Nothing Special   »   [go: up one dir, main page]

WO2006022093A1 - アンテナスイッチモジュール - Google Patents

アンテナスイッチモジュール Download PDF

Info

Publication number
WO2006022093A1
WO2006022093A1 PCT/JP2005/013031 JP2005013031W WO2006022093A1 WO 2006022093 A1 WO2006022093 A1 WO 2006022093A1 JP 2005013031 W JP2005013031 W JP 2005013031W WO 2006022093 A1 WO2006022093 A1 WO 2006022093A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna switch
filter
switch module
antenna
switch circuit
Prior art date
Application number
PCT/JP2005/013031
Other languages
English (en)
French (fr)
Inventor
Masaya Tamura
Yoshikuni Fujihashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/565,768 priority Critical patent/US7528678B2/en
Priority to EP05765638A priority patent/EP1783853A1/en
Publication of WO2006022093A1 publication Critical patent/WO2006022093A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices

Definitions

  • the present invention relates to an antenna switch module including an antenna switch that switches antennas and a filter that passes through a fundamental band and has an attenuation pole.
  • FIG. 12 is a configuration diagram of a conventional communication device including a conventional antenna switch module 80.
  • a conventional antenna switch module 80 will be described with reference to FIG. Referring to FIG. 12, the conventional communication apparatus includes an antenna switch module 80, a transmission unit 41, a reception unit 42, a finala 83, antennas 44 to 45, and Canon C81 to C84.
  • the conventional antenna switch module 80 includes an antenna switch circuit 87 and a finoleta 86.
  • a signal transmitted by the transmission unit 41 is input to the filter 86 via the capacitor 81.
  • the filter 86 passes the fundamental band and removes unnecessary signals.
  • the signal output from the filter 86 is emitted from the antenna 44 or antenna 45 switched by the antenna switch circuit 87 via the capacitor C83 or C84.
  • the signal from the antenna 44 or the antenna 45 input via the capacitor C83 or C84 switched by the antenna switch circuit 87 is input to the filter 83 via the capacitor C82.
  • the filter 83 removes an unnecessary signal from the input signal and outputs it to the receiving unit 42.
  • the receiving unit 42 demodulates the signal from the filter 83.
  • FIG. 13 is a diagram showing a configuration of a filter in a conventional antenna switch module.
  • the capacitor C94 connected to the ground is open to the low frequency component and shorted to the high frequency component, and the inductor L94 connected in series is connected to the low frequency component. Is open to short circuits and high frequency components. Therefore, the filter shown in FIG. 13 is a low-pass filter that transmits only low-frequency components.
  • the low-pass filter shown in FIG. 13 has a large circuit configuration because a steep attenuation cannot be obtained unless the number of stages is increased. In order to obtain steep attenuation with a small number of steps, this is also necessary.
  • the Chebyshev-type low-pass filter can be configured with the constants of each filter element. However, since this has a lip nore in the transmission region, it was difficult to transmit a wide band with low loss. Moreover, you may use a distributed constant line as another structure.
  • FIG. 14 is a diagram showing a configuration of another filter in the conventional antenna switch module.
  • FIG. 15 is a diagram showing the frequency characteristics of the filter in the conventional antenna switch module shown in FIG. The operating principle of this filter is briefly explained below using Figs. 14 and 15.
  • the polarized low-pass filter 90 includes LC series circuits 96, 98, and 99.
  • the attenuation range in the frequency characteristic of the filter 90 includes a first pole of 13.2 KHz, a second pole of 15.4 KHz, a third pole of 25.3 KHz, and 3 Two poles appear.
  • the resonance frequency of the L C series circuit 98 that is, the second pole frequency is adjusted to be small, the distance between the first pole and the second pole is narrowed.
  • the attenuation between the poles increases as the gap between the poles becomes narrower.
  • a resonator type filter with a small transmission loss is known as another filter constituting the antenna switch module.
  • a notch-type low-pass filter for example, has multiple 1 /
  • FIG. 16 shows the frequency characteristics when the antenna 44 or the antenna 45 is viewed from the transmitter 41 when the filter 86 in the conventional antenna switch module is a notch type filter.
  • F3 9.8 GHz force
  • F4 ll.
  • Up to 7 GHz is the second harmonic band.
  • F5 14.7 GHz force
  • F6 17.5
  • Up to 5 GHz is the third harmonic band.
  • the attenuation pole frequency is set to attenuate the second and third harmonics.
  • the two attenuation poles F3 and F4 for the second harmonic band and F5 and F6 for the third harmonic band are other than the attenuation pole. In-band attenuation is reduced. In other words, both the impedance seen from the input side output side of the filter 86 and the impedance seen from the input side of the output side approach 50 ⁇ .
  • the impedance Z813 of the terminal T83 connected to the filter 86 to the terminal T83 to which the capacitor C83 is connected is approximately 50 ⁇ in the fundamental band.
  • the impedance Z842 from the terminal T84 to which the capacitor C84 is connected to the terminal T82 to which the capacitor C82 is connected is also approximately 50 ⁇ in the fundamental band.
  • the impedance Z814 viewed from the terminal T81 to the terminal T84 and the impedance Z832 viewed from the terminal T83 to the terminal T82 are opened.
  • the impedance Z813, Z842, Z814, and Z832 changes directly, and the values of impedances Z813 and Z842 are close to being open in the harmonic band for 4.9GHz power and 5.85GHz.
  • the values of impedance Z814 and Z832 approach 50 ⁇ .
  • the impedance when the filter 86 is viewed from the terminal T81 and the impedances Z813 and Z814 when the antenna switch circuit 87 is viewed from the terminal T81 can be complex conjugates.
  • the attenuation amount at the attenuation pole may deteriorate or a rebound phenomenon may occur between the attenuation poles, and a sufficient attenuation amount may not be ensured.
  • the present invention provides an antenna switch module including a filter capable of suppressing transmission loss and obtaining high attenuation in a wide band in a harmonic region.
  • the antenna switch module of the present invention includes a finisher, an antenna switch circuit, and an adjustment line.
  • the filter passes through the fundamental band and has an attenuation pole.
  • the antenna switch circuit switches the antenna that matches the fundamental band.
  • the adjustment line is connected between the filter and the antenna switch circuit, and adjusts the characteristics at the harmonic frequency of the fundamental band. When the filter and the antenna switch circuit are directly connected, the adjustment line has a complex conjugate of the impedance seen from the connection point and the impedance seen from the antenna switch circuit from this connection point at the harmonic frequency. Not to become The adjustment line
  • FIG. 1 is a block diagram showing a configuration of a communication apparatus including an antenna switch module according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a first layer of the antenna switch module in the same example.
  • FIG. 3 is a view showing a second layer of the antenna switch module in the same example.
  • FIG. 4 is a diagram showing a third layer of the antenna switch module in the same example.
  • FIG. 5 is a diagram showing a fourth layer of the antenna switch module in the same example.
  • FIG. 6 is a diagram showing a fifth layer of the antenna switch module in the same example.
  • FIG. 7 is a view showing a sixth layer of the antenna switch module in the same example.
  • FIG. 8 is a diagram showing a configuration of an antenna switch circuit of the antenna switch module in the same example.
  • FIG. 9 is an equivalent circuit diagram at the time of PIN diode 0N constituting the antenna switch circuit in the same example.
  • FIG. 10 is an equivalent circuit diagram when the PIN diode is OFF in the same embodiment.
  • FIG. 11 is a diagram showing the frequency characteristics of the antenna switch module in the same example.
  • FIG. 12 is a block diagram showing a configuration of a communication apparatus including a conventional antenna switch module.
  • FIG. 13 is a circuit diagram of a filter constituting a conventional antenna switch module.
  • FIG. 14 is a circuit diagram of a filter constituting a conventional rule.
  • FIG. 15 is a diagram showing the frequency characteristics of filters constituting a conventional antenna switch module.
  • FIG. 16 is a diagram showing frequency characteristics of a conventional antenna switch module. Explanation of symbols
  • FIG. 1 is a block diagram showing a configuration of a communication device including an antenna switch module according to an embodiment of the present invention.
  • the communication apparatus includes an antenna switch module 30, a transmitter, a receiver, a filter 43, antennas 44 to 45, and Canon C11 to C14.
  • the antenna switch module 30 includes an antenna switch 33, a finisher 31, and an adjustment line 13D.
  • the adjustment line 13D constitutes a directional coupler 35 with other elements to be described later.
  • the signal transmitted by the transmission unit 41 is input to the filter 31 via the capacitor C11.
  • the filter 31 is a notch type low-pass filter that removes unnecessary harmonic signals contained in the signal from the transmission unit 41.
  • the fundamental band of filter 31 is 4.9-5.85 GHz
  • the second harmonic band is 9.8-11.7 GHz
  • the third harmonic band is 14.7-17.55 GHz.
  • the signal output from the filter 31 is input to the antenna switch circuit 33 via the adjustment line 13D formed by a strip line.
  • the signal input via the adjustment line 13D is emitted from the antenna 44 or the antenna 45 switched by the antenna switch circuit 33 via the capacitor C13 or C14.
  • An indefinite signal is removed from the signal input to the filter 43 and output to the receiver 42.
  • the receiving unit 42 demodulates the signal that has passed through the filter 43.
  • FIGS. 2 to 7 are diagrams showing each layer of the multilayer substrate when the antenna switch module of the present embodiment is configured to comply with the IEEE802.11a standard.
  • FIG. 2 is a diagram showing the first layer P1, which is the surface layer.
  • the antenna switch circuit 33 is configured by mounting the switch element Bl, the inductors L1 to L4, the capacitors Cl and C2, and the resistors Rl and R2 on the first layer P1.
  • the switch element B1 is composed of PIN diodes D1 to D4.
  • a capacitor C12, a finerator 43, a capacitor C5 that is a part of the directional coupler 35, and a resistor R5 are also mounted.
  • FIG. 3 is a diagram showing the second layer P2 having the ground portions 5A and 5B.
  • FIG. 4 is a diagram showing a third layer P3 having a coupled line 15 which is a part of the directional coupler.
  • FIG. 5 is a diagram showing the fourth layer P4 having the filter 31 and the adjustment line 13D.
  • FIG. 6 is a diagram showing the fifth layer P5 having the ground portion 4.
  • FIG. 7 is a diagram showing a sixth layer P6 having electrodes 6A to 6E. P1 to P6 are sequentially stacked with P1 as the top surface layer.
  • the antenna switch module of this embodiment is connected to other elements by P6.
  • the substrate constituting the antenna switch module in this example uses low-temperature fired ceramics having a dielectric constant of 7.4, and the length is 5.4 mm, the width is 4. Omm, and the thickness is 0.7 mm.
  • Ground section 4, 5A, 5B, stripline 11A ⁇ : 11D, 13A ⁇ 13C, adjustment line 13 D and the coupling line 15 are formed by printing a conductor paste mainly composed of silver powder.
  • the characteristic impedance of the strip lines 11A to 11D, 11D, 13A to 13C and the adjustment line 13D formed in the fourth layer is 50 ⁇ , and 0.1 mm in the low-temperature firing ceramic of this embodiment. Is the line width.
  • the filter 31 includes strip lines 11A to 11D and 13A to 13C.
  • Stripline 11A is connected to striplines 13A and 13B at connection point E1.
  • Strip lines 11B and 11C are connected to strip lines 13B and 13C at connection point E2.
  • Strip line 11D is connected to strip line 13C and adjustment line 13D at connection point E3.
  • the strip lines 11B, 11C, 13B, and 13C are connected in a cross shape at the connection point E2.
  • the strip lines 11A to 11D are open on one side, and the line lengths are respectively 1/4 wavelength of 17.55 GHz, 14.7 GHz, 11.7 GHz, and 9.8 GHz. Therefore, strip lines 11A, 11B, 11C, and lDi are 17.55 GHz, 14.7 GHz, 11.7 GHz, and 9.8 GHz, respectively, and the voltage amplitude at connection points E1 to E3 becomes zero. That is, striplines 11A ⁇ : 11D are open stubs.
  • the FINORETA 31 may consist of a half-wave short stub with one side grounded. In this case, it is necessary to insert a DC cut capacitor before connection to the antenna switch circuit 33.
  • the striplines 13B and 13C are connected to the stripline 11A to D, and in the fundamental band, the impedance viewed from the stripline 13A side of the connection point E1 and the adjustment line 13D side of the connection point E3
  • the line length is determined so that the impedance seen from the viewpoint is 50 ⁇ .
  • the line lengths of 13B and 13C are 2.3 mm and 2.45 mm, respectively.
  • the strip line 13 A is connected to the circular conductor portion 3. Connect the 4th and 5th layers with via hole VI. The fifth layer and the sixth layer electrode 6A are connected via via hole V2. Continue. The circular conductor portion 8 connects the via holes VI and V2. The sixth layer electrode 6A is connected to the transmitter 41 via C11.
  • the ground portion 4 has a conductor pattern removed in a circular shape with a diameter that does not cause electromagnetic field coupling by the via hole V2.
  • the diameter of the circular conductor portion 8 was 1.25 mm.
  • the diameter of the via hole of the circular conductor portion 8 was 0.5 mm, and the diameter of the circular conductor portion 3 was set to 0.75 mm in consideration of variations in the connection position deviation from the via hole due to manufacturing errors.
  • electrodes 6A to 6E were formed by printing a conductive paste mainly composed of silver powder.
  • the electrode 6A is an electrode for inputting a signal from the transmission unit 41 via the capacitor C11.
  • the electrodes 6C and 6D are power supply electrodes for operating the antenna switch circuit 33.
  • the plurality of electrodes 6E are electrodes for securing a ground potential.
  • the sixth layer circular electrode diameter was lmm.
  • the center of the 6th layer is used as a reference, so that it is symmetrical at a position of ⁇ 0.7 mm, vertical 0.8 mm, horizontal 1.4 mm
  • the electrode 6B is provided in the rectangle.
  • via holes are provided in 2 rows and 5 columns at intervals of 0.3 mm in the vertical direction and 0.5 mm in the horizontal direction and connected to the ground portion 4.
  • the adjustment line 13D is connected to the circular conductor portion 7, via a via hole V3 connecting the fourth layer and the second layer, and a via V4 connecting the second layer and the antenna switch circuit 33. Connected to terminal T1 of the antenna switch circuit 33 shown in Fig. 2.
  • FIG. 8 is a diagram showing a configuration of the antenna switch circuit 33 of the antenna switch module in the present embodiment.
  • the antenna switch circuit 33 includes terminals T1 to T4. A signal from the transmission unit 41 is input to the terminal T1. Terminal ⁇ 2 outputs the signal from antenna 44 or antenna 45 to receiver 42. Terminal ⁇ 3 is connected to antenna 44 through capacitor C13. Terminal ⁇ 4 is connected to antenna 45 through capacitor C14.
  • the antenna switch circuit 33 is provided with switch units Sl and S2. Switch S1 conducts and cuts off between terminal T1 and terminals T3 and ⁇ 4. Switch unit S2 conducts and cuts off between terminals ⁇ 2 and ⁇ 3, ⁇ 4.
  • the switch unit S1 includes a PIN diode D1 in which a terminal T1 is connected to a force sword, a terminal ⁇ 3 is connected to an anode, and a PIN diode D2 in which a terminal T1 is connected to an anode, and a terminal T4 is connected to a force sword.
  • Switch unit S2 is a PI with terminal T2 connected to the anode and terminal T3 connected to the force sword. It is equipped with an N diode D3, a terminal T2 and a force sword, and a PIN diode D4 having a terminal ⁇ 4 and an anode connected thereto.
  • the PIN diodes D1 to D4 constitute the switch element B1.
  • the inductor L1 and the capacitor C1 are connected in series between the connection point between the terminal T1 and the PIN diode D1 and the ground 5B.
  • Inductor L2 and capacitor C2 are connected in series between the connection point of PIN diode D1 and terminal T3 and ground 5B.
  • the inductor L3 and the capacitor C1 are connected in series between the connection point between the terminal T2 and the PIN diode D4 and the ground 5B.
  • the inductor L4 and the capacitor C2 are connected in series between the connection point between the PIN diode D4 and the terminal T4 and the ground 5B. Connection point force between inductor L1 and inductor L3 and capacitor C1 Connected to electrode 6C via resistor R1. The connecting point force between inductor L2 and inductor L4 and capacitor C2 is connected to electrode 6D via resistor R2.
  • the resistors Rl and R2 are resistors that adjust the direct current flowing through the PIN diodes D1 to D4.
  • Capacitors Cl and C2 pass high frequency components to ground 5B.
  • Inductors L1 to L4 block high frequency components and apply a DC voltage to PIN diodes D1 to D4.
  • PIN diodes D2 and D3 are turned on.
  • PIN diodes Dl and D4 are turned on.
  • FIG. 9 is an equivalent circuit diagram of the PIN diode constituting the antenna switch module according to the present embodiment at 0N.
  • the PIN diode can be represented by inductors L31 to L33, a capacitor C31, and a resistor 31.
  • Figure 10 is an equivalent circuit diagram when the switch is OFF, and can be represented by inductors L34 to 35, capacitors C32 to 33, and resistor 32.
  • the coupled line 15 forms a directional coupler 35 including a capacitor C5 and a resistor R5 by being parallel to the adjustment line 13D with a ceramic layer therebetween.
  • FIG. 11 is a diagram showing the frequency characteristics of the antenna switch module in the present example.
  • the passing signal 51 is a passing signal from the strip line 13A to the terminal T3 or the terminal T4.
  • the reflected signal 52 is a reflected signal with respect to the passing signal 51.
  • Antenna switch times In the path 33 the impedance of the terminal T1 connected to the adjustment circuit 13D to the terminal T3 connected to the capacitor C13 is denoted as Z13.
  • the impedance of the terminal T4 force connected to the capacitor C14 and the terminal T2 connected to the capacitor C12 is denoted as Z42.
  • the impedance of terminal T1 through terminal T4 is denoted as Z14.
  • the impedance of terminal T3 viewed from terminal T2 is denoted as Z32.
  • the filter 31 configured in the fourth layer has the second harmonic wave and the third harmonic wave in the fundamental band from 4.9 GHz to 5.85 GHz, depending on the striplines 11A to 11D.
  • a large attenuation pole is created in the frequency band that becomes the harmonic.
  • the length of the adjustment line 13D formed by the stripline is adjusted by adjusting the length so that it does not become a complex conjugate, ie, an impedance relationship in which the reactance is equal and opposite in sign.
  • the antenna switch circuit 33 which normally operates as a switch from the fundamental band of 4.9 GHz to 5.85 GHz, does not operate normally as a switch at frequencies above the second harmonic of the fundamental band. This is due to the influence of the reactance components shown in Figs. Therefore, the measured data of the antenna switch circuit 33 is input to the EM (electromagnetic field) simulator. Next, the specifications of the filter 31 made of low-temperature fired ceramics, the actual layer configuration such as conductor loss, and the detailed conditions of the conductor are input to the EM simulator.
  • the actual layer configuration such as the conductor loss and the detailed conditions of the conductor are input to the EM simulator, and the length is changed so that the complex conjugate of the second and third harmonics is obtained. Avoid the relationship and get good attenuation and bandwidth.
  • an antenna switch that can suppress the transmission loss and secure high attenuation over a wide band in the harmonic region by using a notch-type low-pass filter as a filter and adjusting the length of the adjustment line 13D. Can provide modules.
  • a directional coupler may be configured including the adjustment line 13D, the pattern 15, the capacitor C5, and the resistor R5. Thereby, the reflected wave from the antenna 44 or the antenna 45 can be further detected, and the transmission state of the transmission unit 41 can be controlled.
  • the antenna switch module of the present invention can easily suppress the rebound component between two or more attenuation poles without deteriorating the attenuation amount of the attenuation pole of the filter, and can reduce the number of filter stages. Harmonic components can be sufficiently attenuated without increasing.
  • the ground portion may be divided into a ground portion 5A and a ground portion 5B.
  • the ground portion 5A is a ground portion of the antenna switch circuit 33.
  • the ground portion 5B is a ground portion for the strip lines 13B to 13C and the strip lines 11A to 11D constituting the filter formed in the fourth layer, the strip line 13A connected to the transmitting portion 41 side, and the circular conductor portion 3. is there. Due to the division of the ground, the image current flowing through the ground portion flows through the ground portion 5A, and flows into the ground portion 4 via the via hole V 5 connecting the ground portion 5A and the ground portion 4.
  • the image current flowing through the ground portion 4 flows into the ground portion 5B via the via hole V6 connecting the ground portion 4 and the ground portion 5B.
  • the path of this image current is a line length that cannot be ignored in the frequency band of 4.9 GHz to 5.85 GHz and above the second harmonic.
  • this image current path acts as a choke coil for current in the frequency band above the second harmonic.
  • the power described in the case where the switch element constituting the antenna switch circuit is a PIN diode having a high frequency region and good switch characteristics is not limited to this.
  • the switch element can achieve the same effect even in electronic devices such as Ga (gallium) As (arsenic) switches, transistors, and field effect transistors (FETs) that have the same good switch characteristics in the high-frequency region.
  • the filter or the adjustment line is configured by a strip line.
  • the present invention is not limited to this, and the same effect can be obtained by a micro strip line.
  • the present invention is not limited to this, and the number of attenuation poles may be changed. The same effect can be obtained even if the force-polarized low-pass filter described in the case of the notch-type low-pass filter is used.
  • the force described in the case of the low-pass filter may be a band-pass filter or a band rejection.
  • the same effect can be obtained with a filter.
  • the force S described in the case of the number of layers of the multilayer substrate, the present invention is not limited to this.
  • the antenna switch module according to the present invention includes a filter and an adjustment line that can suppress transmission loss and obtain high attenuation in a wide band in a harmonic region. Therefore, it is useful as an antenna switch module or the like including an antenna switch for switching antennas and a filter for removing spurious signals of communication devices.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Transceivers (AREA)
  • Details Of Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 透過損失を抑え、高調波領域で広帯域に高減衰を得ることができるフィルタを含むアンテナスイッチモジュールが開示されている。このアンテナスイッチモジュールは、フィルタと、アンテナスイッチ回路と、調整線路とを含む。フィルタは、基本波帯域を通過し減衰極を有する。アンテナスイッチ回路は、アンテナを切り替える。調整線路は、フィルタとアンテナスイッチ回路との間に接続される。調整線路は、その長さを調整し、フィルタとアンテナスイッチ回路とを直接接続した場合に、この接続した点からフィルタをみたインピーダンスと、この接続した点からアンテナスイッチ回路をみたインピーダンスとが、高調波周波数において、複素共役とならないようにする調整線路である。

Description

明 細 書
アンテナスィッチモジユーノレ
技術分野
[0001] 本発明は、アンテナを切り替えるアンテナスィッチと、基本波帯域を通過し減衰極を 有するフィルタとを含むアンテナスィッチモジュールに関する。
背景技術
[0002] 図 12は、従来のアンテナスィッチモジュール 80を含む従来の通信装置の構成図で ある。従来のアンテナスィッチモジュール 80を、図 12を用いて説明する。図 12にお いて、従来の通信装置は、アンテナスィッチモジュール 80と、送信部 41と、受信部 4 2と、フイノレタ 83と、アンテナ 44〜45と、キヤノ シタ C81〜C84とを備; る。
[0003] 従来のアンテナスィッチモジュール 80は、アンテナスィッチ回路 87と、フイノレタ 86と を備える。送信部 41が送信する信号は、キャパシタ 81を介してフィルタ 86に入力さ れる。フィルタ 86は、基本波帯域を通過し、不要な信号を除去する。フィルタ 86から 出力された信号は、アンテナスィッチ回路 87が切り替えたアンテナ 44もしくはアンテ ナ 45から、キャパシタ C83もしくは C84を介して発射される。
[0004] アンテナスィッチ回路 87が切り替えた、キャパシタ C83もしくは C84を介して入力さ れたアンテナ 44もしくはアンテナ 45からの信号は、キャパシタ C82を介してフィルタ 8 3に入力される。フィルタ 83は、入力された信号から不要な信号を除去し、受信部 42 に出力する。受信部 42はフィルタ 83からの信号を復調する。
[0005] アンテナスィッチモジュール 80を構成するフィルタ 86につレ、て図 13〜図 16を用レヽ て説明する。図 13は、従来のアンテナスィッチモジュールにおけるフィルタの構成を 示す図である。図 13において、グランドに対して接続されたキャパシタ C94は、低周 波成分に対しては開放、高周波成分に対しては短絡となり、直列に接続されたインダ クタ L94は、低周波成分に対しては短絡、高周波成分に対しては開放となる。したが つて、図 13に示すフィルタは、低周波成分のみを透過させるローパスフィルタとなる。
[0006] 図 13に示すローパスフィルタは、段数を増やさなければ急峻な減衰を得ることがで きないため、回路構成が大きくなる。また、少ない段数で急峻な減衰を得るために、こ のフィルタの各素子の定数を、チェビシェフ型ローパスフィルタを構成するようにして もよレ、。しかし、これは透過領域にリプノレを持っため、低損失で広帯域透過させること は困難であった。また、別の構成として分布定数線路を用いてもよい。この場合、ある 周波数を超えると、例えば誘導性を持つ分布定数線路は容量性に、容量性を持つ 分布定数線路は誘導性となり、入力インピーダンスが周波数によって大きく変化しフ ィルタとしての機能が失われる場合があった。
[0007] そのため、図 14に示すような有極型ローパスフィルタが考案された。図 14は、従来 のアンテナスィッチモジュールにおける別のフィルタの構成を示す図である。図 15は 、図 14に示す従来のアンテナスィッチモジュールにおけるフィルタの周波数特性を 示す図である。図 14および図 15を用いて、以下簡単にこのフィルタの動作原理を説 明する。
[0008] 有極型ローパスフィルタ 90は LC直列回路 96、 98、 99を備える。図 15に示すよう に、このフィルタ 90の周波数特性における減衰域には、 13. 2KHzの第 1の極と、 15 . 4KHzの第 2の極と、 25. 3KHzの第 3の極と、 3つの極が現れる。ここで例えば、 L C直列回路 98の共振周波数、すなわち第 2の極周波数を調整して小さくすれば、第 1の極と第 2の極との間隔が狭められる。極間間隔が狭くなれば極間における減衰量 は大きくなる。
[0009] 従来のアンテナスィッチモジュールにおけるフィルタとして、上述の有極型ローパス フィルタは、例えば特開昭 61— 77408号に開示されている。
[0010] また、アンテナスィッチモジュールを構成する別のフィルタとして、透過損失が少な レゾツチ型フィルタが知られている。ノッチ型ローパスフィルタは、例えば、複数の 1/
4波長の開放型スタブや 1Z2波長の終端型スタブの組み合わせで構成することがで きる。図 16は、従来のアンテナスィッチモジュールにおけるフィルタ 86をノッチ型フィ ルタとした場合の送信部 41からアンテナ 44もしくはアンテナ 45を見た周波数特性で ある。 Fl =4. 9GHzから F2 = 5. 85GHzまでが基本波帯域である。 F3 = 9. 8GHz 力 F4 = l l . 7GHzまでが第 2高調波帯域である。 F5 = 14. 7GHz力 F6 = 17. 5 5GHzまでが第 3高調波帯域である。第 2高調波および第 3高調波を減衰させるよう に減衰極の周波数を設定している。 [0011] このような従来の構成では、第 2高調波帯域に対して F3、 F4の、また、第 3高調波 帯域に対して F5、 F6のそれぞれ 2極の減衰極では、減衰極以外の帯域内の減衰が 小さくなる。つまり、フィルタ 86の入力側出力側を見たインピーダンス及び出力側入 力側をみたインピーダンスが、共に 50 Ωに近づくことになる。また、アンテナスィッチ 回路 87において、フィルタ 86に接続された端子 T81からキャパシタ C83が接続され た端子 T83を見たインピーダンス Z813は、基本波帯域ではほぼ 50 Ωである。また、 キャパシタ C84が接続された端子 T84からキャパシタ C82が接続された端子 T82を みたインピーダンス Z842も、基本波帯域ではほぼ 50 Ωである。一方、端子 T81から 端子 T84を見たインピーダンス Z814、及び端子 T83から端子 T82を見たインピーダ ンス Z832は開放となる。しかし、周波数が高くなるにしたがって PINダイオードのパッ ケージや端子の容量成分、誘導成分が影響を及ぼす。このためインピーダンス Z81 3、 Z842、 Z814、 Z832のィ直カ S変ィ匕し、 4. 9GHz力ら 5. 85GHzに対する高調波帯 域ではインピーダンス Z813、 Z842の値は開放に近づく。また、インピーダンス Z814 、 Z832の値は 50 Ωに近づく。その結果、これらの高調波帯域において、端子 T81か らフィルタ 86を見たインピーダンスと、端子 T81からアンテナスィッチ回路 87を見たィ ンピーダンス Z813、 Z814が複素共役になり得る。そして、減衰極における減衰量が 劣化したり、減衰極間での跳ね返り現象が発生し、十分な減衰量を確保できない場 合があり得る。
発明の開示
[0012] 本発明は、透過損失を抑え、高調波領域で広帯域に高減衰を得ることができるフィ ルタを含むアンテナスィッチモジュールを提供する。
[0013] 本発明のアンテナスィッチモジュールは、フィノレタと、アンテナスィッチ回路と、調整 線路とを含む。フィルタは、基本波帯域を通過し減衰極を有する。アンテナスィッチ 回路は、基本波帯域に整合するアンテナを切り替える。調整線路は、フィルタとアン テナスィッチ回路との間に接続され、基本波帯域の高調波周波数における特性を調 整する。調整線路は、フィルタとアンテナスィッチ回路とを直接接続した場合に、この 接続した点からフィルタをみたインピーダンスと、この接続した点からアンテナスィッチ 回路をみたインピーダンスとが、高調波周波数において、複素共役とならないように する調整線路である。
[0014] これにより、フィルタの減衰極の減衰量を劣化させることなぐかつ高調波周波数帯 域での減衰極間での跳ね返り成分を容易に抑圧でき、フィルタの段数を増やすこと なく高調波成分を十分に減衰させることが出来る。例えば、無線 LAN (Local Area Network)のフロントエンドモジュールにおレ、てパワーアンプで増幅された基本波 信号は低損失で透過し、前記パワーアンプで発生した高調波成分は広帯域、高減 衰で除去することができる。
図面の簡単な説明
[0015] [図 1]図 1は本発明の実施例におけるアンテナスィッチモジュールを含む通信装置の 構成を示すブロック図である。
[図 2]図 2は同実施例におけるアンテナスィッチモジュールの第 1層を示す図である。
[図 3]図 3は同実施例におけるアンテナスィッチモジュールの第 2層を示す図である。
[図 4]図 4は同実施例におけるアンテナスィッチモジュールの第 3層を示す図である。
[図 5]図 5は同実施例におけるアンテナスィッチモジュールの第 4層を示す図である。
[図 6]図 6は同実施例におけるアンテナスィッチモジュールの第 5層を示す図である。
[図 7]図 7は同実施例におけるアンテナスィッチモジュールの第 6層を示す図である。
[図 8]図 8は同実施例におけるアンテナスィッチモジュールのアンテナスィッチ回路の 構成を示す図である。
[図 9]図 9は同実施例におけるアンテナスィッチ回路を構成する PINダイオード〇N時 の等価回路図である。
[図 10]図 10は同実施例における PINダイオード OFF時の等価回路図である。
[図 11]図 11は同実施例におけるアンテナスィッチモジュールの周波数特性を示す図 である。
[図 12]図 12は従来のアンテナスィッチモジュールを含む通信装置の構成を示すプロ ック図である。
[図 13]図 13は従来のアンテナスィッチモジュールを構成するフィルタの回路図である
[図 14]図 14は従来 ールを構成するフィルタの回路図である [図 15]図 15は従来のアンテナスィッチモジュールを構成するフィルタの周波数特性 を示す図である。
[図 16]図 16は従来のアンテナスィッチモジュールの周波数特性を示す図である。 符号の説明
[0016] 3, 7, 8 円形導体部
4, 5A, 5B グランド部
6A, 6B, 6C, 6D, 6E 電極
11A, 11B, 11C, 11D, 13A, 13B, 13C ストリップライン
13D 調整線路
15 結合線路
30 アンテナスィッチモジユーノレ
31, 43 フイノレタ
33 アンテナスィッチ回路
35 方向性結合器
41 送信部
42 受信部
44, 45 アンテナ
51 通過信号
52 反射信号
発明を実施するための最良の形態
[0017] 以下、本発明の実施例について、図面を用いて説明する。
[0018] 図 1は、本発明の実施例におけるアンテナスィッチモジュールを含む通信装置の構 成を示すブロック図である。図 1において、通信装置は、アンテナスィッチモジュール 30と、送信咅 と、受信咅 と、フイノレタ 43と、アンテナ 44〜45と、キヤノ シタ C11 〜C14とを備える。アンテナスィッチモジュール 30は、アンテナスィッチ 33と、フィノレ タ 31と、調整線路 13Dとを備える。調整線路 13Dは、後述する他の素子とで方向性 結合器 35を構成している。 [0019] 送信部 41が送信する信号は、キャパシタ C11を介してフィルタ 31に入力される。フ ィルタ 31は、送信部 41からの信号に含まれる不要な高調波信号を除去するノッチ型 ローパスフィルタである。フィルタ 31の基本波帯域は 4. 9〜5. 85GHzであり、第 2高 調波帯域は 9. 8〜11. 7GHz、第 3高調波帯域は 14. 7-17. 55GHzである。フィ ルタ 31から出力された信号は、ストリップラインで形成される調整線路 13Dを介して アンテナスィッチ回路 33に入力される。調整線路 13Dを介して入力された信号は、 アンテナスィッチ回路 33が切り替えたアンテナ 44もしくはアンテナ 45から、キャパシ タ C13もしくは C14を介して発射される。
[0020] アンテナスィッチ回路 33が切り替えた、キャパシタ C13もしくは C14を介して入力さ
3に入力される。フィルタ 43に入力された信号から不定な信号を除去し、受信部 42 に出力する。受信部 42はフィルタ 43を通過した信号を復調する。
[0021] 図 2〜図 7は、本実施例のアンテナスィッチモジュールが IEEE802. 11a規格に対 応する構成とした場合の多層基板の各層を示す図である。図 2は、表層である第 1層 P1を示す図である。第 1層 P1上にスィッチ素子 Bl、インダクタ L1〜L4、キャパシタ Cl、 C2、抵抗 Rl、 R2を実装してアンテナスィッチ回路 33を構成している。スィッチ 素子 B1は、 PINダイオード D1〜D4で構成されている。さらに、第 1層 P1上には、キ ャパシタ C12、フイノレタ 43、方向性結合器 35の一部であるキャパシタ C5、抵抗 R5も 実装されている。
[0022] 図 3は、グランド部 5A、 5Bを有する第 2層 P2を示す図である。図 4は、方向性結合 器の一部である結合線路 15を有する第 3層 P3を示す図である。図 5は、フィルタ 31 や調整線路 13Dを有する第 4層 P4を示す図である。図 6は、グランド部 4を有する第 5層 P5を示す図である。図 7は、電極 6A〜6Eを有する第 6層 P6を示す図である。 P 1を最上部表層として、順次 P2〜P6と積層される。本実施例のアンテナスィッチモジ ユールは、 P6により他の素子と接続される。
[0023] 本実施例におけるアンテナスィッチモジュールを構成する基板は、誘電率 7. 4の 低温焼成セラミックスを用いており、縦は 5. 4mm、横は 4. Omm、厚さは 0. 7mmで ある。グランド部 4, 5A、 5B、ストリップライン 11A〜: 11D、 13A〜13C、調整線路 13 Dおよび結合線路 15は、銀粉体を主成分とする導体ペーストを印刷することで形成 されている。
[0024] 本実施例において、第 4層に形成されるストリップライン 11A〜: 11D、 13A〜13C 及び調整線路 13Dの特性インピーダンスは 50 Ωであり、本実施例の低温焼成セラミ ックスでは 0. 1mmの線路幅である。フィルタ 31は、ストリップライン 11A〜: 11D、 13 A〜: 13Cで構成されている。ストリップライン 11 Aは、接続点 E1にてストリップライン 1 3Aおよび 13Bと接続されている。ストリップライン 11B、 11Cは、接続点 E2にてストリ ップライン 13Bおよび 13Cと接続されている。
[0025] ストリップライン 11Dは、接続点 E3にてストリップライン 13Cおよび調整線路 13Dと 接続されている。フィルタ 31の小型化を図るために、ストリップライン 11B、 11C、 13 B、 13Cは、接続点 E2にて、十文字状に接続されている。ストリップライン 11A〜11 Dは片側が開放となっており、線路長はそれぞれ、 17· 55GHz, 14. 7GHz、 11. 7 GHz、 9. 8GHzの 4分の 1波長分である。よって、ストリップライン 11A、 11B、 11C、 l lDiまそれぞれ 17. 55GHz、 14. 7GHz、 11. 7GHz、 9. 8GHz【こおレヽて、接続 点 E1〜E3での電圧振幅が 0となる。つまり、ストリップライン 11A〜: 11Dはオープン スタブである。
[0026] なお、これらのストリップラインは、小型化を図るために線路間結合を起こさない程 度を保ちながら折り曲げられている。今回はその線路間隔は 0. 15mm以上となって いる。フイノレタ 31は、 4分の 1波長のオープンスタブの代わりに、片側を接地した 2分 の 1波長のショートスタブで構成してもよレ、。この場合は、アンテナスィッチ回路 33と 接続するまでの間に直流カットのキャパシタを揷入する必要がある。
[0027] また、ストリップライン 13B, 13Cは、ストリップライン 11A〜Dが接続された状態で、 基本波帯域において、接続点 E1のストリップライン 13A側からみたインピーダンス及 び接続点 E3の調整線路 13D側からみたインピーダンスが 50 Ωになるように線路長 を決定している。例えば本実施例の低温焼成セラミックスならば、 13B、 13Cの線路 長はそれぞれ 2. 3mm、 2. 45mmである。
[0028] ストリップライン 13Aは、円形導体部 3に接続される。第 4層と第 5層とをヴィァホー ル (via hole) VIで接続する。第 5層と、第 6層の電極 6Aとをヴィァホール V2で接 続する。そして、円形導体部 8は、ヴィァホール VIと V2とを接続する。第 6層の電極 6Aから、 C11を介して送信部 41に接続される。
[0029] グランド部 4は、ヴィァホール V2による電磁界結合が起きない程度の径に円状に導 体パターンを取り除いている。本実施例において、円形導体部 8の径は 1. 25mmと した。円形導体部 8のヴィァホール径は 0. 5mmとし、円形導体部 3の径は、作製誤 差によるヴィァホールとの接続位置ずれバラツキを考慮して、 0. 75mmとした。
[0030] 第 6層では、銀粉体を主成分とする導体ペーストを印刷して、電極 6A〜6Eを形成 した。電極 6Aは、キャパシタ C11を介して送信部 41からの信号を入力する電極であ る。電極 6C、 6Dは、アンテナスィッチ回路 33を動作させるための電源供給用電極で ある。複数の電極 6Eは、グランド電位を確保するための電極である。第 6層の円形の 電極径は lmmとした。なお、第 5層のグランド部 4の電位を一定にするために、第 6 層の中央を基準にして、対称になるように ± 0. 7mmの位置に縦 0. 8mm、横 1. 4m mの長方形に電極 6Bを設けている。そして、それぞれの電極 6Bに、縦 0· 3mm、横 0. 5mmの間隔で 2行 5列にヴィァホールを設けてグランド部 4と接続している。
[0031] 調整線路 13Dは、円形導体部 7に接続され、第 4層と第 2層とを接続するヴィァホー ル V3と、第 2層とアンテナスィッチ回路 33とを接続するヴィァ V4とを介して、図 2に示 すアンテナスィッチ回路 33の端子 T1に接続されてレ、る。
[0032] 図 8は、本実施例におけるアンテナスィッチモジュールのアンテナスィッチ回路 33 の構成を示す図である。図 8において、アンテナスィッチ回路 33は、端子 T1〜T4を 備える。端子 T1は、送信部 41からの信号を入力する。端子 Τ2は、アンテナ 44もしく はアンテナ 45からの信号を受信部 42に出力する。端子 Τ3は、キャパシタ C13を介し てアンテナ 44に接続する。端子 Τ4は、キャパシタ C14を介してアンテナ 45に接続す る。アンテナスィッチ回路 33は、スィッチユニット Sl、 S2を備えてレヽる。スィッチュニッ ト S1は、端子 T1と端子 T3、 Τ4との間を導通 '遮断する。スィッチユニット S2は、端子 Τ2と端子 Τ3、 Τ4との間を導通 '遮断する。
[0033] スィッチユニット S1は、端子 T1と力ソード、端子 Τ3とアノードを接続した PINダイォ ード D1と、端子 T1とアノード、端子 T4と力ソードを接続した PINダイオード D2とを備 えている。スィッチユニット S2は、端子 T2とアノード、端子 T3と力ソードを接続した PI Nダイオード D3と、端子 T2と力ソード、端子 Τ4とアノードを接続した PINダイオード D 4とを備えてレ、る。 PINダイオード D1〜D4はスィッチ素子 B1を構成している。
[0034] 端子 T1と PINダイオード D1との接続点とグランド 5Bとの間にインダクタ L1とキャパ シタ C1とが直列接続となるよう構成している。 PINダイオード D1と端子 T3のそれぞ れの接続点とグランド 5Bとの間に、インダクタ L2とキャパシタ C2とが直列接続となる よう構成している。また、端子 T2と PINダイオード D4との接続点とグランド 5Bとの間 に、インダクタ L3とキャパシタ C1とが直列接続となるよう構成している。
[0035] PINダイオード D4と端子 T4との接続点とグランド 5Bとの間に、インダクタ L4とキヤ パシタ C2とが直列接続となるように構成している。インダクタ L1およびインダクタ L3と キャパシタ C1との接続点力 抵抗 R1を介して電極 6Cへ接続している。インダクタ L2 およびインダクタ L4とキャパシタ C2との接続点力ら抵抗 R2を介して電極 6Dへ接続 している。
[0036] 抵抗 Rl、 R2は PINダイオード D1〜D4に流れる直流電流を調整する抵抗である。
キャパシタ Cl、 C2は高周波成分をグランド 5Bにパスする。インダクタ L1〜L4は、高 周波成分を阻止し PINダイオード D1〜D4に直流電圧を印加する。電極 6Cにプラス の直流電圧を印加することで、 PINダイオード D2、 D3が ONとなる。電極 6Dにプラ スの直流電圧を印加することで、 PINダイオード Dl、 D4が ONとなる。
[0037] 図 9は、本実施例におけるアンテナスィッチモジュールを構成する PINダイオードの 〇N時の等価回路図であり、 PINダイオードは、インダクタ L31〜33、キャパシタ C31 、抵抗 31で表せる。図 10は、同 OFF時の等価回路図であり、インダクタ L34〜35、 キャパシタ C32〜33、抵抗 32で表せる。図 4において、結合線路 15は、セラミックス の層を隔てて調整線路 13Dと平行することで、キャパシタ C5、抵抗 R5を含めて方向 性結合器 35を構成している。
[0038] 次に、上記の構成における本実施の形態のアンテナスィッチモジュールの動作に ついて説明する。
[0039] 図 11は、本実施例におけるアンテナスィッチモジュールの周波数特性を示す図で ある。通過信号 51は、ストリップライン 13Aから端子 T3もしくは端子 T4への通過信号 である。反射信号 52は、通過信号 51に対する反射信号である。アンテナスィッチ回 路 33において、調整回路 13Dに接続された端子 T1からキャパシタ C13が接続され た端子 T3を見たインピーダンスを Z13と記す。キャパシタ C14が接続された端子 T4 力もキャパシタ C12が接続された端子 T2をみたインピーダンスを Z42と記す。端子 T 1から端子 T4を見たインピーダンスを Z14と記す。端子 T3から端子 T2を見たインピ 一ダンスを Z32と記す。
[0040] 図 11に示すように、第 4層に構成したフィルタ 31は、ストリップライン 11 A〜: 11Dに よって、基本波帯域である 4. 9GHzから 5. 85GHzの第 2高調波と第 3高調波となる 周波数帯に大きな減衰極を作る。さらに、第 2高調波帯域および第 3高調波帯域で 円形導体部 7からストリップライン 13Aをみたインピーダンスと、円形導体部 7からアン テナスィッチ回路 33を見たインピーダンス Z13、 Z14力 等しい抵抗成分と大きさが 等しく符号が反対のリアクタンス分を持つインピーダンスの関係、すなわち複素共役 にならないように、ストリップラインで形成された調整線路 13Dの長さを変えて調整す る。
[0041] さらに詳細に説明する。基本波帯域である 4. 9GHzから 5. 85GHzではスィッチと して正常に動作していたアンテナスィッチ回路 33も、基本波帯域の第 2高調波以上 の周波数ではスィッチとして正常に動作しない。これは、図 9〜図 10に示すリアクタン ス成分の影響による。そこで、アンテナスィッチ回路 33の実測データを EM (電磁界) シミュレータに入力する。次に、低温焼成セラミックスで形成するフィルタ 31の仕様を 、導体損など、実際の層構成や導体の詳細条件を EMシミュレータに入力する。同様 に、調整線路 13Dに関しても、導体損など、実際の層構成や導体の詳細条件を EM シミュレータに入力し、その長さを変化させて、当該第 2高調波、第 3高調波における 複素共役関係を回避して良好な減衰量と帯域幅とを得る。
[0042] このように、フィルタとして、ノッチ型ローパスフィルタを用レ、、調整線路 13Dの長さ を調節することで、透過損失を抑え、高調波領域において広帯域で高減衰を確保で きるアンテナスィッチモジュールを提供できる。
[0043] さらに、調整線路 13D、パターン 15、キャパシタ C5、抵抗 R5を含んで方向性結合 器を構成してもよい。これにより、アンテナ 44もしくはアンテナ 45からの反射波をさら に検出することができ、送信部 41の送信状態を制御できる。 [0044] 以上のように、本発明のアンテナスィッチモジュールは、フィルタの減衰極の減衰量 を劣化させることなぐかつ 2つ以上の減衰極間での跳ね返り成分を容易に抑圧でき 、フィルタの段数を増やすことなく高調波成分を十分に減衰させることができる。
[0045] さらに、本実施例において、グランド部を、グランド部 5Aと、グランド部 5Bとに分割 してもよレ、。グランド部 5Aは、アンテナスィッチ回路 33のグランド部である。グランド部 5Bは、第 4層に構成したフィルタを構成するストリップライン 13B〜: 13C及びストリップ ライン 11A〜: 11Dと、送信部 41側へ接続されるストリップライン 13Aと円形導体部 3 に対するグランド部である。このグランドの分割により、グランド部を流れるイメージ電 流は、グランド部 5Aを流れ、グランド部 5Aとグランド部 4とを接続するヴィァホール V 5を介してグランド部 4に流れ込む。
[0046] さらに、グランド部 4を流れるイメージ電流は、グランド部 4とグランド部 5Bとを接続す るヴィァホール V6を介してグランド部 5Bに流れ込むことになる。このイメージ電流の 経路は 4. 9GHzから 5. 85GHzの第 2高調波以上となる周波数帯域において、無視 できない線路長となる。つまり、第 2高調波以上の周波数帯の電流に対しては、この イメージ電流経路はチョークコイルとして働くことになる。これにより、これらの周波数 帯において、本実施例のアンテナスィッチモジュールは、 30dB以上といった良好な 減衰量を得ることができる。
[0047] なお、本実施例では、アンテナスィッチ回路を構成するスィッチ素子が高周波領域 でスィッチ特性が良好な PINダイオードの場合で説明した力 本発明はこれに限定し なレ、。スィッチ素子は、高周波領域でスィッチ特性が同じく良好な Ga (ガリウム) As ( 砒素)スィッチや、トランジスタ、電界効果トランジスタ(FET)といった電子デバイスで も同等の効果を得ることができる。
[0048] また、本実施例では、フィルタあるいは調整線路がストリップラインで構成される場 合で説明したが、これに限定されず、マイクロストリップラインでも同等の効果を得るこ とができる。また、減衰極が 4極の場合で説明したが、これに限定されず、減衰極数を 変えてもよレ、。また、フィルタがノッチ型ローパスフィルタの場合で説明した力 有極 型ローパスフィルタでも同等の効果を得ることができる。
[0049] また、ローパスフィルタの場合で説明した力 バンドパスフィルタやバンドリジェクショ ンフィルタでも同等の効果を得ることができる。また、本実施例では多層基板の層数 力 ½層の場合で説明した力 S、本発明はこれに限定しない。
産業上の利用可能性
以上のように、本発明に力かるアンテナスィッチモジュールは、透過損失を抑え、高 調波領域で広帯域に高減衰を得ることができるフィルタと調整線路とを含む。よって、 アンテナを切り替えるアンテナスィッチと通信装置の信号のスプリアスを除去するフィ ルタとを含むアンテナスィッチモジュール等として有用である。

Claims

請求の範囲
[1] 基本波帯域を通過し減衰極を有するフィルタと、前記基本波帯域に整合するアンテ ナを切り替えるアンテナスィッチ回路と、前記フィルタと前記アンテナスィッチ回路と の間に接続され前記基本波帯域の高調波周波数における特性を調整する調整線路 と、を含 :ユー/レであって
前記調整線路は、前記フィルタと前記アンテナスィッチ回路とを直接接続した場合に 、前記直接接続した点から前記フィルタをみたインピーダンスと、前記直接接続した 点から前記アンテナスィッチ回路をみたインピーダンスとが、前記高調波周波数にお レ、て、複素共役とならなレ、ようにする調整線路であるアンテナスィッチモジュール。
[2] 前記フィルタのグランド層と前記アンテナスィッチ回路のグランド層とをさらに分割した 請求項 1記載のアンテナスィッチモジュール。
[3] 複数の誘電体層を積層して成る積層体による請求項 2記載のアンテナスィッチモジュ 一ノレ。
[4] 前記フィルタがノッチ型ローパスフィルタである請求項 3記載のアンテナスィッチモジ ユーノレ。
[5] 前記アンテナスィッチ回路を構成するアンテナスィッチ素子が PINダイオードである 請求項 4記載のアンテナスィッチモジュール。
[6] 前記調整線路と結合する結合線路をさらに備え、前記調整線路と前記結合線路とを 含んで方向性結合器を構成する請求項 5記載のアンテナスィッチモジュール。
[7] 複数の誘電体層を積層して成る積層体による請求項 1記載のアンテナスィッチモジュ ール。
[8] 前記フィルタがノッチ型ローパスフィルタである請求項 1記載のアンテナスィッチモジ
[9] 前記アンテナスィッチ回路を構成するスィッチ素子が PINダイオードである請求項 1
Figure imgf000015_0001
[10] 前記アンテナスィッチ回路を構成するスィッチ素子がガリウム砒素スィッチである請求 項 1記載のアンテナスィッチモジュール。
[11] 前記調整線路と結合する結合線路をさらに備え、前記調整線路と前記結合線路とを 含む方向性結合器を構成する請求項 1記載のアンテナスィッチモジ.
PCT/JP2005/013031 2004-08-27 2005-07-14 アンテナスイッチモジュール WO2006022093A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/565,768 US7528678B2 (en) 2004-08-27 2005-07-14 Antenna Switch Module
EP05765638A EP1783853A1 (en) 2004-08-27 2005-07-14 Antenna switch module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-248044 2004-08-27
JP2004248044A JP2006067281A (ja) 2004-08-27 2004-08-27 アンテナスイッチモジュール

Publications (1)

Publication Number Publication Date
WO2006022093A1 true WO2006022093A1 (ja) 2006-03-02

Family

ID=35967313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013031 WO2006022093A1 (ja) 2004-08-27 2005-07-14 アンテナスイッチモジュール

Country Status (5)

Country Link
US (1) US7528678B2 (ja)
EP (1) EP1783853A1 (ja)
JP (1) JP2006067281A (ja)
CN (1) CN101010829A (ja)
WO (1) WO2006022093A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209005B (zh) * 2010-06-25 2016-02-17 无锡中科龙泽信息科技有限公司 用于MicroSD型无线网卡的测试装置和方法
CN102468067B (zh) * 2010-11-12 2014-03-12 国基电子(上海)有限公司 无线通信装置
TWI476803B (zh) * 2010-11-16 2015-03-11 Hon Hai Prec Ind Co Ltd 無線通訊裝置
WO2012121037A1 (ja) * 2011-03-04 2012-09-13 株式会社村田製作所 高周波スイッチモジュール
US8886137B2 (en) 2012-10-31 2014-11-11 Raytheon Company Frequency tunable transmit/receive (Tx/Rx) antenna switch
KR20180029944A (ko) 2014-06-12 2018-03-21 스카이워크스 솔루션즈, 인코포레이티드 지향성 커플러들에 관련된 디바이스들 및 방법들
US9496902B2 (en) 2014-07-24 2016-11-15 Skyworks Solutions, Inc. Apparatus and methods for reconfigurable directional couplers in an RF transceiver with selectable phase shifters
CN104506254B (zh) * 2014-12-23 2017-01-11 天津光电通信技术有限公司 带自身功能性检查的大功率信道处理设备
US20170093442A1 (en) * 2015-09-28 2017-03-30 Skyworks Solutions, Inc. Integrated front-end architecture for carrier aggregation
WO2017136631A1 (en) * 2016-02-05 2017-08-10 Skyworks Solutions, Inc. Electromagnetic couplers with multi-band filtering
TWI720128B (zh) 2016-02-29 2021-03-01 美商天工方案公司 整合式濾波器及定向耦合器總成
WO2017172575A1 (en) 2016-03-30 2017-10-05 Skyworks Solutions, Inc. Tunable active silicon for coupler linearity improvement and reconfiguration
WO2017189825A1 (en) * 2016-04-29 2017-11-02 Skyworks Solutions, Inc. Tunable electromagnetic coupler and modules and devices using same
US10084224B2 (en) * 2016-04-29 2018-09-25 Skyworks Solutions, Inc. Compensated electromagnetic coupler
US10284167B2 (en) 2016-05-09 2019-05-07 Skyworks Solutions, Inc. Self-adjusting electromagnetic coupler with automatic frequency detection
US10164681B2 (en) 2016-06-06 2018-12-25 Skyworks Solutions, Inc. Isolating noise sources and coupling fields in RF chips
US10403955B2 (en) 2016-06-22 2019-09-03 Skyworks Solutions, Inc. Electromagnetic coupler arrangements for multi-frequency power detection, and devices including same
US10742189B2 (en) 2017-06-06 2020-08-11 Skyworks Solutions, Inc. Switched multi-coupler apparatus and modules and devices using same
US20200112920A1 (en) * 2018-10-05 2020-04-09 California Eastern Laboratories, Inc. Compliant radio and method of use
CN111669199A (zh) * 2020-06-08 2020-09-15 维沃移动通信有限公司 功率检测电路及电子设备
DE102022205465A1 (de) 2021-06-02 2022-12-08 Skyworks Solutions, Inc. Richtkoppler mit mehreren abschlussanordnungen
KR20230006953A (ko) 2021-07-05 2023-01-12 삼성전자주식회사 전력 노이즈 필터 및 이를 포함하는 전원 변조기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028673A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Circuit radioelectrique haute frequence
WO2000067395A1 (en) * 1999-05-04 2000-11-09 Shure Incorporated Method and apparatus for predictably switching diversity antennas on signal dropout
JP2001127652A (ja) * 1999-10-22 2001-05-11 Matsushita Electric Ind Co Ltd 高周波無線装置
JP2002052644A (ja) * 2000-08-09 2002-02-19 Tdk Corp 電子部品
JP2002305463A (ja) * 1992-07-08 2002-10-18 Matsushita Electric Ind Co Ltd アンテナスイッチ共用器
JP2003008468A (ja) * 2001-06-26 2003-01-10 Hitachi Kokusai Electric Inc デジタル無線機
JP2005223679A (ja) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd 高周波スイッチ回路
JP2005236839A (ja) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd 積層フィルタとそれを用いた高周波スイッチ回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177408A (ja) 1984-09-21 1986-04-21 Murata Mfg Co Ltd 有極形ロ−パスフイルタ
JPS61148924A (ja) * 1984-12-21 1986-07-07 Toshiba Corp 空中線切替回路
JPH0371702A (ja) * 1989-08-11 1991-03-27 Nec Corp マイクロストリップライン低域ろ波器
JPH09321653A (ja) * 1996-05-28 1997-12-12 Saitama Nippon Denki Kk 送信出力モニタ付送受信切替回路
DE19705735A1 (de) * 1997-02-14 1998-08-20 Nokia Mobile Phones Ltd Verfahren und Vorrichtung zur Inspektion wenigstens eines Antennenzweigs, insbesondere in einem Fahrzeug
JP3150090B2 (ja) * 1997-10-28 2001-03-26 埼玉日本電気株式会社 移動通信機器
EP1215749A1 (en) * 2000-07-04 2002-06-19 Matsushita Electric Industrial Co., Ltd. Directional coupler and directional coupling method
ATE513368T1 (de) * 2000-08-22 2011-07-15 Hitachi Metals Ltd Laminiertes hochfrequenz-schaltmodul
JP4228534B2 (ja) * 2000-10-25 2009-02-25 パナソニック株式会社 積層型共用器
JP2002185210A (ja) * 2000-12-19 2002-06-28 Hitachi Kokusai Electric Inc ローパス・フィルタ素子
JP2002246942A (ja) * 2001-02-19 2002-08-30 Sony Corp スイッチ装置および携帯通信端末装置
US6809611B2 (en) * 2001-10-01 2004-10-26 Matsushita Electric Industrial Co., Ltd. Composite filter, antenna duplexer, and communication apparatus
JP2003289232A (ja) * 2002-03-28 2003-10-10 Matsushita Electric Ind Co Ltd 積層型電子部品の周波数調整方法
KR100469500B1 (ko) * 2002-06-29 2005-02-02 엘지전자 주식회사 이동통신단말기의 송수신장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305463A (ja) * 1992-07-08 2002-10-18 Matsushita Electric Ind Co Ltd アンテナスイッチ共用器
WO2000028673A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Circuit radioelectrique haute frequence
WO2000067395A1 (en) * 1999-05-04 2000-11-09 Shure Incorporated Method and apparatus for predictably switching diversity antennas on signal dropout
JP2001127652A (ja) * 1999-10-22 2001-05-11 Matsushita Electric Ind Co Ltd 高周波無線装置
JP2002052644A (ja) * 2000-08-09 2002-02-19 Tdk Corp 電子部品
JP2003008468A (ja) * 2001-06-26 2003-01-10 Hitachi Kokusai Electric Inc デジタル無線機
JP2005223679A (ja) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd 高周波スイッチ回路
JP2005236839A (ja) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd 積層フィルタとそれを用いた高周波スイッチ回路

Also Published As

Publication number Publication date
US20080055187A1 (en) 2008-03-06
JP2006067281A (ja) 2006-03-09
US7528678B2 (en) 2009-05-05
EP1783853A1 (en) 2007-05-09
CN101010829A (zh) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2006022093A1 (ja) アンテナスイッチモジュール
KR100809172B1 (ko) 듀플렉서 및 이를 통한 신호 처리 방법
EP0336255B1 (en) Surface mount filter with integral transmission line connection
US7035602B2 (en) High-frequency composite switch component
JP5642686B2 (ja) 平面アンテナ用のインピーダンス整合回路及びモバイル通信装置
US6621376B2 (en) Multiband matching circuit for a power amplifier
JP4101763B2 (ja) 結合器、集積電子コンポーネントおよび電子装置
US20050184831A1 (en) Balun device, balance filter device, and wireless communication apparatus
JP5624978B2 (ja) 回路構成
JPH06501833A (ja) 無線装置用方向性結合器
JPH02166802A (ja) 積分型移相回路網を具備するセラミックフィルタ及び該セラミックフィルタを使用するデェプレクス回路網及び無線機
CN103187603A (zh) 一种基于磁电耦合抵消技术的宽阻带ltcc带通滤波器
JP4221205B2 (ja) ダイプレクサ並びにそれを用いた高周波スイッチ
JP2005516525A (ja) 送信及び/又は受信モジュール
JP3405316B2 (ja) 高周波スイッチ
US20180337439A1 (en) Directional coupler, high-frequency front-end module, and communication device
JP2006526315A (ja) 損失の少ない送信モジュール
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
JP2002353775A (ja) フィルタユニット及び該フィルタユニットを用いたデュプレクサ
KR20100042299A (ko) 이중 대역통과 여파기
WO2006095551A1 (ja) 遅延線
JP4206186B2 (ja) モジュール基板
JP2002299922A (ja) 高周波モジュール
JP2000106501A (ja) 電力分配回路、電力合成回路
JP2002171193A (ja) 高周波モジュール基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10565768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005765638

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580028916.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005765638

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10565768

Country of ref document: US