WO2006064469A1 - Individual interleaving of data streams for mimo transmission - Google Patents
Individual interleaving of data streams for mimo transmission Download PDFInfo
- Publication number
- WO2006064469A1 WO2006064469A1 PCT/IB2005/054217 IB2005054217W WO2006064469A1 WO 2006064469 A1 WO2006064469 A1 WO 2006064469A1 IB 2005054217 W IB2005054217 W IB 2005054217W WO 2006064469 A1 WO2006064469 A1 WO 2006064469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- data streams
- bits
- interleaving
- symbols
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
- H04L1/0637—Properties of the code
- H04L1/0643—Properties of the code block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
- H04L1/0637—Properties of the code
- H04L1/0668—Orthogonal systems, e.g. using Alamouti codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2603—Signal structure ensuring backward compatibility with legacy system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0667—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
- H04B7/0669—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
Definitions
- the present invention relates to wireless digital communications.
- FIG. 1 A block diagram of a typical 802.11 a/g transmitter is shown in Fig. 1.
- a transmitter is a Single-Input- Single-Output (SISO) system.
- Bits to be transmitted are applied to a forward error correction (FEC) encoder 101, followed by a interleaver 103.
- Output bits of the interleaver 103 are grouped and mapped within the signal plane by a symbol mapper 105 (e.g., a QAM mapper) to form symbols.
- An IFFT operation 107 then follows in which symbols are mapped to a series of subcarrier frequencies (i.e., frequency bins) and transformed to obtain a series of time samples.
- a cyclic extension operation 107 (equivalent to adding guard symbols) is performed to obtain a resulting OFDM symbol.
- Pulse shaping 109 and IQ modulation 111 are then performed to obtain an RF output signal 113.
- a typical 802.1 la/g system has a block interleaver (e.g., block interleaver 103) that may be described in terms of a first permutation followed by a second permutation using the following parameters:
- N CBPS is the size of the interleaver, i.e., the number of coded bits per symbol k is the index of the input bits i is the index after the first permutation j is the index after the second permutation
- the first and second permutations are as follows:
- N CBPS is the number of bits per symbol in the OFDM subcarrier. For different columns, the bit significance index is changed so that the adjacent bits are not always mapped to the same index in any symbol.
- MIMO Multiple-Input-Multiple-Output
- STBC Sequence Coding
- space multiple antennas
- time multiple symbol periods
- 802.1 In (MIMO) systems be backwardly compatible with at least 802.1 la/g (SISO) systems.
- SISO 802.1 la/g
- the present invention generally speaking, provides interleavers and methods of interleaving that satisfy the need for backward compatibility while effectively addressing competing design objectives.
- data is transmitted using a number of transmit antennas greater than an expected number of receive antennas. At least one pair of transmit antennas is formed, and multiple second data streams are formed from a first data stream, successive bits in said first data stream being assigned to different ones of said second data streams. Block interleaving of multiple respective ones of said second data streams is individually peformed. During successive transmission intervals, the pair of transmit antennas is used to transmit a pair of data symbols taken from different ones of said second data streams, followed by an equivalent transformed pair of data symbols.
- data is transmitted using either a single antenna or multiple antennas.
- block interleaving of data is performed using a first interleaving method prior to transmission; when transmitting data using multiple antennas, multiple second data streams are formed from a first data stream, successive bits in said first data stream being assigned to different ones of said second data streams.
- Block interleaving of multiple ones of said second data streams is performed using an interleaving method substantially the same as said first interleaving method. [OPERATION C].
- data is transmitted using a number of transmit antennas greater than an expected number of receive antennas.
- a group of transmit antennas is formed, and multiple second data streams are formed from a first data stream, including a second data stream for each of the antennas, successive bits in said first data stream being assigned to different ones of the second data streams.
- Block interleaving of multiple respective ones of said second data streams is individually performed.
- respective nonzero symbols are output in turn for transmission from different ones of said antennas such that during a given transmission interval a non-zero symbol is assigned to just one antenna of the group of antennas and zero symbols are assigned to other antennas of the group of antennas.
- Fig. 1 is a block diagram of a known SISO communication transmitter.
- Fig. 2 is a more detailed block diagram of the interleaver of Fig. 1.
- Fig. 3 is a block diagram of a portion of a MIMO communication transmitter.
- Fig. 4 is a block diagram of a portion of a communication transmitter using tone- interleaved signals for two antennas.
- Fig. 5 is a block diagram of a portion of a communication transmitter using tone- interleaved signals for two antennas in accordance with one aspect of the present invention.
- Fig. 6 is a block diagram of a portion of a communication transmitter using tone- interleaved signals for two antennas in accordance with another aspect of the present invention.
- Fig. 7 is a block diagram of a portion of a communication transmitter using Alamouti coding.
- Fig. 8 is a block diagram of a portion of communication transmitter using OFDM and Alamouti coding.
- Fig. 9 is a block diagram of a portion of a communication transmitter using
- Fig. 10 is a block diagram of a portion of a communication transmitter using OFDM and Alamouti coding in accordance with one aspect of the invention.
- the case of two transmit antennas is shown as being exemplary of the more general case of N transmit antennas.
- the principles of the present invention may readily be extended from two antennas to more than two antennas as will be appreciated by those of ordinary skill in the art.
- For 802.1 In multiple spatial streams are required. Since for an 802.1 In system to be backward compatible with an 802.1 la/g system, the 802.1 la/g interleaver has to be present.
- the present approach is to create new interleavers based on the 802.1 la/g interleaver. That is, the input bits are parsed to two streams, and on each stream an 802.11 a/g interleaver is used.
- a block diagram is shown of a MIMO communication transmitter.
- a single information stream is applied to a bit parser 301.
- the bit parser produces a single information stream or two separate information streams.
- SISO mode the bit parser steers the incoming information stream to an upper branch 311 of an interleaver 310.
- the upper branch of the interleaver may have the same construction as the interleaver of Fig. 2. That is, a block interleaver operation 313 is followed by a significance index shuffler 315.
- MIMO mode the bit parser outputs alternate bits of the incoming information stream to alternate ones of the upper branch 311 of the interleaver and a lower branch 312 of the interleaver, producing two separate information streams.
- the lower branch of the interleaver preferably includes corresponding blocks 314 and 316 as the upper branch of the interleaver.
- the lower branch of the interleaver includes a block 316c (Operation C) and may optionally include a block 316b (Operation B) or a block 316a (Operation A). It is desirable to separate adjacent bits, now in different spatial streams, as apart as possible in the frequency domain.
- One simple way of doing it is to cyclically rotate the output of block 316 in the multiples of N CBPS (Operation C). Operation C may be imagined in terms of buffering the interleaved block in a linear buffer and performing cyclic rotation by a multiple of N CBPS.
- bit significance index As between the two streams. There are many ways to do so. One way is to change Operation 2 (block 316), for example by changing the definition of s in the second permutation above. Alternatively, since the current permutation changes according to the column index, changing the bit significance index may be achieved by performing the permutation according to a different column index, say column index + 1.
- an equivalent effect can be achieved at various locations within the circuit, e.g., at Bit Parser 301 or Operation A or Operation B.
- One simple way of implementing Operation B is to cyclically rotate bits belonging to a symbol of the second bit stream, say by 1. In the case of a third bit stream, bits belonging to a symbol would be cyclically rotated by 2, etc.
- Operation A may take the form of another interleaver, for example, designed so as to achieve distinct significance index shuffling. It is also potentially possible to combine Operation A with the Bit Parsing block 301.
- Distinct significance index shuffling can also be done as part of Operation C (i.e., on top of what has already been done to achieve frequency separation).
- a simple way to do so is to shift one more bit in the second bit stream, two more bits in the third bit stream, etc.
- the number of data streams must be fewer than the number of transmit antennas.
- the additional transmit antenna(s) can provide added spatial diversity and thus further improve the system performance.
- One way of doing so is to use spatial spreading, which uses the signal cyclic-delayed from the other antenna's signal.
- Another other way of doing so is to use tone-interleaved signals for two antennas as shown in Fig. 4. In Fig.
- blocks 401, 403 and 405 correspond generally to blocks 101, 103 and 105.
- a pair of antennas is formed and during a particular symbol period, half of the tones within an OFDM symbol transmitted via one antenna of the antenna pair are used and half of the tones are unused. In the case of the other antenna, the use or non-use of a particular tone is reversed.
- This simple tone interleaving does not fully exploit the frequency diversities in the OFDM signal as the result of the simple alternating scheme. Referring to Fig. 5, it is assumed that there are N antennas but only one stream is allowed.
- a single information stream is applied to an FEC encoder 501 followed by a bit parser 503. The bit parser outputs bits of the incoming information stream in turn to different ones of the branches 510a,..., 51On.
- Each branch includes an interleaver 511 followed by a bit-to-symbol mapper 513 and a tone interleaving block 515.
- ant_2 [0,a2,0,...0,a_N+2,0,...]
- ant_N [0,...,0,a_N-l,0,a_N+N,0,...]
- Interleaver depth can be adjusted to meet latency requirements.
- Alamouti coding maps two adjacent symbols to two transmit antennas for simultaneous transmission.
- an interleaver is usually utilized before AC. Referring to Fig. 7, data to be transmitted is applied to an FEC encoder 701, followed in turn by an interleaver 703, a QAM mapper 705 and a symbol parser 707. The symbol parser produces multiple symbol streams, which are applied to a AC block 709.
- Alamouti Coding is generalized to 4x1 Space-Time Block Code (STBC).
- STBC Space-Time Block Code
- the current common scheme works as follows: si (k) -s2*(k) repeat s2(k) sl*(k) repeat s3(k) -s4*(k) repeat s4(k) s3*(k) repeat
- Each line represents symbols transmitted on a particular antenna during two successive symbol periods. More particularly, during a first of two successive symbol periods, distinct symbols are transmitted on antennas 1 through 4. During the next successive symbol period, equivalent but transformed symbols are transmitted. Hence, the negative conjugate of the symbol that was transmitted on antenna 2 is transmitted on antenna 1, the conjugate of the symbol that was transmitted on antenna 1 is transmitted on antenna 2, etc.
- the indicated pattern is repeated (i.e., for antenna 1, there follows sl(k+l), (-s2*(k+l)). Coded bits in close proximity should be separated as far apart as possible in the time domain and in the frequency domain when OFDM is applied. Although it is possible to design an interleaver that would achieve this goal, it is impossible to upgrade a system with an existing interleaver. Also, for MxI systems where M > 2, the existing repetitive scheme does not fully utilize different varieties of spatial diversity.
- blocks 901, 903, 91 Ia, 91 Ib, 913a and 913b correspond generally to blocks 501, 503, 511a, 51 Ib, 513a and 513b.
- An AC block 915 receives the resulting streams (individually interleaved) and performs Alamouti Coding thereon in a known manner. This arrangement may be referred to as Individually Interleaved Alamouti Coding (I2AC).
- I2AC Individually Interleaved Alamouti Coding
- an IFFT 1006 is added following the AC block.
- spatial rotation may be applied on top of I2AC.
- 4 x 2 case, for example, four streams will be bit parsed. Each stream is individually interleaved and mapped to QAM symbols.
- AC coding is then performed as follows: sl(k) -s2*(k) sl(k+l) -s3*(k+l) sl(k+2) -s4*(k+2) s2(k) sl*(k) s2(k+l) -s4*(k+l) s2(k+2) -s3*(k+2) s3(k) -s4*(k) s3(k+l) sl*(k+l) s3(k+2) s2*(k+2) s4(k) s3*(k) s4(k) s3*(k) s4(k+l) s2*(k+l) s4(k+2) sl*
- the Alamouti encoding is done over six consecutive OFDM symbols as follows: the first two OFDM symbols use the combination (1,2),(3,4) on all the frequencies, the next two OFDM symbols use the combination (1,3),(2,4) over all frequencies and the last two OFDM symbols use (1,4),(2,3) over all frequencies, and then the pattern repeats for the next six OFDM symbols.
- the disadvantage of doing it this way is that the channel matrix for each frequency changes with time.
- Let, aij, bij, cij and dij be the jth data-symbol in the ith OFDM block and the four streams are denoted by a,b,c and d.
- each OFDM block have N data symbols. A set of symbols between square brackets [ ] is one OFDM symbol.
- the operations performed by the AC block may then be represented as follows: Input: to STBC (AC) block:
- the Alamouti encoding is done over two OFDM symbols as follows: the first frequency bin uses combination (1,2),(3,4), the 2nd frequency bin uses combination (1,3),(2,4) , the 3rd frequency bin uses (1,4),(2,3) and the pattern repeats.
- the Alamouti encoding uses symbols from different antennae for each frequency bin.
- the channel matrix for each frequency bin does not change over time.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05826747A EP1829264A1 (en) | 2004-12-13 | 2005-12-13 | Individual interleaving of data streams for mimo transmission |
CN200580042686.XA CN101076965B (en) | 2004-12-13 | 2005-12-13 | Individual interleaving of data streams for mimo transmission |
JP2007545079A JP2008523691A (en) | 2004-12-13 | 2005-12-13 | Individual interleaving of data streams for MIMO transmission |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63606404P | 2004-12-13 | 2004-12-13 | |
US60/636,064 | 2004-12-13 | ||
US72413705P | 2005-10-05 | 2005-10-05 | |
US60/724,137 | 2005-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006064469A1 true WO2006064469A1 (en) | 2006-06-22 |
Family
ID=36123066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/054217 WO2006064469A1 (en) | 2004-12-13 | 2005-12-13 | Individual interleaving of data streams for mimo transmission |
Country Status (6)
Country | Link |
---|---|
US (1) | US7826556B2 (en) |
EP (1) | EP1829264A1 (en) |
JP (2) | JP2008523691A (en) |
KR (1) | KR20070089694A (en) |
CN (1) | CN101076965B (en) |
WO (1) | WO2006064469A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008117957A1 (en) * | 2007-03-23 | 2008-10-02 | Samsung Electronics Co., Ltd. | Spatial interleaver for mimo wireless communication systems |
EP2107707A1 (en) | 2008-03-31 | 2009-10-07 | General instrument Corporation | Spatial mapping of an OFDM signal to reduce attenuation from an individual transmit antenna in a mimo transmitter |
JP2010506524A (en) * | 2006-10-11 | 2010-02-25 | トムソン ライセンシング | Method for transmitting a stream of data in a wireless system having at least two antennas and transmitter implementing the method |
US20100098178A1 (en) * | 2007-03-13 | 2010-04-22 | Koninklijke Philips Electronics N.V. | Method and system of interleaving for a multiple-input multiple-output multi-band ofdm communication system |
US8179995B2 (en) | 2007-02-23 | 2012-05-15 | Nippon Telegraph And Telephone Corporation | Reception device, transmission device, radio transmission/reception system, and radio reception method |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI562572B (en) | 2006-01-11 | 2016-12-11 | Interdigital Tech Corp | Method and apparatus for implementing space time processing with unequal modulation and coding schemes |
US20080298493A1 (en) * | 2007-05-31 | 2008-12-04 | Texas Instruments Incorporated | N-candidate depth-first decoding |
US7889807B2 (en) * | 2007-05-31 | 2011-02-15 | Texas Instruments Incorporated | Scalable VLSI architecture for K-best breadth-first decoding |
TWI348299B (en) * | 2007-10-29 | 2011-09-01 | Univ Nat Chiao Tung | Wireless transmitting system and apparatus and method for encoding a plurality of information bits to a plurality of transmitting signals thereof, and wireless receiving system and method for decoding a receiving signal to a plurality of information bits |
US20100235721A1 (en) * | 2009-03-13 | 2010-09-16 | Lsi Corporation | Rate Matching and De-Rate Matching for an LTE Transport Channel |
JP5523120B2 (en) * | 2010-01-14 | 2014-06-18 | 三菱電機株式会社 | Error correction encoding method, error correction decoding method, error correction encoding device, and error correction decoding device |
WO2011136582A2 (en) | 2010-04-29 | 2011-11-03 | Lg Electronics Inc. | Method and apparatus for transmitting data in very high throughput wireless local area network system |
US9247541B2 (en) * | 2010-09-16 | 2016-01-26 | Qualcomm Incorporated | Selecting frequency bands for transmitting data packets |
KR101551919B1 (en) | 2010-10-22 | 2015-09-09 | 한국전자통신연구원 | Method of transmitting data block in wireless communication system and transmitter |
CN102752252B (en) * | 2011-04-21 | 2017-03-01 | 中兴通讯股份有限公司 | A kind of single antenna data transmission method for uplink and device |
CN103378893A (en) * | 2012-04-28 | 2013-10-30 | 中兴通讯股份有限公司 | Method and device for transmitting open-loop data |
CN103873191B (en) * | 2012-12-14 | 2017-04-19 | 北京北广科技股份有限公司 | Digital audio broadcasting subcarrier matrix processing method and device |
KR102061096B1 (en) | 2014-03-05 | 2020-02-17 | 삼성전자 주식회사 | Transmission diversity method for fqam and apparatus thereof |
WO2016096039A1 (en) * | 2014-12-19 | 2016-06-23 | Huawei Technologies Duesseldorf Gmbh | Alamouti mapping for use in real field orthogonal fbmc modulation systems |
US10382168B2 (en) * | 2015-09-07 | 2019-08-13 | Mitsubishi Electric Corporation | Encoder device, decoder device and transmission apparatus |
US10469203B2 (en) * | 2016-11-04 | 2019-11-05 | Qualcomm Incorporated | On-demand time-interleaving |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356528B1 (en) * | 1999-04-15 | 2002-03-12 | Qualcomm Incorporated | Interleaver and deinterleaver for use in a diversity transmission communication system |
US20020085643A1 (en) | 2000-12-28 | 2002-07-04 | Dean Kitchener | MIMO wireless communication system |
EP1351414A2 (en) | 2002-04-01 | 2003-10-08 | Texas Instruments Incorporated | Physical layer configuration for wireless networks |
US20040081073A1 (en) * | 2002-10-25 | 2004-04-29 | Walton J. Rodney | Transmit diversity processing for a multi-antenna communication system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304581B1 (en) * | 1999-02-16 | 2001-10-16 | Motorola, Inc. | Interleaving method and apparatus for orthogonal transmit diversity and multi-carriers CDMA communication systems |
US20040204105A1 (en) * | 2002-05-24 | 2004-10-14 | Ying-Chang Liang | Method and apparatus for a base station with multiple distributed antennas to communicate with mobile stations |
US20040121730A1 (en) * | 2002-10-16 | 2004-06-24 | Tamer Kadous | Transmission scheme for multi-carrier MIMO systems |
JP4602641B2 (en) * | 2002-10-18 | 2010-12-22 | 株式会社エヌ・ティ・ティ・ドコモ | Signal transmission system, signal transmission method and transmitter |
DE60322082D1 (en) * | 2003-12-17 | 2008-08-21 | Alcatel Lucent | Optimized code interleaving of digital signals |
-
2005
- 2005-12-13 CN CN200580042686.XA patent/CN101076965B/en active Active
- 2005-12-13 JP JP2007545079A patent/JP2008523691A/en active Pending
- 2005-12-13 US US11/721,603 patent/US7826556B2/en active Active
- 2005-12-13 KR KR1020077013191A patent/KR20070089694A/en not_active Application Discontinuation
- 2005-12-13 WO PCT/IB2005/054217 patent/WO2006064469A1/en active Application Filing
- 2005-12-13 EP EP05826747A patent/EP1829264A1/en not_active Ceased
-
2012
- 2012-10-10 JP JP2012224647A patent/JP2013059042A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356528B1 (en) * | 1999-04-15 | 2002-03-12 | Qualcomm Incorporated | Interleaver and deinterleaver for use in a diversity transmission communication system |
US20020085643A1 (en) | 2000-12-28 | 2002-07-04 | Dean Kitchener | MIMO wireless communication system |
EP1351414A2 (en) | 2002-04-01 | 2003-10-08 | Texas Instruments Incorporated | Physical layer configuration for wireless networks |
US20040081073A1 (en) * | 2002-10-25 | 2004-04-29 | Walton J. Rodney | Transmit diversity processing for a multi-antenna communication system |
Non-Patent Citations (5)
Title |
---|
BAUCH G ET AL: "Parameter optimization, interleaving and multiple access in OFDM with cyclic delay diversity", VEHICULAR TECHNOLOGY CONFERENCE, 2004. VTC 2004-SPRING. 2004 IEEE 59TH MILAN, ITALY 17-19 MAY 2004, PISCATAWAY, NJ, USA,IEEE, US, 17 May 2004 (2004-05-17), pages 505 - 509Vol1, XP010764849, ISBN: 0-7803-8255-2 * |
KEE-BONG SONG ET AL: "A Low Complexity Space-Frequency BICM MIMO-OFDM System for Next-Generation WLANs", GLOBECOM'03. 2003 - IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE. CONFERENCE PROCEEDINGS. SAN FRANCISCO, DEC. 1 - 5, 2003, IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, NEW YORK, NY : IEEE, US, vol. VOL. 7 OF 7, 1 December 2003 (2003-12-01), pages 1059 - 1063, XP010678483, ISBN: 0-7803-7974-8 * |
OTERI O ET AL: "Space-time-frequency coding for OFDM-based WLANs", GLOBAL TELECOMMUNICATIONS CONFERENCE, 2004. GLOBECOM '04. IEEE DALLAS, TX, USA 29 NOV.-3 DEC., 2004, PISCATAWAY, NJ, USA,IEEE, 29 November 2004 (2004-11-29), pages 2925 - 2930, XP010758260, ISBN: 0-7803-8794-5 * |
OTERI, SPACE-TIME FREQUENCY CODING FOR OFDM BASED WLANS |
See also references of EP1829264A1 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010506524A (en) * | 2006-10-11 | 2010-02-25 | トムソン ライセンシング | Method for transmitting a stream of data in a wireless system having at least two antennas and transmitter implementing the method |
US8179995B2 (en) | 2007-02-23 | 2012-05-15 | Nippon Telegraph And Telephone Corporation | Reception device, transmission device, radio transmission/reception system, and radio reception method |
US20100098178A1 (en) * | 2007-03-13 | 2010-04-22 | Koninklijke Philips Electronics N.V. | Method and system of interleaving for a multiple-input multiple-output multi-band ofdm communication system |
US8432980B2 (en) * | 2007-03-13 | 2013-04-30 | Koninklijke Philips Electronics N.V. | Method and system of interleaving for a multiple-input multiple-output multi-band OFDM communication system |
WO2008117957A1 (en) * | 2007-03-23 | 2008-10-02 | Samsung Electronics Co., Ltd. | Spatial interleaver for mimo wireless communication systems |
EP2107707A1 (en) | 2008-03-31 | 2009-10-07 | General instrument Corporation | Spatial mapping of an OFDM signal to reduce attenuation from an individual transmit antenna in a mimo transmitter |
US8787479B2 (en) | 2008-03-31 | 2014-07-22 | Motorola Mobility Llc | Spatial mapping of an OFDM signal to reduce attenuation from an individual transmit antenna in a MIMO transmitter |
Also Published As
Publication number | Publication date |
---|---|
CN101076965B (en) | 2013-04-24 |
CN101076965A (en) | 2007-11-21 |
US20090252248A1 (en) | 2009-10-08 |
JP2013059042A (en) | 2013-03-28 |
US7826556B2 (en) | 2010-11-02 |
JP2008523691A (en) | 2008-07-03 |
EP1829264A1 (en) | 2007-09-05 |
KR20070089694A (en) | 2007-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1829264A1 (en) | Individual interleaving of data streams for mimo transmission | |
AU2005273137B2 (en) | Apparatus and method for space-time-frequency block coding for increasing performance | |
JP5592346B2 (en) | Improved interleaver for the IEEE 802.11n standard | |
US9008199B2 (en) | Advanced MIMO interleaving | |
US9680616B2 (en) | Tone reordering in a wireless communication system | |
CN1883151B (en) | Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams | |
WO2006096007A1 (en) | Apparatus and method for mapping space-time coded data to subcarriers in a broadband wireless communication system | |
WO2007091131A1 (en) | Individual interleaving of data streams for mimo transmission | |
WO2007104209A1 (en) | A method and apparatus for multi-antenna transmitting based on spatial-frequency encoding | |
US20060093059A1 (en) | Interleaver and de-interleaver systems | |
WO2010078786A1 (en) | Multiple-antenna signal processing system and method | |
WO2006117764A1 (en) | Individual interleaving of data streams for mimo transmission | |
JP2013537016A (en) | Optimal interleaver design for communication systems | |
EP1670168B1 (en) | Method, system and device for transmitting uniformly distributed data in MIMO telecommunication systems | |
CN101378283A (en) | Diversity method for MIMO-OFDM system base on null-frequency encode | |
JP2009182578A (en) | Mimo-ofdm receiver and mimo-ofdm communication system | |
Gravalos et al. | Spatial data stream multiplexing scheme for high-throughput WLANs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005826747 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580042686.X Country of ref document: CN Ref document number: 2007545079 Country of ref document: JP Ref document number: 1020077013191 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2549/CHENP/2007 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005826747 Country of ref document: EP |