られる効果を説明するためのモデル図であ る。
[図 6b]図 6bは、従来例の問題点を説明するためのモデル図である。
[図 6c]図 6cは、図 6bと共に、従来例の問題点を説明するためのモデル図である。
[図 7a]図 7bと共に、その他の実施例の一つを説明するための断面図である。
[図 7b]図 7aと共に、その他の実施例の一つを説明するための断面図である。
符号の説明
[0019] 1 アンテナ構造
2 誘電体基体
3 放射電極
5 回路基板
6 接地電極
7 接地間容量装荷用電極
8 共振周波数調整用素子
13 スリット
発明を実施するための最良の形態
[0020] 以下に、この発明に係る実施例を図面に基づいて説明する。
[0021] 図 laには本発明に係るアンテナ構造の第 1実施例が模式的な平面図により示され
、図 lbには図 laのアンテナ構造の模式的な斜視図が示され、図 lcには図 laのアン テナ構造を構成する回路基板の導体パターンの形態例が模式的な平面図により示 されている。
[0022] この第 1実施例のアンテナ構造 1は、誘電体から成る基体 2と、この誘電体基体 2に 形成されて!ヽる放射電極 3および給電電極 4と、誘電体基体 2が表面実装される回路 基板 5と、この回路基板 5に形成されている接地電極 6および接地間容量装荷用電 極 7と、接地電極 6と接地間容量装荷用電極 7との間を接続する共振周波数調整用 素子 8と、回路基板 5に形成され誘電体基体 2の給電電極 4に電気的に接続する給 電用ライン 9とを有して構成されて 、る。
[0023] すなわち、この第 1実施例では、誘電体基体 2は直方体状と成している。この誘電 体基体 2の模式的な断面図が図 6aに示されている。この誘電体基体 2の上面から例 えば図 lbの右側の端面を通って底面の端縁部に回り込む態様でもって放射電極 3 が形成されている。また、誘電体基体 2の底面の端縁部力 例えば図 lbの左側の端 面を通り誘電体基体 2の上面における放射電極 3と間隔を介して対向する位置まで 給電電極 4が伸張形成されて!、る。
[0024] 回路基板 5の角部はアンテナ構成部位と成しており、この回路基板 5の角部の基板 面には、接地間容量装荷用電極 7と給電用ライン 9が形成されている。回路基板 5の 基板面には、それら接地間容量装荷用電極 7と給電用ライン 9の形成領域を避けた ほぼ全領域に接地電極 6が形成されて ヽる。放射電極 3および給電電極 4が形成さ れている誘電体基体 2は、その底面を回路基板 5側に向けた姿勢で、かつ、放射電 極 3が形成されている例えば図 laの右側の端部が接地電極 6上に配設される状態で もって回路基板 5の角部のアンテナ構成部位に搭載 (表面実装)される。このように、 誘電体基体 2が回路基板 5に搭載されることにより、放射電極 3の両端部のうち、給電 電極 4に遠い側の端部(つまり、例えば図 laの右側の端部)は接地電極 6に直接的 に接合され、また、誘電体基体 2の上面に設けられている放射電極 3は回路基板 5の 基板面に対向配置された状態となる。
[0025] 給電用ライン 9は、その一端側が給電電極 4に電気的に接続される。また、給電用 ライン 9の他端側は、例えば無線通信機の無線通信用の高周波回路 10に電気的に 接続される。つまり、給電用ライン 9は、無線通信用の高周波回路 10と、給電電極 4と の間を電気的に接続するものである。当該給電用ライン 9には、給電電極 4側と、高 周波回路 10側とのインピーダンス整合をとるための整合回路を構成する整合用素子 11が設けられている。
[0026] 給電電極 4は放射電極 3と間隔を介して形成されており、当該給電電極 4と放射電 極 3は容量を介して電磁結合する構成と成している。つまり、例えば、無線通信用の 高周波回路 10から給電用ライン 9を通って無線送信用の信号が給電電極 4に伝達さ れたときには、給電電極 4と放射電極 3間の容量結合により給電電極 4から放射電極 3に無線送信用の信号が伝達される。すなわち、放射電極 3は容量給電タイプの放 射電極と成している。
[0027] この第 1実施例では、回路基板 5には、放射電極 3に対向する部分に、接地間容量 装荷用電極 7が接地電極 6と間隔を介して形成されている(図 lc参照)。その接地間 容量装荷用電極 7は、誘電体基体 2が搭載される領域から当該領域の外部に引き出 し形成されて ヽる弓 Iき出し部位 7aを有して ヽる。共振周波数調整用素子 8はコンデン サ部品又はインダクタ部品により構成されており、接地間容量装荷用電極 7の引き出 し部位 7aと、接地電極 6とを接続する態様でもって回路基板 5上に搭載されている。 なお、この第 1実施例では、放射電極 3を備えた誘電体基体 2はグランド実装タイプ のものであり、本来なら、誘電体基体 2が搭載される回路基板 5の部位に接地電極 6 が形成されるが、接地間容量装荷用電極 7と給電用ライン 9を形成するために、その 接地間容量装荷用電極 7および給電用ライン 9の形成領域の基板面には接地電極 6 を形成しな 、構成となって 、る。
[0028] この第 1実施例では、接地間容量装荷用電極 7が放射電極 3に対向配置されて放 射電極 3との間に容量が形成される構成であり、その接地間容量装荷用電極 7は共 振周波数調整用素子 8を介して接地電極 6に接続されている。つまり、放射電極 3は 、当該放射電極 3と接地間容量装荷用電極 7との間の容量と、共振周波数調整用素 子 8の容量又はインダクタンスとが直列に接続されて成る回路 (共振周波数調整用回 路)を介して、接地電極 6に接続されている。その共振周波数調整用回路のインピー ダンスは、放射電極 3の電気的な長さ、つまり、共振周波数に関与するものである。こ のことから、共振周波数調整用素子 8の容量の大きさ又はインダクタンス値を可変調 整して共振周波数調整用回路のインピーダンスの可変調整を行うことにより、放射電 極 3の共振周波数 (アンテナ構造 1の共振周波数)を可変調整することができる。
[0029] 例えば、共振周波数調整用素子 8をコンデンサ部品により構成する場合には、共振 周波数調整用素子 8が配設されていない場合に比べて、アンテナ構造 1の共振周波 数を低くすることができる。その共振周波数の低下量は、共振周波数調整用素子 (コ ンデンサ部品) 8の容量の大きさが大きくなるに従って、大きくなる。 [0030] 図 2には、共振周波数調整用素子 8に関わる構成以外は同じ構成を持つ 5種類の アンテナ構造 1のそれぞれのリターンロス特性例が示されている。つまり、図 2のダラ フ中の点線 Aは共振周波数調整用素子 8が設けられていない場合のアンテナ構造 1 のリターンロス特性の一例である。また、図 2のグラフ中の実線 B〜Eは、それぞれ、 共振周波数調整用素子 8としてコンデンサ部品が設けられている場合のアンテナ構 造 1のリターンロス特性の一例であり、実線 Bは共振周波数調整用素子 8の容量が 0 . 5pFの場合の一例であり、実線 Cは共振周波数調整用素子 8の容量が lpFの場合 の一例であり、実線 Dは共振周波数調整用素子 8の容量が 3pFの場合の一例であり 、実線 Eは共振周波数調整用素子 8の容量が 6pFの場合の一例である。この図 2の グラフからも分かるように、共振周波数調整用素子 (コンデンサ部品) 8を設けることに よって、共振周波数調整用素子 8が設けられていない場合よりもアンテナ構造 1の共 振周波数は低くなる。また、そのアンテナ構造 1の共振周波数の低下量 Δ ί , Δ ί ,
B C
Δ ί , Δ ίは、共振周波数調整用素子 8の容量が大きくなるに従って大きくなる。
D Ε
[0031] また、共振周波数調整用素子 8をインダクタ部品により構成する場合には、共振周 波数調整用素子 8が配設されていない場合に比べて、アンテナ構造 1の共振周波数 を高くすることができる。その共振周波数の上昇量は、共振周波数調整用素子 (イン ダクタ部品) 8のインダクタンス値が小さくなるに従って、共振周波数調整用素子 8の 影響の度合いが大きくなつて、アンテナ構造 1の共振周波数は高くなる。
[0032] 図 3には、共振周波数調整用素子 8に関わる構成以外は同じ構成を持つ 5種類の アンテナ構造 1のそれぞれのリターンロス特性例が示されている。つまり、図 3のダラ フ中の点線 aは共振周波数調整用素子 8が設けられていない場合のアンテナ構造 1 のリターンロス特性の一例である。また、図 3のグラフ中の実線 b〜eは、それぞれ、共 振周波数調整用素子 8としてインダクタ部品が設けられている場合のアンテナ構造 1 のリターンロス特性の一例であり、実線 bは共振周波数調整用素子 8のインダクタンス 値が 6. 8nHの場合の一例であり、実線 cは共振周波数調整用素子 8のインダクタン ス値が 4. 7nHの場合の一例であり、実線 dは共振周波数調整用素子 8のインダクタ ンス値が 3. 9nHの場合の一例であり、実線 eは共振周波数調整用素子 8のインダク タンス値が 2. 7nHの場合の一例である。この図 3のグラフ力もも分力るように、共振周 波数調整用素子 (インダクタ部品) 8を設けることによって、共振周波数調整用素子 8 が設けられていない場合よりもアンテナ構造 1の共振周波数は高くなる。また、そのァ ンテナ構造 1の共振周波数の上昇量 Afb, Afc, Afd, Afeは、共振周波数調整用 素子 8のインダクタンス値が小さくなるに従って大きくなつていく。
[0033] なお、放射電極 3と接地間容量装荷用電極 7との間の容量と、共振周波数調整用 素子 8の容量又はインダクタンスとが直列接続されて成る共振周波数調整用回路は 、放射電極 3と接地間容量装荷用電極 7との間の容量によって、共振周波数調整用 素子 8の容量の大きさ又はインダクタンス値の変化量に対する当該共振周波数調整 用回路のインピーダンスの変化量が異なるものである。このことにより、放射電極 3と 接地間容量装荷用電極 7との間の容量の可変調整、つまり、接地間容量装荷用電 極 7の電極面積の可変調整によって、共振周波数調整用素子 8の容量の大きさ又は インダクタンス値の変化量に対する共振周波数調整用回路のインピーダンスの変化 量を調整して、アンテナ構造 1の共振周波数の可変調整を行うことができる。
[0034] 具体的には、接地間容量装荷用電極 7の電極面積を小さくして接地間容量装荷用 電極 7と放射電極 3との間の容量を小さくするに従って、共振周波数調整用素子 8の 容量の大きさ又はインダクタンス値の変化量に対するアンテナ構造 1の共振周波数 の変化量は小さくなる。換言すれば、接地間容量装荷用電極 7の電極面積を大きくし て接地間容量装荷用電極 7と放射電極 3との間の容量を大きくするに従って、共振周 波数調整用素子 8の容量の大きさ又はインダクタンス値の変化量に対するアンテナ 構造 1の共振周波数の変化量は大きくなる。このことから、例えば、共振周波数調整 用素子 8の容量の大きさ又はインダクタンス値を同様に変化させても、接地間容量装 荷用電極 7の電極面積によってアンテナ構造 1の共振周波数の変動幅が変化する。 これにより、アンテナ構造 1の共振周波数の微調整を行いたい場合には、接地間容 量装荷用電極 7の電極面積を小さくし、反対に、アンテナ構造 1の共振周波数を大き く変化させたい場合には、接地間容量装荷用電極 7の電極面積を大きくする。
[0035] この第 1実施例では、接地電極 6には、放射電極 3と接合する部分からスリット 13が 伸長形成されている。このスリット 13は、放射電極 3に連接されている接地電極 6の一 部分を放射電極 3の一部として機能させるためのものである。当該スリット 13は、放射 電極 3の一部として機能する接地電極 6の部分を残りの他の接地電極 6の部分と区 分けする形態に形成されている。
[0036] スリット 13の形成によって、例えば、図 4の鎖線 Zで囲まれた接地電極 6の一部分が 放射電極 3の一部として機能することとなる。このため、スリット 13の形状や長さを変 化させて放射電極 3の一部として機能する接地電極 6の部分 Zの電気的な長さを変 ィ匕させることは、放射電極 3の電気的な長さを変化させることと等価な状態となり、ァ ンテナ構造 1の共振周波数を変化させることができる。つまり、例えば、図 4の実線に 示されるようなスリット 13の長さから、スリット 13の長さを点線に示されるように延長し ていくに従って、アンテナ構造 1のリターンロス特性は、例えば、図 5のグラフの実線 L a→実線 Lb→実線 Lc→実線 Ld→実線 Le→実線 Lfというように、変化していく。つまり 、スリット 13の長さが長くなつて放射電極 3の等価的な電気的な長さが長くなるに従つ て、アンテナ構造 1の共振周波数を下げていくことができる。
[0037] なお、共振周波数調整用素子 8の容量の大きさ又はインダクタンス値の可変調整 および接地間容量装荷用電極 7の電極面積の可変調整によって、アンテナ構造 1の 共振周波数を例えば約 10MHz単位、あるいは、接地間容量装荷用電極 7の電極面 積によっては 1MHz単位又は数 MHz単位で可変調整することができる。これに対し て、スリット 13の可変調整により、アンテナ構造 1の共振周波数を例えば約 100MHz 単位で可変調整することができる。このように、この第 1実施例では、スリット 13によつ てアンテナ構造 1の共振周波数の粗調整を行い、また、共振周波数調整用素子 8お よび接地間容量装荷用電極 7の電極面積によってアンテナ構造 1の共振周波数の 微調整を行うことにより、アンテナ構造 1の共振周波数を精度良く調整することが可能 である。
[0038] この第 1実施例では、上記のように共振周波数調整用素子 8の容量の大きさ又はィ ンダクタンス値と、接地間容量装荷用電極 7の電極面積 (接地間容量装荷用電極 7と 放射電極 3との間の容量)と、スリット 13の長さや形状とを可変調整することでアンテ ナ構造 1の共振周波数を可変調整することができる。このことから、アンテナ構造 1の 共振周波数が予め定められた設定の共振周波数となるように、共振周波数調整用素 子 8の容量の大きさ又はインダクタンス値と、接地間容量装荷用電極 7の電極面積と 、スリット 13の長さや形状とが、それぞれ、適宜調整されて設定されている。
[0039] この第 1実施例の構成を備えることによって、放射電極 3の大きさや形状などを変更 することなぐ回路基板 5に設ける共振周波数調整用素子 8の容量又はインダクタン ス値や、接地間容量装荷用電極 7の電極面積や、スリット 13の長さや形状を可変調 整するだけで、アンテナ構造 1の共振周波数を設定の共振周波数に調整することが できるという効果を得ることができる。
[0040] また、接地間容量装荷用電極 7は、放射電極 3に対向する回路基板 5の基板面部 分に形成されて!ヽることから、誘電体基体 2の大型化を抑制することができると ヽぅ効 果を得ることができる。つまり、例えば、図 6bの模式的な断面図に示されるように、放 射電極 3と接地電極 6との間に容量を形成するための電極 14を、誘電体基体 2の端 面に形成する場合には、例えば図 6bの左側力も誘電体基体 2の端面構成を見た図 である図 6cに示すように、給電電極 4に加えて、上記電極 14を誘電体基体 2の端面 に形成することとなる。このために、誘電体基体 2を大きくしなければならず、アンテナ 構造 1が大型化する。また、電極 14と、放射電極 3とは対向配置していないので、電 極 14と放射電極 3との間の容量は小さい。このため、電極 14と放射電極 3間の容量 を大きくする場合には、例えば電極 14を放射電極 3側に伸長形成して電極 14と放射 電極 3間の間隔 (ギャップ)を狭くすることで電極 14と放射電極 3間の容量を大きくす ることが考えられる。しかし、電極 14と放射電極 3間の間隔が狭くなるにつれて、間隔 のばらつきによる電極 14と放射電極 3間の容量のばらつき変動が大きくなるので、好 ましくない。そこで、電極 14と放射電極 3との間の容量を大きくするために電極 14の 電極面積を拡大しょうとすると、必然的に誘電体基体 2を大きくしなければならず、ァ ンテナ構造 1の大型化を招くという問題が発生する。
[0041] これに対して、この第 1実施例では、図 6aの模式的な断面図に示されるように、接 地間容量装荷用電極 7は、放射電極 3に対向する回路基板 5の基板面に形成する構 成とした。このため、接地間容量装荷用電極 7は放射電極 3に対向配置しているので 、放射電極 3との間に大きな容量を得ることが容易である。また、接地間容量装荷用 電極 7は回路基板 5の基板面に形成され、誘電体基体 2に設けられているものではな いし、当該接地間容量装荷用電極 7が形成されている回路基板面部分は、誘電体 基体 2が搭載されて今まで使用されて 、な力 たデットスペースである。これらのこと から、接地間容量装荷用電極 7と放射電極 3との間の容量を大きくするために接地間 容量装荷用電極 7を大きくする場合に、誘電体基体 2の大型化 (つまり、アンテナ構 造 1の大型化)を抑制することができる。
[0042] さらに、この第 1実施例に示すように共振周波数調整用素子 8を設けても、アンテナ 利得の変動を小さく抑えることができる。このことは、本発明者の実験により確認され ている。その実験では、共振周波数調整用素子 8に関わる構成以外は全て同じ条件 の 3種類のアンテナ構造 1 (サンプル α , β , γ )を用意した。つまり、サンプル aは共 振周波数調整用素子 8が設けられていないものである。サンプル は共振周波数調 整用素子 8として例えば容量 6pFを持つコンデンサ部品が設けられているものである 。サンプル γは共振周波数調整用素子 8として例えばインダクタンス値 3. 9nHを持 つインダクタ部品が設けられているものである。これら各サンプル α , β , γのそれぞ れについて、直線偏波のアンテナ利得を求めた。その実験結果が表 1〜表 3に表さ れている。表 1は、サンプノレひに関するものであり、表 2は、サンプノレ] 3に関するもの であり、表 3は、サンプル γに関するものである。
[0043] [表 1]
Figure imgf000015_0001
[0044] [表 2]
Figure imgf000016_0001
[0045] [表 3]
Figure imgf000016_0002
[0046] サンプル a (共振周波数調整用素子 8が設けられて ヽな ヽもの)のアンテナ利得を 表した表 1と、サンプル i8 , y (共振周波数調整用素子 8が設けられているもの)のァ ンテナ利得を表した表 2、表 3との比較からも分力るように、共振周波数調整用素子 8 を設けても、共振周波数調整用素子 8を設けない場合と同様のアンテナ利得を得る ことができることが確認できる。
[0047] 以下に、第 2実施例を説明する。この第 2実施例は無線通信機に関するものである 。この第 2実施例の無線通信機には、第 1実施例に示したアンテナ構造 1が設けられ ている。なお、無線通信機の構成には様々な構成があり、アンテナ構造 1以外の無 線通信機の構成は何れの構成を採用してもよぐここでは、その説明は省略する。ま た、アンテナ構造 1の構成は第 1実施例で述べたので、その重複説明は省略する。
[0048] なお、この発明は第 1や第 2の各実施例の形態に限定されるものではなぐ様々な 実施の形態を採り得る。例えば、第 1と第 2の各実施例のアンテナ構造 1では、接地 電極 6の一部位を放射電極 3の一部として機能させるためのスリット 13が設けられて いたが、例えば、スリット 13を設けなくともアンテナ構造 1の共振周波数を設定の共振 周波数に調整することができる場合には、スリット 13を省略してもよい。
[0049] また、第 1と第 2の各実施例の構成に加えて、回路基板 5の接地間容量装荷用電極 7に対向する誘電体基体底面部分にも、図 7aの模式的な断面図およびその分解図 である図 7bに示されるように、接地間容量装荷用電極 7'を設けてもよい。この誘電体 基体 2側の接地間容量装荷用電極 7'は、回路基板 5側の接地間容量装荷用電極 7 に例えばはんだ等の導電性接合材料により接合される。この構成によって次に示す ような効果を得ることができる。すなわち、誘電体基体 2は回路基板 5に例えばはんだ 等の導電性接合材料により搭載される。その導電性接合材料の一部は、誘電体基 体 2と回路基板 5との間に介在する。その介在量は、誘電体基体 2を回路基板 5に導 電性接合材料によって搭載する際の例えば加熱状況や導電性接合材料の溶融状 態等の様々な条件によって変わるものであり、ばらつく。このため、誘電体基体 2と回 路基板 5との間の間隔はばらついたものとなる。これにより、誘電体基体 2の放射電極 3と、回路基板 5の接地間容量装荷用電極 7との間の間隔がばらついて、例えば図 6 aに示されるような構成の場合には、誘電体基体 2の放射電極 3と、回路基板 5の接 地間容量装荷用電極 7との間の容量もばらつく。これに対して、誘電体基体 2の底面 に接地間容量装荷用電極 7'を設けることにより、放射電極 3と接地間容量装荷用電 極 7'との間の間隔は精度良くほぼ設計通りとすることができる。このため、その接地 間容量装荷用電極 7'を回路基板 5の接地間容量装荷用電極 7に導電性接合材料 を介して接合することによって、誘電体基体 2と回路基板 5との間の間隔がばらつい ても、放射電極 3と、接地間容量装荷用電極 7, 7'との間の容量のばらつきを抑制す ることができる。これにより、より一層のアンテナ性能の向上を図ることができる。
[0050] さらに、第 1と第 2の各実施例では、誘電体基体 2は直方体状であつたが、例えば、 円柱状や多角柱状等の他の形状であってもよい。さらに、放射電極 3は、容量給電タ イブの放射電極であれば、例えば図 1に示した形状以外の形状であってもよい。さら に、第 1と第 2の各実施例では、接地間容量装荷用電極 7が形成されている回路基 板領域には、接地電極 6が形成されていなカゝつた力 例えば、回路基板 5の表面に 接地間容量装荷用電極 7が形成され、その接地間容量装荷用電極 7が形成されて V、る回路基板 5の部位の裏面ある 、は内層に接地電極 6が形成されて 、る構成とし てもよい。また、放射電極 3を備えた誘電体基体 2はグランド領域に搭載されるもので あつたが、この発明は、放射電極を備えた誘電体基体が非グランド領域に搭載される 構成のものにも適用することができるものである。
産業上の利用可能性
本発明は、アンテナ構造の大型化やアンテナ利得の悪ィ匕を抑制しながらアンテナ 構造の共振周波数を精度良く設定の共振周波数に調整することが容易にできるので 、小型化が要求されているアンテナ構造や無線通信機に適用するのに有効である。

Claims

請求の範囲
[1] アンテナ動作を行う放射電極が基体に設けられ、その基体は回路基板に搭載され ており、前記放射電極は回路基板の基板面に間隔を介して対向するように基体に設 けられて 、る構成を備えたアンテナ構造にぉ 、て、
回路基板には、基体の放射電極に対向配置して放射電極との間に容量を持つ接 地間容量装荷用電極が形成され、また、回路基板には、その接地間容量装荷用電 極の形成領域を避け接地間容量装荷用電極と間隔を介して接地電極が形成され、 さらに、接地間容量装荷用電極と接地電極との間を接続する共振周波数調整用素 子が設けられており、その共振周波数調整用素子は、アンテナ構造の共振周波数を 予め定められた設定の共振周波数に調整するための容量あるいはインダクタンスを 有して 、ることを特徴とするアンテナ構造。
[2] 基体はその一部が接地電極上に配設される状態でもって回路基板に搭載され、放 射電極は、接地電極上に配置されて!ヽる基体部分を通って接地電極まで伸長形成 され当該接地電極に直接的に接合されている構成と成しており、接地電極には、上 記放射電極が接合されている部分力 接地電極の一部を放射電極に連続させて伸 張させて当該接地電極部位を放射電極の一部として機能させるためのスリットが、放 射電極の一部位として機能させる接地電極部位を残りの他の接地電極部位と区分 する形態で形成されて ヽることを特徴とする請求項 1に記載のアンテナ構造。
[3] 請求項 1又は請求項 2記載のアンテナ構造が設けられて 、ることを特徴とする無線 通信機。
PCT/JP2005/012946 2005-05-13 2005-07-13 アンテナ構造およびそれを備えた無線通信機 WO2006120763A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007514942A JP4103936B2 (ja) 2005-05-13 2005-07-13 アンテナ構造およびそれを備えた無線通信機
GB0718977A GB2439863C (en) 2005-05-13 2005-07-13 Antenna structure and wireless communication device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005141242 2005-05-13
JP2005-141242 2005-05-13

Publications (1)

Publication Number Publication Date
WO2006120763A1 true WO2006120763A1 (ja) 2006-11-16

Family

ID=37396284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012946 WO2006120763A1 (ja) 2005-05-13 2005-07-13 アンテナ構造およびそれを備えた無線通信機

Country Status (3)

Country Link
JP (1) JP4103936B2 (ja)
GB (1) GB2439863C (ja)
WO (1) WO2006120763A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060185A (ja) * 2007-08-29 2009-03-19 Kyocera Corp アンテナおよびその共振周波数の調整方法、並びにそれを用いた通信機器
JP2009081618A (ja) * 2007-09-26 2009-04-16 Tdk Corp アンテナ装置及びその特性調整方法
JP2009081702A (ja) * 2007-09-26 2009-04-16 Tdk Corp アンテナ装置及びその特性調整方法
WO2009081803A1 (ja) * 2007-12-21 2009-07-02 Tdk Corporation アンテナ装置及びこれを用いた無線通信機
JP2009147617A (ja) * 2007-12-13 2009-07-02 Tdk Corp アンテナ装置及びこれを用いた無線通信機
JP2010130164A (ja) * 2008-11-26 2010-06-10 Tdk Corp アンテナ装置、無線通信機、表面実装型アンテナ、プリント基板、並びに表面実装型アンテナ及びプリント基板の製造方法
WO2010095300A1 (ja) * 2009-02-20 2010-08-26 株式会社村田製作所 チップアンテナ及びアンテナ装置
WO2011125707A1 (ja) * 2010-04-01 2011-10-13 Tdk株式会社 アンテナ装置及びこれを用いた無線通信機
WO2012008177A1 (ja) * 2010-07-16 2012-01-19 株式会社村田製作所 アンテナ装置
WO2014007087A1 (ja) * 2012-07-04 2014-01-09 株式会社村田製作所 アンテナ装置
CN110797658A (zh) * 2018-08-03 2020-02-14 香港中文大学 通过在接地面上增加电容器来减少两个天线间相互耦合的设备和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499641B1 (en) * 2014-02-12 2022-01-26 Huawei Device Co., Ltd. Antenna and mobile terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347903A (ja) * 1991-01-31 1992-12-03 Tdk Corp 多層誘電体基板によるトリプレート型帯域通過フィルタの周波数調整方法
JPH07249925A (ja) * 1994-03-10 1995-09-26 Murata Mfg Co Ltd アンテナ及びアンテナ装置
JPH1013138A (ja) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd 表面実装型アンテナ
JP2002141740A (ja) * 2000-10-31 2002-05-17 Murata Mfg Co Ltd アンテナの実装構造およびそれを備えた無線装置
JP2002335117A (ja) * 2001-05-08 2002-11-22 Murata Mfg Co Ltd アンテナ構造およびそれを備えた通信機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347903A (ja) * 1991-01-31 1992-12-03 Tdk Corp 多層誘電体基板によるトリプレート型帯域通過フィルタの周波数調整方法
JPH07249925A (ja) * 1994-03-10 1995-09-26 Murata Mfg Co Ltd アンテナ及びアンテナ装置
JPH1013138A (ja) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd 表面実装型アンテナ
JP2002141740A (ja) * 2000-10-31 2002-05-17 Murata Mfg Co Ltd アンテナの実装構造およびそれを備えた無線装置
JP2002335117A (ja) * 2001-05-08 2002-11-22 Murata Mfg Co Ltd アンテナ構造およびそれを備えた通信機

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060185A (ja) * 2007-08-29 2009-03-19 Kyocera Corp アンテナおよびその共振周波数の調整方法、並びにそれを用いた通信機器
JP2009081618A (ja) * 2007-09-26 2009-04-16 Tdk Corp アンテナ装置及びその特性調整方法
JP2009081702A (ja) * 2007-09-26 2009-04-16 Tdk Corp アンテナ装置及びその特性調整方法
JP2009147617A (ja) * 2007-12-13 2009-07-02 Tdk Corp アンテナ装置及びこれを用いた無線通信機
WO2009081803A1 (ja) * 2007-12-21 2009-07-02 Tdk Corporation アンテナ装置及びこれを用いた無線通信機
JP2010130164A (ja) * 2008-11-26 2010-06-10 Tdk Corp アンテナ装置、無線通信機、表面実装型アンテナ、プリント基板、並びに表面実装型アンテナ及びプリント基板の製造方法
WO2010095300A1 (ja) * 2009-02-20 2010-08-26 株式会社村田製作所 チップアンテナ及びアンテナ装置
US20110298683A1 (en) * 2009-02-20 2011-12-08 Murata Manufacturing Co., Ltd. Chip antenna and antenna device
CN102326292A (zh) * 2009-02-20 2012-01-18 株式会社村田制作所 片状天线及天线装置
CN102326292B (zh) * 2009-02-20 2015-02-18 株式会社村田制作所 片状天线及天线装置
JP5263383B2 (ja) * 2009-02-20 2013-08-14 株式会社村田製作所 アンテナ装置
WO2011125707A1 (ja) * 2010-04-01 2011-10-13 Tdk株式会社 アンテナ装置及びこれを用いた無線通信機
CN102834967A (zh) * 2010-04-01 2012-12-19 Tdk株式会社 天线装置以及使用其的无线通信机
CN102834967B (zh) * 2010-04-01 2016-04-13 Tdk株式会社 天线装置以及使用其的无线通信机
US9225057B2 (en) 2010-04-01 2015-12-29 Tdk Corporation Antenna apparatus and wireless communication device using same
WO2012008177A1 (ja) * 2010-07-16 2012-01-19 株式会社村田製作所 アンテナ装置
JPWO2012008177A1 (ja) * 2010-07-16 2013-09-05 株式会社村田製作所 アンテナ装置
CN102959797A (zh) * 2010-07-16 2013-03-06 株式会社村田制作所 天线装置
WO2014007087A1 (ja) * 2012-07-04 2014-01-09 株式会社村田製作所 アンテナ装置
CN110797658A (zh) * 2018-08-03 2020-02-14 香港中文大学 通过在接地面上增加电容器来减少两个天线间相互耦合的设备和方法

Also Published As

Publication number Publication date
JPWO2006120763A1 (ja) 2008-12-18
JP4103936B2 (ja) 2008-06-18
GB2439863A (en) 2008-01-09
GB2439863B (en) 2009-02-18
GB0718977D0 (en) 2007-11-07
GB2439863C (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US7786940B2 (en) Antenna structure and wireless communication device including the same
JP3562512B2 (ja) 表面実装型アンテナおよびそのアンテナを備えた通信装置
JP3596526B2 (ja) 表面実装型アンテナおよびそのアンテナを備えた通信装置
US9059510B2 (en) Dielectric chip antennas
JP3180683B2 (ja) 表面実装型アンテナ
US9190721B2 (en) Antenna device
US9692099B2 (en) Antenna-matching device, antenna device and mobile communication terminal
JP2004336250A (ja) アンテナ整合回路、アンテナ整合回路を有する移動体通信装置、アンテナ整合回路を有する誘電体アンテナ
WO2008035526A1 (fr) Structure d'antenne et dispositif de communication sans fil l'employant
JP3739740B2 (ja) 表面実装型アンテナおよびアンテナ装置
JP5056846B2 (ja) アンテナおよび無線通信機
US9142884B2 (en) Antenna device
US6297777B1 (en) Surface-mounted antenna and communication apparatus using same
WO2006120763A1 (ja) アンテナ構造およびそれを備えた無線通信機
JPH0851313A (ja) 表面実装型アンテナ及びその周波数調整方法
JP4720720B2 (ja) アンテナ構造およびそれを備えた無線通信装置
WO2005107010A1 (ja) アンテナ及び携帯無線通信機
JP4645603B2 (ja) アンテナ構造およびそれを備えた無線通信装置
JP2004056506A (ja) 表面実装型アンテナおよび携帯無線機
JPH1032413A (ja) 表面実装型アンテナ
WO2005078860A1 (ja) アンテナ
JP2003124725A (ja) チップアンテナ装置およびチップアンテナの実装構造
JP2010258924A (ja) アンテナ及び無線通信装置
JP2002271129A (ja) アンテナ素子及びそれを用いた通信機
US8462051B2 (en) Chip antenna and antenna apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007514942

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 0718977

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20050713

WWE Wipo information: entry into national phase

Ref document number: 0718977.2

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0718977

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05765751

Country of ref document: EP

Kind code of ref document: A1