Nothing Special   »   [go: up one dir, main page]

WO2006118211A1 - Circuit board and method for manufacturing same - Google Patents

Circuit board and method for manufacturing same Download PDF

Info

Publication number
WO2006118211A1
WO2006118211A1 PCT/JP2006/308878 JP2006308878W WO2006118211A1 WO 2006118211 A1 WO2006118211 A1 WO 2006118211A1 JP 2006308878 W JP2006308878 W JP 2006308878W WO 2006118211 A1 WO2006118211 A1 WO 2006118211A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
circuit board
film
polymer film
Prior art date
Application number
PCT/JP2006/308878
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ohata
Original Assignee
Japan Gore-Tex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore-Tex Inc. filed Critical Japan Gore-Tex Inc.
Publication of WO2006118211A1 publication Critical patent/WO2006118211A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]

Definitions

  • the present invention relates to a circuit board using a liquid crystal polymer film and a method for manufacturing the circuit board.
  • a circuit board is also configured with a conductor and an insulating force.
  • a single-sided board in which a circuit is formed on one side of an insulating sheet, a double-sided board in which a circuit is formed on both sides, and a plurality of insulators It is classified as a multi-layer board that consists of sheets and has three or more layers.
  • a material having a composite material strength in which a glass cloth is impregnated with a highly heat-resistant resin such as an epoxy resin or a polyimide resin has been conventionally used.
  • a multilayer board is manufactured together with a core sheet or the like having a circuit pattern formed on one or both sides after first producing a semi-cured pre-impregnated substrate by impregnating a resin with a resin. It is manufactured by laminating and thermocompression bonding.
  • a thick glass epoxy substrate is used as the core sheet, and a laminated body in which a copper foil is coated with a resin and B-staged is bonded thereto by thermocompression bonding.
  • a release material is sandwiched between the hot pressing part of the thermocompression bonding apparatus and the laminate to facilitate peeling.
  • JP-A-4-179520 discloses a release material (release protection sheet for hot press lamination) made of a porous fluorine resin sheet.
  • a dent due to the presence of foreign matter is solved by a release material having a cushioning property.
  • JP-A-6-31744 discloses a porous resin film cover. There is described a release material (release film) that has excellent air permeability and the like. In this technique, it is said that gas can be released by a porous release material.
  • a circuit board using a film made of a non-thermoplastic resin such as polyimide has been developed.
  • a technique does not require the use of a pre-preda, it is not difficult to recycle, and since an adhesive may be required for lamination, it is still not efficient.
  • the use of adhesives can give rise to electrical properties.
  • thermoplastic resin is used as an insulating material, such as an all thermoplastic circuit board in which all insulating materials are thermoplastic resins. Technology related to the circuit board used has also been developed.
  • thermocompression bonding apparatus for thermocompression bonding.
  • a technique of disposing a cushioning material between the two is disclosed.
  • This buffer material is formed by molding metal fibers or the like into a plate shape, and can suppress local stress concentration due to the presence or absence of a partial circuit pattern. As a result, the problem of circuit pattern misalignment can be solved. Moreover, it has the effect of suppressing the generation of voids by releasing the air remaining between the resin films. Further, there is a description that a release material may be disposed between the buffer material and the thermocompression unit of the thermocompression bonding apparatus.
  • thermoplastic resins a film containing a liquid crystal polymer as a main component (hereinafter referred to as "liquid crystal polymer film” t), which is excellent in low water absorption, heat resistance, electrical characteristics and dimensional stability. ) Is attracting attention.
  • This liquid crystal polymer film can be used as a cover sheet or a core sheet of a circuit board.
  • the dielectric constant should be reduced.
  • it is effective to use a material with a low dielectric loss tangent (dielectric loss) in order to reduce transmission loss.
  • the liquid crystal polymer can form a cover sheet or constitute a multilayer circuit board without using an adhesive that causes the electrical characteristics to be abandoned.
  • Japanese Patent Application Laid-Open No. 2003-273511 discloses a technique for manufacturing a laminated circuit board having a thermoplastic resin film as a constituent element.
  • the thermoplastic resin mainly used in Japanese Patent Application Laid-Open No. 2003-273511 is a mixture of a polyether ether ketone resin and a polyetherimide resin, and although there is a description of a liquid crystal polymer, it is merely an example. Only. Polytetrafluoroethylene is also exemplified as a mold release material, but this resin itself cannot release gas generated during thermocompression bonding, which is not porous. Is recommended.
  • JP-A-4-179520 and JP-A-6-31744 describe a porous polytetrafluoroethylene sheet (film) as a release material.
  • the material to be thermocompression-bonded used in these technologies is a pre-preda in which a glass cloth or the like is impregnated with an epoxy resin or polyimide resin, and the description is also suggested for the liquid crystal polymer film. It has not been done.
  • a problem to be solved by the present invention is a circuit board having a liquid crystal polymer film as an insulator sheet, in which brittleness of the liquid crystal polymer film is suppressed and excellent in durability. It is to provide a method for manufacturing a circuit board.
  • the inventor has conducted extensive research on the thermocompression bonding conditions of the liquid crystal polymer film in the manufacturing process of the circuit board that solves the above-described problems.
  • the brittleness of the surface liquid crystal polymer film in the prior art is caused by a hydrolysis reaction with water derived from the liquid crystal polymer film itself, and if the conditions for suppressing this reaction are adopted, the above-mentioned problems will occur.
  • the present invention was completed.
  • a liquid crystal polymer film is used as a surface sheet of at least one of the insulator sheets constituting the circuit board, and the liquid crystal polymer film is thermocompression bonded.
  • a fluorine-based porous film is used as a release material. Since the fluorine-based porous film has low water absorption, it has a water-porosity if it has almost no water, so that water derived from the sheet material can be discharged to the outside. As a result, the durability of the circuit board can be remarkably improved, for example, by suppressing hydrolysis of the liquid crystal polymer film and remarkably suppressing its embrittlement.
  • the “liquid crystal polymer film” in the present invention refers to a film containing a liquid crystal polymer as a main component.
  • liquid crystal polymer film it is preferable to use a film that is substantially liquid crystal polymer only. This is because the excellent characteristics of the liquid crystal polymer can be used effectively.
  • each insulator sheet of the circuit board is composed of a liquid crystal polymer film. It is also a preferred embodiment that a circuit pattern is formed on one or both sides of the liquid crystal polymer film, and the liquid crystal polymer film is placed on the circuit pattern and thermocompression bonded. This is because a flexible circuit board having a low dielectric constant and low dielectric loss can be obtained.
  • the circuit board of the present invention is manufactured by the above method and is characterized by excellent durability. Since the circuit board has the brittleness of the liquid crystal polymer film suppressed, the folding resistance and brittleness are improved, and the circuit board has excellent durability.
  • the method for producing a circuit board according to the present invention uses a fluorine-based porous film that has low water absorption and is porous as a release material. Therefore, the liquid crystal polymer film is not given moisture at the time of thermocompression bonding of the surface liquid crystal polymer film, and the water content of the liquid crystal polymer film can be released to the outside, so that the hydrolysis reaction can be suppressed. As a result, the folding resistance and toughness of the circuit board are improved as compared with the prior art, and the durability can be remarkably improved.
  • the fluorine-based porous film can exhibit both an effect as a mold release material and an effect as a buffer material, it is only necessary to facilitate the separation between the hot pressure part of the thermocompression bonding device and the circuit board.
  • the cushioning force, especially the pressure on the circuit surface can be made uniform.
  • deformation of the circuit pattern is suppressed, it becomes possible to manufacture a circuit board having an accurate circuit pattern.
  • the circuit board manufactured by the method has a high durability because the brittleness of the surface liquid crystal polymer film that is a constituent element thereof is remarkably suppressed, and an accurate circuit pattern. It has excellent characteristics such as having In particular, since the flexible circuit board according to the present invention has excellent folding resistance and toughness, it is possible to prevent damage to the board itself and the circuit when inserted into a compact device such as a mobile phone.
  • circuit board and the manufacturing method thereof according to the present invention are extremely useful industrially.
  • FIG. 1 is a diagram showing an embodiment of a circuit board according to the present invention.
  • 1 indicates a circuit pattern sheet
  • 2 indicates a cover layer
  • 3 indicates a fluorine-based porous film as a release material
  • 4 indicates a hot press part of a thermocompression bonding apparatus.
  • the method for producing a circuit board according to the present invention uses a liquid crystal polymer film as at least one surface sheet of the insulator sheets constituting the circuit board, and thermocompression-bonds the liquid crystal polymer film.
  • the main point is that a fluorine-based porous film is used as a release material.
  • the circuit board is mainly classified into a single-sided board, a double-sided board, and a multilayer board.
  • a liquid crystal polymer film is used as at least one surface sheet of the insulating sheets constituting the circuit board.
  • One of the features is that the film is thermocompression-bonded.
  • a circuit is formed on one or both sides of a core sheet, and a cover layer is generally provided on the circuit surface.
  • a liquid crystal polymer film is used as at least one surface sheet
  • a force that makes only the core sheet or only the cover sheet a liquid crystal polymer film both the core sheet and the force sheet are liquid crystal.
  • a polymer film is used.
  • at least one surface force bar layer is a liquid crystal polymer film.
  • the cover sheet is a liquid crystal polymer film
  • the cover sheet is a liquid crystal polymer film
  • at least one of the outermost core sheets is a liquid crystal polymer film. Consists of.
  • the surface sheet is a sheet existing on the outermost surface of the insulating sheet constituting the circuit board at the time of thermocompression bonding, and a case where it is a cover sheet and a circuit on the surface thereof. It may be a core sheet.
  • the liquid crystal polymer film on the surface is directly affected by the release material during thermocompression bonding.
  • a fluorine-based porous film was used as a release material.
  • the present invention can be clearly distinguished from the prior art by the requirement that a liquid crystal polymer film is used as at least one surface sheet and a fluorine-based porous film is used as a release material.
  • an insulator sheet and other than the liquid crystal polymer
  • ceramic silicon; carbon fiber, glass fiber and other fibers impregnated with epoxy resin, polyimide resin, polyphenylene ether resin, BT resin; polyimide sheet, polyether ether ketone sheet , Polyetherimide sheets, polyethylene naphthalate sheets, polyethylene terephthalate sheets, and mixed resin sheets thereof (hereinafter, “sheet” includes a film).
  • a sheet containing a hydrophilic resin as a main component for the core sheet of the double-sided board and the inner layer of the multilayer board. Since such a sheet contains a relatively large amount of moisture, when used in the inner layer of a multilayer board, moisture is not diffused to the outside during thermocompression bonding, and the liquid crystal polymer film in the vicinity may be brittle. Because there is.
  • hydrophilic resins include polyimide resins and polyetherimide resins. However, such influence is smaller than that given to the surface liquid crystal polymer film by a polyimide sheet or the like as a release material.
  • all the insulating sheets are made of a thermoplastic resin, and can be composed of a liquid crystal polymer film from the viewpoint of electrical characteristics and the like because thermocompression bonding can be performed without using an adhesive. Is preferred.
  • the liquid crystal polymer film used in the present invention contains a liquid crystal polymer as a main component.
  • “as the main component” can be defined as the proportion of the liquid crystal polymer in the entire film being 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably Is 90% by mass or more.
  • the liquid crystal polymer film of the present invention has substantially only a liquid crystal polymer. This is because the liquid crystal polymer is excellent in low water absorption, heat resistance, electrical characteristics, and dimensional stability. Further, since the liquid crystal polymer is thermoplastic, thermocompression bonding is possible without using an adhesive, and the productivity of the circuit board can be improved. Not using an adhesive is also significant in terms of reducing the dielectric constant and dielectric loss.
  • “substantially” means that everything except unavoidable impurities is composed of a liquid crystal polymer.
  • thermopick liquid crystal polymer that exhibits liquid crystallinity in a molten state.
  • a thermopick pick liquid crystal polymer is suitable, and more specifically, the thermopick pick liquid crystal polyester is thermotropic.
  • Prefer liquid crystal polyester amide is thermotropic.
  • Thermopick-pick liquid crystal polyester (hereinafter simply referred to as "liquid crystal polyester”! Is synthesized, for example, mainly from an aromatic dicarboxylic acid and a monomer such as aromatic diol or aromatic hydroxycarboxylic acid.
  • a typical example is type I [formula (1)] synthesized from norhydroxybenzoic acid (PHB), terephthalic acid, and 4,4'-biphenol.
  • liquid crystal polymer for example, as long as it exhibits liquid crystallinity (particularly, thermo-mouth-pick liquid crystallinity), for example, a unit represented by the above formulas (1) to (3) is mainly used (for example, liquid crystal polymer). It may be a copolymer type polymer having 50 mol% or more in one whole constituent unit and having other units. Examples of the other unit include a unit having an ether bond, a unit having an imide bond, and a unit having an amide bond.
  • liquid crystal polymer film various known methods may be employed depending on the resin constituting the liquid crystal polymer film.
  • various known methods may be employed depending on the resin constituting the liquid crystal polymer film.
  • a film using the above exemplified liquid crystal polyester particularly suitable in the method of the present invention for example, “BIAC (registered product) manufactured by Japan Gore-Tex Co., Ltd.
  • Commercially available products such as “registered trademark” ”can be used.
  • the liquid crystal polyester amide corresponds to the above liquid crystal polyester having an amide bond as another unit, and examples thereof include those having a structure of the following formula (4).
  • formula (4) it is known that the molar ratio of s unit, t unit and u unit is 70Z15Z15.
  • the polymer film of the present invention contains a polymer other than the liquid crystal polymer
  • the polymer may be merely mixed with the liquid crystal polymer or may be chemically bonded.
  • an alloy polymer include polymers having a melting point of 220 ° C or higher, preferably 280 to 360 ° C, such as polyetheretherketone, polyethersulfone, polyimide, polyetherimide, polyamide, polyamideimide. And powers such as polyarylate are not limited to these.
  • the mixing ratio of the liquid crystal polymer and the alloying polymer is not particularly limited, but for example, the mass ratio is preferably 50:50 to 90:10, more preferably 70:30 to 90:10. Polymer alloys including liquid crystal polymers can also possess superior properties due to liquid crystal polymers.
  • the linear expansion coefficient in a direction parallel to the film plane is adjusted to 25 ppmZ ° C or less. More preferably, it is 21 ppmZ ° C or less.
  • the lower limit of the linear expansion coefficient of the liquid crystal polymer film is desirably 8 ppmZ ° C.
  • the linear expansion coefficient of the liquid crystal polymer film is from instrumental analysis (TMA method, Thermal Mechanical Analysis), and the specimen width is 4.5 mm, the distance between chucks is 15 mm, the load is lg, and the temperature rises from room temperature to 200 ° C.
  • the thickness of the liquid crystal polymer film is not particularly limited, but 10 ⁇ m force and 1000 ⁇ m are preferable. If it is less than 10 m, the strength may be insufficient, and it may be difficult to make a film exceeding 1000 / zm.
  • FIG. 1 is merely an example, and the scope of the present invention is not limited to this.
  • a circuit pattern is formed by a conductor on one or both surfaces of an insulator sheet (core sheet) constituting the circuit pattern sheet 1 in accordance with a conventional method.
  • the type of insulating material for the circuit pattern sheet is not particularly limited, and conventional ones can be used.
  • a liquid crystal polymer film is used.
  • Examples of the conductor for forming the circuit pattern include copper, aluminum, gold, silver, and alloys mainly composed of these metals.
  • a conventional method can be used, for example, etching is performed after a thin film having a metallic force is provided on a circuit pattern sheet.
  • a method for forming a metal thin film in addition to a method of bonding an insulator sheet and a metal plate (including metal foil, metal film, etc.), a vacuum deposition method, a sputtering method, an ion plating method, Methods such as plating and CVD can also be used.
  • the method of bonding the metal plates is preferably a heat-sealing method.
  • the heat fusion method the surface of the thermoplastic resin is softened by heating and a metal plate is laminated thereon and then cooled, or an insulator sheet and a metal plate are stacked and heated between a pair of heated rolls. It is possible to adopt a method of heat-sealing through a heat sink and then cooling.
  • the adhesion between the insulator sheet and the metal plate can be further enhanced.
  • a desired circuit pattern is formed by etching.
  • the metal layer forming the circuit pattern may be a single layer or a laminate of two or more metal layers.
  • at least one cover layer 2 is composed of a liquid crystal polymer film.
  • Liquid crystal polymer This is to effectively utilize one excellent low water absorption, heat resistance and dimensional stability. Another reason is to exhibit the characteristics of a fluorine-based porous film as a release material that does not cause brittleness of the liquid crystal polymer film present on the surface during thermocompression bonding. If a plurality of non-thermoplastic resin is used as a part of the sheet constituting the laminate and it is necessary to bond them to each other, use an adhesive or the like in advance. .
  • the arrangement of the liquid crystal polymer film it is possible to perform thermocompression bonding without using an adhesive in the next process. As a result, it is possible to prevent the electrical characteristics from being deteriorated by the adhesive, which can simplify the manufacturing process. Further, if all the insulator sheets are made of a liquid crystal polymer film, it is possible to obtain a circuit board that is particularly excellent in electrical characteristics such as low dielectric constant and low dielectric loss.
  • thermocompression bonding The conditions at the time of thermocompression bonding may be according to a conventional method.
  • the pressure may be 0.1 to: LOMPa and the time may be about 1 to 30 minutes.
  • the thermocompression bonding temperature is preferably a temperature at which the liquid crystal polymer is sufficiently soft, but if it exceeds the melting point, the resin may flow due to pressure. From such a viewpoint, it is preferable that the liquid crystal polymer to be used has a temperature in which the elastic modulus measured in the tensile mode of the DMA method (Dynamic Mechanical Analysis) is in the range of 1Z10 to 1Z1000 in the room temperature range.
  • the specific temperature is about 200 to 350 ° C depending on the type of liquid crystal polymer used.
  • thermocompression bonding apparatus is not particularly limited.
  • a flat plate press a continuous belt press, a roll laminator, or the like can be used.
  • a vacuum type flat plate press can be used suitably.
  • thermocompression bonding may be considered by heating only from the liquid crystal polymer film side. available. However, in order to improve the heat uniformity, it is preferable to perform double-sided force heating even in such a case.
  • a fluorine-based porous material as a release material is also provided on the hydrophilic resin sheet side. It is preferable to use a quality film. This is in order to reduce the influence on the liquid crystal polymer film in the vicinity by dissipating the moisture of the hydrophilic resin sheet to the outside.
  • the liquid crystal polymer film is used as a surface sheet, and the liquid crystal polymer film is required to be thermocompression bonded.
  • the insulating layer is not only a liquid crystal polymer film but also an thermoplastic resin.
  • the inner layer can be thermocompression bonded together with the liquid crystal polymer film on the surface at a time.
  • the present invention has been completed after recognizing these problems of the prior art, and is the largest in that a fluorine-based porous film is used as a release material in thermocompression bonding of a liquid crystal polymer film.
  • a fluorine-based porous film has characteristics. Fluorine-based porous film contains almost no water due to its manufacturing conditions and high hydrophobicity, and it can release liquid-derived polymer-derived water to the outside. The hydrolysis reaction during thermocompression bonding can be suppressed.
  • the fluorine-based porous film has high cushioning properties, it can function as a release material as well as a buffer material.
  • Examples of the resin constituting the fluorinated porous film include polytetrafluoroethylene (PTFE), PTFE-perfluoroalkyl butyl ether copolymer, PTFE-hexafluoropropylene. Examples include copolymers and PTFE-ethylene copolymers. Among these, expanded porous polytetrafluoroethylene (EPTFE), in which PTFE is preferred, is preferably used. Conventional methods can be used as a film forming method and a porous method for these resin.
  • PTFE polytetrafluoroethylene
  • EPTFE expanded porous polytetrafluoroethylene
  • the thickness of the fluorine-based porous film is not particularly limited, but may be, for example, 50-500 ⁇ m. If it is above, it has sufficient strength as a mold release material, and there is no possibility of breaking when the circuit board force is peeled off after heat-sealing, and also a force capable of exhibiting sufficient cushioning properties. On the other hand, if it exceeds 500 m, it is disadvantageous in terms of cost.
  • the porosity of the fluorine-based porous film is not particularly limited, but is preferably 60 to 98%, more preferably 70 to 90%. If it is less than 60%, the pores may be crushed during thermocompression bonding, making it difficult to release moisture. If it exceeds 98%, the strength will be insufficient, and the liquid crystal polymer will flow into the pores and will be difficult to peel off. There is a force that may be.
  • a metal plate is provided between the fluorine-based porous film and the thermocompression bonding section of the thermocompression bonding apparatus in order to improve the maintainability of the apparatus and at the same time improve the quality of the circuit board after thermocompression bonding. May be. Even if both a fluorine-based porous film and a metal plate are used, it will not cause paper transfer.
  • thermocompression bonding of the laminate using the fluorine-based porous film After thermocompression bonding of the laminate using the fluorine-based porous film, the laminate that is still covered with the fluoroporous film is taken out with a thermocompression bonding apparatus and cooled sufficiently. The system porous film is peeled off.
  • a solder resist layer may be provided in accordance with a conventional method in order to prevent bridging of the conductive portion and protect the circuit surface after the thermocompression bonding of the liquid crystal polymer film.
  • the circuit board obtained by the above method is composed of a liquid crystal polymer film as a constituent element thereof.
  • the brittleness at the time of thermocompression bonding is suppressed, and the durability is remarkably improved. Therefore, not only the occurrence of defects during manufacturing is suppressed, but also damage to the substrate itself and circuits in actual use is reduced.
  • the brittleness of the liquid crystal polymer film, which is the main component is remarkably suppressed, so that the folding resistance and toughness of the circuit board are improved. Durability is remarkably improved.
  • the circuit board of the present invention is very useful as it can meet the demand for longer life of electronic devices in recent years.
  • Double-sided copper clad with liquid crystal polymer film (Japan Gotex Corp., BIAC CC BCO 50F-B12B17, substrate thickness: 50 / zm, copper foil thickness: m, liquid crystal polymer melting point: 310.C) Etching was performed to form a linear circuit pattern with a line Z space of 100Z100 ⁇ m.
  • a liquid crystal polymer film (BIAC BC050F, manufactured by Japan Gore-Tex Co., Ltd., thickness: 50 m) was subjected to ultraviolet ray treatment with an integrated light amount of 4, OOOmjZcm 2 using a low-pressure mercury lamp.
  • the liquid crystal polymer film was laminated on the copper-clad plate with the ultraviolet-treated surface as an adhesive surface.
  • stretched porous PTFE film manufactured by Japan Gore-Tex, HRCF-090
  • Table 1 stretched porous PTFE film (manufactured by Japan Gore-Tex, HRCF-090) shown in Table 1 is placed on both sides as a release material, and thermocompression bonding equipment (Kitakawa Seiki Co., Ltd., vacuum hot 'cold press VH3-1377) was thermocompression bonded at a temperature of 285 ° C. and a pressure of 3 MPa for 5 minutes.
  • the obtained laminated film was cut into a 15 ⁇ 130 mm rectangle to obtain a test piece.
  • Comparative Production Example 1 A laminated film was produced in the same manner as in Production Example 1 except that a polyimide film shown in Table 1 (manufactured by Toray DuPont, Kapton 200EN) was used instead of the stretched porous PTFE film as a release material. Sarakuko cut the laminated film to obtain a test piece similar to Production Example 1.
  • thermocompression bonding device Karl Fischer 'cold press VH 3-13757
  • a non-porous PTFE film was obtained by thermocompression bonding at a temperature of 330 ° C and a pressure of 4 MPa for 5 minutes.
  • the obtained non-porous PTFE film was used as a release material in place of the stretched porous PTFE film in the method of Production Example 1 to produce a laminated film. Further, the laminated film was cut to obtain a test piece similar to Production Example 1.
  • the stretched porous PTFE film when used as a release material, neither pattern deformation nor peeling of the circuit surface protective layer was observed. This is due to the fact that the stretched porous PTFE film has excellent tackiness, and the pressure during thermocompression bonding was uniform. In addition, the folding resistance of the laminate when using the stretched porous PTFE film as a release material is significantly improved as compared with the case where another material is used as the release material. This is because the stretched porous PTFE film contains almost no water, and the ability to be porous has also suppressed the hydrolysis of the liquid crystal polymer by releasing the water derived from the liquid crystal polymer film during thermocompression bonding. It's a good night.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a circuit board with excellent durability wherein a liquid crystal polymer is used for an insulating sheet and embrittlement of the liquid crystal polymer film is suppressed. Also disclosed is a method for manufacturing such a circuit board. Specifically disclosed is a method for manufacturing a circuit board which is characterized in that a liquid crystal polymer film is used as at least one of the surface sheets among the insulating sheets constituting the circuit board. This method is further characterized in that a fluorine-containing porous film is used as a releasing material when the liquid crystal polymer film is subjected to thermal compression bonding. A circuit board manufactured by such a method is excellent in durability.

Description

明 細 書  Specification
回路基板およびその製造方法  Circuit board and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、液晶ポリマーフィルムを用いた回路基板およびその製造方法に関する ものである。  The present invention relates to a circuit board using a liquid crystal polymer film and a method for manufacturing the circuit board.
背景技術  Background art
[0002] 回路基板は、導体と絶縁体力も構成されるものであり、絶縁体シートの片面に回路 が形成されている片面板、両面に回路が形成されている両面板、および複数の絶縁 体シートからなり 3層以上の回路が形成されている多層板に分類される。この絶縁体 としては、従来、エポキシ榭脂ゃポリイミド榭脂など高耐熱性を有する榭脂をガラスク ロスに含浸させた複合材料力 なるもの等が用いられてきた。  [0002] A circuit board is also configured with a conductor and an insulating force. A single-sided board in which a circuit is formed on one side of an insulating sheet, a double-sided board in which a circuit is formed on both sides, and a plurality of insulators It is classified as a multi-layer board that consists of sheets and has three or more layers. As this insulator, a material having a composite material strength in which a glass cloth is impregnated with a highly heat-resistant resin such as an epoxy resin or a polyimide resin has been conventionally used.
[0003] 斯カる従来技術において、多層板は、先ず基材に榭脂を含浸して半硬化させたプ リプレダを製造した上で、片面または両面に回路パターンを形成したコアシート等と 共に積層し、熱圧着するなどして製造される。また、コアシートとして厚めのガラスェ ポキシ基板を用い、ここへ銅箔に榭脂を塗布して Bステージィ匕したものを張り合わせ た積層体を熱圧着する場合もある。この際、熱圧着装置の熱圧部と積層体との間に は、剥離を容易にするために離型材を挟む。  [0003] In such a prior art, a multilayer board is manufactured together with a core sheet or the like having a circuit pattern formed on one or both sides after first producing a semi-cured pre-impregnated substrate by impregnating a resin with a resin. It is manufactured by laminating and thermocompression bonding. In some cases, a thick glass epoxy substrate is used as the core sheet, and a laminated body in which a copper foil is coated with a resin and B-staged is bonded thereto by thermocompression bonding. At this time, a release material is sandwiched between the hot pressing part of the thermocompression bonding apparatus and the laminate to facilitate peeling.
[0004] この離型材として、特開平 4— 179520号公報には多孔質フッ素榭脂シートからな る離型材 (ホットプレス積層用離型保護シート)が開示されている。当該技術では、ク ッシヨン性を有する離型材によって、異物の存在によるくぼみの解決が図られている。 また、回路基板に関するものではないが、熱硬化性榭脂と補強材カもなるプリプレダ を用いてプレス成形する際の離型材として、特開平 6— 31744号公報には、多孔質 榭脂フィルムカゝらなり通気性等を有する離型材 (離型フィルム)が記載されている。当 該技術では、多孔質の離型材によりガス抜きが可能になるとされている。  [0004] As this release material, JP-A-4-179520 discloses a release material (release protection sheet for hot press lamination) made of a porous fluorine resin sheet. In this technique, a dent due to the presence of foreign matter is solved by a release material having a cushioning property. Further, although not related to a circuit board, as a mold release material when press-molding using a pre-preda which is also a thermosetting resin and a reinforcing material, JP-A-6-31744 discloses a porous resin film cover. There is described a release material (release film) that has excellent air permeability and the like. In this technique, it is said that gas can be released by a porous release material.
[0005] ところで、先に述べた回路基板としての絶縁体シートに用いられる榭脂は非熱可塑 性のものであるため、加熱により溶融することができない。従って、回路を形成する銅 、ガラス繊維ゃ榭脂などを効率的に分離することができないことからリサイクルは困難 であり、資源の有効利用や環境保護の観点力も満足できるものではない。また、いつ たんプリプレダを経由した上で多層回路基板を製造するという方法は、決して効率的 といえるものではない。 [0005] By the way, since the resin used for the insulating sheet as the circuit board described above is non-thermoplastic, it cannot be melted by heating. Therefore, recycling is difficult because the copper and glass fiber resin that form the circuit cannot be separated efficiently. Therefore, the viewpoint of effective use of resources and environmental protection is not satisfactory. Also, the method of manufacturing a multilayer circuit board once via a pre-preda is never efficient.
[0006] その他の絶縁体シートとしては、ポリイミドなどの非熱可塑性榭脂からなるフィルムを 使用した回路基板も開発されている。しかし、斯かる技術ではプリプレダを用いる必 要はないもののリサイクルが困難である点はかわらず、また、積層するに当たっては 接着剤が必要となる場合があるため、やはり効率的ではない。その上、接着剤の使 用は電気特性を貶める原因となる。  [0006] As another insulator sheet, a circuit board using a film made of a non-thermoplastic resin such as polyimide has been developed. However, although such a technique does not require the use of a pre-preda, it is not difficult to recycle, and since an adhesive may be required for lamination, it is still not efficient. In addition, the use of adhesives can give rise to electrical properties.
[0007] 一方、基板材料として熱可塑性榭脂からなるものを用いれば、加熱により溶融させ ることができるため、リサイクルが可能になる。さらに、シートを積層した後に熱圧着し て榭脂を溶融軟化させることによって、接着剤を用いることなく各シートを簡便に融着 させることができる。そこで近年、熱可塑性榭脂を基板材料として用いた回路基板の 開発が行なわれており、全ての絶縁材料を熱可塑性榭脂としたオール熱可塑性回 路基板など、絶縁材料として熱可塑性榭脂を用いた回路基板に関する技術も開発さ れている。  [0007] On the other hand, if a substrate material made of thermoplastic resin is used, it can be recycled by heating, so that it can be recycled. Furthermore, by laminating the sheets and then thermocompression bonding to melt and soften the resin, the sheets can be easily fused without using an adhesive. Therefore, in recent years, circuit boards using thermoplastic resin as a substrate material have been developed, and thermoplastic resin is used as an insulating material, such as an all thermoplastic circuit board in which all insulating materials are thermoplastic resins. Technology related to the circuit board used has also been developed.
[0008] 例えば特開平 2003— 273511号公報には、熱可塑性榭脂からなるフィルムに回 路パターンを形成したものを積層し、これを熱圧着するに当たって、熱圧着装置の熱 圧部と積層体との間に緩衝材を配置する技術が開示されている。この緩衝材は、金 属繊維等を板状に成形したものであり、回路パターンの部分的な存在の有無による 局所的な応力集中を抑制できる。その結果、回路パターンの位置ずれという問題を 解決することができる。また、榭脂フィルム間に残ったエアを放出することによって、ボ イドの発生を抑制するという効果も有する。さらに、この緩衝材と熱圧着装置の熱圧 部との間に離型材を配置してもよいとの記載もある。  [0008] For example, in Japanese Patent Application Laid-Open No. 2003-273511, a film made of a thermoplastic resin is laminated with a circuit pattern formed thereon, and a thermocompression unit and a laminate of a thermocompression bonding apparatus are used for thermocompression bonding. A technique of disposing a cushioning material between the two is disclosed. This buffer material is formed by molding metal fibers or the like into a plate shape, and can suppress local stress concentration due to the presence or absence of a partial circuit pattern. As a result, the problem of circuit pattern misalignment can be solved. Moreover, it has the effect of suppressing the generation of voids by releasing the air remaining between the resin films. Further, there is a description that a release material may be disposed between the buffer material and the thermocompression unit of the thermocompression bonding apparatus.
[0009] ところで、熱可塑性榭脂の中でも、低吸水性、耐熱性、電気特性および寸法安定 性に優れたものとして、液晶ポリマーを主要成分とするフィルム(以下、「液晶ポリマー フィルム」 t 、う)が注目されて 、る。この液晶ポリマーフィルムは、回路基板のカバー シートやコアシートとして利用することができる。  [0009] By the way, among thermoplastic resins, a film containing a liquid crystal polymer as a main component (hereinafter referred to as "liquid crystal polymer film" t), which is excellent in low water absorption, heat resistance, electrical characteristics and dimensional stability. ) Is attracting attention. This liquid crystal polymer film can be used as a cover sheet or a core sheet of a circuit board.
[0010] 特に、近年における情報処理の高速化に対応するためには誘電率を低減すること が必要であり、また、伝送時の損失を低減するためには誘電正接 (誘電損失)の少な い材料を使用することが効果的である。液晶ポリマーはこれら特性に優れる上に、電 気特性を貶める原因となる接着剤を使用することなくカバーシートを形成したり、多層 回路基板を構成することができる。 [0010] Particularly, in order to cope with the recent increase in information processing speed, the dielectric constant should be reduced. In addition, it is effective to use a material with a low dielectric loss tangent (dielectric loss) in order to reduce transmission loss. In addition to being excellent in these characteristics, the liquid crystal polymer can form a cover sheet or constitute a multilayer circuit board without using an adhesive that causes the electrical characteristics to be abandoned.
発明の開示  Disclosure of the invention
[0011] 上述した様に、特開平 2003— 273511号公報には、熱可塑性榭脂フィルムを構成 要素とする積層回路基板を製造するための技術が開示されている。しかし、特開平 2 003— 273511号公報で主に用いられて 、る熱可塑性榭脂は、ポリエーテルエーテ ルケトン樹脂とポリエーテルイミド榭脂との混合物であり、液晶ポリマーの記載もある が単なる例示にすぎない。また、離型材としてポリテトラフルォロエチレンも例示され ているが、この榭脂等自体は多孔質ではなぐ熱圧着時に生じたガスを放出すること はできない上に、当該技術ではむしろポリイミドの使用が推奨されている。さらに、当 該技術では緩衝材と離型材として別の材料を用いて 、る力 回路面に直接接する離 型材にクッション性がなければ、特に微細な回路を有する基板を製造する場合には、 たとえ離型材を用いても回路の変形などの問題が生じ得る。また、緩衝材と離型材の 両方を用いる場合には両者にシヮが発生し易ぐこのシヮが回路基板に転写されてし まうおそれがある。  [0011] As described above, Japanese Patent Application Laid-Open No. 2003-273511 discloses a technique for manufacturing a laminated circuit board having a thermoplastic resin film as a constituent element. However, the thermoplastic resin mainly used in Japanese Patent Application Laid-Open No. 2003-273511 is a mixture of a polyether ether ketone resin and a polyetherimide resin, and although there is a description of a liquid crystal polymer, it is merely an example. Only. Polytetrafluoroethylene is also exemplified as a mold release material, but this resin itself cannot release gas generated during thermocompression bonding, which is not porous. Is recommended. Furthermore, in this technique, if a separate material is used as the cushioning material and the release material, and the release material that is in direct contact with the force circuit surface has no cushioning property, particularly when a substrate having a fine circuit is manufactured, Even if a release material is used, problems such as circuit deformation may occur. In addition, when both the cushioning material and the release material are used, there is a risk that the sheet is easily transferred to the circuit board.
[0012] また、特開平 4— 179520号公報と特開平 6— 31744号公報には、離型材として多 孔質のポリテトラフルォロエチレンシート(フィルム)が記載されている。しかし、これら 技術で使用されて 、る熱圧着されるべき材料は、ガラスクロス等にエポキシ榭脂ゃポ リイミド榭脂を含浸させたプリプレダであり、液晶ポリマーフィルムにつ 、ては記載も示 唆もされていない。  [0012] In addition, JP-A-4-179520 and JP-A-6-31744 describe a porous polytetrafluoroethylene sheet (film) as a release material. However, the material to be thermocompression-bonded used in these technologies is a pre-preda in which a glass cloth or the like is impregnated with an epoxy resin or polyimide resin, and the description is also suggested for the liquid crystal polymer film. It has not been done.
[0013] つまり、液晶ポリマーフィルムを絶縁体材料とし、液晶ポリマーフィルムを溶融軟ィ匕 させてシート同士を一体化することにより回路基板を製造する場合に、離型材として フッ素系多孔質フィルムを用いた例はな力つた。  That is, when a circuit board is manufactured by using a liquid crystal polymer film as an insulator material and melt-softening the liquid crystal polymer film to integrate the sheets, a fluorine-based porous film is used as a release material. The example I had was strong.
[0014] 斯かる状況下、例えば、積層体の最表面に液晶ポリマーフィルムを配して熱圧着す る場合、離型材としてポリイミド等カもなるフィルムを用いると、当該液晶ポリマーフィ ルムが著しく脆ィ匕することが本発明者により明らかにされた。斯かる脆化は歩留の低 下につながるのみでなぐ製品寿命が短くなるなど実際の使用の場面で大きな問題と なる。 [0014] Under such circumstances, for example, when a liquid crystal polymer film is disposed on the outermost surface of the laminate and thermocompression-bonded, if a film such as polyimide is used as a release material, the liquid crystal polymer film becomes extremely brittle. It has been clarified by the present inventor. Such embrittlement has a low yield. It becomes a big problem in actual use situations such as shortening the product life just by connecting to the bottom.
[0015] そこで、本発明が解決すべき課題は、絶縁体シートとして液晶ポリマーフィルムを有 する回路基板であって、液晶ポリマーフィルムの脆ィ匕が抑制され耐久性に優れるもの と、その様な回路基板を製造するための方法を提供することにある。  [0015] Therefore, a problem to be solved by the present invention is a circuit board having a liquid crystal polymer film as an insulator sheet, in which brittleness of the liquid crystal polymer film is suppressed and excellent in durability. It is to provide a method for manufacturing a circuit board.
[0016] 本発明者は、上記課題を解決すベぐ回路基板の製造工程における液晶ポリマー フィルムの熱圧着条件につき鋭意研究を重ねた。その結果、従来技術における表面 液晶ポリマーフィルムの脆ィ匕は、離型材ゃ当該液晶ポリマーフィルム自体に由来する 水による加水分解反応が原因であり、この反応を抑制する条件を採用すれば上記課 題を解決できることを見出して本発明を完成した。  [0016] The inventor has conducted extensive research on the thermocompression bonding conditions of the liquid crystal polymer film in the manufacturing process of the circuit board that solves the above-described problems. As a result, the brittleness of the surface liquid crystal polymer film in the prior art is caused by a hydrolysis reaction with water derived from the liquid crystal polymer film itself, and if the conditions for suppressing this reaction are adopted, the above-mentioned problems will occur. As a result, the present invention was completed.
[0017] 即ち、本発明に係る回路基板の製造方法は、当該回路基板を構成する絶縁体シ ートのうち、少なくとも一方の表面シートとして液晶ポリマーフィルムを用い、当該液晶 ポリマーフィルムを熱圧着するに当たり、離型材としてフッ素系多孔質フィルムを用い ることを特徴とする。フッ素系多孔質フィルムは、低吸水性であることから水をほとんど 有しないば力りでなぐ多孔質であることからシート材料由来の水を外部に放出するこ とができる。その結果、液晶ポリマーフィルムの加水分解を抑制し、その脆化を顕著 に抑制するなど、回路基板の耐久性を顕著に向上させることができる。なお、本発明 における「液晶ポリマーフィルム」は、液晶ポリマーを主要成分とするフィルムをいうも のとする。  That is, in the method for manufacturing a circuit board according to the present invention, a liquid crystal polymer film is used as a surface sheet of at least one of the insulator sheets constituting the circuit board, and the liquid crystal polymer film is thermocompression bonded. In this case, a fluorine-based porous film is used as a release material. Since the fluorine-based porous film has low water absorption, it has a water-porosity if it has almost no water, so that water derived from the sheet material can be discharged to the outside. As a result, the durability of the circuit board can be remarkably improved, for example, by suppressing hydrolysis of the liquid crystal polymer film and remarkably suppressing its embrittlement. The “liquid crystal polymer film” in the present invention refers to a film containing a liquid crystal polymer as a main component.
[0018] 上記液晶ポリマーフィルムとしては、実質的に液晶ポリマーのみ力もなるものを用い ることが好ま U、。液晶ポリマーの優れた特性を有効に利用できるからである。  [0018] As the liquid crystal polymer film, it is preferable to use a film that is substantially liquid crystal polymer only. This is because the excellent characteristics of the liquid crystal polymer can be used effectively.
[0019] 上記回路基板の各絶縁体シートは、すべて液晶ポリマーフィルムにより構成するこ とが好ましい。また、液晶ポリマーフィルムの片面または両面に回路パターンを形成し 、当該回路パターン上に液晶ポリマーフィルムを配置し熱圧着するのも好適な態様 である。低誘電率で且つ誘電損失の少な 、フレキシブル回路基板が得られるからで ある。  [0019] It is preferable that each insulator sheet of the circuit board is composed of a liquid crystal polymer film. It is also a preferred embodiment that a circuit pattern is formed on one or both sides of the liquid crystal polymer film, and the liquid crystal polymer film is placed on the circuit pattern and thermocompression bonded. This is because a flexible circuit board having a low dielectric constant and low dielectric loss can be obtained.
[0020] 上記フッ素系多孔質フィルムとしては、延伸多孔質ポリテトラフルォロエチレンフィ ルムを用いることが好ましい。後述する実施例によって、その高い効果が実証されて いる力 である。 [0020] It is preferable to use a stretched porous polytetrafluoroethylene film as the fluorine-based porous film. The high effects are demonstrated by the examples described later. Power.
[0021] 本発明の回路基板は、上記方法で製造されるものであり、耐久性に優れることを特 徴とする。当該回路基板は、液晶ポリマーフィルムの脆ィ匕が抑制されていることから、 耐折性や脆性が改善されており、優れた耐久性を有するものである。  [0021] The circuit board of the present invention is manufactured by the above method and is characterized by excellent durability. Since the circuit board has the brittleness of the liquid crystal polymer film suppressed, the folding resistance and brittleness are improved, and the circuit board has excellent durability.
[0022] 本発明に係る回路基板の製造方法は、低吸水性であり且つ多孔質であるフッ素系 多孔質フィルムを離型材として用いる。よって、表面液晶ポリマーフィルムの熱圧着 時において液晶ポリマーフィルムに水分を与えることがなぐまた、液晶ポリマーフィ ルムが有する水分を外部へ放散できることから、加水分解反応を抑制できる。その結 果、従来技術に比して回路基板の耐折性ゃ靭性が改善され、その耐久性を顕著に 向上させることが可能になる。また、フッ素系多孔質フィルムは、離型材としての作用 と緩衝材としての作用の両方を発揮することができるため、熱圧着装置の熱圧部と回 路基板との剥離を容易にするのみならず、そのクッション性力 特に回路面に対する 圧力を均一化できる。その結果、回路パターンの変形が抑制されるため、正確な回 路パターンを有する回路基板を製造することが可能になる。また、離型材と緩衝材の 両方を使用しなければいけない技術に比して、特に緻密な回路パターンを有する回 路基板の製造に有効である上に、両者の使用を原因とするシヮの発生がなぐこのシ ヮが回路基板の表面に転写されるおそれがない。さらに、必要部材の低減や工程の 簡略ィ匕が可能になり、コストを抑制することができる。  [0022] The method for producing a circuit board according to the present invention uses a fluorine-based porous film that has low water absorption and is porous as a release material. Therefore, the liquid crystal polymer film is not given moisture at the time of thermocompression bonding of the surface liquid crystal polymer film, and the water content of the liquid crystal polymer film can be released to the outside, so that the hydrolysis reaction can be suppressed. As a result, the folding resistance and toughness of the circuit board are improved as compared with the prior art, and the durability can be remarkably improved. In addition, since the fluorine-based porous film can exhibit both an effect as a mold release material and an effect as a buffer material, it is only necessary to facilitate the separation between the hot pressure part of the thermocompression bonding device and the circuit board. The cushioning force, especially the pressure on the circuit surface, can be made uniform. As a result, since deformation of the circuit pattern is suppressed, it becomes possible to manufacture a circuit board having an accurate circuit pattern. Compared to the technology that requires the use of both mold release material and cushioning material, it is particularly effective in the production of circuit boards having a dense circuit pattern, and the use of both is the cause of the problem. There is no risk that this phenomenon will be transferred to the surface of the circuit board. Furthermore, it becomes possible to reduce the number of necessary members and simplify the process, thereby reducing the cost.
[0023] また、当該方法により製造される回路基板は、その構成要素である表面液晶ポリマ 一フィルムの脆ィヒが顕著に抑制され高い耐久性を有しており、且つ正確な回路バタ ーンを有するなど、優れた特性を有する。特に本発明に係るフレキシブル回路基板 は、耐折性ゃ靭性に優れることから、携帯電話などコンパクトな機器へ挿入する場合 に基板自体や回路の破損防止を達成することができる。 [0023] Further, the circuit board manufactured by the method has a high durability because the brittleness of the surface liquid crystal polymer film that is a constituent element thereof is remarkably suppressed, and an accurate circuit pattern. It has excellent characteristics such as having In particular, since the flexible circuit board according to the present invention has excellent folding resistance and toughness, it is possible to prevent damage to the board itself and the circuit when inserted into a compact device such as a mobile phone.
[0024] 従って、本発明に係る回路基板とその製造方法は、産業上極めて有用である。 Therefore, the circuit board and the manufacturing method thereof according to the present invention are extremely useful industrially.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明に係る回路基板の一態様を示す図である。図中、 1は回路パターンシー トを示し、 2はカバー層を示し、 3は離型材としてのフッ素系多孔質フィルムを示し、 4 は熱圧着装置の熱圧部を示す。 発明を実施するための最良の形態 FIG. 1 is a diagram showing an embodiment of a circuit board according to the present invention. In the figure, 1 indicates a circuit pattern sheet, 2 indicates a cover layer, 3 indicates a fluorine-based porous film as a release material, and 4 indicates a hot press part of a thermocompression bonding apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明に係る回路基板の製造方法は、当該回路基板を構成する絶縁体シートのう ち、少なくとも一方の表面シートとして液晶ポリマーフィルムを用い、当該液晶ポリマ 一フィルムを熱圧着するに当たり、離型材としてフッ素系多孔質フィルムを用いる点 に要旨を有する。  [0026] The method for producing a circuit board according to the present invention uses a liquid crystal polymer film as at least one surface sheet of the insulator sheets constituting the circuit board, and thermocompression-bonds the liquid crystal polymer film. The main point is that a fluorine-based porous film is used as a release material.
[0027] 回路基板は、主に片面板、両面板および多層板に分類されるが、本発明では、回 路基板を構成する絶縁体シートのうち、少なくとも一方の表面シートとして液晶ポリマ 一フィルムを用い、当該フィルムを熱圧着することを特徴の 1つとする。  [0027] The circuit board is mainly classified into a single-sided board, a double-sided board, and a multilayer board. In the present invention, a liquid crystal polymer film is used as at least one surface sheet of the insulating sheets constituting the circuit board. One of the features is that the film is thermocompression-bonded.
[0028] 片面板または両面板では、コアとなるシートの片面または両面に回路を形成し、一 般的には、当該回路面上にカバー層を設ける。本発明では、少なくとも一方の表面 シートとして液晶ポリマーフィルムを用いることから、片面板の場合にはコアシートの みまたはカバーシートのみを液晶ポリマーフィルムとする力、コアシートと力パーシー トの両方を液晶ポリマーフィルムとする。両面板の場合には、少なくとも一方の表面力 バー層を液晶ポリマーフィルムとする。  [0028] In a single-sided plate or a double-sided plate, a circuit is formed on one or both sides of a core sheet, and a cover layer is generally provided on the circuit surface. In the present invention, since a liquid crystal polymer film is used as at least one surface sheet, in the case of a single-sided plate, a force that makes only the core sheet or only the cover sheet a liquid crystal polymer film, both the core sheet and the force sheet are liquid crystal. A polymer film is used. In the case of a double-sided plate, at least one surface force bar layer is a liquid crystal polymer film.
[0029] 多層板の場合も同様であり、少なくとも一方の表面シートとして液晶ポリマーフィル ムを用いる。従って、カバー層を設ける場合にはカバーシートを液晶ポリマーフィルム とし、カバー層を設けない場合には、最表面のコアシート (その上に回路を設けるシ ート)のうち少なくとも一方を液晶ポリマーフィルムで構成する。  The same applies to the case of a multilayer board, and a liquid crystal polymer film is used as at least one surface sheet. Therefore, when the cover layer is provided, the cover sheet is a liquid crystal polymer film, and when the cover layer is not provided, at least one of the outermost core sheets (the sheet on which the circuit is provided) is a liquid crystal polymer film. Consists of.
[0030] ここで、表面シートとは、回路基板を構成する絶縁体シートのうち熱圧着時におい て最表面に存在するシートを 、 、、カバーシートである場合とその表面に回路を有す るコアシートである場合がある。この表面シートを液晶ポリマーフィルムとする回路基 板を製造する場合、表面の液晶ポリマーフィルムは、熱圧着時において離型材の影 響を直接受ける。しかし、従来、液晶ポリマーフィルムを回路基板材料として用いる場 合に離型材としてフッ素系多孔質フィルムが用いられた例はな力つた。つまり、少なく とも一方の表面シートとして液晶ポリマーフィルムを用い、且つ離型材としてフッ素系 多孔質フィルムを用いるという要件によって、本発明は従来技術と明確に区別するこ とがでさる。  [0030] Here, the surface sheet is a sheet existing on the outermost surface of the insulating sheet constituting the circuit board at the time of thermocompression bonding, and a case where it is a cover sheet and a circuit on the surface thereof. It may be a core sheet. When manufacturing a circuit board using this surface sheet as a liquid crystal polymer film, the liquid crystal polymer film on the surface is directly affected by the release material during thermocompression bonding. However, in the past, when a liquid crystal polymer film was used as a circuit board material, there was a strong example in which a fluorine-based porous film was used as a release material. In other words, the present invention can be clearly distinguished from the prior art by the requirement that a liquid crystal polymer film is used as at least one surface sheet and a fluorine-based porous film is used as a release material.
[0031] 絶縁体シートの材料として用いることができるものであって、液晶ポリマー以外のも のとしては、セラミック;シリコン;炭素繊維やガラス繊維などの繊維にエポキシ榭脂、 ポリイミド榭脂、ポリフエ-レンエーテル榭脂、 BT榭脂などを含浸させたもの;ポリイミ ドシート、ポリエーテルエーテルケトンシート、ポリエーテルイミドシート、ポリエチレン ナフタレートシート、ポリエチレンテレフタレートシートおよびこれらの混合榭脂シート( 以上、「シート」には、フィルムも含まれるものとする)などを挙げることができる。 [0031] It can be used as a material for an insulator sheet, and other than the liquid crystal polymer For example, ceramic; silicon; carbon fiber, glass fiber and other fibers impregnated with epoxy resin, polyimide resin, polyphenylene ether resin, BT resin; polyimide sheet, polyether ether ketone sheet , Polyetherimide sheets, polyethylene naphthalate sheets, polyethylene terephthalate sheets, and mixed resin sheets thereof (hereinafter, “sheet” includes a film).
[0032] 上記の態様において、両面板のコアシートおよび多層板の内層には、親水性の榭 脂を主要成分とするシートを用いないことが好ましい。この様なシートは、水分を比較 的多く含有していることから、多層板の内層に用いると、熱圧着時において水分が外 部に放散されず、近傍の液晶ポリマーフィルムを脆ィ匕するおそれがあるからである。 親水性榭脂としては、ポリイミド榭脂やポリエーテルイミド榭脂がある。但し、斯カる影 響は、離型材としてのポリイミドシート等が表面液晶ポリマーフィルムに与えるものより も小さい。 [0032] In the above embodiment, it is preferable not to use a sheet containing a hydrophilic resin as a main component for the core sheet of the double-sided board and the inner layer of the multilayer board. Since such a sheet contains a relatively large amount of moisture, when used in the inner layer of a multilayer board, moisture is not diffused to the outside during thermocompression bonding, and the liquid crystal polymer film in the vicinity may be brittle. Because there is. Examples of hydrophilic resins include polyimide resins and polyetherimide resins. However, such influence is smaller than that given to the surface liquid crystal polymer film by a polyimide sheet or the like as a release material.
[0033] 好適には、接着剤を用いず熱圧着できることから、全ての絶縁体シートを熱可塑性 榭脂からなるものを用い、さらに、電気特性等の点から、全て液晶ポリマーフィルムで 構成することが好ましい。  [0033] Preferably, all the insulating sheets are made of a thermoplastic resin, and can be composed of a liquid crystal polymer film from the viewpoint of electrical characteristics and the like because thermocompression bonding can be performed without using an adhesive. Is preferred.
[0034] 本発明で用いる液晶ポリマーフィルムは、液晶ポリマーを主要成分とするものである 。ここで、「主要成分とする」とは、フィルム全体に占める液晶ポリマーの割合が 50質 量%以上と定義することができ、好ましくは 70質量%以上、より好ましくは 80質量% 以上、さらに好ましくは 90質量%以上である。特に、本発明の液晶ポリマーフィルム は、実質的に液晶ポリマーのみ力もなるものが好適である。液晶ポリマーは、低吸水 性、耐熱性、電気特性および寸法安定性に優れるからである。また、液晶ポリマーは 熱可塑性であることから、接着剤を用いず熱圧着が可能であり、回路基板の生産性 を向上することができる。接着剤を用いないことは、誘電率や誘電損失を低減すると いう点においても意義を有する。ここで、「実質的」とは、不可避的な不純物を除いた 全てが液晶ポリマーで構成されて 、ることを 、う。  [0034] The liquid crystal polymer film used in the present invention contains a liquid crystal polymer as a main component. Here, “as the main component” can be defined as the proportion of the liquid crystal polymer in the entire film being 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably Is 90% by mass or more. In particular, it is preferable that the liquid crystal polymer film of the present invention has substantially only a liquid crystal polymer. This is because the liquid crystal polymer is excellent in low water absorption, heat resistance, electrical characteristics, and dimensional stability. Further, since the liquid crystal polymer is thermoplastic, thermocompression bonding is possible without using an adhesive, and the productivity of the circuit board can be improved. Not using an adhesive is also significant in terms of reducing the dielectric constant and dielectric loss. Here, “substantially” means that everything except unavoidable impurities is composed of a liquid crystal polymer.
[0035] 液晶ポリマーフィルムを構成する液晶ポリマーとしては、例えば、溶融状態で液晶 性を示すサーモト口ピック液晶ポリマーがある。本発明ではサーモト口ピック液晶ポリ マーが好適であり、より具体的には、サーモト口ピック液晶ポリエステルゃサーモトロピ ック液晶ポリエステルアミドが好ま 、。 [0035] As the liquid crystal polymer constituting the liquid crystal polymer film, for example, there is a thermopick liquid crystal polymer that exhibits liquid crystallinity in a molten state. In the present invention, a thermopick pick liquid crystal polymer is suitable, and more specifically, the thermopick pick liquid crystal polyester is thermotropic. Prefer liquid crystal polyester amide.
[0036] サーモト口ピック液晶ポリエステル(以下、単に「液晶ポリエステル」と!、う)とは、例え ば、芳香族ジカルボン酸と芳香族ジオールや芳香族ヒドロキシカルボン酸などのモノ マーを主体として合成される芳香族ポリエステルであって、溶融時に液晶性を示すも のである。その代表的なものとしては、ノ ラヒドロキシ安息香酸 (PHB)と、テレフタル 酸と、 4, 4'ービフエノールから合成される I型 [下式(1) ]、 PHBと 2, 6—ヒドロキシナ フトェ酸から合成される Π型 [下式(2) ]、 PHBと、テレフタル酸と、エチレングリコール から合成される ΠΙ型 [下式 (3) ]が挙げられる。  [0036] Thermopick-pick liquid crystal polyester (hereinafter simply referred to as "liquid crystal polyester"!) Is synthesized, for example, mainly from an aromatic dicarboxylic acid and a monomer such as aromatic diol or aromatic hydroxycarboxylic acid. An aromatic polyester that exhibits liquid crystal properties when melted. A typical example is type I [formula (1)] synthesized from norhydroxybenzoic acid (PHB), terephthalic acid, and 4,4'-biphenol. PHB and 2,6-hydroxynaphtho Π-type synthesized from acids [Formula (2)], PHB, terephthalic acid, and ΠΙ-type synthesized from ethylene glycol (Formula (3)).
[0037] [化 1]  [0037] [Chemical 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0038] 本発明に係る液晶ポリマーとしては、液晶性 (特にサーモト口ピック液晶性)を示す ものであれば、例えば、上記(1)〜(3)式に示すユニットを主体 (例えば、液晶ポリマ 一の全構成ユニット中、 50モル%以上)とし、他のユニットも有する共重合タイプのポ リマーであってもよい。他のユニットとしては、例えば、エーテル結合を有するユニット 、イミド結合を有するユニット、アミド結合を有するユニットなどが挙げられる。  [0038] As the liquid crystal polymer according to the present invention, for example, as long as it exhibits liquid crystallinity (particularly, thermo-mouth-pick liquid crystallinity), for example, a unit represented by the above formulas (1) to (3) is mainly used (for example, liquid crystal polymer). It may be a copolymer type polymer having 50 mol% or more in one whole constituent unit and having other units. Examples of the other unit include a unit having an ether bond, a unit having an imide bond, and a unit having an amide bond.
[0039] 液晶ポリマーフィルムを得るに当たっては、これを構成する榭脂に応じた公知の各 種方法を採用すればよい。また、本発明法において特に好適な上記例示の液晶ポリ エステルを用いたフィルムとしては、例えば、ジャパンゴァテックス社製の「BIAC (登 録商標)」などの市販品を用いることができる。 [0039] In obtaining the liquid crystal polymer film, various known methods may be employed depending on the resin constituting the liquid crystal polymer film. In addition, as a film using the above exemplified liquid crystal polyester particularly suitable in the method of the present invention, for example, “BIAC (registered product) manufactured by Japan Gore-Tex Co., Ltd. Commercially available products such as “registered trademark” ”can be used.
[0040] また、液晶ポリエステルアミドとしては、他のユニットとしてアミド結合を有する上記液 晶ポリエステルが該当し、例えば、下式 (4)の構造を有するものが挙げられる。例え ば、式(4)中、 sのユニット、 tのユニットおよび uのユニットのモル比が、 70Z15Z15 のものが知られている。  [0040] The liquid crystal polyester amide corresponds to the above liquid crystal polyester having an amide bond as another unit, and examples thereof include those having a structure of the following formula (4). For example, in formula (4), it is known that the molar ratio of s unit, t unit and u unit is 70Z15Z15.
[0041] [化 2]  [0041] [Chemical 2]
( 4 )( Four )
Figure imgf000011_0001
Figure imgf000011_0001
5 t U  5 t U
[0042] 本発明の液晶ポリマーフィルムが液晶ポリマー以外のポリマーを含む場合には、当 該ポリマーは、液晶ポリマーと単に混合されているのみであっても、化学結合してい てもよい。この様なァロイ用ポリマーとしては、融点が 220°C以上、好ましくは 280〜3 60°Cのポリマー、例えば、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリ イミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリアリレートなどが挙げられる 力 これらに限定される訳ではない。液晶ポリマーと上記ァロイ用ポリマーの混合割 合は特に制限されないが、例えば、質量比で 50 : 50〜90: 10であることが好ましぐ 70 : 30〜90 : 10であることがより好ましい。液晶ポリマーを含むポリマーァロイも、液 晶ポリマーによる優れた特性を保有し得る。  [0042] When the liquid crystal polymer film of the present invention contains a polymer other than the liquid crystal polymer, the polymer may be merely mixed with the liquid crystal polymer or may be chemically bonded. Examples of such an alloy polymer include polymers having a melting point of 220 ° C or higher, preferably 280 to 360 ° C, such as polyetheretherketone, polyethersulfone, polyimide, polyetherimide, polyamide, polyamideimide. And powers such as polyarylate are not limited to these. The mixing ratio of the liquid crystal polymer and the alloying polymer is not particularly limited, but for example, the mass ratio is preferably 50:50 to 90:10, more preferably 70:30 to 90:10. Polymer alloys including liquid crystal polymers can also possess superior properties due to liquid crystal polymers.
[0043] 上記液晶ポリマーフィルムでは、フィルム平面に平行な方向の線膨張係数が 25pp mZ°C以下に調整されていることが好ましい。より好ましくは 21ppmZ°C以下である 。また、液晶ポリマーフィルムの上記線膨張係数の下限は、 8ppmZ°Cであることが 望ましい。液晶ポリマーフィルムの線膨張係数は、機器分析 (TMA法、 Thermal Me chanical Analysis)〖こより、試験片幅: 4. 5mm、チャック間距離: 15mm、荷重: lgと し、室温から 200°Cまで昇温後(昇温速度: 5°CZ分)、降温速度: 5°CZ分で冷却す る際に、 160°Cから 25°Cの間で測定される試験片の寸法変化から求めた値であり、 例えば、フィルムの MD方向(フィルム製造時の走行方向)および TD方向(MD方向 に直交する方向)の線膨張係数のいずれも力 上記範囲を満足していればよい。 [0044] 液晶ポリマーフィルムの厚さは特に制限されないが、 10 μ m力ら 1000 μ mが好ま しい。 10 m未満であると強度が不足するおそれがあり、また、 1000 /z mを超えるフ イルム化は困難である場合がある力 である。 [0043] In the liquid crystal polymer film, it is preferable that the linear expansion coefficient in a direction parallel to the film plane is adjusted to 25 ppmZ ° C or less. More preferably, it is 21 ppmZ ° C or less. The lower limit of the linear expansion coefficient of the liquid crystal polymer film is desirably 8 ppmZ ° C. The linear expansion coefficient of the liquid crystal polymer film is from instrumental analysis (TMA method, Thermal Mechanical Analysis), and the specimen width is 4.5 mm, the distance between chucks is 15 mm, the load is lg, and the temperature rises from room temperature to 200 ° C. After cooling (heating rate: 5 ° CZ minutes), cooling rate: 5 ° CZ, when cooling at 5 ° CZ minutes, the value obtained from the dimensional change of the specimen measured between 160 ° C and 25 ° C Yes, for example, the linear expansion coefficient in the MD direction of the film (traveling direction during film production) and the linear expansion coefficient in the TD direction (direction orthogonal to the MD direction) need only satisfy the above range. [0044] The thickness of the liquid crystal polymer film is not particularly limited, but 10 μm force and 1000 μm are preferable. If it is less than 10 m, the strength may be insufficient, and it may be difficult to make a film exceeding 1000 / zm.
[0045] 以下では、本発明方法の各工程について図 1を参照しつつ説明する力 図 1は単 なる例示であり、本発明の範囲はこれに限定されるものではない。  [0045] In the following, each step of the method of the present invention will be described with reference to FIG. 1. FIG. 1 is merely an example, and the scope of the present invention is not limited to this.
[0046] 先ず、回路パターンシート 1を構成する絶縁体シート(コアシート)の片面または両 面上に、常法に従って、導体により回路パターンを形成する。回路パターンシートの 絶縁材料の種類は特に制限されず、従来のものを使用することができる。好適には、 液晶ポリマーフィルムを用いる。  First, a circuit pattern is formed by a conductor on one or both surfaces of an insulator sheet (core sheet) constituting the circuit pattern sheet 1 in accordance with a conventional method. The type of insulating material for the circuit pattern sheet is not particularly limited, and conventional ones can be used. Preferably, a liquid crystal polymer film is used.
[0047] 回路パターンを形成するための導体としては、銅、アルミニウム、金、銀、およびこ れら金属を主体とする合金を挙げることができる。回路パターンは、これら金属力もな る薄膜を回路パターンシートの上に設けた上でエッチングを施すことなど、従来の方 法を用いることができる。金属薄膜の形成法としては、絶縁体シートと金属板 (金属箔 、金属フィルムなどを含む)を貼り合わせる方法の他、絶縁体シート表面に、真空蒸 着法やスパッタリング法、イオンプレーティング法、めっき法、 CVD法などにより形成 する方法も採用できる。  [0047] Examples of the conductor for forming the circuit pattern include copper, aluminum, gold, silver, and alloys mainly composed of these metals. For the circuit pattern, a conventional method can be used, for example, etching is performed after a thin film having a metallic force is provided on a circuit pattern sheet. As a method for forming a metal thin film, in addition to a method of bonding an insulator sheet and a metal plate (including metal foil, metal film, etc.), a vacuum deposition method, a sputtering method, an ion plating method, Methods such as plating and CVD can also be used.
[0048] 回路パターンシート 1の絶縁体シートとして熱可塑性榭脂を用いる場合、金属板を 貼り合わせる方法としては、熱融着法が好適である。熱融着法としては、熱可塑性榭 脂表面を加熱軟化させ、その上に金属板を積層した後冷却する方法や、絶縁体シ ートと金属板を重ね、これを加熱した一対のロール間に通して熱融着させ、その後冷 却する方法などが採用できる。  [0048] When a thermoplastic resin is used as the insulator sheet of the circuit pattern sheet 1, the method of bonding the metal plates is preferably a heat-sealing method. As the heat fusion method, the surface of the thermoplastic resin is softened by heating and a metal plate is laminated thereon and then cooled, or an insulator sheet and a metal plate are stacked and heated between a pair of heated rolls. It is possible to adopt a method of heat-sealing through a heat sink and then cooling.
[0049] また、金属箔などの金属板の少なくとも絶縁体シートへ接する側の表面を粗ィ匕した ものを用いれば、絶縁体シートと金属板の密着性をより一層高めることができる。  [0049] Further, if a metal plate such as a metal foil having a roughened surface on the side in contact with the insulator sheet is used, the adhesion between the insulator sheet and the metal plate can be further enhanced.
[0050] 本発明方法では、絶縁体シート上の片面または両面に金属層を設けた後、エッチ ングにより所望の回路パターンを形成する。回路パターンを形成する金属層は単層 でもよく、 2種以上の金属層を積層したものであってもよい。  [0050] In the method of the present invention, after a metal layer is provided on one or both surfaces of an insulator sheet, a desired circuit pattern is formed by etching. The metal layer forming the circuit pattern may be a single layer or a laminate of two or more metal layers.
[0051] 図 1に示す態様では、回路パターンシート 1の上にカバー層 2を設けている力 本発 明では、少なくとも一方のカバー層 2を液晶ポリマーフィルムで構成する。液晶ポリマ 一の優れた低吸水性、耐熱性および寸法安定性を有効に利用するためである。また 、熱圧着時において、表面に存在する液晶ポリマーフィルムを脆ィ匕させないという離 型材としてのフッ素系多孔質フィルムの特性を発揮させるためでもある。なお、積層 体を構成するシートの一部として非熱可塑性榭脂からなるものを複数用い、それらを 相互に接着する必要がある場合には、事前に接着剤を用いるなどして接着しておく。 しかし、液晶ポリマーフィルムのシート配置を工夫することによって、次工程で接着剤 を用いることなく熱圧着することも可能である。その結果、製造工程を簡略化できるの みでなぐ接着剤による電気特性の低下を防ぐことができる。また、全ての絶縁体シ ートを液晶ポリマーフィルムで構成すれば、低誘電率で低誘電損失と!ヽつた電気特 性に特に優れた回路基板が得られる。 [0051] In the embodiment shown in FIG. 1, the force in which the cover layer 2 is provided on the circuit pattern sheet 1 In the present invention, at least one cover layer 2 is composed of a liquid crystal polymer film. Liquid crystal polymer This is to effectively utilize one excellent low water absorption, heat resistance and dimensional stability. Another reason is to exhibit the characteristics of a fluorine-based porous film as a release material that does not cause brittleness of the liquid crystal polymer film present on the surface during thermocompression bonding. If a plurality of non-thermoplastic resin is used as a part of the sheet constituting the laminate and it is necessary to bond them to each other, use an adhesive or the like in advance. . However, by devising the arrangement of the liquid crystal polymer film, it is possible to perform thermocompression bonding without using an adhesive in the next process. As a result, it is possible to prevent the electrical characteristics from being deteriorated by the adhesive, which can simplify the manufacturing process. Further, if all the insulator sheets are made of a liquid crystal polymer film, it is possible to obtain a circuit board that is particularly excellent in electrical characteristics such as low dielectric constant and low dielectric loss.
[0052] また、液晶ポリマーフィルムの片面または両面に回路パターンを形成し、当該回路 パターン上にカバー層として液晶ポリマーフィルムを配置した積層体からは、液晶ポ リマーフィルムのみをシートとし且つシート積層数が 2または 3と薄 、ことから、特に電 気特性に優れたフレキシブル回路基板を製造できる。  [0052] Also, from a laminate in which a circuit pattern is formed on one or both sides of a liquid crystal polymer film and a liquid crystal polymer film is disposed as a cover layer on the circuit pattern, only the liquid crystal polymer film is used as a sheet and the number of sheets laminated Therefore, a flexible circuit board with particularly excellent electrical characteristics can be manufactured.
[0053] 積層する各シートにおいて、互いに接する面の密着性を高めるために、紫外線や プラズマなどを用いて表面処理することが好まし 、。  [0053] In order to improve the adhesion of the surfaces in contact with each other in each sheet to be laminated, it is preferable to perform a surface treatment using ultraviolet rays or plasma.
[0054] 次に、熱圧着装置により積層体を熱圧着する。熱圧着時の条件は、常法に従えば よぐ例えば、圧力は 0. 1〜: LOMPa、時間は 1〜30分程度とすればよい。熱圧着温 度は、液晶ポリマーが十分に軟ィ匕する温度が好ましいものの、融点を超えると圧力に より樹脂が流動する可能性がある。斯カる観点からは、用いる液晶ポリマーにっき D MA法(Dynamic Mechanical Analysis)の引張モードで測定した弾性率が、室 温域の 1Z10〜1Z1000の範囲内にある温度とすることが好ましい。具体的な温度 は、用いる液晶ポリマーの種類により異なる力 200〜350°C程度である。  Next, the laminate is thermocompression bonded by a thermocompression bonding apparatus. The conditions at the time of thermocompression bonding may be according to a conventional method. For example, the pressure may be 0.1 to: LOMPa and the time may be about 1 to 30 minutes. The thermocompression bonding temperature is preferably a temperature at which the liquid crystal polymer is sufficiently soft, but if it exceeds the melting point, the resin may flow due to pressure. From such a viewpoint, it is preferable that the liquid crystal polymer to be used has a temperature in which the elastic modulus measured in the tensile mode of the DMA method (Dynamic Mechanical Analysis) is in the range of 1Z10 to 1Z1000 in the room temperature range. The specific temperature is about 200 to 350 ° C depending on the type of liquid crystal polymer used.
[0055] 熱圧着装置の種類は特に問わな!/、が、例えば、平板プレス機、連続ベルトプレス機 、ロールラミネータ等を用いることができる。これらの中では、水分を効率よく除去でき ることから、真空式の平板プレス機を好適に用いることができる。  [0055] The type of the thermocompression bonding apparatus is not particularly limited. For example, a flat plate press, a continuous belt press, a roll laminator, or the like can be used. In these, since a water | moisture content can be removed efficiently, a vacuum type flat plate press can be used suitably.
[0056] コアシートとしてセラミックシートを用い、カバーシートとして液晶ポリマーフィルムを 用いるような場合には、液晶ポリマーフィルム側のみから加熱して熱圧着することも考 えられる。しかし、熱の均一性を高めるために、斯カる場合であっても両面力 加熱 することが好ましい。 [0056] When a ceramic sheet is used as the core sheet and a liquid crystal polymer film is used as the cover sheet, heating and thermocompression bonding may be considered by heating only from the liquid crystal polymer film side. available. However, in order to improve the heat uniformity, it is preferable to perform double-sided force heating even in such a case.
[0057] また、一方の表面に液晶ポリマーフィルムを配し、他方の表面に親水性榭脂を主要 成分とするシートを用いる場合には、親水性榭脂シート側にも離型材としてフッ素系 多孔質フィルムを用いることが好適である。親水性榭脂シートの水分を外部に放散し 、近傍の液晶ポリマーフィルムへの影響を低減するためである。  [0057] In addition, when a liquid crystal polymer film is provided on one surface and a sheet containing hydrophilic resin as a main component is used on the other surface, a fluorine-based porous material as a release material is also provided on the hydrophilic resin sheet side. It is preferable to use a quality film. This is in order to reduce the influence on the liquid crystal polymer film in the vicinity by dissipating the moisture of the hydrophilic resin sheet to the outside.
[0058] なお、本発明では、少なくとも表面シートとして液晶ポリマーフィルムを用い当該液 晶ポリマーフィルムを熱圧着することを要件としている力 内層に液晶ポリマーフィル ムのみならず熱可塑性榭脂からなる絶縁体シートを有する多層板の製造においては 、一般的に、当該内層も表面の液晶ポリマーフィルムと共に一度に熱圧着することが できる。  [0058] In the present invention, at least a liquid crystal polymer film is used as a surface sheet, and the liquid crystal polymer film is required to be thermocompression bonded. The insulating layer is not only a liquid crystal polymer film but also an thermoplastic resin. In the production of a multilayer board having a sheet, generally, the inner layer can be thermocompression bonded together with the liquid crystal polymer film on the surface at a time.
[0059] 熱圧着により回路基板を製造する場合には、熱圧着装置と熱可塑性榭脂との融着 を防止するために、耐熱性の高い離型材が必要となる。そこで、従来、離型材として はポリイミドが用いられていた。ところが、上述した様に、液晶ポリマーフィルムの熱圧 着時には 200〜350°Cという高温を要する。よって、離型材としてポリイミドなど保水 性や親水性が高く通気性の無いものを用いると、ポリイミド等に由来する水の存在下 で高温にさらされることによって、表面の液晶ポリマーフィルムを構成する分子が加水 分解されてしまう。これが、回路基板の耐久性を劣化させる原因であった。  [0059] When a circuit board is manufactured by thermocompression bonding, a release material having high heat resistance is required in order to prevent fusion between the thermocompression bonding apparatus and the thermoplastic resin. Therefore, polyimide has been conventionally used as a mold release material. However, as described above, a high temperature of 200 to 350 ° C. is required when the liquid crystal polymer film is hot-pressed. Therefore, when a release material such as polyimide that has high water retention and hydrophilicity and no air permeability is used, the molecules that make up the liquid crystal polymer film on the surface are exposed to high temperatures in the presence of water derived from polyimide. It will be hydrolyzed. This was a cause of deteriorating the durability of the circuit board.
[0060] また、熱圧着の際には、回路パターンの凹凸に起因して、回路パターンシートへカロ えられる圧力が不均一となる。その結果、回路パターンの流動や、部分的な圧力不 足による層間の接着不良が生じる。そこで従来、緩衝材が用いられてきた。しかし、 離型材と緩衝材を両方用いると、特に微細な回路基板を製造する際には回路パター ンに乱れが生じたり、また、これらを重ねた場合にシヮが発生し、このシヮが回路基板 の表面に転写されるおそれがあった。  [0060] Further, during thermocompression bonding, the pressure applied to the circuit pattern sheet becomes uneven due to the unevenness of the circuit pattern. As a result, circuit pattern flow and partial adhesion failure due to partial pressure failure occur. Therefore, conventionally, a cushioning material has been used. However, when both the mold release material and the cushioning material are used, the circuit pattern may be disturbed especially when a fine circuit board is manufactured. There was a risk of transfer onto the surface of the circuit board.
[0061] 本発明は、先行技術のこれら問題を認識した上で完成されたものであり、液晶ポリ マーフィルムを熱圧着するに当たり、離型材としてフッ素系多孔質フィルムを用 、る 点に最大の特徴を有する。フッ素系多孔質フィルムは、その製造条件や高い疎水性 故に水をほとんど含まない上に、液晶ポリマー由来の水を外部に放出できることから 、熱圧着時における加水分解反応を抑制することができる。また、フッ素系多孔質フ イルムは、高いクッション性を有することから離型材としての作用と共に緩衝材として の作用ち発揮することがでさる。 [0061] The present invention has been completed after recognizing these problems of the prior art, and is the largest in that a fluorine-based porous film is used as a release material in thermocompression bonding of a liquid crystal polymer film. Has characteristics. Fluorine-based porous film contains almost no water due to its manufacturing conditions and high hydrophobicity, and it can release liquid-derived polymer-derived water to the outside. The hydrolysis reaction during thermocompression bonding can be suppressed. In addition, since the fluorine-based porous film has high cushioning properties, it can function as a release material as well as a buffer material.
[0062] フッ素系多孔質フィルムを構成する榭脂としては、例えば、ポリテトラフルォロェチレ ン(PTFE)、 PTFE—パーフルォロアルキルビュルエーテル共重合体、 PTFE—へ キサフルォロプロピレン共重合体、 PTFE—エチレン共重合体などを挙げることがで きる。これらの中でも、 PTFEが好ましぐ特に延伸多孔質ポリテトラフルォロエチレン (EPTFE)を好適に用いる。これら榭脂のフィルム成形方法や多孔質化の方法は、 常法を用いることができる。  [0062] Examples of the resin constituting the fluorinated porous film include polytetrafluoroethylene (PTFE), PTFE-perfluoroalkyl butyl ether copolymer, PTFE-hexafluoropropylene. Examples include copolymers and PTFE-ethylene copolymers. Among these, expanded porous polytetrafluoroethylene (EPTFE), in which PTFE is preferred, is preferably used. Conventional methods can be used as a film forming method and a porous method for these resin.
[0063] フッ素系多孔質フィルムの厚さは特に制限されないが、例えば、 50-500 μ mとす ることができる。 以上であれば、離型材として十分な強度があり、熱融着後に 回路基板力も剥離する際に破断するおそれがない上に、十分なクッション性も発揮 できる力もである。一方、 500 mを超えると、コスト面で不利になる。  [0063] The thickness of the fluorine-based porous film is not particularly limited, but may be, for example, 50-500 μm. If it is above, it has sufficient strength as a mold release material, and there is no possibility of breaking when the circuit board force is peeled off after heat-sealing, and also a force capable of exhibiting sufficient cushioning properties. On the other hand, if it exceeds 500 m, it is disadvantageous in terms of cost.
[0064] フッ素系多孔質フィルムの空孔率も特に制限されないが、 60〜98%力 子ましく、 7 0〜90%がより好ましい。 60%未満であると熱圧着時に空孔が潰れ、水分を外部へ 放出し難くなるおそれがあり、 98%を超えると強度が不足し、空孔内に液晶ポリマー が流入して剥離し難くなる場合がある力 である。  [0064] The porosity of the fluorine-based porous film is not particularly limited, but is preferably 60 to 98%, more preferably 70 to 90%. If it is less than 60%, the pores may be crushed during thermocompression bonding, making it difficult to release moisture. If it exceeds 98%, the strength will be insufficient, and the liquid crystal polymer will flow into the pores and will be difficult to peel off. There is a force that may be.
[0065] 当該フッ素系多孔質フィルムと熱圧着装置の熱圧部との間には、装置のメンテナン ス性を向上し、同時に熱圧着後における回路基板の品質を高めるために、金属板を 設けても良い。なお、フッ素系多孔質フィルムと金属板の両方を用いても、シヮ転写 の原因とはならない。  [0065] A metal plate is provided between the fluorine-based porous film and the thermocompression bonding section of the thermocompression bonding apparatus in order to improve the maintainability of the apparatus and at the same time improve the quality of the circuit board after thermocompression bonding. May be. Even if both a fluorine-based porous film and a metal plate are used, it will not cause paper transfer.
[0066] 当該フッ素系多孔質フィルムを用いて上記積層体を熱圧着した後は、フッ素系多 孔質フィルムにより被覆されたままの積層体を熱圧着装置力 取り出し、十分に冷却 した後、フッ素系多孔質フィルムを剥離する。  [0066] After thermocompression bonding of the laminate using the fluorine-based porous film, the laminate that is still covered with the fluoroporous film is taken out with a thermocompression bonding apparatus and cooled sufficiently. The system porous film is peeled off.
[0067] 最表面に回路が露出している場合、液晶ポリマーフィルムの熱圧着後においては、 導電部のブリッジ防止や回路面の保護のために、常法に従いソルダーレジスト層を 設けてもよい。 [0067] When the circuit is exposed on the outermost surface, a solder resist layer may be provided in accordance with a conventional method in order to prevent bridging of the conductive portion and protect the circuit surface after the thermocompression bonding of the liquid crystal polymer film.
[0068] 上記方法により得られた回路基板は、その構成要素である液晶ポリマーフィルムの 熱圧着時における脆ィ匕が抑制され耐久性が顕著に向上している。従って、製造時に おける不良の発生が抑制されるのみでなぐ実際の使用における基板自体や回路の 破損なども低減される。特に、本発明方法でフレキシブル回路基板を製造する場合 には、主要な構成要素である液晶ポリマーフィルムの脆ィ匕が顕著に抑制されることか ら、回路基板の耐折性ゃ靭性が改善され、耐久性が顕著に向上される。よって、本 発明に係るフレキシブル回路基板を携帯電話やパーソナルコンピュータなどコンパク トな機器へ挿入する場合において、基板自体や回路の破損の発生が低減され、回 路基板自身の寿命も延びることになる。この点において、本発明の回路基板は、近 年における電子機器のコンパクトィ匕ゃ長寿命化の要求に対応できるものとして、非常 に有用である。 [0068] The circuit board obtained by the above method is composed of a liquid crystal polymer film as a constituent element thereof. The brittleness at the time of thermocompression bonding is suppressed, and the durability is remarkably improved. Therefore, not only the occurrence of defects during manufacturing is suppressed, but also damage to the substrate itself and circuits in actual use is reduced. In particular, when a flexible circuit board is produced by the method of the present invention, the brittleness of the liquid crystal polymer film, which is the main component, is remarkably suppressed, so that the folding resistance and toughness of the circuit board are improved. Durability is remarkably improved. Therefore, when the flexible circuit board according to the present invention is inserted into a compact device such as a mobile phone or a personal computer, the occurrence of damage to the board itself or the circuit is reduced, and the life of the circuit board itself is extended. In this respect, the circuit board of the present invention is very useful as it can meet the demand for longer life of electronic devices in recent years.
[0069] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例により制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含ま れる。  [0069] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as well as the present invention. It is also possible to carry out with addition, and they are all included in the technical scope of the present invention.
実施例  Example
[0070] 製造例 1 本発明方法による液晶ポリマーフィルム回路基板の製造  Production Example 1 Production of a liquid crystal polymer film circuit board by the method of the present invention
液晶ポリマーフィルムの両面銅張板(ジャパンゴァテックス社製、 BIAC CC BCO 50F-B12B17,基材厚:50 /z m、銅箔厚: m、液晶ポリマー融点: 310。C)の 銅箔を両面エッチングし、ライン Zスペースが 100Z100 μ mの直線回路パターンを 形成した。別途、液晶ポリマーフィルム(ジャパンゴァテックス社製、 BIAC BC050F 、厚さ: 50 m)の片面に、低圧水銀灯を用いて 4, OOOmjZcm2の積算光量で紫外 線処理を行なった。当該液晶ポリマーフィルムの紫外線処理面を接着面として上記 銅張板に積層した。さらに離型材として、表 1に示す延伸多孔質 PTFEフィルム(ジャ パンゴァテックス社製、 HRCF— 090)を両側に配置し、熱圧着装置 (北川精機社製 、真空ホット'コールドプレス VH3— 1377)を用いて、温度: 285°C、圧力: 3MPaで 5分間熱圧着した。得られた積層フィルムを 15 X 130mmの長方形に切断し、試験 片とした。 Double-sided copper clad with liquid crystal polymer film (Japan Gotex Corp., BIAC CC BCO 50F-B12B17, substrate thickness: 50 / zm, copper foil thickness: m, liquid crystal polymer melting point: 310.C) Etching was performed to form a linear circuit pattern with a line Z space of 100Z100 μm. Separately, one side of a liquid crystal polymer film (BIAC BC050F, manufactured by Japan Gore-Tex Co., Ltd., thickness: 50 m) was subjected to ultraviolet ray treatment with an integrated light amount of 4, OOOmjZcm 2 using a low-pressure mercury lamp. The liquid crystal polymer film was laminated on the copper-clad plate with the ultraviolet-treated surface as an adhesive surface. Furthermore, stretched porous PTFE film (manufactured by Japan Gore-Tex, HRCF-090) shown in Table 1 is placed on both sides as a release material, and thermocompression bonding equipment (Kitakawa Seiki Co., Ltd., vacuum hot 'cold press VH3-1377) Was thermocompression bonded at a temperature of 285 ° C. and a pressure of 3 MPa for 5 minutes. The obtained laminated film was cut into a 15 × 130 mm rectangle to obtain a test piece.
[0071] 比較製造例 1 離型材として、表 1に示すポリイミドフィルム(東レ'デュポン社製、カプトン 200EN) を延伸多孔質 PTFEフィルムの代わりに使用した他は上記製造例 1と同様の方法に よって、積層フィルムを製造した。さら〖こ、当該積層フィルムを切断して、製造例 1と同 様の試験片を得た。 [0071] Comparative Production Example 1 A laminated film was produced in the same manner as in Production Example 1 except that a polyimide film shown in Table 1 (manufactured by Toray DuPont, Kapton 200EN) was used instead of the stretched porous PTFE film as a release material. Sarakuko cut the laminated film to obtain a test piece similar to Production Example 1.
[0072] 比較製造例 2  [0072] Comparative Production Example 2
上記製造例 1で用いた延伸多孔質 PTFEフィルム (ジャパンゴァテックス社製、 HR CF— 090)を 3枚重ね、熱圧着装置 (北川精機社製、真空ホット'コールドプレス VH 3- 1377)を用いて、温度: 330°C、圧力: 4MPaで 5分間熱圧着することによって、 無孔化した PTFEフィルムを得た。  Three layers of stretched porous PTFE film (manufactured by Japan Gore-Tex Co., Ltd., HR CF-090) used in Production Example 1 above are stacked and a thermocompression bonding device (Kitakawa Seiki Co., Ltd., vacuum hot 'cold press VH 3-1377) A non-porous PTFE film was obtained by thermocompression bonding at a temperature of 330 ° C and a pressure of 4 MPa for 5 minutes.
[0073] 得られた無孔 PTFEフィルムを、上記製造例 1の方法において延伸多孔質 PTFE フィルムの代わりに離型材として使用し、積層フィルムを製造した。さらに、当該積層 フィルムを切断して、製造例 1と同様の試験片を得た。  [0073] The obtained non-porous PTFE film was used as a release material in place of the stretched porous PTFE film in the method of Production Example 1 to produce a laminated film. Further, the laminated film was cut to obtain a test piece similar to Production Example 1.
[0074] 試験例 1 耐折性試験  [0074] Test Example 1 Folding resistance test
JIS C6471に従って、上記製造例 1および比較製造例 1と 2で得た試験片につい て、耐折性試験を行なった。詳しくは、 MIT試験機 (東洋精機製作所製、 MIT-D) に試験片を取り付け、 R=0. 4、荷重: 500gの条件でフィルムが破断するまでの直線 回路に平行な方向(MD)と直交する方向 (TD)の折り曲げ回数を測定した。また、当 該試験前における熱圧着による回路パターンの変形の有無と、試験後における回路 面保護層(最表面の液晶ポリマーフィルム)の剥離の有無を確認した。結果を表 1に 示す。  In accordance with JIS C6471, the specimens obtained in Production Example 1 and Comparative Production Examples 1 and 2 were subjected to a folding resistance test. For details, attach the test piece to the MIT testing machine (MIT-D, manufactured by Toyo Seiki Seisakusho), and set the direction parallel to the linear circuit (MD) until the film breaks under the condition of R = 0.4 and load: 500g. The number of folds in the orthogonal direction (TD) was measured. In addition, the presence or absence of deformation of the circuit pattern due to thermocompression bonding before the test and the presence or absence of peeling of the circuit surface protective layer (the outermost liquid crystal polymer film) after the test were confirmed. The results are shown in Table 1.
[0075] [表 1]  [0075] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
当該結果の通り、ポリイミドフィルムまたはフッ素系無孔フィルムを離型材として用い た場合には、試験前の時点において回路パターンの変形が見られた。これは、ポリイ ミドフィルムと無孔 PTFEフィルムのクッション性が十分でな!、ことから、熱圧着時に回 路面へ不均一な圧力が力かったことに原因があると考えられる。また、試験後におい て、回路面保護層の剥離がみられた。これも、回路パターンの変形と同様に圧力の 不均一さに起因すると考えられる。 As a result, when a polyimide film or a fluorine-based non-porous film was used as a release material, the circuit pattern was deformed before the test. This is Polly The cushioning properties of the mid film and non-porous PTFE film are inadequate! This is considered to be due to the uneven pressure applied to the circuit surface during thermocompression bonding. In addition, peeling of the circuit surface protective layer was observed after the test. This is thought to be due to non-uniform pressure as well as circuit pattern deformation.
一方、延伸多孔質 PTFEフィルムを離型材として用いた場合には、パターン変形も 回路面保護層の剥離も観察されな力つた。これは、延伸多孔質 PTFEフィルムはタツ シヨン性に優れることから、熱圧着時の圧力が均等であったことによるものである。 また、延伸多孔質 PTFEフィルムを離型材として用いた場合における積層板の耐折 性は、他の素材を離型材とした場合よりも顕著に向上している。これは、延伸多孔質 PTFEフィルムはほとんど水分を含まず、且つ多孔質であること力も液晶ポリマーフィ ルム由来の水分を熱圧着時に放出することによって、液晶ポリマーの加水分解を抑 制したこと〖こよるちのである。  On the other hand, when the stretched porous PTFE film was used as a release material, neither pattern deformation nor peeling of the circuit surface protective layer was observed. This is due to the fact that the stretched porous PTFE film has excellent tackiness, and the pressure during thermocompression bonding was uniform. In addition, the folding resistance of the laminate when using the stretched porous PTFE film as a release material is significantly improved as compared with the case where another material is used as the release material. This is because the stretched porous PTFE film contains almost no water, and the ability to be porous has also suppressed the hydrolysis of the liquid crystal polymer by releasing the water derived from the liquid crystal polymer film during thermocompression bonding. It's a good night.

Claims

請求の範囲 The scope of the claims
[1] 回路基板の製造方法であって、  [1] A method of manufacturing a circuit board,
当該回路基板を構成する絶縁体シートのうち、少なくとも一方の表面シートとして液 晶ポリマーフィルムを用い、当該液晶ポリマーフィルムを熱圧着するに当たり、離型材 としてフッ素系多孔質フィルムを用いることを特徴とする回路基板の製造方法。  Among the insulating sheets constituting the circuit board, a liquid crystal polymer film is used as at least one surface sheet, and a fluorine-based porous film is used as a release material in thermocompression bonding the liquid crystal polymer film. A method of manufacturing a circuit board.
[2] 上記液晶ポリマーフィルムとして、実質的に液晶ポリマーのみ力もなるものを用いる 請求項 1に記載の回路基板の製造方法。  [2] The method for producing a circuit board according to [1], wherein the liquid crystal polymer film is one having substantially only a liquid crystal polymer.
[3] 上記回路基板の各絶縁体シートを、すべて液晶ポリマーフィルムにより構成する請 求項 1または 2に記載の回路基板の製造方法。 [3] The method for manufacturing a circuit board according to claim 1 or 2, wherein each of the insulator sheets of the circuit board is composed of a liquid crystal polymer film.
[4] 液晶ポリマーフィルムの片面または両面に回路パターンを形成し、当該回路パター ン上に液晶ポリマーフィルムを配置し熱圧着する請求項 1〜3のいずれかに記載の 回路基板の製造方法。 [4] The method for producing a circuit board according to any one of claims 1 to 3, wherein a circuit pattern is formed on one or both sides of the liquid crystal polymer film, the liquid crystal polymer film is disposed on the circuit pattern, and thermocompression bonding is performed.
[5] 上記フッ素系多孔質フィルムとして、延伸多孔質ポリテトラフルォロエチレンフィルム を用いる請求項 1〜4の 、ずれかに記載の回路基板の製造方法。  [5] The method for producing a circuit board according to any one of claims 1 to 4, wherein a stretched porous polytetrafluoroethylene film is used as the fluorine-based porous film.
[6] 請求項 1〜5のいずれかに記載の方法で製造されるものであり、耐久性に優れる回 路基板。  [6] A circuit board manufactured by the method according to any one of claims 1 to 5 and having excellent durability.
PCT/JP2006/308878 2005-04-28 2006-04-27 Circuit board and method for manufacturing same WO2006118211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005132574A JP4630120B2 (en) 2005-04-28 2005-04-28 Circuit board and manufacturing method thereof
JP2005-132574 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118211A1 true WO2006118211A1 (en) 2006-11-09

Family

ID=37308009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308878 WO2006118211A1 (en) 2005-04-28 2006-04-27 Circuit board and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP4630120B2 (en)
WO (1) WO2006118211A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069018A1 (en) * 2006-12-01 2008-06-12 Creative Technology Corporation Process for the formation of embossed patterns
WO2011086641A1 (en) * 2010-01-13 2011-07-21 Toyota Jidosha Kabushiki Kaisha Power module production method, and power module produced thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919909A (en) 2013-01-09 2015-09-16 株式会社村田制作所 Resin multilayer substrate, and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179520A (en) * 1990-11-14 1992-06-26 Japan Gore Tex Inc Release protective sheet for hot-pressing lamination
JP2003273511A (en) * 2001-07-04 2003-09-26 Denso Corp Press technique and method for manufacturing member for press
JP2004087944A (en) * 2002-08-28 2004-03-18 Denso Corp Manufacturing method of logomark-bearing board
JP2006088581A (en) * 2004-09-24 2006-04-06 Fuji Xerox Co Ltd Method for producing laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179520A (en) * 1990-11-14 1992-06-26 Japan Gore Tex Inc Release protective sheet for hot-pressing lamination
JP2003273511A (en) * 2001-07-04 2003-09-26 Denso Corp Press technique and method for manufacturing member for press
JP2004087944A (en) * 2002-08-28 2004-03-18 Denso Corp Manufacturing method of logomark-bearing board
JP2006088581A (en) * 2004-09-24 2006-04-06 Fuji Xerox Co Ltd Method for producing laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069018A1 (en) * 2006-12-01 2008-06-12 Creative Technology Corporation Process for the formation of embossed patterns
JPWO2008069018A1 (en) * 2006-12-01 2010-03-18 株式会社クリエイティブ テクノロジー Concave and convex pattern forming method
JP4977715B2 (en) * 2006-12-01 2012-07-18 株式会社クリエイティブ テクノロジー Concave and convex pattern forming method
WO2011086641A1 (en) * 2010-01-13 2011-07-21 Toyota Jidosha Kabushiki Kaisha Power module production method, and power module produced thereby
CN102714198A (en) * 2010-01-13 2012-10-03 丰田自动车株式会社 Power module production method, and power module produced thereby
US8881386B2 (en) 2010-01-13 2014-11-11 Toyota Jidosha Kabushiki Kaisha Power module production method, and power module produced thereby

Also Published As

Publication number Publication date
JP4630120B2 (en) 2011-02-09
JP2006305921A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP6499584B2 (en) Thermoplastic liquid crystal polymer film, circuit board, and production method thereof
JP5661051B2 (en) Method for producing single-sided metal-clad laminate
JP4162321B2 (en) Method for producing metal foil laminate
JP5119401B2 (en) Flexible laminate having thermoplastic polyimide layer and method for producing the same
JP2019178326A (en) Production method of thermoplastic liquid crystal polymer film, circuit board and method for manufacturing the same
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
WO2007013330A1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
KR20090004894A (en) Flexible laminate having thermoplastic polyimide layer and method for manufacturing the same
JP5154055B2 (en) Electronic circuit board manufacturing method
JP2006123510A (en) Cushion material for press molding and its manufacturing method
JP6743324B1 (en) Method for producing thermoplastic liquid crystal polymer structure
JP4827446B2 (en) Electronic circuit board and manufacturing method thereof
WO2006118211A1 (en) Circuit board and method for manufacturing same
JP4598408B2 (en) Adhesive sheet
JP2005105165A (en) Thermoplastic liquid crystalline polymer film laminatable at low temperature
JP2004358677A (en) Method for manufacturing laminate
JP2001015933A (en) Thermally fusible insulating sheet
KR102324897B1 (en) Method for manufacturing a metal-clad laminate
JP4305799B2 (en) Laminate production method
JP3989145B2 (en) Laminate production method
JP7182030B2 (en) METHOD FOR MANUFACTURING METAL-CLAD LAMINATED BODY
JP2002361744A (en) Method for manufacturing heat-resistant flexible laminated sheet
KR20220020270A (en) Method for manufacturing a metal-clad laminate
JP2002096392A (en) Method for manufacturing laminate
KR20230089183A (en) Flexible metal laminate, and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732429

Country of ref document: EP

Kind code of ref document: A1