Nothing Special   »   [go: up one dir, main page]

WO2006036666A1 - High-speed rfid circuit placement method and device - Google Patents

High-speed rfid circuit placement method and device Download PDF

Info

Publication number
WO2006036666A1
WO2006036666A1 PCT/US2005/033668 US2005033668W WO2006036666A1 WO 2006036666 A1 WO2006036666 A1 WO 2006036666A1 US 2005033668 W US2005033668 W US 2005033668W WO 2006036666 A1 WO2006036666 A1 WO 2006036666A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
rfid
rfid circuit
primary
placing
Prior art date
Application number
PCT/US2005/033668
Other languages
French (fr)
Inventor
Jason Munn
Original Assignee
Avery Dennison Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avery Dennison Corporation filed Critical Avery Dennison Corporation
Priority to KR1020077006292A priority Critical patent/KR101182602B1/en
Priority to CN2005800320761A priority patent/CN101069196B/en
Priority to ES05798744T priority patent/ES2402931T3/en
Priority to CA002581425A priority patent/CA2581425A1/en
Priority to EP05798744A priority patent/EP1800253B1/en
Publication of WO2006036666A1 publication Critical patent/WO2006036666A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07718Constructional details, e.g. mounting of circuits in the carrier the record carrier being manufactured in a continuous process, e.g. using endless rolls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07752Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna using an interposer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • Y10T29/49137Different components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53178Chip component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53191Means to apply vacuum directly to position or hold work part

Definitions

  • the present invention relates generally to the assembly of electronic devices. More particularly, the present invention relates to the assembly of radio frequency identification (RFID) interposers, inlays, and/or tags.
  • RFID radio frequency identification
  • RFID tags and labels are widely used to associate an object with an identification code.
  • RFID devices generally have a combination of antennas and analog and/or digital electronics, which may include for example communications electronics, data memory, and control logic. Furthermore the RFID devices include structures to support and protect the antennas and electronics, and to mount or attach them to objects.
  • RFID tags are used in conjunction with security-locks in cars, for access control to buildings, and for tracking inventory and parcels.
  • RFID devices are generally categorized as labels or tags.
  • RFID labels are RFID devices that are adhesively or otherwise attached directly to objects.
  • RFID tags in contrast, are secured to objects by other means, for example by use of a plastic fastener, string or other fastening means.
  • RFID tags and labels it is possible to mount or incorporate some or all of the antennas and electronics directly on the objects.
  • transponders refers both to RFID devices and to RFID combinations of antennas and analog and/or digital electronics wherein the antenna and/or electronics are mounted directly on the objects.
  • RFID devices In many applications the size and shape (form factor) of RFID devices, and mechanical properties such as flexibility, are critical. For reasons such as security, aesthetics, and manufacturing efficiency there is a strong tendency toward smaller form factors. Where thinness and flexibility are desired, it is important to avoid materials (such as bulky electronics) and constructions that add undue thickness or stiffness to the RFID tag or label.
  • RFID devices on the other hand should have adequate electrical connections, mechanical support, and appropriate positioning of the components (chips, chip connectors, antennas). Structures for these purposes can add complexity, thickness and inflexibility to an RFID device.
  • Another significant form factor, for example in thin flat tags and labels, is the area of the device, and performance requirements of the antenna can affect this area.
  • the antenna typically should have a physical length approximately one-half wavelength of the RF device's operating frequency. While the length of this type of antenna may be short for the operating frequency of an RF tag, it may still be larger than many desired RFID device form factors.
  • RFID tags and labels typically include an integrated circuit chip attached to an antenna.
  • the antenna is provided on a continuous web and the RFID chip is precisely placed onto an antenna using commercially available pick-and-place machines. These machines are relatively slow, and usually require an indexing process whereby the antenna web stops for a short period of time while the chip is placed onto an antenna on the antenna web. Since the spacing of antennas on the antenna web can be rather large, for example 5 to 8 cm (2 to 3 inches), the speed of the production process is further reduced because the antenna web must move a relatively large distance for the next placement operation to take place. Pick and place equipment generally has the highest placement rate when the chip placement locations are very close together.
  • Interposers include conductive leads or pads that are electrically coupled to the contact pads of the chips for coupling to the antennas. These pads may be used to provide a larger effective electrical contact area than a chip precisely aligned for direct placement without an interposer. The larger area reduces the accuracy required for placement of chips during manufacture while still providing effective electrical connection. Chip placement and mounting are serious limitations for high-speed manufacture.
  • straps or interposers offer an advantage in speed of transfer to the web of antenna structures.
  • a second advantage to the interposer is a reduced requirement for placement accuracy onto the antenna.
  • the contact pads on the interposer and antenna can be much larger than those required for the RFID chip connection, allowing for the use of interposer placement equipment with lower precision requirements.
  • Interposers offer the advantage that they may be attached to an antenna on a moving web. However, the web speed and production rate are still quite low. Some of the difficulty arises from the difference in spacing of the straps or interposers on the carrier web, and the spacing of the antenna structures to which the interposers will be attached.
  • One method of assembling interposers begins with a web of interposer leads or pads and a web of RFID chips.
  • the RFID chips are separated from the web and placed onto the interposer leads using pick-place techniques.
  • the chip may be placed onto the interposer leads with a rotary pick-place device for picking RFID chips and placing the chips on interposer leads on a web, thereby forming an interposer.
  • a web of chips may be laminated directly to a web of interposer leads.
  • the term "RFID circuit” encompasses both a chip, and an interposer incorporating a chip.
  • the "pitch" of the RFID chips on the web also referred to as the center- to-center distance between adjacent elements, may be different than the pitch of the interposer leads or other electrical components on a web.
  • the pitch of chips may be different than the pitch of an array of RFID tags or labels to be formed: (a) in the
  • the difference in pitch may be due to, for example, the size of the elements themselves, manufacturing considerations, and/or efficiency considerations.
  • the chips when placing RFID chips from a web having a first pitch to interposer leads on a web having a second pitch, the chips must be indexed to the interposer leads or vice versa.
  • the interposers and/or antenna structures must be indexed. In the interest of efficiency, the indexing process should be performed as seamlessly as possible, preferably without interfering with the advance of the web containing the interposer leads or antenna structures.
  • a method of placing a chip onto an electrical component comprising: securing an RFID circuit to a transfer drum having at least one nozzle along a circumferential surface, rotating the transfer drum, and placing the chip onto an electrical component on a moving web.
  • the rotating the transfer drum includes accelerating the transfer drum such that the tangential velocity of the at least one nozzle is substantially equal to the linear velocity of the moving web when the chip is placed onto the electrical component.
  • the chip may be secured to the transfer drum while the transfer drum is stationary, then the transfer drum is accelerated while rotating the transfer drum.
  • the RFID circuit comprises an RFID interposer that includes strap leads mounted to a chip, and the placing step includes coupling the interposer leads to an electrical component.
  • the electrical component may be an antenna, and the placing step couples the interposer leads to the antenna.
  • the method may further include the step of separating or severing the interposer from a carrier web or sheet, prior to the securing step.
  • the securing step may include transferring the RFID interposer to the transfer drum from another transfer member.
  • the transfer drum may include one or more nozzles along its circumferential surface. In the case of multiple nozzles, preferably the nozzles are spaced evenly around the circumferential surface of the transfer drum. In one embodiment, the transfer drum includes three nozzles spaced evenly around the circumferential surface of the transfer drum. For example, when the transfer drum is stationary, the nozzles may be at the twelve o'clock, eight o'clock, and four o'clock positions. In this embodiment, RFID circuits may be secured to the drum at the twelve o'clock position, and placed on electrical components at the six o'clock position.
  • a method of placing an RFID circuit onto an electrical component includes: securing a RFID circuit to a transfer drum, rotating the transfer drum, and placing the RFID circuit onto an electrical component on a moving web.
  • Rotating the transfer drum includes accelerating the transfer drum such that the tangential velocity of the RFID circuit is substantially equal to the linear velocity of the moving web when the RFID circuit is placed onto the electrical component.
  • a method of placing an RFID circuit onto an electrical component includes: securing an RFID circuit to a primary drum, transferring the RFID circuit from a primary drum to a secondary drum, and placing the RFID circuit with the secondary drum onto an electrical component on a moving web.
  • the transferring step includes adjusting the peripheral speed of at least one of the primary and secondary drums such that the peripheral speed of each drum is substantially equal.
  • the placing step includes adjusting the peripheral speed of the secondary drum such that the peripheral speed of the secondary drum is substantially equal to the speed of the moving web.
  • a placement device comprising: at least one primary drum having at least one primary nozzle along a circumferential surface, at least one secondary drum having at least one secondary nozzle along a circumferential surface, at least one motor operatively coupled to at least one of the drums, wherein peripheral speeds of the drums are substantially equal when an axis of one of the primary nozzles is aligned with an axis of one of the secondary nozzles, and wherein the at least one secondary drum rotates at a variable rate that is a function of whether an axis of a secondary nozzle is aligned with an axis of a primary nozzle.
  • a placement device comprising: at least one primary drum having at least one primary nozzle along a circumferential surface, at least one secondary drum having at least one secondary nozzle along a circumferential surface, drive means coupled to at least one of the drums, wherein peripheral speeds of the drums are substantially equal when an axis of one of the primary nozzles is aligned with an axis of one of the secondary nozzles, and wherein the at least one secondary drum rotates at a variable rate that is a function of whether an axis of a secondary nozzle is aligned with an axis of a primary nozzle.
  • FIG. 1 is a flow chart showing a method of the present invention
  • FIG. 2A is a side view of a single drum, one nozzle placement device according to the present invention
  • FIG. 2B is a side view of a single drum, one nozzle placement device according to the present invention.
  • FIG. 3A is a graph illustrating a velocity profile of a transfer drum;
  • FIG. 3B is a graph illustrating a velocity profile of a transfer drum
  • FIG. 4 is a side view of a single drum three nozzle placement device according to the present invention.
  • FIG. 5 is a side view of a single drum three nozzle placement device according to the present invention.
  • FIG. 6 is a flow chart showing a method of the present invention.
  • FIG. 7 is a side view of a two drum, three nozzle placement device according to the present invention.
  • FIG. 8 is an oblique view of a two drum, three nozzle placement device according to the present invention.
  • FIG. 9 is a side view of a two drum, three nozzle placement device showing the primary drum and the secondary drum during transfer of a chip from the primary drum to the secondary drum;
  • FIG. 10 is a side view of a two drum, three nozzle placement device showing the secondary drum placing a chip onto an antenna structure on a web;
  • FIG. 11 is a side view of a two drum, three nozzle placement device showing the primary drum and the secondary drum during transfer of a chip from the primary drum to the secondary drum;
  • FIG. 12 is an exploded view of an embodiment of the invention.
  • FIG. 13 is a schematic diagram of an embodiment of the invention.
  • a high-speed process includes removing RFID circuits from a carrier web having a first pitch and transferring the RFID circuits to electrical components, such as RFID antenna structures, on a moving web having a second pitch.
  • the second pitch is greater than the first pitch.
  • a transfer drum transfers RFID circuits to a moving web of electrical components, such as antennas, by picking up a chip when the transfer drum is stationary, and transferring the chip to the moving web when the transfer drum is rotating such that a tangential velocity of the transfer drum is substantially equal to the linear velocity of the moving web.
  • a primary drum removes the RFID circuits from a carrier web having a first pitch, and transfers the RFID circuits to an intermittently or variably rotating secondary drum, which then places the RFID circuits onto an electrical component on a moving web having a second pitch.
  • FIG. 1 a flow chart is shown depicting a method 5 of placing an RFID circuit onto an antenna on a moving web.
  • the method 5 of FIG. 1 will be described in relation to a transfer drum having a single vacuum port or nozzle. However, it will be understood that the method 5 is equally applicable to any single nozzle of a multi- nozzle transfer drum. Further, while the method is described with reference to nozzles or ports, the method does not require nozzles or ports.
  • the method 5 begins in process step 14 wherein a singulated chip is picked up by a nozzle on a transfer drum.
  • the transfer drum is momentarily stationary when an RFID circuit is picked up by the nozzle in the 12 o'clock position on the transfer drum.
  • the transfer drum is accelerated such that the tangential velocity of the nozzle is substantially equal to the linear velocity of a moving web of electronic components when the nozzle reaches the 6 o'clock position.
  • the RFID circuit is then transferred from the nozzle to the moving web of electronic components in process step 18.
  • the transfer drum is decelerated, in process step 20, such that the nozzle is returned to the 12 o'clock position whereat the nozzle is in position to pick up another chip for transfer to the moving web of electrical components.
  • the nozzle is a vacuum holder that engages and disengages RFID circuits using negative and positive pressures.
  • the invention also encompasses mechanical securement of the RFID circuit to the transfer drum, and as used in this patent application the term "nozzle" encompasses not only vacuum securement but also mechanical securement of RFID circuits.
  • a high-speed placement device 30 including an RFID circuit supply device 32, such as a magazine, and a transfer drum 34 having a single vacuum port or nozzle 36 for transferring RFID circuits 38 from the supply device 32 to a web 40 of electronic components 42, and a base roller 44.
  • the transfer drum 34 is positioned between the RFlD circuit supply device 32 and a base roller 44 with the nozzle 36 at the 12 o'clock position.
  • the base roller 44 typically rotates clockwise at a suitable speed thereby advancing the web 40 of electrical components 42 at a constant rate from left to right. When rotating, the transfer drum 34 rotates counterclockwise.
  • the nozzle 36 through selective application of negative pressure, picks an RFID circuit 38 from the supply device 32 while the transfer drum 34 is momentarily stationary with the nozzle 36 at the 12 o'clock position.
  • the transfer drum 34 rotates counter-clockwise accelerating to a placement velocity at which time the nozzle 36 and the RFID circuit 38 have a tangential velocity substantially equal to the linear velocity of the moving web 40.
  • FIG. 2B the nozzle 36 with RFID circuit 38 secured thereto is shown in the 6 o'clock position with the transfer drum 34 rotating such that the tangential velocity of the nozzle 36 and/or RFID circuit 38 is substantially equal to the linear speed of the moving web 40.
  • the RFID circuit 38 is then transferred to an electronic component 42 on the web 40 by selective removal of the negative pressure and/or application of positive pressure.
  • the RFID device 46 resulting from the combination of the RFID circuit 38 and the electronic component 42 continues moving on the web 40.
  • the transfer drum 34 may be situated such that the nozzle 36 forces the RFID circuit 38 against the electrical component 42 on the web 40. After the RFlD circuit 38 is placed, the transfer drum 34 continues rotating counterclockwise thereby returning the nozzle 36 to the 12 o'clock position whereat the nozzle 36 is once again stationary and in position to pick up another RFID circuit 38 from the supply device 32.
  • the transfer drum accelerates from zero revolutions per minute (RPM's) at the 12 o'clock position to the placing velocity at the 6 o'clock position and back to zero RPM's at the 12 o'clock position.
  • RPM's revolutions per minute
  • the transfer drum 34 must accelerate from stationary to placing velocity within 180 degrees of rotation (i.e., between the 12 o'clock picking position and the 6 o'clock placing position).
  • the manner in which the placing drum 34 is accelerated and decelerated during one revolution also referred to herein as the velocity profile of the placing drum, may be any suitable manner depending on a variety of factors such as the total throughput rate of the placement device 30, the rate at which RFID circuits 38 can be supplied to the transfer drum 34, the minimum time required for an RFID circuit 38 to be secured to a vacuum port or nozzle 36 of the transfer drum 34, etc.
  • the velocity profile of the transfer drum typically will include a dwell time, or time interval when the transfer drum is held stationary to receive and hold the singulated RFID circuit.
  • FIGS. 3A and 3B show two exemplary velocity profiles for the transfer drum.
  • FIG. 3A shows a velocity profile with a straight line increase in velocity from stationary to full speed
  • FIG. 3B shows an example of an arcuate velocity profile.
  • Each of these transfer drum velocity profiles are for transfer drums with three nozzles, and the profiles include dwell regions at 0°, 120°, and 240° of the rotation cycle.
  • Other transfer drum configurations may also have similar velocity profiles.
  • FIGS. 4 and 5 a high-speed placement device 50 having a three nozzle transfer drum 54 will be described.
  • the nozzles 56a, 56b, 56c in this embodiment are arranged around the circumference of the transfer drum 54 at 120 degree intervals.
  • nozzle 56a is positioned at 12 o'clock
  • nozzle 56b is positioned at 8 o'clock
  • nozzle 56c is positioned at 4 o'clock in FIG. 4.
  • An RFID circuit supply device 52 is located above the 12 o'clock position of the transfer drum 54.
  • a web 60 of electrical components 62 moves from left to right below the transfer drum 54 via the base roller 64.
  • the transfer drum 54 is momentarily stationary allowing nozzle 56a to pick up an RFID circuit 58 from the supply device 52.
  • the transfer drum 54 commences accelerating counter-clockwise rotation. In the three nozzle configuration of the present embodiment, the transfer drum 54 must accelerate from stationary to placing velocity and then decelerate back to stationary through an arc of 120 degrees. Thus, as seen in FIG. 4, the transfer drum 54 must achieve placing velocity within the 60 degree arc A, thereby rotating nozzle 56b to the 6 o'clock position for placing the RFID circuit 58 previously picked up from the RFID circuit supply device 52.
  • the tangential velocity of the RFID circuit 52 secured to nozzle 56b when it reaches the 6 o'clock position is substantially equal to the linear velocity of the moving web 60 of electronic components 62.
  • An RFID device 66 is thus formed on the web 60.
  • the transfer drum 54 decelerates to zero RPM's within the 60-degree arc B shown in FIG. 5, thereby bringing nozzle 56c to the 12 o'clock position.
  • the transfer drum 54 intermittently rotates in 120-degree intervals. During each 120 degree rotation interval, a first nozzle in the 12 o'clock position, which may be any one of nozzles 56a, 56b,or 56c, picks up an RFID circuit 58 from the supply device 52 when the transfer drum 54 is stationary. The transfer drum 54 then accelerates through an arc of 60 degrees until a second nozzle 56a, 56b, or 56c as appropriate is rotating such that the tangential velocity of the nozzle is substantially equal to the linear velocity of the moving web 60, at which time an RFID circuit 58 is transferred to an electrical component 62 on the web 60.
  • the transfer drum 54 decelerates over a 60 degree arc until a third nozzle 56a, 56b, or 56c as appropriate is rotated into position to pick up an RFID circuit 58 from the supply device 52.
  • nozzle 56a in the 12 o'clock position
  • any one of the nozzles 56a, 56b, or 56c could begin in the 12 o'clock position, with the remaining two nozzles assuming the remaining two relative positions as appropriate. Therefore, the above description describes but one of a many possible nozzle configurations that may be used in conjunction with the present invention.
  • FIG. 6 a flow chart is shown depicting a method 105 of placing an RFID circuit onto an antenna on a web at high speed using a two-drum placement device according to the present invention.
  • the method 105 begins in process step 114, wherein an RFID circuit is picked by a primary drum.
  • the primary drum may be equipped with a vacuum source for providing suction for temporarily securing the RFID circuit to the primary drum.
  • the RFID circuit is then transferred from the primary drum to the secondary drum in process step 116.
  • the transfer of the RFID circuit from the primary drum to the secondary drum may occur while the primary drum and secondary drum are momentarily stationary, or while the primary drum and secondary drum are rotating at substantially the same peripheral speed.
  • the secondary drum is accelerated or decelerated such that the peripheral speed of the secondary drum is substantially equal to the speed of the web of electronic components, such as antenna structures.
  • the RFID circuit is then placed onto the antenna structure on the antenna web in process step 120.
  • the secondary drum is then accelerated or decelerated as appropriate, in process step 122, such that the peripheral speed of the secondary drum is substantially equal to the peripheral speed of the primary drum thereby preparing for the transfer of another RFID circuit from the primary drum to the secondary drum.
  • the RFID circuits After the RFID circuits are placed onto antenna structures, the RFID circuits subsequently may be coupled with the antenna structure in any suitable manner.
  • the method 105 will further be described below with reference to FIGS. 7-13.
  • FIGS. 7 and 8 a high speed placement device 200 is shown.
  • a web 220 of antenna structures 222 advances from left to right below the device 200 in both figures.
  • a web 250 carrying RFID circuits 252 enters the high-speed placement device 200 through slot 260.
  • An RFID circuit 252 is removed from the web 250 at peel tip 262, and the web 250 exits the device 200 at slot 264.
  • the primary drum 270 may hold the RFID circuit 252 with a vacuum applied through a plurality of primary nozzles 273 in the primary drum surface 272.
  • a plurality of recesses 274 and/or ridges 275 are also shown on the primary drum surface 272 for receiving the RFID circuits 252.
  • the primary drum 270 rotates in a clockwise manner while the secondary drum 280 rotates counterclockwise.
  • an RFID circuit 252 picked by the primary drum 270 approaches the transfer position 276.
  • the transfer position 276 in the illustrated embodiment corresponds to the six o'clock position of the primary drum 270 and the twelve o'clock position of the secondary drum 280.
  • Other transfer positions are possible, such as a transfer position corresponding to the four o'clock position of the primary drum 270 and the 10 o'clock position of the secondary drum 280.
  • more than one primary drum may be positioned around the periphery of the secondary drum thereby enabling transfer of RFID circuits 252 to the secondary drum 280 at more than one location.
  • a secondary drum 280 may have two primary drums positioned at the two o'clock and ten o'clock positions of the secondary drum 280, respectively.
  • an RFID circuit 252 is transferred from the primary drum 270 to the secondary drum 280.
  • the secondary drum 280 Prior to the transfer of the RFID circuit 252 from the primary drum 270 to the secondary drum 280, the secondary drum 280 is accelerated or decelerated such that, at the time of the transfer, the peripheral speed of the secondary drum's surface 282 is substantially equal to the peripheral speed of the surface 272 of the primary drum 270.
  • the vacuum source in the primary drum 270 is released thereby removing the holding force on the RFID circuit 252 at surface 272.
  • a vacuum source in drum 280 is activated to secure the RFID circuit 252 to its surface 282.
  • a positive pressure may be applied by the primary drum 270 thereby providing a separating force to the RFID circuit 252 at surface 272.
  • the primary drum 270 and secondary drum 280 may be stationary during the transfer process of the RFID circuit 252 from surface 272 to surface 282, or alternatively the primary drum 270 and secondary drum 280 may rotate during the transfer of the RFID circuit 252.
  • the secondary drum 280 accelerates or decelerates as appropriate such that the peripheral speed of the surface 282 of the secondary drum 280 is substantially equal to the speed of the web 220.
  • the rotation and speed of drum 280 is timed such that the RFID circuit 252 held to surface 282 contacts the antenna structure 222 on the web 220 at the placement position 290.
  • the vacuum source in the secondary drum 280 is removed and the RFID circuit 252 is placed onto the antenna structure 222 on the moving web 220.
  • a positive pressure may be applied by the secondary drum 280 thereby providing a separating force to the RFID circuit 252 at surface 272.
  • the web 220 may include an adhesive or other means for securing the RFID circuit 252 to the antenna structure 222, thereby facilitating the transfer of the RFID circuit 252 from the secondary drum surface 282 to the antenna structure 222 on the web 220.
  • an adhesive may be applied to the web 220, the antenna structure 222, or both prior to the antenna structure 222 reaching the placement position 290.
  • the secondary drum 280 need not make contact with the web 220 or the antenna structure 222 during the placement of the RFID circuit 252 to the antenna structure 222.
  • the secondary drum 280 may make contact with the web 220 and/or antenna structure 222 thereby providing pressure to activate the pressure sensitive adhesive.
  • a backing roller or other member such as shown at 44 in FIGS. 2A, 2B, 64 in FIGS. 4, and 5, and at 295 in FIGS. 7-10 may form a pressure nip to facilitate transfer of the RFID circuit to the web.
  • the primary drum 270 includes a plurality of primary nozzles 273, recesses 274, and/or ridges 275 for receiving an RFID circuit 252.
  • the primary drum 270 further includes a vacuum source for directing suction to the primary drum surface 272 for temporarily securing RFID circuits 252 thereto.
  • the primary drum 270 in this embodiment rotates clockwise.
  • RFID circuits 252 are shown secured to the primary drum 270 via the suction provided by the vacuum source.
  • the primary drum 270 rotates clockwise, the RFID circuits 252 secured to the primary drum surface 272 rotate into the transfer position 276 where they are transferred to the secondary drum 280.
  • the primary drum 270 may rotate continuously, intermittently, or variably depending on the particular application.
  • the secondary drum 280 includes three secondary nozzles 284a, 284b, 284c disposed at 120 degree intervals around the surface 282 of the secondary drum 280. It will be appreciated that in practice any suitable number of secondary nozzles may be used; however, for simplicity of explanation three secondary nozzles are shown.
  • the secondary drum 280 also includes a vacuum source for directing suction to the secondary nozzles for temporarily securing RFID circuits 252 to the secondary nozzles.
  • a primary nozzle 273 and secondary nozzle 284a are in the transfer position 276. In the transfer position 276, the axes of a primary nozzle 273 and secondary nozzle 284a are aligned.
  • Secondary nozzle 284b is shown with a chip 252 secured to it. Secondary nozzle 284c does not have a chip secured to it.
  • the web 220 of antenna structures 222 is shown below the secondary drum 280 and advances from left to right in FIGS. 9 and 10.
  • FIG. 10 the secondary drum 280 has been rotated approximately 60° counterclockwise from the position shown in FIG. 9.
  • Secondary nozzle 284a is now shown with an RFID circuit 252 secured to it, the RFID circuit 252 having been transferred from the primary drum 270 as shown in FIG. 9.
  • Secondary nozzle 284b is now in the placing position 290.
  • Secondary nozzle 284c having just placed an RFID circuit 252 onto an antenna structure 222 as shown in FIG. 9, is approaching the transfer position 276 where another RFID circuit 252 will be transferred thereto.
  • the web 220 has advanced from left to right such that an antenna structure 222 is in the placing position 290.
  • the peripheral speed of the secondary drum 280 and/or secondary nozzle 284b is substantially equal to the speed of the web 220, the secondary drum having been accelerated or decelerated such that the peripheral speed of secondary nozzle 284b is substantially equal to the speed of the web 220.
  • the web 220 may be advancing at high speed, there is essentially no relative motion between secondary nozzle 284b and the web 220.
  • the vacuum source supplying suction to secondary nozzle 284b is removed, thereby eliminating the force securing the RFID circuit 252 to secondary nozzle 284b, and the RFID circuit 252 is placed onto the antenna structure 222.
  • the secondary drum 280 After placing the RFID circuit 252 onto the antenna structure 222, the secondary drum 280 continues rotating counterclockwise such that secondary nozzle 284c advances into the transfer position 276, as shown in FIG. 11. As secondary nozzle 284c approaches the transfer position 276, the secondary drum 280 is accelerated or decelerated such that the peripheral speed of secondary nozzle 284c of the secondary drum 280 is substantially equal to the peripheral speed of the surface 272 and/or primary nozzle 273 of the primary drum 270 at the transfer position 276. As previously mentioned, the primary drum 270 and secondary drum 280 may be momentarily stationary during the transfer step.
  • the indexing of an RFID circuit 252 to an antenna structure 222 is achieved by the variable rotation, or acceleration and/or deceleration, of the primary drum 270 and/or secondary drum 252.
  • the two- drum placing device of the present embodiment may allow indexing of RFID circuits to electrical components having a greater pitch than a single drum placing device because both the primary and secondary drum can perform a portion of the indexing function.
  • the primary drum may rotate intermittently to perform an indexing function in the same manner in which the secondary drum rotates intermittently to index the RFID circuit to the web of electrical components.
  • FIG. 12 an exploded view is shown of a high speed placement device 300 according to another embodiment of the invention.
  • the device 300 includes a peel point 362, two primary drums 370, and a secondary drum 380.
  • the two primary drums 370 transfer RFID circuits to the secondary nozzles 384a, 384b, and 384c (384c not shown in FIG. 12) of the secondary drum 380.
  • the secondary drum 380 may place RFID circuits to a web having more than one lane of antenna structures.
  • the device 300 further includes end plates 390 on each side of the primary drums 370. Bearings 402 support the secondary drum 380, and the upper and lower housing 412 and 414 enclose the device. [0064] In FIG.
  • a schematic diagram illustrates a speed placement device 400 including a primary drum 470, a motor 478 coupled to the primary drum 470, and a vacuum source 479 coupled to the primary drum 470.
  • the secondary drum 480 includes a motor 488 and a vacuum source 489 coupled thereto. It will also be appreciated that a single motor and a single vacuum source may be coupled to both the primary drum 470 and the secondary drum 480.
  • Any suitable motor may be used to provide rotational force to the drums.
  • electric or hydraulic motors may be coupled to the drums to provide rotational force.
  • suitable gearing and transmission assemblies may be used to couple a motor or other drive means to the drums.
  • any suitable number of primary drums may be used to transfer chips or straps to one or more secondary drums.
  • the primary drums may be arranged along a common axis to transfer RFID circuits to one or more secondary drums as shown in FIG. 12, thereby allowing the simultaneously placement of more than one RFID circuit to a plurality of antenna structures in more than one lane on one or more webs.
  • more than one primary drum may transfer RFID circuits to a secondary drum, wherein the primary drums are arranged at different peripheral locations around the circumference of the secondary drum.
  • the relative speeds of the primary drum(s) and secondary drum(s) in any of the above embodiments may be controlled by suitable gears and/or electric motors.
  • stepper motor drives may be used to control the relative speeds of the drums.
  • the use of stepper motor drives with computer or other digital controls may be advantageous by allowing for the simple adjustment of the high-speed placement device to accommodate RFID circuit webs and antenna webs having a wide variety of component pitches.
  • the secondary drum will be accelerated when a secondary nozzle is rotated between the transfer position and the placement position such that the peripheral speed of a particular secondary nozzle is greater at the placement position than at the picking position. Because the peripheral speed of the secondary nozzles at the placement position may be adjusted, and the rate of advancement of the web of antenna structures may be adjusted, the present invention allows the placement of RFID circuits to antenna structures on webs having a wide variety of pitches.
  • vision systems may be employed to read fiducial marks and/or antenna positions and provide feedback to the control systems controlling the primary and secondary drums, the RFID circuit carrier web, and/or the web of antenna structures.
  • methods other than a peel tip may be used to singulate the RFID circuits from the carrier web.
  • the carrier web may be die cut thereby singulating the RFID circuits prior to picking by a primary drum.
  • the carrier web may pass between a cutter member and a primary drum, wherein the cutter member singulates the RFID circuits by cutting the web using the primary drum as an anvil.
  • the placing device described above allows RFID circuits of a first pitch (typically, relatively small) on a first carrier web to be transferred to antennas or other electrical components on second web having a second pitch (typically, relatively large), with no change in speed of the second web.
  • the RFID circuit carrier web may have constant, intermittent or variable speed as required to provide a suitable number of RFID circuits to the primary drum.
  • the primary drum may have constant, intermittent, or variable rotational speed as required to receive adequate RFID circuits from the carrier web and supply adequate RFID circuits to the secondary drum.
  • the tangential or peripheral velocity of an RFID circuit secured to a drum may be substantially equal to the linear velocity of a moving web during placement.
  • a tangential or peripheral velocity of a drum's surface being substantially equal to the a linear velocity of a web when an RFID circuit is placed onto an electrical component on the web.
  • it is the tangential velocity of the nozzles and/or RFlD circuits secured thereto that is substantially equal to the linear velocity of the moving web of electrical components.
  • a drum's surface is intended to be the surface to which an RFID circuit is secured.
  • the term "electronic component” may comprise an electrical circuits or electrical device, and in the preferred embodiment comprises an antenna.
  • the antenna may include a single antenna portion, or a plurality of separate antenna portions. Further, a wide variety of antenna designs may be used with the present invention such as loop, slot, or patch antennas.
  • couple, coupled, or coupling may encompass both mechanical coupling and electrical coupling.
  • Mechanical coupling includes physically securing the interposer to an electronic component.
  • Electrical coupling includes forming an electrical connection between the interposer and electronic component.
  • An electrical connection includes directly connecting or reactively coupling an interposer to an electronic component.
  • Reactive coupling is defined as either capacitive or inductive coupling, or a combination of both.
  • Capacitive coupling may involve putting the interposer into close proximity with an electronic component, with dielectric pads therebetween, to allow capacitive coupling between the interposer and the electronic component.
  • the dielectric pads may include a non-conductive adhesive, such as a pressure-sensitive adhesive, for example Fasson adhesives S4800 and S333 available from Avery Dennison Corporation, and a high dielectric constant material, such as a titanium compound, for example titanium dioxide or barium titanate.
  • the dielectric pads have an effective dielectric constant that is a non-constant function of thickness of the dielectric pads.
  • the dielectric pads may include conductive particles, such as aluminum and/or nickel particles, to minimize the effect of changes in thickness on the capacitive coupling.
  • the dielectric pads may have a thickness of about 0.025 mm (0.001 inches) or less.
  • interposer leads may be substituted for an antenna structure and a chip may be placed onto the interposer leads instead of an antenna structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A high-speed process includes removing chips or interposers from a carrier web having a first pitch and transferring the chips or interposers to electrical components, such as RFID antenna structures, on a moving web having a second pitch. According to one method, a transfer drum (34) transfers chips or interposers (38) to a moving web (40) of electrical components (42) by picking a chip when the transfer drum is stationary, and transferring the chip to the moving web when the transfer drum is rotating such that a tangential velocity of the transfer drum is substantially equal to the linear velocity of the moving web.

Description

HIGH-SPEED RFID CIRCUIT PLACEMENT METHOD AND DEVICE
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001]The present invention relates generally to the assembly of electronic devices. More particularly, the present invention relates to the assembly of radio frequency identification (RFID) interposers, inlays, and/or tags.
2. Description of the Related Art
[0002] Radio frequency identification (RFID) tags and labels (collectively referred to herein as "devices") are widely used to associate an object with an identification code. RFID devices generally have a combination of antennas and analog and/or digital electronics, which may include for example communications electronics, data memory, and control logic. Furthermore the RFID devices include structures to support and protect the antennas and electronics, and to mount or attach them to objects. For example, RFID tags are used in conjunction with security-locks in cars, for access control to buildings, and for tracking inventory and parcels. Some examples of RFID tags and labels appear in U.S. Patent Nos. 6,107,920, 6,206,292, and 6,262,292, all of which are hereby incorporated by reference in their entireties. [0003] As noted above, RFID devices are generally categorized as labels or tags. RFID labels are RFID devices that are adhesively or otherwise attached directly to objects. RFID tags, in contrast, are secured to objects by other means, for example by use of a plastic fastener, string or other fastening means. In addition, as discussed below, as an alternative to RFID tags and labels it is possible to mount or incorporate some or all of the antennas and electronics directly on the objects. As used herein, the term "transponders" refers both to RFID devices and to RFID combinations of antennas and analog and/or digital electronics wherein the antenna and/or electronics are mounted directly on the objects.
[0004] In many applications the size and shape (form factor) of RFID devices, and mechanical properties such as flexibility, are critical. For reasons such as security, aesthetics, and manufacturing efficiency there is a strong tendency toward smaller form factors. Where thinness and flexibility are desired, it is important to avoid materials (such as bulky electronics) and constructions that add undue thickness or stiffness to the RFID tag or label. RFID devices on the other hand should have adequate electrical connections, mechanical support, and appropriate positioning of the components (chips, chip connectors, antennas). Structures for these purposes can add complexity, thickness and inflexibility to an RFID device. [0005] Another significant form factor, for example in thin flat tags and labels, is the area of the device, and performance requirements of the antenna can affect this area. For example, in the case of a dipole antenna the antenna typically should have a physical length approximately one-half wavelength of the RF device's operating frequency. While the length of this type of antenna may be short for the operating frequency of an RF tag, it may still be larger than many desired RFID device form factors.
[0006] RFID tags and labels typically include an integrated circuit chip attached to an antenna. Typically the antenna is provided on a continuous web and the RFID chip is precisely placed onto an antenna using commercially available pick-and-place machines. These machines are relatively slow, and usually require an indexing process whereby the antenna web stops for a short period of time while the chip is placed onto an antenna on the antenna web. Since the spacing of antennas on the antenna web can be rather large, for example 5 to 8 cm (2 to 3 inches), the speed of the production process is further reduced because the antenna web must move a relatively large distance for the next placement operation to take place. Pick and place equipment generally has the highest placement rate when the chip placement locations are very close together.
[0007] In many applications it is desirable to reduce the size of the electronics as much as possible. In order to interconnect very small chips with antennas in RFID inlets, it is known to use a structure variously called "interposers", "straps", and "carriers" to facilitate device manufacture. Interposers include conductive leads or pads that are electrically coupled to the contact pads of the chips for coupling to the antennas. These pads may be used to provide a larger effective electrical contact area than a chip precisely aligned for direct placement without an interposer. The larger area reduces the accuracy required for placement of chips during manufacture while still providing effective electrical connection. Chip placement and mounting are serious limitations for high-speed manufacture. The prior art discloses a variety of RFID strap or interposer structures, typically using a flexible substrate that carries the strap's contact pads or leads. RFID devices incorporating straps or interposers are disclosed, for example, in U.S. Patent No. 6,606,247 and in European Patent Publication 1 039 543, both of which are incorporated by reference herein in their entireties.
[0008] Although using straps or interposers is an extra step in the process of attaching an RFID chip to an antenna, straps or interposers offer an advantage in speed of transfer to the web of antenna structures. A second advantage to the interposer is a reduced requirement for placement accuracy onto the antenna. The contact pads on the interposer and antenna can be much larger than those required for the RFID chip connection, allowing for the use of interposer placement equipment with lower precision requirements.
[0009] Interposers offer the advantage that they may be attached to an antenna on a moving web. However, the web speed and production rate are still quite low. Some of the difficulty arises from the difference in spacing of the straps or interposers on the carrier web, and the spacing of the antenna structures to which the interposers will be attached.
[0010] One method of assembling interposers begins with a web of interposer leads or pads and a web of RFID chips. Typically the RFID chips are separated from the web and placed onto the interposer leads using pick-place techniques. The chip may be placed onto the interposer leads with a rotary pick-place device for picking RFID chips and placing the chips on interposer leads on a web, thereby forming an interposer. Alternatively, a web of chips may be laminated directly to a web of interposer leads.
[0011] As used in the specification and claims of the present patent application, the term "RFID circuit" encompasses both a chip, and an interposer incorporating a chip. [0012] Often the "pitch" of the RFID chips on the web, also referred to as the center- to-center distance between adjacent elements, may be different than the pitch of the interposer leads or other electrical components on a web. The pitch of chips may be different than the pitch of an array of RFID tags or labels to be formed: (a) in the
I longitudinal (also called the "down web") direction; (b) in the transverse (or "cross web") direction, or (c) in both directions. The difference in pitch may be due to, for example, the size of the elements themselves, manufacturing considerations, and/or efficiency considerations. However, when placing RFID chips from a web having a first pitch to interposer leads on a web having a second pitch, the chips must be indexed to the interposer leads or vice versa. Similarly, when placing an interposer from a web having a first pitch to an antenna structure on a web having a second pitch, the interposers and/or antenna structures must be indexed. In the interest of efficiency, the indexing process should be performed as seamlessly as possible, preferably without interfering with the advance of the web containing the interposer leads or antenna structures.
[0013]Therefore, it is desirable to provide a method and device for placing electrical components from a first web having a first pitch onto electrical components on a second web having a second pitch, wherein any indexing of the components is performed without impeding the advance of the second web of electrical components.
[0014] From the foregoing it will be seen there is room for improvement of RFID transponder manufacturing processes.
SUMMARY OF THE INVENTION
[0015]A method of placing a chip onto an electrical component is provided, the method comprising: securing an RFID circuit to a transfer drum having at least one nozzle along a circumferential surface, rotating the transfer drum, and placing the chip onto an electrical component on a moving web. The rotating the transfer drum includes accelerating the transfer drum such that the tangential velocity of the at least one nozzle is substantially equal to the linear velocity of the moving web when the chip is placed onto the electrical component. The chip may be secured to the transfer drum while the transfer drum is stationary, then the transfer drum is accelerated while rotating the transfer drum.
[0016] In one embodiment, the RFID circuit comprises an RFID interposer that includes strap leads mounted to a chip, and the placing step includes coupling the interposer leads to an electrical component. The electrical component may be an antenna, and the placing step couples the interposer leads to the antenna. [0017] In another embodiment in which the RFID circuit comprises an RFID interposer, the method may further include the step of separating or severing the interposer from a carrier web or sheet, prior to the securing step. Alternatively, the securing step may include transferring the RFID interposer to the transfer drum from another transfer member.
[0018]The transfer drum may include one or more nozzles along its circumferential surface. In the case of multiple nozzles, preferably the nozzles are spaced evenly around the circumferential surface of the transfer drum. In one embodiment, the transfer drum includes three nozzles spaced evenly around the circumferential surface of the transfer drum. For example, when the transfer drum is stationary, the nozzles may be at the twelve o'clock, eight o'clock, and four o'clock positions. In this embodiment, RFID circuits may be secured to the drum at the twelve o'clock position, and placed on electrical components at the six o'clock position. According to another aspect of the invention, a method of placing an RFID circuit onto an electrical component is provided, the method includes: securing a RFID circuit to a transfer drum, rotating the transfer drum, and placing the RFID circuit onto an electrical component on a moving web. Rotating the transfer drum includes accelerating the transfer drum such that the tangential velocity of the RFID circuit is substantially equal to the linear velocity of the moving web when the RFID circuit is placed onto the electrical component.
[0019] According to another aspect of the invention, a method of placing an RFID circuit onto an electrical component is provided, the method includes: securing an RFID circuit to a primary drum, transferring the RFID circuit from a primary drum to a secondary drum, and placing the RFID circuit with the secondary drum onto an electrical component on a moving web. The transferring step includes adjusting the peripheral speed of at least one of the primary and secondary drums such that the peripheral speed of each drum is substantially equal. The placing step includes adjusting the peripheral speed of the secondary drum such that the peripheral speed of the secondary drum is substantially equal to the speed of the moving web. [0020] According to yet another aspect of the invention, a placement device is provided comprising: at least one primary drum having at least one primary nozzle along a circumferential surface, at least one secondary drum having at least one secondary nozzle along a circumferential surface, at least one motor operatively coupled to at least one of the drums, wherein peripheral speeds of the drums are substantially equal when an axis of one of the primary nozzles is aligned with an axis of one of the secondary nozzles, and wherein the at least one secondary drum rotates at a variable rate that is a function of whether an axis of a secondary nozzle is aligned with an axis of a primary nozzle.
[0021] According to still another aspect of the invention, a placement device is provided comprising: at least one primary drum having at least one primary nozzle along a circumferential surface, at least one secondary drum having at least one secondary nozzle along a circumferential surface, drive means coupled to at least one of the drums, wherein peripheral speeds of the drums are substantially equal when an axis of one of the primary nozzles is aligned with an axis of one of the secondary nozzles, and wherein the at least one secondary drum rotates at a variable rate that is a function of whether an axis of a secondary nozzle is aligned with an axis of a primary nozzle.
[0022] To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative embodiments of the invention. These embodiments are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] In the annexed drawings, which are not necessarily according to scale, [0024] FIG. 1 is a flow chart showing a method of the present invention; [0025] FIG. 2A is a side view of a single drum, one nozzle placement device according to the present invention;
[0026] FIG. 2B is a side view of a single drum, one nozzle placement device according to the present invention; [0027] FIG. 3A is a graph illustrating a velocity profile of a transfer drum;
[0028] FIG. 3B is a graph illustrating a velocity profile of a transfer drum;
[0029] FIG. 4 is a side view of a single drum three nozzle placement device according to the present invention;
[003O]FIG. 5 is a side view of a single drum three nozzle placement device according to the present invention;
[0031] FIG. 6 is a flow chart showing a method of the present invention;
[0032] FIG. 7 is a side view of a two drum, three nozzle placement device according to the present invention;
[0033] FIG. 8 is an oblique view of a two drum, three nozzle placement device according to the present invention;
[0034] FIG. 9 is a side view of a two drum, three nozzle placement device showing the primary drum and the secondary drum during transfer of a chip from the primary drum to the secondary drum;
[0035] FIG. 10 is a side view of a two drum, three nozzle placement device showing the secondary drum placing a chip onto an antenna structure on a web;
[0036] FIG. 11 is a side view of a two drum, three nozzle placement device showing the primary drum and the secondary drum during transfer of a chip from the primary drum to the secondary drum;
[0037] FIG. 12 is an exploded view of an embodiment of the invention; and
[0038] FIG. 13 is a schematic diagram of an embodiment of the invention.
DETAILED DESCRIPTION
[0039] A high-speed process includes removing RFID circuits from a carrier web having a first pitch and transferring the RFID circuits to electrical components, such as RFID antenna structures, on a moving web having a second pitch. Typically, the second pitch is greater than the first pitch. According to one method, a transfer drum transfers RFID circuits to a moving web of electrical components, such as antennas, by picking up a chip when the transfer drum is stationary, and transferring the chip to the moving web when the transfer drum is rotating such that a tangential velocity of the transfer drum is substantially equal to the linear velocity of the moving web. According to another method, a primary drum removes the RFID circuits from a carrier web having a first pitch, and transfers the RFID circuits to an intermittently or variably rotating secondary drum, which then places the RFID circuits onto an electrical component on a moving web having a second pitch. [004O]In FIG. 1 , a flow chart is shown depicting a method 5 of placing an RFID circuit onto an antenna on a moving web. The method 5 of FIG. 1 will be described in relation to a transfer drum having a single vacuum port or nozzle. However, it will be understood that the method 5 is equally applicable to any single nozzle of a multi- nozzle transfer drum. Further, while the method is described with reference to nozzles or ports, the method does not require nozzles or ports. [0041]The method 5 begins in process step 14 wherein a singulated chip is picked up by a nozzle on a transfer drum. In this embodiment, the transfer drum is momentarily stationary when an RFID circuit is picked up by the nozzle in the 12 o'clock position on the transfer drum. In process step 16, the transfer drum is accelerated such that the tangential velocity of the nozzle is substantially equal to the linear velocity of a moving web of electronic components when the nozzle reaches the 6 o'clock position. The RFID circuit is then transferred from the nozzle to the moving web of electronic components in process step 18. After the RFID circuit is transferred to the moving web of electronic devices, the transfer drum is decelerated, in process step 20, such that the nozzle is returned to the 12 o'clock position whereat the nozzle is in position to pick up another chip for transfer to the moving web of electrical components.
[0042] In one implementation of the nozzle of the transfer drum, the nozzle is a vacuum holder that engages and disengages RFID circuits using negative and positive pressures. However, the invention also encompasses mechanical securement of the RFID circuit to the transfer drum, and as used in this patent application the term "nozzle" encompasses not only vacuum securement but also mechanical securement of RFID circuits.
[0043]Turning to FIGS. 2A and 2B, a high-speed placement device 30 is shown including an RFID circuit supply device 32, such as a magazine, and a transfer drum 34 having a single vacuum port or nozzle 36 for transferring RFID circuits 38 from the supply device 32 to a web 40 of electronic components 42, and a base roller 44. As shown in FIG. 2A, the transfer drum 34 is positioned between the RFlD circuit supply device 32 and a base roller 44 with the nozzle 36 at the 12 o'clock position. The base roller 44 typically rotates clockwise at a suitable speed thereby advancing the web 40 of electrical components 42 at a constant rate from left to right. When rotating, the transfer drum 34 rotates counterclockwise. In this embodiment, the nozzle 36, through selective application of negative pressure, picks an RFID circuit 38 from the supply device 32 while the transfer drum 34 is momentarily stationary with the nozzle 36 at the 12 o'clock position. Once an RFID circuit 38 is secured to the nozzle 36, the transfer drum 34 rotates counter-clockwise accelerating to a placement velocity at which time the nozzle 36 and the RFID circuit 38 have a tangential velocity substantially equal to the linear velocity of the moving web 40. In FIG. 2B, the nozzle 36 with RFID circuit 38 secured thereto is shown in the 6 o'clock position with the transfer drum 34 rotating such that the tangential velocity of the nozzle 36 and/or RFID circuit 38 is substantially equal to the linear speed of the moving web 40. The RFID circuit 38 is then transferred to an electronic component 42 on the web 40 by selective removal of the negative pressure and/or application of positive pressure. The RFID device 46 resulting from the combination of the RFID circuit 38 and the electronic component 42 continues moving on the web 40. The transfer drum 34 may be situated such that the nozzle 36 forces the RFID circuit 38 against the electrical component 42 on the web 40. After the RFlD circuit 38 is placed, the transfer drum 34 continues rotating counterclockwise thereby returning the nozzle 36 to the 12 o'clock position whereat the nozzle 36 is once again stationary and in position to pick up another RFID circuit 38 from the supply device 32.
[0044] In the present embodiment, the transfer drum accelerates from zero revolutions per minute (RPM's) at the 12 o'clock position to the placing velocity at the 6 o'clock position and back to zero RPM's at the 12 o'clock position. Thus, the transfer drum 34 must accelerate from stationary to placing velocity within 180 degrees of rotation (i.e., between the 12 o'clock picking position and the 6 o'clock placing position). It will be appreciated that the manner in which the placing drum 34 is accelerated and decelerated during one revolution, also referred to herein as the velocity profile of the placing drum, may be any suitable manner depending on a variety of factors such as the total throughput rate of the placement device 30, the rate at which RFID circuits 38 can be supplied to the transfer drum 34, the minimum time required for an RFID circuit 38 to be secured to a vacuum port or nozzle 36 of the transfer drum 34, etc.
[0045] In an embodiment in which an RFID circuit is singulated and then secured to the transfer drum, the velocity profile of the transfer drum typically will include a dwell time, or time interval when the transfer drum is held stationary to receive and hold the singulated RFID circuit. FIGS. 3A and 3B show two exemplary velocity profiles for the transfer drum. FIG. 3A shows a velocity profile with a straight line increase in velocity from stationary to full speed, while FIG. 3B shows an example of an arcuate velocity profile. Each of these transfer drum velocity profiles are for transfer drums with three nozzles, and the profiles include dwell regions at 0°, 120°, and 240° of the rotation cycle. Other transfer drum configurations may also have similar velocity profiles.
[0046]Tuming now to FIGS. 4 and 5, a high-speed placement device 50 having a three nozzle transfer drum 54 will be described. The nozzles 56a, 56b, 56c in this embodiment are arranged around the circumference of the transfer drum 54 at 120 degree intervals. Thus, nozzle 56a is positioned at 12 o'clock, nozzle 56b is positioned at 8 o'clock, and nozzle 56c is positioned at 4 o'clock in FIG. 4. An RFID circuit supply device 52 is located above the 12 o'clock position of the transfer drum 54. A web 60 of electrical components 62 moves from left to right below the transfer drum 54 via the base roller 64. In FIG. 4, the transfer drum 54 is momentarily stationary allowing nozzle 56a to pick up an RFID circuit 58 from the supply device 52.
[0047] Once the RFID circuit 58 is secured to nozzle 56a, the transfer drum 54 commences accelerating counter-clockwise rotation. In the three nozzle configuration of the present embodiment, the transfer drum 54 must accelerate from stationary to placing velocity and then decelerate back to stationary through an arc of 120 degrees. Thus, as seen in FIG. 4, the transfer drum 54 must achieve placing velocity within the 60 degree arc A, thereby rotating nozzle 56b to the 6 o'clock position for placing the RFID circuit 58 previously picked up from the RFID circuit supply device 52. The tangential velocity of the RFID circuit 52 secured to nozzle 56b when it reaches the 6 o'clock position is substantially equal to the linear velocity of the moving web 60 of electronic components 62. An RFID device 66 is thus formed on the web 60. After the RFID circuit 58 is placed, the transfer drum 54 decelerates to zero RPM's within the 60-degree arc B shown in FIG. 5, thereby bringing nozzle 56c to the 12 o'clock position.
[0048] It will be appreciated that in the present embodiment, the transfer drum 54 intermittently rotates in 120-degree intervals. During each 120 degree rotation interval, a first nozzle in the 12 o'clock position, which may be any one of nozzles 56a, 56b,or 56c, picks up an RFID circuit 58 from the supply device 52 when the transfer drum 54 is stationary. The transfer drum 54 then accelerates through an arc of 60 degrees until a second nozzle 56a, 56b, or 56c as appropriate is rotating such that the tangential velocity of the nozzle is substantially equal to the linear velocity of the moving web 60, at which time an RFID circuit 58 is transferred to an electrical component 62 on the web 60. After the RFID circuit 58 is placed, the transfer drum 54 decelerates over a 60 degree arc until a third nozzle 56a, 56b, or 56c as appropriate is rotated into position to pick up an RFID circuit 58 from the supply device 52. It will be appreciated that other configurations of nozzles and/or multiple RFID circuit supply devices 52 are possible. Further, while the above description begins with nozzle 56a in the 12 o'clock position, any one of the nozzles 56a, 56b, or 56c could begin in the 12 o'clock position, with the remaining two nozzles assuming the remaining two relative positions as appropriate. Therefore, the above description describes but one of a many possible nozzle configurations that may be used in conjunction with the present invention.
[0049]As an alternative to the above described transfer drum configuration including three nozzles, other configurations and numbers of nozzles are possible. Configurations with odd numbers of nozzles, evenly spaced around the transfer drum, are compatible with the preferred type of velocity profile in which the transfer drum receives RFID devices at the 12 o'clock position while stationary, accelerates to the placing velocity at the 6 o'clock position and back to zero RPM's at the 12 o'clock position (perhaps over a series of sub-cycles as in Figures 3A, 3B). Configurations with even numbers of nozzle also are possible, however, such as a two nozzle configuration with dwell regions at nine o'clock (where RFID circuits are secured to the transfer drum) and at three o'clock. Increasing the number of nozzles beyond a few may be undesirable as it would reduce the angular interval over which transfer drum acceleration and deceleration would occur. [005O] In FIG. 6, a flow chart is shown depicting a method 105 of placing an RFID circuit onto an antenna on a web at high speed using a two-drum placement device according to the present invention. The method 105 begins in process step 114, wherein an RFID circuit is picked by a primary drum. The primary drum may be equipped with a vacuum source for providing suction for temporarily securing the RFID circuit to the primary drum. The RFID circuit is then transferred from the primary drum to the secondary drum in process step 116. The transfer of the RFID circuit from the primary drum to the secondary drum may occur while the primary drum and secondary drum are momentarily stationary, or while the primary drum and secondary drum are rotating at substantially the same peripheral speed. In process step 118, the secondary drum is accelerated or decelerated such that the peripheral speed of the secondary drum is substantially equal to the speed of the web of electronic components, such as antenna structures. The RFID circuit is then placed onto the antenna structure on the antenna web in process step 120. The secondary drum is then accelerated or decelerated as appropriate, in process step 122, such that the peripheral speed of the secondary drum is substantially equal to the peripheral speed of the primary drum thereby preparing for the transfer of another RFID circuit from the primary drum to the secondary drum. After the RFID circuits are placed onto antenna structures, the RFID circuits subsequently may be coupled with the antenna structure in any suitable manner. The method 105 will further be described below with reference to FIGS. 7-13.
[0051] In FIGS. 7 and 8, a high speed placement device 200 is shown. A web 220 of antenna structures 222 advances from left to right below the device 200 in both figures. A web 250 carrying RFID circuits 252 enters the high-speed placement device 200 through slot 260. An RFID circuit 252 is removed from the web 250 at peel tip 262, and the web 250 exits the device 200 at slot 264. As an RFID circuit 252 is separated from the web 250 at peel tip 262, it is picked up by the primary drum 270. The primary drum 270 may hold the RFID circuit 252 with a vacuum applied through a plurality of primary nozzles 273 in the primary drum surface 272. A plurality of recesses 274 and/or ridges 275 are also shown on the primary drum surface 272 for receiving the RFID circuits 252.
[0052] In the embodiment shown in FIGS. 7 and 8, the primary drum 270 rotates in a clockwise manner while the secondary drum 280 rotates counterclockwise. As the primary drum 270 rotates, an RFID circuit 252 picked by the primary drum 270 approaches the transfer position 276. The transfer position 276 in the illustrated embodiment corresponds to the six o'clock position of the primary drum 270 and the twelve o'clock position of the secondary drum 280. Other transfer positions are possible, such as a transfer position corresponding to the four o'clock position of the primary drum 270 and the 10 o'clock position of the secondary drum 280. Similarly, more than one primary drum may be positioned around the periphery of the secondary drum thereby enabling transfer of RFID circuits 252 to the secondary drum 280 at more than one location. For example, a secondary drum 280 may have two primary drums positioned at the two o'clock and ten o'clock positions of the secondary drum 280, respectively.
[0053]At the transfer position 276, an RFID circuit 252 is transferred from the primary drum 270 to the secondary drum 280. Prior to the transfer of the RFID circuit 252 from the primary drum 270 to the secondary drum 280, the secondary drum 280 is accelerated or decelerated such that, at the time of the transfer, the peripheral speed of the secondary drum's surface 282 is substantially equal to the peripheral speed of the surface 272 of the primary drum 270. [0054]To facilitate the transfer of the RFID circuit 252 from the primary drum 270 to the secondary drum 280, the vacuum source in the primary drum 270 is released thereby removing the holding force on the RFID circuit 252 at surface 272. In addition, a vacuum source in drum 280 is activated to secure the RFID circuit 252 to its surface 282. To assist the release of the RFID circuit 252 from the primary drum 270, a positive pressure may be applied by the primary drum 270 thereby providing a separating force to the RFID circuit 252 at surface 272. The primary drum 270 and secondary drum 280 may be stationary during the transfer process of the RFID circuit 252 from surface 272 to surface 282, or alternatively the primary drum 270 and secondary drum 280 may rotate during the transfer of the RFID circuit 252. [0055] As the web 220 of antenna structures 222 advances from left to right, an antenna structure 222 moves into the placing position 290 for accepting an RFID circuit 252. As the antenna structure 222 enters the placing position 290, the secondary drum 280 accelerates or decelerates as appropriate such that the peripheral speed of the surface 282 of the secondary drum 280 is substantially equal to the speed of the web 220. The rotation and speed of drum 280 is timed such that the RFID circuit 252 held to surface 282 contacts the antenna structure 222 on the web 220 at the placement position 290. At this time the vacuum source in the secondary drum 280 is removed and the RFID circuit 252 is placed onto the antenna structure 222 on the moving web 220. A positive pressure may be applied by the secondary drum 280 thereby providing a separating force to the RFID circuit 252 at surface 272.
[0056]The web 220 may include an adhesive or other means for securing the RFID circuit 252 to the antenna structure 222, thereby facilitating the transfer of the RFID circuit 252 from the secondary drum surface 282 to the antenna structure 222 on the web 220. For example, an adhesive may be applied to the web 220, the antenna structure 222, or both prior to the antenna structure 222 reaching the placement position 290. Typically, the secondary drum 280 need not make contact with the web 220 or the antenna structure 222 during the placement of the RFID circuit 252 to the antenna structure 222. However, in some instances, such as when a pressure sensitive adhesive is to be used to couple the RFID circuit 252 to the antenna structure 222, the secondary drum 280 may make contact with the web 220 and/or antenna structure 222 thereby providing pressure to activate the pressure sensitive adhesive. For this purpose, a backing roller or other member, such as shown at 44 in FIGS. 2A, 2B, 64 in FIGS. 4, and 5, and at 295 in FIGS. 7-10 may form a pressure nip to facilitate transfer of the RFID circuit to the web. [0057]Turning now to FIGS. 9-11 , the operation of the placing device 200, in particular the primary and secondary drums 270 and 280, will be described in detail. In FIG. 9, the primary drum 270 and secondary drum 280 are shown. The primary drum 270 includes a plurality of primary nozzles 273, recesses 274, and/or ridges 275 for receiving an RFID circuit 252. The primary drum 270 further includes a vacuum source for directing suction to the primary drum surface 272 for temporarily securing RFID circuits 252 thereto. The primary drum 270 in this embodiment rotates clockwise. RFID circuits 252 are shown secured to the primary drum 270 via the suction provided by the vacuum source. As the primary drum 270 rotates clockwise, the RFID circuits 252 secured to the primary drum surface 272 rotate into the transfer position 276 where they are transferred to the secondary drum 280. The primary drum 270 may rotate continuously, intermittently, or variably depending on the particular application.
[0058] In the illustrated embodiment, the secondary drum 280 includes three secondary nozzles 284a, 284b, 284c disposed at 120 degree intervals around the surface 282 of the secondary drum 280. It will be appreciated that in practice any suitable number of secondary nozzles may be used; however, for simplicity of explanation three secondary nozzles are shown. The secondary drum 280 also includes a vacuum source for directing suction to the secondary nozzles for temporarily securing RFID circuits 252 to the secondary nozzles. [0059] In FIG. 9, a primary nozzle 273 and secondary nozzle 284a are in the transfer position 276. In the transfer position 276, the axes of a primary nozzle 273 and secondary nozzle 284a are aligned. Secondary nozzle 284b is shown with a chip 252 secured to it. Secondary nozzle 284c does not have a chip secured to it. The web 220 of antenna structures 222 is shown below the secondary drum 280 and advances from left to right in FIGS. 9 and 10.
[006O] In FIG. 10, the secondary drum 280 has been rotated approximately 60° counterclockwise from the position shown in FIG. 9. Secondary nozzle 284a is now shown with an RFID circuit 252 secured to it, the RFID circuit 252 having been transferred from the primary drum 270 as shown in FIG. 9. Secondary nozzle 284b is now in the placing position 290. Secondary nozzle 284c, having just placed an RFID circuit 252 onto an antenna structure 222 as shown in FIG. 9, is approaching the transfer position 276 where another RFID circuit 252 will be transferred thereto. In FIG. 10, the web 220 has advanced from left to right such that an antenna structure 222 is in the placing position 290. At this moment, the peripheral speed of the secondary drum 280 and/or secondary nozzle 284b is substantially equal to the speed of the web 220, the secondary drum having been accelerated or decelerated such that the peripheral speed of secondary nozzle 284b is substantially equal to the speed of the web 220. Thus, while the web 220 may be advancing at high speed, there is essentially no relative motion between secondary nozzle 284b and the web 220. When secondary nozzle 284b is in the placing position 290, the vacuum source supplying suction to secondary nozzle 284b is removed, thereby eliminating the force securing the RFID circuit 252 to secondary nozzle 284b, and the RFID circuit 252 is placed onto the antenna structure 222. [0061]After placing the RFID circuit 252 onto the antenna structure 222, the secondary drum 280 continues rotating counterclockwise such that secondary nozzle 284c advances into the transfer position 276, as shown in FIG. 11. As secondary nozzle 284c approaches the transfer position 276, the secondary drum 280 is accelerated or decelerated such that the peripheral speed of secondary nozzle 284c of the secondary drum 280 is substantially equal to the peripheral speed of the surface 272 and/or primary nozzle 273 of the primary drum 270 at the transfer position 276. As previously mentioned, the primary drum 270 and secondary drum 280 may be momentarily stationary during the transfer step. [0062] It will be appreciated that the indexing of an RFID circuit 252 to an antenna structure 222 is achieved by the variable rotation, or acceleration and/or deceleration, of the primary drum 270 and/or secondary drum 252. Thus, the two- drum placing device of the present embodiment may allow indexing of RFID circuits to electrical components having a greater pitch than a single drum placing device because both the primary and secondary drum can perform a portion of the indexing function. The primary drum may rotate intermittently to perform an indexing function in the same manner in which the secondary drum rotates intermittently to index the RFID circuit to the web of electrical components.
[0063] Turning to FIG. 12, an exploded view is shown of a high speed placement device 300 according to another embodiment of the invention. The device 300 includes a peel point 362, two primary drums 370, and a secondary drum 380. In this embodiment, the two primary drums 370 transfer RFID circuits to the secondary nozzles 384a, 384b, and 384c (384c not shown in FIG. 12) of the secondary drum 380. In this configuration, the secondary drum 380 may place RFID circuits to a web having more than one lane of antenna structures. The device 300 further includes end plates 390 on each side of the primary drums 370. Bearings 402 support the secondary drum 380, and the upper and lower housing 412 and 414 enclose the device. [0064] In FIG. 13, a schematic diagram illustrates a speed placement device 400 including a primary drum 470, a motor 478 coupled to the primary drum 470, and a vacuum source 479 coupled to the primary drum 470. The secondary drum 480 includes a motor 488 and a vacuum source 489 coupled thereto. It will also be appreciated that a single motor and a single vacuum source may be coupled to both the primary drum 470 and the secondary drum 480. Any suitable motor may be used to provide rotational force to the drums. For example, electric or hydraulic motors may be coupled to the drums to provide rotational force. In addition, suitable gearing and transmission assemblies may be used to couple a motor or other drive means to the drums.
[0065] It will be appreciated that any suitable number of primary drums may be used to transfer chips or straps to one or more secondary drums. The primary drums may be arranged along a common axis to transfer RFID circuits to one or more secondary drums as shown in FIG. 12, thereby allowing the simultaneously placement of more than one RFID circuit to a plurality of antenna structures in more than one lane on one or more webs. It will further be appreciated that more than one primary drum may transfer RFID circuits to a secondary drum, wherein the primary drums are arranged at different peripheral locations around the circumference of the secondary drum.
[0066] It will also be appreciated that the relative speeds of the primary drum(s) and secondary drum(s) in any of the above embodiments may be controlled by suitable gears and/or electric motors. For example, stepper motor drives may be used to control the relative speeds of the drums. The use of stepper motor drives with computer or other digital controls may be advantageous by allowing for the simple adjustment of the high-speed placement device to accommodate RFID circuit webs and antenna webs having a wide variety of component pitches. [0067] In a typical application of RFID circuits to antenna structures, the secondary drum will be accelerated when a secondary nozzle is rotated between the transfer position and the placement position such that the peripheral speed of a particular secondary nozzle is greater at the placement position than at the picking position. Because the peripheral speed of the secondary nozzles at the placement position may be adjusted, and the rate of advancement of the web of antenna structures may be adjusted, the present invention allows the placement of RFID circuits to antenna structures on webs having a wide variety of pitches.
[0068] It will further be appreciated that, to aid in placement of the RFID circuits onto the antenna structures, vision systems may be employed to read fiducial marks and/or antenna positions and provide feedback to the control systems controlling the primary and secondary drums, the RFID circuit carrier web, and/or the web of antenna structures. Further, methods other than a peel tip may be used to singulate the RFID circuits from the carrier web. For example, the carrier web may be die cut thereby singulating the RFID circuits prior to picking by a primary drum. Alternatively, the carrier web may pass between a cutter member and a primary drum, wherein the cutter member singulates the RFID circuits by cutting the web using the primary drum as an anvil.
[0069]The placing device described above allows RFID circuits of a first pitch (typically, relatively small) on a first carrier web to be transferred to antennas or other electrical components on second web having a second pitch (typically, relatively large), with no change in speed of the second web. The RFID circuit carrier web may have constant, intermittent or variable speed as required to provide a suitable number of RFID circuits to the primary drum. Similarly, the primary drum may have constant, intermittent, or variable rotational speed as required to receive adequate RFID circuits from the carrier web and supply adequate RFID circuits to the secondary drum.
[0070] It will be appreciated that in any one of the above embodiments, the tangential or peripheral velocity of an RFID circuit secured to a drum may be substantially equal to the linear velocity of a moving web during placement. Throughout the foregoing description, reference has been made to a tangential or peripheral velocity of a drum's surface being substantially equal to the a linear velocity of a web when an RFID circuit is placed onto an electrical component on the web. However, in some configurations, particularly in a configuration employing nozzles that extend outward from the peripheral surface of a drum, it will be appreciated that it is the tangential velocity of the nozzles and/or RFlD circuits secured thereto that is substantially equal to the linear velocity of the moving web of electrical components. Therefore, it will be understood that a drum's surface is intended to be the surface to which an RFID circuit is secured. [0071]Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. It should be understood that the present invention is not limited to any particular type of wireless communication device, or interposers. The term "electronic component" may comprise an electrical circuits or electrical device, and in the preferred embodiment comprises an antenna. The antenna may include a single antenna portion, or a plurality of separate antenna portions. Further, a wide variety of antenna designs may be used with the present invention such as loop, slot, or patch antennas. For the purposes of this application, couple, coupled, or coupling may encompass both mechanical coupling and electrical coupling. Mechanical coupling includes physically securing the interposer to an electronic component. Electrical coupling includes forming an electrical connection between the interposer and electronic component. An electrical connection includes directly connecting or reactively coupling an interposer to an electronic component. Reactive coupling is defined as either capacitive or inductive coupling, or a combination of both. Capacitive coupling may involve putting the interposer into close proximity with an electronic component, with dielectric pads therebetween, to allow capacitive coupling between the interposer and the electronic component. The dielectric pads may include a non-conductive adhesive, such as a pressure-sensitive adhesive, for example Fasson adhesives S4800 and S333 available from Avery Dennison Corporation, and a high dielectric constant material, such as a titanium compound, for example titanium dioxide or barium titanate. The dielectric pads have an effective dielectric constant that is a non-constant function of thickness of the dielectric pads. For example, the dielectric pads may include conductive particles, such as aluminum and/or nickel particles, to minimize the effect of changes in thickness on the capacitive coupling. The dielectric pads may have a thickness of about 0.025 mm (0.001 inches) or less.
[0072]The methods of the invention, though described in relation to RFID chips, strap, interposers and antenna structures, may be advantageous for placing chips directly to antennas or placing chips onto interposer leads. For example, in any of the above embodiments, interposer leads may be substituted for an antenna structure and a chip may be placed onto the interposer leads instead of an antenna structure.
[0073] One of ordinary skill in the art will recognize that there are different manners in which these elements can accomplish the present invention. The present invention is intended to cover what is claimed and any equivalents. The specific embodiments used herein are to aid in the understanding of the present invention, and should not be used to limit the scope of the invention in a manner narrower than the claims and their equivalents.
[0074]Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a "means") used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.

Claims

CLAIMSWhat is claimed is:
1. A method of placing an RFID circuit onto an electrical component, the method comprising: securing an RFID circuit (38, 58, 252) to a transfer drum (34, 54, 280, 480); rotating the transfer drum; and placing the RFID circuit from the transfer drum onto an electrical component (42, 62, 222) on a moving web (40, 60, 220); wherein rotating the transfer drum includes accelerating the transfer drum from a lower peripheral speed during the securing to a higher peripheral speed during the placing, such that the tangential velocity of the RFID circuit is substantially equal to the linear velocity of the moving web when the RFID circuit is placed onto the electrical component.
2. The method of claim 1 , wherein the securing further includes selective application of a vacuum source operatively coupled to at least one nozzle (36, 56a, 56b, 56c, 284a, 284b, 284c) on a circumferential surface of the transfer drum.
3. The method of claim 1 , wherein the transfer drum includes a plurality of nozzles (56a, 56b, 56c, 284a, 284b, 284c) around its circumferential surface for receiving RFID circuits.
4. The method of any of claims 1 to 3, wherein the RFID circuit comprises an RFID interposer that includes interposer leads mounted to an RFID chip; and wherein the placing step comprises placing the RFID interposer onto an antenna on a moving web.
5. The method of any of claims 1 to 3, wherein the placing step includes placing the RFID circuit onto an antenna (222) on the moving web.
6. The method of any of claims 1 to 5, wherein the transfer drum is substantially stationary during the securing.
7. The method of any of claims 1 to 6, wherein the securing includes transferring the RFID circuit from a supply device (32, 52) to the transfer drum.
8. A method of placing an RFID circuit onto an electrical component, the method comprising: securing an RFID circuit (252, to a primary drum (270, 470); transferring the RFID circuit from the primary drum to a secondary drum (280, 480); and placing the RFID circuit from the secondary drum onto an electrical component (222) on a moving web (220); wherein the transferring includes adjusting the peripheral speed of at least one of the primary and secondary drums such that the peripheral speed of the each drum is substantially equal; wherein the placing includes adjusting the peripheral speed of the secondary drum such that the peripheral speed of the secondary drum is substantially equal to the speed of the moving web; and wherein at least one of the transferring and the placing includes increasing the peripheral speed of at least one of the primary and secondary drums such that velocity of the RFID circuit is increased from a relatively low peripheral speed during the securing to a relatively high peripheral speed during the placing.
9. The method of claim 8, wherein the transferring further includes selective application of a vacuum source operatively coupled to at least one primary nozzle (273) on a circumferential surface of the primary drum and at least one secondary nozzle (284a, 284b, 284c) on a circumferential surface of the secondary drum.
10. The method of claim 9, wherein the transferring includes aligning the axes of one of the primary nozzles of the primary drum and one of the secondary nozzles of the secondary drum.
11. The method of any of claims 8 to 10, wherein the RFID circuit includes an RFID interposer that includes interposer leads mounted to the RFID circuit.
12. The method of any of claims 8 to 11 , wherein the primary drum is substantially stationary during the securing.
13. The method of any of claims 8 to 12, wherein the primary drum includes a plurality of recesses (274) around the circumferential surface for receiving the RFID circuits.
14. The method of any of claims 8 to 13, wherein the primary drum includes a primary vacuum source (479) for temporarily securing the RFID circuit to the primary drum.
15. The method of any of claims 8 to 14, wherein the secondary drum includes at least one nozzle (284a, 284b, 284c).
16. The method of any of claims 8 to 15, wherein the primary drum and the secondary drum rotate in opposite directions in a common plane.
PCT/US2005/033668 2004-09-22 2005-09-21 High-speed rfid circuit placement method and device WO2006036666A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077006292A KR101182602B1 (en) 2004-09-22 2005-09-21 High-speed rfid circuit placement method and device
CN2005800320761A CN101069196B (en) 2004-09-22 2005-09-21 High-speed RFID circuit placement method and device
ES05798744T ES2402931T3 (en) 2004-09-22 2005-09-21 Procedure and high-speed positioning device of an RFID circuit
CA002581425A CA2581425A1 (en) 2004-09-22 2005-09-21 High-speed rfid circuit placement method and device
EP05798744A EP1800253B1 (en) 2004-09-22 2005-09-21 High-speed rfid circuit placement method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/947,010 US7500307B2 (en) 2004-09-22 2004-09-22 High-speed RFID circuit placement method
US10/947,010 2004-09-22

Publications (1)

Publication Number Publication Date
WO2006036666A1 true WO2006036666A1 (en) 2006-04-06

Family

ID=35645764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/033668 WO2006036666A1 (en) 2004-09-22 2005-09-21 High-speed rfid circuit placement method and device

Country Status (8)

Country Link
US (3) US7500307B2 (en)
EP (1) EP1800253B1 (en)
KR (1) KR101182602B1 (en)
CN (1) CN101069196B (en)
CA (1) CA2581425A1 (en)
ES (1) ES2402931T3 (en)
TW (1) TW200611201A (en)
WO (1) WO2006036666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116551A1 (en) * 2005-04-25 2006-11-02 Avery Dennison Corporation High-speed rfid circuit placement method and device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500307B2 (en) * 2004-09-22 2009-03-10 Avery Dennison Corporation High-speed RFID circuit placement method
RU2007128763A (en) 2004-12-27 2009-02-10 Квантум Пейпер,Инк. (Us) ADDRESSABLE AND PRINTED RADIATING DISPLAY
US7842156B2 (en) * 2005-04-27 2010-11-30 Avery Dennison Corporation Webs and methods of making same
US7749350B2 (en) * 2005-04-27 2010-07-06 Avery Dennison Retail Information Services Webs and methods of making same
US20070102486A1 (en) * 2005-10-24 2007-05-10 Checkpoint Systems, Inc. Wire embedded bridge
US8262962B2 (en) * 2007-04-26 2012-09-11 Kwangwoo Michael Ko Die-cut and method of manufacturing or assembling die-cuts from the components thereof
US9419179B2 (en) 2007-05-31 2016-08-16 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9343593B2 (en) 2007-05-31 2016-05-17 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8889216B2 (en) 2007-05-31 2014-11-18 Nthdegree Technologies Worldwide Inc Method of manufacturing addressable and static electronic displays
US8456393B2 (en) * 2007-05-31 2013-06-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US8877101B2 (en) 2007-05-31 2014-11-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, power generating or other electronic apparatus
US8415879B2 (en) 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8133768B2 (en) 2007-05-31 2012-03-13 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US9425357B2 (en) 2007-05-31 2016-08-23 Nthdegree Technologies Worldwide Inc. Diode for a printable composition
US8674593B2 (en) 2007-05-31 2014-03-18 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8846457B2 (en) 2007-05-31 2014-09-30 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US9534772B2 (en) 2007-05-31 2017-01-03 Nthdegree Technologies Worldwide Inc Apparatus with light emitting diodes
US8852467B2 (en) 2007-05-31 2014-10-07 Nthdegree Technologies Worldwide Inc Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US9018833B2 (en) 2007-05-31 2015-04-28 Nthdegree Technologies Worldwide Inc Apparatus with light emitting or absorbing diodes
US8809126B2 (en) 2007-05-31 2014-08-19 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
JP4952927B2 (en) * 2007-08-02 2012-06-13 ブラザー工業株式会社 Wireless tag creation device
FR2927441B1 (en) * 2008-02-13 2011-06-17 Yannick Grasset CONTACTLESS OBJECT WITH INTEGRATED CIRCUIT CONNECTED TO THE TERMINALS OF A CIRCUIT BY CAPACITIVE COUPLING
US8127477B2 (en) 2008-05-13 2012-03-06 Nthdegree Technologies Worldwide Inc Illuminating display systems
US7992332B2 (en) 2008-05-13 2011-08-09 Nthdegree Technologies Worldwide Inc. Apparatuses for providing power for illumination of a display object
FR2936096B1 (en) * 2008-09-12 2011-01-28 Yannick Grasset METHOD FOR MANUFACTURING NON-CONTACT PORTABLE OBJECTS
US8701271B2 (en) 2010-04-14 2014-04-22 Avery Dennison Corporation Method of assembly of articles
US9652705B1 (en) 2012-02-21 2017-05-16 Automated Assembly Corporation RFID tag on flexible substrate arrangement
SE542379C2 (en) 2012-06-28 2020-04-21 Universal Instruments Corp Pick and place machine, and method of assembly
US9252478B2 (en) 2013-03-15 2016-02-02 A.K. Stamping Company, Inc. Method of manufacturing stamped antenna
JP6678596B2 (en) 2014-02-07 2020-04-08 ユニヴァーサル インストゥルメンツ コーポレイションUniversal Instruments Corporation Pick and place head with pump and motor
WO2016072301A1 (en) * 2014-11-07 2016-05-12 株式会社村田製作所 Carrier tape, method for manufacturing same, and method for manufacturing rfid tag
GB2549250B (en) * 2016-02-15 2021-06-30 Pragmatic Printing Ltd Apparatus and method for manufacturing plurality of electronic circuits
CN110012657A (en) * 2019-05-15 2019-07-12 深圳市兴华炜科技有限公司 The transfer method and Related product of high-speed paster
US10783424B1 (en) 2019-09-18 2020-09-22 Sensormatic Electronics, LLC Systems and methods for providing tags adapted to be incorporated with or in items
US11443160B2 (en) 2019-09-18 2022-09-13 Sensormatic Electronics, LLC Systems and methods for laser tuning and attaching RFID tags to products
US11055588B2 (en) 2019-11-27 2021-07-06 Sensormatic Electronics, LLC Flexible water-resistant sensor tag
US11755874B2 (en) 2021-03-03 2023-09-12 Sensormatic Electronics, LLC Methods and systems for heat applied sensor tag
US11869324B2 (en) 2021-12-23 2024-01-09 Sensormatic Electronics, LLC Securing a security tag into an article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039543A2 (en) * 1999-03-24 2000-09-27 Morgan Adhesives Company Circuit chip connector and method of connecting a circuit chip
US20040154161A1 (en) 2003-02-07 2004-08-12 Hallys Corporation Random-period chip transfer apparatus

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724737A (en) * 1971-10-06 1973-04-03 E Bodnar Spreader for slit web material
US3891157A (en) * 1973-06-04 1975-06-24 Beloit Corp Slitting mechanism for winder
US3989575A (en) 1975-04-16 1976-11-02 Oliver Machinery Company Split labeling apparatus
US4242663A (en) 1979-02-01 1980-12-30 Lockheed Electronics Corporation Electronic identification system
DE3265601D1 (en) 1981-07-02 1985-09-26 Agfa Gevaert Nv Method and apparatus for conveying and spreading material
FR2599501B1 (en) 1986-05-29 1988-09-23 Lhomme Sa APPARATUS FOR TESTING THE RESISTANCE TO CLeavage OF CARDBOARD TUBES
US4717438A (en) * 1986-09-29 1988-01-05 Monarch Marking Systems, Inc. Method of making tags
US4910499A (en) * 1986-09-29 1990-03-20 Monarch Marking Systems, Inc. Tag and method of making same
US5246941A (en) * 1986-12-17 1993-09-21 Glaxo Group Limited Method for the treatment of depression
CH673744A5 (en) * 1987-05-22 1990-03-30 Durgo Ag
JPH0821790B2 (en) 1990-02-15 1996-03-04 松下電器産業株式会社 Rotary head electronic component mounting equipment
JP3100716B2 (en) * 1991-01-04 2000-10-23 シーエスアイアール Identification device
US6045652A (en) * 1992-06-17 2000-04-04 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US5613228A (en) * 1992-07-06 1997-03-18 Micron Technology, Inc. Gain adjustment method in two-way communication systems
US7158031B2 (en) 1992-08-12 2007-01-02 Micron Technology, Inc. Thin, flexible, RFID label and system for use
UA37182C2 (en) 1992-08-26 2001-05-15 Брітіш Текнолоджі Груп Лімітед Identification system and transponder for identification system
US5660787A (en) 1992-10-09 1997-08-26 Illinois Tool Works Inc. Method for producing oriented plastic strap
US5264061A (en) 1992-10-22 1993-11-23 Motorola, Inc. Method of forming a three-dimensional printed circuit assembly
NZ314270A (en) * 1992-11-18 1998-06-26 British Tech Group Transponder identification system: interrogator transmits inhibiting signal to disable transponders
US5983363A (en) 1992-11-20 1999-11-09 Micron Communications, Inc. In-sheet transceiver testing
ZA941671B (en) 1993-03-11 1994-10-12 Csir Attaching an electronic circuit to a substrate.
US5585193A (en) 1993-07-16 1996-12-17 Avery Dennison Corporation Machine-direction oriented label films and die-cut labels prepared therefrom
US5564888A (en) 1993-09-27 1996-10-15 Doan; Carl V. Pick and place machine
US5728599A (en) * 1993-10-28 1998-03-17 Lsi Logic Corporation Printable superconductive leadframes for semiconductor device assembly
US5904545A (en) * 1993-12-17 1999-05-18 The Regents Of The University Of California Apparatus for fabricating self-assembling microstructures
US5545291A (en) * 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US5824186A (en) 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5645932A (en) * 1993-12-30 1997-07-08 Kabushiki Kaisha Miyake Circuit-like metallic foil sheet and the like and process for producing them
DE4431604A1 (en) 1994-09-05 1996-03-07 Siemens Ag Circuit arrangement with a chip card module and an associated coil
US5528222A (en) * 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5682143A (en) 1994-09-09 1997-10-28 International Business Machines Corporation Radio frequency identification tag
US5550547A (en) * 1994-09-12 1996-08-27 International Business Machines Corporation Multiple item radio frequency tag identification protocol
DE4437721A1 (en) * 1994-10-21 1996-04-25 Giesecke & Devrient Gmbh Contactless electronic module
US6496382B1 (en) 1995-05-19 2002-12-17 Kasten Chase Applied Research Limited Radio frequency identification tag
US5939984A (en) * 1997-12-31 1999-08-17 Intermec Ip Corp. Combination radio frequency transponder (RF Tag) and magnetic electronic article surveillance (EAS) material
US7002475B2 (en) * 1997-12-31 2006-02-21 Intermec Ip Corp. Combination radio frequency identification transponder (RFID tag) and magnetic electronic article surveillance (EAS) tag
US5612513A (en) * 1995-09-19 1997-03-18 Micron Communications, Inc. Article and method of manufacturing an enclosed electrical circuit using an encapsulant
US6371375B1 (en) * 1995-09-25 2002-04-16 Intermec Ip Corp. Method and apparatus for associating data with a wireless memory device
US6252508B1 (en) * 1995-10-11 2001-06-26 Motorola, Inc. Radio frequency identification tag arranged for magnetically storing tag state information
US6145901A (en) 1996-03-11 2000-11-14 Rich; Donald S. Pick and place head construction
US6215401B1 (en) * 1996-03-25 2001-04-10 Intermec Ip Corp. Non-laminated coating for radio frequency transponder (RF tag)
US6027027A (en) * 1996-05-31 2000-02-22 Lucent Technologies Inc. Luggage tag assembly
US6082660A (en) * 1996-06-14 2000-07-04 Beloit Technologies, Inc. Separating device for winding devices for material webs, longitudinally divided into several partial webs
DE19634473C2 (en) 1996-07-11 2003-06-26 David Finn Process for the production of a chip card
US6466131B1 (en) 1996-07-30 2002-10-15 Micron Technology, Inc. Radio frequency data communications device with adjustable receiver sensitivity and method
US6329213B1 (en) * 1997-05-01 2001-12-11 Micron Technology, Inc. Methods for forming integrated circuits within substrates
US5963177A (en) 1997-05-16 1999-10-05 Micron Communications, Inc. Methods of enhancing electronmagnetic radiation properties of encapsulated circuit, and related devices
US5972152A (en) 1997-05-16 1999-10-26 Micron Communications, Inc. Methods of fixturing flexible circuit substrates and a processing carrier, processing a flexible circuit and processing a flexible circuit substrate relative to a processing carrier
DE19722327A1 (en) * 1997-05-28 1998-12-03 Arsoma Druckmaschinen Gmbh Method for producing a multilayer label and device for carrying out the method
US6081243A (en) * 1997-09-09 2000-06-27 Micron Technology, Inc. Methods of forming conductive lines, methods of forming antennas, methods of forming wireless communication devices, conductive lines, antennas, and wireless communications devices
BR9811446A (en) * 1997-09-11 2000-08-22 Precision Dynamics Corp Laminated radio frequency identification device
JPH11177027A (en) 1997-09-15 1999-07-02 Microchip Technol Inc Integrated-circuit semiconductor chip and single-sided package containing inductive coil and manufacture thereof
US5982284A (en) 1997-09-19 1999-11-09 Avery Dennison Corporation Tag or label with laminated thin, flat, flexible device
US6177859B1 (en) * 1997-10-21 2001-01-23 Micron Technology, Inc. Radio frequency communication apparatus and methods of forming a radio frequency communication apparatus
US6164551A (en) 1997-10-29 2000-12-26 Meto International Gmbh Radio frequency identification transponder having non-encapsulated IC chip
US5890429A (en) 1997-12-10 1999-04-06 Mcdonnell Douglas Corporation Method of making and bonding a screen printed ink film carrier to an electronic device
US6104291A (en) * 1998-01-09 2000-08-15 Intermec Ip Corp. Method and apparatus for testing RFID tags
US6019865A (en) * 1998-01-21 2000-02-01 Moore U.S.A. Inc. Method of forming labels containing transponders
US6356535B1 (en) 1998-02-04 2002-03-12 Micron Technology, Inc. Communication systems and methods of communicating
DE19861187B4 (en) 1998-02-09 2006-01-19 Peter Kammer Apparatus for continuous lamination
US6618939B2 (en) * 1998-02-27 2003-09-16 Kabushiki Kaisha Miyake Process for producing resonant tag
FR2775533B1 (en) 1998-02-27 2003-02-14 Gemplus Sca ELECTRONIC DEVICE WITH NON-CONTACT ELECTRONIC MEMORY, AND METHOD FOR MANUFACTURING SUCH A DEVICE
US6094138A (en) * 1998-02-27 2000-07-25 Motorola, Inc. Integrated circuit assembly and method of assembly
US6501157B1 (en) 1998-04-15 2002-12-31 Micron Technology, Inc. Substrate for accepting wire bonded or flip-chip components
US6121878A (en) 1998-05-01 2000-09-19 Intermec Ip Corp. System for controlling assets
US6412086B1 (en) * 1998-06-01 2002-06-25 Intermec Ip Corp. Radio frequency identification transponder integrated circuit having a serially loaded test mode register
US6154137A (en) 1998-06-08 2000-11-28 3M Innovative Properties Company Identification tag with enhanced security
US6107920A (en) * 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
US6018299A (en) * 1998-06-09 2000-01-25 Motorola, Inc. Radio frequency identification tag having a printed antenna and method
US6246327B1 (en) * 1998-06-09 2001-06-12 Motorola, Inc. Radio frequency identification tag circuit chip having printed interconnection pads
US6091332A (en) * 1998-06-09 2000-07-18 Motorola, Inc. Radio frequency identification tag having printed circuit interconnections
US6394330B1 (en) 1998-08-13 2002-05-28 3M Innovative Properties Company Method for slitting and processing a web into plural use supply forms
DE19840226B4 (en) 1998-09-03 2006-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method of applying a circuit chip to a carrier
DE19840210A1 (en) * 1998-09-03 2000-03-09 Fraunhofer Ges Forschung Method for handling a plurality of circuit chips
US6189208B1 (en) * 1998-09-11 2001-02-20 Polymer Flip Chip Corp. Flip chip mounting technique
AU5809099A (en) * 1998-09-11 2000-04-03 Motorola, Inc. Radio frequency identification tag apparatus and related method
US6147605A (en) 1998-09-11 2000-11-14 Motorola, Inc. Method and apparatus for an optimized circuit for an electrostatic radio frequency identification tag
KR100629923B1 (en) 1998-09-30 2006-09-29 돗빤호무즈가부시기가이샤 Conductive paste, curing method therof, method for fabricating antenna for contactless data transmitter-receiver, and contactless data transmitter-receiver
JP3089407B2 (en) 1998-10-09 2000-09-18 工業技術院長 Method for producing solar cell thin film
US6366260B1 (en) * 1998-11-02 2002-04-02 Intermec Ip Corp. RFID tag employing hollowed monopole antenna
US6163260A (en) 1998-12-10 2000-12-19 Intermec Ip Corp. Linerless label tracking system
US6516182B1 (en) 1998-12-21 2003-02-04 Microchip Technology Incorporated High gain input stage for a radio frequency identification (RFID) transponder and method therefor
US6262692B1 (en) * 1999-01-13 2001-07-17 Brady Worldwide, Inc. Laminate RFID label and method of manufacture
DE59900131D1 (en) * 1999-01-23 2001-07-26 Ident Gmbh X RFID transponder with printable surface
JP3854740B2 (en) * 1999-01-27 2006-12-06 株式会社日本コンラックス Coin dispenser
US6164137A (en) 1999-02-03 2000-12-26 Mcdermott Technology, Inc. Electromagnetic acoustic transducer (EMAT) inspection of tubes for surface defects
US6274508B1 (en) * 1999-02-05 2001-08-14 Alien Technology Corporation Apparatuses and methods used in forming assemblies
US6043746A (en) * 1999-02-17 2000-03-28 Microchip Technology Incorporated Radio frequency identification (RFID) security tag for merchandise and method therefor
US6891110B1 (en) 1999-03-24 2005-05-10 Motorola, Inc. Circuit chip connector and method of connecting a circuit chip
US6278413B1 (en) * 1999-03-29 2001-08-21 Intermec Ip Corporation Antenna structure for wireless communications device, such as RFID tag
US6404341B1 (en) * 1999-04-06 2002-06-11 1175634 Ontario Limited Security tag and method of making the same
US6280544B1 (en) * 1999-04-21 2001-08-28 Intermec Ip Corp. RF tag application system
US6645327B2 (en) 1999-04-21 2003-11-11 Intermec Ip Corp. RF tag application system
US6246326B1 (en) * 1999-05-05 2001-06-12 Intermec Ip Corp. Performance optimized smart label printer
US6137422A (en) * 1999-05-21 2000-10-24 Micron Technology, Inc. Communications system and method with D/A converter
TW515109B (en) * 1999-06-28 2002-12-21 Semiconductor Energy Lab EL display device and electronic device
JP2001035989A (en) 1999-07-16 2001-02-09 Toppan Forms Co Ltd Method of forming antenna circuit member having ic chip
US6466130B2 (en) 1999-07-29 2002-10-15 Micron Technology, Inc. Wireless communication devices, wireless communication systems, communication methods, methods of forming radio frequency identification devices, methods of testing wireless communication operations, radio frequency identification devices, and methods of forming radio frequency identification devices
US6492717B1 (en) * 1999-08-03 2002-12-10 Motorola, Inc. Smart card module and method of assembling the same
US6140146A (en) 1999-08-03 2000-10-31 Intermec Ip Corp. Automated RFID transponder manufacturing on flexible tape substrates
US6243014B1 (en) * 1999-08-27 2001-06-05 Micron Technology, Inc. Electrical apparatuses, termite sensing apparatuses, and methods of forming electrical apparatuses
US6313748B1 (en) 1999-08-27 2001-11-06 Micron Technology, Inc. Electrical apparatuses, termite sensing apparatuses, methods of forming electrical apparatuses, and methods of sensing termites
US6147662A (en) 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6259369B1 (en) * 1999-09-30 2001-07-10 Moore North America, Inc. Low cost long distance RFID reading
US6557758B1 (en) * 1999-10-01 2003-05-06 Moore North America, Inc. Direct to package printing system with RFID write/read capability
US6271793B1 (en) * 1999-11-05 2001-08-07 International Business Machines Corporation Radio frequency (RF) transponder (Tag) with composite antenna
US6259408B1 (en) * 1999-11-19 2001-07-10 Intermec Ip Corp. RFID transponders with paste antennas and flip-chip attachment
FR2801707B1 (en) * 1999-11-29 2002-02-15 A S K METHOD FOR MANUFACTURING A CONTACT-FREE CONTACT HYBRID CHIP CARD WITH AN ANTENNA SUPPORT OF FIBROUS MATERIAL
US6838989B1 (en) 1999-12-22 2005-01-04 Intermec Ip Corp. RFID transponder having active backscatter amplifier for re-transmitting a received signal
US6320556B1 (en) 2000-01-19 2001-11-20 Moore North America, Inc. RFID foil or film antennas
US6281795B1 (en) 2000-02-08 2001-08-28 Moore North America, Inc. RFID or EAS label mount with double sided tape
US6720865B1 (en) * 2000-02-11 2004-04-13 Marconi Intellectual Property (Us) Resilient member with wireless communication device
US6451154B1 (en) 2000-02-18 2002-09-17 Moore North America, Inc. RFID manufacturing concepts
JP3830125B2 (en) * 2000-03-14 2006-10-04 株式会社東芝 Semiconductor device manufacturing method and semiconductor device
TW569424B (en) 2000-03-17 2004-01-01 Matsushita Electric Ind Co Ltd Module with embedded electric elements and the manufacturing method thereof
US7190319B2 (en) * 2001-10-29 2007-03-13 Forster Ian J Wave antenna wireless communication device and method
US6796508B2 (en) 2000-03-28 2004-09-28 Lucatron Ag Rfid-label with an element for regulating the resonance frequency
DE10017431C2 (en) * 2000-04-07 2002-05-23 Melzer Maschinenbau Gmbh Method and device for producing data carriers with an integrated transponder
FI20001344A (en) * 2000-06-06 2001-12-07 Rafsec Oy Method and apparatus for making a smart label feed web
US6410112B1 (en) * 2000-06-09 2002-06-25 Intermec Ip Corporation Multi-part pressure sensitive label and method for manufacture
US6812048B1 (en) 2000-07-31 2004-11-02 Eaglestone Partners I, Llc Method for manufacturing a wafer-interposer assembly
US6384727B1 (en) * 2000-08-02 2002-05-07 Motorola, Inc. Capacitively powered radio frequency identification device
WO2002013135A2 (en) * 2000-08-04 2002-02-14 Hei, Inc. Structures and assembly methods for radio-frequency-identification modules
US6386991B1 (en) * 2000-09-15 2002-05-14 Callaway Golf Company Dual density polymer putter
CA2325238A1 (en) * 2000-11-06 2002-05-06 Bayer Inc. Novel vanadium catalyst system for ep(d)m slurry polymerisation
FI113851B (en) * 2000-11-20 2004-06-30 Rafsec Oy Method of attaching a chip's integrated circuit to an intelligent self-adhesive label and method of pre-treating a silicon wafer
US6424263B1 (en) * 2000-12-01 2002-07-23 Microchip Technology Incorporated Radio frequency identification tag on a single layer substrate
FI112121B (en) * 2000-12-11 2003-10-31 Rafsec Oy Smart sticker web, process for making it, process for making a carrier web, and component of a smart sticker on a smart sticker web
JP2002290131A (en) * 2000-12-18 2002-10-04 Mitsubishi Materials Corp Antenna for transponder
JP2002204067A (en) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing circuit board module
US6951596B2 (en) * 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
US7075436B2 (en) 2001-02-12 2006-07-11 Symbol Technologies, Inc. Method, system, and apparatus for binary traversal of a tag population
US7159298B2 (en) 2001-03-15 2007-01-09 Daniel Lieberman Method for the formation of RF antennas by demetallizing
JP2002289489A (en) * 2001-03-27 2002-10-04 Tokyo Weld Co Ltd Apparatus for forming end face electrode of electronic component
JP2002298107A (en) 2001-03-30 2002-10-11 Toppan Forms Co Ltd Contactless ic medium and manufacturing method thereof
JP2002298104A (en) 2001-03-30 2002-10-11 New Japan Radio Co Ltd Method for manufacturing rfid label
US6779246B2 (en) 2001-04-23 2004-08-24 Appleton Papers Inc. Method and system for forming RF reflective pathways
DE10120269C1 (en) * 2001-04-25 2002-07-25 Muehlbauer Ag Microchip transponder manufacturing method has chip module carrier band combined with antenna carrier band with chip module terminals coupled to antenna
US6518502B2 (en) * 2001-05-10 2003-02-11 Lamina Ceramics, In Ceramic multilayer circuit boards mounted on a patterned metal support substrate
WO2002093685A1 (en) 2001-05-17 2002-11-21 Cypress Semiconductor Corp. Ball grid array antenna
US6606247B2 (en) 2001-05-31 2003-08-12 Alien Technology Corporation Multi-feature-size electronic structures
FR2826154B1 (en) 2001-06-14 2004-07-23 A S K CHIP CARD WITHOUT CONTACT WITH AN ANTENNA SUPPORT AND CHIP SUPPORT OF FIBROUS MATERIAL
JP2003006594A (en) 2001-06-22 2003-01-10 Toppan Forms Co Ltd Formation method for rf-id medium using both-side tape
DE10136359C2 (en) 2001-07-26 2003-06-12 Muehlbauer Ag Method for connecting microchip modules with antennas arranged on a first carrier tape for producing a transponder
US20030036249A1 (en) * 2001-08-06 2003-02-20 Bauer Donald G. Chip alignment and placement apparatus for integrated circuit, MEMS, photonic or other devices
JP2003059337A (en) 2001-08-09 2003-02-28 Kyocera Corp Conductive paste and chip electronic component using it
US6549176B2 (en) * 2001-08-15 2003-04-15 Moore North America, Inc. RFID tag having integral electrical bridge and method of assembling the same
GB2379335B (en) * 2001-08-29 2005-09-07 Sunonwealth Electr Mach Ind Co Supporting structure for a rotor
US6838986B2 (en) * 2001-09-25 2005-01-04 Koninklijke Philips Electronics N.V. Notification of use of network-enabled device
EP1439608A4 (en) * 2001-09-28 2008-02-06 Mitsubishi Materials Corp Antenna coil and rfid-use tag using it, transponder-use antenna
AU2002351091A1 (en) * 2001-10-29 2003-05-12 Marconi Intellectual Property (Us) Inc Wave antenna wireless communication device
US6630910B2 (en) * 2001-10-29 2003-10-07 Marconi Communications Inc. Wave antenna wireless communication device and method
US7214569B2 (en) 2002-01-23 2007-05-08 Alien Technology Corporation Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US20030151028A1 (en) 2002-02-14 2003-08-14 Lawrence Daniel P. Conductive flexographic and gravure ink
JP2005517592A (en) 2002-02-19 2005-06-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for manufacturing a transponder
KR20030076274A (en) * 2002-03-18 2003-09-26 도레 엔지니아린구 가부시키가이샤 Non-contact id card and the method for producing thereof
JP3888678B2 (en) 2002-03-19 2007-03-07 東レエンジニアリング株式会社 Interposer mounting method and interposer mounting apparatus
JP2003283121A (en) 2002-03-25 2003-10-03 Toppan Forms Co Ltd Method of mutually connecting electrically conductive connecting sections
JP2003283120A (en) 2002-03-25 2003-10-03 Toppan Forms Co Ltd Method of mutually connecting electrically conductive connecting sections
JP2003281936A (en) 2002-03-25 2003-10-03 Toppan Forms Co Ltd Electrically conductive ink and radio frequency identification medium using it
US7565108B2 (en) 2002-03-26 2009-07-21 Nokia Corporation Radio frequency identification (RF-ID) based discovery for short range radio communication with reader device having transponder functionality
JP3839337B2 (en) 2002-03-27 2006-11-01 トッパン・フォームズ株式会社 Non-contact type IC media and manufacturing method thereof
US6866799B2 (en) 2002-05-09 2005-03-15 Anuvu, Inc. Water-soluble electrically conductive composition, modifications, and applications thereof
JP4054226B2 (en) 2002-07-03 2008-02-27 東レエンジニアリング株式会社 Non-contact ID cards and manufacturing method thereof
US6665193B1 (en) 2002-07-09 2003-12-16 Amerasia International Technology, Inc. Electronic circuit construction, as for a wireless RF tag
US20040061655A1 (en) * 2002-08-07 2004-04-01 Forster Ian J. Environmentally sensitive multi-frequency antenna
US7233498B2 (en) * 2002-09-27 2007-06-19 Eastman Kodak Company Medium having data storage and communication capabilities and method for forming same
US20040072385A1 (en) * 2002-10-15 2004-04-15 Bauer Donald G. Chip alignment and placement apparatus for integrated circuit, mems, photonic or other devices
SG106662A1 (en) 2002-11-15 2004-10-29 Smartag S Pte Ltd Rfid tag for an object having metallic portions, tag coupler and method thereof
US20040102870A1 (en) * 2002-11-26 2004-05-27 Andersen Scott Paul RFID enabled paper rolls and system and method for tracking inventory
JP2004180217A (en) 2002-11-29 2004-06-24 Toppan Printing Co Ltd Method for forming radio tag and antenna for radio tag
JP2004220304A (en) 2003-01-15 2004-08-05 Toppan Printing Co Ltd Method for forming antenna for radio tag and radio tag
US7067818B2 (en) * 2003-01-16 2006-06-27 Metrosol, Inc. Vacuum ultraviolet reflectometer system and method
US6888754B2 (en) 2003-01-31 2005-05-03 Taiwan Semiconductor Manufacturing Company Nonvolatile semiconductor memory array with byte-program, byte-erase, and byte-read capabilities
DE10309800B3 (en) 2003-03-05 2004-08-05 Martin Scattergood Component group for radio frequency transponder card with coil wound around outside of flat carrier provided with through bore containing semiconductor chip
AU2003249827A1 (en) 2003-03-19 2004-10-11 Mbbs Holding Sa Electronic label for the identification of containers, and container and nozzle top comprising one such label
US7253735B2 (en) 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
US6982190B2 (en) 2003-03-25 2006-01-03 Id Solutions, Inc. Chip attachment in an RFID tag
US7242996B2 (en) 2003-03-25 2007-07-10 Id Solutions, Inc. Attachment of RFID modules to antennas
US7034403B2 (en) 2003-04-10 2006-04-25 3M Innovative Properties Company Durable electronic assembly with conductive adhesive
EP1665459A4 (en) 2003-05-01 2006-11-22 Meadwestvaco Corp Apparatus for and method of providing an antenna integral balun
EP1668612A4 (en) 2003-05-01 2007-10-31 Meadwestvaco Corp Apparatus for and method of writing an electronic product identification code (epic)
JP4300869B2 (en) 2003-05-06 2009-07-22 ブラザー工業株式会社 Wireless tag reader / writer
JP2004342755A (en) * 2003-05-14 2004-12-02 Shinko Electric Ind Co Ltd Method of manufacturing plane coil
US7245227B2 (en) 2003-06-25 2007-07-17 Intermec Ip Corp. Method and apparatus for preparing media
WO2005006248A1 (en) 2003-07-09 2005-01-20 Stanley Clarence Mccann Tag for radio frequency identification system
WO2005022556A2 (en) * 2003-09-02 2005-03-10 Integral Technologies, Inc. Very low resistance electrical interfaces to conductive loaded resin-based materials
WO2005070143A2 (en) * 2004-01-12 2005-08-04 Symbol Technologies, Inc. Radio frequency identification tag inlay sortation and assembly
DE102004015994B9 (en) 2004-04-01 2006-09-07 Mühlbauer Ag Device for separating and positioning module bridges
US7446663B2 (en) * 2004-04-20 2008-11-04 Alcoa Closure Systems International, Inc. Method of forming an RF circuit assembly having multiple antenna portions
US7500307B2 (en) * 2004-09-22 2009-03-10 Avery Dennison Corporation High-speed RFID circuit placement method
US7623034B2 (en) * 2005-04-25 2009-11-24 Avery Dennison Corporation High-speed RFID circuit placement method and device
US7331221B2 (en) * 2006-02-13 2008-02-19 Robert W. Wise Precision inflation control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039543A2 (en) * 1999-03-24 2000-09-27 Morgan Adhesives Company Circuit chip connector and method of connecting a circuit chip
US20040154161A1 (en) 2003-02-07 2004-08-12 Hallys Corporation Random-period chip transfer apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116551A1 (en) * 2005-04-25 2006-11-02 Avery Dennison Corporation High-speed rfid circuit placement method and device

Also Published As

Publication number Publication date
US7669318B2 (en) 2010-03-02
US8020283B2 (en) 2011-09-20
US7500307B2 (en) 2009-03-10
US20060063323A1 (en) 2006-03-23
US20080061981A1 (en) 2008-03-13
KR20070067092A (en) 2007-06-27
EP1800253A1 (en) 2007-06-27
CN101069196A (en) 2007-11-07
KR101182602B1 (en) 2012-09-14
CN101069196B (en) 2010-06-16
TW200611201A (en) 2006-04-01
ES2402931T3 (en) 2013-05-10
CA2581425A1 (en) 2006-04-06
EP1800253B1 (en) 2013-02-20
US20100172737A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
US7669318B2 (en) High-speed RFID circuit placement method
EP1846876B1 (en) High-speed rfid circuit placement method and device
EP1964033B1 (en) Method of manufacturing rfid devices
EP1776660B1 (en) Method of variable position strap mounting for rfid transponder
EP1880349B1 (en) Method and apparatus for making rfid labels
US20080124842A1 (en) Method and apparatus for linear die transfer
WO2007081489A2 (en) Methods and systems for removing multiple die(s) from a surface
EP1746636A1 (en) IC chip mounting method
US11301739B2 (en) Method of assembly of articles and intermediate created thereby
US10049319B2 (en) Method of assembly using moving substrates, including creating RFID inlays
EP1876877B1 (en) Electronic component manufacturing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1779/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077006292

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580032076.1

Country of ref document: CN

Ref document number: 2581425

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005798744

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005798744

Country of ref document: EP