Nothing Special   »   [go: up one dir, main page]

WO2006033378A1 - エジェクタ式冷凍サイクル装置 - Google Patents

エジェクタ式冷凍サイクル装置 Download PDF

Info

Publication number
WO2006033378A1
WO2006033378A1 PCT/JP2005/017447 JP2005017447W WO2006033378A1 WO 2006033378 A1 WO2006033378 A1 WO 2006033378A1 JP 2005017447 W JP2005017447 W JP 2005017447W WO 2006033378 A1 WO2006033378 A1 WO 2006033378A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
ejector
compressor
radiator
Prior art date
Application number
PCT/JP2005/017447
Other languages
English (en)
French (fr)
Inventor
Hiroshi Oshitani
Hirotsugu Takeuchi
Etsuhisa Yamada
Haruyuki Nishijima
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corporation filed Critical Denso Corporation
Priority to CN2005800022688A priority Critical patent/CN1910410B/zh
Priority to DE112005000931.9T priority patent/DE112005000931B4/de
Priority to US10/581,088 priority patent/US7757514B2/en
Publication of WO2006033378A1 publication Critical patent/WO2006033378A1/ja
Priority to US12/802,239 priority patent/US8186180B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/08Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using ejectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the present invention relates to a defrosting operation of an ejector refrigeration cycle apparatus having an ejector that serves as a refrigerant decompression means and a refrigerant circulation means.
  • the present invention is applied to a refrigeration cycle of an air conditioning refrigeration apparatus for a vehicle. It is effective.
  • Patent Document 1 has already proposed a defrosting operation of an ejector-type refrigeration cycle apparatus.
  • a gas-liquid separator is arranged on the downstream side of an ejector, and an evaporator is provided between the liquid-phase refrigerant outlet side of the gas-liquid separator and the refrigerant suction port side of the ejector.
  • a bypass passage that directly connects the discharge side passage to the upstream passage of the evaporator is provided, and a shut mechanism is provided in the bypass passage.
  • the high-temperature refrigerant from the bypass passage is between the coupling portion between the upstream flow path of the evaporator and the bypass passage and the liquid-phase coolant outlet of the gas-liquid separator.
  • a mechanism for example, a throttle and a check valve is provided to prevent the directing of the force toward the refrigerant outlet.
  • the present invention relates to a defrosting hand in an ejector-type refrigeration cycle apparatus including a plurality of evaporators.
  • the purpose is to provide a stage.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) that sucks and compresses refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • a refrigerant flow is branched on the upstream side of the first evaporator (15) connected to the suction side of the compressor (12) and the ejector (14) on the refrigerant outflow side, and the refrigerant flow is divided into the refrigerant suction port.
  • a first throttle means (18) disposed in the first branch passage (17) for decompressing and expanding the refrigerant, and disposed downstream of the first throttle means (18) in the first branch passage (17).
  • the refrigerant evaporation pressure of the second evaporator (19) is lower than the refrigerant evaporation pressure of the first evaporator (15),
  • the first throttle means (18) has a structure with a fully open function for fully opening the first branch passage (17) when the second evaporator (19) is defrosted.
  • the first evaporator (15) having a high refrigerant evaporation pressure can exhibit the cooling ability in the high temperature region, and the refrigerant having a low refrigerant evaporation pressure! Can demonstrate ability.
  • the first throttling means (18) is operated to the fully open position of the first branch passage (17), so that the high-temperature and high-pressure at the outlet of the radiator (13)
  • the refrigerant can be directly introduced into the second evaporator (19) through the first branch passage (17).
  • the second evaporator (19) can be defrosted satisfactorily.
  • the first throttle means (18) which normally reduces the pressure of the cooling medium, is fully opened during defrosting, and the second evaporator ( 19) can be defrosted.
  • the refrigerant on the downstream side of the radiator (13) flows into the second evaporator (19) through the throttle means (18). Therefore, the refrigerant flow rate of the second evaporator (19) during normal operation can be easily adjusted to a value according to the heat load by the throttle means (18).
  • the "full open function for fully opening the first branch passage (17)” means not only the case where the first branch passage (17) is fully opened, but also the case where the first branch passage (17) is opened while being slightly reduced in area. Including. That is, there is a case where it is necessary to make the i-th throttling means ( 18 ) open while reducing the area of the i-th branch passage ( 17 ) by a slight amount.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) that sucks and compresses refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • a refrigerant flow is branched on the upstream side of the first evaporator (15) connected to the suction side of the compressor (12) and the ejector (14) on the refrigerant outflow side, and the refrigerant flow is divided into the refrigerant suction port.
  • a first throttle means (180) disposed in the first branch passage (17) for decompressing and expanding the refrigerant, and disposed downstream of the first throttle means (180) in the first branch passage (17).
  • the refrigerant evaporation pressure of the second evaporator (19) is lower than the refrigerant evaporation pressure of the first evaporator (15),
  • the shut mechanism (24) has a normally closed configuration that opens the bypass passage (23) when the second evaporator (19) is defrosted.
  • the defrosting means of the second evaporator (19) is changed from the first example. That is, in the second example of the present invention, when the second evaporator (19) is defrosted, the high-temperature and high-pressure refrigerant on the discharge side of the compressor (12) is directly passed to the second evaporator (19) through the bypass passage (23). Introduction Thus, the second evaporator (19) can be defrosted.
  • the first diaphragm means (180) does not need to be set to the fully open function, so that a normal fixed diaphragm or variable diaphragm can be used as the first diaphragm means (180) as it is.
  • the other effects of the second example of the present invention are the same as those of the first example.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) that sucks and compresses refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • a refrigerant flow is branched on the upstream side of the first evaporator (15) connected to the suction side of the compressor (12) and the ejector (14) on the refrigerant outflow side, and the refrigerant flow is divided into the refrigerant suction port.
  • First throttling means (180) disposed in the first branch passage (17) and decompressing and expanding the refrigerant on the radiator (13) downstream side;
  • the refrigerant evaporation pressure of the second evaporator (19) is lower than the refrigerant evaporation pressure of the first evaporator (15),
  • the shut mechanism (34) has a normally closed configuration that opens the bypass passage (33) when the second evaporator (19) is defrosted.
  • the bypass passage (33) of the first throttle means (180) is opened by the shut mechanism (34).
  • the high-temperature and high-pressure refrigerant at the outlet of the radiator (13) can be directly introduced into the second evaporator (19) through the bypass passage (33).
  • the first drawing means Since (180) does not need to be set to the fully open function, a normal fixed aperture or variable aperture can be used as the first aperture means (180) as it is.
  • the ejector-type refrigeration cycle apparatus may include a third evaporator (27) that exhibits a cooling capacity by evaporating the refrigerant in the same temperature range as the first evaporator (15).
  • a refrigerant flow is branched from an upstream portion of the first throttle means (18, 180) in the first branch passage (17), and the refrigerant flow is divided into refrigerant in the first evaporator (15).
  • a second branch passage (25) joined between the outflow side and the suction side of the compressor (12);
  • the third evaporator (27) can be arranged.
  • the third evaporator (27) specifically forms the second branch passage (25) and is disposed in the second branch passage (25).
  • the first evaporator (15) may be connected to the refrigerant outflow side of the ejector (14)!
  • a third throttle means (30) is provided between the refrigerant outlet side of the radiator (13) and the refrigerant inlet side of the first evaporator (15), and the ejector (14) is connected to the third throttle. It can be provided in parallel with the means (30).
  • the third throttle means (30) dedicated for the first evaporator (15) is provided, the refrigerant flow rate of the first evaporator (15) is adjusted in the ejector (14). There is no need to share functions. For this reason, the ejector (14) can specialize in the pump function for creating a pressure difference between the first and second evaporators (15, 19).
  • the upstream portion of the ejector (14) is shut. If the shut mechanism (31) is provided, the high-pressure refrigerant flow flowing into the ejector (14) from the refrigerant outflow side of the radiator (13) when the second evaporator (19) is defrosted is blocked.
  • the defrosting performance can be improved by increasing the amount of high-pressure refrigerant flowing into the evaporator (19).
  • the ejector-type refrigeration cycle apparatus includes a shut mechanism (32) for shutting the upstream portion of the radiator (13) when the second evaporator (19) is defrosted. If this is done, the defrosting performance can be improved by increasing the amount of high-pressure refrigerant flowing into the second evaporator (19) when the second evaporator (19) is defrosted.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) for sucking and compressing refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • Throttle means (180) disposed in the branch passage (36) and decompressing and expanding the liquid refrigerant flowing out of the gas-liquid separator (35);
  • the refrigerant evaporation pressure of the second evaporator (19) is lower than the refrigerant evaporation pressure of the first evaporator (15),
  • the shut mechanism (24) has a normally closed configuration that opens the bypass passage (23) when the second evaporator (19) is defrosted.
  • the gas-liquid separator (35) includes a branch passage (36) for connecting the outlet of the liquid-phase refrigerant to the refrigerant suction port (14c), and the throttle means (180) is provided in the branch passage (36).
  • a second evaporator (19) may be provided.
  • the refrigerant evaporates at a lower temperature than the first evaporator (15).
  • the second evaporator (19) is defrosted, the high-pressure refrigerant on the discharge side of the compressor (12) is removed. By introducing it directly into the second evaporator (19), the second evaporator (19) can be defrosted well.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) that sucks and compresses refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • the low-pressure refrigerant evaporates in the first evaporator (15) and the second evaporator (19) by controlling the opening degree of the first throttle mechanism (38) and the second throttle mechanism (18).
  • the high-pressure high-temperature refrigerant on the discharge side of the compressor (12) is introduced into both the second evaporator (19) and the first evaporator (15), and the both evaporators (15, 19) are introduced.
  • the first throttle mechanism (38) is specifically set to a predetermined throttle opening state, 2
  • the diaphragm mechanism (18) may be fully opened.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) that sucks and compresses refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • the low-pressure refrigerant evaporates in the first evaporator (15) and the second evaporator (19) by controlling the opening degree of the first throttle mechanism (18) and the second throttle mechanism (39).
  • the high-pressure high-temperature refrigerant on the discharge side of the compressor (12) is introduced into the second evaporator (19) to defrost the second evaporator (19);
  • the high-pressure refrigerant that has passed through the second evaporator (19) is depressurized by the second throttling mechanism (39), and the low-pressure refrigerant after this depressurization is introduced into the first evaporator (15), whereby the first evaporator
  • the evaporator (15) has a cooling function.
  • the high-pressure high-temperature refrigerant on the discharge side of the compressor (12) is introduced into the second evaporator (19) and the second evaporator (19) 19) can be defrosted, and at the same time, the high-pressure refrigerant that has passed through the second evaporator (19) is depressurized by the second throttling mechanism (39). ),
  • the first evaporator (15) can perform the cooling function. Therefore, the defrosting function of the second evaporator (19) and the cooling function of the first evaporator (15) can be constantly and simultaneously performed.
  • the first throttle mechanism (18) may be fully opened, and the second throttle mechanism (39) may be in a predetermined throttle opening state.
  • the cycle behavior in the defrosting / cooling operation mode illustrated in FIG. 22 can be realized, and the simultaneous operation of the defrosting function and the cooling function can be constantly performed.
  • an ejector-type refrigeration cycle apparatus includes a compressor (12) that sucks and compresses refrigerant,
  • a radiator (13) that dissipates heat of the high-pressure refrigerant discharged from the compressor (12); a nozzle part (14a) that decompresses and expands the refrigerant on the downstream side of the radiator (13); and the nozzle part
  • An ejector (14) having a refrigerant suction port (14c) through which a refrigerant is sucked by a high-speed refrigerant flow ejected from (14a);
  • a state in which the refrigerant dissipates heat in the radiator (13) is set, a normal operation mode in which low-pressure refrigerant evaporates in the first evaporator (15) and the second evaporator (19), and the radiator ( 13)
  • the refrigerant does not release heat!
  • the refrigerant on the discharge side of the compressor (12) flows into the throttle mechanism (181) while being in a high-pressure and high-temperature state and is depressurized, and the low-pressure high-temperature gas-phase refrigerant after passing through the throttle mechanism (181) is removed. It is introduced into both the first evaporator (15) and the second evaporator (19).
  • the low-pressure high-temperature gas-phase refrigerant decompressed by the throttle mechanism (181) is supplied to the first evaporator (15) and the second evaporator (19 ) To defrost both evaporators (15, 19) at the same time. Therefore, the steady defrosting function of both evaporators (15, 19) by the operation of the compressor (12) can be satisfactorily performed.
  • the opening degree in the defrosting operation mode is made larger than the opening degree in the normal operation mode of the throttle mechanism (181), the necessary refrigerant flow rate can be secured even in the defrosting operation mode.
  • the defrosting operation mode is set.
  • the high-pressure and high-temperature gas-phase refrigerant on the discharge side of the compressor (12) is decompressed by the throttle mechanism (181), and the density of the gas-phase refrigerant is smaller than the density of the liquid-phase refrigerant. Since the opening of (181) is larger in the defrosting operation mode than in the normal operation mode, the required refrigerant flow rate even in the defrosting operation mode in which the refrigerant is decompressed by the throttle mechanism (181) Can be ensured.
  • the radiator (13) may be provided with a blowing means (13a) for blowing cooling air, and the blowing means (13a) may be stopped during the defrosting operation mode.
  • the evaporator defrosting function can be exhibited with a simple refrigerant passage configuration that does not require a refrigerant passage or the like that bypasses the radiator (13).
  • a bypass shut mechanism (41) provided in the radiator bypass passage (40). By opening the bypass shut mechanism (41) in the defrosting operation mode, the compressor (12) discharge side Of high pressure and high temperature refrigerant through the radiator bypass passage (40)
  • the high-pressure high-temperature refrigerant on the discharge side of the compressor (12) is introduced into the throttle mechanism (181) through the radiator bypass passage (40) while the blowing means (13a) of the radiator (13) is operated. can do.
  • a radiator shut mechanism (42) is provided in parallel with the bypass shut mechanism (41) at the refrigerant outlet of the radiator (13), and a blower for blowing cooling air to the radiator (13).
  • a step (13a) is provided;
  • bypass shut mechanism (41) In the defrosting operation mode, the bypass shut mechanism (41) is opened, the radiator shut mechanism (42) is closed, and the air blowing means (13a) is operated. Can do.
  • the radiator (13) is connected to the compressor (12) discharge side at high pressure and high temperature.
  • the liquid storage function for condensing and storing the gas-phase refrigerant can be exhibited. Therefore, when the gas-liquid separator (35) is arranged on the refrigerant outflow side (compressor (12) suction side) of the first evaporator (15), the tank capacity of the gas-liquid separator (35) can be reduced. .
  • an ejector shut mechanism (31) is provided in the upstream side passage of the ejector (14), and the defrosting operation mode and the defrosting / cooling operation mode are provided.
  • the upstream passage of the ejector (14) may be closed by the ejector shut mechanism (31).
  • the upstream passage of the ejector (14) is closed to prevent the coolant from flowing into the upstream passage force ejector (14), and the second evaporator (19) side
  • the flow rate of the high-temperature refrigerant flowing into the can be increased, and the defrosting ability can be improved.
  • the gas-liquid of the refrigerant is separated and the liquid-phase refrigerant is stored on the refrigerant outlet side of the first evaporator (15), and the gas-phase refrigerant is compressed.
  • a gas-liquid separator (35) that flows out to the suction side of the machine (12) may be provided. In this case, liquid refrigerant return to the compressor (12) can be reliably prevented during the defrosting operation mode and the defrosting / cooling operation mode.
  • FIG. 1 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a first embodiment of the present invention.
  • FIG. 2 (a) and (b) are schematic operation explanatory views of the throttle mechanism with a fully open function in the first embodiment.
  • FIG. 3 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a second embodiment.
  • FIG. 4 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a third embodiment.
  • FIG. 5 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a fourth embodiment.
  • FIG. 6 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a fifth embodiment.
  • FIG. 7 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a sixth embodiment.
  • FIG. 8 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a seventh embodiment.
  • FIG. 9 is a cycle diagram showing an ejector refrigeration cycle apparatus according to an eighth embodiment.
  • 10 A cycle diagram showing an ejector-type refrigeration cycle apparatus according to the ninth embodiment.
  • 11 A cycle diagram showing an ejector refrigeration cycle apparatus according to a tenth embodiment.
  • 12 A cycle diagram showing an ejector refrigeration cycle apparatus according to an eleventh embodiment.
  • 13 A cycle diagram showing an ejector refrigeration cycle apparatus according to a twelfth embodiment.
  • 14 A cycle diagram showing an ejector refrigeration cycle apparatus according to a thirteenth embodiment.
  • 15 A cycle diagram showing an ejector refrigeration cycle apparatus according to a fourteenth embodiment. ⁇ 16] A chart collectively showing operations of various devices according to the fourteenth embodiment.
  • FIG. 20 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a sixteenth embodiment.
  • FIG. 21 is a chart collectively showing operations of various devices according to the sixteenth embodiment.
  • FIG. 22 is a Mollier diagram showing the operation during the defrosting / cooling operation according to the sixteenth embodiment.
  • FIG. 23 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a seventeenth embodiment. ⁇ 24] It is a schematic operation explanatory view of the aperture mechanism in the seventeenth embodiment.
  • FIG. 25 is a chart collectively showing operations of various devices according to the seventeenth embodiment.
  • FIG. 26 is a Mollier diagram showing the operation during the defrosting operation according to the seventeenth embodiment.
  • FIG. 27 is a cycle diagram showing an ejector refrigeration cycle apparatus according to an eighteenth embodiment.
  • FIG. 28 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a nineteenth embodiment.
  • FIG. 29 is a chart collectively showing operations of various devices according to the nineteenth embodiment.
  • FIG. 30 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a twentieth embodiment.
  • FIG. 31 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a twenty-first embodiment.
  • FIG. 32 is a chart summarizing operations of various devices according to the twenty-first embodiment.
  • FIG. 33 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a twenty-second embodiment.
  • 34 A cycle diagram showing an ejector refrigeration cycle apparatus according to a twenty-third embodiment.
  • FIG. 35 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a twenty-fourth embodiment.
  • FIG. 36 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a twenty-fifth embodiment.
  • FIG. 37 is a cycle diagram showing an ejector refrigeration cycle apparatus according to a twenty-sixth embodiment.
  • FIG. 1 shows an example in which an ejector-type refrigeration cycle apparatus according to a first embodiment of the present invention is applied to a refrigeration cycle of a vehicle air-conditioning refrigeration apparatus.
  • the ejector-type refrigeration cycle apparatus 10 includes a refrigerant circulation path 11.
  • the refrigerant circulation path 11 is provided with a compressor 12 that sucks and compresses the refrigerant.
  • the compressor 12 is driven to rotate by a vehicle travel engine (not shown) via a belt or the like.
  • a variable capacity compressor capable of adjusting the refrigerant discharge capacity by changing the discharge capacity is used.
  • the discharge capacity corresponds to the refrigerant discharge amount per rotation, and the discharge capacity can be changed by changing the suction volume of the refrigerant.
  • variable capacity compressor 12 is typically a swash plate type. Specifically, the piston suction stroke is changed by changing the piston stroke by changing the angle of the swash plate.
  • the angle of the swash plate can be electrically controlled from the outside by changing the pressure (control pressure) of the swash plate chamber by the electromagnetic pressure control device 12a constituting the capacity control mechanism.
  • a radiator 13 is disposed on the downstream side of the refrigerant flow of the compressor 12.
  • the radiator 13 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 12 and outside air blown by a cooling fan (not shown).
  • An ejector 14 is disposed at a further downstream side of the refrigerant flow than the radiator 13.
  • the ejector 14 is a depressurizing means for depressurizing the refrigerant, and is a momentum transporting pump that transports fluid by suction action of a refrigerant flow ejected at high speed.
  • the ejector 14 is connected to a nozzle portion 14a for reducing the passage area of the high-pressure refrigerant flowing from the radiator 13 to be small and isentropically decompressed and expanded, and to a refrigerant outlet of the nozzle portion 14a. And a suction port 14c for sucking a refrigerant from the second evaporator 19, which will be described later.
  • a diffuser portion 14b serving as a pressure increasing portion is disposed at the downstream side of the refrigerant flow of the nozzle portion 14a and the suction port 14c.
  • the diffuser part 14b is formed in a shape that gradually increases the passage area of the refrigerant, and decelerates the refrigerant flow to increase the refrigerant pressure. In other words, it acts to convert the velocity energy of the refrigerant into pressure energy.
  • the first evaporator 15 is installed, for example, in a ventilation path of a vehicle interior air conditioning unit (not shown) and performs a cooling action for vehicle interior cooling.
  • the air-conditioning air in the vehicle interior is blown to the first evaporator 15 by the electric blower (first blower) 16 of the vehicle interior air-conditioning unit, and the low-pressure refrigerant decompressed by the ejector 14 is supplied to the first evaporator.
  • heat is absorbed from the conditioned air in the passenger compartment and evaporates, thereby cooling the conditioned air in the passenger compartment and exerting cooling performance.
  • the gas-phase refrigerant evaporated in the first evaporator 15 is sucked into the compressor 12 and circulates again through the refrigerant circulation path 11.
  • a branch is made at a portion between the radiator 13 and the ejector 14 in the refrigerant circulation path 11, and the refrigerant circulation path 11 is made at the suction port 14 c of the ejector 14.
  • a branch passage 17 is formed to join the two.
  • a throttle mechanism 18 for adjusting the flow rate of the refrigerant and depressurizing the refrigerant is disposed.
  • the aperture mechanism 18 is constituted by an aperture mechanism with a fully open function.
  • FIG. 2 is a schematic cross-sectional view showing a specific example of the throttle mechanism 18 with the fully open function.
  • the throttle mechanism 18 has a throttle hole 18a constituting a fixed throttle and a full opening for fully opening the branch passage 17.
  • a movable plate member 18c having an opening with a hole 18b is provided.
  • the fully open hole 18b is designed to have a cross-sectional area equivalent to the cross-sectional area of the flow path (pipe) of the branch passage 20.
  • the throttle mechanism 18 fulfills the function of fully opening the branch passage 20.
  • the movable plate member 18c is arranged so as to be movable in the transverse direction of the branch passage 17 (in the direction orthogonal to the refrigerant flow direction a), and the movable plate member 18c is an electric type constituted by a servo motor or the like. It is driven by the actuator 18d.
  • FIG. 2 (a) shows a normal time when the throttle hole 18a acts as a fixed throttle
  • FIG. 2 (b) shows a defrosting operation in which the branch channel 17 is fully opened by the fully open hole 18b.
  • a second evaporator 19 is arranged at a downstream side of the refrigerant flow with respect to the throttle mechanism 18.
  • the second evaporator 19 is installed in a refrigerator (not shown) mounted on a vehicle, for example, and is refrigerated. Performs cooling in the cabinet.
  • the air in the refrigerator is blown to the second evaporator 19 by an electric blower (second blower) 20.
  • the electromagnetic pressure control device 12a, the first and second blowers 16, 20, the throttle mechanism 18 and the like of the variable capacity compressor 12 are from the electric control device (hereinafter abbreviated as ECU) 21. It is electrically controlled by the control signal.
  • ECU electric control device
  • a temperature sensor 22 is disposed at a predetermined position in the vicinity of the second evaporator 19, and the temperature sensor 22 detects the air temperature in the vicinity of the second evaporator 19. The detection signal of the temperature sensor 22 is input to the ECU 21.
  • the compressor 12 When the compressor 12 is driven by the vehicle engine, the refrigerant that has been compressed by the compressor 12 and brought into a high-temperature and high-pressure state flows into the radiator 13 and is cooled and condensed by the outside air.
  • the high-pressure liquid refrigerant that has flowed out of the radiator 13 is divided into a flow that flows through the refrigerant circulation path 11 and a flow that flows through the branch path 17.
  • the throttle mechanism 18 of the branch passage 17 is placed in the normal state of Fig. 2 (a) by the control signal of the ECU 21.
  • the throttle hole 18a is located in the branch passage 17. For this reason, since the throttle hole 18a acts as a fixed throttle, the refrigerant flowing through the branch passage 17 is decompressed by the throttle mechanism 18 to be in a low pressure state.
  • This low-pressure refrigerant absorbs heat from the air in the refrigerator blown by the second blower 20 in the second evaporator 19 and evaporates. Thereby, the 2nd evaporator 19 exhibits the cooling effect
  • the flow rate of the refrigerant passing through the first branch passage 17 and flowing into the second evaporator 19 can be adjusted by the opening degree of the throttle hole 18 a of the throttle mechanism 18.
  • the ECU 21 can control the cooling capacity of the cooling target space (specifically, the space in the refrigerator) exhibited by the second evaporator 19 by controlling the rotation speed (air flow rate) of the second blower 20.
  • the refrigerant flow flowing through the refrigerant circulation path 11 flows into the ejector 14 and is decompressed and expanded by the nozzle portion 14a. Accordingly, the pressure energy of the refrigerant is converted into the velocity energy at the nozzle portion 14a, and the refrigerant becomes a high velocity and is ejected from the nozzle. Due to the pressure drop in the vicinity of the nozzle nozzle generated at this time, the vapor-phase refrigerant evaporated in the second evaporator 19 is sucked from the suction port 14c.
  • the refrigerant absorbs heat from the conditioned air blown into the passenger compartment and evaporates.
  • the vapor phase refrigerant after the evaporation is sucked and compressed by the compressor 12 and circulates again through the refrigerant circulation path 11.
  • the ECU 21 can control the capacity of the compressor 12 to control the refrigerant discharge capacity of the compressor 12.
  • the refrigerant flow rate to the first evaporator 15 is adjusted, and the rotation speed (air flow rate) of the first blower 26 is controlled to cool the cooling target space exhibited by the first evaporator 15.
  • Capability, specifically, cooling capacity in the passenger compartment can be controlled.
  • the refrigerant evaporation pressure of the first evaporator 15 is the pressure after being increased by the diffuser portion 14b, while the outlet side of the second evaporator 19 is connected to the suction port 14c of the ejector 14. Therefore, the lowest pressure immediately after depressurization at the nozzle portion 14 a can be applied to the second evaporator 19.
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 19 can be made lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 15. Therefore, the first evaporator 15 can exhibit a cooling action in a relatively high temperature range suitable for cooling the passenger compartment, and the second evaporator 19 can exhibit a cooling action in a low temperature range suitable for cooling in the refrigerator. .
  • the second evaporator 19 may be operated under a condition where the refrigerant evaporation temperature is lower than 0 ° C., the cooling performance is reduced due to the frost (with frost) of the second evaporator 19. It becomes a problem.
  • the temperature sensor 22 is disposed in the vicinity of the second evaporator 19, and the ECU 21 determines whether the second evaporator 19 is frosted based on the detected temperature of the temperature sensor 22.
  • the second evaporator 19 is automatically defrosted! /.
  • the ECU 21 determines the frost state of the second evaporator 19. Then, a control signal is output to the electric actuator 18d of the throttle mechanism 18 with the fully open function, and the movable plate member 18c is moved to the normal state as shown in FIG. Move from the position to the defrosting position in Fig. 2 (b).
  • the fully opening hole 18b of the movable plate member 18c is overlapped with the entire passage of the branch passage 17, and the branch passage 17 is fully opened.
  • the high-temperature and high-pressure liquid refrigerant at the outlet of the radiator 13 can be directly led to the second evaporator 19 through the branch passage 17.
  • the frost adhering to the surface of the second evaporator 19 can be melted, and the defrosting operation of the second evaporator 19 can be performed with a very simple configuration.
  • the electric actuator 18d returns the movable plate member 18c to the normal position shown in FIG. 2 (a) when the defrosting position force shown in FIG. 2 (b). Therefore, since the throttle mechanism 18 again exhibits the action of the fixed throttle by the throttle hole 18a, the second evaporator 19 returns to the state in which the cooling action is also exhibited.
  • FIG. 3 shows the second embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a bypass passage 23 that directly connects the discharge side passage of the compressor 12 and the inlet of the second evaporator 19 is formed, and a shut mechanism 24 is provided in the bypass passage 23.
  • the shut mechanism 24 can be constituted by a normally closed solenoid valve that opens only when energized.
  • the shut mechanism 24 is maintained in the shut state by a control signal from the ECU 21 during normal times (when it is not necessary to defrost the second evaporator 19). Therefore, since the refrigerant does not flow into the bypass passage 23, the operation of the compressor 12 performs the same refrigeration cycle operation as in the first embodiment, and the first evaporator 15 has a relatively high temperature range suitable for cooling the vehicle interior. At the same time that the cooling action can be exerted, the second evaporator 19 can exert a cooling action in a lower temperature region suitable for cooling in the refrigerator.
  • the ECU 21 determines that the second evaporator 19 is in a frost state. Is output, a control signal is output to the shut mechanism 24, and the shut mechanism 24 is opened.
  • the defrosting operation of the second evaporator 19 can be performed with an extremely simple configuration.
  • the end of the defrosting operation may be determined in the same manner as in the first embodiment, and the shut mechanism 24 may be returned to the shut state.
  • the throttle mechanism 180 of the branch passage 17 according to the second embodiment can be configured by using a normal fixed throttle or variable throttle from V which does not require the fully open function to be set.
  • FIG. 4 shows a third embodiment, which is a modification of the first embodiment. That is, in the third embodiment, in addition to the configuration of the first embodiment, the upstream portion of the throttle mechanism 18 with a fully open function in the branch passage 17 and the portion between the first evaporator 15 and the compressor 12 are provided. A second branch passage 25 is added to connect with.
  • a throttle mechanism 26 for reducing the pressure of the refrigerant and a third evaporator 27 positioned downstream of the throttle mechanism 26 relative to the refrigerant flow are arranged. Since the aperture mechanism 26 does not need to be set to a fully open function, it can be configured using a normal fixed aperture or variable aperture. Air in the space to be cooled is blown to the third evaporator 27 by an electric blower (third blower) 28. The operation of the third blower 28 is also controlled by the ECU 21. Third evaporator 27
  • the downstream side of the third evaporator 27 joins the downstream side of the first evaporator 15 and is connected to the suction side of the compressor 12, the first and third evaporators 15
  • the refrigerant evaporation pressure of 27 is almost the same as the suction pressure of the compressor 12. Accordingly, the refrigerant evaporating temperatures of the first and third evaporators 15 and 27 are also the same temperature, so that the first and third evaporators 15 and 27 perform a cooling operation in the same temperature range.
  • the refrigerant evaporation temperature of the second evaporator 19 is lower than the refrigerant evaporation temperature of the first and third evaporators 15 and 27, but the defrosting of the second evaporator 19 is performed. Can be performed in the same manner as in the first embodiment by opening the aperture mechanism 18 with the fully open function.
  • the first evaporator 15 is used to cool the front seat side area of the vehicle interior, By evaporator 27 The rear seat side area of the passenger compartment is cooled, and the interior of the refrigerator is cooled by the second evaporator 19.
  • FIG. 5 shows a fourth embodiment, which is a modification of the second embodiment (FIG. 3). That is, in the fourth embodiment, in addition to the configuration of the second embodiment, the upstream portion of the throttle mechanism 180 in the branch passage 17 and the portion between the first evaporator 15 and the compressor 12 are connected. Following 2 branch passages 25. A throttle mechanism 26 and a third evaporator 27 are disposed in the second branch passage 25. The throttle mechanism 26 and the third evaporator 27 are the same as those in the third embodiment.
  • the defrosting of the second evaporator 19 can be performed by the bypass passage 23 and the shut mechanism 24 in the same manner as in the second embodiment, and the cooling action by the third evaporator 27 is achieved. Can be performed in the same manner as in the third embodiment.
  • FIG. 6 shows a fifth embodiment, which is a modification of the first embodiment. That is, in the fifth embodiment, a dedicated throttle mechanism 30 is added upstream of the first evaporator 15, and accordingly, the ejector 14 is arranged in parallel with the throttle mechanism 30.
  • Various throttle mechanisms 30 can be used. For example, a temperature-type expansion valve that controls the degree of superheat of the outlet refrigerant of the first evaporator 15 to a predetermined value is preferable.
  • a throttling mechanism 18 with a fully-opening function is disposed upstream of the second evaporator 19, and when the defrosting of the second evaporator 19 is necessary, the throttling mechanism 18 is fully opened to remove the second evaporator 19. Executing the frost operation is the same as in the first embodiment.
  • the ejector 14 and the first evaporator 15 are connected in series.
  • the ejector 14 functions as a refrigerant flow rate adjusting function of the first evaporator 15 and also functions as a pump that creates a refrigerant pressure difference between the first evaporator 15 and the second evaporator 19.
  • the ejector 14 when designing the ejector 14, it is necessary to satisfy both the required specifications of the refrigerant flow rate adjusting function and the pump function, and the first evaporator 15 has the first function to secure the refrigerant flow rate adjusting function.
  • the design must depend on the evaporator 15. As a result, there is a problem that it becomes difficult to operate the eddy-type refrigeration cycle apparatus with high efficiency.
  • a dedicated throttle is provided in the upstream portion of the first evaporator 15.
  • the mechanism 30 is arranged so that the ejector 14 does not share the refrigerant flow rate adjusting function of the first evaporator 15. For this reason, the ejector 14 can specialize only in a pump function that creates a refrigerant pressure difference between the first evaporator 15 and the second evaporator 19.
  • the shape of the ejector 14 is optimized so that a predetermined pressure difference is provided between the first and second evaporators 15 and 19, in other words, the passing flow rate of the ejector 14 is a predetermined flow rate. It becomes possible to design. As a result, the ejector-type refrigeration cycle apparatus can be operated efficiently even with a wide range of fluctuations in cycle operating conditions (compressor speed, outside air temperature, cooling target space temperature, etc.).
  • FIG. 7 shows a sixth embodiment, which is a modification of the second embodiment (FIG. 3). That is, in the sixth embodiment, in the cycle configuration having the bypass passage 23 and the shut mechanism 24 for the defrosting operation of the second evaporator 19 as in the second embodiment, the upstream side of the first evaporator 15 is provided. A special throttle mechanism 30 is added, and the ejector 14 is connected in parallel to the throttle mechanism 30.
  • FIG. 8 shows a seventh embodiment, which is a modification of the third embodiment (FIG. 4). That is, in the seventh embodiment, as in the third embodiment, the throttling mechanism 18 with a fully opening function for the defrosting operation is arranged upstream of the second evaporator 19, and the throttling mechanism 26 and the third throttling mechanism are arranged. In the cycle configuration having the evaporator 27, a dedicated throttle mechanism 30 is added upstream of the first evaporator 15, and the ejector 14 is connected in parallel to the throttle mechanism 30.
  • FIG. 9 shows an eighth embodiment, which is a modification of the fourth embodiment (FIG. 5). That is, the eighth embodiment includes the bypass passage 23 and the shut mechanism 24 for the defrosting operation of the second evaporator 19 as in the fourth embodiment, and the throttle mechanism 26 and the third evaporator 27. Cycle with In the configuration, a dedicated throttle mechanism 30 is added upstream of the first evaporator 15, and the ejector 14 is connected in parallel to the throttle mechanism 30.
  • the parallel connection of the ejectors 14 is the same as that of the fifth embodiment (FIG. 6). Therefore, the eighth embodiment can exhibit the action and effect obtained by combining the fourth embodiment and the fifth embodiment.
  • FIG. 10 shows a ninth embodiment, which is a modification of the first embodiment. That is, in the ninth embodiment, the shut mechanism 31 is provided in the upstream portion of the ejector 14 in the refrigerant circulation passage 11 in the cycle configuration of the first embodiment. Specifically, the shut mechanism 31 can be constituted by a normally open solenoid valve that closes only when energized.
  • the ECU 21 sends a control signal to the shut mechanism 31. Outputs the shut mechanism 31 to the shut (fully closed) state. At the same time, the ECU 21 outputs a control signal to the throttle mechanism 18 with the fully open function, and the throttle mechanism 18 is fully opened.
  • the refrigerant circulation passage 11 is shut by the shut mechanism 31, so that the entire amount of the high-temperature high-pressure refrigerant at the outlet of the radiator 13 passes through the throttle mechanism 18 and flows into the second evaporator 19. To do.
  • a defrost capability can be improved and the defrost of the 2nd evaporator 19 can be complete
  • FIG. 11 shows a tenth embodiment, which is a modification of the second embodiment (FIG. 3). That is, in the cycle configuration of the second embodiment, the tenth embodiment is provided with a shut mechanism 31 in the refrigerant circulation passage 11 upstream of the ejector 14. Specifically, the shut mechanism 31 can be constituted by a normally open solenoid valve that closes only when energized.
  • the ECU 21 sends a control signal to the shut mechanism 31. Outputs the shut mechanism 31 to the shut (fully closed) state. At the same time, the ECU 21 outputs a control signal to the shut mechanism 24 in the bypass passage 23 to fully open the shut mechanism 24.
  • the refrigerant circulation passage 11 is shut by the shut mechanism 31. Therefore, the compressor 12 that passes through the bypass passage 23 and flows into the second evaporator 19 has a high temperature and high pressure on the discharge side. The amount of gas phase refrigerant increases. Thereby, compared with 2nd Embodiment, a defrosting capability can be improved and the defrosting of the 2nd evaporator 19 can be complete
  • FIG. 12 shows an eleventh embodiment, which is a modification of the tenth embodiment (FIG. 11). That is, in the eleventh embodiment, a shut mechanism 32 corresponding to the shut mechanism 31 of the tenth embodiment is provided in the upstream portion of the radiator 13. Specifically, the shut mechanism 32 can also be constituted by a normally open solenoid valve, similarly to the shut mechanisms 31 of the ninth and tenth embodiments.
  • the ECU 21 when the frost state force 3 ⁇ 4cu21 of the second evaporator 19 is determined based on the air temperature in the vicinity of the second evaporator 19, the ECU 21 outputs a control signal to the shut mechanism 32. , Set the shut mechanism 32 to the shut (fully closed) state. At the same time, the ECU 21 outputs a control signal to the shut mechanism 24 in the bypass passage 23 so that the shut mechanism 24 is fully opened.
  • the upstream passage of the radiator 13 is shut by the shut mechanism 32, so that the entire amount of the high-temperature and high-pressure gas-phase refrigerant on the discharge side of the compressor 12 passes through the bypass passage 23. It flows into the second evaporator 19. Thereby, the defrosting capability can be further improved as compared with the tenth embodiment.
  • the two shut mechanisms 24, 32 may be configured by a single passage switching mechanism of a three-way valve type! / ⁇ .
  • FIG. 13 shows a twelfth embodiment, which is a modification of the first embodiment. That is, the twelfth embodiment In this state, instead of the aperture mechanism 18 with the fully open function of the first embodiment, an aperture mechanism 180 including a normal fixed aperture and a variable aperture without setting the fully open function is used.
  • a binos passage 33 is provided in parallel with the throttle mechanism 180, and a shut mechanism 34 is provided in the bypass passage 33.
  • the shut mechanism 34 can be constituted by a normally closed solenoid valve that opens only when energized.
  • the amount of refrigerant flowing into the second evaporator 19 is adjusted by the throttle mechanism 180.
  • the shut mechanism 34 shifts to the fully open state by the control signal of the ECU 21.
  • the high-temperature and high-pressure liquid refrigerant at the outlet of the radiator 13 passes through the bypass passage 33 and flows into the second evaporator 19, so that the second evaporator 19 can be defrosted.
  • the twelfth embodiment is described as a modification of the first embodiment, in addition to the first embodiment, another embodiment (third, In each of the fifth, seventh, and ninth embodiments), instead of the throttle mechanism 18 with the fully open function, by providing a normal throttle mechanism 180, a binos passage 33, and a shut mechanism 34 that do not set the fully open function, The concept of the twelfth embodiment can be similarly implemented.
  • the radiator 13 is branched at the outlet side to form a branch passage 17 connected to the suction port 14c of the ejector 14.
  • the throttle mechanisms 18, 18 are arranged at the outlet side to form a branch passage 17 connected to the suction port 14c of the ejector 14.
  • the second evaporator 1 0 and the second evaporator 19 are arranged.
  • the second evaporator 1 0 and the second evaporator 19 are arranged.
  • the gas-liquid separator 35 for separating the liquid phase refrigerant and storing the liquid-phase refrigerant is arranged, the gas-phase refrigerant separated by the gas-liquid separator 35 is led out to the suction side of the compressor 12, and separated by the gas-liquid separator 35 The liquid phase refrigerant thus led out to the branch passage 36 side.
  • This branch passage 36 is a liquid refrigerant outlet near the bottom of the gas-liquid separator 35 and the suction of the ejector 14.
  • a throttle mechanism 180 is provided on the upstream side of the branch path 36, and the second evaporator 19 is disposed on the downstream side of the throttle mechanism 180.
  • the aperture mechanism 180 consists of a normal fixed aperture or variable aperture that does not set the fully open function.
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 19 is lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 15.
  • 1 evaporator 15 provides a cooling effect in the high temperature range
  • 2nd evaporator 19 provides a cooling effect in the low temperature range.
  • the shut mechanism 24 of the bypass passage 23 is opened by the control signal of the ECU 21.
  • the high-temperature and high-pressure gas-phase refrigerant on the discharge side of the compressor 12 passes through the binos passage 23 and flows into the second evaporator 19, so that the second evaporator 19 can be defrosted.
  • FIG. 15 shows a fourteenth embodiment, and a gas-liquid separator 35 is added to the first embodiment shown in FIG.
  • the gas-liquid separator 35 is connected to the downstream side of the first evaporator 15, separates the gas-liquid at the outlet refrigerant of the first evaporator 15, stores the liquid-phase refrigerant, and stores the gas-phase refrigerant in the compressor 12. It flows out to the inhalation side.
  • a common space to be cooled (specifically, the space in the refrigerator of the vehicle-mounted refrigerator) by the first evaporator 15 and the second evaporator 19.
  • the first evaporator 15 is disposed on the upstream side of the air flow of the electric blower 16
  • the second evaporator 19 is disposed on the downstream side of the air flow of the first evaporator 15, and the second evaporation is performed. Cooling air after passing through the container 19 is blown out to the space to be cooled (inside the space).
  • the first evaporator 15 and the second evaporator 19 may be integrally configured by means such as brazing.
  • the first evaporator 15 and the second evaporator 19 cool the common cooling target space (the interior space) to a low temperature of 0 ° C or lower. It is necessary to perform a defrosting operation on both the second evaporators 19.
  • FIG. 16 summarizes the operation of the various devices of the fourteenth embodiment. During normal operation, the compressor 12, the electric cooling fan 13a of the radiator 13, and the electric blower 16 of the cooling unit 37 are in an operating state. Then, the throttle mechanism 18 with the fully open function is controlled to a predetermined throttle state.
  • the blown air of the electric blower 16 can be cooled by the heat absorption action accompanying the refrigerant evaporation in the first evaporator 15 and the second evaporator 19, and the cooling target space of the cooling unit 37 can be cooled. . That is, a normal cooling operation can be executed.
  • the control device 21 determines the frost state of the first and second evaporators 15 and 19 to defrost each device in the refrigeration cycle 10. Switch to operation mode. That is, the control device 21 controls the throttle mechanism 18 with the fully open function to the fully open state, and simultaneously stops the compressor 12 and the electric blower 16 for the evaporator.
  • the control device 21 controls the throttle mechanism 18 with the fully open function to the fully open state, and simultaneously stops the compressor 12 and the electric blower 16 for the evaporator.
  • the stopped state of the compressor 12 is the electromagnetic pressure control. This means that the discharge capacity is set to the minimum capacity of around 0% by the device 12a.
  • the electromagnetic clutch may be shut off and the compressor 12 may be stopped.
  • the radiator cooling fan 13a may be in the stopped or activated state during defrosting operation.
  • the throttling mechanism 18 When the throttling mechanism 18 is fully opened during the defrosting operation, the high-temperature liquid refrigerant at the outlet side of the radiator 13 flows directly into the second evaporator 19, and further, the second evaporator 19 dissipates heat to a predetermined amount.
  • the medium-temperature liquid refrigerant whose temperature has decreased passes through the refrigerant suction port 14 c of the ejector 14 and flows into the first evaporator 15. In this way, the high-temperature liquid refrigerant on the outlet side of the radiator 13 flows in the order of the second evaporator 19 ⁇ the first evaporator 15, and the second evaporator 19 and the first evaporator 15 are defrosted simultaneously.
  • the first and second evaporators 15 and 19 are temporarily defrosted using the high-temperature liquid refrigerant on the radiator 13 side that is present when the compressor 12 is in operation. Therefore, the compressor 12 is stopped during the defrosting operation. That is, when the first and second evaporators 15 and 19 are small in size and have a small required cooling capacity, the high-temperature liquid coolant on the radiator 13 side that is present when the compressor 12 is operating is The first and second evaporators 15 and 19 can be removed by allowing them to flow into the evaporators 15 and 19. Frost can be done.
  • FIG. 17 shows a fifteenth embodiment, in which a shut mechanism 31 on the upstream side of the ejector 14 and a throttle mechanism 38 on the outlet side of the gas-liquid separator 35 are added to the fourteenth embodiment.
  • the shut mechanism 31 may be the same as described in FIG.
  • the throttle mechanism 38 has a function of fully opening the outlet side passage (compressor suction side passage) of the gas-liquid separator 35 and may have the same configuration as the throttle mechanism 18. However, the throttle mechanism 38 is controlled by the control device 21 so as to be fully opened during normal operation and to have a predetermined throttle opening degree during defrosting operation.
  • FIG. 18 summarizes the operation of the various devices of the fifteenth embodiment.
  • the compressor 12, the electric cooling fan 13a of the radiator 13, and the electric blower 16 of the cooling unit 37 are in an operating state. It becomes.
  • the throttle mechanism 18 with the fully open function is controlled to a predetermined throttle opening state
  • the throttle mechanism 38 with the fully open function is controlled to the fully open state
  • the shut mechanism 31 is controlled to the fully open state.
  • the cooling air of the electric blower 16 can be cooled by the cooling (heat absorption) action of the first and second evaporators 15 and 19, and the cooling target space of the cooling unit 37 can be cooled. That is, a normal cooling operation can be performed.
  • the control device 21 controls each device as follows in order to execute the defrosting operation.
  • the cooling fan 13a for the radiator and the electric blower 16 for the evaporator are respectively stopped.
  • the throttle mechanism 18 is controlled to be fully opened, the throttle mechanism 38 is controlled to a predetermined throttle opening state, and the shut mechanism 31 is controlled to be fully closed.
  • the medium-temperature and high-pressure gas-phase refrigerant passes through the refrigerant suction port 14c portion of the ejector 14. It flows into the first evaporator 15. In this way, the high-pressure and high-temperature gas-phase refrigerant flows in the order of the second evaporator 19 ⁇ the first evaporator 15, and the second evaporator 19 and the first evaporator 15 are defrosted simultaneously.
  • the high-pressure refrigerant that has flowed out of the first evaporator 15 is gas-liquid separated in the gas-liquid separator 35, and the high-pressure gas-phase refrigerant that has flowed out of the gas-liquid separator 35 is decompressed to a predetermined low-pressure state by the throttle mechanism 38. Then, it is sucked into the compressor 12 as a low-temperature and low-pressure gas-phase refrigerant.
  • FIG. 19 is a Mollier diagram showing the cycle behavior during the defrosting operation of the fifteenth embodiment.
  • FIG. 20 shows a sixteenth embodiment.
  • a gas-liquid separator 35 is added to the outlet side of the first evaporator 15 and a fully open function is provided on the outlet side of the second evaporator 19 with respect to the first embodiment of FIG.
  • the aperture mechanism with 39 is added.
  • the diaphragm mechanism 39 may have the same configuration as the diaphragm mechanism 18. However, the throttle mechanism 39 is controlled by the control device 21 so as to be fully opened during normal operation and to have a predetermined throttle opening degree during defrosting / cooling operation.
  • the first evaporator 15 is provided for air conditioning in the vehicle interior, while the second evaporator 19 is provided for cooling in the refrigerator mounted on the vehicle, and each of the separate electric blowers 16, 20 is provided. I started to cool the air!
  • FIG. 21 summarizes the operation of the various devices of the sixteenth embodiment.
  • the electric cooling fans of the compressor 12 and the radiator 13 are shown.
  • Ann 13a and electric blowers 16, 20 are activated.
  • the throttle mechanism 18 on the inlet side of the second evaporator 19 is controlled to a predetermined throttle opening state, and conversely, the throttle mechanism 39 on the outlet side of the second evaporator 19 is controlled to be fully opened.
  • the low-pressure refrigerant that has been depressurized after passing through the ejector 14 evaporates, so that the air blown from the electric blower 16 is cooled by the cooling (heat absorption) action of the first evaporator 15. Cool the passenger compartment.
  • the low-pressure refrigerant that has been reduced in pressure through the throttle mechanism 18 evaporates, so the air blown from the electric blower 20 is cooled by the cooling (heat absorption) action of the second evaporator 19, Cool down the refrigerator.
  • cooling in the passenger compartment and cooling in the refrigerator can be performed simultaneously.
  • control device 21 controls each device as follows in order to execute the defrosting / cooling operation mode.
  • the electric blower 20 for the second evaporator is brought into a stopped state.
  • the throttle mechanism 18 on the inlet side of the second evaporator 19 is controlled to a fully open state, and conversely, the throttle mechanism 39 on the outlet side of the second evaporator 19 is controlled to a predetermined throttle opening state.
  • the liquid-phase refrigerant on the outlet side of the radiator 13 flows into the second evaporator 19 in a high temperature and high pressure state, and the second evaporator 19 is defrosted.
  • the high-pressure refrigerant dissipates heat in the second evaporator 19 and becomes a high pressure state of medium temperature.
  • the high-pressure refrigerant is decompressed by the throttle mechanism 39, and enters a low-temperature and low-pressure gas-liquid two-phase state.
  • This low-pressure refrigerant passes through the refrigerant suction port 14 c of the ejector 14 and flows into the first evaporator 15.
  • the suction-side low-pressure refrigerant from the refrigerant suction port 14c and the low-pressure refrigerant that has passed through the nozzle 14a of the ejector 14 join together and flow into the first evaporator 15, and exhibit the cooling (heat absorption) action of the first evaporator 15. it can.
  • FIG. 22 is a Mollier diagram showing the cycle behavior in the defrosting / cooling operation mode according to the sixteenth embodiment.
  • FIG. 17 In the fifteenth embodiment (FIG. 17), as shown in FIG. The generators 15 and 19 are defrosted. In the seventeenth embodiment (FIG. 23), the low-pressure and high-temperature refrigerant is defrosted from the first and second evaporators 15 and 19 as shown in FIG. I do.
  • a variable throttle mechanism 181 that does not have a fully open function is provided at the inlet of the second evaporator 19.
  • FIG. 24 shows a specific example of the variable throttle mechanism 181.
  • the first throttle hole 181a having a small throttle opening and the second throttle hole 18 lb having a larger throttle opening than the first throttle hole 181a are shown in FIG.
  • the movable plate member opens in parallel with 18 lc.
  • the movable plate member 181c is arranged so as to be movable in the transverse direction of the branch passage 17 (in the direction orthogonal to the refrigerant flow direction a), and the movable plate member 181c is constituted by a servo motor or the like. It is driven by 181d.
  • the movable plate member 181c is moved to the position shown in Fig. 24 (a), and the first throttle hole 18 8 la is positioned in the branch passage 17, whereas, during the defrosting operation, the movable plate member 181c is moved. 181c is moved to the position shown in FIG. 24 (b), and the second throttle hole 181b is positioned in the branch passage 17.
  • FIG. 25 summarizes the operation of the various devices of the seventeenth embodiment.
  • the compressor 12, the radiator cooling fan 13a, and the evaporator blower 16 are operated, and the shut mechanism 31 is fully opened. Put it in a state.
  • variable throttle mechanism 181 the electric actuator 181 d is controlled by the ECU 21 to move the movable plate member 181 c to the position shown in FIG. 24 (a), and the first throttle hole 181 a is positioned in the branch passage 17.
  • the throttle opening by the first throttle hole 181a is set to a small state, and the low-pressure refrigerant depressurized by the first throttle hole 181a flows into the second evaporator 19 and enters the second evaporator 19. 2 Cooling (endothermic) action of the evaporator 19 is exhibited.
  • the high-pressure refrigerant flows into the ejector 14 through the shut mechanism 31 in the fully opened state, is depressurized by the nozzle portion 14a, passes through the low-pressure refrigerant depressurized by the nozzle portion 14a, and the second evaporator 19, and then is The low-pressure refrigerant sucked into the suction port 14c flows into the first evaporator 15, and the cooling (heat absorption) action of the first evaporator 15 is exhibited.
  • the air blown by the electric blower 16 can be cooled by the combination of the cooling (heat absorption) actions of the first and second evaporators 15 and 19, and the cooling target space of the cooling unit 37 can be cooled. The That is, a normal cooling operation is performed.
  • the control device 21 controls each device as follows in order to execute the defrosting operation.
  • variable throttle mechanism 181 the electric actuator 181 d is controlled by the ECU 21 to move the movable plate member 181 c to the position shown in FIG. 24 (b), and the second throttle hole 18 lb is positioned in the branch passage 17. Let Thereby, the state of the throttle opening degree: large by the second throttle hole 181b is set.
  • the heat dissipation of the refrigerant in the radiator 13 is substantially stopped by stopping the radiator cooling fan 13a. Therefore, the refrigerant on the discharge side of the compressor 12 is released in a high-temperature and high-pressure gas phase state. It passes through the heater 13 and reaches the inlet side of the variable throttle mechanism 181. Here, since the shut mechanism 31 is fully closed during the defrosting operation, the entire amount of the gas-phase refrigerant on the discharge side of the compressor 12 flows into the variable throttle mechanism 181.
  • the second throttle hole 181b having a larger throttle opening than the first throttle hole 181a exerts a pressure reducing action. Due to this depressurization action, the high-temperature and high-pressure gas-phase refrigerant becomes a low-pressure and high-temperature gas-phase refrigerant, and this low-pressure and high-temperature gas-phase refrigerant first flows into the second evaporator 19 to defrost the second evaporator 19. Do.
  • the low-pressure and high-temperature gas-phase refrigerant flows into the first evaporator 15, and defrosts the first evaporator 15.
  • the refrigerant that has passed through the first evaporator 15 is gas-liquid separated in the gas-liquid separator 35, and the gas-phase refrigerant in the gas-liquid separator 35 is sucked into the compressor 12 and compressed again.
  • FIG. 26 is a Mollier diagram showing the cycle behavior during the defrosting operation of the seventeenth embodiment.
  • the shut-off mechanism 31 is fully closed so that the entire amount of the high-temperature and high-pressure gas-phase refrigerant is reduced by the variable throttle mechanism 181 and then flows into the second evaporator 19. Then, the refrigerant that has passed through the second evaporator 19 is caused to flow into the first evaporator 15. Thereby, the defrosting of the second evaporator 19 and the first evaporator 15 can be performed constantly using the low-pressure high-temperature refrigerant.
  • variable throttle mechanism 181 depressurizes the liquid-phase refrigerant condensed in the radiator 13 during normal operation, while depressurizing the gas-phase refrigerant on the discharge side of the compressor 12 during defrosting operation.
  • density of the gas-phase refrigerant is significantly smaller than that of the liquid-phase refrigerant
  • the throttle opening during the defrosting operation of the variable throttle mechanism 181 is made larger than that during the normal operation, and the cycle circulation refrigerant during the defrosting operation is increased. Ensure that the flow rate is secured.
  • the shut mechanism 31 is a fully open and fully closed on-off valve type.
  • Force shut mechanism 31 is a flow rate adjustment type valve mechanism capable of continuously adjusting the passage area, and defrosting operation is performed. Occasionally, a predetermined flow rate of high-temperature gas-phase refrigerant may be allowed to flow into the ejector 14 side. Also, adjust the refrigerant flow rate to the ejector 14 side during normal operation with the flow adjustment type short mechanism 31.
  • the shut mechanism 31 may be configured as a flow rate adjusting type valve mechanism, as is the case with the shut mechanisms in other embodiments.
  • FIG. 27 shows an eighteenth embodiment.
  • the shut mechanism 31 of the seventeenth embodiment (FIG. 23) is eliminated, and the upstream portion of the ejector 14 is directly connected to the outlet portion of the radiator 13.
  • the other points of the eighteenth embodiment are the same as those of the seventeenth embodiment. Accordingly, in FIG. 25, the switching of the operation between the normal operation and the defrosting operation of the other devices is as shown in FIG.
  • a predetermined proportion of the high-temperature and high-pressure gas-phase refrigerant that has passed through the radiator 13 during the defrosting operation is depressurized by the variable throttle mechanism 181 so that the low-pressure high-temperature gas-phase refrigerant is This low-pressure high-temperature gas-phase refrigerant flows into the second evaporator 19 and defrosts the second evaporator 19.
  • the remainder of the high-temperature and high-pressure gas-phase refrigerant that has passed through the radiator 13 flows into the ejector 14 and is depressurized, so that it becomes a low-pressure high-temperature gas-phase refrigerant.
  • This low-pressure high-temperature gas-phase refrigerant and the low-pressure gas-phase refrigerant after passing through the second evaporator 19 merge at the ejector 14, and the low-pressure high-temperature gas-phase refrigerant after this merge flows into the first evaporator 15. Then, the first evaporator 15 is defrosted.
  • the low-pressure high-temperature gas-phase refrigerant that has been depressurized after passing through the ejector 14 flows directly into the first evaporator 15, so that the first evaporator 15 is compared with the seventeenth embodiment.
  • the defrosting ability of the first evaporator 15 can be increased by increasing the temperature (heat amount) of the inflowing gas phase refrigerant.
  • FIG. 28 shows the nineteenth embodiment. Compared to the seventeenth embodiment (FIG. 23), the bypass passage 40 of the radiator 13, the shut mechanism 41 of the bypass passage 40, and the shut of the outlet portion of the radiator 13. Mechanism 42 is added. The shut mechanism 41 and the shut mechanism 42 are arranged in parallel.
  • FIG. 29 shows the operation switching between the normal operation and the defrost operation of each device in the nineteenth embodiment.
  • the shut mechanism 31 and the shut mechanism 42 are fully opened, while the shut mechanism 41 is fully closed to block the bypass passage 40.
  • the same operation as that in the seventeenth embodiment is performed during normal operation.
  • shut mechanism 31 and the shut mechanism 42 are fully closed, while the shut mechanism 41 is fully open to open the bypass passage 40.
  • the high-pressure and high-temperature discharged gas-phase refrigerant of the compressor 12 flows through the bypass passage 40 and bypasses the radiator 13.
  • the total amount of high-pressure and high-temperature discharged gas-phase refrigerant that bypasses the radiator 13 is reduced in pressure by the variable throttle mechanism 181, and becomes low-pressure high-temperature gas-phase refrigerant.
  • This low-pressure high-temperature gas-phase refrigerant flows in the order of the second evaporator 19 ⁇ the ejector 14 ⁇ the first evaporator 15, and defrosts the second evaporator 19 and the first evaporator 15.
  • the radiator cooling fan 13a is maintained in the operating state with the shut mechanism 42 at the outlet of the radiator 13 being fully closed during the defrosting operation.
  • a part of the gas-phase refrigerant discharged from the compressor 12 can be cooled and condensed by the outside air, and the liquid-phase refrigerant can be stored inside the radiator 13. For this reason, since the amount of the liquid-phase refrigerant that accumulates in the gas-liquid separator 35 during the defrosting operation can be reduced, there is an advantage that the tank capacity of the gas-liquid separator 35 can be reduced.
  • FIG. 30 shows a twentieth embodiment, in which the shut mechanism 31 in the nineteenth embodiment (FIG. 28) is eliminated. Accordingly, the twentieth embodiment is the same as the cycle configuration of the eighteenth embodiment (FIG. 27) in that the shut mechanism 31 is eliminated. For this reason, the twentieth embodiment can exhibit the operational effects obtained by combining the eighteenth embodiment and the nineteenth embodiment.
  • FIG. 31 shows a twenty-first embodiment, which is a cycle configuration in which three or more evaporators are combined.
  • the twenty-first embodiment is based on the cycle configuration of the seventeenth embodiment (FIG. 23), and a second branch passage 25 is added thereto.
  • the second branch passage 25 is the same as that of the third embodiment (FIG. 4), is branched on the upstream side of the variable throttle mechanism 181 of the first branch passage 17, and is connected to the outlet side of the first evaporator 15.
  • variable throttle mechanism 182 is provided on the upstream side of the second branch passage 25, and a third evaporator 27 is provided on the downstream side of the variable throttle mechanism 182.
  • the variable throttle mechanism 182 includes a first throttle hole with a small throttle opening and a second throttle hole with a throttle opening larger than the first throttle hole. It is the structure opened in parallel.
  • variable throttle mechanism 182 can set the throttle opening by the first throttle hole: small state during normal operation, and can set the throttle opening: large state by the second throttle hole during defrosting operation. It is like this.
  • the third evaporator 27 constitutes an independent cooling unit 43 together with the electric blower 28.
  • the first cooling unit 37 cools the interior space (the cooling target space) of the first refrigerator to a low temperature of 0 ° C. or lower
  • the second cooling unit 43 cools the second refrigerator compartment.
  • the inner space (space to be cooled) is cooled to a low temperature below 0 ° C!
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) of the third evaporator 27 is the same as that of the first evaporator 15. Become equivalent. Therefore, the cooling temperature of the second cooling unit 43 is higher than the cooling temperature of the first cooling unit 37.
  • the blown air of the electric blower 28 is cooled by the third evaporator 27, and the cooled air is blown out to the space to be cooled.
  • the cooling temperature of the second cooling unit 43 is also a low temperature of 0 ° C. or less, the third evaporator 27 also needs to be defrosted.
  • a temperature sensor 22a is installed in the vicinity of the third evaporator 27, the temperature in the vicinity of the third evaporator 27 is detected by the temperature sensor 22a, and the detected signal force is input to the CU21.
  • the ECU 21 issues a defrosting operation command based on the detected temperatures of the temperature sensor 22 of the first cooling unit 37 and the temperature sensor 22a of the second cooling unit 43.
  • Fig. 32 shows the operation switching between the normal operation and the defrosting operation of each device in the twenty-first embodiment. Show.
  • the gas-phase refrigerant on the discharge side of the compressor 12 passes through the radiator 13 while being in a high-temperature and high-pressure state, and is depressurized by the variable throttle mechanisms 181 and 182 to become a low-pressure high-temperature gas-phase refrigerant.
  • the low-pressure high-temperature gas-phase refrigerant in the first branch passage 17 flows in the order of the second evaporator 19 ⁇ the first evaporator 15, and defrosts both the evaporators 19 and 15.
  • the low-pressure high-temperature gas-phase refrigerant in the second branch passage 25 flows into the third evaporator 27, and the third evaporator 27 is defrosted.
  • the shut mechanism 31 is provided upstream of the ejector 14, and the force that fully closes the shut mechanism 31 during the defrosting operation. Good. That is, in the cycle configuration of the eighteenth embodiment (FIG. 27), the second branch passage 25 having the variable throttle mechanism 182 and the third evaporator 27 may be combined.
  • FIG. 33 shows a twenty-second embodiment in which a second branch passage 25 having a variable throttle mechanism 182 and a third evaporator 27 is combined in the cycle configuration of the nineteenth embodiment (FIG. 28).
  • a shut mechanism 31 is provided on the upstream side of the ejector 14, and the force for fully closing the shut mechanism 31 during the defrosting operation is shown in FIG. It can be abolished as in 30).
  • FIG. 34 shows a 23rd embodiment.
  • a dedicated throttle mechanism 30 is added upstream of the first evaporator 15, and the ejector 14 is connected to this throttle.
  • a cycle configuration arranged in parallel with mechanism 30 is adopted.
  • the cooling unit 37, the shut mechanism 31, and the variable throttle mechanism 181 in the seventeenth embodiment are combined in such a cycle configuration of the parallel arrangement of the radiators.
  • a shut mechanism 31 may be provided upstream of the ejector 14, and the shut mechanism 31 may be completely closed during the defrosting operation.
  • the shut mechanism 31 may be eliminated.
  • FIG. 35 shows a twenty-fourth embodiment, which employs a cycle configuration with an ejector arranged in parallel in the nineteenth embodiment (FIG. 28).
  • the operation switching of each device during the normal operation and the defrosting operation in the 24th embodiment is the same as that in the 19th embodiment, and the operation switching of each device may be performed as shown in FIG.
  • shut mechanism 31 upstream of the ejector 14 may be eliminated.
  • FIG. 36 shows a twenty-fifth embodiment, which adopts a cycle configuration with an ejector arranged in parallel in the twenty-first embodiment (FIG. 31).
  • the shut mechanism 31 on the upstream side of the ejector 14 may be eliminated.
  • FIG. 37 shows a twenty-sixth embodiment, which employs a cycle configuration with an ejector arranged in parallel in the twenty-second embodiment (FIG. 33).
  • the shut mechanism 31 on the upstream side of the ejector 14 may be eliminated.
  • the air temperature in the vicinity of the second evaporator 19 and the third evaporator 27 is detected by the temperature sensors 22 and 22a, and the defrosting operation is automatically performed.
  • the automatic control of the defrosting operation can be variously modified.
  • the surface temperature of the second and third evaporators 19 and 27 is detected by the temperature sensors 22 and 22a to automatically control the defrosting operation. May be performed.
  • a refrigerant temperature sensor for detecting the refrigerant temperature is provided in the refrigerant passage in the vicinity of the second and third evaporators 19 and 27, and the refrigerant temperature is divided based on the refrigerant temperature in the vicinity of the second and third evaporators 19 and 27. Automatic control of frost operation may be performed.
  • a refrigerant pressure sensor for detecting the refrigerant pressure in the vicinity of the second and third evaporators 19 and 27 is provided.
  • Second, Automatic control of the defrosting operation may be performed based on the refrigerant pressure in the vicinity of the third evaporators 19 and 27.
  • FIG. 2 As the throttle mechanism 18 with a fully open function, a movable plate member 18c having a throttle hole 18a constituting a fixed throttle and a full opening hole 18b for fully opening the branch passage 17 is shown.
  • An electric expansion valve that continuously changes the opening of the valve body with an electric actuator such as a servo motor is used as a throttling mechanism 18 with a fully-open function that shows a type driven by an electric actuator 18d.
  • variable throttle mechanism 181 is movable with a first throttle hole 181a having a small throttle opening and a second throttle hole 181b having a larger throttle opening than the first throttle hole 181a opened in parallel.
  • a force mechanism shown in a specific example in which the plate member 181c is driven by the electric actuator 181d may be a valve mechanism capable of continuously adjusting the throttle opening as the variable throttle mechanism 181.
  • Both of the second evaporators 19 may be used for cooling in the refrigerator. That is, the first evaporator 15 with the refrigerant evaporation temperature on the high temperature side cools the refrigerator compartment in the refrigerator, and the second evaporator 19 with the refrigerant evaporation temperature on the low temperature side cools the freezer compartment in the refrigerator. Also good.
  • the first evaporator 15 and the second evaporator 19 constitute one cooling unit 37, and the inside of one refrigerator is constituted by the cooling unit 37.
  • the first evaporator 15 and the second evaporator 19 are arranged in separate refrigerators, and the first refrigerator 15 and the second evaporator 19 cool the separate refrigerators. Good.
  • FIG. 15 In the fourteenth embodiment (FIG. 15) and the like, an example in which the gas-liquid separator 35 is arranged on the outlet side of the first evaporator 15 is shown. If a liquid separator (Resino is installed, and the cycle refrigerant flow rate is controlled so that the outlet refrigerant of the first evaporator 15 has a predetermined degree of superheat during normal operation, the gas-liquid separator 35 during normal operation is used. Is the passage of superheated gas refrigerant It becomes. Therefore, the gas-liquid separator 35 serves to store the liquid-phase refrigerant by separating the gas-liquid refrigerant only during the defrosting operation.
  • a liquid separator Resino
  • the cycle refrigerant flow rate is controlled so that the outlet refrigerant of the first evaporator 15 has a predetermined degree of superheat during normal operation
  • the gas-liquid separator 35 during normal operation is used. Is the passage of superheated gas refrigerant It becomes. Therefore
  • the type of refrigerant was not specified.
  • the refrigerant can be applied to a vapor compression refrigeration cycle such as chlorofluorocarbon-based, HC-based alternative chlorofluorocarbon, and carbon dioxide (C02).
  • chlorofluorocarbon is a general term for organic compounds such as carbon, fluorine, chlorine, and hydrogen, and is widely used as a refrigerant.
  • Fluorocarbon refrigerants include HCFC (Hide mouth / Fluoro mouth carbon) refrigerant, HFC (Hide mouth / Fluoro carbon) refrigerant, etc., which do not destroy the ozone layer. It is a refrigerant called alternative chlorofluorocarbon.
  • the HC (hydrocarbon) refrigerant is a refrigerant substance that contains hydrogen and carbon and exists in nature.
  • These HC refrigerants include R600a (isobutane) and R290 (propane).
  • variable displacement compressor is used as the compressor 12, and the capacity of the variable displacement compressor 12 is controlled by the ECU 21 to control the refrigerant discharge capacity of the compressor 12.
  • a fixed-capacity compressor is used as the compressor 12, and the operation of the fixed-capacity compressor 12 is controlled by an electromagnetic clutch, and the compression ratio is controlled by controlling the ratio of the on-off operation of the compressor 12.
  • the refrigerant discharge capacity of the machine 12 may be controlled.
  • the refrigerant discharge capacity can be controlled by controlling the rotational speed of the electric compressor 12.
  • each evaporator is an indoor heat exchanger that is a use side heat exchanger.
  • the configuration of the above-described embodiment can also be applied to a cycle in which outdoor heat exchange called non-use side heat exchange or heat source side heat exchanger is used as each of the above-described evaporators.
  • a cycle called a heat pump such as a heating refrigeration cycle in which each evaporator is an outdoor heat exchanger and a condenser is an indoor heat exchanger, or a refrigeration cycle for hot water supply in which water is heated by a condenser.
  • the above-described embodiment can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Defrosting Systems (AREA)

Abstract

 エジェクタ14から流出した冷媒を蒸発させる第1蒸発器15と、放熱器13とエジェクタ14との間で冷媒流れを分岐して、この冷媒流れをエジェクタ14の気相冷媒吸引口14cに導く分岐通路17と、分岐通路17に配置された絞り機構18と、絞り機構18よりも冷媒流れ下流側に配置された第2蒸発器19とを備え、絞り機構18は、第2蒸発器19の除霜時に分岐通路17を全開する全開機能付きの構成である。従って、複数の蒸発器を備えるエジェクタ式冷凍サイクル装置において、簡素な構成で蒸発器の除 霜機能を達成できるようにする。

Description

明 細 書
ェジェクタ式冷凍サイクル装置
技術分野
[0001] 本発明は、冷媒減圧手段および冷媒循環手段の役割を果たすェジェクタを有する ェジ クタ式冷凍サイクル装置の除霜運転に関するものであり、例えば、車両用空調 冷蔵装置の冷凍サイクルに適用して有効である。
背景技術
[0002] 従来、ェジェクタ式冷凍サイクル装置の除霜運転は既に特許文献 1にて提案されて いる。この特許文献では、ェジヱクタ下流側に気液分離器を配置し、この気液分離器 の液相冷媒出口側とェジヱクタの冷媒吸引口側との間に蒸発器を設けるサイクル構 成において、圧縮機吐出側流路を蒸発器の上流側流路に直接結合するバイパス通 路を設け、このバイパス通路にはシャット機構を設けている。
[0003] そして、蒸発器の上流側流路とバイパス通路との結合部と、気液分離器の液相冷 媒出口との間に、バイパス通路からの高温冷媒が気液分離器の液相冷媒出口側へ 向力 ことを防止する機構 (例えば、絞り、逆止弁)を設けている。
[0004] 蒸発器の除霜を行う時は、バイパス通路のシャット機構を開状態にして、圧縮機吐 出側の高温冷媒 (ホットガス)をバイパス通路力も蒸発器内に導入する。これにより、 蒸発器の除霜を行うようにしている。このとき、高温冷媒が気液分離器の液相冷媒出 口側へ向力うことを上記機構により防止できるので、バイパス通路からの高温冷媒の 全量を用いて蒸発器の除霜を行うことができる(例えば、特開 2003— 83622号公報
) o
[0005] ところで、特開 2003— 83622号公報では、気液分離器の液相冷媒出口側とェジ ェクタの冷媒吸引口側との間のみに蒸発器を設けるサイクル構成であるので、複数 の蒸発器を備えるェジヱクタ式冷凍サイクル装置における除霜手段は何ら提案され ていない。
発明の開示
[0006] 本発明は、複数の蒸発器を備えるェジェクタ式冷凍サイクル装置における除霜手 段を提供することを目的とする。
[0007] 上記目的を達成するため、本発明の第一例によると、ェジェクタ式冷凍サイクル装 置は、冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 前記ェジェクタ(14)の上流側で冷媒流れを分岐して、この冷媒流れを前記冷媒吸 引口(14c)に導く第 1分岐通路(17)と、
前記第 1分岐通路(17)に配置され、冷媒を減圧膨張させる第 1絞り手段(18)と、 前記第 1分岐通路(17)において、前記第 1絞り手段(18)よりも下流側に配置され
、冷媒を蒸発させて冷却能力を発揮する第 2蒸発器 (19)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記第 1絞り手段(18)は、前記第 2蒸発器(19)の除霜時に前記第 1分岐通路(17 )を全開する全開機能付きの構成になっている。
[0008] これによると、冷媒蒸発圧力の高い第 1蒸発器(15)で高温域の冷却能力を発揮で きるとともに、冷媒蒸発圧力の低!ヽ第 2蒸発器 (19)で低温域の冷却能力を発揮でき る。
[0009] そして、第 2蒸発器(19)の除霜時には、第 1絞り手段(18)を第 1分岐通路(17)の 全開位置に操作することにより、放熱器(13)出口の高温高圧冷媒をそのまま第 1分 岐通路( 17)を通して第 2蒸発器 (19)に導入できる。
[0010] これにより、第 2蒸発器(19)の除霜を良好に行うことができる。し力も、通常時は冷 媒の減圧作用を行う第 1絞り手段(18)を、除霜時には全開状態にするだけで、特別 の部品の追加なしで、極めて簡単な構成で第 2蒸発器(19)の除霜を行うことができ る。
[0011] また、放熱器(13)下流側の冷媒を絞り手段(18)を介して第 2蒸発器(19)に流入 させるから、通常運転時における第 2蒸発器(19)の冷媒流量を絞り手段(18)で熱 負荷に応じた値に容易に調節できる。
[0012] ここで、「第 1分岐通路(17)を全開する全開機能」とは、完全に全開する場合の他 に、第 1分岐通路(17)の面積を若干量絞りながら開放する場合も含む。つまり、製造 上の理由等力 第 i絞り手段(18)を第 i分岐通路(17)の面積を若干量絞りながら開 放する構成にせざるを得な ヽ場合がある。
[0013] 本発明の第二例によると、ェジェクタ式冷凍サイクル装置は、冷媒を吸入し圧縮す る圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 前記ェジェクタ(14)の上流側で冷媒流れを分岐して、この冷媒流れを前記冷媒吸 引口(14c)に導く第 1分岐通路(17)と、
前記第 1分岐通路(17)に配置され、冷媒を減圧膨張させる第 1絞り手段(180)と、 前記第 1分岐通路(17)において、前記第 1絞り手段(180)よりも下流側に配置さ れる第 2蒸発器 (19)と、
前記圧縮機(12)から吐出された高圧冷媒を直接前記第 2蒸発器 (19)に導入する バイパス通路(23)と、
前記バイパス通路(23)に設けられたシャット機構 (24)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記シャット機構 (24)は、前記第 2蒸発器(19)の除霜時に前記バイパス通路 (23 )を開放状態にする常閉式の構成になっていることを特徴とする。
[0014] 本発明の第二例では、第一例に対して第 2蒸発器(19)の除霜手段を変更している 。すなわち、本発明の第二例においては、第 2蒸発器(19)の除霜時に、圧縮機(12 )吐出側の高温高圧冷媒をバイパス通路(23)を通して第 2蒸発器(19)に直接導入 して、第 2蒸発器 (19)の除霜を行うことができる。
[0015] し力も、第 1絞り手段(180)は全開機能を設定する必要がないから、通常の固定絞 りまたは可変絞りをそのまま第 1絞り手段(180)として使用できる。なお、本発明の第 二例による他の作用効果は第一例と同じである。
[0016] 本発明の第三例によると、ェジェクタ式冷凍サイクル装置は、冷媒を吸入し圧縮す る圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 前記ェジェクタ(14)の上流側で冷媒流れを分岐して、この冷媒流れを前記冷媒吸 引口(14c)に導く第 1分岐通路(17)と、
前記第 1分岐通路(17)に配置され、前記放熱器 (13)下流側の冷媒を減圧膨張さ せる第 1絞り手段(180)と、
前記第 1分岐通路(17)において、前記第 1絞り手段(180)よりも下流側に配置さ れる第 2蒸発器 (19)と、
前記第 1絞り手段(180)をバイパスするバイパス通路(33)と、
前記バイパス通路(33)に設けられたシャット機構 (34)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記シャット機構 (34)は、前記第 2蒸発器(19)の除霜時に前記バイパス通路 (33 )を開放状態にする常閉式の構成になつている。
[0017] すなわち、本発明の第三例では、第 2蒸発器(19)の除霜時に、第 1絞り手段(180 )のバイパス通路(33)をシャット機構 (34)にて開放することにより、放熱器(13)出口 の高温高圧冷媒をそのままバイパス通路(33)を通して第 2蒸発器(19)に導入でき る。
[0018] これにより、第 2蒸発器(19)の除霜を良好に行うことができる。し力も、第 1絞り手段 (180)は全開機能を設定する必要がないから、通常の固定絞りまたは可変絞りをそ のまま第 1絞り手段(180)として使用できる。
[0019] 上記のェジェクタ式冷凍サイクル装置において、前記第 1蒸発器(15)と同じ温度 帯で冷媒を蒸発させて冷却能力を発揮する第 3蒸発器 (27)を備えることができる。
[0020] これにより、複数の蒸発器(15、 27)を用いて同一温度帯での冷却性能を発揮でき る。
[0021] また、前記第 1分岐通路(17)のうち、前記第 1絞り手段(18、 180)の上流部位から 冷媒流れを分岐し、この冷媒流れを前記第 1蒸発器(15)の冷媒流出側と前記圧縮 機(12)の吸入側との間に合流させる第 2分岐通路 (25)と、
前記第 2分岐通路 (25)に配置され、冷媒を減圧する第 2絞り手段 (26)とを備え、 前記第 2分岐通路(25)において、前記第 2絞り手段(26)よりも下流側に前記第 3 蒸発器 (27)を配置できる。
[0022] このように、第 3蒸発器 (27)は具体的には第 2分岐通路 (25)を形成して第 2分岐 通路(25)中に配置すればょ 、。
[0023] また、上記のェジ クタ式冷凍サイクル装置において、前記第 1蒸発器(15)は前記 ェジヱクタ(14)の冷媒流出側に接続してもよ!/、。
[0024] 前記放熱器(13)の冷媒流出側と前記第 1蒸発器(15)の冷媒流入側との間に第 3 絞り手段(30)を設け、前記ェジェクタ(14)を前記第 3絞り手段(30)と並列に設ける ことができる。
[0025] これによると、第 1蒸発器(15)のための専用の第 3絞り手段(30)を設けているから 、ェジ クタ(14)に第 1蒸発器(15)の冷媒流量調節機能を分担させる必要がなくな る。このため、ェジェクタ(14)は第 1、第 2蒸発器(15、 19)に圧力差を付けるための ポンプ機能に特ィ匕できる。
[0026] これにより、第 1、第 2蒸発器 15、 19間に所定の圧力差をつけるように、ェジヱクタ 1 4の形状を最適に設計することが可能となる。この結果、サイクル運転条件 (圧縮機回 転数、外気温度、冷却対象空間温度等)の広範囲の変動に対しても、ェジヱクタ式冷 凍サイクル装置の高効率運転が可能となる。
[0027] また、前記第 2蒸発器(19)の除霜時に前記ェジ クタ(14)の上流部をシャットする シャット機構 (31)を備えれば、第 2蒸発器 (19)の除霜時に放熱器 (13)の冷媒流出 側からェジ クタ(14)に流入する高圧冷媒流れを遮断して、第 2蒸発器(19)に流入 する高圧冷媒量を増大して除霜性能を向上できる。
[0028] 上記第二例によるェジ クタ式冷凍サイクル装置において、前記第 2蒸発器(19) の除霜時に前記放熱器(13)の上流部をシャットするシャット機構 (32)を備えるように すれば、第 2蒸発器(19)の除霜時に圧縮機(12)吐出側力 第 2蒸発器(19)に流 入する高圧冷媒量を増大して除霜性能を向上できる。
[0029] 本発明の第四例によると、ェジ クタ式冷凍サイクル装置は、冷媒を吸入し圧縮す る圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
前記ェジェクタ(14)から流出した冷媒を蒸発させて冷却能力を発揮する第 1蒸発 器(15)と、
前記第 1蒸発器(15)力 流出した冷媒の気液を分離して液相冷媒を溜めるととも に、気相冷媒を前記圧縮機(12)の吸入側に導出する気液分離器 (35)と、 前記気液分離器 (35)の液相冷媒の出口部を前記冷媒吸引口(14c)に接続する 分岐通路 (36)と、
前記分岐通路(36)に配置され、前記気液分離器 (35)から流出した前記液相冷媒 を減圧膨張させる絞り手段(180)と、
前記分岐通路(36)において、前記絞り手段(180)よりも下流側に配置される第 2 蒸発器 (19)と、
前記圧縮機(12)から吐出された高圧冷媒を直接前記第 2蒸発器 (19)に導入する バイパス通路(23)と、
前記バイパス通路(23)に設けられたシャット機構 (24)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、 前記シャット機構 (24)は、前記第 2蒸発器(19)の除霜時に前記バイパス通路 (23 )を開放状態にする常閉式の構成になつている。
[0030] この場合、気液分離器 (35)の液相冷媒の出口部を冷媒吸引口(14c)に接続する 分岐通路 (36)を具備し、この分岐通路 (36)に絞り手段(180)および第 2蒸発器(1 9)を設けてもよい。
[0031] このようなサイクル構成において、第 1蒸発器(15)よりも低温にて冷媒が蒸発する 第 2蒸発器 (19)の除霜時は、圧縮機(12)吐出側の高圧冷媒を直接第 2蒸発器 (19 )に導入することで、第 2蒸発器(19)の除霜を良好に行うことができる。
[0032] 本発明の第五例によると、ェジェクタ式冷凍サイクル装置は、冷媒を吸入し圧縮す る圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 冷媒流出側が前記冷媒吸引口(14c)に接続される第 2蒸発器(19)と、 前記第 1蒸発器 (15)の冷媒流出側に配置される第 1絞り機構 (38)と、 前記第 2蒸発器 (19)の冷媒流入側に設けられる第 2絞り機構 (18)と、
前記第 1絞り機構 (38)および前記第 2絞り機構 (18)の開度を制御して、前記第 1 蒸発器(15)および前記第 2蒸発器(19)にて低圧冷媒が蒸発する通常運転モードと 、前記圧縮機(12)の吐出側の高圧高温冷媒を前記第 2蒸発器(19)および前記第 1 蒸発器(15)の両方に導入して、前記両蒸発器(15、 19)の除霜を行う除霜運転モ 一ドとを切り替える制御手段(21)とを備えている。
[0033] これによると、図 19に例示するように、除霜運転モード時に、圧縮機(12)吐出側の 高圧高温冷媒をそのまま第 1、第 2蒸発器(15、 19)に導入して両蒸発器(15、 19) の除霜を行うことができる。従って、圧縮機(12)の作動による両蒸発器(15、 19)の 定常的な除霜機能を良好に発揮できる。
[0034] 除霜運転モード時に、第 1絞り機構 (38)を具体的には所定絞り開度の状態とし、第 2絞り機構(18)を全開状態とすればよい。
[0035] これにより、図 19に例示する除霜運転モード時のサイクル挙動を実現して定常的な 除霜機能を行うことができる。
[0036] 本発明の第六例によると、ェジ クタ式冷凍サイクル装置は、冷媒を吸入し圧縮す る圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 冷媒流出側が前記冷媒吸引口(14c)に接続される第 2蒸発器(19)と、 前記第 2蒸発器 (19)の冷媒流入側に設けられる第 1絞り機構 (18)と、 前記第 2蒸発器 (19)の冷媒流出側に設けられる第 2絞り機構 (39)と、
前記第 1絞り機構 (18)および前記第 2絞り機構 (39)の開度を制御して、前記第 1 蒸発器(15)および前記第 2蒸発器(19)にて低圧冷媒が蒸発する通常運転モードと 、前記第 2蒸発器 (19)の除霜を行うと同時に前記第 1蒸発器 (15)が冷却機能を発 揮する除霜'冷却運転モードとを切り替える制御手段 (21)とを備え、
前記除霜'冷却運転モード時には、前記圧縮機(12)の吐出側の高圧高温冷媒を 前記第 2蒸発器(19)に導入して前記第 2蒸発器(19)の除霜を行うとともに、前記第 2蒸発器(19)を通過した高圧冷媒を前記第 2絞り機構 (39)により減圧し、この減圧 後の低圧冷媒を前記第 1蒸発器(15)に導入することにより、前記第 1蒸発器(15)が 冷却機能を発揮している。
[0037] これによると、図 22に例示するように除霜 ·冷却運転モード時に、圧縮機(12)吐出 側の高圧高温冷媒を第 2蒸発器 (19)に導入して第 2蒸発器 (19)の除霜を行うこと ができると同時に、第 2蒸発器(19)通過後の高圧冷媒を第 2絞り機構 (39)により減 圧し、この減圧後の低圧冷媒を第 1蒸発器(15)に導入して、第 1蒸発器(15)が冷却 機能を発揮できる。従って、第 2蒸発器 (19)の除霜機能と第 1蒸発器 (15)の冷却機 能とを定常的に同時に発揮できる。 [0038] 例えば、除霜'冷却運転モード時に、第 1絞り機構(18)は全開状態とし、第 2絞り機 構 (39)は所定絞り開度の状態とすればよい。
[0039] これにより、図 22に例示する除霜 ·冷却運転モード時のサイクル挙動を実現して除 霜機能と冷却機能の同時運転を定常的に行うことができる。
[0040] 本発明の第七例によると、ェジ クタ式冷凍サイクル装置は、冷媒を吸入し圧縮す る圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 冷媒流出側が前記冷媒吸引口(14c)に接続される第 2蒸発器(19)と、 前記第 2蒸発器 (19)の冷媒流入側に設けられる絞り機構 (181)と、
前記放熱器 (13)で冷媒が放熱する状態を設定して、前記第 1蒸発器 (15)および 前記第 2蒸発器 (19)にて低圧冷媒が蒸発する通常運転モードと、前記放熱器 (13) で冷媒が放熱しな!、状態を設定して、前記第 1蒸発器 (15)および前記第 2蒸発器 ( 19)の両方の除霜を行う除霜運転モードとを切り替える制御手段(21)とを備え、 前記除霜運転モード時には、前記圧縮機(12)の吐出側の冷媒が高圧高温状態の まま前記絞り機構(181)に流入して減圧され、前記絞り機構(181)通過後の低圧の 高温気相冷媒を前記第 1蒸発器(15)および前記第 2蒸発器(19)の両方に導入して いる。
[0041] これによると、図 26に例示するように、除霜運転モード時に、絞り機構(181)により 減圧した低圧の高温気相冷媒を第 1蒸発器(15)および第 2蒸発器(19)の両方に導 入して、この両蒸発器(15、 19)を同時に除霜できる。従って、圧縮機(12)の作動に よる両蒸発器 (15、 19)の定常的な除霜機能を良好に発揮できる。
[0042] この場合、絞り機構(181)の通常運転モード時の開度よりも除霜運転モード時の開 度を大きくすれば、除霜運転モード時にも必要冷媒流量を確保できる。
[0043] すなわち、放熱器(13)が凝縮器として作用する亜臨界サイクルでは、除霜運転モ ード時には、圧縮機(12)の吐出側の高圧高温の気相冷媒を絞り機構(181)により 減圧することになり、気相冷媒の密度は液相冷媒の密度よりも小さいが、絞り機構(1 81)の開度を通常運転モード時よりも除霜運転モード時の方で大きくしているから、 絞り機構(181)にて気相冷媒を減圧する除霜運転モード時でも必要冷媒流量を確 保できる。
[0044] 上記の冷凍サイクル装置において、放熱器(13)に冷却空気を送風する送風手段( 13a)を設け、前記除霜運転モード時には、前記送風手段(13a)を停止状態にしても よい。
[0045] 放熱器(13)の送風手段(13a)を停止状態することにより、圧縮機(12)吐出側の冷 媒を高圧高温状態のまま放熱器( 13)を素通りして放熱器 (13)下流側に送り込むと ができる。従って、放熱器(13)をバイパスする冷媒通路等を必要とすることなぐ簡 単な冷媒通路構成にて蒸発器除霜機能を発揮できる。
[0046] 上記の第七例のェジヱクタ式冷凍サイクル装置において、放熱器(13)の冷媒通路 をバイパスする放熱器バイパス通路 (40)と、
放熱器バイパス通路 (40)に設けられたバイパス用シャット機構 (41)とを備え、 除霜運転モード時にはバイパス用シャット機構 (41)を開状態にすることにより、圧 縮機(12)吐出側の高圧高温冷媒を放熱器バイパス通路 (40)を通して絞り機構(18
1)に導入するようにしてもよい。
[0047] これによると、放熱器(13)の送風手段(13a)を作動したまま、圧縮機(12)吐出側 の高圧高温冷媒を放熱器バイパス通路 (40)を通して絞り機構(181)に導入すること ができる。
[0048] また、放熱器(13)の冷媒出口部に放熱器用シャット機構 (42)をバイパス用シャット 機構 (41)と並列に設けるとともに、前記放熱器(13)に冷却空気を送風する送風手 段(13a)を設け、
前記除霜運転モード時には前記バイパス用シャット機構 (41)を開状態にするととも に、前記放熱器用シャット機構 (42)を閉状態にし、かつ、前記送風手段(13a)を作 動状態にすることができる。
[0049] これによると、除霜運転モード時に放熱器(13)が圧縮機(12)吐出側の高圧高温 の気相冷媒を凝縮して溜める液溜め機能を発揮できる。そのため、第 1蒸発器(15) の冷媒流出側 (圧縮機(12)吸入側)に気液分離器 (35)を配置する場合には、気液 分離器 (35)のタンク容量を減少できる。
[0050] 本発明のェジェクタ式冷凍サイクル装置にぉ 、て、前記ェジェクタ(14)の上流側 通路にェジェクタ用シャット機構 (31)を設け、前記除霜運転モード時および前記除 霜-冷却運転モード時には前記ェジ クタ用シャット機構(31)により前記ェジ クタ( 14)の上流側通路を閉状態にしてもよい。これにより、除霜運転モード時にはェジェ クタ(14)の上流側通路を閉状態にして、この上流側通路力 ェジェクタ(14)への冷 媒流入を阻止して、第 2蒸発器(19)側に流入する高温冷媒流量を増やすことができ 、除霜能力を向上できる。
[0051] また、本発明のェジ クタ式冷凍サイクル装置において、第 1蒸発器(15)の冷媒流 出側に、冷媒の気液を分離して液相冷媒を溜め、気相冷媒を圧縮機(12)の吸入側 に流出する気液分離器(35)を備えてもよい。 この場合、除霜運転モード時および 除霜 ·冷却運転モード時に圧縮機(12)への液冷媒戻りを確実に防止できる。
[0052] なお、上記各手段および特許請求の範囲に記載の各手段の括弧内の符号は、後 述する実施形態に記載の具体的手段との対応関係を示すものである。
図面の簡単な説明
[0053] [図 1]本発明の第 1実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図 である。
[図 2](a),(b)は第 1実施形態における全開機能付き絞り機構の概略作動説明図であ る。
[図 3]第 2実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。
[図 4]第 3実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。
[図 5]第 4実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。
[図 6]第 5実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。
[図 7]第 6実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。
[図 8]第 7実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。
[図 9]第 8実施形態によるェジヱクタ式冷凍サイクル装置を示すサイクル図である。 圆 10]第 9実施形態に:よるェジヱクタ式冷凍サイクル装置を示すサイクル図である。 圆 11]第 10実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 12]第 11実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 13]第 12実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 14]第 13実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 15]第 14実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 16]第 14実施形態による各種機器の作動をまとめて示す図表である。
圆 17]第 15実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 18]第 15実施形態による各種機器の作動をまとめて示す図表である。
圆 19]第 15実施形態による除霜運転時の作動を示すモリエル線図である。
[図 20]第 16実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 21]第 16実施形態による各種機器の作動をまとめて示す図表である。
[図 22]第 16実施形態による除霜 ·冷却運転時の作動を示すモリエル線図である。
[図 23]第 17実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 24]第 17実施形態における絞り機構の概略作動説明図である。
[図 25]第 17実施形態による各種機器の作動をまとめて示す図表である。
[図 26]第 17実施形態による除霜運転時の作動を示すモリエル線図である。
[図 27]第 18実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 28]第 19実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 29]第 19実施形態による各種機器の作動をまとめて示す図表である。
[図 30]第 20実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 31]第 21実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 32]第 21実施形態による各種機器の作動をまとめて示す図表である。
[図 33]第 22実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 圆 34]第 23実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 35]第 24実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 36]第 25実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。
[図 37]第 26実施形態によるェジェクタ式冷凍サイクル装置を示すサイクル図である。 発明を実施するための最良の形態
[0054] (第 1実施形態)
図 1は、本発明の第 1実施形態によるェジヱクタ式冷凍サイクル装置を車両用空調 冷蔵装置の冷凍サイクルに適用した例を示しており、ェジェクタ式冷凍サイクル装置 10には冷媒循環経路 11が備えられており、この冷媒循環経路 11には冷媒を吸入、 圧縮する圧縮機 12が配置されてる。
[0055] 本実施形態では、この圧縮機 12を図示しない車両走行用エンジンによりベルト等 を介して回転駆動するようになっている。そして、圧縮機 12として吐出容量の変化に より冷媒吐出能力を調整できる可変容量型圧縮機を使用している。ここで、吐出容量 は 1回転当たりの冷媒吐出量に相当するもので、冷媒の吸入容積を変化させることに より吐出容量を変化させることができる。
[0056] 可変容量型圧縮機 12としては斜板式が代表的であり、具体的には、斜板の角度を 変化させてピストンストロークを変化させて冷媒の吸入容積を変化させる。なお、容量 制御機構を構成する電磁式圧力制御装置 12aにより斜板室の圧力(制御圧力)を変 ィ匕させることにより、斜板の角度を外部から電気的に制御できる。
[0057] この圧縮機 12の冷媒流れ下流側には放熱器 13が配置されている。放熱器 13は圧 縮機 12から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気 (車室 外空気)との間で熱交換を行って高圧冷媒を冷却する。
[0058] 放熱器 13よりもさらに冷媒流れ下流側部位には、ェジ クタ 14が配置されている。
このェジェクタ 14は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流 の吸引作用によって流体輸送を行う運動量輸送式ポンプである。
[0059] ェジヱクタ 14には、放熱器 13から流入する高圧冷媒の通路面積を小さく絞って、 高圧冷媒を等エントロピ的に減圧膨張させるノズル部 14aと、ノズル部 14aの冷媒噴 出口と連通するように配置され、後述する第 2蒸発器 19からの冷媒を吸引する吸引 口 14cが備えられている。
[0060] さらに、ノズル部 14aおよび吸引口 14cの冷媒流れ下流側部位には、昇圧部をな すディフューザ部 14bが配置されている。このディフューザ部 14bは冷媒の通路面積 を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇さ せる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果た す。
[0061] ェジヱクタ 14のディフューザ部 14bから流出した冷媒は、第 1蒸発器 15に流入する 。第 1蒸発器 15は、例えば、車室内空調ユニット(図示せず)の通風路内に設置され 、車室内冷房用の冷却作用を果たす。
[0062] 具体的には、車室内空調ユニットの電動送風機 (第 1送風機) 16により車室内空調 空気が第 1蒸発器 15に送風され、ェジェクタ 14にて減圧後の低圧冷媒が第 1蒸発器 15において車室内空調空気から吸熱して蒸発することにより車室内空調空気が冷 却されて冷房能力を発揮する。第 1蒸発器 15で蒸発した気相冷媒は圧縮機 12に吸 入され、再び冷媒循環経路 11を循環する。
[0063] また、本実施形態のェジ クタ式冷凍サイクル装置には、冷媒循環経路 11の放熱 器 13とェジヱクタ 14との間の部位で分岐し、ェジヱクタ 14の吸引口 14cで冷媒循環 経路 11に合流する分岐通路 17が形成されて 、る。
[0064] この分岐通路 17には、冷媒の流量調節と冷媒の減圧を行う絞り機構 18が配置され ている。この絞り機構 18は本例では全開機能付きの絞り機構により構成される。図 2 はこの全開機能付きの絞り機構 18の具体例を示す概略断面図であって、絞り機構 1 8には、固定絞りを構成する絞り穴 18aと、分岐通路 17を全開するための全開用穴 部 18bとを開口した可動板部材 18cが備えられている。
[0065] 全開用穴部 18bは分岐通路 20の流路 (配管)断面積相当の断面積を持つように設 計されている。これにより、絞り機構 18が分岐通路 20の全開機能を果たすようになつ ている。
[0066] そして、この可動板部材 18cを分岐通路 17の横断方向(冷媒流れ方向 aと直交方 向)に移動可能に配置し、この可動板部材 18cをサーボモータ等により構成される電 気式ァクチユエータ 18dにより駆動するようになっている。なお、図 2 (a)は絞り穴 18a が固定絞りとして作用する通常時であり、図 2 (b)は全開用穴部 18bによって分岐通 路 17が全開状態にある除霜運転時を示す。
[0067] この絞り機構 18よりも冷媒流れ下流側部位には第 2蒸発器 19が配置されている。こ の第 2蒸発器 19は、例えば、車両搭載の冷蔵庫(図示せず)内部に設置され、冷蔵 庫内の冷却作用を果たす。冷蔵庫内の空気を電動送風機 (第 2送風機) 20により第 2蒸発器 19に送風するようなっている。
[0068] なお、本実施形態では可変容量型圧縮機 12の電磁式圧力制御装置 12a、第 1 ·第 2送風機 16、 20、絞り機構 18等は、電気制御装置(以下 ECUと略称) 21からの制御 信号により電気的に制御されるようになっている。第 2蒸発器 19近傍の所定位置に は温度センサ 22が配置され、この温度センサ 22により第 2蒸発器 19近傍の空気温 度を検出する。この温度センサ 22の検出信号は ECU21に入力される。
[0069] 次に、上記構成において本実施形態の作動を説明する。圧縮機 12を車両ェンジ ンにより駆動すると、圧縮機 12で圧縮されて高温高圧状態となった冷媒は放熱器 13 に流入して外気により冷却され凝縮する。放熱器 13から流出した高圧液冷媒は、冷 媒循環径路 11を流れる流れと、分岐通路 17を流れる流れとに分流する。
[0070] ここで、通常時 (第 2蒸発器 19の除霜を行う必要のない時)は分岐通路 17の絞り機 構 18が ECU21の制御信号にて図 2 (a)の通常状態に置かれ、絞り穴 18aが分岐通 路 17中に位置する。このため、絞り穴 18aが固定絞りとして作用するので、分岐通路 17を流れる冷媒は、絞り機構 18で減圧されて低圧状態となる。
[0071] この低圧冷媒は第 2蒸発器 19で第 2送風機 20により送風される冷蔵庫内の空気か ら吸熱して蒸発する。これにより、第 2蒸発器 19が冷蔵庫内の冷却作用を発揮する。
[0072] ここで、第 1分岐通路 17を通過して第 2蒸発器 19に流入する冷媒の流量は絞り機 構 18の絞り穴 18aの開度で調節できる。そして、 ECU21にて第 2送風機 20の回転 数 (送風量)を制御することにより、第 2蒸発器 19が発揮する冷却対象空間 (具体的 には冷蔵庫内空間)の冷却能力を制御できる。
[0073] 第 2蒸発器 19から流出した気相冷媒はェジヱクタ 14の吸引口 14cへ吸引される。
一方、冷媒循環経路 11を流れる冷媒流れはェジェクタ 14に流入し、ノズル部 14aで 減圧され膨張する。従って、ノズル部 14aで冷媒の圧力エネルギーが速度エネルギ 一に変換され、冷媒は高速度となってノズル噴出ロカ 噴出する。この際に生じるノ ズル噴出口付近の圧力低下により、吸引口 14cから第 2蒸発器 19にて蒸発した気相 冷媒を吸引する。
[0074] ノズル部 14aから噴出した冷媒と吸引口 14cに吸引された冷媒は、ノズル部 14a下 流側で混合してディフューザ部 14bに流入する。このディフューザ部 14bでは通路面 積の拡大により、冷媒の速度 (膨張)エネルギーが圧力エネルギーに変換されるため 、冷媒の圧力が上昇する。ェジェクタ 14のディフューザ部 14bから流出した冷媒は、 第 1蒸発器 15に流入する。
[0075] 第 1蒸発器 15では、冷媒が車室内へ吹き出す空調空気から吸熱して蒸発する。こ の蒸発後の気相冷媒は、圧縮機 12に吸入、圧縮され、再び冷媒循環経路 11を循環 する。ここで、 ECU21は、圧縮機 12の容量制御を行って、圧縮機 12の冷媒吐出能 力を制御できる。
[0076] これにより、第 1蒸発器 15への冷媒流量を調節するとともに、第 1送風機 26の回転 数 (送風量)を制御することにより、第 1蒸発器 15が発揮する冷却対象空間の冷却能 力、具体的には車室内冷房能力を制御できる。
[0077] ところで、第 1蒸発器 15の冷媒蒸発圧力はディフューザ部 14bで昇圧した後の圧 力であり、一方、第 2蒸発器 19の出口側はェジェクタ 14の吸引口 14cに接続されて いるから、ノズル部 14aでの減圧直後の最も低 、圧力を第 2蒸発器 19に作用させる ことができる。
[0078] これにより、第 1蒸発器 15の冷媒蒸発圧力(冷媒蒸発温度)よりも第 2蒸発器 19の 冷媒蒸発圧力 (冷媒蒸発温度)を低くすることができる。従って、第 1蒸発器 15により 車室内の冷房に適した比較的高温域の冷却作用を発揮できると同時に、第 2蒸発器 19により冷蔵庫内の冷却に適した一段と低温域の冷却作用を発揮できる。
[0079] ここで、第 2蒸発器 19は冷媒蒸発温度が 0°Cより低い条件にて運転されることがあ るので、第 2蒸発器 19のフロスト (霜付き)による冷却性能の低下が課題となる。
[0080] そこで、本実施形態においては、第 2蒸発器 19近傍に温度センサ 22を配置し、こ の温度センサ 22の検出温度に基づいて第 2蒸発器 19のフロスト有無を ECU21で判 定して第 2蒸発器 19の除霜を自動的に行うようになって!/、る。
[0081] すなわち、温度センサ 22により検出される第 2蒸発器 19近傍の空気温度が予め設 定したフロスト判定温度 Ta以下に低下すると、 ECU21は第 2蒸発器 19のフロスト状 態を判定して、全開機能付きの絞り機構 18の電気式ァクチユエータ 18dに制御信号 を出力し、この電気式ァクチユエータ 18dにより可動板部材 18cを図 2 (a)の通常時 位置から図 2 (b)の除霜時位置に移動させる。
[0082] これにより、可動板部材 18cの全開用穴部 18bが分岐通路 17の通路全体に重合し て、分岐通路 17を全開状態とする。この結果、放熱器 13出口の高温高圧の液冷媒 をそのまま分岐通路 17を通して第 2蒸発器 19に導くことができる。これにより、第 2蒸 発器 19表面に付着した霜を溶かすことができ、極めて簡単な構成にて第 2蒸発器 19 の除霜運転を行うことができる。
[0083] この除霜運転の実行により、第 2蒸発器 19近傍の空気温度が上記フロスト判定温 度 TOよりも所定温度 αだけ高い除霜終了温度 Tb (Tb=Ta+ α )まで上昇すると、 Ε CU21にて除霜運転の終了を判定して、全開機能付きの絞り機構 18の電気式ァク チユエータ 18dに通常時位置への復帰のための制御信号を出力する。
[0084] これにより、電気式ァクチユエータ 18dが可動板部材 18cを図 2 (b)の除霜時位置 力 図 2 (a)の通常時位置に復帰させる。そのため、絞り機構 18は再び絞り穴 18aに よる固定絞りの作用を発揮するので、第 2蒸発器 19も冷却作用を発揮する状態に復 帰する。
[0085] (第 2実施形態)
図 3は第 2実施形態であり、第 1実施形態と同等部分には同一符号を付して説明を 省略する。第 2実施形態では圧縮機 12の吐出側通路と第 2蒸発器 19の入口部とを 直接結合するバイパス通路 23を形成し、このバイパス通路 23にシャット機構 24を設 けている。このシャット機構 24は具体的には通電されたときのみ開弁する常閉式電磁 弁により構成できる。
[0086] 第 2実施形態によると、通常時 (第 2蒸発器 19の除霜を行う必要のない時)は ECU 21の制御信号にてシャット機構 24がシャット状態に維持される。このため、バイパス 通路 23に冷媒が流れないので、圧縮機 12の作動によって第 1実施形態と同じ冷凍 サイクル作動が行われ、第 1蒸発器 15により車室内の冷房に適した比較的高温域の 冷却作用を発揮できると同時に、第 2蒸発器 19により冷蔵庫内の冷却に適した一段 と低温域の冷却作用を発揮できる。
[0087] そして、温度センサ 22により検出される第 2蒸発器 19近傍の空気温度が予め設定 したフロスト判定温度 Ta以下に低下すると、 ECU21は第 2蒸発器 19のフロスト状態 を判定してシャット機構 24に制御信号を出力し、シャット機構 24を開放する。
[0088] この結果、圧縮機 12吐出側の高温高圧の気相冷媒がバイパス通路 23を通過して 第 2蒸発器 19に流入するので、第 2蒸発器 19表面に付着した霜を溶かすことができ 、極めて簡単な構成にて第 2蒸発器 19の除霜運転を行うことができる。除霜運転の 終了は第 1実施形態と同様の判定を行って、シャット機構 24をシャット状態に復帰さ せればよい。
[0089] なお、第 2実施形態の分岐通路 17の絞り機構 180は全開機能を設定する必要がな V、から、通常の固定絞りあるいは可変絞りを用いて構成できる。
[0090] (第 3実施形態)
図 4は第 3実施形態であり、第 1実施形態の変形である。すなわち、第 3実施形態で は、第 1実施形態の構成に加えて、分岐通路 17のうち全開機能付きの絞り機構 18の 上流側部位と、第 1蒸発器 15と圧縮機 12の間の部位とを接続する第 2の分岐通路 2 5を追加している。
[0091] そして、第 2分岐通路 25には、冷媒の減圧を行う絞り機構 26と、この絞り機構 26よ りも冷媒流れ下流側部位に位置する第 3蒸発器 27を配置している。絞り機構 26は全 開機能を設定する必要がないから、通常の固定絞り、可変絞りを用いて構成できる。 第 3蒸発器 27には電動送風機 (第 3送風機) 28により冷却対象空間の空気が送風さ れる。この第 3送風機 28の作動も ECU21により制御される。第 3蒸発器 27
第 3実施形態によると、第 3蒸発器 27の下流側を第 1蒸発器 15の下流側に合流し て、圧縮機 12の吸入側に接続しているので、第 1、第 3蒸発器 15、 27の冷媒蒸発圧 力はともに圧縮機 12の吸入圧とほぼ同一圧力となる。従って、第 1、第 3蒸発器 15、 27の冷媒蒸発温度も同一温度となるので、第 1、第 3蒸発器 15、 27は互いに同一温 度域の冷却作用を果たす。
[0092] 第 3実施形態でも、第 2蒸発器 19の冷媒蒸発温度が第 1、第 3蒸発器 15、 27の冷 媒蒸発温度よりも低い温度となるが、第 2蒸発器 19の除霜は全開機能付きの絞り機 構 18を全開状態にすることにより、第 1実施形態と同様に行うことができる。
[0093] 第 3実施形態による第 1〜第 3蒸発器 15、 19、 27の冷却対象空間の具体例として は、例えば、第 1蒸発器 15により車室内前席側領域を冷房し、第 3蒸発器 27により 車室内後席側領域を冷房し、第 2蒸発器 19により冷蔵庫内部を冷却する。
[0094] (第 4実施形態)
図 5は第 4実施形態であり、第 2実施形態(図 3)の変形である。すなわち、第 4実施 形態では、第 2実施形態の構成に加えて、分岐通路 17のうち絞り機構 180の上流側 部位と、第 1蒸発器 15と圧縮機 12の間の部位とを接続する第 2の分岐通路 25を追 カロしている。この第 2分岐通路 25には絞り機構 26と第 3蒸発器 27を配置している。こ の絞り機構 26と第 3蒸発器 27は第 3実施形態と同じものである。
[0095] 以上により、第 4実施形態ではバイパス通路 23とシャット機構 24により第 2蒸発器 1 9の除霜を第 2実施形態と同様に行うことができるとともに、第 3蒸発器 27による冷却 作用は第 3実施形態と同様に行うことができる。
[0096] (第 5実施形態)
図 6は第 5実施形態であり、第 1実施形態の変形である。すなわち、第 5実施形態で は、第 1蒸発器 15の上流部に専用の絞り機構 30を追加し、これに伴って、ェジェクタ 14をこの絞り機構 30と並列に配置している。なお、絞り機構 30としては種々なものが 使用可能であるが、例えば、第 1蒸発器 15の出口冷媒の過熱度を所定値に制御す る温度式膨張弁が好適である。
[0097] 第 2蒸発器 19の上流部に全開機能付きの絞り機構 18を配置し、第 2蒸発器 19の 除霜が必要な時に、絞り機構 18を全開して第 2蒸発器 19の除霜運転を実行すること は第 1実施形態と同じである。
[0098] 次に、第 5実施形態の第 1実施形態に対する特徴を述べると、第 1〜第 4実施形態 ではいずれも、ェジェクタ 14と第 1蒸発器 15とを直列に接続しているので、ェジェクタ 14は第 1蒸発器 15の冷媒流量調節機能を果たすとともに、第 1蒸発器 15と第 2蒸発 器 19との間に冷媒圧力差をつけるポンプ機能を果たしている。
[0099] 従って、ェジェクタ 14の設計に際しては、冷媒流量調節機能とポンプ機能の要求 仕様をともに満足する必要があり、そして、第 1蒸発器 15の冷媒流量調節機能を確 保するために第 1蒸発器 15に依存した設計とならざるを得ない。その結果、ェジエタ タ式冷凍サイクル装置を高効率で運転することが困難になるという課題がある。
[0100] そこで、第 5実施形態では、図 6に示すように第 1蒸発器 15の上流部に専用の絞り 機構 30を配置して、ェジ クタ 14が第 1蒸発器 15の冷媒流量調節機能は分担しな いですむようにしている。このため、ェジェクタ 14は、第 1蒸発器 15と第 2蒸発器 19と の間に冷媒圧力差をつけるポンプ機能のみに特ィ匕できる。
[0101] これにより、第 1、第 2蒸発器 15、 19間に所定の圧力差をつけるように、換言すると 、ェジヱクタ 14の通過流量が所定流量となるように、ェジヱクタ 14の形状を最適に設 計することが可能となる。この結果、サイクル運転条件 (圧縮機回転数、外気温度、冷 却対象空間温度等)の広範囲の変動に対しても、ェジヱクタ式冷凍サイクル装置の 高効率運転が可能となる。
[0102] (第 6実施形態)
図 7は第 6実施形態であり、第 2実施形態(図 3)の変形である。すなわち、第 6実施 形態は、第 2実施形態のように第 2蒸発器 19の除霜運転のためのバイパス通路 23お よびシャット機構 24を有するサイクル構成において、第 1蒸発器 15の上流部に専用 の絞り機構 30を追加し、この絞り機構 30にェジヱクタ 14を並列接続したものである。
[0103] この絞り機構 30とェジェクタ 14との並列接続構成は第 5実施形態(図 6)と同じであ る。従って、第 6実施形態は、第 2実施形態と第 5実施形態とを組み合わせた作用効 果を発揮できる。
[0104] (第 7実施形態)
図 8は第 7実施形態であり、第 3実施形態(図 4)の変形である。すなわち、第 7実施 形態は、第 3実施形態のように第 2蒸発器 19の上流部に除霜運転のための全開機 能付きの絞り機構 18を配置し、かつ、絞り機構 26および第 3蒸発器 27を有するサイ クル構成において、第 1蒸発器 15の上流部に専用の絞り機構 30を追加し、この絞り 機構 30にェジヱクタ 14を並列接続したものである。
[0105] このェジェクタ 14の並列接続は第 5実施形態(図 6)と同じである。従って、第 7実施 形態は、第 3実施形態と第 5実施形態とを組み合わせた作用効果を発揮できる。
[0106] (第 8実施形態)
図 9は第 8実施形態であり、第 4実施形態(図 5)の変形である。すなわち、第 8実施 形態は、第 4実施形態のように第 2蒸発器 19の除霜運転のためのバイパス通路 23お よびシャット機構 24を有し、かつ、絞り機構 26および第 3蒸発器 27を有するサイクル 構成において、第 1蒸発器 15の上流部に専用の絞り機構 30を追加し、この絞り機構 30にェジェクタ 14を並列接続したものである。
[0107] このェジェクタ 14の並列接続は第 5実施形態(図 6)と同じである。従って、第 8実施 形態は、第 4実施形態と第 5実施形態とを組み合わせた作用効果を発揮できる。
[0108] (第 9実施形態)
図 10は第 9実施形態であり、第 1実施形態の変形である。すなわち、第 9実施形態 は、第 1実施形態のサイクル構成において、冷媒循環通路 11のうち、ェジェクタ 14上 流部にシャット機構 31を設けている。このシャット機構 31は、具体的には通電された ときのみ閉弁する常開式電磁弁により構成できる。
[0109] 第 9実施形態によると、通常時 (第 2蒸発器 19の除霜を行う必要のない時)は ECU 21の制御信号にてシャット機構 31が全開状態に維持されるので、ェジ クタ式冷凍 サイクル装置 10において第 1実施形態と同じ作動が行われる。
[0110] 一方、温度センサ 22により検出される第 2蒸発器 19近傍の空気温度に基づいて第 2蒸発器 19のフロスト状態力 ¾CU21にて判定されると、 ECU21はシャット機構 31に 制御信号を出力し、シャット機構 31をシャット(全閉)状態にする。これと同時に、 EC U21は全開機能付きの絞り機構 18に制御信号を出力し、この絞り機構 18を全開状 態にする。
[0111] この除霜運転時に、シャット機構 31により冷媒循環通路 11をシャット状態にするの で、放熱器 13出口の高温高圧冷媒の全量が絞り機構 18を通過して第 2蒸発器 19に 流入する。これにより、第 1実施形態に比較して除霜能力を向上でき、第 2蒸発器 19 の除霜を短時間で終了できる。
[0112] (第 10実施形態)
図 11は第 10実施形態であり、第 2実施形態(図 3)の変形である。すなわち、第 10 実施形態は、第 2実施形態のサイクル構成において、冷媒循環通路 11のうち、ェジ ェクタ 14上流部にシャット機構 31を設けている。このシャット機構 31は、具体的には 通電されたときのみ閉弁する常開式電磁弁により構成できる。
[0113] 第 10実施形態によると、通常時 (第 2蒸発器 19の除霜を行う必要のない時)は EC U21の制御信号にてシャット機構 31が全開状態に維持されるので、ェジ クタ式冷 凍サイクル装置 10において第 2実施形態と同じ作動が行われる。
[0114] 一方、温度センサ 22により検出される第 2蒸発器 19近傍の空気温度に基づいて第 2蒸発器 19のフロスト状態力 ¾CU21にて判定されると、 ECU21はシャット機構 31に 制御信号を出力し、シャット機構 31をシャット(全閉)状態にする。これと同時に、 EC U21はバイパス通路 23のシャット機構 24に制御信号を出力し、このシャット機構 24 を全開状態にする。
[0115] この除霜運転時に、シャット機構 31により冷媒循環通路 11をシャット状態にするの で、バイパス通路 23を通過して第 2蒸発器 19に流入する圧縮機 12吐出側の高温高 圧の気相冷媒量が増加する。これにより、第 2実施形態に比較して除霜能力を向上 でき、第 2蒸発器 19の除霜を短時間で終了できる。
[0116] (第 11実施形態)
図 12は第 11実施形態であり、上記第 10実施形態(図 11)の変形である。すなわち 、第 11実施形態は、上記第 10実施形態のシャット機構 31に対応するシャット機構 3 2を放熱器 13の上流部に設けたものである。このシャット機構 32も具体的には第 9、 第 10実施形態のシャット機構 31と同様に常開式電磁弁により構成できる。
[0117] 第 11実施形態によると、第 2蒸発器 19近傍の空気温度に基づいて第 2蒸発器 19 のフロスト状態力 ¾cu21にて判定されると、 ECU21はシャット機構 32に制御信号を 出力し、シャット機構 32をシャット(全閉)状態にする。これと同時に、 ECU21はバイ パス通路 23のシャット機構 24に制御信号を出力し、このシャット機構 24を全開状態 にする。
[0118] この除霜運転時に、シャット機構 32により放熱器 13の上流通路をシャット状態にす るので、圧縮機 12吐出側の高温高圧の気相冷媒の全量がバイパス通路 23を通過し て第 2蒸発器 19に流入する。これにより、第 10実施形態に比較して除霜能力をより 一層向上できる。
[0119] なお、第 11実施形態において、 2つのシャット機構 24、 32を三方弁タイプの 1つの 通路切替機構で構成してもよ!/ヽ。
[0120] (第 12実施形態)
図 13は第 12実施形態であり、第 1実施形態の変形である。すなわち、第 12実施形 態では、第 1実施形態の全開機能付き絞り機構 18の代わりに全開機能を設定しない 通常の固定絞り、可変絞りからなる絞り機構 180を用いる。
[0121] そして、この絞り機構 180と並列にバイノス通路 33を設け、このバイパス通路 33に シャット機構 34を設けている。このシャット機構 34は具体的には通電されたときのみ 開弁する常閉式電磁弁により構成できる。
[0122] 第 12実施形態によると、通常時 (第 2蒸発器 19の除霜を行う必要のない時)は EC
U21の制御信号にてシャット機構 34がシャット (全閉)状態に維持されれるので、絞り 機構 180により第 2蒸発器 19への流入冷媒量が調節される。
[0123] 一方、第 2蒸発器 19のフロスト状態が判定されとき(除霜運転時)には、 ECU21の 制御信号にてシャット機構 34が全開状態に移行する。これにより、放熱器 13出口の 高温高圧の液冷媒がバイパス通路 33を通過して第 2蒸発器 19に流入し、第 2蒸発 器 19の除霜を行うことができる。
[0124] なお、本第 12実施形態は第 1実施形態の変形例として説明しているが、第 1実施 形態の他に、全開機能付き絞り機構 18を有する他の実施形態 (第 3、第 5、第 7、第 9 の各実施形態)においても、全開機能付き絞り機構 18の代わりに、全開機能を設定 しない通常の絞り機構 180、バイノス通路 33およびシャット機構 34を設けることによ り、本第 12実施形態の考え方を同様に実施できる。
[0125] (第 13実施形態)
第 1〜第 12実施形態ではいずれも放熱器 13出口側で分岐され、ェジェクタ 14の 吸引口 14cに接続される分岐通路 17を形成し、この分岐通路 17に絞り機構 18、 18
0と第 2蒸発器 19を配置する構成になっているが、第 13実施形態はこの第 2蒸発器 1
9の配置を上記の各実施形態とは別の配置にしている。
[0126] すなわち、第 13実施形態では図 14に示すように、第 1蒸発器 15の冷媒流出側と圧 縮機 12の吸入側との間に、第 1蒸発器 15の出口冷媒の気液を分離して液相冷媒を 溜める気液分離器 35を配置し、気液分離器 35で分離された気相冷媒を圧縮機 12 の吸入側に導出し、そして、気液分離器 35で分離された液相冷媒を分岐通路 36側 に導出するようになっている。
[0127] この分岐通路 36は気液分離器 35の底部付近の液冷媒出口とェジェクタ 14の吸引 口 14cとの間を結合する通路であって、分岐通路 36のうち上流側に絞り機構 180が 設けられ、この絞り機構 180の下流側に第 2蒸発器 19を配置している。絞り機構 180 は全開機能を設定しない通常の固定絞りまたは可変絞りからなる。
[0128] そして、絞り機構 180と第 2蒸発器 19との間に、シャット機構 24を有するバイパス通 路 23の下流端を接続して 、る。
[0129] 第 13実施形態のサイクル構成においても、第 2蒸発器 19の冷媒蒸発圧力(冷媒蒸 発温度)が第 1蒸発器 15の冷媒蒸発圧力 (冷媒蒸発温度)よりも低くなるので、第 1蒸 発器 15により高温域の冷却作用を発揮し、第 2蒸発器 19により低温域の冷却作用を 発揮できる。
[0130] そして、第 2蒸発器 19のフロスト状態が判定されたときは、 ECU21の制御信号にて バイパス通路 23のシャット機構 24を開放状態にする。これにより、圧縮機 12吐出側 の高温高圧の気相冷媒がバイノス通路 23を通過して第 2蒸発器 19に流入するので 、第 2蒸発器 19の除霜を行うことができる。
[0131] (第 14実施形態)
図 15は第 14実施形態であり、図 1の第 1実施形態に対して気液分離器 35を追加し ている。この気液分離器 35は第 1蒸発器 15の下流側に接続され、第 1蒸発器 15の 出口冷媒の気液を分離して液相冷媒を溜め、そして、気相冷媒を圧縮機 12の吸入 側に流出するものである。
[0132] 一方、第 14実施形態のェジヱクタ式冷凍サイクル装置 10では、第 1蒸発器 15およ び第 2蒸発器 19により共通の冷却対象空間 (具体的には、車載冷蔵庫の庫内空間) を 0°C以下の低温に冷却する冷蔵庫用の冷却ユニット 37を構成している。
[0133] 具体的には、電動送風機 16の空気流れ上流側に第 1蒸発器 15を配置し、第 1蒸 発器 15の空気流れ下流側に第 2蒸発器 19を配置し、第 2蒸発器 19通過後の冷却 空気を冷却対象空間 (庫内空間)に吹き出すようになつている。なお、第 1蒸発器 15 と第 2蒸発器 19はろう付け等の手段で一体に構成してもよい。
[0134] 第 14実施形態では、第 1蒸発器 15および第 2蒸発器 19により共通の冷却対象空 間(庫内空間)を 0°C以下の低温に冷却するので、第 1蒸発器 15および第 2蒸発器 1 9の両方に対して除霜運転を実行する必要がある。 [0135] 次に、第 14実施形態の作動を説明する。図 16は第 14実施形態の各種機器の作 動をまとめて示すものであり、通常運転時には、圧縮機 12、放熱器 13の電動冷却フ アン 13a、および冷却ユニット 37の電動送風機 16が作動状態となり、そして、全開機 能付きの絞り機構 18は所定の絞り状態に制御される。
[0136] これにより、冷凍サイクル 10では第 1蒸発器 15および第 2蒸発器 19での冷媒蒸発 に伴う吸熱作用によって電動送風機 16の送風空気を冷却し、冷却ユニット 37の冷却 対象空間を冷却できる。すなわち、通常の冷却運転を実行できる。
[0137] 一方、温度センサ 22の検出温度がフロスト判定温度よりも低下すると、制御装置 21 が第 1、第 2蒸発器 15、 19のフロスト状態を判定して冷凍サイクル 10の各機器を除 霜運転モードに切り替える。すなわち、制御装置 21は全開機能付きの絞り機構 18を 全開状態に制御すると同時に、圧縮機 12および蒸発器用の電動送風機 16を停止 状態にする。なお、第 14実施形態では圧縮機 12として容量制御機構を構成する電 磁式圧力制御装置 12aを有する可変容量型圧縮機を用いているので、圧縮機 12の 停止状態とは、電磁式圧力制御装置 12aにより吐出容量を 0%付近の最小容量にす る状態を意味する。
[0138] もちろん、圧縮機 12が電磁クラッチ付きの固定容量型圧縮機である場合は、電磁ク ラッチを遮断して、圧縮機 12を停止状態にすればよい。なお、放熱器用冷却ファン 1 3aは除霜運転時に停止状態または作動状態の 、ずれでもよ 、。
[0139] 除霜運転時には絞り機構 18が全開することにより、放熱器 13出口側の高温液冷媒 が第 2蒸発器 19に直接流入し、更に、第 2蒸発器 19で放熱して所定量だけ温度が 低下した中温の液冷媒がェジ クタ 14の冷媒吸引口 14c部分を通過して第 1蒸発器 15に流入する。このように、放熱器 13の出口側の高温液冷媒が第 2蒸発器 19→第 1 蒸発器 15の順に流れて、第 2蒸発器 19および第 1蒸発器 15の除霜を同時に行う。
[0140] なお、本実施形態では、圧縮機 12の作動時に存在して ヽる放熱器 13側の高温液 冷媒を用いて第 1、第 2蒸発器 15、 19の除霜を一時的に行うために除霜運転時に圧 縮機 12を停止している。つまり、第 1、第 2蒸発器 15、 19の体格が小さくて必要冷却 能力が小さい場合は、圧縮機 12の作動時に存在している放熱器 13側の高温液冷 媒を第 1、第 2蒸発器 15、 19に流入させるさせることで第 1、第 2蒸発器 15、 19の除 霜を行うことができる。
[0141] 除霜運転時に第 2蒸発器 19の出口に液冷媒が流出しても、この液冷媒を気液分 離器 35内に蓄えることができるので、圧縮機 12への液冷媒戻りを防止できる。
[0142] (第 15実施形態)
図 17は第 15実施形態であり、上記第 14実施形態に対してェジェクタ 14上流側の シャット機構 31、および気液分離器 35出口側の絞り機構 38を追加している。シャット 機構 31は図 10等にて説明したものと同じでよい。
[0143] 絞り機構 38は気液分離器 35の出口側通路 (圧縮機吸入側通路)の全開機能付き のものであり、絞り機構 18と同一構成でよい。但し、絞り機構 38は通常運転時に全開 状態となり、除霜運転時に所定の絞り開度となるように制御装置 21によって制御され る。
[0144] 次に、第 15実施形態の作動を説明する。図 18は第 15実施形態の各種機器の作 動をまとめて示すものであり、通常運転時には、圧縮機 12、放熱器 13の電動冷却フ アン 13a、および冷却ユニット 37の電動送風機 16が作動状態となる。そして、全開機 能付きの絞り機構 18は所定の絞り開度状態に制御され、全開機能付きの絞り機構 3 8は全開状態に制御され、かつ、シャット機構 31は全開状態に制御される。
[0145] これにより、第 1蒸発器 15ではェジェクタ 14を通過して減圧された低圧冷媒が蒸発 するとともに、第 2蒸発器 19では絞り機構 18を通過して減圧された低圧冷媒が蒸発 するので、第 1、第 2蒸発器 15、 19の冷却(吸熱)作用によって電動送風機 16の送 風空気を冷却し、冷却ユニット 37の冷却対象空間を冷却できる。すなわち、通常の 冷却運転を実行できる。
[0146] 一方、温度センサ 22の検出温度がフロスト判定温度よりも低下すると、制御装置 21 が除霜運転を実行するために各機器を次のように制御する。
[0147] すなわち、圧縮機 12を作動状態に維持したまま、放熱器用の冷却ファン 13aおよ び蒸発器用の電動送風機 16をそれぞれ停止状態にする。これと同時に、絞り機構 1 8を全開状態に、絞り機構 38を所定の絞り開度状態に、シャット機構 31を全閉状態 にそれぞれ制御する。
[0148] 放熱器用冷却ファン 13aが作動停止すると放熱器 13での冷媒の放熱が実質的に 停止されるので、圧縮機 12の吐出側冷媒が高温高圧の気相状態のまま放熱器 13を 通過する。更に、この高圧高温の気相冷媒はシャット機構 31の全閉によって分岐通 路 17側へ全量流れ、そして、全開状態の絞り機構 18を通過して高圧高温の気相冷 媒が第 2蒸発器 19に直接流入する。
[0149] 高圧高温の気相冷媒はこの第 2蒸発器 19で放熱して所定量だけ温度が低下する ので、中温の高圧気相冷媒がェジ クタ 14の冷媒吸引口 14c部分を通過して第 1蒸 発器 15に流入する。このように、高圧高温の気相冷媒が第 2蒸発器 19→第 1蒸発器 15の順に流れて、第 2蒸発器 19および第 1蒸発器 15の除霜を同時に行う。
[0150] 第 1蒸発器 15から流出した高圧冷媒は気液分離器 35内で気液分離され、気液分 離器 35から流出した高圧気相冷媒は絞り機構 38で所定の低圧状態まで減圧され、 低温低圧の気相冷媒となって圧縮機 12に吸入される。
[0151] 除霜運転時に第 1蒸発器 15で高圧気相冷媒が凝縮して第 1蒸発器 15の出口に液 冷媒が流出しても、この液冷媒は気液分離器 35内に蓄えることができる。
[0152] 図 19は第 15実施形態の除霜運転時におけるサイクル挙動を示すモリエル線図で あって、圧縮機 12の吐出側の高温高圧気相冷媒によって第 2蒸発器 19→第 1蒸発 器 15の順に除霜を行い、その後に、高圧気相冷媒を絞り機構 38で所定の低圧状態 まで減圧し、圧縮機 12に吸入させる。
[0153] (第 16実施形態)
図 20は第 16実施形態であり、図 1の第 1実施形態に対して第 1蒸発器 15の出口側 に気液分離器 35を追加するとともに、第 2蒸発器 19の出口側に全開機能付きの絞り 機構 39を追加している。この絞り機構 39は絞り機構 18と同一構成でよい。但し、絞り 機構 39は通常運転時に全開状態となり、除霜'冷却運転時に所定の絞り開度となる ように制御装置 21によって制御される。
[0154] 第 16実施形態では第 1蒸発器 15を車室内空調用として設け、一方、第 2蒸発器 1 9は車両搭載の冷蔵庫内の冷却用として設け、それぞれ別の電動送風機 16、 20の 送風空気を冷却するようになって!/、る。
[0155] 次に、第 16実施形態の作動を説明する。図 21は第 16実施形態の各種機器の作 動をまとめて示すものであり、通常運転時には、圧縮機 12、放熱器 13の電動冷却フ アン 13a、および電動送風機 16、 20が作動状態となる。そして、第 2蒸発器 19入口 側の絞り機構 18は所定の絞り開度状態に制御され、逆に第 2蒸発器 19出口側の絞 り機構 39は全開状態に制御される。
[0156] これにより、第 1蒸発器 15ではェジェクタ 14を通過して減圧された低圧冷媒が蒸発 するので、第 1蒸発器 15の冷却(吸熱)作用によって電動送風機 16の送風空気を冷 却し、車室内を冷房する。これと同時に、第 2蒸発器 19では絞り機構 18を通過して 減圧された低圧冷媒が蒸発するので、第 2蒸発器 19の冷却 (吸熱)作用によって電 動送風機 20の送風空気を冷却し、冷蔵庫内を冷却する。以上により、通常運転時に は車室内の冷房と冷蔵庫内の冷却を同時に行うことができる。
[0157] 一方、温度センサ 22の検出温度がフロスト判定温度よりも低下すると、制御装置 21 が除霜 ·冷却運転モードを実行するするために各機器を次のように制御する。
[0158] すなわち、圧縮機 12、放熱器用の冷却ファン 13aおよび第 1蒸発器用の電動送風 機 16をそれぞれ作動状態に維持したまま、第 2蒸発器用の電動送風機 20を停止状 態にする。これと同時に、第 2蒸発器 19入口側の絞り機構 18は全開状態に制御され 、逆に第 2蒸発器 19出口側の絞り機構 39は所定の絞り開度状態に制御される。
[0159] これにより、放熱器 13出口側の液相冷媒が高温高圧状態のまま第 2蒸発器 19に 流入して第 2蒸発器 19の除霜を行う。高圧冷媒は第 2蒸発器 19で放熱して中温の 高圧状態となる。そして、この高圧冷媒は第 2蒸発器 19を通過した後に絞り機構 39 で減圧され、低温低圧の気液 2相状態となる。
[0160] この低圧冷媒はェジヱクタ 14の冷媒吸引口 14c部分を通過して第 1蒸発器 15に流 入する。この冷媒吸引口 14cからの吸引側低圧冷媒とェジヱクタ 14のノズル部 14a 通過後の低圧冷媒とが合流して第 1蒸発器 15に流入し、第 1蒸発器 15の冷却 (吸熱 )作用を発揮できる。
[0161] 従って、第 16実施形態によると、第 2蒸発器 19の除霜運転を行うと同時に、第 1蒸 発器 15では冷房作用を発揮できる。図 22は第 16実施形態による除霜 ·冷却運転モ ード時のサイクル挙動を示すモリエル線図である。
[0162] (第 17実施形態)
第 15実施形態(図 17)では、図 19に示すように高圧高温冷媒を用いて第 1、第 2蒸 発器 15、 19の除霜を行うようにしているが、第 17実施形態(図 23)では、図 26に示 すように低圧高温冷媒を第 1、第 2蒸発器 15、 19の除霜を行う。
[0163] これに伴って、第 17実施形態では、全開機能を持たない可変絞り機構 181を第 2 蒸発器 19の入口部に設けている。図 24はこの可変絞り機構 181の具体例を示すも ので、絞り開度が小さい第 1絞り穴 181aと、この第 1絞り穴 181aよりも絞り開度が大き い第 2絞り穴 18 lbとを可動板部材 18 lcに並列に開口して 、る。
[0164] そして、この可動板部材 181cを分岐通路 17の横断方向(冷媒流れ方向 aと直交方 向)に移動可能に配置し、この可動板部材 181cをサーボモータ等により構成される 電気式ァクチユエータ 181dにより駆動するようになっている。
[0165] 通常運転時には可動板部材 181cを図 24 (a)に示す位置に移動させ、第 1絞り穴 1 8 laを分岐通路 17中に位置させ、これに対し、除霜運転時には可動板部材 181cを 図 24 (b)に示す位置に移動させ、第 2絞り穴 181bを分岐通路 17中に位置させるよう になっている。
[0166] 次に、第 17実施形態の作動を説明する。図 25は第 17実施形態の各種機器の作 動をまとめて示すものであり、通常運転時には、圧縮機 12、放熱器用冷却ファン 13a 及び蒸発器用送風機 16を作動させ、かつ、シャット機構 31を全開状態にする。
[0167] 更に、可変絞り機構 181では ECU21により電気式ァクチユエータ 181dを制御して 、可動板部材 181cを図 24 (a)に示す位置に移動させ、第 1絞り穴 181aを分岐通路 17中に位置させる。
[0168] これにより、通常運転時には第 1絞り穴 181aによる絞り開度:小の状態が設定され 、この第 1絞り穴 181aにて減圧された低圧冷媒が第 2蒸発器 19に流入して第 2蒸発 器 19の冷却 (吸熱)作用が発揮される。
[0169] 一方、全開状態のシャット機構 31を通して高圧冷媒がェジェクタ 14に流入してノズ ル部 14aで減圧され、このノズル部 14aで減圧された低圧冷媒および第 2蒸発器 19 を通過して冷媒吸引口 14cに吸引された低圧冷媒が第 1蒸発器 15に流入して、第 1 蒸発器 15の冷却 (吸熱)作用が発揮される。
[0170] 以上により、第 1、第 2蒸発器 15、 19の冷却(吸熱)作用の組み合わせによって電 動送風機 16の送風空気を冷却し、冷却ユニット 37の冷却対象空間を冷却できる。す なわち、通常の冷却運転が実行される。
[0171] 一方、温度センサ 22の検出温度がフロスト判定温度よりも低下すると、制御装置 21 が除霜運転を実行するために各機器を次のように制御する。
[0172] すなわち、圧縮機 12を作動状態に維持し、放熱器用冷却ファン 13a及び蒸発器用 送風機 16をともに停止させ、かつ、シャット機構 31を全閉状態にする。更に、可変絞 り機構 181では ECU21により電気式ァクチユエータ 181dを制御して、可動板部材 1 81cを図 24 (b)に示す位置に移動させ、第 2絞り穴 18 lbを分岐通路 17中に位置さ せる。これにより、第 2絞り穴 181bによる絞り開度:大の状態が設定される。
[0173] 除霜運転時には、放熱器冷却ファン 13aの停止により放熱器 13での冷媒の放熱が 実質的に停止されるので、圧縮機 12吐出側の冷媒が高温高圧の気相状態のまま放 熱器 13を通過して可変絞り機構 181の入口側に到達する。ここで、除霜運転時には シャット機構 31を全閉状態にするので、圧縮機 12吐出側の気相冷媒の全量が可変 絞り機構 181に流入する。
[0174] 可変絞り機構 181では、第 1絞り穴 181aよりも絞り開度が大きい第 2絞り穴 181bに よって減圧作用を発揮する。この減圧作用にて、高温高圧の気相冷媒は低圧高温の 気相冷媒となり、この低圧高温の気相冷媒はまず第 2蒸発器 19内に流入して、第 2 蒸発器 19の除霜を行う。
[0175] この低圧高温の気相冷媒は、第 2蒸発器 19およびェジェクタ 14を通過した後に、 第 1蒸発器 15内に流入して、第 1蒸発器 15の除霜を行う。第 1蒸発器 15を通過した 冷媒は気液分離器 35内で気液分離され、この気液分離器 35内の気相冷媒が圧縮 機 12に吸入され、再度圧縮される。
[0176] 図 26は第 17実施形態の除霜運転時のサイクル挙動を示すモリエル線図である。
第 17実施形態では、シャット機構 31の全閉により高温高圧の気相冷媒の全量を可 変絞り機構 181で減圧した後に、第 2蒸発器 19に流入させる。そして、第 2蒸発器 19 通過後の冷媒を第 1蒸発器 15に流入させる。これにより、第 2蒸発器 19および第 1蒸 発器 15の除霜を低圧高温冷媒を用いて定常的に行うことができる。
[0177] なお、可変絞り機構 181は、通常運転時には放熱器 13で凝縮した液相冷媒を減 圧するのに対し、除霜運転時には圧縮機 12吐出側の気相冷媒を減圧することにな る。気相冷媒は液相冷媒に比較して密度が大幅に小さいので、可変絞り機構 181の 除霜運転時の絞り開度を通常運転時よりも大きくして、除霜運転時のサイクル循環冷 媒流量を確保できるようにして 、る。
[0178] なお、第 17実施形態では、シャット機構 31を全開、全閉の開閉弁タイプとしている 力 シャット機構 31を連続的に通路面積を調整可能な流量調整タイプの弁機構とし 、除霜運転時にェジ クタ 14側へ所定流量の高温気相冷媒を流入させるようにして もよい。また、通常運転時にェジェクタ 14側への冷媒流量を流量調整タイプのシャツ ト機構 31で調整するようにしてもょ 、。このようにシャット機構 31を流量調整タイプの 弁機構として構成してもよいことは他の実施形態におけるシャット機構についても同 様である。
[0179] (第 18実施形態)
図 27は第 18実施形態であり、第 17実施形態(図 23)のシャット機構 31を廃止して 、ェジェクタ 14の上流部を放熱器 13の出口部に直接接続している。第 18実施形態 の他の点は第 17実施形態と同じである。従って、図 25において、シャット機構 31の 開閉がなくなるだけで、その他の各機器の通常運転時と除霜運転時との作動切替は 図 25に示す通りである。
[0180] 第 18実施形態によると、除霜運転時に放熱器 13を通過した高温高圧の気相冷媒 のうち所定割合の高温気相冷媒が可変絞り機構 181で減圧されて低圧の高温気相 冷媒となり、この低圧の高温気相冷媒が第 2蒸発器 19に流入して第 2蒸発器 19の除 霜を行う。
[0181] これと同時に、放熱器 13を通過した高温高圧の気相冷媒の残部はェジェクタ 14に 流入し減圧されるので、低圧の高温気相冷媒となる。この低圧の高温気相冷媒と、第 2蒸発器 19通過後の低圧気相冷媒とがェジ クタ 14で合流し、この合流後の低圧高 温気相冷媒が第 1蒸発器 15に流入して、第 1蒸発器 15の除霜を行う。
[0182] 第 18実施形態では、ェジェクタ 14を通過して減圧された低圧の高温気相冷媒が 第 1蒸発器 15に直接流入するので、第 17実施形態に比較して第 1蒸発器 15に流入 する気相冷媒の温度 (熱量)を高めて、第 1蒸発器 15の除霜能力を高めることができ る。 [0183] (第 19実施形態)
図 28は第 19実施形態であり、第 17実施形態(図 23)に対して、放熱器 13のバイパ ス通路 40と、このバイパス通路 40のシャット機構 41と、放熱器 13の出口部のシャット 機構 42とを追加している。シャット機構 41とシャット機構 42は並列配置されている。
[0184] 図 29は第 19実施形態における各機器の通常運転時と除霜運転時との作動切替を 示す。第 19実施形態によると、通常運転時にはシャット機構 31とシャット機構 42が全 開状態となり、一方、シャット機構 41が全閉状態となってバイパス通路 40を遮断する 。これにより、通常運転時は第 17実施形態と同じ作動が行われる。
[0185] これに対し、除霜運転時には、シャット機構 31とシャット機構 42が全閉状態となり、 一方、シャット機構 41が全開状態になってバイパス通路 40を開通させる。これにより 、圧縮機 12の高圧高温の吐出気相冷媒がバイパス通路 40を通過して放熱器 13を バイパスして流れる。
[0186] この放熱器 13をバイパスする高圧高温の吐出気相冷媒の全量が可変絞り機構 18 1で減圧されて低圧の高温気相冷媒となる。この低圧の高温気相冷媒が第 2蒸発器 19→ェジヱクタ 14→第 1蒸発器 15の順に流れて、第 2蒸発器 19および第 1蒸発器 1 5の除霜を行う。
[0187] そして、第 19実施形態では、除霜運転時に放熱器 13の出口部のシャット機構 42を 全閉した状態にて放熱器冷却ファン 13aを作動状態に維持するので、放熱器 13に て圧縮機 12の吐出気相冷媒の一部を外気により冷却して凝縮させ、放熱器 13内部 に液相冷媒を溜め込むことができる。このため、除霜運転時に気液分離器 35内に溜 まる液相冷媒の量を減少できるので、気液分離器 35のタンク容量を縮小できる利点 がある。
[0188] (第 20実施形態)
図 30は第 20実施形態であり、第 19実施形態(図 28)におけるシャット機構 31を廃 止したものである。従って、第 20実施形態は、シャット機構 31を廃止した点は第 18 実施形態(図 27)のサイクル構成と同じである。そのため、第 20実施形態は第 18実 施形態と第 19実施形態とを組み合わせた作用効果を発揮できる。
[0189] (第 21実施形態) 図 31は第 21実施形態であり、 3台以上の蒸発器を組み合わせたサイクル構成であ る。第 21実施形態は第 17実施形態(図 23)のサイクル構成を基礎とし、これに第 2分 岐通路 25を追加している。この第 2分岐通路 25は第 3実施形態(図 4)と同様のもの であり、第 1分岐通路 17の可変絞り機構 181の上流側で分岐され、第 1蒸発器 15の 出口側に接続される。
[0190] 第 2分岐通路 25の上流側に可変絞り機構 182を設け、この可変絞り機構 182の下 流側に第 3蒸発器 27を設けている。可変絞り機構 182は、図 24に示す可変絞り機構 181と同様に、絞り開度が小さい第 1絞り穴と、この第 1絞り穴よりも絞り開度が大きい 第 2絞り穴とを可動板部材に並列に開口した構成になっている。
[0191] これにより、可変絞り機構 182は、通常運転時には第 1絞り穴による絞り開度:小の 状態を設定し、除霜運転時には第 2絞り穴による絞り開度:大の状態を設定できるよう になっている。
[0192] 第 3蒸発器 27は電動送風機 28とともに独立の冷却ユニット 43を構成している。第 2 1実施形態では第 1の冷却ユニット 37により第 1冷蔵庫の庫内空間(冷却対象空間) を 0°C以下の低温に冷却し、また、第 2の冷却ユニット 43により第 2冷蔵庫の庫内空 間(冷却対象空間)を 0°C以下の低温に冷却するようになって!/、る。
[0193] ここで、第 3蒸発器 27の出口側は第 1蒸発器 15の出口側に接続されるので、第 3 蒸発器 27の冷媒蒸発圧力 (冷媒蒸発温度)は第 1蒸発器 15と同等になる。従って、 第 2の冷却ユニット 43の冷却温度は第 1の冷却ユニット 37の冷却温度より高い。
[0194] 第 2の冷却ユニット 43では、電動送風機 28の送風空気を第 3蒸発器 27により冷却 して、その冷却空気を冷却対象空間に吹き出すようになつている。ここで、第 2の冷却 ユニット 43の冷却温度も 0°C以下の低温であるので、第 3蒸発器 27においても除霜 の必要性がある。
[0195] 第 3蒸発器 27近傍には温度センサ 22aが設置され、第 3蒸発器 27近傍の温度を 温度センサ 22aにより検出し、その検出信号力 ¾CU21に入力される。 ECU21では 、第 1の冷却ユニット 37の温度センサ 22および第 2の冷却ユニット 43の温度センサ 2 2aの検出温度に基づいて除霜運転の指令を出す。
[0196] 図 32は第 21実施形態における各機器の通常運転時と除霜運転時との作動切替を 示す。除霜運転時には、圧縮機 12の吐出側の気相冷媒が高温高圧状態のまま放熱 器 13を通過し、可変絞り機構 181、 182でそれぞれ減圧されて、低圧の高温気相冷 媒となる。第 1分岐通路 17の低圧の高温気相冷媒が第 2蒸発器 19→第 1蒸発器 15 の順に流れて、この両蒸発器 19、 15の除霜を行う。これと同時に、第 2分岐通路 25 の低圧の高温気相冷媒が第 3蒸発器 27に流入して、第 3蒸発器 27の除霜を行う。
[0197] なお、第 21実施形態では、ェジェクタ 14の上流側にシャット機構 31を設け、除霜 運転時にはこのシャット機構 31を全閉するようにしている力 このシャット機構 31を廃 止してもよい。すなわち、第 18実施形態(図 27)のサイクル構成において、可変絞り 機構 182および第 3蒸発器 27を有する第 2分岐通路 25を組み合わせるようにしても よい。
[0198] (第 22実施形態)
図 33は第 22実施形態であり、第 19実施形態(図 28)のサイクル構成において、可 変絞り機構 182および第 3蒸発器 27を有する第 2分岐通路 25を組み合わせるように したものである。
[0199] なお、図 33では、ェジヱクタ 14の上流側にシャット機構 31を設け、除霜運転時に はこのシャット機構 31を全閉するようにしている力 このシャット機構 31を第 20実施 形態(図 30)のように廃止してもよ 、。
[0200] (第 23実施形態)
図 34は第 23実施形態であり、第 5実施形態(図 6)のように、第 1蒸発器 15の上流 部に専用の絞り機構 30を追加し、これに伴って、ェジェクタ 14をこの絞り機構 30と並 列に配置するサイクル構成を採用している。第 23実施形態では、このようなェジエタ タ並列配置のサイクル構成において、第 17実施形態(図 23)における冷却ユニット 3 7、シャット機構 31、および可変絞り機構 181を組み合わせている。
[0201] 第 23実施形態における通常運転時と除霜運転時の各機器の作動切替は、第 17 実施形態と同じであり、図 25のように各機器の作動切替を行えばよい。
[0202] なお、図 34では、ェジヱクタ 14の上流側にシャット機構 31を設け、除霜運転時に はこのシャット機構 31を全閉するようにしている力 このシャット機構 31を廃止しても よい。 [0203] (第 24実施形態)
図 35は第 24実施形態であり、第 19実施形態(図 28)においてェジヱクタ並列配置 のサイクル構成を採用している。第 24実施形態における通常運転時と除霜運転時の 各機器の作動切替は、第 19実施形態と同じであり、図 29のように各機器の作動切替 を行えばよい。
[0204] なお、第 24実施形態においても、ェジェクタ 14上流側のシャット機構 31を廃止して よい。
[0205] (第 25実施形態)
図 36は第 25実施形態であり、第 21実施形態(図 31)においてェジヱクタ並列配置 のサイクル構成を採用したものである。なお、第 25実施形態においても、ェジェクタ 1 4上流側のシャット機構 31を廃止してよい。
[0206] (第 26実施形態)
図 37は第 26実施形態であり、第 22実施形態(図 33)においてェジヱクタ並列配置 のサイクル構成を採用したものである。なお、第 26実施形態においても、ェジェクタ 1 4上流側のシャット機構 31を廃止してよい。
[0207] (他の実施形態)
なお、本発明は上述の実施形態に限定されることなぐ以下述べるごとく種々変形 可能である。
[0208] (1)上述の実施形態では、第 2蒸発器 19、第 3蒸発器 27近傍の空気温度を温度セ ンサ 22、 22aにより検出して除霜運転を自動的に行うようにしているが、これは具体 的な一例を示すにすぎず、除霜運転の自動制御は種々変形できる。例えば、第 2、 第 3蒸発器 19、 27近傍の空気温度の代わりに、第 2、第 3蒸発器 19、 27の表面温度 を温度センサ 22、 22aにより検出して、除霜運転の自動制御を行うようにしてもよい。
[0209] また、第 2、第 3蒸発器 19、 27近傍の冷媒通路内に冷媒温度を検出する冷媒温度 センサを設け、第 2、第 3蒸発器 19、 27近傍の冷媒温度に基づいて除霜運転の自動 制御を行うようにしてもよい。
[0210] また、第 2、第 3蒸発器 19、 27近傍の冷媒温度と冷媒圧力は相関関係があるから、 第 2、第 3蒸発器 19、 27近傍の冷媒圧力を検出する冷媒圧力センサを設け、第 2、 第 3蒸発器 19、 27近傍の冷媒圧力に基づ ヽて除霜運転の自動制御を行うようにし てもよい。
[0211] 更に、上記のごとき温度センサ 22、 22aゃ冷媒圧力センサを廃止して、 ECU21の タイマー機能にてサイクルの起動後に、所定の時間間隔で除霜運転を所定時間の み自動的に行うようにしてもよ!、。
[0212] (2)図 2では、全開機能付き絞り機構 18として、固定絞りを構成する絞り穴 18aと、 分岐通路 17を全開するための全開用穴部 18bとを開口した可動板部材 18cを電気 式ァクチユエータ 18dにより駆動する形式のものを図示している力 全開機能付き絞 り機構 18として、弁体開度をサーボモータ等の電気式ァクチユエータにより連続的に 変化させる電気式膨張弁を用い、第 2蒸発器 19の除霜時にはこの電気式膨張弁を 全開させるようにしてちょい。
(3)図 24では、可変絞り機構 181として、絞り開度が小さい第 1絞り穴 181aと、この 第 1絞り穴 181aよりも絞り開度が大きい第 2絞り穴 181bとを並列に開口した可動板 部材 181cを電気式ァクチユエータ 181dにより駆動する具体例を図示している力 こ の可変絞り機構 181として絞り開度を連続的に調整できる弁機構を使用してもよい。
[0213] (4)第 1実施形態等では本発明を車両用空調冷蔵装置に適用した例を示したが、 冷媒蒸発温度が高温側となる第 1蒸発器 15と冷媒蒸発温度が低温側となる第 2蒸発 器 19の両方をともに冷蔵庫内の冷却に用いてもよい。つまり、冷媒蒸発温度が高温 側となる第 1蒸発器 15により冷蔵庫内の冷蔵室を冷却し、冷媒蒸発温度が低温側と なる第 2蒸発器 19により冷蔵庫内の冷凍室を冷却するようにしてもよい。
[0214] (5)第 14実施形態(図 15)等では、第 1蒸発器 15と第 2蒸発器 19とにより 1つの冷 却ユニット 37を構成し、この冷却ユニット 37により 1つの冷蔵庫内を冷却する例を示 したが、第 1蒸発器 15と第 2蒸発器 19を別々の冷蔵庫に配置して、第 1蒸発器 15と 第 2蒸発器 19により別々の冷蔵庫を冷却するようにしてもよい。
[0215] (6)第 14実施形態(図 15)等では、第 1蒸発器 15の出口側に気液分離器 35を配 置する例を示している力 放熱器 13の出口側にも気液分離器 (レシ一ノ を配置し、 そして、通常運転時に第 1蒸発器 15の出口冷媒が所定の過熱度を持つようにサイク ル冷媒流量を制御すれば、通常運転時には気液分離器 35が過熱ガス冷媒の通路 となる。従って、気液分離器 35は除霜運転時のみに冷媒の気液を分離して液相冷 媒を溜める役割を果たすことになる。
[0216] (7)上述の実施形態では、冷媒の種類を特定しな力つたが、冷媒はフロン系、 HC 系の代替フロン、二酸化炭素 (C02)など蒸気圧縮式冷凍サイクルに適用できるもの であ
ればよい。
[0217] なお、ここでフロンとは炭素、フッ素、塩素、水素力 なる有機化合物の総称であり、 冷媒として広く使用されているものである。フロン系冷媒には、 HCFC (ハイド口'クロ 口 ·フルォ口'カーボン)系冷媒、 HFC (ハイド口 ·フルォロ 'カーボン)系冷媒等が含ま れており、これらはオゾン層を破壊しな 、ため代替フロンと呼ばれる冷媒である。
[0218] また、 HC (炭化水素)系冷媒とは、水素、炭素を含み、自然界に存在する冷媒物質 のことである。この HC系冷媒には、 R600a (イソブタン)、 R290 (プロパン)などがあ る。
[0219] (8)上述の第 1〜第 12実施形態では、いずれも気液分離器を用いていない構成例 を示した力 放熱器 13の下流側に冷媒の気液分離を行って液冷媒のみを下流側に 流出するレシーバを配置してもよい。また、第 13実施形態以降に示す気液分離器 3 5を第 1〜第 12実施形態の圧縮機 12の吸入側に配置して、圧縮機 12に気相冷媒の みを吸人させるようにしてもょ 、。
[0220] (9)上述の実施形態では、圧縮機 12として可変容量型圧縮機を用い、この可変容 量型圧縮機 12の容量を ECU21により制御して、圧縮機 12の冷媒吐出能力を制御 するようにしているが、圧縮機 12として固定容量型圧縮機を用い、この固定容量型 圧縮機 12の作動を電磁クラッチによりオンオフ制御し、圧縮機 12のオンオフ作動の 比率を制御して、圧縮機 12の冷媒吐出能力を制御するようにしてもよい。
[0221] また、圧縮機 12として電動圧縮機を用いる場合は、電動圧縮機 12の回転数制御 により冷媒吐出能力を制御できる。
[0222] (10)上述の実施形態において、ェジェクタ 14として、第 1蒸発器 15の出口冷媒過 熱度などを検知してェジヱクタ 14のノズル 14aの冷媒流路面積、つまり流量を調節す る可変流量型のェジヱクタを使用すれば、ノズル 14aから噴出する冷媒圧力(吸引す る気相冷媒の流量)を制御することができる。
(11)上述の実施形態では各蒸発器を利用側熱交換器である室内熱交換器として いる。しかし、上述の実施形態の構成は、非利用側熱交翻あるいは熱源側熱交換 器と呼ばれる室外熱交 を上述の各蒸発器とするサイクルにも適用されうる。例え ば、各蒸発器を室外熱交換器とし、凝縮器を室内熱交換器とする暖房用の冷凍サイ クル、あるいは凝縮器により水を加熱する温水供給用の冷凍サイクルといったヒート ポンプと呼ばれるサイクルにも、上述の実施形態は適用されうる。

Claims

請求の範囲
[1] 冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 前記ェジェクタ(14)の上流側で冷媒流れを分岐して、この冷媒流れを前記冷媒吸 引口(14c)に導く第 1分岐通路(17)と、
前記第 1分岐通路(17)に配置され、冷媒を減圧膨張させる第 1絞り手段(18)と、 前記第 1分岐通路(17)において、前記第 1絞り手段(18)よりも下流側に配置され る第 2蒸発器 (19)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記第 1絞り手段(18)は、前記第 2蒸発器(19)の除霜時に前記第 1分岐通路(17 )を全開する全開機能付きの構成になっていることを特徴とするェジヱクタ式冷凍サイ クル装置。
[2] 冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 前記ェジェクタ(14)の上流側で冷媒流れを分岐して、この冷媒流れを前記冷媒吸 引口(14c)に導く第 1分岐通路(17)と、
前記第 1分岐通路(17)に配置され、冷媒を減圧膨張させる第 1絞り手段(180)と、 前記第 1分岐通路(17)において、前記第 1絞り手段(180)よりも下流側に配置さ れる第 2蒸発器 (19)と、 前記圧縮機(12)から吐出された高圧冷媒を直接前記第 2蒸発器 (19)に導入する バイパス通路(23)と、
前記バイパス通路(23)に設けられたシャット機構 (24)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記シャット機構 (24)は、前記第 2蒸発器(19)の除霜時に前記バイパス通路 (23
)を開放状態にする常閉式の構成になっていることを特徴とするェジェクタ式冷凍サ イタル装置。
[3] 冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 前記ェジェクタ(14)の上流側で冷媒流れを分岐して、この冷媒流れを前記冷媒吸 引口(14c)に導く第 1分岐通路(17)と、
前記第 1分岐通路(17)に配置され、冷媒を減圧膨張させる第 1絞り手段(180)と、 前記第 1分岐通路(17)において、前記第 1絞り手段(180)よりも下流側に配置さ れる第 2蒸発器 (19)と、
前記第 1絞り手段(180)をバイパスするバイパス通路(33)と、
前記バイパス通路(33)に設けられたシャット機構 (34)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記シャット機構 (34)は、前記第 2蒸発器(19)の除霜時に前記バイパス通路 (33 )を開放状態にする常閉式の構成になっていることを特徴とするェジェクタ式冷凍サ イタル装置。
[4] 前記第 1蒸発器 (15)と同じ温度帯で冷媒を蒸発させて冷却能力を発揮する第 3蒸 発器 (27)を備えて 、ることを特徴とする請求項 1に記載のェジェクタ式冷凍サイクル 装置。
[5] 前記第 1分岐通路(17)のうち、前記第 1絞り手段(18、 180)の上流部位力 冷媒流 れを分岐し、この冷媒流れを前記第 1蒸発器 (15)の冷媒流出側と前記圧縮機 (12) の吸入側との間に合流させる第 2分岐通路(25)と、
前記第 2分岐通路 (25)に配置され、冷媒を減圧する第 2絞り手段 (26)とを備え、 前記第 2分岐通路(25)において、前記第 2絞り手段(26)よりも下流側に前記第 3 蒸発器 (27)を配置したことを特徴とする請求項 4に記載のェジェクタ式冷凍サイクル 装置。
[6] 前記第 1蒸発器(15)は前記ェジ クタ(14)の冷媒流出側に接続されることを特徴と する請求項 1ないし 5のいずれか 1つに記載のェジヱクタ式冷凍サイクル装置。
[7] 前記放熱器 (13)の冷媒流出側と前記第 1蒸発器 (15)の冷媒流入側との間に第 3絞 り手段(30)を設け、前記ェジヱクタ(14)を前記第 3絞り手段(30)と並列に設けること を特徴とする請求項 1ないし 5のいずれか 1つに記載のェジェクタ式冷凍サイクル装 置。
[8] 前記第 2蒸発器(19)の除霜時に前記ェジ クタ(14)の上流部をシャットするシャット 機構(31)を備えることを特徴とする請求項 1ないし 5のいずれか 1つに記載のェジェ クタ式冷凍サイクル装置。
[9] 前記第 2蒸発器(19)の除霜時に前記放熱器(13)の上流部をシャットするシャット機 構(32)を備えることを特徴とする請求項 2に記載のェジェクタ式冷凍サイクル装置。
[10] 冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
前記ェジ クタ(14)力 流出した冷媒を蒸発させる第 1蒸発器(15)と、 前記第 1蒸発器(15)力 流出した冷媒の気液を分離して液相冷媒を溜めるととも に、気相冷媒を前記圧縮機(12)の吸入側に導出する気液分離器 (35)と、 前記気液分離器 (35)の液相冷媒の出口部を前記冷媒吸引口(14c)に接続する 分岐通路 (36)と、
前記分岐通路(36)に配置され、前記気液分離器 (35)から流出した前記液相冷媒 を減圧膨張させる絞り手段(180)と、
前記分岐通路(36)において、前記絞り手段(180)よりも下流側に配置される第 2 蒸発器 (19)と、
前記圧縮機(12)から吐出された高圧冷媒を直接前記第 2蒸発器 (19)に導入する バイパス通路(23)と、
前記バイパス通路(23)に設けられたシャット機構 (24)とを備え、
前記第 2蒸発器 (19)の冷媒蒸発圧力は前記第 1蒸発器 (15)の冷媒蒸発圧力より も低くなつており、
前記シャット機構 (24)は、前記第 2蒸発器(19)の除霜時に前記バイパス通路 (23 )を開放状態にする常閉式の構成になっていることを特徴とするェジェクタ式冷凍サ イタル装置。
冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 冷媒流出側が前記冷媒吸引口(14c)に接続される第 2蒸発器(19)と、
前記第 1蒸発器 (15)の冷媒流出側に配置される第 1絞り機構 (38)と、
前記第 2蒸発器 (19)の冷媒流入側に設けられる第 2絞り機構 (18)と、
前記第 1絞り機構 (38)および前記第 2絞り機構 (18)の開度を制御して、前記第 1 蒸発器(15)および前記第 2蒸発器(19)にて低圧冷媒が蒸発する通常運転モードと 、前記圧縮機(12)の吐出側の高圧高温冷媒を前記第 2蒸発器(19)および前記第 1 蒸発器(15)の両方に導入して、前記両蒸発器(15、 19)の除霜を行う除霜運転モ 一ドとを切り替える制御手段(21)とを備えることを特徴とするェジェクタ式冷凍サイク ル装置。 [12] 前記除霜運転モード時に、前記第 1絞り機構 (38)を所定絞り開度の状態とし、前記 第 2絞り機構( 18)を全開状態とすることを特徴とする請求項 11に記載のェジェクタ 式冷凍サイクル装置。
[13] 冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 冷媒流出側が前記冷媒吸引口(14c)に接続される第 2蒸発器(19)と、 前記第 2蒸発器 (19)の冷媒流入側に設けられる第 1絞り機構 (18)と、 前記第 2蒸発器 (19)の冷媒流出側に設けられる第 2絞り機構 (39)と、 前記第 1絞り機構 (18)および前記第 2絞り機構 (39)の開度を制御して、前記第 1 蒸発器(15)および前記第 2蒸発器(19)にて低圧冷媒が蒸発する通常運転モードと 、前記第 2蒸発器 (19)の除霜を行うと同時に前記第 1蒸発器 (15)が冷却機能を発 揮する除霜'冷却運転モードとを切り替える制御手段 (21)とを備え、
前記除霜'冷却運転モード時には、前記圧縮機(12)の吐出側の高圧高温冷媒を 前記第 2蒸発器(19)に導入して前記第 2蒸発器(19)の除霜を行うとともに、前記第 2蒸発器(19)を通過した高圧冷媒を前記第 2絞り機構 (39)により減圧し、この減圧 後の低圧冷媒を前記第 1蒸発器(15)に導入することにより、前記第 1蒸発器(15)が 冷却機能を発揮することを特徴とするェジヱクタ式冷凍サイクル装置。
[14] 前記除霜 ·冷却運転モード時に、前記第 1絞り機構 (18)を全開状態とし、前記第 2絞 り機構 (39)を所定絞り開度の状態とすることを特徴とする請求項 13に記載のェジ クタ式冷凍サイクル装置。
[15] 冷媒を吸入し圧縮する圧縮機(12)と、
前記圧縮機(12)カゝら吐出された高圧冷媒の放熱を行う放熱器 (13)と、 前記放熱器(13)下流側の冷媒を減圧膨張させるノズル部(14a)、および前記ノズ ル部(14a)から噴出する高い速度の冷媒流により冷媒が吸引される冷媒吸引口(14 c)を有するェジ クタ(14)と、
冷媒流出側が前記圧縮機(12)の吸入側に接続される第 1蒸発器(15)と、 冷媒流出側が前記冷媒吸引口(14c)に接続される第 2蒸発器(19)と、 前記第 2蒸発器 (19)の冷媒流入側に設けられる絞り機構 (181)と、
前記放熱器 (13)で冷媒が放熱する状態を設定して、前記第 1蒸発器 (15)および 前記第 2蒸発器 (19)にて低圧冷媒が蒸発する通常運転モードと、前記放熱器 (13) で冷媒が放熱しな!、状態を設定して、前記第 1蒸発器 (15)および前記第 2蒸発器 ( 19)の両方の除霜を行う除霜運転モードとを切り替える制御手段(21)とを備え、 前記除霜運転モード時には、前記圧縮機(12)の吐出側の冷媒が高圧高温状態の まま前記絞り機構(181)に流入して減圧され、前記絞り機構(181)通過後の低圧の 高温気相冷媒を前記第 1蒸発器(15)および前記第 2蒸発器(19)の両方に導入す ることを特徴とするェジヱクタ式冷凍サイクル装置。
[16] 前記絞り機構(181)の前記通常運転モード時の開度よりも前記除霜運転モード時の 開度を大きくすることを特徴とする請求項 15に記載のェジェクタ式冷凍サイクル装置
[17] 前記放熱器(13)に冷却空気を送風する送風手段(13a)を設け、前記除霜運転モ ード時には、前記送風手段(13a)を停止状態にすることを特徴とする請求項 11、 12 、 15、 16のいずれか 1つに記載のェジェクタ式冷凍サイクル装置。
[18] 前記放熱器(13)の冷媒通路をバイパスする放熱器バイパス通路 (40)と、
前記放熱器バイパス通路 (40)に設けられたバイパス用シャット機構 (41)とを備え、 前記除霜運転モード時には前記バイパス用シャット機構 (41)を開状態にすること により、前記圧縮機(12)の吐出側の高圧高温冷媒を前記放熱器バイパス通路 (40) を通して前記絞り機構(181)に導入することを特徴とする請求項 15または 16に記載 のェジヱクタ式冷凍サイクル装置。
[19] 前記放熱器 (13)の冷媒出口部に放熱器用シャット機構 (42)を前記第 1開閉弁 (41 )と並列に設けるとともに、前記放熱器(13)に冷却空気を送風する送風手段(13a) を設け、
前記除霜運転モード時には前記バイパス用シャット機構 (41)を開状態にするととも に、前記放熱器用シャット機構 (42)を閉状態にし、かつ、前記送風手段(13a)を作 動状態にすることを特徴とする請求項 18に記載のェジ クタ式冷凍サイクル装置。
[20] 前記ェジ クタ(14)の上流側通路にェジ クタ用シャット機構(31)を設け、前記除 霜運転モード時および前記除霜 ·冷却運転モード時には前記ェジェクタ用シャット機 構 (31)により前記ェジ クタ(14)の上流側通路を閉状態にすることを特徴とする請 求項 11, 12, 15, 16のいずれ力 1つに記載のェジヱクタ式冷凍サイクル装置。
[21] 前記第 1蒸発器(15)の冷媒流出側に、冷媒の気液を分離して液相冷媒を溜め、気 相冷媒を前記圧縮機(12)の吸入側に流出する気液分離器 (35)を備えることを特徴 とする請求項 1— 3、 10— 12、 15、 16のいずれか 1つに記載のェジェクタ式冷凍サイ クル装置。
PCT/JP2005/017447 2004-09-22 2005-09-22 エジェクタ式冷凍サイクル装置 WO2006033378A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800022688A CN1910410B (zh) 2004-09-22 2005-09-22 喷射式制冷剂循环装置
DE112005000931.9T DE112005000931B4 (de) 2004-09-22 2005-09-22 Ejektorpumpen-Kühlkreisvorrichtung
US10/581,088 US7757514B2 (en) 2004-09-22 2005-09-22 Ejector-type refrigerant cycle device
US12/802,239 US8186180B2 (en) 2004-09-22 2010-06-02 Ejector-type refrigerant cycle device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-275152 2004-09-22
JP2004275152 2004-09-22
JP2005225189A JP4984453B2 (ja) 2004-09-22 2005-08-03 エジェクタ式冷凍サイクル
JP2005-225189 2005-08-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/581,088 A-371-Of-International US7757514B2 (en) 2004-09-22 2005-09-22 Ejector-type refrigerant cycle device
US12/802,239 Division US8186180B2 (en) 2004-09-22 2010-06-02 Ejector-type refrigerant cycle device

Publications (1)

Publication Number Publication Date
WO2006033378A1 true WO2006033378A1 (ja) 2006-03-30

Family

ID=36090133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017447 WO2006033378A1 (ja) 2004-09-22 2005-09-22 エジェクタ式冷凍サイクル装置

Country Status (6)

Country Link
US (2) US7757514B2 (ja)
JP (1) JP4984453B2 (ja)
KR (1) KR100798395B1 (ja)
CN (1) CN1910410B (ja)
DE (1) DE112005000931B4 (ja)
WO (1) WO2006033378A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563945A (zh) * 2012-02-16 2012-07-11 西安交通大学 一种带双级引射喷射器的制冷循环系统
CN106288509A (zh) * 2015-05-22 2017-01-04 南京五洲制冷集团有限公司 一种板片蒸发冷凝式冷热水机组
WO2020005071A1 (en) * 2018-06-25 2020-01-02 Sinop Norge As Apparatus and method for transferring heat

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617763B2 (en) 2003-12-23 2009-11-17 Electrical & Electronics Limited Motorized and remote-controlled cabinet design of filter holder for pressurized espresso machines
US7237475B2 (en) 2003-12-23 2007-07-03 Electrical And Electronics, Limited Cabinet design of filter holder for pressurized espresso machines
US20080190123A1 (en) * 2004-08-19 2008-08-14 Hisense Group Co. Ltd. Refrigerator Having Multi-Cycle Refrigeration System And Control Method Thereof
JP2007315632A (ja) * 2006-05-23 2007-12-06 Denso Corp エジェクタ式サイクル
JP2007333292A (ja) * 2006-06-14 2007-12-27 Denso Corp エジェクタ式冷凍サイクル
DE102007028252B4 (de) * 2006-06-26 2017-02-02 Denso Corporation Kältemittelkreisvorrichtung mit Ejektorpumpe
JP4747967B2 (ja) * 2006-06-29 2011-08-17 株式会社デンソー 蒸気圧縮式サイクル
JP4591413B2 (ja) * 2006-06-26 2010-12-01 株式会社デンソー エジェクタ式冷凍サイクル
JP2008039298A (ja) * 2006-08-07 2008-02-21 Denso Corp ヒートポンプサイクル
JP4622960B2 (ja) * 2006-08-11 2011-02-02 株式会社デンソー エジェクタ式冷凍サイクル
JP2008057848A (ja) * 2006-08-31 2008-03-13 Denso Corp エジェクタを用いた蒸気圧縮式冷凍サイクル
CN100516715C (zh) * 2007-09-25 2009-07-22 西安交通大学 一种包含引射器的蒸气压缩制冷系统
DE112009000608B4 (de) * 2008-04-18 2017-12-28 Denso Corporation Kälteerzeugungszyklusvorrichtung eines Ejektor-Typs
US8387406B2 (en) * 2008-09-12 2013-03-05 GM Global Technology Operations LLC Refrigerant system oil accumulation removal
US20100251759A1 (en) * 2009-04-03 2010-10-07 Occhipinti Gasper C Liquid pressure cycle having an ejector
CN103003642B (zh) * 2010-07-23 2015-07-08 开利公司 喷射器循环
US9759462B2 (en) * 2010-07-23 2017-09-12 Carrier Corporation High efficiency ejector cycle
JP5506944B2 (ja) * 2010-10-18 2014-05-28 三菱電機株式会社 冷凍サイクル装置及び冷媒循環方法
DK2661591T3 (en) * 2011-01-04 2019-02-18 Carrier Corp EJEKTOR CYCLE
DE102011003905B4 (de) * 2011-02-10 2012-12-27 Continental Automotive Gmbh Abgasturbolader mit gekühltem Turbinengehäuse und gekühltem Lagergehäuse und gemeinsamer Kühlmittelzufuhr
US9285153B2 (en) 2011-10-19 2016-03-15 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having passive sublimation defrost of evaporator
US9310121B2 (en) 2011-10-19 2016-04-12 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having sacrificial evaporator
US10495361B2 (en) 2012-05-24 2019-12-03 Maxsystems, Llc Multiple panel heat exchanger
JP6090104B2 (ja) * 2012-12-13 2017-03-08 株式会社デンソー エジェクタ
CN104969014B (zh) * 2013-01-31 2017-04-05 三菱电机株式会社 冷冻循环装置和冷冻循环装置的控制方法
WO2014158329A1 (en) 2013-03-25 2014-10-02 Carrier Corporation Compressor bearing cooling
EP3003747B1 (de) * 2013-06-08 2020-02-19 Volkswagen Aktiengesellschaft Klimatisierungsvorrichtung für ein kraftfahrzeug und verfahren zu deren betrieb
KR101359932B1 (ko) 2013-12-20 2014-02-11 오텍캐리어냉장 유한회사 이젝터를 이용한 냉동탑차의 냉동-냉방 시스템
JP6102811B2 (ja) * 2014-03-26 2017-03-29 株式会社富士通ゼネラル 冷凍サイクル装置
JP6350108B2 (ja) * 2014-08-21 2018-07-04 株式会社デンソー エジェクタ、およびエジェクタ式冷凍サイクル
KR102214281B1 (ko) 2014-09-18 2021-02-09 삼성전자주식회사 냉동사이클 및 이를 갖는 냉장고
CN104807230A (zh) * 2015-05-07 2015-07-29 张育仁 一种涡轮负压节能空调及其使用方法
CN107636402A (zh) * 2015-05-13 2018-01-26 开利公司 喷射器制冷回路
KR101728955B1 (ko) 2015-07-23 2017-04-21 고려대학교 산학협력단 가변형 이젝터 및 이를 갖는 냉동 사이클장치
KR102380053B1 (ko) 2015-10-16 2022-03-29 삼성전자주식회사 공기조화장치, 이에 사용되는 이젝터, 및 공기조화장치의 제어방법
CN105650822B (zh) * 2016-02-21 2018-10-23 珠海格力电器股份有限公司 热泵空调器及其化霜方法
CN107351624B (zh) * 2016-05-10 2020-08-25 比亚迪股份有限公司 热泵空调系统及电动汽车
CN107356003B (zh) 2016-05-10 2021-04-20 比亚迪股份有限公司 热泵空调系统及电动汽车
JP2017219262A (ja) 2016-06-08 2017-12-14 株式会社デンソー エジェクタ式冷凍サイクル装置
JP6547781B2 (ja) * 2016-06-16 2019-07-24 株式会社デンソー 冷凍サイクル装置
CN106196780B (zh) * 2016-07-27 2019-04-12 南京理工大学 一种高效溶液除霜空气源热泵热水机组
WO2018032108A1 (en) * 2016-08-17 2018-02-22 Lesmerises Marc Andre Refrigeration system and method for operating same
CN106705484B (zh) * 2016-12-23 2019-04-16 张承虎 一种喷射式换热系统
US10254015B2 (en) 2017-02-28 2019-04-09 Thermo King Corporation Multi-zone transport refrigeration system with an ejector system
US10473370B2 (en) * 2017-12-12 2019-11-12 GM Global Technology Operations LLC Ejector-receiver refrigeration circuit with valve
EP3524904A1 (en) 2018-02-06 2019-08-14 Carrier Corporation Hot gas bypass energy recovery
JP7031482B2 (ja) * 2018-02-08 2022-03-08 株式会社デンソー エジェクタ式冷凍サイクル、および流量調整弁
WO2019155805A1 (ja) * 2018-02-08 2019-08-15 株式会社デンソー エジェクタ式冷凍サイクル、および流量調整弁
US11619431B2 (en) 2018-04-13 2023-04-04 Carrier Corporation Method of defrosting a multiple heat absorption heat exchanger refrigeration system
CN111141050B (zh) * 2020-01-21 2024-03-26 天津商业大学 一种引射增压梯级过冷跨临界co2系统及应用
AU2022305679A1 (en) * 2021-07-06 2024-02-22 Mbgsholdings Pty Ltd Refrigeration system and method
CN114623620B (zh) * 2022-02-28 2024-03-08 河南科技大学 一种带膨胀机的双温位喷射压缩制冷循环装置
CN114754513A (zh) * 2022-04-26 2022-07-15 九江湖心科技产业发展有限公司 一种可用于氢气液化的喷射器式分级制冷循环系统及其方法
CN115235144A (zh) * 2022-08-24 2022-10-25 珠海格力电器股份有限公司 热泵系统
CN118636767A (zh) * 2024-08-08 2024-09-13 比亚迪股份有限公司 车辆热管理系统及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163084A (ja) * 2002-09-24 2004-06-10 Denso Corp 蒸気圧縮式冷凍機
JP3102651U (ja) * 1999-10-19 2004-07-15 エルジー電子株式会社 2個の蒸発器を備えた冷蔵庫の冷凍装置
JP2004239493A (ja) * 2003-02-05 2004-08-26 Denso Corp ヒートポンプサイクル

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116516Y2 (ja) * 1971-09-03 1976-05-01
JPS4836460A (ja) 1971-09-10 1973-05-29
JPS5236354A (en) * 1975-09-17 1977-03-19 Matsushita Electric Ind Co Ltd Refrigerant circuit
JPS6144126Y2 (ja) * 1980-10-27 1986-12-12
JPS5775366A (en) 1980-10-28 1982-05-11 Sharp Corp Programmable electronic computer
JPS6057164A (ja) * 1983-09-08 1985-04-02 シャープ株式会社 冷凍サイクルの除霜装置
JPH01147268A (ja) * 1987-12-02 1989-06-08 Daikin Ind Ltd 冷凍装置
JPH035674A (ja) 1989-06-01 1991-01-11 Hitachi Ltd 冷媒回路
JPH05312421A (ja) 1992-05-14 1993-11-22 Nippondenso Co Ltd 冷凍装置
JPH06185836A (ja) * 1992-12-16 1994-07-08 Nippondenso Co Ltd 冷凍装置
US5343711A (en) * 1993-01-04 1994-09-06 Virginia Tech Intellectual Properties, Inc. Method of reducing flow metastability in an ejector nozzle
JPH09318169A (ja) * 1996-03-28 1997-12-12 Mitsubishi Electric Corp 冷凍装置
JP3700286B2 (ja) * 1996-10-17 2005-09-28 株式会社デンソー 空調装置
JPH10267504A (ja) * 1997-03-25 1998-10-09 Toshiba Corp 冷蔵庫
JP2000283577A (ja) * 1999-03-30 2000-10-13 Denso Corp 冷凍装置用冷凍サイクル
JP4277397B2 (ja) * 1999-12-02 2009-06-10 三菱電機株式会社 冷凍装置
EP1134517B1 (en) * 2000-03-15 2017-07-26 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP3322263B1 (ja) 2000-03-15 2002-09-09 株式会社デンソー エジェクタサイクル、これに用いる気液分離器、並びにこのエジェクタサイクルを用いた給湯器及び熱管理システム
JP4463466B2 (ja) 2001-07-06 2010-05-19 株式会社デンソー エジェクタサイクル
JP2003097868A (ja) * 2001-09-25 2003-04-03 Denso Corp エジェクタサイクル
DE10302356A1 (de) * 2002-01-30 2003-07-31 Denso Corp Kältekreislauf mit Ejektorpumpe
JP2003262432A (ja) * 2002-03-08 2003-09-19 Denso Corp 蒸気圧縮式冷凍機用の熱交換器
US6651451B2 (en) * 2002-04-23 2003-11-25 Vai Holdings, Llc Variable capacity refrigeration system with a single-frequency compressor
JP3990593B2 (ja) 2002-05-09 2007-10-17 本田技研工業株式会社 車両用ヒートポンプ式空調装置
JP2004142506A (ja) * 2002-10-22 2004-05-20 Denso Corp 車両用空調装置
JP2004198002A (ja) 2002-12-17 2004-07-15 Denso Corp 蒸気圧縮式冷凍機
JP2004218855A (ja) * 2003-01-09 2004-08-05 Denso Corp 蒸気圧縮式冷凍機
JP3931899B2 (ja) 2004-02-18 2007-06-20 株式会社デンソー エジェクタサイクル
CN1291196C (zh) * 2004-02-18 2006-12-20 株式会社电装 具有多蒸发器的喷射循环

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102651U (ja) * 1999-10-19 2004-07-15 エルジー電子株式会社 2個の蒸発器を備えた冷蔵庫の冷凍装置
JP2004163084A (ja) * 2002-09-24 2004-06-10 Denso Corp 蒸気圧縮式冷凍機
JP2004239493A (ja) * 2003-02-05 2004-08-26 Denso Corp ヒートポンプサイクル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563945A (zh) * 2012-02-16 2012-07-11 西安交通大学 一种带双级引射喷射器的制冷循环系统
CN102563945B (zh) * 2012-02-16 2013-12-11 西安交通大学 一种带双级引射喷射器的制冷循环系统
CN106288509A (zh) * 2015-05-22 2017-01-04 南京五洲制冷集团有限公司 一种板片蒸发冷凝式冷热水机组
WO2020005071A1 (en) * 2018-06-25 2020-01-02 Sinop Norge As Apparatus and method for transferring heat

Also Published As

Publication number Publication date
KR100798395B1 (ko) 2008-01-28
CN1910410A (zh) 2007-02-07
US20100257893A1 (en) 2010-10-14
KR20070029132A (ko) 2007-03-13
JP4984453B2 (ja) 2012-07-25
JP2006118849A (ja) 2006-05-11
DE112005000931B4 (de) 2019-05-09
US8186180B2 (en) 2012-05-29
DE112005000931T5 (de) 2007-04-26
US20070119207A1 (en) 2007-05-31
CN1910410B (zh) 2010-05-05
US7757514B2 (en) 2010-07-20

Similar Documents

Publication Publication Date Title
JP4984453B2 (ja) エジェクタ式冷凍サイクル
US7779647B2 (en) Ejector and ejector cycle device
US7823401B2 (en) Refrigerant cycle device
JP4595607B2 (ja) エジェクタを使用した冷凍サイクル
JP3931899B2 (ja) エジェクタサイクル
JP6547781B2 (ja) 冷凍サイクル装置
US20110167851A1 (en) Refrigerant cycle device with ejector
US7059150B2 (en) Vapor-compression refrigerant cycle system with ejector
JP2010133606A (ja) エジェクタ式冷凍サイクル
JP5359231B2 (ja) エジェクタ式冷凍サイクル
JP4600208B2 (ja) エジェクタを用いたサイクル
JP4924436B2 (ja) 蒸気圧縮式サイクル
JP2007078339A (ja) エジェクタ式冷凍サイクル
JP6708161B2 (ja) エジェクタ式冷凍サイクル
JP4930214B2 (ja) 冷凍サイクル装置
JP2007078349A (ja) エジェクタサイクル
JP2010038456A (ja) 蒸気圧縮式冷凍サイクル
JP2008261512A (ja) エジェクタ式冷凍サイクル
JP4341515B2 (ja) エジェクタサイクル
JP4747967B2 (ja) 蒸気圧縮式サイクル
JP2022088798A (ja) 冷凍サイクル装置
JP4835296B2 (ja) エジェクタ式冷凍サイクル
JP4259605B2 (ja) エジェクタ式冷凍サイクル
JP2008121913A (ja) 蒸気圧縮式冷凍サイクル
KR101544880B1 (ko) 차량용 에어컨의 냉동사이클

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007119207

Country of ref document: US

Ref document number: 10581088

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580002268.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067014484

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050009319

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067014484

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005000931

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000931

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10581088

Country of ref document: US

122 Ep: pct application non-entry in european phase