Nothing Special   »   [go: up one dir, main page]

WO2006009260A1 - Method of detecting hepatitis e virus - Google Patents

Method of detecting hepatitis e virus Download PDF

Info

Publication number
WO2006009260A1
WO2006009260A1 PCT/JP2005/013513 JP2005013513W WO2006009260A1 WO 2006009260 A1 WO2006009260 A1 WO 2006009260A1 JP 2005013513 W JP2005013513 W JP 2005013513W WO 2006009260 A1 WO2006009260 A1 WO 2006009260A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
base sequence
seq
homology
virus
Prior art date
Application number
PCT/JP2005/013513
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Kageyama
Original Assignee
Bml, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bml, Inc. filed Critical Bml, Inc.
Priority to JP2006524555A priority Critical patent/JPWO2006009260A1/en
Publication of WO2006009260A1 publication Critical patent/WO2006009260A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/706Specific hybridization probes for hepatitis
    • C12Q1/707Specific hybridization probes for hepatitis non-A, non-B Hepatitis, excluding hepatitis D

Definitions

  • the present invention relates to a method for detecting a virus, and more particularly to a method for detecting a hepatitis E virus.
  • Hepatitis E virus is a virus that induces hepatitis E and is classified as family Hepeviridae, genus Hepevirus, and has a small (diameter) diameter of about 7.2kb plus-strand RNA genome. 27-30nm) virus.
  • HEV was first cloned by Reyes et al. In 1990 (Reyes, G. R "MA Purdy, JP Kim, KC Luk, LM Young, KE Fry, and DW Bradley. 1990. Isolation of a cDNA from tHEVirus res ponsible for enterically transmitted non— A, non— B hepatitis.
  • HEV HEV is classified into four types (genotypes I to IV) (Schlauder, GG, and I. K. Mushahwar. 2001. uenetic heterogeneity of hepatitis E virus. J Med irol, vol.6 5: 282- 92) Many cases of hepatitis E are caused by drinking water contaminated with viruses, and in developing countries, hepatitis E is often caused by drinking water contaminated with HEV. A. C, and G. b. Fout. 2002. Development of a molecular method to identify hepatitis E virus in water. J Virol Methods, vol. 101: 175-88).
  • This virus is transmitted by oral infection and develops after an incubation period of 15 days and 60 days. There are many cases of subclinical infection, and some people do not develop even if infected. Typical symptoms are acute hepatitis with gastrointestinal symptoms such as abdominal pain, fever, and vomiting, and strong jaundice with brown urine appears. After jaundice lasts for 12 to 15 days, it usually recovers one month after onset. HEV viremia appears prior to jaundice, and the virus is excreted in the stool. Like hepatitis A, hepatitis E is not chronic, but there are cases where viremia continues for a long time with excretion in the stool. The fatality rate is 0.5-4.0% in the case of onset. For pregnant women, the fatality rate with a high rate of fulminant hepatitis is as high as 17-33%.
  • HEV has also been found in sewage in non-indigenous areas, and there is concern about contamination of HEV to the ocean and shellfish (Pina, S., J. Jofre, SU Emerson, RH Purcell, and R. Girones.
  • the present inventor has examined practical means for detecting HEV, and in a specific region of the HEV gene, the mutant is highly conserved even between mutant strains. There are parts where the effects of mutations are very large, and by using the gene region as a HEV detection index, it was found that HEV can be detected efficiently in various aspects. completed.
  • the present invention detects a nucleic acid having a base sequence of 10 bases or more selected from a base sequence corresponding to the base sequence shown in SEQ ID NO: 1 with respect to the detection target, and detects the nucleic acid.
  • the present invention provides a virus detection method (hereinafter also referred to as the present detection method), wherein the detection target is positive for hepatitis E virus (HEV).
  • HEV hepatitis E virus
  • HEV genotypes are currently classified into four types, GI to GIV, and the base shown in SEQ ID NO: 1
  • the sequence is the nucleotide sequence of the 5253 to 5434 nt cDNA of HEV (GI) strain “M73218: Genbank No. J [hereinafter, this strain may be referred to as a reference strain (prototype).” This is a region that forms part of the HEV “region where ORF2 and ORF3 regions overlap”.
  • This detection method detects differences in HEV genotypes by detecting the base sequence of a specific gene region existing in all genotypes of HEV when detecting HEV in a detection target. It is a virus detection method characterized by being capable of both exceeding detection and detecting HEV for each genotype.
  • the numbers of individual bases in the base sequence of the HEV gene are in accordance with the Genbank No. shown in FIG.
  • guanine (G) the 5253rd base of the above-mentioned prototype M73218 strain, corresponds to guanine (G), the first base of SEQ ID NO: 1.
  • This "base sequence of a specific gene region existing in all genotypes of HEV” corresponds to "a base sequence corresponding to SEQ ID NO: 1" according to the present invention. That is, by detecting the presence of the base sequence corresponding to SEQ ID NO: 1 in the detection target and the Z or its contents, qualitative detection, quantitative detection, and further detection of HEV in the detection target are: By grasping the genotype of the causative virus, it is possible to establish a treatment policy for the detection target provider and specify a virus contamination source.
  • nucleic acid constituting the base sequence includes, but is not limited to, oligoribonucleotides and oligodeoxyribonucleotides. Peptide nucleic acids, methylphosphonate nucleic acids, S-oligonucleic acids, morpholyl nucleic acids, etc. Of artificially synthesized nucleic acids.
  • the nucleic acid to be detected must be an oligonucleotide selected from the base sequence corresponding to SEQ ID NO: 1 and continuous for at least 10 bases, and the maximum is about 180 bases. In general, it is preferable that the oligonucleotide is continuous for about 15 to 30 bases.
  • the base difference with respect to the base sequence represented by SEQ ID NO: 1 is 10% Must be within.
  • the difference in bases between all genotypes of the conserved region in the HEV “region where ORF2 region and ORF3 region overlap” is within 10%, and the quasi-conserved region (conserved between different genotypes, However, the difference in bases between HEVs of the same genotype in a gene region that is well conserved in the same genotype is also within 10%! /.
  • an organism individual for example, any mammal including humans, monkeys, pigs, ushi, and sheep, or oysters, clams, clams, shijimi, mussels, etc.
  • Biological samples such as body fluids, blood, serum, lymph, feces, and tissues collected from marine products, as well as environmental water including seawater, river water, lake water, sewage, drainage, tap water, well water, etc.
  • food and food production facilities food itself, deposits such as cooking utensils in food production facilities, deposits such as clothing of food producers, papers and cloths that wipe them, and the like can also be detected.
  • Each detection target can be subjected to appropriate pretreatments such as homogenization, concentration, and extraction as necessary, and the sample obtained in this way can also be used as a test target. is there.
  • the method of obtaining genes from these detection targets it is possible to select an appropriate method according to the type of detection target used.
  • the detection target to be used is generally immersed or suspended in water or the like.
  • viral RNA can be extracted by a conventional method such as the acid phenol method (AGPC method: Acid Guanidin Phenol Chroloform method).
  • AGPC method Acid Guanidin Phenol Chroloform method
  • Examples of gene amplification methods include PCR method, RT-PCR method, real-time PCR method, SDA ⁇ strand displacement amplification (NASDA) method, NASBA (Nucleic Acid Sequence Based Amplification) method, LAMP (Loop—mediated isothermal amplification) Law.
  • Nucleic acid amplification products can be detected by electrophoresis, electrochemical sensors such as nucleic acid detection chips, gene sensors using quartz crystal, or fluorescently labeled primers or probes.
  • nucleic acid amplification products can be detected as HEV-derived genomic fragments by measuring fluorescence intensity with a fluorescence sensor using a fluorescence intercalation agent.
  • HEV genomic fragments can be detected using the above-mentioned oligonucleotides even in methods that do not require amplification of the target gene, such as the invader method.
  • the detection of the target nucleic acid in this detection method is mainly performed by positively or negatively detecting nucleic acid nucleic acids and hybrids, and a specific method thereof is a known detection method.
  • Techniques can be used. For example, dot hybridization, slot hybridization, Southern hybridization, Northern hybridization method, etc., or in combination with various amplification methods, TaqMan probe, molecular beacon probe (
  • the target HEV-derived genomic fragment can be detected by analysis using a real-time quantification method using molecular beacon probes), noisy hybridization probes, LUX (light upon extension) primers, etc.
  • the target HEV genome fragment can also be detected by methods that do not require amplification of the target gene, such as the invader method.
  • nucleic acid according to the present invention can be added with necessary modifications, and these modified nucleic acids are also As long as the base sequence is within the scope of the present invention, it is similarly assumed to be within the scope of the present invention.
  • additional element include enzyme modification (peroxidase, etc.), fluorescent labeling (luciferin, etc.), chemical modification, protein modification (piotine, etc.), radioisotope labeling, and the like.
  • a specific base sequence in the gene amplification product is used. It is preferred to use a means capable of monitoring the presence of the row.
  • Representative examples of such methods include, for example, the detection method using the above-described molecular beacon probe, the detection method using the Taq-Man Probe, and the LUX (Light Upon Extension). Examples include detection methods using primers.
  • the detection method using a molecular beacon probe is a hairpin type that can be used to monitor the formation of gene amplification products by the PCR method or the like during or after the amplification process.
  • This is a method for detecting a gene using a hybridization probe (molecular beacon probe) (Nature Biotechnology 1998 16: 49-53).
  • the ends of the nucleic acid constituting the molecular beacon probe are complementary to each other. Usually, these ends are joined together to form a so-called stem structure, and the loop portion in the striking stem structure is a gene amplification. It is designed to be complementary to the target region of the product.
  • the phosphor and the non-fluorescent quencher are bound to both ends of the nucleic acid and released in solution, a hairpin structure is formed, so that the fluorophore and the quencher interact with each other. And the fluorescence disappears.
  • the loop portion binds to the complementary base sequence, and as a result, the structure of the entire probe changes. Since the phosphor and the quencher are separated from each other and the quenching effect of the quencher on the phosphor is eliminated, the phosphor emits the original fluorescence.
  • the increase in fluorescence intensity due to the elimination of this quenching effect is proportional to the increase in gene amplification products having a base sequence complementary to the nucleic acid.
  • the target nucleotide sequence can be detected not only after the gene amplification process but also during the gene amplification process. That is, the target nucleic acid in the detection sample can be detected using the increase in fluorescence intensity as an index.
  • the above-mentioned fluorescent label and quencher label are usually labeled with 6-carboxyfluorescein (6-FAM) or 6-carboxy-4,7,2 'at the 5th end of the nucleic acid.
  • TET 7'-tetrachlorofluorescein
  • TTAMARA 5-carboxytetrame thylrhodamine
  • DABC YL 4- (4′-dimethylaminophenylazo) benzoic acid
  • the detection method using the Taq-Man Probe is a hybridization probe that can be used to monitor the formation of a gene amplification product by PCR or the like during the amplification process with fluorescence ( This is a method for detecting genes using Taq-Man Probe (Experimental Medicine Vol.15 No.7 (Special Issue) p46-51, 1997, etc.).
  • the Tac Couman probe is a nucleic acid labeled with 5, a fluorescein fluorescent dye (reporter dye) at the end, and a rhodamine fluorescent dye (taentia dye) at the 3 'end.
  • the fluorescence of the reporter dye is suppressed by the quencher dye due to the Forster resonance energy.
  • the primer and the Tatooman probe anneal the nucleic acid complementary to the Taucman probe nucleic acid of the gene amplification product and the extension reaction proceeds, TaqDNA polymerase 5, ⁇ 3, due to the endonuclease activity, Hydrolysis occurs from the 5 'end of the probe, and when the 5' end reporter dye is released from the 3 'end quencher, the fluorescence intensity of the reporter dye increases.
  • the increase in fluorescence intensity by the reporter dye is proportional to the increase in gene amplification products having a base sequence complementary to the nucleic acid.
  • the target base sequence can be detected not only after the gene amplification process but also during the gene amplification process. That is, the target nucleic acid in the detection sample can be detected using the increase in fluorescence intensity as an index.
  • the above-described fluorescent labeling in the Tac Couman probe usually has a fluorescein-based fluorescent dye such as 6-FAM or TET at the 5 'end of the nucleic acid and a rhodamine such as TAM ARA at the 3' end.
  • the dye of the system can be carried out according to a conventional method (for example, Nucleic Acids Research 1993 21 (16): 3761-3766).
  • the detection method using a LUX (Light Upon Extension) primer is a method of detecting the amplification of a target gene by monitoring the fluorescence during the amplification process for the formation of gene by-products by PCR or the like.
  • the LUX primer is a nucleic acid designed to label a single fluorophore near the 3 'end and take a hairpin structure between the 5' end. Length is through Usually it is 20 to 30 bases, and when the primer has a hairpin structure, it has a quenching ability and does not emit fluorescence, but when it is incorporated into a primer-stranded PCR product, the quenching is released and the fluorescence signal increases. By measuring this increase in signal, the amplified gene product of interest is quantitatively analyzed (Nazarenko, I. et al. (2002) Nucleic Acids Research 30: e37.).
  • detection nucleic acid probes or primers can be used as detection nucleic acid probes that can be used as components of the detection kit described later.
  • HEV detection in the present detection method can be performed by quantifying and detecting a target nucleic acid by the above-described means, such as detection of a gene amplification product having a target base sequence. For example, it can be detected as qualitative information of positive or negative without quantification. HEV can be detected by using detection information (quantitative values and qualitative information) such as gene amplification products as an index and correlating it with the presence / absence of HEV in the sample, and further with the abundance.
  • FIG. 1 is a drawing showing the results of examining the diversity of HEV genomes.
  • FIG. 2 is a drawing showing the strain lines in the HEV genome.
  • FIG. 3 shows a parallel comparison of the base sequences in each strain of the HEV gene region used as a detection region in the present invention.
  • the three base sequences in the second row are the base sequences of SEQ ID NOs: 49, 51 and 57 from the left.
  • Fig. 3 shows a parallel comparison of the base sequences in each strain of the HEV gene region used as a detection region in the present invention.
  • the three base sequences in the second row are the base sequences of SEQ ID NOs: 49, 51 and 57 from the left.
  • the base sequence from the 3rd row to the 30th row is also the upper force, SEQ ID NO: 1, 15, 13, 10, 12, 17, 16, 11, 7, 8, 6, 4, 3, 2, 5, 9, 14, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 and 58.
  • the base sequences of the 32nd and 33rd lines are respectively , SEQ ID NOS: 18 and 53, and the base sequences of the 35th to 45th rows are SEQ ID NOS: 21, 27, 26, 25, 24, 28, 23, 22, 19 from the top, respectively. , 56 and 54, and the base lines in the 47th to 57th lines, Ui, Ue, et al., Respectively, Umi 37, 31, 32, 36, 33, 34, 35 , 30, 29, 38 and 55.
  • M80581 (SEQ ID NO: 2) .L25595 (SEQ ID NO: 3), L25547 (SEQ ID NO: 4), M94177 (SEQ ID NO: 5), L08816 (SEQ ID NO: 6), D11092 (SEQ ID NO: 7), D11093 (SEQ ID NO: 8), X98292 (SEQ ID NO: 9), AF185822 (SEQ ID NO: 10), M73218 (SEQ ID NO: 1), D10330 (SEQ ID NO: 1 1), AF459438 (SEQ ID NO: 12), AF076239 (SEQ ID NO: 13), X99441 (SEQ ID NO: 14), A F051830 (SEQ ID NO: 15), AY230202 (SEQ ID NO: 16), AY204877 (SEQ ID NO: 17)
  • GTV Early transmission TV
  • FIG. 3 shows the alignment of each type.
  • the white box region is a region having a sequence common to all strains, and oligonucleotides serving as a common primer and a common probe were designed here.
  • the gray box region is a region having a sequence common to only each genotype, and an oligonucleotide that is a probe specific to each genotype was designed here.
  • a nucleic acid having a base sequence corresponding to SEQ ID NO: 1 has at least 11 base groups out of 14 consecutive bases stored for each genotype, and The region is a region that differs by at least 5 bases from the corresponding base sequence of other genotypes.
  • the designed oligonucleotide sequence is shown below.
  • HEV co-sense primer 5, -CGGCGGTGGTTTCTGGRGTG-3 ,: SEQ ID NO: 49
  • HECOM-AS primer 5——GGGCGCTKGGMYTGRTCNCGCCAAGNGGA—3: SEQ ID NO: 50
  • HEV common probe 5——GGGCGCTKGGMYTGRTCNCGCCAAGNGGA—3: SEQ ID NO: 50
  • TP-HECOM probe (5,-(FAM) -CCCCYATATTCATCCAACCAACCCCTTYG C- (TAMRA) -3 ': SEQ ID NO: 51)
  • TP-HEG1 probe (5, — (FAM) — CGCCCCSRATGTCACCGCT— (TAMRA) — 3 ,: Sequence number 52)
  • TP-HEG2 probe (Corresponds to GLM73218 5329-5352 nt and corresponds to GILM74506 5229-5332 nt)
  • TP-HEG2 probe (5,-(FAM) -CTTTGCCCCAGACGTTGCCGCTGC- (TAMRA) -3 ': SEQ ID NO: 53)
  • TP-HEG3 probe (Corresponds to GLM73218 5343-5365 nt and corresponds to GIILAF082843 5367-5389 nt) TP-HEG3 probe (5, — (FAM) -TCGTTTCACAAYCCGGGGCTGGA- (TAMRA) -3 ': SEQ ID NO: 54)
  • TP-HEG4 probe 5, — (FAM) -TTCGCATCTGACATWCCARCCGC- (TAMRA) -3 ′: SEQ ID NO: 55
  • GI: M 73218 corresponds to 5253-5432 nt
  • GII: M74506 corresponds to 5223-5402 nt
  • GIII: AF08284 3 corresponds to 5277-5456 nt
  • GVI: AB097811 corresponds to 5294-5473 nt (180nt)
  • a plasmid (pT7Blue vector) having ⁇ was prepared and used as a standard for each genotype of HEV.
  • the oligonucleotides of the nucleotide sequences shown in SEQ ID NOs: 49 to 55 are an oligonucleotide within the scope of the present invention. Based on this premise, the usage of SEQ ID NOS: 49 to 55 in this detection method will be described.
  • the HEV common probe SEQ ID NO: 51
  • the oligonucleotide of SEQ ID NO: 51 is used as a probe for the nucleic acid sample derived from the detection target. ⁇ If the hybridizing reaction is positive, it is possible to make the detection target HEV positive (genotype is not yet determined).
  • the oligonucleotide probe having the base sequence of SEQ ID NO: 51 can be labeled appropriately depending on the detection mode.
  • an amplification product of a nucleic acid in a nucleic acid sample derived from the detection target is detected using the molecular weight of the gene fragment directly appearing on electrophoresis as an index without performing a nucleic acid hybridization reaction,
  • an amplification product of the target gene region is detected, it is possible to make the detection target HEV positive (genotype is not determined).
  • a primer used for the amplification reaction of nucleic acid it is possible to use the primer of SEQ ID NO: 49 or 50.
  • the sequence described as the probe of SEQ ID NO: 51 is used as a primer. Is also possible.
  • the primer oligonucleotide sets that can be used in this embodiment are the oligonucleotide set of SEQ ID NOs: 49 and 50, the set of base sequences of SEQ ID NOs: 49 and 51, and the set of base sequences of SEQ ID NOs: 50 and 51.
  • a group is applicable.
  • the oligonucleotide primers having the nucleotide sequences of SEQ ID NOs: 49 to 51 can be appropriately labeled depending on the detection mode.
  • a nucleic acid hybridization reaction is performed on a nucleic acid amplification product in a nucleic acid sample derived from a detection target, and HEV is detected using the hybridization reaction as an index
  • the oligonucleotide of SEQ ID NO: 51 as a probe is subjected to a hybridization reaction with a nucleic acid sample subjected to an amplification reaction derived from the detection target. If the hybridization reaction is positive, HEV is detected in the detection target. It can be positive (genotype is undetermined).
  • the probe that can be used in this embodiment is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 51
  • the set of primer nucleic acids is the set of oligonucleotides having the nucleotide sequences of SEQ ID NO: 49 and 50, SEQ ID NO: 49 and 51 This corresponds to the base sequence set of SEQ ID NOs: 50 and 51.
  • the probe of SEQ ID NO: 51 and the oligonucleotide primer of the base sequence of SEQ ID NOs: 49 to 51 can be appropriately labeled depending on the detection mode.
  • HEV is the probe of SEQ ID NO: 52
  • HEV is the probe of SEQ ID NO: 53
  • HEV is the probe of SEQ ID NO: 54
  • HEV (GIV ) Is the probe of SEQ ID NO: 55.
  • the oligonucleotides of SEQ ID NOs: 52 to 55 are selected according to the genotype (GI to GIV) of the HEV to be detected.
  • a nucleotide individually as a probe a hybridization reaction is performed on a nucleic acid sample derived from the detection target, and if the hybridization reaction force is positive for any of the genotype probes, the detection target is not detected.
  • HEV can be positive in the genotype.
  • the oligonucleotide probes having the nucleotide sequences of SEQ ID NOs: 52 to 55 can be appropriately labeled depending on the detection mode.
  • an amplified product of a nucleic acid in a nucleic acid sample derived from a detection target is converted into a nucleic acid hybrid. If the amplified product of the target gene region is detected using the molecular weight of the gene fragment that appears directly on electrophoresis as an index It is possible to make the target genotype HEV positive.
  • a primer used for the nucleic acid amplification reaction it is preferable to use the oligonucleotides described as probes of SEQ ID NO: 49 or 50 and SEQ ID NOs: 52 to 55 as primers.
  • the primer oligonucleotide pair that can be used in this embodiment is the oligonucleotide pair (GI) having the nucleotide sequence of SEQ ID NO: 49 or 50 and SEQ ID NO: 52, or the oligonucleotide having the nucleotide sequence of SEQ ID NO: 49 or 50 and SEQ ID NO: 53 Group (GII), SEQ ID NO: 49 or 50 and oligonucleotide group (GIII) with the nucleotide sequence of SEQ ID NO: 54, and SEQ ID NO: 49 or 50 and oligonucleotide group (GVI) with the nucleotide sequence of SEQ ID NO: 55 .
  • the oligonucleotide primers having the nucleotide sequences of SEQ ID NOs: 49 to 50 and 52 to 55 can be appropriately labeled depending on the detection mode.
  • nucleic acid hybridization is performed on a nucleic acid amplification product in a nucleic acid sample derived from the detection target, and HEV is detected by genotype using the hybridization reaction as an indicator
  • the detection purpose is used.
  • a hybridization reaction is performed on a nucleic acid sample subjected to an amplification reaction derived from a detection target using an oligonucleotide of SEQ ID NO: 52 to 55 as a probe according to the genotype of HEV, and the hybridization reaction is positive
  • a primer used for the nucleic acid amplification reaction it is possible to use the primer of SEQ ID NO: 49 or 50 as well as the oligonucleotide of SEQ ID NO: 52 to 55 as a primer. is there.
  • the probe that can be used in this embodiment is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 52 when the detection genotype is GI
  • the primer nucleic acid pair is an oligonucleotide having the nucleotide sequences of SEQ ID NOs: 49 and 50
  • a pair of oligonucleotides having the nucleotide sequences of SEQ ID NOs: 49 and 52 and a pair of oligonucleotides having the nucleotide sequences of SEQ ID NOs: 50 and 52.
  • the oligonucleotide having the nucleotide sequence of SEQ ID NO: 53 is the probe, and the primer nucleic acid pair is the oligonucleotide pair of SEQ ID NOS: 49 and 50, the sequence number 49
  • the sequence number 49 A set of oligonucleotides with base sequences of 53 and 53, base sequences of SEQ ID NOs: 50 and 53
  • the set of oligonucleotides is applicable.
  • the oligonucleotide having the nucleotide sequence of SEQ ID NO: 54 is the probe, and the primer nucleic acid pair is the oligonucleotide pair of SEQ ID NOS: 49 and 50, SEQ ID NO: 49 And oligonucleotide pairs having the nucleotide sequences of 54 and 54, and oligonucleotide pairs having the nucleotide sequences of SEQ ID NOS: 50 and 54 are applicable.
  • the oligonucleotide having the nucleotide sequence of SEQ ID NO: 55 is the probe, and the primer nucleic acid pair is the oligonucleotide pair of SEQ ID NOS: 49 and 50, SEQ ID NO: 49
  • SEQ ID NO: 49 This includes a pair of oligonucleotides having a base sequence of 55, and a pair of oligonucleotides having the base sequences of SEQ ID NOS: 50 and 55.
  • the present invention is also an invention that provides a detection kit (this detection kit) for carrying out this detection method.
  • an amplification primer for amplifying the whole or a part of the nucleotide sequence corresponding to the nucleotide sequence of SEQ ID NO: 1 of HEV typically, Oligonucleotides having the nucleotide sequences of SEQ ID NOs: 49 to 50, provided that the oligonucleotides shown as common probes of SEQ ID NO: 51 (when performing detection exceeding genotypes) or specific probes of SEQ ID NOs: 52 to 55 As described above, the oligonucleotide (when detecting for each genotype) can also be used as a primer.] Or 2) Hybridize to the nucleic acid of a specific HEV to be detected. A probe for detecting the nucleic acid (a common probe of SEQ ID NO: 51 for detection exceeding genotype, or a specific sequence of SEQ ID NO: 52 to 55 for detection of each genotype) Professional B) is included depending on the specific detection method.
  • kits may be formed by combining necessary reagents such as a reaction vessel and a reaction buffer in combination with substances, enzymes, and the like.
  • the present detection kit is not limited to the above combinations, and can be provided in combination with various types as necessary.
  • This detection kit which is considered to be the most typical, has the following minimum configuration: It is.
  • HEV gene amplification primer set A nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 49, and a nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 50.
  • Probe nucleic acid having a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 51, and Z or having 90% or more homology with the base sequence shown in SEQ ID NOs: 52 to 55 A probe nucleic acid set having a base sequence.
  • a detection method using a common probe was examined. First, using the HEV common sense primer of SEQ ID NO: 49, the set of HEV common antisense primer of SEQ ID NO: 50, and the HEV common probe of SEQ ID NO: 51, the detection sensitivity for each gene type standard was determined.
  • reaction solution Buffer 25 ⁇ 1, HECOM-S primer 500nM, HE COM-AS primer 500nM, TP-HECOM probe 5-20pmol
  • each standard DNA Prepare 5-5 x 10 7 copies, adjusted with sterile distilled water to a total volume of 50 ⁇ l), and perform PCR reaction at ⁇ 7900 ( ⁇ , USA) (PCR cycle is 50 ° C for 2 minutes ⁇ 95 ° C)
  • the fluorescence intensity of 10 minutes ⁇ 95 ° C. for 15 seconds ⁇ 56 ° C. for 1 minute
  • Standard DNA was prepared separately for each genotype.
  • all genotype standards DNA can be detected from 5 copies / reaction, and by referring to the Ct value (threshold cycle number), HEV standards of all genotypes are quantitative regardless of genotype. It was apparent that it was detectable.
  • the detection method using each genotype-specific probe was examined using each genotype standard.
  • the HEV common sense primer of SEQ ID NO: 49, the set of HEV common antisense primer of SEQ ID NO: 50, and each HEV of SEQ ID NO: 52 to 55 Detection sensitivity for each genotype standard was determined using a gene-type specific probe individually.
  • reaction solution (Buf fer 25 ⁇ 1, HECOM—S primer 500nM ⁇ HECOM— AS primer 500nM ⁇ TP— HEG KTP-HEG2, TP-HEG3 or TP -HEG4)
  • infectious HEV was prepared from the stool of a patient suffering from hepatitis E in India and injected into a Japanese macaque. Fecal stool 10 days after infection, serum before HEV infection and Serum serum from 10 days to 60 days after HEV infection (total of 6 points every 5 days for the first 10-30 days after the first infection and 4 points every 8 days for the remaining 31-60 days) The HEV was detected using this method.
  • the stool specimen was prepared with 10 mM Phos phate buffered saline (PBS) so as to be 10% (w / v).
  • RNA extraction from stool samples and serum samples was performed using the QIA Viral RNA Kit (QIAGEN, USA). Next, reverse transcription reaction was performed for each RNA sample.
  • Reverse transcription reaction was performed with each RNA sample (81), reverse transcription reaction solution 12 1 (1 ⁇ l of 10 mM dNTP solution, 75 pmol random hexamer, 3 Ounits RNAsin (Promega, USA), 200 units Superscript II RNAseH ( ⁇ ) Reverse- transcriptase (Invitrogen, USA), lOOmM DTT 1 ⁇ 1 and 5x reverse transcription buffer (250 mM Tris-Hcl (pH 8.3), 375 mM KC1, 15 mM MgC12) After dilution with sterile distilled water and reaction at 42 ° C for 1 hour or longer, the enzyme was inactivated at 99 ° C for 5 minutes to prepare cDNA (RT Products) for each RNA sample.
  • the reaction mixture (Buffer 25 1, HECOM-S primer 500 nM ⁇ HECOM-AS primer 500 nM ⁇ (TP- HEG1, TP- HEG2, TP- HEG3 or TP- HEG4 ) Probe 5 to 20 pmol, RT Products 2 ⁇ 1 adjusted with sterile distilled water to a total volume of 50 ⁇ 1, and measured the fluorescence intensity during the PCR reaction over time under the conditions described above. All did not react forcefully with the TP-HEG1 probe. That is, all of these HEV genotypes were determined to be GI.
  • a comprehensive or selective HEV high-sensitivity detection system can be established.
  • the HEV detection method of the present invention can be used for blood for blood transfusion, blood products, foods, environmental tests, etc., and the genotype-specific detection system can be used for elucidation of infection routes, epidemiological studies, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a method of detecting a virus which comprises detecting, from a detection subject, a nucleic acid of a base sequence consisting of 10 or more consecutive bases selected from a sequence corresponding to the base sequence represented by SEQ ID NO:1 that is the overlap of the ORF2 region and the ORF3 region in a hepatitis E virus gene, and regarding the subject as positive to the hepatitis E virus in the case where the above nucleic acid is detected; and a detection kit for the embodiment of the method. According to this method, a comprehensive or selective system of detecting HEV at a high sensitivity can be established. This detection method is applicable to blood for transfusion, blood preparations, foods, environmental examinations and so on. Moreover, a genotype-specific detection system is usable in clarifying infection route and epidemiological studies.

Description

明 細 書  Specification
E型肝炎ウィルスの検出方法  Method for detecting hepatitis E virus
技術分野  Technical field
[0001] 本発明は、ウィルスの検出方法、特に、 E型肝炎ウィルスの検出方法に関する発明 である。  [0001] The present invention relates to a method for detecting a virus, and more particularly to a method for detecting a hepatitis E virus.
背景技術  Background art
[0002] E型肝炎ウィルス (Hepatitis E virus: HE V)は E型肝炎を誘発するウィルスで、 famil y Hepeviridae, genus Hepevirus,に分類され、約 7.2kbのプラス鎖 RNAゲノムを持つ 、小型(直径 27-30nm)ウィルスである。 HEVは 1990年に Reyes等により、はじめて遺 伝子がクローニングされた (Reyes, G. R" M. A. Purdy, J. P. Kim, K. C. Luk, L. M. Young, K. E. Fry, and D. W. Bradley. 1990. Isolation of a cDNA from tHEVirus res ponsible for enterically transmitted non— A, non— B hepatitis. Science.vol.247: 1335-9 )oその後、多くの株の全塩基配列が明らかになり、現在はゲノム塩基配列の類似性 から、 HEVは 4つの型(遺伝子型 I〜IV型)に分類されている (Schlauder, G. G., and I . K. Mushahwar. 2001. uenetic heterogeneity of hepatitis E virus. J Med irol, vol.6 5:282-92)。 E型肝炎の発生の多くは、ウィルスに汚染された水を飲むことにより起こり 、特に開発途上国では HEVに汚染された飲料水などを介した E型肝炎がしばしば
Figure imgf000002_0001
A. C, and G. b. Fout. 2002. Development of a molecular met hod to identify hepatitis E virus in water. J Virol Methods, vol.101 :175-88)。
[0002] Hepatitis E virus (HE V) is a virus that induces hepatitis E and is classified as family Hepeviridae, genus Hepevirus, and has a small (diameter) diameter of about 7.2kb plus-strand RNA genome. 27-30nm) virus. HEV was first cloned by Reyes et al. In 1990 (Reyes, G. R "MA Purdy, JP Kim, KC Luk, LM Young, KE Fry, and DW Bradley. 1990. Isolation of a cDNA from tHEVirus res ponsible for enterically transmitted non— A, non— B hepatitis. Science.vol.247: 1335-9) o After that, the complete nucleotide sequences of many strains were revealed. HEV is classified into four types (genotypes I to IV) (Schlauder, GG, and I. K. Mushahwar. 2001. uenetic heterogeneity of hepatitis E virus. J Med irol, vol.6 5: 282- 92) Many cases of hepatitis E are caused by drinking water contaminated with viruses, and in developing countries, hepatitis E is often caused by drinking water contaminated with HEV.
Figure imgf000002_0001
A. C, and G. b. Fout. 2002. Development of a molecular method to identify hepatitis E virus in water. J Virol Methods, vol. 101: 175-88).
[0003] 先進国では、開発途上国への旅行者の感染事例が多く「輸入感染症」として認識さ れて来たが、こうした地域への渡航歴がなくても、 E型肝炎を発症する「国内発症例」 も散見されるようになり、し力も、そのような例力も採取された HEV株は、それぞれの 地域に特有の「土着株」であることが明らかになった (Erker, J. C, S. M. Desai, G. G. Schlauder, G. J. Dawson, and I. K. Mushahwar. 1999. A hepatitis E virus variant fr om the United States: molecular characterization and transmission in cynomolgus m acaques. J Gen Virol, vol.80 (Pt 3):681- 90; Schlauder, G. G., G. J. Dawson, J. C. E rker, P. Y. Kwo, M. F. Knigge, D. L. Smalley, J. E. Rosenblatt, S. M. Desai, and I. K. Mushahwar. 1998. The sequence and phylogenetic analysis of a novel hepatitis E virus isolated from a patient with acute hepatitis reported in the United States. J G en Virol, vol.79 (Pt 3):447— 56; Takahashi, K., K. Iwata, N. Watanabe, T. Hatahara, Y. Ohta, K. Baba, and S. Mishiro. 2001. Full-genome nucleotide sequence of a hepa titis E virus strain that may be indigenous to Japan. Vir ology, vol.287:9— 12; Yamam oto, T., H. Suzuki, T. Toyota, M. Takahashi, and H. Okamoto. 2004. Three male pa tients with sporadic acute hepatitis E in Sendai, Japan, who were domestically infect ed with hepatitis E virus of genotype III or IV. J Gastroenterol, vol.39:292— 8)。 [0003] In developed countries, many cases of travelers infected with developing countries have been recognized as “imported infectious diseases”, but hepatitis E develops even without a history of travel to these regions. “Domestic cases” have also been observed, and it has become clear that HEV strains from which such strengths are collected are unique “indigenous strains” (Erker, J C, SM Desai, GG Schlauder, GJ Dawson, and IK Mushahwar. 1999. A hepatitis E virus variant fr om the United States: molecular characterization and transmission in cynomolgus m acaques. J Gen Virol, vol.80 (Pt 3): 681- 90; Schlauder, GG, GJ Dawson, JC Erker, PY Kwo, MF Knigge, DL Smalley, JE Rosenblatt, SM Desai, and I. 1998. The sequence and phylogenetic analysis of a novel hepatitis E virus isolated from a patient with acute hepatitis reported in the United States.JG en Virol, vol. 79 (Pt 3): 447— 56; Takahashi, K. K. Mushahwar. , K. Iwata, N. Watanabe, T. Hatahara, Y. Ohta, K. Baba, and S. Mishiro. 2001. Full-genome nucleotide sequence of a hepa titis E virus strain that may be indigenous to Japan. Virology, vol.287: 9—12; Yamam oto, T., H. Suzuki, T. Toyota, M. Takahashi, and H. Okamoto. 2004. Three male pa tients with sporadic acute hepatitis E in Sendai, Japan, who were domestically infect ed with hepatitis E virus of genotype III or IV. J Gastroenterol, vol.39: 292— 8).
[0004] このウィルスは経口感染により感染し、潜伏期間 15日力 60日を経て発症する。不 顕性感染が多いとされており、感染しても発症しない人もいる。典型的な症状は腹痛 、発熱、嘔吐など消化器症状を伴う急性肝炎であり、褐色尿を伴った強い黄疸が現 れる。黄疸が 12〜15日間続いたのちに、発症から 1力月を経て通常は完治する。なお 、 HEVのウィルス血症は黄疸に先立って出現し、ウィルスは便にも排泄される。 A型 肝炎と同様に、 E型肝炎は慢性ィ匕しないが、便中への排泄を伴う長期間ウィルス血症 状態が続く例も見られる。発症した場合の致死率は 0.5-4.0%である力 妊婦の場合 は劇症肝炎の割合が高ぐ致死率も 17-33%と高い。  [0004] This virus is transmitted by oral infection and develops after an incubation period of 15 days and 60 days. There are many cases of subclinical infection, and some people do not develop even if infected. Typical symptoms are acute hepatitis with gastrointestinal symptoms such as abdominal pain, fever, and vomiting, and strong jaundice with brown urine appears. After jaundice lasts for 12 to 15 days, it usually recovers one month after onset. HEV viremia appears prior to jaundice, and the virus is excreted in the stool. Like hepatitis A, hepatitis E is not chronic, but there are cases where viremia continues for a long time with excretion in the stool. The fatality rate is 0.5-4.0% in the case of onset. For pregnant women, the fatality rate with a high rate of fulminant hepatitis is as high as 17-33%.
[0005] 最近、わが国でも、イノシシの生レバーの摂食が原因と見られる急性 E型肝炎での 死亡例が報告されるなど、これまでに動物由来、特に豚の HEVがヒトに感染すること を間接的に証明する症例がいくつか報告されている (Meng, X. J., R. H. Purcell, P. G. Halbur, J. R. Lehman, D. M. Webb, T. S. Tsareva, J. S. Haynes, B. J. Thacker, and S. U. Emerson. 1997. A novel virus in swine is closely related to the human hep atitis E virus. Proc Natl Acad Sci U S A, vol.94:9860- 5; Nishizawa, T" M. Takahash i, H. Mizuo, H. Miyajima, Y. Gotanda, and H. Okamoto. 2003. Characterizati on of Japanese swine and human hepatitis E virus isolates of genotype IV with 99 % identit y over the entire genome. J Gen Virol, vol.84:1245-51; Okamoto, H., M. Takahashi , T. Nishizawa, K. Fukai, U. Muramatsu, and A. Yoshikawa. 2001. Analysis of the c omple te genome or indigenous swine hepatitis E virus isolated in Japan. Biochem Bi ophys Res Commun, vol.289:929-36)0北海道では市販されていた豚レバーの一部 から、 E型肝炎ウィルスの遺伝子が検出され (Yazaki, Υ·, H. Mizuo, M. Takahashi, T. Nishizawa, N. Sasaki, Y. Gotanda, and H. Okamoto. 2003. Sporadic acute or fulmin ant hepatitis in Hokkaido, Japan, may be food-borne, as suggested by the presenc e of hepatitis E virus in pig liver as food. J Gen Virol,vol.84:2351— 7)、また、生シカ 肉を介した集団 E型肝炎ウィルス食中毒事例も報告されていることから (Tei, S., N. Ki tajima, K. Ta anashi, and S. Mishiro. 2003. Zoonotic transmission of hepatitis E viru s from deer to human beings. Lancet, vol.362:371- 3)、 E型肝炎は人獣共感染症であ る可能性が高!/、事が示唆されて!/、る。 [0005] Recently, even in Japan, cases of death from acute hepatitis E, which are thought to be caused by feeding on wild boar liver, have been reported so far. Some cases have been reported indirectly (Meng, XJ, RH Purcell, PG Halbur, JR Lehman, DM Webb, TS Tsareva, JS Haynes, BJ Thacker, and SU Emerson. 1997. A novel virus in swine is closely related to the human hep atitis E virus.Proc Natl Acad Sci USA, vol.94: 9860- 5; Nishizawa, T "M. Takahash i, H. Mizuo, H. Miyajima, Y. Gotanda, and H. Okamoto. 2003. Characterizati on of Japanese swine and human hepatitis E virus isolates of genotype IV with 99% identit y over the entire genome.J Gen Virol, vol.84: 1245-51; Okamoto, H., M. Takahashi, T Nishizawa, K. Fukai, U. Muramatsu, and A. Yoshikawa. 2001. Analysis of the c omple te genome or indigenous swine hepatitis E virus isolated in Japan. Biochem Biophys Res Commun, vol.289: 929-36) 0 part of the pig lever, which has been commercially available in Hokkaido The gene for hepatitis E virus was detected (Yazaki, Υ ·, H. Mizuo, M. Takahashi, T. Nishizawa, N. Sasaki, Y. Gotanda, and H. Okamoto. 2003. Sporadic acute or fulmin ant hepatitis in Hokkaido, Japan, may be food-borne, as suggested by the presenc e of hepatitis E virus in pig liver as food.J Gen Virol, vol.84: 2351—7), and a group E via raw deer meat Cases of hepatitis B virus food poisoning have also been reported (Tei, S., N. Ki tajima, K. Ta anashi, and S. Mishiro. 2003. Zoonotic transmission of hepatitis E viru s from deer to human beings. Lancet, vol.362: 371-3), it is highly possible that hepatitis E is a zoonotic disease!
[0006] なお、これまでに豚由来 HEVで発見されたのは III型及び IV型のみで、ァカゲザル 、チンパンジーにも感染が成立し、ウィルス血症、糞便へのウィルス排出も認められる (Meng, X. J., P. G. Halbur, M. S. Shapiro, S. Govindarajan, J. D. Bruna, I. K. Mush ahwar, R. H. Pur cell, and S. U. Emerson. 1998. Genetic and experimental evidence f or cross-species infection by swine hepatitis E virus. J Virol,vol.72:9714— 21)。また、 ヒト由来 HEVは豚にも感染する事が分かっている (Meng, X. J., P. G. Halbur, M. S. Shapiro, S. Govindarajan, J. D. Bruna, I. K. Mushahwar, R. H. Pur cell, and S. U. E merson. 1998. Genetic and experimental evidence for cross-species infection by swi ne hepatitis E virus. J Virol, vol.72:9714-21; Halbur, P. G., C. Kasorndorkbua, C. Gilbert, D. Guenette, M. B. Potters, R. H. Pur cell, S. U. Emerson, T. E. Toth, and X. J. Meng. 2001. Comparative pathogenesis of infection of pigs with hepatitis E vir uses recovered from a pig and a human. J Clin Microoiol, vol.39:918— 23)。  [0006] In addition, so far only type III and IV have been found in swine-derived HEV, and infection has also been established in akage monkeys and chimpanzees, and viremia and viral excretion in feces have also been observed (Meng, XJ, PG Halbur, MS Shapiro, S. Govindarajan, JD Bruna, IK Mush ahwar, RH Pur cell, and SU Emerson. 1998. Genetic and experimental evidence f or cross-species infection by swine hepatitis E virus. J Virol, vol. 72: 9714—21). Human HEV is also known to infect pigs (Meng, XJ, PG Halbur, MS Shapiro, S. Govindarajan, JD Bruna, IK Mushahwar, RH Pur cell, and SU E merson. 1998. Genetic and experimental evidence for cross-species infection by swi ne hepatitis E virus.J Virol, vol.72: 9714-21; Halbur, PG, C. Kasorndorkbua, C. Gilbert, D. Guenette, MB Potters, RH Pur cell, SU Emerson , TE Toth, and XJ Meng. 2001. Comparative pathogenesis of infection of pigs with hepatitis E vir uses recovered from a pig and a human. J Clin Microoiol, vol.39: 918—23).
[0007] カナダオンタリオのある農場では、 6ヶ月令の豚の 80%以上が HEV抗体陽性であつ たことが 2001年に報告された (Yoo, D" P. Willson, Υ· Pei, Μ. A. Hayes, A. Deckert, C. E. Dewey, R. M. Friendship, Y. Yoon, M. Gottshalk, C. Yason, and A. uiulivi. 2 001. Prevalence of hepatitis E virus antibodies in Canadian swine berds and identific ation of a novel variant of swine hepatitis E virus. Clin Diagn Lab Immunol, vol.8:12 13-1219)。アメリカ、オーストラリアなどでも、豚の高い E型肝炎ウィルス抗体保有率が 報告されている (Chandler, J. D., M. A. Riddell, F. Li, R. J. Love, and D. A. Anderso n. 1999. Serological evidence for swine hepatitis E virus infection in Australian pig h erds. Vet Microbiol, vol.68:95— 105; Huang, F. F., G. Haqshenas, D. K. Guenette, P . G. Halbur, S. K. Schommer, F. W. Pierson, T. E. Toth, and X. J. Meng. 2002. Det ection by reverse transcription— PC R and genetic characteri zation of field isolates of swine hepatitis E virus from pigs in different geographic regions of the United State s. J Clin Microbiol, vol.40: 1326-32)。 日本での調査では、肥育初期の 2〜3ヶ月令の 豚でウィルスが検出される傾向が強いが、ほ乳期や 6ヶ月令を越えるものからは検出 できないと報告されている。このことから、感染後一過性にウィルス血症がおき、抗体 出現と共にウィルスが体内から消失されると考えられている。 [0007] In a farm in Ontario, Canada, it was reported in 2001 that more than 80% of 6-month-old pigs were positive for HEV antibodies (Yoo, D "P. Willson, Υ · Pei, Μ. A Hayes, A. Deckert, CE Dewey, RM Friendship, Y. Yoon, M. Gottshalk, C. Yason, and A. uiulivi. 2 001. Prevalence of hepatitis E virus antibodies in Canadian swine berds and identific ation of a novel variant Clin Diagn Lab Immunol, vol.8: 12 13-1219) Swine hepatitis E virus.Volume 8:12 13-1219) A high prevalence of hepatitis E virus antibody in pigs has also been reported in the United States, Australia, etc. F. Li, RJ Love, and DA Anderso n. 1999. Serological evidence for swine hepatitis E virus infection in Australian pig h erds. Vet Microbiol, vol. 68: 95—105; Huang, FF, G. Haqshenas, DK Guenette, P. G. Halbur, SK Schommer, FW Pierson, TE Toth, and XJ Meng. 2002. Det ection by reverse transcription — PC R and genetic characterization of field isolates of swine hepatitis E virus from pigs in different geographic regions of the United State s. J Clin Microbiol, vol. 40: 1326-32). In Japan, viruses are more likely to be detected in pigs that are 2 to 3 months of age in the early stages of fattening, but it is reported that they cannot be detected from lactation and those over 6 months of age. From this, it is considered that viremia occurs transiently after infection, and the virus disappears from the body with the appearance of antibodies.
[0008] また、 HEVは非土着地域の汚水からも発見され、 HEVの海洋および貝類への汚 染も懸念されている (Pina, S., J. Jofre, S. U. Emerson, R. H. Purcell, and R. Girones.[0008] HEV has also been found in sewage in non-indigenous areas, and there is concern about contamination of HEV to the ocean and shellfish (Pina, S., J. Jofre, SU Emerson, RH Purcell, and R. Girones.
1998. Characterization of a strain of infectious hepatitis E virus isolated from sewag e in an area where hepatitis E is not endemic. Appl Environ Microbiol, vol.64:4485-8 )。 1998. Characterization of a strain of infectious hepatitis E virus isolated from sewag e in an area where hepatitis E is not endemic. Appl Environ Microbiol, vol.64: 4485-8).
[0009] 近年の HEVゲノム核酸配列情報の蓄積により、これを基にした HEV検出法が様々 な研究グループにていくつも構築されてきた。しかしながら、 HEVを、効率的に様々 な側面力 検出可能な手段が十分に確立されているとはいえず、 HEVの検出の実 用化に向けての課題が未だに認められる。  [0009] Due to the recent accumulation of HEV genomic nucleic acid sequence information, various HEV detection methods based on this have been established in various research groups. However, it cannot be said that a means for efficiently detecting various side forces of HEV has been well established, and there are still challenges for practical use of HEV detection.
発明の開示  Disclosure of the invention
[0010] 本発明者は、 HEVの実用的な検出手段について検討を行い、 HEVの遺伝子の 特定の領域において、突然変異株同士であっても非常に高度に保存されている部 分と、逆に突然変異の影響が非常に多く顕れる部分が存在しており、当該遺伝子領 域を HEVの検出指標とすることで、 HEVを様々な側面力 効率的に検出可能なこと を見出して本発明を完成した。  [0010] The present inventor has examined practical means for detecting HEV, and in a specific region of the HEV gene, the mutant is highly conserved even between mutant strains. There are parts where the effects of mutations are very large, and by using the gene region as a HEV detection index, it was found that HEV can be detected efficiently in various aspects. completed.
[0011] すなわち、本発明は、検出対象物に対して、配列番号 1に示す塩基配列に相応す る塩基配列から選ばれる 10塩基以上連続する塩基配列の核酸の検出を行い、当該 核酸が検出された場合に、前記検出対象物が E型肝炎ウィルス (HEV)陽性であると する、ウィルスの検出方法 (以下、本検出方法ともいう)を提供する発明である。  [0011] That is, the present invention detects a nucleic acid having a base sequence of 10 bases or more selected from a base sequence corresponding to the base sequence shown in SEQ ID NO: 1 with respect to the detection target, and detects the nucleic acid. In this case, the present invention provides a virus detection method (hereinafter also referred to as the present detection method), wherein the detection target is positive for hepatitis E virus (HEV).
[0012] HEVの遺伝子型は、現在、 GI〜GIV型の 4種に分類され、配列番号 1に示す塩基 配列は、 HEV(GI)株である「M73218 : Genbank No.J [以下、本株を基準株(プロトタ ィプ)ということもある]の 5253〜5434ntの cDNAの塩基配列である。この領域は、 HEVの「ORF2領域と ORF3領域が重複した領域」の一部をなす領域である。 [0012] HEV genotypes are currently classified into four types, GI to GIV, and the base shown in SEQ ID NO: 1 The sequence is the nucleotide sequence of the 5253 to 5434 nt cDNA of HEV (GI) strain “M73218: Genbank No. J [hereinafter, this strain may be referred to as a reference strain (prototype).” This is a region that forms part of the HEV “region where ORF2 and ORF3 regions overlap”.
[0013] 本検出方法は、検出対象物中の HEVを検出するにあたって、全ての遺伝子型の HEVにおいて存在する特定の遺伝子領域の塩基配列を検出指標とすることにより、 HEVの遺伝子型の相違を超えた検出と、遺伝子型毎の HEVの検出、の両者を行う ことが可能であることを特徴とするウィルスの検出方法である。  [0013] This detection method detects differences in HEV genotypes by detecting the base sequence of a specific gene region existing in all genotypes of HEV when detecting HEV in a detection target. It is a virus detection method characterized by being capable of both exceeding detection and detecting HEV for each genotype.
[0014] なお、本明細書にぉ 、て、 HEVの遺伝子の塩基配列(配列番号 1〜48)における 個々の塩基の番号は、図 3に示された Genbank No.に従う。例えば、上記プロトタイプ である M73218株の第 5253番目の塩基であるグァニン(G)は、配列番号 1の第 1番 目の塩基であるグァニン (G)に該当する。  In the present specification, the numbers of individual bases in the base sequence of the HEV gene (SEQ ID NOs: 1 to 48) are in accordance with the Genbank No. shown in FIG. For example, guanine (G), the 5253rd base of the above-mentioned prototype M73218 strain, corresponds to guanine (G), the first base of SEQ ID NO: 1.
[0015] この「全ての遺伝子型の HEVにお 、て存在する特定の遺伝子領域の塩基配列」が 、本発明に係る「配列番号 1に相応する塩基配列」に相当する。すなわち、検出対象 物中における、配列番号 1に相応する塩基配列の存在、及び Z又は、その内容を把 握することにより、検出対象物における、 HEVの定性検出、定量検出、さら〖こは、そ の原因ウィルスの遺伝子型までを把握して、検出対象物提供者の治療方針の確立、 ウィルス汚染源の特定等を行うことができる。  [0015] This "base sequence of a specific gene region existing in all genotypes of HEV" corresponds to "a base sequence corresponding to SEQ ID NO: 1" according to the present invention. That is, by detecting the presence of the base sequence corresponding to SEQ ID NO: 1 in the detection target and the Z or its contents, qualitative detection, quantitative detection, and further detection of HEV in the detection target are: By grasping the genotype of the causative virus, it is possible to establish a treatment policy for the detection target provider and specify a virus contamination source.
[0016] 上記の「相応する塩基配列」とは、 1) HEVの各株における、プロトタイプの上記配 列番号 1に相当する配列のことを意味し、さらに、 2)当該配列のアンチセンス配列を 意味するものとする。また、当該塩基配列を構成する核酸には、オリゴリボヌクレオチ ド、オリゴデォキシリボヌクレオチドが含まれる力 これらに限定せず、ペプチド核酸、 メチルフォスフォネート核酸、 S-オリゴ核酸、モルホリル核酸などの人工合成核酸も含 む。  [0016] The above "corresponding nucleotide sequence" means 1) a sequence corresponding to the above-mentioned SEQ ID NO: 1 in each HEV strain, and 2) an antisense sequence of the sequence. Shall mean. In addition, the nucleic acid constituting the base sequence includes, but is not limited to, oligoribonucleotides and oligodeoxyribonucleotides. Peptide nucleic acids, methylphosphonate nucleic acids, S-oligonucleic acids, morpholyl nucleic acids, etc. Of artificially synthesized nucleic acids.
[0017] 検出対象となる核酸は、配列番号 1に相応する塩基配列から選ばれる、少なくとも 1 0塩基以上連続するオリゴヌクレオチドであることが必要であり、 180塩基程度を最大 限とする。一般的には、 15〜30塩基程度連続するオリゴヌクレオチドであることが好 適である。  [0017] The nucleic acid to be detected must be an oligonucleotide selected from the base sequence corresponding to SEQ ID NO: 1 and continuous for at least 10 bases, and the maximum is about 180 bases. In general, it is preferable that the oligonucleotide is continuous for about 15 to 30 bases.
[0018] また、配列番号 1で表される塩基配列湘補鎖を含む)に対する塩基の相違は 10% 以内であることが必要である。 HEVの「ORF2領域と ORF3領域が重複した領域」に おける保存領域の全ての遺伝子型間での塩基同士の相違は 10%以内であり、準保 存領域 (異なる遺伝子型間では保存されて 、るとは 、えな 、が、同一の遺伝子型で は十分に保存されている遺伝子領域)における同一遺伝子型の HEV間の塩基同士 の相違も 10%以内に止まって!/、る。 [0018] In addition, the base difference with respect to the base sequence represented by SEQ ID NO: 1 is 10% Must be within. The difference in bases between all genotypes of the conserved region in the HEV “region where ORF2 region and ORF3 region overlap” is within 10%, and the quasi-conserved region (conserved between different genotypes, However, the difference in bases between HEVs of the same genotype in a gene region that is well conserved in the same genotype is also within 10%! /.
[0019] 本検出方法の検出対象物としては、生物個体、例えば、ヒト、サル、ブタ、ゥシ、ヒッ ジ等を含む任意の哺乳動物、あるいは、カキ、アサリ、ハマダリ、シジミ、ムール貝等 を含む海産物カゝら採取した、体液、血液、血清、リンパ液、糞便、組織などの生物試 料、さらには、海水、河川水、湖水、下水、排水、水道水、井戸水などを含む環境水 等が挙げられる。また、食品や食品生産設備においては、食品そのもの、食品生産 設備における調理器具等の付着物、食品生産者の衣類等の付着物、それらを拭つ た紙、布等も検出対象物となり得る。各検出対象物は、必要に応じて、ホモジェネー ト処理、濃縮処理、抽出処理等、適切な前処理を行うことが可能であり、そうして得た 試料も検査対象物とすることが可能である。これらの検出対象物からの遺伝子の入 手方法は、用いる検出対象物の種類に応じて適切な方法を選択することが可能であ る力 概ね用いる検出対象物を水等に浸漬または懸濁して、これらの水から得られる 上清画分から、酸フエノール法 (AGPC法: Acid Guanidin Phenol Chroloform method) などの常法により、ウィルス RNAを抽出することにより行うことができる。かかるウィル ス RNAに対して、例えば、逆転写酵素を用いたウィルス RNAに相補的な cDNAの 調製などを行い、この核酸試料を直接用いるか、遺伝子増幅用プライマーを用いた 遺伝子増幅を行って得た遺伝子増幅産物を用いることができる (所望する遺伝子増 幅産物の確認は、一般的には、電気泳動により、目的となる大きさの遺伝子増幅産 物が認められるカゝ否かにより行われる)。  [0019] As a detection target of this detection method, an organism individual, for example, any mammal including humans, monkeys, pigs, ushi, and sheep, or oysters, clams, clams, shijimi, mussels, etc. Biological samples such as body fluids, blood, serum, lymph, feces, and tissues collected from marine products, as well as environmental water including seawater, river water, lake water, sewage, drainage, tap water, well water, etc. Can be mentioned. In addition, in food and food production facilities, food itself, deposits such as cooking utensils in food production facilities, deposits such as clothing of food producers, papers and cloths that wipe them, and the like can also be detected. Each detection target can be subjected to appropriate pretreatments such as homogenization, concentration, and extraction as necessary, and the sample obtained in this way can also be used as a test target. is there. As for the method of obtaining genes from these detection targets, it is possible to select an appropriate method according to the type of detection target used. Generally, the detection target to be used is generally immersed or suspended in water or the like. From the supernatant fraction obtained from these waters, viral RNA can be extracted by a conventional method such as the acid phenol method (AGPC method: Acid Guanidin Phenol Chroloform method). For example, by preparing cDNA complementary to viral RNA using reverse transcriptase and using this nucleic acid sample directly or performing gene amplification using gene amplification primers. (In general, confirmation of the desired gene amplification product is carried out based on whether or not a gene amplification product of the desired size is found by electrophoresis.) .
[0020] 遺伝子増幅法としては、例えば、 PCR法、 RT—PCR法、リアルタイム PCR法、 SDA ^strand displacement amplification)法、 NASBA(Nucleic Acid Sequence Based Amplin cation)法、 LAMP(Loop— mediated isothermal amplification)法等が挙げられる。核酸 増幅産物の検出には、電気泳動法、核酸検出用チップ等の電気化学的センサー、 水晶振動子を用いる遺伝子センサー、あるいは蛍光標識したプライマー、プローブま たは蛍光インタカレーシヨン剤を用いて、蛍光センサーにより蛍光強度を測定する等 により、核酸増幅産物を HEV由来ゲノム断片として検出することが可能である。また 、プローブに蛍光標識、化学修飾、蛋白質修飾、放射性同位体標識等を施し、ドット ハイブリダィゼーシヨン、スロットハイブリダィゼーシヨン、サザンハイブリダィゼーシヨン 、ノーザンノヽイブリダィゼーシヨン法等により、あるいは各種増幅法と組み合わせ、 Ta qMan Probe、 Molecular Beacon Probe ^ ノヽイブリダィゼーシヨンプローブ、 LUX (Light Upon extension)プライマー等を用いたリアルタイム定量法等による解析にて、 HEV 由来ゲノム断片を検出することが可能である。さらに、インベーダー法など標的遺伝 子の増幅を必要としない方法でも、前記のオリゴヌクレオチドを用い、 HEVゲノム断 片を検出する事も可能である。 [0020] Examples of gene amplification methods include PCR method, RT-PCR method, real-time PCR method, SDA ^ strand displacement amplification (NASDA) method, NASBA (Nucleic Acid Sequence Based Amplification) method, LAMP (Loop—mediated isothermal amplification) Law. Nucleic acid amplification products can be detected by electrophoresis, electrochemical sensors such as nucleic acid detection chips, gene sensors using quartz crystal, or fluorescently labeled primers or probes. Alternatively, nucleic acid amplification products can be detected as HEV-derived genomic fragments by measuring fluorescence intensity with a fluorescence sensor using a fluorescence intercalation agent. In addition, fluorescent labeling, chemical modification, protein modification, radioisotope labeling, etc. are applied to the probe, and dot hybridization, slot hybridization, Southern hybridization, Northern hybridization method In combination with various amplification methods, etc., TaVMan Probe, Molecular Beacon Probe ^ Nob hybridization probe, analysis by real-time quantification method using LUX (Light Upon extension) primer, etc. Can be detected. Furthermore, HEV genomic fragments can be detected using the above-mentioned oligonucleotides even in methods that do not require amplification of the target gene, such as the invader method.
[0021] また、本検出方法における目的とする核酸の検出は、核酸同士のノ、イブリダィズを ポジティブ又はネガティブに検出することにより行われることが主であり、その具体的 な手法は、公知の検出手法を用いることができる。例えば、ドットハイブリダィゼーショ ン、スロットハイブリダィゼーシヨン、サザンハイブリダィゼーシヨン、ノーザンハイブリダ ィゼーシヨン法等により、あるいは各種増幅法と組み合わせ、タツクーマン プローブ( TaqMan Probe)、モレキュラー ビーコン プローブ (Molecular Beacon Probe)、 ノヽィ ブリダィゼーシヨンプローブ、 LUX (Light Upon extension)プライマー等を用いたリア ルタイム定量法等による解析にて、 目的とする HEV由来ゲノム断片を検出することが 可能である。さらに、インベーダー法など標的遺伝子の増幅を必要としない方法でも 、 目的とする HEVゲノム断片を検出することも可能である。  [0021] In addition, the detection of the target nucleic acid in this detection method is mainly performed by positively or negatively detecting nucleic acid nucleic acids and hybrids, and a specific method thereof is a known detection method. Techniques can be used. For example, dot hybridization, slot hybridization, Southern hybridization, Northern hybridization method, etc., or in combination with various amplification methods, TaqMan probe, molecular beacon probe ( The target HEV-derived genomic fragment can be detected by analysis using a real-time quantification method using molecular beacon probes), noisy hybridization probes, LUX (light upon extension) primers, etc. . Furthermore, the target HEV genome fragment can also be detected by methods that do not require amplification of the target gene, such as the invader method.
[0022] これらの手法における具体的な必要に応じて、本発明に関する核酸 (プローブ、プ ライマー等として用いる)には、必要な修飾を付加することが可能であり、これらの修 飾核酸も、その塩基配列が本発明の範囲内である限り、同様に本発明の範囲内であ るとする。付加要素としては、酵素修飾 (パーォキシダーゼ等)、蛍光標識 (ルシフェリ ン等)、化学修飾、蛋白質修飾 (ピオチン等)、放射線同位元素標識等を例示するこ とがでさる。  [0022] Depending on the specific needs in these techniques, the nucleic acid according to the present invention (used as a probe, a primer, etc.) can be added with necessary modifications, and these modified nucleic acids are also As long as the base sequence is within the scope of the present invention, it is similarly assumed to be within the scope of the present invention. Examples of the additional element include enzyme modification (peroxidase, etc.), fluorescent labeling (luciferin, etc.), chemical modification, protein modification (piotine, etc.), radioisotope labeling, and the like.
[0023] 特に、汚染などの危険を回避し、さらに、検出操作に費やす時間を可能な限り短縮 するために、遺伝子増幅操作の過程において、遺伝子増幅産物中の特定の塩基配 列の存在をモニタリングすることが可能な手段を用いることが好適である。このような 方法の代表的なものとして、例えば、上記のモレキュラー ビーコン プローブ (Molec ular beacon Probe)を用いた検出方法、タツクーマン プローブ (Taq- Man Probe)を用 いた検出方法、 LUX (Light Upon Extension)プライマーを用いた検出方法等を挙げ ることがでさる。 [0023] In particular, in order to avoid dangers such as contamination and to reduce the time spent for the detection operation as much as possible, in the course of the gene amplification operation, a specific base sequence in the gene amplification product is used. It is preferred to use a means capable of monitoring the presence of the row. Representative examples of such methods include, for example, the detection method using the above-described molecular beacon probe, the detection method using the Taq-Man Probe, and the LUX (Light Upon Extension). Examples include detection methods using primers.
[0024] モレキュラー ビーコン プローブ (Molecular beacon Probe)を用いた検出方法は、 P CR法などによる遺伝子増幅産物の形成を、増幅過程中または増幅過程終了後に、 蛍光でモニターするために使用できる、ヘアピン型のハイブリダィゼーシヨンプローブ (モレキュラー ビーコン プローブ)を用いる遺伝子の検出方法である (Nature Biotec hnology 1998 16:49-53)。モレキュラー ビーコン プローブを構成する核酸の末端は 、互いに相補的になっており、通常は、これらの末端同士が結合して、いわゆるステ ム構造を形成し、力かるステム構造におけるループ部分は、遺伝子増幅産物の目的 とする領域に対して相補的となるように設計されている。さらに、蛍光体と非蛍光の消 光剤が、核酸の両端にそれぞれ結合しており、溶液中で遊離しているときは、ヘアピ ン構造を形成するため、蛍光剤と消光剤はお互いに作用して蛍光は消えている。し かし、核酸に相補的な塩基配列を有する遺伝子増幅産物が存在する場合には、ル ープ部分が、その相補的な塩基配列に結合し、その結果、プローブ全体の構造が変 化して、蛍光体と消光剤が離れて、消光剤の蛍光体に対する消光効果が解消するた めに、蛍光体が本来の蛍光を発するようになる。この消光効果の解消による蛍光強 度の増加は、核酸に相補的な塩基配列を有する遺伝子増幅産物の増加に比例する 。そして、この蛍光強度の増加をモニタリングすることにより、遺伝子の増幅過程終了 後のみならず、遺伝子の増幅過程においても、 目的の塩基配列を検出することがで きる。つまり、上記の蛍光強度の増加を指標に、検出試料中の標的核酸を検出する ことができる。  [0024] The detection method using a molecular beacon probe is a hairpin type that can be used to monitor the formation of gene amplification products by the PCR method or the like during or after the amplification process. This is a method for detecting a gene using a hybridization probe (molecular beacon probe) (Nature Biotechnology 1998 16: 49-53). The ends of the nucleic acid constituting the molecular beacon probe are complementary to each other. Usually, these ends are joined together to form a so-called stem structure, and the loop portion in the striking stem structure is a gene amplification. It is designed to be complementary to the target region of the product. In addition, when the phosphor and the non-fluorescent quencher are bound to both ends of the nucleic acid and released in solution, a hairpin structure is formed, so that the fluorophore and the quencher interact with each other. And the fluorescence disappears. However, when a gene amplification product having a base sequence complementary to the nucleic acid exists, the loop portion binds to the complementary base sequence, and as a result, the structure of the entire probe changes. Since the phosphor and the quencher are separated from each other and the quenching effect of the quencher on the phosphor is eliminated, the phosphor emits the original fluorescence. The increase in fluorescence intensity due to the elimination of this quenching effect is proportional to the increase in gene amplification products having a base sequence complementary to the nucleic acid. By monitoring this increase in fluorescence intensity, the target nucleotide sequence can be detected not only after the gene amplification process but also during the gene amplification process. That is, the target nucleic acid in the detection sample can be detected using the increase in fluorescence intensity as an index.
[0025] なお、モレキュラー ビーコン プローブにおける、上述した蛍光標識と消光剤の標 識は、通常、核酸の 5,末端に、 6- carboxyfluorescein(6- FAM)や 6- carboxy- 4,7,2',7' - tetrachlorofluorescein(TET)などのフノレォレセイン系蛍光色素や、 5- carboxytetrame thylrhodamine(TAMARA)などのローダミン系蛍光色素を標識し、さらに、同 3 '末端に 、 4-(4'-dimethylaminophenylazo)benzoic acid(DABC YL)などの消光剤を標識すること により行うことができる (例えば、 Nature Biotechnology 1996 14:303- 308など)。 [0025] It should be noted that in the molecular beacon probe, the above-mentioned fluorescent label and quencher label are usually labeled with 6-carboxyfluorescein (6-FAM) or 6-carboxy-4,7,2 'at the 5th end of the nucleic acid. , 7'-tetrachlorofluorescein (TET) and other fluorescein-based fluorescent dyes and rhodamine-based fluorescent dyes such as 5-carboxytetrame thylrhodamine (TAMARA) are labeled, and at the 3 'end , 4- (4′-dimethylaminophenylazo) benzoic acid (DABC YL) can be used for labeling (for example, Nature Biotechnology 1996 14: 303-308).
[0026] タツクーマン プローブ (Taq-Man Probe)を用いた検出方法は、 PCR法などによる 遺伝子増幅産物の形成を、増幅過程中に、蛍光でモニターするために使用できる、 ハイブリダィゼーシヨンプローブ (Taq- Man Probe)を用いる、遺伝子の検出方法である 〔実験医学 Vol.15 No.7(増刊) p46〜51, 1997など〕。タツクーマン プローブは、 5,末 端には、フルォレセイン系の蛍光色素(レポーター色素)が、 3 '末端には、ローダミン 系の蛍光色素 (タエンチヤー色素)が、それぞれ標識された核酸である。レポーター 色素とクェンチヤ一色素が、核酸を介して結合している状態では、ホエルスター (Fors ter)共鳴エネルギーにより、レポーター色素の蛍光は、クェンチヤ一色素により抑制さ れている。これに対して、プライマーおよびタツクーマン プローブが、遺伝子増幅産 物のタツクーマン プローブの核酸に相補的な核酸をアニーリングして、伸長反応が 進むと、 TaqDNAポリメラーゼの 5,→3,エンドヌクレアーゼ活性により、タツクーマン プローブの 5 '末端から加水分解が起こり、 5 '末端のレポーター色素が、 3 '末端の クェンチヤ一色素力 離脱すると、抑制されて 、たレポーター色素の蛍光強度が増 加する。レポーター色素による蛍光強度の増加は、核酸に相補的な塩基配列を有す る遺伝子増幅産物の増加に比例する。そして、この蛍光強度の増加をモニタリングす ることにより、遺伝子の増幅過程終了後のみならず、遺伝子の増幅過程においても、 目的の塩基配列を検出することができる。つまり、上記の蛍光強度の増加を指標に、 検出試料中の標的核酸を検出することができる。  [0026] The detection method using the Taq-Man Probe is a hybridization probe that can be used to monitor the formation of a gene amplification product by PCR or the like during the amplification process with fluorescence ( This is a method for detecting genes using Taq-Man Probe (Experimental Medicine Vol.15 No.7 (Special Issue) p46-51, 1997, etc.). The Tac Couman probe is a nucleic acid labeled with 5, a fluorescein fluorescent dye (reporter dye) at the end, and a rhodamine fluorescent dye (taentia dye) at the 3 'end. In a state where the reporter dye and the quencher dye are bound via a nucleic acid, the fluorescence of the reporter dye is suppressed by the quencher dye due to the Forster resonance energy. On the other hand, when the primer and the Tatooman probe anneal the nucleic acid complementary to the Taucman probe nucleic acid of the gene amplification product and the extension reaction proceeds, TaqDNA polymerase 5, → 3, due to the endonuclease activity, Hydrolysis occurs from the 5 'end of the probe, and when the 5' end reporter dye is released from the 3 'end quencher, the fluorescence intensity of the reporter dye increases. The increase in fluorescence intensity by the reporter dye is proportional to the increase in gene amplification products having a base sequence complementary to the nucleic acid. By monitoring this increase in fluorescence intensity, the target base sequence can be detected not only after the gene amplification process but also during the gene amplification process. That is, the target nucleic acid in the detection sample can be detected using the increase in fluorescence intensity as an index.
[0027] なお、タツクーマン プローブにおける、上述した蛍光標識は、通常、核酸の 5 '末 端に、 6— FAMや TETなどのフルォレセイン系の蛍光色素を、同 3 '末端に、 TAM ARAなどのローダミン系の色素を、常法 (例えば、 Nucleic Acids Research 1993 21(1 6):3761-3766など)に従って行うことができる。  [0027] It should be noted that the above-described fluorescent labeling in the Tac Couman probe usually has a fluorescein-based fluorescent dye such as 6-FAM or TET at the 5 'end of the nucleic acid and a rhodamine such as TAM ARA at the 3' end. The dye of the system can be carried out according to a conventional method (for example, Nucleic Acids Research 1993 21 (16): 3761-3766).
[0028] LUX (Light Upon Extension)プライマーを用いた検出方法は、 PCR法などによる遺 伝子増副産物の形成を、増幅過程中の蛍光をモニターすることにより、 目的遺伝子 の増幅を検出する方法である。 LUXプライマーは、 3'末端付近に単一フルオロフォ ァを標識し、 5'末端との間でヘアピン構造を取るように設計した核酸である。長さは通 常 20〜30塩基で、プライマーがヘアピン構造を取っている時は消光能力があり蛍光 を発しないが、プライマーカ^本鎖 PCR産物に取り込まれると、消光が解かれ、蛍光シ グナルが増大し、このシグナルの増大を測定することで、増幅した目的の遺伝子産物 の定量分析をする (Nazarenko,I.et al. (2002) Nucleic Acids Research 30: e37.)。 [0028] The detection method using a LUX (Light Upon Extension) primer is a method of detecting the amplification of a target gene by monitoring the fluorescence during the amplification process for the formation of gene by-products by PCR or the like. is there. The LUX primer is a nucleic acid designed to label a single fluorophore near the 3 'end and take a hairpin structure between the 5' end. Length is through Usually it is 20 to 30 bases, and when the primer has a hairpin structure, it has a quenching ability and does not emit fluorescence, but when it is incorporated into a primer-stranded PCR product, the quenching is released and the fluorescence signal increases. By measuring this increase in signal, the amplified gene product of interest is quantitatively analyzed (Nazarenko, I. et al. (2002) Nucleic Acids Research 30: e37.).
[0029] 上述した全ての検出用核酸プローブ又はプライマーは、後述する本検出用キットの 構成要素として用いることができる検出用核酸プローブとして用いることができる。  [0029] All the above-described detection nucleic acid probes or primers can be used as detection nucleic acid probes that can be used as components of the detection kit described later.
[0030] 本検出方法における HEVの検出は、目的とする塩基配列を有する遺伝子増幅産 物などの検出は、上述した手段により、目的とする核酸を定量して検出することも可 能であり、定量を伴わずに、例えば、陽性若しくは陰性という定性情報として検出する ことも可能である。この遺伝子増幅産物などの検出情報 (定量値や定性情報)を指標 に、これと検体中の HEVの存在'非存在、さらには存在量と関連付けることによって、 HEVの検出を行うことができる。  [0030] HEV detection in the present detection method can be performed by quantifying and detecting a target nucleic acid by the above-described means, such as detection of a gene amplification product having a target base sequence. For example, it can be detected as qualitative information of positive or negative without quantification. HEV can be detected by using detection information (quantitative values and qualitative information) such as gene amplification products as an index and correlating it with the presence / absence of HEV in the sample, and further with the abundance.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]HEVゲノムの多様性を調べた結果を示す図面である。 [0031] FIG. 1 is a drawing showing the results of examining the diversity of HEV genomes.
[図 2]HEVゲノムにおける変異の系統を示す図面である。  FIG. 2 is a drawing showing the strain lines in the HEV genome.
[図 3]本発明において検出領域として用いる、 HEVの遺伝子領域の各株における塩 基配列を並列比較した図面である。図 3中、第 2行目の 3つの塩基配列は、左から、 配列番号 49、 51及び 57の塩基配列である。図 3中第 3行目〜第 30行目の塩基配 列は、上力もそれぞれ、配列番号 1、 15、 13、 10、 12、 17、 16、 11、 7、 8、 6、 4、 3、 2、 5、 9、 14、 39、 40、 41、 42、 43、 44、 45、 46、 47、 48及び 58の塩基配列であり 、第 32行目及び第 33行目の塩基配列は、それぞれ、配列番号 18及び 53の塩基配 列であり、第 35行目〜第 45行目の塩基配列は、上からそれぞれ、配列番号 21、 27 、 26、 25、 24、 28、 23、 22、 19、 56及び 54の塩基配列であり、第 47行目〜第 57 行目の塩基酉己歹 Uiま、上力らそれぞれ、酉己歹 U番号 37、 31、 32、 36、 33、 34、 35、 30 、 29、 38及び 55の塩基配列である。  FIG. 3 shows a parallel comparison of the base sequences in each strain of the HEV gene region used as a detection region in the present invention. In FIG. 3, the three base sequences in the second row are the base sequences of SEQ ID NOs: 49, 51 and 57 from the left. In Fig. 3, the base sequence from the 3rd row to the 30th row is also the upper force, SEQ ID NO: 1, 15, 13, 10, 12, 17, 16, 11, 7, 8, 6, 4, 3, 2, 5, 9, 14, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 and 58.The base sequences of the 32nd and 33rd lines are respectively , SEQ ID NOS: 18 and 53, and the base sequences of the 35th to 45th rows are SEQ ID NOS: 21, 27, 26, 25, 24, 28, 23, 22, 19 from the top, respectively. , 56 and 54, and the base lines in the 47th to 57th lines, Ui, Ue, et al., Respectively, Umi 37, 31, 32, 36, 33, 34, 35 , 30, 29, 38 and 55.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] ここで、配列番号 1に示す塩基配列の意義を明らかにするために、 HEVの遺伝子 解析について記載する。 [0033] HEV株の遣伝子型決定 [0032] Here, in order to clarify the significance of the nucleotide sequence shown in SEQ ID NO: 1, gene analysis of HEV will be described. [0033] Determination of HEV strain gene type
既存のほぼ全長塩基配列が明らかになつている 37種の HEV株 (ァクセッションナン バーは下記参照)について、全塩基配列をァライメントし近隣結合法による系統榭解 析を行い、各株の遺伝子型を既存の分類に従い決定した。  37 existing HEV strains with almost full-length nucleotide sequences have been identified (see below for accession numbers). The type was determined according to the existing classification.
[0034] <既存のほぼ全長配列が明らかになつている HEV株の遺伝子型 > [0034] <Genetic type of HEV strain with almost existing full-length sequence>
遺伝子型 I (GI)  Genotype I (GI)
M80581 (配列番号 2) .L25595 (配列番号 3) , L25547 (配列番号 4) , M94177 (配列番 号 5), L08816(配列番号 6), D11092 (配列番号 7) , D11093 (配列番号 8) , X98292 ( 配列番号 9), AF185822(配列番号 10), M73218(配列番号 1), D10330(配列番号 1 1) , AF459438 (配列番号 12) , AF076239 (配列番号 13) , X99441 (配列番号 14) , A F051830(配列番号 15), AY230202(配列番号 16), AY204877(配列番号 17)  M80581 (SEQ ID NO: 2) .L25595 (SEQ ID NO: 3), L25547 (SEQ ID NO: 4), M94177 (SEQ ID NO: 5), L08816 (SEQ ID NO: 6), D11092 (SEQ ID NO: 7), D11093 (SEQ ID NO: 8), X98292 (SEQ ID NO: 9), AF185822 (SEQ ID NO: 10), M73218 (SEQ ID NO: 1), D10330 (SEQ ID NO: 1 1), AF459438 (SEQ ID NO: 12), AF076239 (SEQ ID NO: 13), X99441 (SEQ ID NO: 14), A F051830 (SEQ ID NO: 15), AY230202 (SEQ ID NO: 16), AY204877 (SEQ ID NO: 17)
遣伝早型 11 (GTT)  Early transmission 11 (GTT)
M74506(配列番号 18)  M74506 (SEQ ID NO: 18)
遣伝早型 TIT (GTTT)  Early transmission TIT (GTTT)
AF455784 (配列番号 19) , AY115488 (配列番号 20) *, AF082843 (配列番号 21) *, AF060669 (配列番号 22) , AF060668 (配列番号 23) , AB089824 (配列番号 24) , AB 074920(配列番号 25), AB074918(配列番号 26), AB073912(配列番号 27)*, AB09 1394 (配列番号 28)  AF455784 (SEQ ID NO: 19), AY115488 (SEQ ID NO: 20) *, AF082843 (SEQ ID NO: 21) *, AF060669 (SEQ ID NO: 22), AF060668 (SEQ ID NO: 23), AB089824 (SEQ ID NO: 24), AB 074920 (SEQ ID NO: 25) ), AB074918 (SEQ ID NO: 26), AB073912 (SEQ ID NO: 27) *, AB09 1394 (SEQ ID NO: 28)
遣伝早型 TV (GTV)  Early transmission TV (GTV)
AJ272108(配列番号 29), AB108537(配列番号 30), AB074917(配列番号 31), AB0 80575(配列番号 32), AB097811(配列番号 33)*, AB097812 (配列番号 34) , AB099 347(配列番号 35), AB091395(配列番号 36), AB074915(配列番号 37)  AJ272108 (SEQ ID NO: 29), AB108537 (SEQ ID NO: 30), AB074917 (SEQ ID NO: 31), AB0 80575 (SEQ ID NO: 32), AB097811 (SEQ ID NO: 33) *, AB097812 (SEQ ID NO: 34), AB099 347 (SEQ ID NO: 35) ), AB091395 (SEQ ID NO: 36), AB074915 (SEQ ID NO: 37)
*は豚由来、それ以外はヒト由来の HEV株である。  * Indicates HEV strains derived from pigs, others are derived from humans.
[0035] <ォリゴヌクレオチドの作製 > [0035] <Production of oligonucleotides>
次に、可能な限り短い HEVの遺伝子の塩基配列内 (具体的には、 250nt以内程度) に、 1)5'-側 HEV共通プライマー、 2)HEV共通プローブ、又は、 3)各遺伝子型 HE V特異的プローブ、 4)各遺伝子型 HEV特異的プローブ又は 5) HEV共通プローブ 、 6) 3'側 HEV共通プライマー、を設計出来る領域を見出すために、全長ゲノムが判 明している 37株の塩基配列を用いて、 Sliding Window Analysis(Proutski, V., and E. Holmes. 1998. SWAN: sliding window analysis of nucleotide sequence variability. Bio informatics,vol.l4:467- 8)を行った (Window size:30, shift:6)(図 2)。その結果、 HEVゲ ノムの中で最もその条件に合致した場所が、図 1のグレー (M73218で 5250-5440ntに 相当)で示す領域に存在し、その範囲はおよそ 180ntであることが判明した。これに相 当する領域が明らかになつている HEV株 (ほぼ全長塩基配列が明らかになつている 3 7株、及び、部分配列が判明している下記 11株)の塩基配列を用いて、遺伝子型毎に 配列をァライメントして示した図面が図 3である。図 3において、白抜きのボックス領域 は全ての株に共通の配列を有した領域で、ここに共通プライマー及び共通プローブ となるオリゴヌクレオチドを設計した。また、グレーボックス領域は、各遺伝子型のみに 共通の配列を有した領域で、ここに各遺伝子型特異的なプローブとなるオリゴヌタレ ォチドを設計した。この各遺伝子特異的なプローブを選別する条件としては、「配列 番号 1に相応する塩基配列の核酸にぉ 、て、少なくとも連続する 14塩基のうち 11塩 基が遺伝子型毎に保存され、かつ、他の遺伝子型の相応塩基配列とは 5塩基以上 が相違する領域」であることとした。設計したオリゴヌクレオチド配列は下記に示した。 Next, within the shortest possible HEV gene base sequence (specifically, within about 250 nt), 1) 5'-side HEV common primer, 2) HEV common probe, or 3) each genotype HE In order to find a region where V-specific probes, 4) each genotype HEV-specific probe, or 5) HEV common probe, 6) 3 'HEV common primer can be designed, the full-length genome is determined. Sliding Window Analysis (Proutski, V., and E. Holmes. 1998. SWAN: sliding window analysis of nucleotide sequence variability.Bio informatics, vol.l4: 467-8) (Window size: 30, shift: 6) (Fig. 2). As a result, it was found that the location that best met the conditions in the HEV genome was in the area shown in gray in Fig. 1 (corresponding to 5250-5440 nt in M73218), and the range was approximately 180 nt. Using the base sequences of HEV strains (37 strains with almost full-length base sequence revealed and 11 strains with partial sequences known below) whose regions corresponding to this are known, Figure 3 shows the alignment of each type. In FIG. 3, the white box region is a region having a sequence common to all strains, and oligonucleotides serving as a common primer and a common probe were designed here. In addition, the gray box region is a region having a sequence common to only each genotype, and an oligonucleotide that is a probe specific to each genotype was designed here. As a condition for selecting each gene-specific probe, “a nucleic acid having a base sequence corresponding to SEQ ID NO: 1 has at least 11 base groups out of 14 consecutive bases stored for each genotype, and The region is a region that differs by at least 5 bases from the corresponding base sequence of other genotypes. The designed oligonucleotide sequence is shown below.
[0036] <部分塩基配列の分かって!/、る株 (11株) >  [0036] <Understanding the partial nucleotide sequence!
AB075971 (配列番号 38) , AF051349 (配列番号 39) , AF051350 (配列番号 40) , AF 051351 (配列番号 41) , AF051352 (配列番号 42) , AF058684 (配列番号 43) , AF065 061 (配列番号 44) , AF124406 (配列番号 45) , AF124407 (配列番号 46) , M32400 ( 配列番号 47) , U22532 (配列番号 48)  AB075971 (SEQ ID NO: 38), AF051349 (SEQ ID NO: 39), AF051350 (SEQ ID NO: 40), AF 051351 (SEQ ID NO: 41), AF051352 (SEQ ID NO: 42), AF058684 (SEQ ID NO: 43), AF065 061 (SEQ ID NO: 44) , AF124406 (SEQ ID NO: 45), AF124407 (SEQ ID NO: 46), M32400 (SEQ ID NO: 47), U22532 (SEQ ID NO: 48)
[0037] <設計したオリゴヌクレオチド >  [0037] <Designed oligonucleotide>
HEV共诵センスプライマー:  HEV co-sense primer:
(GLM73218 5257-5276 ntに相当)  (Equivalent to GLM73218 5257-5276 nt)
HECOM-Sプライマー(5,- CGGCGGTGGTTTCTGGRGTG- 3,:配列番号 49) HEV共诵アンチセンスプライマー:  HECOM-S primer (5, -CGGCGGTGGTTTCTGGRGTG-3 ,: SEQ ID NO: 49) HEV co-sense primer:
(GLM73218 5427-5399 ntに相当)  (Equivalent to GLM73218 5427-5399 nt)
HECOM-ASプライマー(5,— GGGCGCTKGGMYTGRTCNCGCCAAGNGGA— 3,: 配列番号 50) HEV共诵プローブ: HECOM-AS primer (5——GGGCGCTKGGMYTGRTCNCGCCAAGNGGA—3: SEQ ID NO: 50) HEV common probe:
(GLM73218 5305-5334 ntに相当)  (Equivalent to GLM73218 5305-5334 nt)
TP-HECOMプローブ (5, - (FAM)-CCCCYATATTCATCCAACCAACCCCTTYG C-(TAMRA)-3':配列番号 51)  TP-HECOM probe (5,-(FAM) -CCCCYATATTCATCCAACCAACCCCTTYG C- (TAMRA) -3 ': SEQ ID NO: 51)
HEV遣伝子型 I特異的プローブ:  HEV gene type I specific probe:
(GLM73218 5332-5350 ntに相当)  (Equivalent to GLM73218 5332-5350 nt)
TP-HEG1プローブ (5,—(FAM)— CGCCCCSRATGTCACCGCT— (TAMRA)— 3,:配 列番号 52)  TP-HEG1 probe (5, — (FAM) — CGCCCCSRATGTCACCGCT— (TAMRA) — 3 ,: Sequence number 52)
HEV遣伝子型 II特異的プローブ:  HEV gene type II specific probe:
(GLM73218 5329-5352 ntに相当、かつ、 GILM74506 5229-5332 ntに該当) TP-HEG2プローブ (5,— (FAM)-CTTTGCCCCAGACGTTGCCGCTGC-(TAMRA) -3':配列番号 53)  (Corresponds to GLM73218 5329-5352 nt and corresponds to GILM74506 5229-5332 nt) TP-HEG2 probe (5,-(FAM) -CTTTGCCCCAGACGTTGCCGCTGC- (TAMRA) -3 ': SEQ ID NO: 53)
HRV遣伝 111 プローブ:  HRV transmission 111 probe:
(GLM73218 5343-5365 ntに相当、かつ、 GIILAF082843 5367-5389 ntに該当) TP-HEG3プローブ (5,— (FAM)-TCGTTTCACAAYCCGGGGCTGGA-(TAMRA)- 3':配列番号 54)  (Corresponds to GLM73218 5343-5365 nt and corresponds to GIILAF082843 5367-5389 nt) TP-HEG3 probe (5, — (FAM) -TCGTTTCACAAYCCGGGGCTGGA- (TAMRA) -3 ': SEQ ID NO: 54)
HRV遣伝 IV プローブ:  HRV transmission IV probe:
(GLM73218 5330-5352 ntに相当、かつ、 GIV— AB097811 5371-5393 ntに該当) TP-HEG4プローブ (5,— (FAM)-TTCGCATCTGACATWCCARCCGC-(TAMRA)- 3':配列番号 55)  (Corresponds to GLM73218 5330-5352 nt and corresponds to GIV—AB097811 5371-5393 nt) TP-HEG4 probe (5, — (FAM) -TTCGCATCTGACATWCCARCCGC- (TAMRA) -3 ′: SEQ ID NO: 55)
[0038] <各遺伝子型スタンダードの作製 > [0038] <Generation of each genotype standard>
次に、この領域を有する各遺伝子型のスタンダードコントロールを作製した。 GI: M 73218の 5253- 5432 ntに該当、 GII :M74506の 5223- 5402 ntに該当、 GIII :AF08284 3の 5277-5456 ntに該当、 GVI :AB097811の 5294-5473 ntに該当する配列 (180nt)を 有するプラスミド (pT7Blueベクター)を作製し、 HEVの各遺伝子型のスタンダードとし た。  Next, a standard control of each genotype having this region was prepared. GI: M 73218 corresponds to 5253-5432 nt, GII: M74506 corresponds to 5223-5402 nt, GIII: AF08284 3 corresponds to 5277-5456 nt, GVI: AB097811 corresponds to 5294-5473 nt (180nt) A plasmid (pT7Blue vector) having γ was prepared and used as a standard for each genotype of HEV.
[0039] [本検出方法における使用態様]  [Usage mode in this detection method]
既に述べたように、配列番号 49〜55に示す塩基配列のオリゴヌクレオチド (相補鎖 を含む)において、各塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続する塩基配列のオリゴヌクレオチドは、本発明の範囲内のオリゴヌク レオチドである。このことを前提に、本検出方法における配列番号 49〜55の使用態 様について説明する。 As described above, the oligonucleotides of the nucleotide sequences shown in SEQ ID NOs: 49 to 55 (complementary strands) The oligonucleotide having a base sequence of 10 bases or more that is selected from base sequences having 90% or more homology with each base sequence is an oligonucleotide within the scope of the present invention. Based on this premise, the usage of SEQ ID NOS: 49 to 55 in this detection method will be described.
[0040] (1)遺伝子型を超えて HEVを検出する場合  [0040] (1) When detecting HEV beyond genotype
この場合は、上記の態様では、各遺伝子型の HEVにおいて保存されている保存 領域の核酸を検出することが必要であり、上記の例では、配列番号 51の HEV共通 プローブ(当該塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩 基以上連続する塩基配列の核酸)に相応する核酸を検出することを意味する。  In this case, in the above embodiment, it is necessary to detect the nucleic acid in the conserved region conserved in each genotype of HEV. In the above example, the HEV common probe (SEQ ID NO: 51) Nucleic acid corresponding to a nucleic acid having a base sequence of 10 bases or more selected from base sequences having a homology of at least%.
[0041] まず、核酸の増幅を行わずにハイブリダィズ反応により、標的核酸を検出する場合 には、プローブとして配列番号 51のオリゴヌクレオチドを、検出対象物由来の核酸試 料に対してハイブリダィズ反応を行 ヽ、当該ハイブリダィズ反応が陽性の場合には、 検出対象物において HEV陽性 (遺伝子型は未確定)とすることが可能である。なお、 上記の配列番号 51の塩基配列のオリゴヌクレオチドのプローブには、検出の態様に 応じて適切な標識を施すことも可能である。  [0041] First, when a target nucleic acid is detected by a hybridization reaction without performing nucleic acid amplification, the oligonucleotide of SEQ ID NO: 51 is used as a probe for the nucleic acid sample derived from the detection target.ヽ If the hybridizing reaction is positive, it is possible to make the detection target HEV positive (genotype is not yet determined). The oligonucleotide probe having the base sequence of SEQ ID NO: 51 can be labeled appropriately depending on the detection mode.
[0042] また、検出対象物由来の核酸試料における核酸の増幅物を、核酸のハイブリダィ ズ反応を行わずに、直接的に電気泳動上に現れる遺伝子断片の分子量等を指標と して検出し、 目的とする遺伝子領域の増幅物が検出される場合には、検出対象物に おいて HEV陽性 (遺伝子型は未確定)とすることが可能である。この場合、核酸の増 幅反応に用いるプライマーとしては、配列番号 49又は 50のプライマーを用いることが 可能であるのは勿論である力 配列番号 51のプローブとして記載されている配列を プライマーとして用いることも可能である。すなわち、この態様において用い得るブラ イマ一オリゴヌクレオチドの組は、配列番号 49と 50の塩基配列のオリゴヌクレオチド の組、配列番号 49と 51の塩基配列の組、配列番号 50と 51の塩基配列の組が該当 する。なお、上記の配列番号 49〜51の塩基配列のオリゴヌクレオチドのプライマー には、検出の態様に応じて適切な標識を施すことも可能である。  [0042] Further, an amplification product of a nucleic acid in a nucleic acid sample derived from the detection target is detected using the molecular weight of the gene fragment directly appearing on electrophoresis as an index without performing a nucleic acid hybridization reaction, When an amplification product of the target gene region is detected, it is possible to make the detection target HEV positive (genotype is not determined). In this case, as a primer used for the amplification reaction of nucleic acid, it is possible to use the primer of SEQ ID NO: 49 or 50. The sequence described as the probe of SEQ ID NO: 51 is used as a primer. Is also possible. That is, the primer oligonucleotide sets that can be used in this embodiment are the oligonucleotide set of SEQ ID NOs: 49 and 50, the set of base sequences of SEQ ID NOs: 49 and 51, and the set of base sequences of SEQ ID NOs: 50 and 51. A group is applicable. The oligonucleotide primers having the nucleotide sequences of SEQ ID NOs: 49 to 51 can be appropriately labeled depending on the detection mode.
[0043] さらに、検出対象物由来の核酸試料における核酸の増幅物に対して、核酸のハイ ブリダィズ反応を行って、当該ノ、イブリダィズ反応を指標として HEVを検出する場合 には、プローブとして配列番号 51のオリゴヌクレオチドを、検出対象物由来の増幅反 応を行った核酸試料に対してハイブリダィズ反応を行 、、当該ハイブリダィズ反応が 陽性の場合には、検出対象物において HEV陽性 (遺伝子型は未確定)とすることが 可能である。この場合、核酸の増幅反応に用いるプライマーとしては、配列番号 49又 は 50のプライマーを用いることが可能であるのは勿論である力 配列番号 51のオリゴ ヌクレオチドをプライマーとしても用いることが可能である。すなわち、この態様におい て用い得るプローブは配列番号 51の塩基配列のオリゴヌクレオチドであり、かつ、プ ライマー核酸の組は、配列番号 49と 50の塩基配列のオリゴヌクレオチドの組、配列 番号 49と 51の塩基配列の組、配列番号 50と 51の塩基配列の組が該当する。なお、 上記の配列番号 51のプローブ、及び、配列番号 49〜51の塩基配列のオリゴヌタレ ォチドのプライマーには、検出の態様に応じて適切な標識を施すことも可能である。 [0043] Further, when a nucleic acid hybridization reaction is performed on a nucleic acid amplification product in a nucleic acid sample derived from a detection target, and HEV is detected using the hybridization reaction as an index The oligonucleotide of SEQ ID NO: 51 as a probe is subjected to a hybridization reaction with a nucleic acid sample subjected to an amplification reaction derived from the detection target. If the hybridization reaction is positive, HEV is detected in the detection target. It can be positive (genotype is undetermined). In this case, as a primer used for the nucleic acid amplification reaction, it is possible to use the primer of SEQ ID NO: 49 or 50 as well as the oligonucleotide of SEQ ID NO: 51 as a primer. . That is, the probe that can be used in this embodiment is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 51, and the set of primer nucleic acids is the set of oligonucleotides having the nucleotide sequences of SEQ ID NO: 49 and 50, SEQ ID NO: 49 and 51 This corresponds to the base sequence set of SEQ ID NOs: 50 and 51. The probe of SEQ ID NO: 51 and the oligonucleotide primer of the base sequence of SEQ ID NOs: 49 to 51 can be appropriately labeled depending on the detection mode.
[0044] (2)遺伝子型毎に HEVを検出する場合 [0044] (2) When HEV is detected for each genotype
一方、遺伝子型毎の HEVの検出必要性も、例えば、汚染源の特定を行う場合には 極めて重要になる。この場合は、上記の HEV共通プローブに代えて、 GI〜GIVの遺 伝子型毎に特異的であり、かつ、同一の遺伝子型内においては保存性の高い塩基 配列のオリゴヌクレオチドを用いた個別プローブを用いる。上記の例においては、 H EV (GI)が配列番号 52のプローブであり、 HEV (GII)が配列番号 53のプローブであ り、 HEV(GIII)が配列番号 54のプローブであり、 HEV(GIV)が配列番号 55のプロ ーブである。  On the other hand, the need to detect HEV for each genotype is also extremely important, for example, when identifying contamination sources. In this case, instead of the HEV common probe described above, an individual using a nucleotide sequence that is specific for each of the GI to GIV gene types and has a highly conserved base sequence within the same genotype. Use a probe. In the above example, H EV (GI) is the probe of SEQ ID NO: 52, HEV (GII) is the probe of SEQ ID NO: 53, HEV (GIII) is the probe of SEQ ID NO: 54, and HEV (GIV ) Is the probe of SEQ ID NO: 55.
[0045] まず、核酸の増幅を行わずにハイブリダィズ反応により、標的核酸を検出する場合 には、検出目的とする HEVの遺伝子型(GI〜GIV)に応じて、配列番号 52〜55のォ リゴヌクレオチドを個別にプローブとして用い、検出対象物由来の核酸試料に対して ハイブリダィズ反応を行い、当該ハイブリダィズ反応力 いずれかの遺伝子型のプロ ーブにお ヽて陽性の場合には、検出対象物にお ヽて HEVが当該遺伝子型におい て陽性とすることが可能である。なお、上記の配列番号 52〜55の塩基配列のオリゴ ヌクレオチドのプローブには、検出の態様に応じて適切な標識を施すことも可能であ る。  [0045] First, when a target nucleic acid is detected by a hybridization reaction without nucleic acid amplification, the oligonucleotides of SEQ ID NOs: 52 to 55 are selected according to the genotype (GI to GIV) of the HEV to be detected. Using a nucleotide individually as a probe, a hybridization reaction is performed on a nucleic acid sample derived from the detection target, and if the hybridization reaction force is positive for any of the genotype probes, the detection target is not detected. Thus, HEV can be positive in the genotype. The oligonucleotide probes having the nucleotide sequences of SEQ ID NOs: 52 to 55 can be appropriately labeled depending on the detection mode.
[0046] また、検出対象物由来の核酸試料における核酸の増幅物を、核酸のハイブリダィ ズ反応を行わずに、直接的に電気泳動上に現れる遺伝子断片の分子量等を指標と して検出し、 目的とする遺伝子領域の増幅物が検出される場合には、検出対象物に おいて、検出目的とする遺伝子型の HEV陽性とすることが可能である。この場合、核 酸の増幅反応に用いるプライマーとしては、配列番号 49又は 50と、配列番号 52〜5 5のプローブとして記載されているオリゴヌクレオチドをプライマーとして用いることが 好適である。すなわち、この態様において用い得るプライマーオリゴヌクレオチドの組 は、配列番号 49若しくは 50と配列番号 52の塩基配列のオリゴヌクレオチドの組 (GI) 、配列番号 49若しくは 50と配列番号 53の塩基配列のオリゴヌクレオチドの組 (GII)、 配列番号 49若しくは 50と配列番号 54の塩基配列のオリゴヌクレオチドの組 (GIII)、 配列番号 49若しくは 50と配列番号 55の塩基配列のオリゴヌクレオチドの組 (GVI)が 該当する。なお、上記の配列番号 49〜50、 52〜55の塩基配列のオリゴヌクレオチド のプライマーには、検出の態様に応じて適切な標識を施すことも可能である。 [0046] In addition, an amplified product of a nucleic acid in a nucleic acid sample derived from a detection target is converted into a nucleic acid hybrid. If the amplified product of the target gene region is detected using the molecular weight of the gene fragment that appears directly on electrophoresis as an index It is possible to make the target genotype HEV positive. In this case, as a primer used for the nucleic acid amplification reaction, it is preferable to use the oligonucleotides described as probes of SEQ ID NO: 49 or 50 and SEQ ID NOs: 52 to 55 as primers. That is, the primer oligonucleotide pair that can be used in this embodiment is the oligonucleotide pair (GI) having the nucleotide sequence of SEQ ID NO: 49 or 50 and SEQ ID NO: 52, or the oligonucleotide having the nucleotide sequence of SEQ ID NO: 49 or 50 and SEQ ID NO: 53 Group (GII), SEQ ID NO: 49 or 50 and oligonucleotide group (GIII) with the nucleotide sequence of SEQ ID NO: 54, and SEQ ID NO: 49 or 50 and oligonucleotide group (GVI) with the nucleotide sequence of SEQ ID NO: 55 . The oligonucleotide primers having the nucleotide sequences of SEQ ID NOs: 49 to 50 and 52 to 55 can be appropriately labeled depending on the detection mode.
さらに、検出対象物由来の核酸試料における核酸の増幅物に対して、核酸のハイ ブリダィズ反応を行って、当該ノ、イブリダィズ反応を指標として HEVを遺伝子型別に 検出する場合には、検出目的とする HEVの遺伝子型に応じ、プローブとして配列番 号 52〜55のオリゴヌクレオチドを用いて、検出対象物由来の増幅反応を行った核酸 試料に対してハイブリダィズ反応を行 ヽ、当該ハイブリダィズ反応が陽性の場合には 、検出対象物において、検出目的とする遺伝子型の HEV陽性とすることが可能であ る。この場合、核酸の増幅反応に用いるプライマーとしては、配列番号 49又は 50の プライマーを用いることが可能であるのは勿論である力 配列番号 52〜55のオリゴヌ クレオチドをプライマーとしても用いることが可能である。すなわち、この態様において 用い得るプローブは、検出遺伝子型が GIの場合、配列番号 52の塩基配列のオリゴ ヌクレオチドであり、かつ、プライマー核酸の組は、配列番号 49と 50の塩基配列のォ リゴヌクレオチドの組、配列番号 49と 52の塩基配列のオリゴヌクレオチドの組、配列 番号 50と 52の塩基配列のオリゴヌクレオチドの組が該当する。また、検出遺伝子型 が GIIの場合、配列番号 53の塩基配列のオリゴヌクレオチドがプローブであり、かつ、 プライマー核酸の組は、配列番号 49と 50の塩基配列のオリゴヌクレオチドの組、配 列番号 49と 53の塩基配列のオリゴヌクレオチドの組、配列番号 50と 53の塩基配列 のオリゴヌクレオチドの組が該当する。また、検出遺伝子型が GIIIの場合、配列番号 5 4の塩基配列のオリゴヌクレオチドがプローブであり、かつ、プライマー核酸の組は、 配列番号 49と 50の塩基配列のオリゴヌクレオチドの組、配列番号 49と 54の塩基配 列のオリゴヌクレオチドの組、配列番号 50と 54の塩基配列のオリゴヌクレオチドの組 が該当する。また、検出遺伝子型が GIVの場合、配列番号 55の塩基配列のオリゴヌ クレオチドがプローブであり、かつ、プライマー核酸の組は、配列番号 49と 50の塩基 配列のオリゴヌクレオチドの組、配列番号 49と 55の塩基配列のオリゴヌクレオチドの 組、配列番号 50と 55の塩基配列のオリゴヌクレオチドの組が該当する。 In addition, when nucleic acid hybridization is performed on a nucleic acid amplification product in a nucleic acid sample derived from the detection target, and HEV is detected by genotype using the hybridization reaction as an indicator, the detection purpose is used. When a hybridization reaction is performed on a nucleic acid sample subjected to an amplification reaction derived from a detection target using an oligonucleotide of SEQ ID NO: 52 to 55 as a probe according to the genotype of HEV, and the hybridization reaction is positive In addition, it is possible to make the detection target genotype HEV positive in the detection target. In this case, as a primer used for the nucleic acid amplification reaction, it is possible to use the primer of SEQ ID NO: 49 or 50 as well as the oligonucleotide of SEQ ID NO: 52 to 55 as a primer. is there. That is, the probe that can be used in this embodiment is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 52 when the detection genotype is GI, and the primer nucleic acid pair is an oligonucleotide having the nucleotide sequences of SEQ ID NOs: 49 and 50 And a pair of oligonucleotides having the nucleotide sequences of SEQ ID NOs: 49 and 52, and a pair of oligonucleotides having the nucleotide sequences of SEQ ID NOs: 50 and 52. When the detection genotype is GII, the oligonucleotide having the nucleotide sequence of SEQ ID NO: 53 is the probe, and the primer nucleic acid pair is the oligonucleotide pair of SEQ ID NOS: 49 and 50, the sequence number 49 A set of oligonucleotides with base sequences of 53 and 53, base sequences of SEQ ID NOs: 50 and 53 The set of oligonucleotides is applicable. When the detection genotype is GIII, the oligonucleotide having the nucleotide sequence of SEQ ID NO: 54 is the probe, and the primer nucleic acid pair is the oligonucleotide pair of SEQ ID NOS: 49 and 50, SEQ ID NO: 49 And oligonucleotide pairs having the nucleotide sequences of 54 and 54, and oligonucleotide pairs having the nucleotide sequences of SEQ ID NOS: 50 and 54 are applicable. When the detection genotype is GIV, the oligonucleotide having the nucleotide sequence of SEQ ID NO: 55 is the probe, and the primer nucleic acid pair is the oligonucleotide pair of SEQ ID NOS: 49 and 50, SEQ ID NO: 49 This includes a pair of oligonucleotides having a base sequence of 55, and a pair of oligonucleotides having the base sequences of SEQ ID NOS: 50 and 55.
[0048] 〔本検出用キット〕 [0048] [This detection kit]
本発明は、本検出方法を行うための、検出用キット (本検出用キット)を提供する発 明でもある。  The present invention is also an invention that provides a detection kit (this detection kit) for carrying out this detection method.
[0049] 本検出用キットには、 HEVの配列番号 1の塩基配列に相応する塩基配列の全体 又は一部を増幅するための、 1)増幅用プライマー [前記の例において、典型的には 、配列番号 49〜50の塩基配列のオリゴヌクレオチド、ただし、配列番号 51の共通プ ローブとして示されているオリゴヌクレオチド (遺伝子型を超えた検出を行う場合)や、 配列番号 52〜55の特異的プローブとして示されて 、るオリゴヌクレオチド (遺伝子型 毎の検出を行う場合)も、プライマーとして用い得ることは、前述した通りである]、又 は、 2)検出対象とする特定の HEVの核酸にハイブリダィズさせて、当該核酸を検出 するためのプローブ (遺伝子型を超えた検出をする場合は、配列番号 51の共通プロ ーブ、遺伝子型毎の検出をする場合には、配列番号 52〜55の特異的プローブ)が 、具体的な検出手法に応じて含まれる。  [0049] In this detection kit, 1) an amplification primer for amplifying the whole or a part of the nucleotide sequence corresponding to the nucleotide sequence of SEQ ID NO: 1 of HEV [in the above example, typically, Oligonucleotides having the nucleotide sequences of SEQ ID NOs: 49 to 50, provided that the oligonucleotides shown as common probes of SEQ ID NO: 51 (when performing detection exceeding genotypes) or specific probes of SEQ ID NOs: 52 to 55 As described above, the oligonucleotide (when detecting for each genotype) can also be used as a primer.] Or 2) Hybridize to the nucleic acid of a specific HEV to be detected. A probe for detecting the nucleic acid (a common probe of SEQ ID NO: 51 for detection exceeding genotype, or a specific sequence of SEQ ID NO: 52 to 55 for detection of each genotype) Professional B) is included depending on the specific detection method.
[0050] これにカ卩えて、例えば、検出に用いる具体的な物、例えば、核酸検出用の器具 (D NAチップ、複数のゥエルが設けられている基盤)、用いる検出手法において用いる 試薬、標識物質、酵素等と組み合わせて、さらには、反応容器、反応緩衝液等、必 要な試薬類を組み合わせて、キットを形成してもよい。しかしながら、本検出用キット は、以上のような組み合わせに限定されるものでなぐ必要に応じて種々のものと組 み合わせて提供され得るものである。  In addition to this, for example, specific objects used for detection, for example, a nucleic acid detection instrument (a DNA chip, a substrate provided with a plurality of wells), a reagent used in a detection method used, a label A kit may be formed by combining necessary reagents such as a reaction vessel and a reaction buffer in combination with substances, enzymes, and the like. However, the present detection kit is not limited to the above combinations, and can be provided in combination with various types as necessary.
[0051] 最も典型的と考えられる、本検出用キットは、以下のような最小限の構成をとるもの である。 [0051] This detection kit, which is considered to be the most typical, has the following minimum configuration: It is.
[0052] 1)配列番号 49に示す塩基配列と 90%以上の相同性を有する塩基配列の核酸と、 配列番号 50に示す塩基配列と 90%以上の相同性を有する塩基配列の核酸、からな る HEV遺伝子増幅用プライマーセット。  [0052] 1) A nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 49, and a nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 50. HEV gene amplification primer set.
[0053] 2)配列番号 51に示す塩基配列と 90%以上の相同性を有する塩基配列を有する プローブ核酸、及び Z又は、配列番号 52〜55に示す塩基配列と 90%以上の相同 性を有する塩基配列を有するプローブ核酸セット。 [0053] 2) Probe nucleic acid having a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 51, and Z or having 90% or more homology with the base sequence shown in SEQ ID NOs: 52 to 55 A probe nucleic acid set having a base sequence.
実施例  Example
[0054] 以下、本発明の実施例を記載するが、本発明の範囲は、この実施例により制限され るべきものではない。  [0054] Examples of the present invention will be described below, but the scope of the present invention should not be limited by these examples.
[0055] [HEV共通プローブを用いた検出法]  [0055] [Detection method using HEV common probe]
各遺伝子型のスタンダードを用いて、共通プローブを用いた検出法つ 、て検討し た。まず、配列番号 49の HEV共通センスプライマー、配列番号 50の HEV共通アン チセンスプライマーのセットおよび配列番号 51の HEV共通プローブを用いて、各遺 伝子型スタンダードに対する検出感度を求めた。具体的には、 TaqMan Universal Buf fer Kit (ABI, USA)を用い、反応液 (Buffer 25 μ 1, HECOM- Sプライマー 500nM、 HE COM- ASプライマー 500nM、 TP- HECOMプローブ 5〜20pmol、各スタンダード DNA 5〜5 X 107copy、全量 50 μ 1になるよう滅菌蒸留水で調整)を調製し、 ΑΒΙ7900(ΑΒΙ, USA)で、 PCR反応時 (PCRサイクルは、 50°C 2分間→ 95°C 10分間→ (95°C 15秒間 → 56°C 1分間) X 50サイクル)の蛍光強度を経時的に測定した。なお、スタンダード DNAは遺伝子型毎に別々に用意した。その結果、全ての遺伝子型スタンダード DN Aは 5copy/反応より検出が可能であり、また Ct値 (threshold cycle number)を参照する ことで、遺伝子型に関係なく全ての遺伝子型の HEVスタンダードが定量的に検出 可能であることが明ら力となった。 Using a standard for each genotype, a detection method using a common probe was examined. First, using the HEV common sense primer of SEQ ID NO: 49, the set of HEV common antisense primer of SEQ ID NO: 50, and the HEV common probe of SEQ ID NO: 51, the detection sensitivity for each gene type standard was determined. Specifically, using TaqMan Universal Buf fer Kit (ABI, USA), reaction solution (Buffer 25 μ1, HECOM-S primer 500nM, HE COM-AS primer 500nM, TP-HECOM probe 5-20pmol, each standard DNA Prepare 5-5 x 10 7 copies, adjusted with sterile distilled water to a total volume of 50 μl), and perform PCR reaction at ΑΒΙ7900 (ΑΒΙ, USA) (PCR cycle is 50 ° C for 2 minutes → 95 ° C) The fluorescence intensity of 10 minutes → (95 ° C. for 15 seconds → 56 ° C. for 1 minute) × 50 cycles) was measured over time. Standard DNA was prepared separately for each genotype. As a result, all genotype standards DNA can be detected from 5 copies / reaction, and by referring to the Ct value (threshold cycle number), HEV standards of all genotypes are quantitative regardless of genotype. It was apparent that it was detectable.
[0056] [HEV各遺伝子型特異的プローブを用いた検出法の検討]  [0056] [Examination of detection method using each HEV genotype specific probe]
各遺伝子型のスタンダードを用いて、各遺伝子型特異的プローブを用いた検出法 ついて検討した。まず、配列番号 49の HEV共通センスプライマー、配列番号 50の HEV共通アンチセンスプライマーのセット、および、配列番号 52〜55の HEV各遺 伝子型特異的プローブを個別に用いて、各遺伝子型スタンダードに対する検出感度 を求めた。具体的には、 TaqMan Universal Buffer Kit (ABI, USA)を用い、反応液 (Buf fer 25 μ 1, HECOM— Sプライマー 500nMゝ HECOM— ASプライマー 500nMゝ TP— HEG KTP-HEG2, TP- HEG3または TP- HEG4)プローブ 5〜20pmol、各スタンダード DNA 5〜5 X 107copy、全量 50 μ 1になるよう滅菌蒸留水で調整)を調製し、 ABI7900(ABI, U SA)で、 PCR反応時 (PCRサイクルは、 50°C 2分間→ 95°C 10分間→ (95°C 15秒間 → 56°C 1分間) X 50サイクル)の蛍光強度を経時的に測定した。なお、スタンダード DNAは遺伝子型毎に別々に用意した。その結果、遺伝子型特異的プローブに TP- HEG1を用いた場合は、遺伝子型 GIのスタンダードのみを、 TP- HEG2を用いた場合 は、遺伝子型 GIIのスタンダードのみを、 TP-HEG3を用いた場合は、遺伝子型 GIIIの スタンダードのみを、 TP-HEG4を用いた場合は、遺伝子型 GIVのスタンダードのみを 特異的に認識し (それぞれ他の遺伝子型スタンダードには交差反応しない)、それぞ れ遺伝子型特異的にスタンダード 5copy/反応より検出が可能であり、 Ct値 (threshol d cycle number)を参照することで、各遺伝子型の HEVスタンダードが定量的に検出 可能であることが明らかになった。 The detection method using each genotype-specific probe was examined using each genotype standard. First, the HEV common sense primer of SEQ ID NO: 49, the set of HEV common antisense primer of SEQ ID NO: 50, and each HEV of SEQ ID NO: 52 to 55 Detection sensitivity for each genotype standard was determined using a gene-type specific probe individually. Specifically, using TaqMan Universal Buffer Kit (ABI, USA), reaction solution (Buf fer 25 μ 1, HECOM—S primer 500nM ゝ HECOM— AS primer 500nM ゝ TP— HEG KTP-HEG2, TP-HEG3 or TP -HEG4) Probe 5 to 20 pmol, each standard DNA 5 to 5 X 10 7 copies, prepared with sterilized distilled water to a total volume of 50 μ1), and prepare ABI7900 (ABI, USA) during PCR reaction (PCR As for the cycle, the fluorescence intensity of 50 ° C. for 2 minutes → 95 ° C. for 10 minutes → (95 ° C. for 15 seconds → 56 ° C. for 1 minute) × 50 cycles) was measured over time. Standard DNA was prepared separately for each genotype. As a result, when TP-HEG1 was used as the genotype-specific probe, only the genotype GI standard was used. When TP-HEG2 was used, only the genotype GII standard was used, and TP-HEG3 was used. Recognizes only the genotype GIII standard, and when TP-HEG4 is used, it specifically recognizes only the genotype GIV standard (each does not cross-react with other genotype standards). It was clarified that detection was possible using standard 5 copies / reaction specifically, and that the HEV standard of each genotype could be detected quantitatively by referring to the Ct value (threshol d cycle number).
[0057] すなわち、プローブとして、配列番号 51の HEV共通プローブを用いた場合は、遺 伝子型に関係なく全ての HEVの高感度定量的検出が可能になる。また、プローブと して、配列番号 52の特異的プローブ TP-HEG1を用いた場合は GI HEVのみ、プロ ーブとして、配列番号 53の特異的プローブ TP-HEG2を用いた場合は Gil HEVのみ 、プローブとして、配列番号 54の特異的プローブ TP-HEG3を用いた場合は GIII HE Vのみ、プローブとして、配列番号 55の特異的プローブ TP-HEG4を用いた場合は GI V HEVのみを定量的に検出することができることが、上記の実施例により実証された 。この場合、用いたプローブが認識する遺伝子型以外には全く反応しないので、それ ぞれ遺伝子型特異的に高感度定量的検出が可能となる。なお、全ての反応で用い たプライマーセット (HECOM- S、 HECOM- AS)は共通である。  That is, when the HEV common probe of SEQ ID NO: 51 is used as the probe, all HEVs can be detected with high sensitivity and quantitative regardless of the gene type. In addition, when using the specific probe TP-HEG1 of SEQ ID NO: 52 as the probe, only GI HEV is used as the probe, and only Gil HEV is used as the probe when using the specific probe TP-HEG2 of SEQ ID NO: 53, When the specific probe TP-HEG3 with SEQ ID NO: 54 is used as the probe, only GIII HE V is quantitatively detected, and when the specific probe TP-HEG4 with SEQ ID NO: 55 is used as the probe, only GI V HEV is quantitatively detected. This can be demonstrated by the above examples. In this case, there is no reaction at all except the genotype recognized by the probe used, so that highly sensitive quantitative detection can be performed specifically for each genotype. The primer sets (HECOM-S, HECOM-AS) used in all reactions are the same.
[0058] [二ホンザル HEV感染モデルより得られた糞便及び血清検体を用いた検討]  [0058] [Studies using stool and serum samples obtained from a model of HEV infection in the Japanese macaque]
1998年にインドで E型肝炎に罹患した患者の糞便より、感染性 HEVを調製し、ニホ ンザルにそれを静脈注射した。 HEVに感染 10日後の糞便、 HEV感染前の血清およ び HEV感染 10日以降 60日までのシリーズ血清 (最初の感染後 10〜30日間は約 5日 ごとに合計 6ポイント、残りの 31〜60日間は約 8日ごとに計 4ポイント)を採取し、本方法 を用いた HEVの検出を行った。まず、糞便検体は 10%(w/v)になるように 10mM Phos phate buffered saline (PBS)にて調製した。糞便検体、血清検体からの RNAの抽出は QIA Viral RNA Kit (QIAGEN, USA)により行った。次に各 RNA試料について逆転 写反応を行った。逆転写反応は各 RNA試料 (8 1)と、逆転写反応液 12 1 (10mM d NTP溶液 1 μ 1、 75pmolの random hexamer、 3 Ounitsの RNAsin(Promega, USA), 200 unitsの Superscript II RNAseH (―) Reverse— transcriptase (Invitrogen, USA)、 lOOmM DTT 1 μ 1および 5倍逆転写バッファー (250mM Tris- Hcl(pH8.3)、 375mM KC1、 15mM MgC12)で全量が 12 /z lとなるように、滅菌蒸留水で希釈)を混合し、 42°C 1時間以上 反応させた後、酵素失活を 99°C 5分間行うことにより、各 RNA試料に対する cDNA(R T Products)を調製した。 PCR反応は TaqMan Universal Buffer Kit (ABI, USA)を用い 、反応液 (Buffer 25 μ 1, HECOM- Sプライマー 500nMゝ HECOM- ASプライマー 500η M、 TP- HECOMプローブ 5〜20pmol、全量 45 μ 1になるよう滅菌蒸留水で調整)に 5 μ 1の RT Productsを混合し、先述した条件にて PCR反応時の蛍光強度を経時的に測定 した。その結果、糞便および感染後 10〜30日間の 6ポイントで、 HEVが検出され、 H EV感染前の血清および感染後 31日以降の血清からは検出されな力つた。この結果 は他の領域での nested- PCRの結果(Li, T. C, Y. Suzaki, Y. Ami, T. N. Dhole, T. Miyamura, and N. Takeda. 2004. Protection of cynomolgus monkeys against HEV inf ection by oral administration of recombinant hepatitis E virus-like particles. Vaccine ,vol.22:370-7)と同様で、 HEVウィルス血症期間中の血清から、あるいは糞便から、 非常に高感度かつ特異的な HEV検出が可能であることが明らかとなった。なお、各 遺伝子型特異的プローブを用いた場合、反応液 (Buffer 25 1, HECOM-Sプライマ 一 500nMゝ HECOM- ASプライマー 500nMゝ (TP- HEG1,TP- HEG2, TP- HEG3また は TP- HEG4)プローブ 5〜20pmol、 RT Products 2 μ 1全量 50 μ 1になるよう滅菌蒸留 水で調整)を調製し、先述した条件にて PCR反応時の蛍光強度を経時的に測定した 結果、各検体は全て TP-HEG1プローブを用いた時にし力反応しなかった。すなわち 、これらの HEVの遺伝子型は全て GIと判定された。 [0059] [完全長 GIおよび GIV HEVゲノム配列を有するプラスミドを用いた検討] 前述した、各遺伝子型スタンダードより長い配列を用いて、配列が長くても本検出 系で正しく HEVを検出できるのか否か、また、遺伝子型特異的に検出できるか否か の検討を行った。完全長 GIおよび GIV HEVゲノム配列を有するプラスミドを用いて 本検出方法を検討した結果、どちらも共通プローブ TP-HECOMを用いた場合は定 量的に 5copy/反応力も検出可能であった。また遺伝子型特異的検出では、 GIプラス ミドには、 HEV遺伝子型 I特異的プローブである TP- HEG1に、 GIVプラスミドには H EV遺伝子型 IV特異的プローブである TP-HEG4を用いた場合しか反応せず、この 場合もそれぞれの遺伝子型特異的、かつ、 5copy/反応より定量的に検出可能であつ た。 In 1998, infectious HEV was prepared from the stool of a patient suffering from hepatitis E in India and injected into a Japanese macaque. Fecal stool 10 days after infection, serum before HEV infection and Serum serum from 10 days to 60 days after HEV infection (total of 6 points every 5 days for the first 10-30 days after the first infection and 4 points every 8 days for the remaining 31-60 days) The HEV was detected using this method. First, the stool specimen was prepared with 10 mM Phos phate buffered saline (PBS) so as to be 10% (w / v). RNA extraction from stool samples and serum samples was performed using the QIA Viral RNA Kit (QIAGEN, USA). Next, reverse transcription reaction was performed for each RNA sample. Reverse transcription reaction was performed with each RNA sample (81), reverse transcription reaction solution 12 1 (1 μl of 10 mM dNTP solution, 75 pmol random hexamer, 3 Ounits RNAsin (Promega, USA), 200 units Superscript II RNAseH ( ―) Reverse- transcriptase (Invitrogen, USA), lOOmM DTT 1 μ 1 and 5x reverse transcription buffer (250 mM Tris-Hcl (pH 8.3), 375 mM KC1, 15 mM MgC12) After dilution with sterile distilled water and reaction at 42 ° C for 1 hour or longer, the enzyme was inactivated at 99 ° C for 5 minutes to prepare cDNA (RT Products) for each RNA sample. For PCR reaction, TaqMan Universal Buffer Kit (ABI, USA) is used, and the reaction solution (Buffer 25 μ1, HECOM-S primer 500nM ゝ HECOM-AS primer 500ηM, TP-HECOM probe 5-20pmol, total volume 45μ1) (Adjusted with sterilized distilled water) and 5 μl of RT Products were mixed, and the fluorescence intensity during the PCR reaction was measured over time under the conditions described above. As a result, HEV was detected at 6 points from feces and 10-30 days after infection, and it was strong not detected from serum before HEV infection and serum after 31 days after infection. This result is the result of nested PCR in other regions (Li, T. C, Y. Suzaki, Y. Ami, TN Dhole, T. Miyamura, and N. Takeda. 2004. Protection of cynomolgus monkeys against HEV inf ection by oral administration of recombinant hepatitis E virus-like particles.Vaccine, vol.22: 370-7), very sensitive and specific HEV detection from serum or feces from HEV viremia It became clear that this is possible. When each genotype-specific probe was used, the reaction mixture (Buffer 25 1, HECOM-S primer 500 nM ゝ HECOM-AS primer 500 nM ゝ (TP- HEG1, TP- HEG2, TP- HEG3 or TP- HEG4 ) Probe 5 to 20 pmol, RT Products 2 μ1 adjusted with sterile distilled water to a total volume of 50 μ1, and measured the fluorescence intensity during the PCR reaction over time under the conditions described above. All did not react forcefully with the TP-HEG1 probe. That is, all of these HEV genotypes were determined to be GI. [0059] [Examination using plasmids with full-length GI and GIV HEV genomic sequences] Whether or not HEV can be detected correctly with this detection system, even if the sequence is longer, using sequences that are longer than each genotype standard. We also examined whether genotype-specific detection was possible. As a result of investigating this detection method using plasmids with full-length GI and GIV HEV genomic sequences, both copies were able to detect 5 copies / reaction force quantitatively using the common probe TP-HECOM. For genotype-specific detection, the GI plasmid uses only TP-HEG1, a HEV genotype I-specific probe, and the GEV plasmid uses TP-HEG4, a HEV genotype IV-specific probe. There was no reaction, and in this case too, each genotype was specific and could be detected quantitatively by 5 copies / reaction.
産業上の利用可能性  Industrial applicability
[0060] 本発明により、包括的あるいは選択的な HEV高感度検出系の確立が可能である。 [0060] According to the present invention, a comprehensive or selective HEV high-sensitivity detection system can be established.
本発明の HEV検出法は、輸血用血液、血液製剤、食品、環境検査等にも使用可能 であり、また、ゲノタイプ特異的検出系は感染ルートの解明、疫学研究などに用いる ことができる。  The HEV detection method of the present invention can be used for blood for blood transfusion, blood products, foods, environmental tests, etc., and the genotype-specific detection system can be used for elucidation of infection routes, epidemiological studies, and the like.

Claims

請求の範囲 The scope of the claims
[1] 検出対象物に対して、配列番号 1に示す塩基配列に相応する塩基配列から選ばれ る 10塩基以上連続する塩基配列の核酸の検出を行い、当該核酸が検出された場合 に、前記検出対象物が E型肝炎ウィルス陽性であるとする、ウィルスの検出方法。  [1] When a nucleic acid having a base sequence of 10 bases or more selected from the base sequence corresponding to the base sequence shown in SEQ ID NO: 1 is detected and the nucleic acid is detected, A method for detecting a virus, wherein the detection object is positive for hepatitis E virus.
[2] 配列番号 1に示す塩基配列に相応する塩基配列から選ばれる 10塩基以上連続する 塩基配列の核酸の検出が、当該核酸と検出対象物中の核酸とのハイブリダィズを検 出することにより行われる、請求項 1記載のウィルスの検出方法。  [2] Nucleic acid having a base sequence of 10 bases or more selected from the base sequence corresponding to the base sequence shown in SEQ ID NO: 1 is detected by detecting a hybrid between the nucleic acid and the nucleic acid in the detection target. The method for detecting a virus according to claim 1.
[3] 検出対象物中の核酸を、配列番号 1に示す塩基配列に相応する塩基配列から選ば れる 10塩基以上連続する塩基配列の核酸の増幅処理を行って得られる核酸として 用いる、請求項 1記載のウィルスの検出方法。  [3] The nucleic acid in the detection target is used as a nucleic acid obtained by amplifying a nucleic acid having a base sequence of 10 or more consecutive bases selected from the base sequence corresponding to the base sequence shown in SEQ ID NO: 1. The detection method of the virus as described.
[4] 配列番号 1に示す塩基配列に相応する塩基配列から選ばれる 10塩基以上連続する 塩基配列の核酸の検出が、当該核酸と検出対象物中の核酸とのハイブリダィズを検 出することにより行われ、かつ、当該核酸が増幅処理を行って得られる核酸である、 請求項 1記載のウィルスの検出方法。  [4] Nucleic acid having a base sequence of 10 bases or more selected from the base sequence corresponding to the base sequence shown in SEQ ID NO: 1 is detected by detecting a hybrid between the nucleic acid and the nucleic acid in the detection target. The virus detection method according to claim 1, wherein the nucleic acid is a nucleic acid obtained by performing an amplification treatment.
[5] 前記増幅処理を行って得られる核酸が、配列番号 49に示す塩基配列と 90%以上の 相同性を有する塩基配列から選ばれる 10塩基以上連続する塩基配列の核酸と、配 列番号 50に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10 塩基以上連続する塩基配列の核酸と、配列番号 51に示す塩基配列と 90%以上の 相同性を有する塩基配列から選ばれる 10塩基以上連続する塩基配列の核酸からな る群力 選ばれる 2種を増幅用プライマーの組として用いる核酸の増幅処理により得 られる核酸である、請求項 3又は 4記載のウィルスの検出方法。  [5] The nucleic acid obtained by performing the amplification treatment is a nucleic acid having a base sequence of 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 49, and SEQ ID NO: 50 Selected from a nucleic acid having a base sequence of 10 bases or more continuous selected from a base sequence having 90% or more homology with the base sequence shown in FIG. 1, and a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 51 The virus detection method according to claim 3 or 4, which is a nucleic acid obtained by a nucleic acid amplification treatment using two selected groups as a set of amplification primers, consisting of nucleic acids having a base sequence of 10 bases or more.
[6] 前記増幅処理を行って得られる核酸が、配列番号 49に示す塩基配列と 90%以上の 相同性を有する塩基配列の核酸と、配列番号 50に示す塩基配列と 90%以上の相 同性を有する塩基配列の核酸と、配列番号 51に示す塩基配列と 90%以上の相同 性を有する核酸力 なる群力 選ばれる 2種を増幅用プライマーの組として用いる、 核酸の増幅処理により得られる核酸である、請求項 5記載のウィルスの検出方法。  [6] The nucleic acid obtained by performing the amplification treatment is a nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 49, and 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 50 A nucleic acid obtained by a nucleic acid amplification process using two selected nucleic acid groups as a set of amplification primers, and a nucleic acid having 90% or more homology with the nucleic acid having the nucleotide sequence of SEQ ID NO: 51 The virus detection method according to claim 5, wherein
[7] 配列番号 51に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列を有する核酸をプローブとして用いて、当該プローブと 検出対象物中の核酸 (その増幅産物を含む)とのハイブリダィズを検出することにより[7] Using a nucleic acid having a base sequence of 10 or more bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 51 as a probe, By detecting hybrids with nucleic acids (including their amplification products) in the detection target
、 E型肝炎ウィルスを検出する、請求項 1〜6のいずれかに記載のウィルスの検出方 法。 The method for detecting a virus according to any one of claims 1 to 6, wherein hepatitis E virus is detected.
[8] 配列番号 52に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列を有する核酸をプローブとして用いて、当該プローブと 検出対象物中の核酸 (その増幅産物を含む)とのハイブリダィズを検出することにより 、 E型肝炎ウィルス(GI株)を検出する、請求項 1〜6のいずれかに記載のウィルスの 検出方法。  [8] Using a nucleic acid having a base sequence of 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 52 as a probe, the probe and the nucleic acid in the detection target The method for detecting a virus according to any one of claims 1 to 6, wherein hepatitis E virus (GI strain) is detected by detecting a hybrid (including the amplification product).
[9] 前記ウィルスの検出方法において、検出対象となる核酸が、配列番号 49に示す塩 基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続する 塩基配列の核酸と、配列番号 50に示す塩基配列と 90%以上の相同性を有する塩 基配列から選ばれる 10塩基以上連続する塩基配列の核酸と、配列番号 52に示す 塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続す る塩基配列の核酸力 なる群力 選ばれる 2種を増幅用プライマーの組として用いる 核酸の増幅処理により得られる核酸である、請求項 8記載のウィルスの検出方法。  [9] In the virus detection method, a nucleic acid to be detected is a nucleic acid having a base sequence continuous for 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 49; A nucleic acid having a base sequence of 10 or more consecutive bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 50, and a base having 90% or more homology with the base sequence shown in SEQ ID NO: 52 The method for detecting a virus according to claim 8, which is a nucleic acid obtained by a nucleic acid amplification treatment using two selected groups as a set of amplification primers. .
[10] 配列番号 53に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列を有する核酸をプローブとして用いて、当該プローブと 検出対象物中の核酸とのノ、イブリダィズを検出することにより、 E型肝炎ウィルス (GII 株)を検出する、請求項 1〜6のいずれかに記載のウィルスの検出方法。  [10] A nucleic acid having a base sequence of 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 53 as a probe, and the nucleic acid in the probe and the detection target The method for detecting a virus according to any one of claims 1 to 6, wherein hepatitis E virus (GII strain) is detected by detecting ibrids and ibridis.
[11] 前記ウィルスの検出方法において、検出対象となる核酸が、配列番号 49に示す塩 基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続する 塩基配列の核酸と、配列番号 50に示す塩基配列と 90%以上の相同性を有する塩 基配列から選ばれる 10塩基以上連続する塩基配列の核酸と、配列番号 53に示す 塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続す る塩基配列の核酸力 なる群力 選ばれる 2種を増幅用プライマーの組として用いる 核酸の増幅処理により得られる核酸である、請求項 10記載のウィルスの検出方法。  [11] In the virus detection method, the nucleic acid to be detected is a nucleic acid having a base sequence continuous for 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 49; A nucleic acid having a base sequence of 10 or more consecutive bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 50, and a base having 90% or more homology with the base sequence shown in SEQ ID NO: 53 The method for detecting a virus according to claim 10, which is a nucleic acid obtained by a nucleic acid amplification treatment using two selected groups as a set of primers for amplification. .
[12] 配列番号 54に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列を有する核酸をプローブとして用いて、当該プローブと 検出対象物中の核酸とのノ、イブリダィズを検出することにより、 E型肝炎ウィルス (GIII 株)を検出する、請求項 1〜6のいずれかに記載のウィルスの検出方法。 [12] Using a nucleic acid having a base sequence of 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 54 as a probe, The method for detecting a virus according to any one of claims 1 to 6, wherein hepatitis E virus (GIII strain) is detected by detecting hybridization with a nucleic acid in a detection target.
[13] 前記ウィルスの検出方法において、検出対象となる核酸が、配列番号 49に示す塩 基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続する 塩基配列の核酸と、配列番号 50に示す塩基配列と 90%以上の相同性を有する塩 基配列から選ばれる 10塩基以上連続する塩基配列の核酸と、配列番号 54に示す 塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続す る塩基配列の核酸力 なる群力 選ばれる 2種を増幅用プライマーの組として用いる 核酸の増幅処理により得られる核酸である、請求項 12記載のウィルスの検出方法。  [13] In the virus detection method, the nucleic acid to be detected is a nucleic acid having a base sequence continuous for 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 49; A nucleic acid having a base sequence of at least 10 bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 50, and a base having 90% or more homology with the base sequence shown in SEQ ID NO: 54 The method for detecting a virus according to claim 12, which is a nucleic acid obtained by a nucleic acid amplification treatment using two selected groups as a pair of amplification primers. .
[14] 配列番号 55に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列を有する核酸をプローブとして用いて、当該プローブと 検出対象物中の核酸とのノ、イブリダィズを検出することにより、 E型肝炎ウィルス (GI V株)を検出する、請求項 1〜6のいずれかに記載のウィルスの検出方法。  [14] Using a nucleic acid having a base sequence of 10 or more bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 55 as a probe, the probe and the nucleic acid in the detection target The method for detecting a virus according to any one of claims 1 to 6, wherein hepatitis E virus (GI V strain) is detected by detecting the above and ibridiz.
[15] 前記ウィルスの検出方法において、検出対象となる核酸が、配列番号 49に示す塩 基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続する 塩基配列の核酸と、配列番号 50に示す塩基配列と 90%以上の相同性を有する塩 基配列から選ばれる 10塩基以上連続する塩基配列の核酸と、配列番号 55に示す 塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 10塩基以上連続す る塩基配列の核酸力 なる群力 選ばれる 2種を増幅用プライマーの組として用いる 核酸の増幅処理により得られる核酸である、請求項 14記載のウィルスの検出方法。  [15] In the virus detection method, a nucleic acid to be detected is a nucleic acid having a base sequence continuous for 10 bases or more selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 49; A nucleic acid having a base sequence of 10 or more bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 50, and a base having 90% or more homology with the base sequence shown in SEQ ID NO: 55 The method for detecting a virus according to claim 14, which is a nucleic acid obtained by a nucleic acid amplification treatment using two kinds selected as a set of primers for amplification, wherein the group power selected is a nucleic acid power of a base sequence continuous for 10 bases or more selected from the sequence .
[16] 配列番号 49に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列の核酸と、配列番号 50に示す塩基配列と 90%以上の 相同性を有する塩基配列から選ばれる 10塩基以上連続する塩基配列の核酸、から なる E型肝炎ウィルス遺伝子増幅用プライマーセット。  [16] A nucleic acid having a base sequence of 10 or more bases selected from a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 49, and 90% or more homology with the base sequence shown in SEQ ID NO: 50 A hepatitis E virus gene amplification primer set comprising a nucleic acid having a base sequence of 10 bases or more selected from a base sequence having
[17] 配列番号 49に示す塩基配列と 90%以上の相同性を有する塩基配列の核酸と、配 列番号 50に示す塩基配列と 90%以上の相同性を有する塩基配列の核酸、からなる E型肝炎ウィルス遺伝子増幅用プライマーセット。  [17] A nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 49, and a nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 50 Primer set for hepatitis B virus gene amplification.
[18] 配列番号 51に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1 0塩基以上連続する塩基配列を有する核酸。 [18] selected from nucleotide sequences having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 51 1 A nucleic acid having a base sequence of 0 bases or more.
[19] 配列番号 52に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1[19] selected from nucleotide sequences having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 52 1
0塩基以上連続する塩基配列を有する核酸。 A nucleic acid having a base sequence of 0 bases or more.
[20] 配列番号 53に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1[20] selected from nucleotide sequences having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 53 1
0塩基以上連続する塩基配列を有する核酸。 A nucleic acid having a base sequence of 0 bases or more.
[21] 配列番号 54に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1[21] selected from nucleotide sequences having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 54 1
0塩基以上連続する塩基配列を有する核酸。 A nucleic acid having a base sequence of 0 bases or more.
[22] 配列番号 55に示す塩基配列と 90%以上の相同性を有する塩基配列から選ばれる 1[22] selected from nucleotide sequences having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 55 1
0塩基以上連続する塩基配列を有する核酸。 A nucleic acid having a base sequence of 0 bases or more.
[23] 下記の要素を含有する E型肝炎ウィルス検出用キット。 [23] A kit for detecting hepatitis E virus comprising the following elements:
1)配列番号 49に示す塩基配列と 90%以上の相同性を有する塩基配列の核酸と、 配列番号 50に示す塩基配列と 90%以上の相同性を有する塩基配列の核酸、からな る E型肝炎ウィルス遺伝子増幅用プライマーセット。  1) An E-type consisting of a nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 49, and a nucleic acid having a nucleotide sequence having 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 50 Primer set for hepatitis virus gene amplification.
2)配列番号 51に示す塩基配列と 90%以上の相同性を有する塩基配列を有する プローブ核酸、及び Z又は、配列番号 52〜55に示す塩基配列と 90%以上の相同 性を有する塩基配列を有するプローブ核酸セット。  2) a probe nucleic acid having a base sequence having 90% or more homology with the base sequence shown in SEQ ID NO: 51, and Z or a base sequence having 90% or more homology with the base sequence shown in SEQ ID NOs: 52 to 55 A probe nucleic acid set.
PCT/JP2005/013513 2004-07-23 2005-07-22 Method of detecting hepatitis e virus WO2006009260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006524555A JPWO2006009260A1 (en) 2004-07-23 2005-07-22 Method for detecting hepatitis E virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004215840 2004-07-23
JP2004-215840 2004-07-23

Publications (1)

Publication Number Publication Date
WO2006009260A1 true WO2006009260A1 (en) 2006-01-26

Family

ID=35785367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013513 WO2006009260A1 (en) 2004-07-23 2005-07-22 Method of detecting hepatitis e virus

Country Status (2)

Country Link
JP (1) JPWO2006009260A1 (en)
WO (1) WO2006009260A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517810A (en) * 2012-04-18 2015-06-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft HEV assay
US10047406B2 (en) 2013-08-14 2018-08-14 Gen-Probe Incorporated Compositions and methods for detecting HEV nucleic acid
WO2023234486A1 (en) * 2022-06-03 2023-12-07 주식회사 세니젠 Real-time pcr kit capable of detecting hepatitis e virus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520384A (en) * 1997-10-15 2001-10-30 アボット・ラボラトリーズ Methods and compositions for detecting hepatitis E virus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520384A (en) * 1997-10-15 2001-10-30 アボット・ラボラトリーズ Methods and compositions for detecting hepatitis E virus

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 10 December 2005 (2005-12-10), "Hepatitis E virus strain US-1 nonstructural polyprotein gene, partial cds; capsid protein gene, complete cds; and unknown gene.", XP002992793, accession no. NCBI Database accession no. (AF035437) *
DATABASE GENBANK [online] 12 October 2005 (2005-10-12), "Hepatitis E structural and nonstructral protein mRNA, complete cds", XP002992097, accession no. NCBI Database accession no. (M73218) *
DATABASE GENBANK [online] 12 October 2005 (2005-10-12), "Hepatitis E virus (mexican strain) structural proteins and a nonstrutural polyprotein genes, complete cds.", XP002992098, accession no. NCBI Database accession no. (M74506) *
DATABASE GENBANK [online] 12 October 2005 (2005-10-12), "Hepatitis E virus genomic RNA, nearly complete genome, isolate:JAK-Sai.", XP002992792, accession no. NCBI Database accession no. (AB074915) *
MARDASSI H. ET AL.: "Detection of Porcine Reproductive and Respiratory Syndrome Virus and Efficient differentiation between Canadian and European Strains by Reverse Transcription and PCR Amplification.", J. CLINICAL ICROBIOLOGY, vol. 32, no. 9, 1994, pages 2197 - 2203, XP000654508 *
SCHLAUDER G. ET AL.: "The sequence and phylogenetic analysis of a novel hepatitis E virus isolated from a patient with acute hepatitis reported in the United States.", J.GENERAL VIROLOGY, vol. 79, 1998, pages 447 - 456, XP000943163 *
TAKAHASHI K. ET AL.: "Genetic Heterogeneigty of Hepatitis E Virus Recovered from Japanese Patients with Acute Sporadic Hepatitis.", J.INFECTIOUS DISEASES, vol. 185, 2002, pages 1342 - 1345, XP002957113 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517810A (en) * 2012-04-18 2015-06-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft HEV assay
US9702017B2 (en) 2012-04-18 2017-07-11 Roche Molecular Systems, Inc. HEV assay
US10689718B2 (en) 2012-04-18 2020-06-23 Roche Molecular Systems, Inc. HEV Assay
US10047406B2 (en) 2013-08-14 2018-08-14 Gen-Probe Incorporated Compositions and methods for detecting HEV nucleic acid
EP4299767A3 (en) * 2013-08-14 2024-03-27 Gen-Probe Incorporated Compositions and methods for detecting hev nucleic acid
WO2023234486A1 (en) * 2022-06-03 2023-12-07 주식회사 세니젠 Real-time pcr kit capable of detecting hepatitis e virus

Also Published As

Publication number Publication date
JPWO2006009260A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US7563577B2 (en) Materials and methods for detection of enterovirus and norovirus
CZ20033516A3 (en) Diagnostic assays for parvovirus B19
Van Doornum et al. Development and implementation of real‐time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens
Tavakoli et al. Detection and typing of enteroviruses from CSF specimens from patients diagnosed with meningitis/encephalitis
WO2012153153A1 (en) Procedure for rapid determination of viruses using nucleic acid-based molecular diagnostics, and a kit for this purpose
US8715935B2 (en) Standardized method and kit for the quantification of hepatitis A virus
TW201245452A (en) Nucleic acid detection
CA2536335A1 (en) Multi-allelic molecular detection of sars-associated coronavirus
EP1859062A2 (en) Detection of very virulent infectious bursal disease virus
WO2006009260A1 (en) Method of detecting hepatitis e virus
CA2424333C (en) Method of detecting norwalk-like virus (gii)
EP1329522B2 (en) Method of detecting norwalk-like virus (gi)
CN114480726B (en) Primer probe set, kit and detection method for detecting African swine fever virus nucleic acid
WO2024136540A1 (en) Composition for detecting spring viraemia of carp, and detection method therefor
CN107513585A (en) A kind of primer and probe of goose polyomavirus real-time fluorescence quantitative PCR detection
CN117987598B (en) Primer pair, kit and method for detecting hepatitis E virus
WO2023121335A1 (en) Composition for detecting epizootic ulcerative syndrome and method for detecting epizootic ulcerative syndrome
KR20100080450A (en) Method for detection of hcv at the real time pcr with intercalating dye
EP1740727A1 (en) System and method for detecting west nile virus
Dolgova et al. Qualitative real-time RT-PCR assay for nOPV2 poliovirus detection
KR20230022540A (en) Method for detection and quantification of hepatitis a virus
Medici et al. Evaluation of the TRCRtest NV-W for norovirus detection in stools by the Transcription-Reverse Transcription Concerted method
Zhao et al. Two reverse-transcription-loop-mediated isothermal amplification systems for highly sensitive detection of Enterovirus 71 and Coxsackievirus A16
CN114807432A (en) Kit and method for rapidly detecting novel coronavirus and Delta mutant strain thereof
WO2006025791A1 (en) Sars detection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006524555

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase