WO2005115516A1 - Injection device - Google Patents
Injection device Download PDFInfo
- Publication number
- WO2005115516A1 WO2005115516A1 PCT/GB2005/002117 GB2005002117W WO2005115516A1 WO 2005115516 A1 WO2005115516 A1 WO 2005115516A1 GB 2005002117 W GB2005002117 W GB 2005002117W WO 2005115516 A1 WO2005115516 A1 WO 2005115516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive element
- syringe
- drive
- actuator
- reservoir
- Prior art date
Links
- 238000002347 injection Methods 0.000 title claims description 38
- 239000007924 injection Substances 0.000 title claims description 38
- 239000012530 fluid Substances 0.000 claims abstract description 95
- 230000007423 decrease Effects 0.000 claims abstract description 12
- 230000007246 mechanism Effects 0.000 claims description 35
- 230000009471 action Effects 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 6
- 230000003111 delayed effect Effects 0.000 claims description 2
- 239000003814 drug Substances 0.000 description 22
- 229940079593 drug Drugs 0.000 description 22
- 230000002706 hydrostatic effect Effects 0.000 description 11
- 230000003068 static effect Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 4
- 244000273618 Sphenoclea zeylanica Species 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M5/2033—Spring-loaded one-shot injectors with or without automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/315—Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M2005/206—With automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M2005/2086—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically having piston damping means, e.g. axially or rotationally acting retarders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3205—Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
- A61M5/321—Means for protection against accidental injuries by used needles
- A61M5/3243—Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
- A61M5/326—Fully automatic sleeve extension, i.e. in which triggering of the sleeve does not require a deliberate action by the user
Definitions
- the present invention relates to an injection device of the type that receives a syringe, extends it, discharges its contents and then retracts it automatically.
- Devices of this general description are shown in WO 95/35126 and EP-A-0 516 473 and tend to employ a drive spring and some form of release mechanism that releases the syringe from the influence of the drive spring once its contents are supposed to have been discharged, to allow it to be retracted by a return spring.
- overestimating the safety margin may mean that some of the syringe contents are discharged after the syringe has retracted, which results firstly in a short dose and secondly in what may be termed a "wet" injection. Wet injections are undesirable for the squeamish, particularly in connection with self-administered drugs.
- UK patent applications nos. 0210123, 0229384 and 0325596 describe a series of injection devices designed to deal with this problem. Each makes use of a neat trick that delays the release of the syringe for a certain period of time after the release mechanism has been activated, in an attempt to ensure that the syringe has been completely discharged.
- the devices illustrated in UK patent applications no. 0325596 make use of a fluid-damped delay mechanism that is particularly effective in ensuring complete discharge of the syringe contents, but creates problems of its own. Firstly, the use of a fluid-damped delay mechanism requires the creation of a fluid-tight reservoir.
- the manufacturing tolerances of those components that define the fluid reservoir must be fine, or seals must be used to prevent the fluid from leaking out before its job is done.
- fine tolerances or seals are called for, which pushes up the price of manufacture. For injection devices that are designed to be disposable, as many will be, every penny counts.
- the injection devices of the present invention make use of a fluid-damped delay mechanism, but suffer from none of the disadvantages just described, as will now be explained.
- An injection device comprises: a housing adapted to receive a syringe having a discharge nozzle, the housing including means for biasing the syringe from an extended position in. which the discharge nozzle extends from the housing to a retracted position in which the discharge nozzle is contained within the housing; an actuator; a drive acted upon by the actuator and in turn acting on the syringe to advance it from its retracted position to its extended position and discharge its contents through the discharge nozzle; a decoupling mechanism, activated when the drive has been advanced to a nominal decoupling position, to decouple a first component of the device from a second component, whereupon the first component of the device moves relative to the second component; a release mechanism, activated when the first component has reached a nominal release position relative to the second, to release the syringe from the action of the actuator, whereupon the biasing means restores the syringe to its retracted position; and a highly viscous fluid
- the delay between the activation of the decoupling mechanism and the activation of the release mechanism is used to compensate for any stacking of tolerances.
- triggering of the decoupling mechanism can be designed to occur before the contents of the syringe are fully discharged, the delay is so chosen that, for all variations within the intended tolerances of the components, release of the syringe will not occur until after its contents have been folly discharged. It thus becomes possible to ensure that the syringe contents have been discharged before it is retracted, without having to comply with unrealistically fine tolerances.
- highly viscous fluid is here meant a fluid that, at 25°C, has a dynamic viscosity of 3000 centiPoise or more.
- Methods are known in the art for deteraiining the dynamic viscosity of both Newtonian fluids, which are preferred in this invention, and non-Newtonian fluids. ISO 3219:1993 at 1600 s "1 is such a method.
- a preferred method, which is applicable to both Newtonian and non-Newtonian fluids is described in the Annex to this application. This method derives an average value for dynamic viscosity at shear rates that are determined by the test apparatus and the fluid under test and are reproducible.
- fluids that, at 25°C, have a dynamic viscosity of 6000 centiPoise or more and, better still, 12000 centiPoise or more.
- the preferred fluid is DOW CORNING 111 Silicone Compound valve lubricant and sealant which, at 25°C, has a dynamic viscosity of about 12500 centiPoise.
- a highly viscous fluid is, by definition, highly resistant to flow, certain constraints are avoided. Firstly, it is no longer necessary to create a completely fluid-tight reservoir, because imperfections in the reservoir boundaries will not provide an escape route for a that does not flow under the prevailing conditions. Thus, the manufacturing tolerances of those components that define fluid reservoir need not be fine and nor need seals be used. Secondly, simulated wet injections and the impression that the syringe contents may have leaked within the device are problems no longer, since the highly viscous fluid will not flow to a sufficient extent to give rise to these misapprehensions.
- the first and second components of the device may be constituted by first and second elements of the drive, of which the first is acted upon by the actuator and the second acts upon the syringe, the first drive element being capable of movement relative to the second when the former is acted upon by the actuator and the latter is restrained by the syringe.
- the relative movement of the first and second drive elements that is damped by the highly viscous fluid is driven by the actuator. Use of the actuator in this way keeps down the component count.
- a reservoir for the highly viscous fluid may be defined in part by the first drive element and in part by the second drive element, the volume of the reservoir tending to decrease as the first drive element moves relative to the second when acted upon by the actuator, the reservoir containing the highly viscous fluid and having a vent through which the fluid escapes as the volume of the reservoir decreases.
- An injection device comprises: a housing adapted to receive a syringe having a discharge nozzle, the housing including means for biasing the syringe from an extended position in which the discharge nozzle extends from the housing to a retracted position in which the discharge nozzle is contained within the housing; an actuator; first and second drive elements, of which the first is acted upon by the actuator and the second acts upon the syringe to advance it from its retracted position to its extended position and discharge its contents through the discharge nozzle, the first drive element being capable of movement relative to the second when the former is acted upon by the actuator and the latter is restrained by the syringe; a reservoir defined in part by the first drive element and in part by the second drive element, the volume of the reservoir tending to decrease as the first drive element moves relative to the second when acted upon by the actuator, the reservoir containing a highly viscous fluid and having a vent through which the fluid escapes as the volume of the reservoir decreases; and a release
- the injection device may further comprise a coupling that prevents the first drive element from moving relative to the second until they have been advanced to a nominal decoupling position that is less advanced than the said nominal release position.
- the coupling may, and preferably does, comprises a decoupling mechanism, activated when the drive elements have been advanced to the said nominal decoupling position.
- the coupling is a third drive element acting upon the first and second drive elements.
- the decoupling mechanism is adapted to decouple the third drive element from the second so that the third drive element acts only it no longer once the said nominal decoupling position has been reached, thus allowing the first drive element to move relative to the second, and the release mechanism is adapted to decouple the third drive element from the first so that the third drive element acts upon it no longer once the said nominal release position has been reached, thus releasing the syringe from the action of the actuator.
- the coupling comprises cooperating features of the first and second drive elements allowing the first to act upon the second.
- the decoupling mechanism is adapted to decouple the first drive element from the second so that the first drive element acts no longer on the second once the said nominal decoupling position has been reached, thus allowing the first drive element to move relative to the second
- the release mechanism is adapted to decouple the first drive element from the actuator so that the actuator acts upon it no longer once the said nominal release position has been reached, thus releasing the syringe from the action of the actuator.
- one drive element may include a stem and the other a bore that is open at one end to receive the stem, the bore and the stem thus defining the fluid reservoir.
- the vent may be in communication with a collection chamber defined by one drive element, within which the escaped fluid is collected.
- one drive element include a stem and define the vent and the collection chamber and the other drive element include a blind bore that is open at one end to receive the stem and closed at the other, the bore and the stem thus defining the fluid reservoir.
- the collection chamber may be defined by a bore in the said one element, being open at one end and closed at the other but for the vent.
- Figure 1 is a schematic illustration of a first embodiment
- Figure 2 is a second
- Figure 3 is likewise a third.
- Fig. 1 shows an injection device 10 in which a housing 12 contains a hypodermic syringe 14.
- the syringe 14 is of conventional type, including a syringe body 16 terminating at one end in a hypodermic needle 18 and at the other in a flange 20, and a rubber bung 22 that constrains a drug 24 to be administered within the syringe body 16.
- the conventional plunger that would normally be connected to the bung 22 and used to discharge the contents of the syringe 14 manually has been removed and replaced with a drive element as will be described below. Whilst the syringe illustrated is of hypodermic type, this need not necessarily be so.
- Transcutaneous or ballistic dermal and subcutaneous syringes may also be used with the injection device of the present invention.
- the syringe must include a discharge nozzle, which in a hypodermic syringe is the needle 18.
- the housing includes a return spring 26 that biases the syringe 14 from an extended position in which the needle 18 extends from an aperture 28 in the housing 12 to a retracted position in which the discharge nozzle 18 is contained within the housing 12.
- an actuator which here takes the form of a compression drive spring 30.
- Drive from the drive spring 30 is transmitted via a multi-component drive to the syringe 14 to advance it from its retracted position to its extended position and discharge its contents through the needle 18.
- the drive accomplishes this task by acting on the bung 22. Static friction between the bung 22 and the syringe body 16 initially ensures that bung 22 and body 16 advance together, until the return spring 26 bottoms out or the syringe body 16 meets some other obstruction (not shown) that retards its motion.
- the multi-component drive between the drive spring 30 and the syringe 14 consists of three principal components.
- a first drive element 32 and a second drive element 34 are each acted upon by a third drive element 36, in internal shoulder 38 of which is acted upon by the drive spring 30.
- the drive spring 30 causes the third drive element 36 to move, which in turn causes the first and second drive elements 32, 34 to move in tandem.
- the third drive element 36 is coupled to the first and second drive elements 32, 34 by means of respective ball latches 52, 54, of which more later.
- the first drive element 32 includes a hollow stem 40, the inner cavity of which forms a collection chamber 42 in communication with a vent 44 that extends from the collection chamber through the end of the stem 40.
- the second drive element 34 includes a blind bore 46 that is open at one end to receive the stem 40 and closed at the other. As can be seen, the bore 46 and the stem 40 defining a fluid reservoir 48, within which a highly viscous fluid is contained.
- a trigger 50 is provided at the end of the housing 12 remote from the exit aperture 28 for the hypodermic needle 18.
- the trigger when operated, serves to decouple the third drive component 36 from the housing 12, allowing it to move relative to the housing 12 under the influence of the drive spring 30.
- the operation of the device is then as follows. Initially, the drive spring 30 moves the third drive element 36 and the third drive element 36 moves the first and second drive elements 32, 34 by acting through the ball latches 52, 54.
- the second drive element 34 moves the rubber bung 22, which by virtue of static friction and hydrostatic forces acting through the drug 24 to be administered moves the syringe body 16 against the action of the return spring 26.
- the return spring 26 compresses and the hypodermic needle 18 emerges from the exit aperture 28 of the housing 12.
- the bail latch 54 linking the third drive element 36 with the second drive element 34 reaches a region 56 of the housing 12 at which the inner diameter of the housing 12 is enlarged.
- the balls in the ball latch 54 move laterally outwards from the position shown to a position at which they no longer couple the third drive element 36 to the second drive element 34, aided by the bevelled surfaces on the second drive element 34, fast against which they are normally retained by the inner surface of the housing 12.
- the third drive element 36 acts no longer on the second drive element 34, allowing the first and third drive elements 32, 36 to move relative to the second drive element 34.
- the volume of the reservoir 46 will tend to decrease as the first drive element 32 moves relative to the second drive element 34 when the former is acted upon by the drive spring 30.
- the reservoir 48 collapses, highly viscous fluid is forced through the vent 44 into the collection chamber 42.
- the ball latch 54 has been released, some of the force exerted by the drive spring does work on the highly viscous fluid, causing it to flow though the constriction formed by the vent 44; the remainder acts hydrostatically through the fluid and through friction between the first and second drive elements 32, 34, thence via the second drive element 34 and onto the bung 22.
- Losses associated with the flow of the highly viscous fluid do not attenuate the force acting on the body of the syringe to a great extent.
- the return spring 26 remains compressed and the hypodermic needle remains extended.
- the vent 44 may consist of a circular aperture 0.7 mm in diameter. This is a relatively large diameter and is easy to form using conventional injection moulding techniques. Thinner fluids require smaller holes and thicker ones require larger holes. Forcing such a fluid through such a vent 44 is effective to damp the movement of the first and second drive elements 32, 34 relative to each other. Moreover, such a fluid resists flow to such an extent that it will not, under its own weight, flow from the open end of the collection chamber 42. Thus, the collection chamber 42 need not be closed at the end remote from the vent 44, making the first drive element 32 easy to manufacture by injection moulding.
- the bung 22 completes its travel within the syringe body 16 and can go no further. At this point, the contents of the syringe 14 are completely discharged and the force exerted by the drive spring 30 acts to retain the bung 22 in its terminal position and to continue to cause the highly viscous fluid to flow though the vent, allowing the first drive element 32 to continue its movement.
- the ball latch 52 linking the third drive element 36 with the first drive element 32 reaches the region 56 of the housing 12 at which the inner diameter of the housing 12 is enlarged.
- the balls in the ball latch 52 move laterally outwards from the position shown to a position at which they no longer couple the third drive element 36 to the first drive element 32, aided by the bevelled surfaces on the first drive element 32, fast against which they are normally retained by the inner surface of the housing 12.
- the third drive element 36 acts no longer on the first drive element 32, allowing the first and third drive elements 32, 36 to move relative each other.
- the syringe 14 is released, because the forces developed by the drive spring 30 are no longer being transmitted to the syringe 14, and the only force acting on the syringe will be the return force from the return spring 26. Thus, the syringe 14 is now returned to its retracted position and the injection cycle is complete.
- Fig. 2 shows another injection device 110 in which a housing 112 contains a hypodermic syringe 114.
- the syringe 114 is again of conventional type, including a syringe body 116 terminating at one end in a hypodermic needle 118 and at the other in a flange 120.
- the conventional plunger that would normally be used to discharge the contents of the syringe 114 manually have been removed and replaced with a drive element 134 as will be described below, which terminates in a bung 122.
- the bung 122 constrains a drug 124 to be administered within the syringe body 116. Whilst the syringe illustrated is of hypodermic type, this need not necessarily be so.
- the housing includes a return spring 126 that biases the syringe 114 from an extended position in which the needle 118 extends from an aperture 128 in the housing 112 to a retracted position in which the discharge nozzle 118 is contained within the housing 112.
- the return spring 126 acts on the syringe 114 via a sleeve 127.
- an actuator which here takes the form of a compression drive spring 130.
- Drive from the drive spring 130 is transmitted via a multi-component drive to the syringe 114 to advance it from its retracted position to its extended position and discharge its contents through the needle 118.
- the drive accomplishes this task by acting directly on the drug 124 and the syringe 114. Hydrostatic forces acting through the drug and, to a lesser extent, static friction between the bung 122 and the syringe body 116 initially ensure that they advance together, until the return spring 126 bottoms out or the syringe body 116 meets some other obstruction that retards its motion.
- the multi-component drive between the drive spring 130 and the syringe 114 consists of three principal components.
- a drive sleeve 131 takes drive from the drive spring 130 and transmits it to flexible latch arms 133 on a first drive element 132. This in turn transmits drive via flexible latch arms 135 to a second drive element, the drive element 134 already mentioned.
- the first drive element 132 includes a hollow stem 140, the inner cavity of which forms a collection chamber 142 in communication with a vent 144 that extends from the collection chamber through the end of the stem 140.
- the second drive element 134 includes a blind bore 146 that is open at one end to receive the stem 140 and closed at the other. As can be seen, the bore 146 and the stem 140 define a fluid reservoir 148, within which a highly viscous fluid is contained.
- a trigger (not shown) is provided in the middle of the housing 112.
- the trigger when operated, serves to decouple the drive sleeve 131 from the housing 112, allowing it to move relative to the housing 112 under the influence of the drive spring 130.
- the operation of the device is then as follows.
- the drive spring 130 moves the drive sleeve 131, the drive sleeve 131 moves the first drive element 32 and the first drive element 132 moves the second drive element 134, in each case by acting through the flexible latch arms 133, 135.
- the second drive element 134 moves and, by virtue of static friction and hydrostatic forces acting through the drug 124 to be administered, moves the syringe body 116 against the action of the return spring 126.
- the return spring 126 compresses and the hypodermic needle 118 emerges from the exit aperture 128 of the housing 112. This continues until the return spring 126 bottoms out or the syringe body 116 meets some other obstruction that retards its motion.
- the flexible latch arms 135 linking the first and second drive elements 132, 134 reach a constriction 137 within the housing 112.
- the constriction 137 moves the flexible latch arms 135 inwards from the position shown to a position at which they no longer couple the first drive element 136 to the second drive element 134, aided by the bevelled surfaces on the constriction 137.
- the first drive element 136 acts no longer on the second drive element 134, allowing the first drive element 132 to move relative to the second drive element 134.
- the volume of the reservoir 146 will tend to decrease as the first drive element 132 moves relative to the second drive element 134 when the former is acted upon by the drive spring 130.
- the reservoir 148 collapses highly viscous fluid is forced through the vent 144 into the collection chamber 142.
- the force exerted by the drive spring 130 does work on the highly viscous fluid, causing it to flow though the constriction formed by the vent 144, and acts hydrostatically through the fluid and through friction between the first and second drive elements 132, 134, thence via the second drive element 134.
- Losses associated with the flow of the highly viscous fluid do not attenuate the force acting on the body of the syringe to a great extent.
- the return spring 126 remains compressed and the hypodermic needle remains extended.
- the second drive element 134 completes its travel within the syringe body 116 and can go no further.
- the contents of the syringe 114 are completely discharged and the force exerted by the drive spring 130 acts to retain the second drive element 134 in its terminal position and to continue to cause the highly viscous fluid to flow though the vent 144, allowing the first drive element 132 to continue its movement.
- the flexible latch arms 133 linking the drive sleeve 131 with the first drive element 132 reach another constriction 139 within the housing 112.
- the constriction 139 moves the flexible latch arms 133 inwards from the position shown to a position at which they no longer couple the drive sleeve 131 to the first
- FIG. 3 shows another injection device 210 in which a housing 212 contains a hypodermic syringe 214.
- the syringe 214 is again of conventional type, including a syringe body 216 terminating at one end in a hypodermic needle 218 and at the other in a flange 220, and a 0 rubber bung 222 that constraints a drug 224 to be administered within the syringe body 216.
- the conventional plunger that would normally be connected to the bung 222 and used to discharge the contents of the syringe 214 manually, has been removed and replaced with a multi-component drive element as will be described below. Whilst the syringe illustrated is again of hypodermic type, this need not necessarily be so.
- the housing 5 includes a return spring 226 that biases the syringe 214 from an extended position in which the needle 218 extends from aperture 228 in the housing 212, to a retracted position in which the hypodermic needle 218 is contained within the housing 212.
- the return spring 226 acts on the syringe 214 via a sleeve 227.
- a compression drive spring 230 Drive from the drive spring 230 this transmitted via the multi-component drive to the syringe 214 to advance it from its retracted position to its extended position and discharge its contents through the needle 218.
- the drive accomplishes this task by acting directly on the drug 224 and the syringe 214. Hydrostatic forces acting through the drug 224 and, to a lesser extent, static friction between the bung 222 and the syringe body 216 initially ensure that they advance together, until the return spring 226 bottoms out or the syringe body 216 meets some other obstruction that retards its motion.
- the multi component drive between the drive spring 230 and the syringe 214 again consists of three principal components.
- the drive sleeve 231 takes drive from the drive spring 230 and transmits it to flexible latch arms 233 on a first drive element 232. These elements are shown in detail "A”.
- the first drive element 232 in turn transmits drive via flexible latch arms 235 to a second drive element 234.
- These elements are shown in detail "B”.
- the first drive element 232 includes a hollow stem 240, the inner cavity of which forms a collection chamber 242.
- the second drive element 234 includes a blind for 246 that is open at one end to receive the stem 240 and closed at the other. As can be seen, the bore 246 and the stem 240 define a fluid reservoir 248, within which a highly viscous fluid is contained.
- a trigger (not shown) is provided in the middle of the housing 212.
- the trigger one operated, serves to decouple the drive sleeve 231 from the housing 212 allowing it to move relative to the housing 212 under the influence of the drive spring 230.
- the operation of the device is then as follows.
- the drive spring 230 moves the drive sleeve 231
- the drive sleeve 231 moves the first drive element 232
- the first drive element 232 moves the second drive element 234, in each case by acting through the flexible matching arms 233, 235.
- the second drive element 234 moves and, by virtue of static friction and hydrostatic forces acting through the drug 224 to be administered, moves the syringe body 216 against the action of the return spring 226.
- the return spring 226 compresses and the hypodermic needle 218 emerges from the exit aperture 228 of the housing 212. This continues until the return spring 226 bottoms out or the syringe body 216 meets some other obstruction that retards its motion.
- the flexible latch arms 235 linking the first and second drive elements 232, 234 reach a constriction 237.
- the constriction 237 is formed by a component 262 that is initially free to move relative to all other components, but that is constrained between the syringe flange 220 and additional flexible arms 247 on the second drive element 234. These additional flexible arms 247 overlie the flexible arms 235 on the first drive element 232, by means of which drive is transmitted to the second drive element 234.
- Figure 3 illustrates the injection device 210 at the position where the additional flexible arms 247 are just making contact with the constriction 237 in the component 262.
- the constriction 237 moves the additional flexible arms 247 inwards, aided by the bevelled surfaces on both, and the additional flexible arms 247 in turn move the flexible arms 235, by means of which drive is transmitted from the first drive element 232 to the second drive element 234, inwards from the position shown to a position at which they no longer couple the first and second drive elements together. Once this happens, the first drive element 232 acts no longer on the second drive element 234, allowing the first drive element 232 to move relative to the second drive element 234.
- the volume of the reservoir 248 will tend to decrease as the first drive element 232 moves relative to the second drive element 234 when the former is acted upon by the drive spring 230.
- the reservoir 248 collapses, highly viscous fluid is forced into the collection chamber 242.
- the force exerted by the drive spring 230 does work on the highly viscous fluid, causing it to flow into the collection chamber 242, and also acts hydrostatically through the fluid and through friction between the first and second drive elements 232, 234, thence via the second drive element 234. Losses associated with the flow of the highly viscous fluid do not attenuate the force acting on the body of the syringe to a great extent.
- the return spring 226 remains compressed and the hypodermic needle remains extended.
- the second drive element 234 completes its travel within the syringe body 216 and can go no further. At this point, the contents of the syringe 214 are completely discharged and the force exerted by the drive spring 230 acts to retain the second drive element 234 in its terminal position and to continue to cause the highly viscous fluid to flow into the collection chamber 142, allowing the first drive element 232 to continue its movement.
- a flange 270 on the rear of the second drive element 234 normally retains the flexible arms 233 in engagement with the drive sleeve 231.
- the flexible latch arms 233 linking the drive sleeve 231 with the first drive element 232 move sufficiently far forward relative to the second drive element 234 that the flange 270 is brought to register with a rebate 272 in the flexible arms 233, whereupon it ceases to be effective in retaining the flexible arms 233 in engagement with the drive sleeve 231.
- the drive sleeve 231 moves the flexible latch arms 233 inwards from the position shown to a position at which they no longer couple the drive sleeve 231 to the first drive element 232, aided by the bevelled latching surfaces 274 on the flexible arms 233. Once this happens, the drive sleeve 231 acts no longer on the first drive element 232, allowing them to move relative to each other. At this point, of course, the syringe 214 is released, because the forces developed by the drive spring 230 are no longer being transmitted to the syringe 214, and the only force acting on the syringe will be the return force from the return spring 226.
- the highly viscous fluid may be any fluid that has the appropriate properties.
- Silicone oil and silicone grease are examples of fluids that may be selected to have a kinematic viscosity at 20°C of 12500 centistokes or more. Moreover, both are excellent lubricators and certainly silicone grease is sufficiently resistant to flow that it will not accidentally discharge from the open end of the collection chamber.
- the reservoir in the second drive element is simple to fill before stem of the first drive element is pushed into place. The volume of fluid need not be accurately controlled, since excess fluid will be expelled into the collection chamber. The fluid will then fills the vent and prevents the ingress of dirt or other contaminants that could lead to blockage.
- the highly viscous fluid may be used to damp the movement of components of the device other than elements that transmit drive from the drive actuator to the syringe.
- Many of the advantages associated with the use of a highly viscous fluid are independent of the other details of the damping mechanism.
- a functional upper limit on the dynamic viscosity of the highly viscous fluid is set by the need for it to act as an effective damper. In practical embodiments of this invention, including the embodiments just described, it is unlikely that dynamic viscosities in excess of 150,000 centiPoise would be effective. Even fluids with dynamic viscosities in excess of 60,000 centiPoise would appear to have limited applicability.
- a liquid filled damper has been proposed for use in the device.
- the damper consists of a 5 small bore filled with fluid and a hollow piston with a small hole in the centre. When a force is applied the fluid is forced through the hole and into the centre of the piston.
- the test apparatus shall consist of two rigid, rotationally symmetrical, coaxial bodies as are illustrated schematically in figure 5.
- One contains a cylindrical bore having an internal diameter in the range 4.45 to 4.55 mm. Let this diameter be c ⁇ - It also includes a coaxial, circular bleed hole having a diameter in the range 0.65 to 0.75 mm. Let this diameter be dj.
- the length of the bleed hole is in the range 1.95 to 2.05 mm. Let this length be L.
- the bleed hole leads to a collection chamber, also of diameter ⁇ 2 .
- the second coaxial body has a hollow cylindrical piston that forms a sufficiently good seal with the bore in the other body that there is no significant loss of fluid between the cylindrical surfaces of the bodies during the course of the test. Any force necessary to overcome dynamic friction between the cylindrical surfaces of the bodies can be measured in the presence of an amount of test fluid sufficient to lubricate the interface.
- the first coaxial body With the bleed hole temporarily stopped, the first coaxial body is inverted and a sample of the fluid to be tested is introduced into the cylindrical bore to a depth of at least 6 mm.
- the second coaxial body is then inserted into the first.
- the apparatus is then righted and the bleed hole unstopped.
- the second coaxial body is held stationary and the first is lowered until the fluid emerges from the bleed hole, where it is collected. There must be at least 5 mm of travel remaining at this stage.
- a downward force is applied to the first coaxial body causing it to move.
- the size of this force is such that the net force acting on the surface of the fluid, which is the applied force, less the force necessary to overcome dynamic friction between the cylindrical surfaces of the bodies, plus the weight of the first coaxial body, is in the range 9.95 to 10.05 N. Let this net force be F.
- a position transducer is attached to the second coaxial body and to a data logger, by means of which a plot of position vs. time is obtained. Once the second coaxial body has moved by at least 1.5 mm in response to the applied force, the time taken for it to move by a further 2.0 mm is measured from the position vs. time plot. At least 1.5 mm of travel must remain after this 2 mm interval. This time measured is divided by two to yield an average time to travel 1.0 mm. Let this time be t ⁇ .
- the test procedure is to be repeated another four times with different samples of the fluid and the mean of the five results obtained is taken as the dynamic viscosity of the fluid.
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Polarising Elements (AREA)
Abstract
Description
Claims
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2568677A CA2568677C (en) | 2004-05-28 | 2005-05-27 | Injection device |
JP2007514110A JP5020814B2 (en) | 2004-05-28 | 2005-05-27 | Injection device |
NZ552329A NZ552329A (en) | 2004-05-28 | 2005-05-27 | Retractable syringe with viscous fluid damping of retraction |
EP05747009.8A EP1755713B1 (en) | 2004-05-28 | 2005-05-27 | Injection device |
PL05747009T PL1755713T3 (en) | 2004-05-28 | 2005-05-27 | Injection device |
DK05747009.8T DK1755713T3 (en) | 2004-05-28 | 2005-05-27 | injecting |
ES05747009.8T ES2522280T3 (en) | 2004-05-28 | 2005-05-27 | Injection device |
KR1020067027624A KR101244198B1 (en) | 2004-05-28 | 2005-05-27 | Injection device |
US11/579,560 US7901377B1 (en) | 2004-05-28 | 2005-05-27 | Injection device |
EA200602238A EA012337B1 (en) | 2004-05-28 | 2005-05-27 | Injection device |
MXPA06013899A MXPA06013899A (en) | 2004-05-28 | 2005-05-27 | Injection device. |
CN2005800239100A CN101005869B (en) | 2004-05-28 | 2005-05-27 | Injection device |
BRPI0510443A BRPI0510443B8 (en) | 2004-05-28 | 2005-05-27 | injection device |
AU2005247147A AU2005247147C1 (en) | 2004-05-28 | 2005-05-27 | Injection device |
IL179654A IL179654A (en) | 2004-05-28 | 2006-11-28 | Injection device |
NO20065979A NO338663B1 (en) | 2004-05-28 | 2006-12-22 | injection device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0412056.4 | 2004-05-28 | ||
GB0412056A GB2414404B (en) | 2004-05-28 | 2004-05-28 | Injection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005115516A1 true WO2005115516A1 (en) | 2005-12-08 |
Family
ID=32671297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2005/002117 WO2005115516A1 (en) | 2004-05-28 | 2005-05-27 | Injection device |
Country Status (21)
Country | Link |
---|---|
US (1) | US7901377B1 (en) |
EP (2) | EP1755713B1 (en) |
JP (1) | JP5020814B2 (en) |
KR (1) | KR101244198B1 (en) |
CN (1) | CN101005869B (en) |
AU (1) | AU2005247147C1 (en) |
BR (1) | BRPI0510443B8 (en) |
CA (1) | CA2568677C (en) |
DK (1) | DK1755713T3 (en) |
EA (1) | EA012337B1 (en) |
ES (1) | ES2522280T3 (en) |
GB (1) | GB2414404B (en) |
IL (1) | IL179654A (en) |
MX (1) | MXPA06013899A (en) |
NO (1) | NO338663B1 (en) |
NZ (1) | NZ552329A (en) |
PL (1) | PL1755713T3 (en) |
PT (1) | PT1755713E (en) |
UA (1) | UA91021C2 (en) |
WO (1) | WO2005115516A1 (en) |
ZA (1) | ZA200610831B (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007002053A2 (en) | 2005-06-21 | 2007-01-04 | Eli Lilly And Company | Needled pharmaceutical delivery device with triggered automatic needle insertion and manually controlled pharmaceutical injection |
WO2010049239A1 (en) * | 2008-10-29 | 2010-05-06 | Shl Group Ab | Injection device |
US7976514B2 (en) | 2006-09-06 | 2011-07-12 | Becton, Dickinson And Company | Automatic injection device with temporizing means |
WO2011109205A2 (en) | 2010-03-01 | 2011-09-09 | Eli Lilly And Company | Automatic injection device with delay mechanism including dual functioning biasing member |
US8162887B2 (en) | 2004-06-23 | 2012-04-24 | Abbott Biotechnology Ltd. | Automatic injection devices |
US8409138B2 (en) | 2007-03-09 | 2013-04-02 | Eli Lilly And Company | Delay mechanism for automatic injection device |
US8636704B2 (en) | 2009-04-29 | 2014-01-28 | Abbvie Biotechnology Ltd | Automatic injection device |
US8679061B2 (en) | 2006-06-30 | 2014-03-25 | Abbvie Biotechnology Ltd | Automatic injection device |
EP2716316A1 (en) * | 2012-10-04 | 2014-04-09 | Sanofi-Aventis Deutschland GmbH | Medicament delivery device with damping mechanism |
US8708968B2 (en) | 2011-01-24 | 2014-04-29 | Abbvie Biotechnology Ltd. | Removal of needle shields from syringes and automatic injection devices |
US8734402B2 (en) | 2009-01-20 | 2014-05-27 | Future Injection Technologies Limited | Injection device |
US8758301B2 (en) | 2009-12-15 | 2014-06-24 | Abbvie Biotechnology Ltd | Firing button for automatic injection device |
US8834419B2 (en) | 2008-06-19 | 2014-09-16 | Cilag Gmbh International | Reusable auto-injector |
US8845594B2 (en) | 2008-06-19 | 2014-09-30 | Cilag Gmbh International | Auto-injector with filling means |
US8939958B2 (en) | 2008-06-19 | 2015-01-27 | Cilag Gmbh International | Fluid transfer assembly for a syringe |
US8968236B2 (en) | 2005-04-06 | 2015-03-03 | Cilag Gmbh International | Injection device |
US9028451B2 (en) | 2006-06-01 | 2015-05-12 | Cilag Gmbh International | Injection device |
US9028453B2 (en) | 2008-06-19 | 2015-05-12 | Cilag Gmbh International | Reusable auto-injector |
US9072833B2 (en) | 2006-06-01 | 2015-07-07 | Cilag Gmbh International | Injection device |
US20150209517A1 (en) * | 2012-05-31 | 2015-07-30 | Carebay Europe Ltd | Medicament Delivery Device |
US9180244B2 (en) | 2010-04-21 | 2015-11-10 | Abbvie Biotechnology Ltd | Wearable automatic injection device for controlled delivery of therapeutic agents |
US9233209B2 (en) | 2010-08-27 | 2016-01-12 | Novo Nordisk A/S | Medical injection device |
US9265887B2 (en) | 2011-01-24 | 2016-02-23 | Abbvie Biotechnology Ltd. | Automatic injection devices having overmolded gripping surfaces |
US9358346B2 (en) | 2005-08-30 | 2016-06-07 | Cilag Gmbh International | Needle assembly for a prefilled syringe system |
US9457149B2 (en) | 2010-12-21 | 2016-10-04 | Sanofi-Aventis Deutschland Gmbh | Back-end device for an auto-injector and auto-injector |
US9649441B2 (en) | 2005-04-06 | 2017-05-16 | Cilag Gmbh International | Injection device (bayonet cap removal) |
US9675758B2 (en) | 2004-05-28 | 2017-06-13 | Cilag Gmbh International | Injection device |
US9675757B2 (en) | 2004-05-28 | 2017-06-13 | Cilag Gmbh International | Injection device |
US9682194B2 (en) | 2008-06-19 | 2017-06-20 | Cilag Gmbh International | Re-useable auto-injector with filling means |
US20170182253A1 (en) * | 2014-05-07 | 2017-06-29 | Amgen Inc. | Autoinjector with shock reducing elements |
FR3046078A1 (en) * | 2015-12-24 | 2017-06-30 | Nemera La Verpilliere | AUTOMATIC INJECTION DEVICE WITH IMPROVED PISTON ROD. |
US9731080B2 (en) | 2005-04-06 | 2017-08-15 | Cilag Gmbh International | Injection device |
US9757520B2 (en) | 2006-06-01 | 2017-09-12 | Cilag Gmbh International | Injection device |
US9770558B2 (en) | 2005-09-27 | 2017-09-26 | Cilag Gmbh International | Auto-injection device with needle protecting cap having outer and inner sleeves |
US9895493B2 (en) | 2004-05-28 | 2018-02-20 | Cilag Gmbh International | Injection device |
US9913943B2 (en) | 2013-03-14 | 2018-03-13 | Eli Lilly And Company | Trigger assembly for an automatic injection device |
US9925337B2 (en) | 2013-03-14 | 2018-03-27 | Eli Lilly And Company | Delay mechanism suitable for compact automatic injection device |
EP2173413B2 (en) † | 2007-08-08 | 2019-08-07 | Cilag GmbH International | Injection device |
US10384009B2 (en) | 2014-09-01 | 2019-08-20 | Shl Medical Ag | Signal delaying assembly for a medicament delivery device |
WO2019192662A1 (en) | 2018-04-04 | 2019-10-10 | Cpu Innovation Aps | Auto injector with improved functionality |
US10709849B2 (en) | 2013-06-11 | 2020-07-14 | Cilag Gmbh International | Guide for an injection device |
US10799646B2 (en) | 2013-06-11 | 2020-10-13 | Cilag Gmbh International | Injection device |
US10806867B2 (en) | 2011-01-24 | 2020-10-20 | E3D Agricultural Cooperative Association Ltd. | Injector |
US11123492B2 (en) | 2013-06-11 | 2021-09-21 | Cilag Gmbh International | Injection device |
US11173255B2 (en) | 2013-06-11 | 2021-11-16 | Cilag Gmbh International | Injection device |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2475573C (en) | 2002-02-11 | 2013-03-26 | Antares Pharma, Inc. | Intradermal injector |
US7947017B2 (en) | 2004-11-22 | 2011-05-24 | Intelliject, Inc. | Devices, systems and methods for medicament delivery |
US7648483B2 (en) | 2004-11-22 | 2010-01-19 | Intelliject, Inc. | Devices, systems and methods for medicament delivery |
US10737028B2 (en) | 2004-11-22 | 2020-08-11 | Kaleo, Inc. | Devices, systems and methods for medicament delivery |
CA2586525C (en) | 2004-11-22 | 2013-01-15 | Intelliject, Llc | Devices, systems, and methods for medicament delivery |
US11590286B2 (en) | 2004-11-22 | 2023-02-28 | Kaleo, Inc. | Devices, systems and methods for medicament delivery |
HUE042286T2 (en) | 2005-01-24 | 2019-06-28 | Antares Pharma Inc | Prefilled needle assisted syringe jet injector |
JP4948422B2 (en) | 2005-02-01 | 2012-06-06 | インテリジェクト,インコーポレイテッド | Drug delivery apparatus, system and method |
US9144648B2 (en) | 2006-05-03 | 2015-09-29 | Antares Pharma, Inc. | Injector with adjustable dosing |
US8251947B2 (en) | 2006-05-03 | 2012-08-28 | Antares Pharma, Inc. | Two-stage reconstituting injector |
GB2438592B (en) * | 2006-06-01 | 2011-04-06 | Cilag Gmbh Int | Injection device |
GB2452030A (en) * | 2007-08-10 | 2009-02-25 | Owen Mumford Ltd | Injection devices |
ES2548447T3 (en) | 2008-03-10 | 2015-10-16 | Antares Pharma, Inc. | Injector safety device |
US8052645B2 (en) | 2008-07-23 | 2011-11-08 | Avant Medical Corp. | System and method for an injection using a syringe needle |
EP2276527B1 (en) | 2008-05-20 | 2018-02-28 | Avant Medical Corp. | Autoinjector system |
US8177749B2 (en) | 2008-05-20 | 2012-05-15 | Avant Medical Corp. | Cassette for a hidden injection needle |
ES2637346T3 (en) * | 2008-05-20 | 2017-10-11 | Shl Group Ab | Medication administration device with a buffer |
EP2296732B1 (en) * | 2008-06-11 | 2014-02-26 | SHL Group AB | Medicament delivery device |
CA2732812C (en) | 2008-08-05 | 2017-10-31 | Antares Pharma, Inc. | Multiple dosage injector |
WO2010033882A2 (en) * | 2008-09-18 | 2010-03-25 | Becton, Dickinson And Company | Medical injector with slidable sleeve activation |
DE202009001836U1 (en) * | 2009-02-13 | 2009-05-20 | Dieter Hölzle Technik-Projekte GmbH | Electromechanical injection device |
CN102612381B (en) | 2009-03-20 | 2015-09-09 | 安塔瑞斯制药公司 | Hazardous agents injected system |
EP2468328A1 (en) * | 2010-12-21 | 2012-06-27 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
US9173999B2 (en) | 2011-01-26 | 2015-11-03 | Kaleo, Inc. | Devices and methods for delivering medicaments from a multi-chamber container |
US8939943B2 (en) | 2011-01-26 | 2015-01-27 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US8627816B2 (en) | 2011-02-28 | 2014-01-14 | Intelliject, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
EP2489383A1 (en) * | 2011-02-18 | 2012-08-22 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
EP2489385A1 (en) | 2011-02-18 | 2012-08-22 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
EP2489386A1 (en) | 2011-02-18 | 2012-08-22 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
EP2489382A1 (en) | 2011-02-18 | 2012-08-22 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
CA3021845C (en) | 2011-04-20 | 2022-03-29 | Amgen Inc. | Autoinjector apparatus |
US9220660B2 (en) | 2011-07-15 | 2015-12-29 | Antares Pharma, Inc. | Liquid-transfer adapter beveled spike |
US8496619B2 (en) | 2011-07-15 | 2013-07-30 | Antares Pharma, Inc. | Injection device with cammed ram assembly |
HUE066117T2 (en) | 2012-03-06 | 2024-07-28 | Antares Pharma Inc | Prefilled syringe with breakaway force feature |
AU2013203784A1 (en) | 2012-04-06 | 2013-10-24 | Kaushik J. Dave | Needle assisted jet injection administration of testosterone compositions |
USD898908S1 (en) | 2012-04-20 | 2020-10-13 | Amgen Inc. | Pharmaceutical product cassette for an injection device |
USD808010S1 (en) | 2012-04-20 | 2018-01-16 | Amgen Inc. | Injection device |
WO2013169800A1 (en) | 2012-05-07 | 2013-11-14 | Antares Pharma, Inc. | Injection device with cammed ram assembly |
FR2992222B1 (en) * | 2012-06-22 | 2015-06-19 | Aguettant Lab | PROTECTIVE DEVICE FOR EQUIPPING AN INJECTION DEVICE HAVING A CONNECTION TIP |
PT3659647T (en) | 2013-02-11 | 2024-03-27 | Antares Pharma Inc | Needle assisted jet injection device having reduced trigger force |
EP3572108A1 (en) | 2013-03-11 | 2019-11-27 | Antares Pharma, Inc. | Dosage injector with pinion system |
WO2014165136A1 (en) | 2013-03-12 | 2014-10-09 | Antares Pharma, Inc. | Constant volume prefilled syringes and kits thereof |
WO2014143815A2 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
JP6336564B2 (en) | 2013-03-15 | 2018-06-06 | アムゲン・インコーポレーテッド | Drug cassette, auto-injector, and auto-injector system |
US9517307B2 (en) | 2014-07-18 | 2016-12-13 | Kaleo, Inc. | Devices and methods for delivering opioid antagonists including formulations for naloxone |
US11049416B2 (en) | 2015-01-26 | 2021-06-29 | Noble International, Llc | Injection simulation device and method |
CH711240A2 (en) * | 2015-06-23 | 2016-12-30 | Tecpharma Licensing Ag | Auto injection device. |
JP6830067B2 (en) | 2015-06-30 | 2021-02-17 | カレオ,インコーポレイテッド | Automatic syringe that administers medication in a prefilled syringe |
EP3373858B1 (en) | 2015-11-13 | 2022-03-30 | Johnson & Johnson Surgical Vision, Inc. | Intraocular lens insertion device |
US10549044B2 (en) | 2016-06-09 | 2020-02-04 | Becton, Dickinson And Company | Spacer assembly for drug delivery system |
US10603445B2 (en) | 2016-06-09 | 2020-03-31 | Becton, Dickinson And Company | Needle actuator assembly for drug delivery system |
US10751476B2 (en) | 2016-06-09 | 2020-08-25 | Becton, Dickinson And Company | Actuator assembly for drug delivery system |
US10792432B2 (en) | 2016-06-09 | 2020-10-06 | Becton, Dickinson And Company | Drive assembly and spacer for drug delivery system |
CA3046228A1 (en) | 2016-12-23 | 2018-06-28 | Kaleo, Inc. | Medicament delivery device and methods for delivering drugs to infants and children |
EP3580738B1 (en) * | 2017-02-07 | 2023-04-12 | Noble International, Inc. | Injection simulation device and method |
CN115804885A (en) | 2017-10-16 | 2023-03-17 | 贝克顿·迪金森公司 | Drive assembly for a drug delivery system |
KR20210076935A (en) * | 2018-10-15 | 2021-06-24 | 암젠 인크 | Drug delivery device with damping mechanism |
US11167087B2 (en) | 2019-08-09 | 2021-11-09 | Kaleo, Inc. | Devices and methods for delivery of substances within a prefilled syringe |
WO2022174125A1 (en) * | 2021-02-12 | 2022-08-18 | Altaviz, Llc | Externally powered syringe drivers and systems and methods for using them |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4561856A (en) * | 1983-08-18 | 1985-12-31 | Cochran Ulrich D | Infusion pump |
US4744786A (en) * | 1986-06-17 | 1988-05-17 | Cordis Corporation | Infusion pump |
WO2003092771A1 (en) * | 2002-05-02 | 2003-11-13 | Pa Knowledge Limited | Injection device |
WO2003097133A1 (en) * | 2002-05-17 | 2003-11-27 | Owen Mumford Limited | Injection device with automatically retractable needle |
Family Cites Families (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394863A (en) * | 1981-10-23 | 1983-07-26 | Survival Technology, Inc. | Automatic injector with cartridge having separate sequentially injectable medicaments |
WO1988010129A1 (en) | 1987-06-25 | 1988-12-29 | Nova Medical Pty. Limited | Slow delivery injection device |
US5026349A (en) | 1988-10-05 | 1991-06-25 | Autoject Systems Inc. | Liquid medicament injector system |
US6096005A (en) | 1989-07-11 | 2000-08-01 | Mdc Investment Holdings, Inc. | Retractable needle medical devices |
GB8926825D0 (en) | 1989-11-28 | 1990-01-17 | Glaxo Group Ltd | Device |
US5451210A (en) | 1991-04-29 | 1995-09-19 | Lifequest Medical, Inc. | System and method for rapid vascular drug delivery |
US5868711A (en) | 1991-04-29 | 1999-02-09 | Board Of Regents, The University Of Texas System | Implantable intraosseous device for rapid vascular access |
US5405362A (en) | 1991-04-29 | 1995-04-11 | The Board Of Regents For The University Of Texas System | Interactive external defibrillation and drug injection system |
US5271744A (en) | 1991-04-29 | 1993-12-21 | George C. Kramer | System and method for rapid vascular drug delivery |
US5176643A (en) * | 1991-04-29 | 1993-01-05 | George C. Kramer | System and method for rapid vascular drug delivery |
GB9111600D0 (en) | 1991-05-30 | 1991-07-24 | Owen Mumford Ltd | Improvements relating to injection devices |
GB9200219D0 (en) | 1992-01-07 | 1992-02-26 | Medimech Int Ltd | Automatic injectors |
MX9302834A (en) | 1992-05-15 | 1993-11-01 | Safe T Ltd | HOLLOW NEEDLE APPLICATOR. |
WO1994004207A1 (en) | 1992-08-17 | 1994-03-03 | Allard Edward F | Method and apparatus for a retracting needle |
US5267963A (en) | 1992-08-21 | 1993-12-07 | Nicholas Bachynsky | Medication injection device |
JPH08505543A (en) | 1992-11-19 | 1996-06-18 | テブロ ソシエテ アノニム | Disposable automatic injection device for prefilled syringe |
DE69427226T2 (en) | 1993-03-24 | 2001-08-30 | Owen Mumford Ltd., Woodstock | DEVICE FOR INJECTION |
US5425715A (en) | 1993-08-05 | 1995-06-20 | Survival Technology, Inc. | Reloadable injector |
CA2135706C (en) | 1993-11-15 | 1999-06-15 | Walter E. Cover | Retractable-needle cannula insertion set with refinements to better control leakage, retraction speed, and reuse |
FR2715071B1 (en) | 1994-01-17 | 1996-03-01 | Aguettant Lab | Automatic drug injector. |
US5478316A (en) | 1994-02-02 | 1995-12-26 | Becton, Dickinson And Company | Automatic self-injection device |
FR2718357B1 (en) | 1994-04-06 | 1997-10-03 | Defarges Alain Moreau | Improvements made to a needleless jet injection device. |
GB9408500D0 (en) | 1994-04-28 | 1994-06-22 | Pa Consulting Services | Improvements in or relating to injection devices |
GB9412301D0 (en) | 1994-06-17 | 1994-08-10 | Safe T Ltd | Hollow-needle drugs etc applicators |
AUPM922394A0 (en) | 1994-11-03 | 1994-11-24 | Astra Pharmaceuticals Pty Ltd | Plastic syringe with overcap |
US5637094A (en) * | 1994-11-04 | 1997-06-10 | Pos-T-Vac, Inc. | Multiple dosage syringe |
US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
FR2733155B1 (en) | 1995-04-18 | 1997-09-19 | Tebro | RECHARGEABLE SELF-INJECTOR |
FR2736553B1 (en) | 1995-07-12 | 1998-01-09 | Soc Et Et D Applic Tech Sedat | INJECTION SYRINGE, IN PARTICULAR LIQUID MEDICAL PRODUCTS, WITH MOBILE NEEDLE PROTECTOR |
FR2739564B3 (en) | 1995-10-06 | 1998-04-10 | Calomili Gerard | SINGLE USE SAFETY SYRINGE, WITH WHICH THE NEEDLE CANNULA AUTOMATICALLY AND FULLY RETRACTS AFTER FIRST USE |
US5567160A (en) | 1995-10-26 | 1996-10-22 | Survival Technology, Inc. | Autoinjector training device |
US5899879A (en) | 1995-12-19 | 1999-05-04 | Genesis Medical Technologies, Inc. | Spring-actuated needleless injector |
GB9606829D0 (en) | 1996-03-30 | 1996-06-05 | Jeffrey Peter | Supplying materials etc |
IT1284642B1 (en) | 1996-05-02 | 1998-05-21 | Ermanno Greco | REFINEMENTS FOR AUTOMATIC SYRINGES FOR INJECTION |
GB9612724D0 (en) | 1996-06-18 | 1996-08-21 | Owen Mumford Ltd | Improvements relating to injection devices |
US5843036A (en) | 1996-08-23 | 1998-12-01 | Becton Dickinson And Company | Non-dosing cartridge for an injection device |
US5709662A (en) | 1996-08-23 | 1998-01-20 | Becton Dickinson France, S.A. | Cartridge for an injection device |
US6090897A (en) * | 1996-12-09 | 2000-07-18 | Nippon Shokubai Co., Ltd. | Curable resin composition and its use |
US6203530B1 (en) | 1997-01-28 | 2001-03-20 | Pos-T-Vac, Inc. | Auto-injection device |
GB9714948D0 (en) | 1997-07-16 | 1997-09-17 | Owen Mumford Ltd | Improvements relating to injection devices |
US5954738A (en) | 1997-07-31 | 1999-09-21 | Bayer Corporation | Blood sampling device with lancet damping system |
GB9716065D0 (en) | 1997-07-31 | 1997-10-01 | Owen Mumford Ltd | Improvements relating to injection devices |
US6171276B1 (en) * | 1997-08-06 | 2001-01-09 | Pharmacia & Upjohn Ab | Automated delivery device and method for its operation |
DK1003580T3 (en) | 1997-08-21 | 2004-02-23 | Ares Trading Sa | injection device |
US6569115B1 (en) | 1997-08-28 | 2003-05-27 | Mdc Investment Holdings, Inc. | Pre-filled retractable needle injection device |
US6004296A (en) | 1997-09-30 | 1999-12-21 | Becton Dickinson France, S.A. | Lockable safety shield assembly for a prefillable syringe |
US6090078A (en) | 1997-09-30 | 2000-07-18 | Becton, Dickinson And Company | Dampening devices and methods for needle retracting safety vascular access devices |
IE970782A1 (en) | 1997-10-22 | 1999-05-05 | Elan Corp | An improved automatic syringe |
US6045534A (en) | 1997-10-27 | 2000-04-04 | Sarcos, Inc. | Disposable fluid injection module |
US6086562A (en) | 1997-10-27 | 2000-07-11 | Sarcos, Inc. | Disposable automatic injection device |
JP2001521793A (en) | 1997-10-30 | 2001-11-13 | ラボラトアール アゲータン | Medical safety syringe |
FR2770404B1 (en) | 1997-11-05 | 2000-01-28 | Sedat | AUTOMATIC INJECTOR WITH NEEDLE RETRACTION AT THE END OF INJECTION |
US6015438A (en) | 1997-11-14 | 2000-01-18 | Retractable Technologies Inc. | Full displacement retractable syringe |
US5913843A (en) | 1997-11-26 | 1999-06-22 | Jentzen; S. William | Dampening device for spring movement |
DE29801168U1 (en) | 1998-01-24 | 1999-08-12 | Medico Dev Investment Co | Injection device |
FR2774294B1 (en) | 1998-02-04 | 2000-04-14 | Marc Brunel | DEVICE FOR AUTOMATICALLY INJECTING A DOSE OF MEDICINAL PRODUCT |
GB9803084D0 (en) | 1998-02-14 | 1998-04-08 | Owen Mumford Ltd | Improvements relating to medical injection devices |
GB9808408D0 (en) | 1998-04-18 | 1998-06-17 | Owen Mumford Ltd | Improvements relating to injection devices |
DE19821933C1 (en) | 1998-05-15 | 1999-11-11 | Disetronic Licensing Ag | Device for administering an injectable product |
DE19822031C2 (en) | 1998-05-15 | 2000-03-23 | Disetronic Licensing Ag | Auto injection device |
FR2778853B1 (en) | 1998-05-19 | 2000-12-22 | Sedat | INJECTION SYRINGE WITH SPRING LOADED NEEDLE PROTECTOR |
US6428528B2 (en) | 1998-08-11 | 2002-08-06 | Antares Pharma, Inc. | Needle assisted jet injector |
GB9817662D0 (en) | 1998-08-13 | 1998-10-07 | Crocker Peter J | Substance delivery |
SE9803662D0 (en) | 1998-10-26 | 1998-10-26 | Pharmacia & Upjohn Ab | autoinjector |
US6641565B1 (en) | 1998-11-13 | 2003-11-04 | Elan Pharma International Limited | drug delivery systems and methods |
US6783509B1 (en) | 1998-11-18 | 2004-08-31 | Bioject Inc. | Single-use needle-less hypodermic jet injection apparatus and method |
US6689093B2 (en) | 1998-11-18 | 2004-02-10 | Bioject, Inc. | Single-use needle-less hypodermic jet injection apparatus and method |
US6264629B1 (en) | 1998-11-18 | 2001-07-24 | Bioject, Inc. | Single-use needle-less hypodermic jet injection apparatus and method |
DE29822494U1 (en) | 1998-12-17 | 2000-05-04 | Medico Development Investment Co., Ascona | Injection device |
GB9903475D0 (en) | 1999-02-17 | 1999-04-07 | Owen Mumford Ltd | Improvements relating to injection devices |
NO310224B1 (en) | 1999-04-22 | 2001-06-11 | Medical Needle As | Disposable syringe with automatically retractable needle |
US20040069044A1 (en) | 1999-04-29 | 2004-04-15 | Gilad Lavi | Device for measuring a volume of drug |
EP1198263B1 (en) | 1999-07-27 | 2003-04-16 | Pharma Consult Ges.M.B.H. | Device for automatically injecting injection liquids |
FR2799376B1 (en) | 1999-10-07 | 2002-01-18 | Marc Brunel | SINGLE USE INJECTION DEVICE |
US6569123B2 (en) | 1999-10-14 | 2003-05-27 | Becton, Dickinson And Company | Prefillable intradermal injector |
US6391003B1 (en) | 1999-10-25 | 2002-05-21 | Antares Pharma, Inc. | Locking mechanism for a jet injector |
US7029457B2 (en) | 1999-11-23 | 2006-04-18 | Felton International, Inc. | Jet injector with hand piece |
US6595962B1 (en) | 1999-12-08 | 2003-07-22 | Union Medico | Injection device |
US6926696B2 (en) | 1999-12-23 | 2005-08-09 | Owais Mohammed | Hypodermic syringe needle assembly and method of making the same |
GB0002095D0 (en) | 2000-01-28 | 2000-03-22 | Novartis Ag | Device |
US6595957B1 (en) | 2000-01-31 | 2003-07-22 | Ethicon, Inc. | Surgical fluid management system with a dampening chamber |
GB0003790D0 (en) * | 2000-02-18 | 2000-04-05 | Astrazeneca Uk Ltd | Medical device |
AU2001243420A1 (en) | 2000-03-06 | 2001-09-17 | Mdc Investment Holdings, Inc. | Hypodermic syringe with retractable needle |
US6832992B2 (en) | 2000-03-07 | 2004-12-21 | Becton, Dickinson And Company | Passive safety device for needle of blood collection set |
US6855130B2 (en) | 2000-03-07 | 2005-02-15 | Becton, Dickinson And Company | Passive safety device for needle of IV infusion or blood collection set |
GB0007071D0 (en) | 2000-03-24 | 2000-05-17 | Sams Bernard | One-way clutch mechanisms and injector devices |
GB0008955D0 (en) | 2000-04-12 | 2000-05-31 | Owen Mumford Ltd | An injector pack |
US6607508B2 (en) | 2000-04-27 | 2003-08-19 | Invivotech, Inc. | Vial injector device |
US6740062B2 (en) | 2000-05-22 | 2004-05-25 | Pharmacia Ab | Medical device |
US6517517B1 (en) | 2000-06-08 | 2003-02-11 | Mayo Foundation For Medical Education And Research | Automated injection device for administration of liquid medicament |
AU2001281753A1 (en) | 2000-08-29 | 2002-03-13 | Novo-Nordisk A/S | Automatic injection device with torsion function for retraction of needle |
DE60025939T2 (en) | 2000-11-17 | 2006-09-21 | Delphi Technologies, Inc., Troy | NADELHUBDÄMPFER OF A INJECTOR FOR FUEL INJECTION AND DAMPING PROCESS |
SE518981C2 (en) | 2000-12-14 | 2002-12-17 | Shl Medical Ab | autoinjector |
US6387078B1 (en) | 2000-12-21 | 2002-05-14 | Gillespie, Iii Richard D. | Automatic mixing and injecting apparatus |
US6485460B2 (en) | 2001-01-12 | 2002-11-26 | Bracco Diagnostics, Inc. | Tamper evident syringe barrel |
US6673049B2 (en) | 2001-02-15 | 2004-01-06 | Disetronic Licensing Ag | Injection device for injecting fluid |
US6645170B2 (en) | 2001-03-05 | 2003-11-11 | Bioject Medical Technologies, Inc. | Simplified disposable needle-free injection apparatus and method |
US6471669B2 (en) | 2001-03-05 | 2002-10-29 | Bioject Medical Technologies Inc. | Disposable needle-free injection apparatus and method |
GB0109002D0 (en) | 2001-04-10 | 2001-05-30 | Glaxo Group Ltd | Dispenser |
GB0109001D0 (en) | 2001-04-10 | 2001-05-30 | Glaxo Group Ltd | Dispenser |
US7182734B2 (en) | 2001-08-09 | 2007-02-27 | Becton, Dickinson And Company | Retracting needle safety device |
GB2391480B (en) | 2002-08-05 | 2007-02-28 | Caretek Medical Ltd | Drug delivery system |
US7488306B2 (en) | 2001-09-26 | 2009-02-10 | Smiths Medical Asd, Inc. | Needle protection device with dampener |
US6796967B2 (en) | 2001-10-22 | 2004-09-28 | Nps Pharmaceuticals, Inc. | Injection needle assembly |
US7569035B1 (en) | 2001-11-02 | 2009-08-04 | Meridian Medical Technologies, Inc. | Automatic injector with anti-coring needle |
BR0214026A (en) | 2001-11-09 | 2004-10-13 | Alza Corp | Pneumatic activation auto injector |
US6607510B2 (en) | 2001-11-09 | 2003-08-19 | Bioject Medical Technologies Inc. | Disposable needle-free injection apparatus and method |
JP4008232B2 (en) * | 2001-11-22 | 2007-11-14 | 昭和薬品化工株式会社 | Plunger head of plunger rod of dental cartridge type electric syringe |
US20030105430A1 (en) | 2001-11-30 | 2003-06-05 | Elan Pharma International Limited Wil House | Automatic injector |
US6863659B2 (en) | 2001-12-10 | 2005-03-08 | Bruce George Sharpe | Sharp safe hydraulic retractable syringe |
JP4046998B2 (en) | 2001-12-14 | 2008-02-13 | ロレアル | Applicator |
WO2003051434A2 (en) | 2001-12-19 | 2003-06-26 | Disetronic Licensing Ag | Administration device comprising an expulsion member and a stopper covering |
US20040143224A1 (en) | 2002-01-07 | 2004-07-22 | Jeffrey Field | Method and apparatus for inhibiting fluid loss from a syringe |
GB0200444D0 (en) | 2002-01-10 | 2002-02-27 | Owen Mumford Ltd | Improvements relating to medical injection devices |
CA2475573C (en) | 2002-02-11 | 2013-03-26 | Antares Pharma, Inc. | Intradermal injector |
GB0204673D0 (en) | 2002-02-28 | 2002-04-10 | Dca Design Int Ltd | Improvements in and relating to a medicament delivery device |
GB0206560D0 (en) | 2002-03-20 | 2002-05-01 | Glaxo Group Ltd | Novel device |
GB2396298A (en) * | 2002-12-17 | 2004-06-23 | Pa Consulting Services | Injection device and drive coupling |
US6808507B2 (en) | 2002-05-10 | 2004-10-26 | Cambridge Biostability Ltd. | Safety injectors |
US7207973B2 (en) | 2002-05-10 | 2007-04-24 | Becton, Dickinson And Company | Passive safety shield system for injection devices |
US6776777B2 (en) | 2002-05-10 | 2004-08-17 | Becton, Dickinson And Company | Passive safety shield system for injection devices |
US6979316B1 (en) | 2002-05-23 | 2005-12-27 | Seedlings Life Science Ventures Llc | Apparatus and method for rapid auto-injection of medication |
US6676630B2 (en) | 2002-06-04 | 2004-01-13 | Bioject Medical Technologies, Inc. | Needle-free injection system |
US7156823B2 (en) | 2002-06-04 | 2007-01-02 | Bioject Inc. | High workload needle-free injection system |
US6764465B2 (en) | 2002-06-24 | 2004-07-20 | Long Hsiung Chen | Syringe with retractable needle and safety lock |
TW572761B (en) | 2002-07-17 | 2004-01-21 | Ming-Jeng Shiu | Syringe with retraction force |
US20040087897A1 (en) | 2002-07-31 | 2004-05-06 | Birger Hjertman | Device and method for liquid jet generation |
CA2494825C (en) | 2002-08-21 | 2009-02-17 | Pharmacia Corporation | Injectable pharmaceutical suspension in a two-chamber vial |
EP1401089A1 (en) | 2002-09-18 | 2004-03-24 | Continental ISAD Electronic Systems GmbH & Co. KG | Electrical machine, formed as starter, generator or starter-generator for a vehicle |
AU2003265179B2 (en) | 2002-09-24 | 2008-07-31 | Shl Medical Ab | Injecting device |
WO2004047893A1 (en) | 2002-11-25 | 2004-06-10 | Tecpharma Licensing Ag | Auto-injector comprising a resettable releasing safety device |
EP1572268A1 (en) | 2002-11-25 | 2005-09-14 | Tecpharma Licensing AG | Device for automatically injecting an active agent |
CH695926A5 (en) | 2002-11-25 | 2006-10-31 | Tecpharma Licensing Ag | Device for automatically injecting an active ingredient. |
GB2396816A (en) * | 2002-12-17 | 2004-07-07 | Pa Consulting Services | Injection device |
GB0229345D0 (en) | 2002-12-17 | 2003-01-22 | Safe T Ltd | Hollow needle applicators |
US7252651B2 (en) | 2003-01-07 | 2007-08-07 | Becton, Dickinson And Company | Disposable injection device |
US6767336B1 (en) | 2003-01-09 | 2004-07-27 | Sheldon Kaplan | Automatic injector |
EP1491478B1 (en) | 2003-06-25 | 2007-05-09 | Müller Martini Holding AG | Diverting device |
US7500963B2 (en) | 2003-07-22 | 2009-03-10 | Safety Syringes, Inc. | Systems and methods for automatic medical injection with safeguard |
US20050027255A1 (en) | 2003-07-31 | 2005-02-03 | Sid Technologies, Llc | Automatic injector |
DE20311996U1 (en) | 2003-08-01 | 2003-10-16 | Hoelzle Dieter Tech Projekte | injection device |
DE10339794A1 (en) | 2003-08-28 | 2005-04-07 | Tecpharma Licensing Ag | Administering device with a protective cap removal device and a needle protection sleeve blocking device |
DE10340586A1 (en) | 2003-09-03 | 2005-04-07 | Tecpharma Licensing Ag | Mixing device for multi-chamber ampoule |
DE10342058B4 (en) | 2003-09-11 | 2007-10-25 | Tecpharma Licensing Ag | Administration device for an injectable product with a trigger safety device |
DE10348185A1 (en) | 2003-10-16 | 2005-05-19 | Tecpharma Licensing Ag | Injection device for administering fluid product e.g. insulin, comprising injection needle and needle cover arranged on holder or on casing so that it can shift and generally surrounds injection needle in advanced position |
US20050085776A1 (en) | 2003-10-16 | 2005-04-21 | Edgar Hommann | Injection device for administering a fluid product |
JP2005141729A (en) | 2003-10-17 | 2005-06-02 | Fuji Xerox Co Ltd | Method, device, and program for peripheral apparatus and control and method, device, and program for display control |
DE10351598A1 (en) | 2003-11-05 | 2005-06-16 | Tecpharma Licensing Ag | Auto-injection device |
US20050101919A1 (en) | 2003-11-07 | 2005-05-12 | Lennart Brunnberg | Device for an injector |
US20050125019A1 (en) | 2003-12-05 | 2005-06-09 | Paul Kudrna | Lancet device and method |
DE502004010278D1 (en) | 2003-12-18 | 2009-12-03 | Tecpharma Licensing Ag | RELEASE INJECTION DEVICE |
CH696421A5 (en) | 2003-12-18 | 2007-06-15 | Tecpharma Licensing Ag | Autoinjector with arresting the drug container. |
FR2865407B1 (en) | 2004-01-27 | 2006-04-28 | Crossject | NEEDLELESS SYRINGE WITH INJECTOR RECEPTACLE AMORTISSANT |
US20050222539A1 (en) | 2004-03-30 | 2005-10-06 | Pediamed Pharmaceuticals, Inc. | Automatic injection device |
US20050273054A1 (en) | 2004-06-03 | 2005-12-08 | Florida Atlantic University | Epinephrine auto-injector |
-
2004
- 2004-05-28 GB GB0412056A patent/GB2414404B/en not_active Expired - Lifetime
-
2005
- 2005-05-27 MX MXPA06013899A patent/MXPA06013899A/en active IP Right Grant
- 2005-05-27 JP JP2007514110A patent/JP5020814B2/en active Active
- 2005-05-27 CA CA2568677A patent/CA2568677C/en active Active
- 2005-05-27 PL PL05747009T patent/PL1755713T3/en unknown
- 2005-05-27 ES ES05747009.8T patent/ES2522280T3/en active Active
- 2005-05-27 EA EA200602238A patent/EA012337B1/en unknown
- 2005-05-27 AU AU2005247147A patent/AU2005247147C1/en active Active
- 2005-05-27 UA UAA200613629A patent/UA91021C2/en unknown
- 2005-05-27 WO PCT/GB2005/002117 patent/WO2005115516A1/en active Application Filing
- 2005-05-27 EP EP05747009.8A patent/EP1755713B1/en active Active
- 2005-05-27 CN CN2005800239100A patent/CN101005869B/en active Active
- 2005-05-27 EP EP11163779A patent/EP2361649A1/en not_active Withdrawn
- 2005-05-27 DK DK05747009.8T patent/DK1755713T3/en active
- 2005-05-27 PT PT57470098T patent/PT1755713E/en unknown
- 2005-05-27 BR BRPI0510443A patent/BRPI0510443B8/en active IP Right Grant
- 2005-05-27 US US11/579,560 patent/US7901377B1/en active Active
- 2005-05-27 KR KR1020067027624A patent/KR101244198B1/en active IP Right Grant
- 2005-05-27 NZ NZ552329A patent/NZ552329A/en unknown
-
2006
- 2006-11-28 IL IL179654A patent/IL179654A/en active IP Right Grant
- 2006-12-21 ZA ZA200610831A patent/ZA200610831B/en unknown
- 2006-12-22 NO NO20065979A patent/NO338663B1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4561856A (en) * | 1983-08-18 | 1985-12-31 | Cochran Ulrich D | Infusion pump |
US4744786A (en) * | 1986-06-17 | 1988-05-17 | Cordis Corporation | Infusion pump |
WO2003092771A1 (en) * | 2002-05-02 | 2003-11-13 | Pa Knowledge Limited | Injection device |
WO2003097133A1 (en) * | 2002-05-17 | 2003-11-27 | Owen Mumford Limited | Injection device with automatically retractable needle |
Non-Patent Citations (1)
Title |
---|
See also references of EP1755713A1 * |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9675757B2 (en) | 2004-05-28 | 2017-06-13 | Cilag Gmbh International | Injection device |
US9895493B2 (en) | 2004-05-28 | 2018-02-20 | Cilag Gmbh International | Injection device |
US9675758B2 (en) | 2004-05-28 | 2017-06-13 | Cilag Gmbh International | Injection device |
US8162887B2 (en) | 2004-06-23 | 2012-04-24 | Abbott Biotechnology Ltd. | Automatic injection devices |
US9017287B2 (en) | 2004-06-23 | 2015-04-28 | Abbvie Biotechnology Ltd | Automatic injection devices |
US9764090B2 (en) | 2004-06-23 | 2017-09-19 | Abbvie Biotechnology Ltd | Relating to automatic injection devices |
US8668670B2 (en) | 2004-06-23 | 2014-03-11 | Abbvie Biotechnology Ltd | Automatic injection devices |
US9731080B2 (en) | 2005-04-06 | 2017-08-15 | Cilag Gmbh International | Injection device |
US9649441B2 (en) | 2005-04-06 | 2017-05-16 | Cilag Gmbh International | Injection device (bayonet cap removal) |
US8968236B2 (en) | 2005-04-06 | 2015-03-03 | Cilag Gmbh International | Injection device |
US7918824B2 (en) | 2005-06-21 | 2011-04-05 | Eli Lilly And Company | Needled pharmaceutical delivery device with triggered automatic needle insertion and manually controlled pharmaceutical injection |
WO2007002053A2 (en) | 2005-06-21 | 2007-01-04 | Eli Lilly And Company | Needled pharmaceutical delivery device with triggered automatic needle insertion and manually controlled pharmaceutical injection |
WO2007002053A3 (en) * | 2005-06-21 | 2007-03-22 | Lilly Co Eli | Needled pharmaceutical delivery device with triggered automatic needle insertion and manually controlled pharmaceutical injection |
US9358346B2 (en) | 2005-08-30 | 2016-06-07 | Cilag Gmbh International | Needle assembly for a prefilled syringe system |
US9770558B2 (en) | 2005-09-27 | 2017-09-26 | Cilag Gmbh International | Auto-injection device with needle protecting cap having outer and inner sleeves |
US9072833B2 (en) | 2006-06-01 | 2015-07-07 | Cilag Gmbh International | Injection device |
US9028451B2 (en) | 2006-06-01 | 2015-05-12 | Cilag Gmbh International | Injection device |
US9757520B2 (en) | 2006-06-01 | 2017-09-12 | Cilag Gmbh International | Injection device |
US8679061B2 (en) | 2006-06-30 | 2014-03-25 | Abbvie Biotechnology Ltd | Automatic injection device |
US9486584B2 (en) | 2006-06-30 | 2016-11-08 | Abbvie Biotechnology Ltd. | Automatic injection device |
US9486582B2 (en) | 2006-09-06 | 2016-11-08 | Becton Dickinson France S.A.S. | Automatic injection device with temporizing means |
EP2076299B1 (en) | 2006-09-06 | 2017-07-19 | Becton Dickinson France | Automatic injection device with temporizing means |
US8435215B2 (en) | 2006-09-06 | 2013-05-07 | Becton, Dickinson And Company | Automatic injection device with temporizing means |
US7976514B2 (en) | 2006-09-06 | 2011-07-12 | Becton, Dickinson And Company | Automatic injection device with temporizing means |
US8409138B2 (en) | 2007-03-09 | 2013-04-02 | Eli Lilly And Company | Delay mechanism for automatic injection device |
EP2173413B2 (en) † | 2007-08-08 | 2019-08-07 | Cilag GmbH International | Injection device |
US8939958B2 (en) | 2008-06-19 | 2015-01-27 | Cilag Gmbh International | Fluid transfer assembly for a syringe |
US8845594B2 (en) | 2008-06-19 | 2014-09-30 | Cilag Gmbh International | Auto-injector with filling means |
US9028453B2 (en) | 2008-06-19 | 2015-05-12 | Cilag Gmbh International | Reusable auto-injector |
US8834419B2 (en) | 2008-06-19 | 2014-09-16 | Cilag Gmbh International | Reusable auto-injector |
US9682194B2 (en) | 2008-06-19 | 2017-06-20 | Cilag Gmbh International | Re-useable auto-injector with filling means |
EP3017837A3 (en) * | 2008-10-29 | 2016-05-18 | SHL Group AB | Injection device |
AU2009309895B2 (en) * | 2008-10-29 | 2012-06-07 | Shl Group Ab | Injection device |
JP2012506745A (en) * | 2008-10-29 | 2012-03-22 | エス・ホー・エル・グループ・アクチボラゲット | Injection device |
WO2010049239A1 (en) * | 2008-10-29 | 2010-05-06 | Shl Group Ab | Injection device |
US8734402B2 (en) | 2009-01-20 | 2014-05-27 | Future Injection Technologies Limited | Injection device |
US8636704B2 (en) | 2009-04-29 | 2014-01-28 | Abbvie Biotechnology Ltd | Automatic injection device |
US9561328B2 (en) | 2009-04-29 | 2017-02-07 | Abbvie Biotechnology Ltd | Automatic injection device |
US8758301B2 (en) | 2009-12-15 | 2014-06-24 | Abbvie Biotechnology Ltd | Firing button for automatic injection device |
US9402957B2 (en) | 2010-03-01 | 2016-08-02 | Eli Lilly And Company | Automatic injection device with delay mechanism including dual functioning biasing member |
WO2011109205A2 (en) | 2010-03-01 | 2011-09-09 | Eli Lilly And Company | Automatic injection device with delay mechanism including dual functioning biasing member |
EP2708252A1 (en) | 2010-03-01 | 2014-03-19 | Eli Lilly and Company | Automatic injection device with delay mechanism including dual functioning biasing member |
US8734394B2 (en) | 2010-03-01 | 2014-05-27 | Eli Lilly And Company | Automatic injection device with delay mechanism including dual functioning biasing member |
US9180244B2 (en) | 2010-04-21 | 2015-11-10 | Abbvie Biotechnology Ltd | Wearable automatic injection device for controlled delivery of therapeutic agents |
US9821117B2 (en) | 2010-04-21 | 2017-11-21 | Abbvie Biotechnology Ltd | Wearable automatic injection device for controlled delivery of therapeutic agents |
US9233209B2 (en) | 2010-08-27 | 2016-01-12 | Novo Nordisk A/S | Medical injection device |
US9457149B2 (en) | 2010-12-21 | 2016-10-04 | Sanofi-Aventis Deutschland Gmbh | Back-end device for an auto-injector and auto-injector |
US9339610B2 (en) | 2011-01-24 | 2016-05-17 | Abbvie Biotechnology Ltd | Removal of needle shield from syringes and automatic injection devices |
US11565048B2 (en) | 2011-01-24 | 2023-01-31 | Abbvie Biotechnology Ltd. | Automatic injection devices having overmolded gripping surfaces |
US10806867B2 (en) | 2011-01-24 | 2020-10-20 | E3D Agricultural Cooperative Association Ltd. | Injector |
US9265887B2 (en) | 2011-01-24 | 2016-02-23 | Abbvie Biotechnology Ltd. | Automatic injection devices having overmolded gripping surfaces |
US8708968B2 (en) | 2011-01-24 | 2014-04-29 | Abbvie Biotechnology Ltd. | Removal of needle shields from syringes and automatic injection devices |
US10022503B2 (en) | 2011-01-24 | 2018-07-17 | Abbvie Biotechnology Ltd | Removal of needle shield from syringes and automatic injection devices |
US9878102B2 (en) | 2011-01-24 | 2018-01-30 | Abbvie Biotechnology Ltd. | Automatic injection devices having overmolded gripping surfaces |
US20150209517A1 (en) * | 2012-05-31 | 2015-07-30 | Carebay Europe Ltd | Medicament Delivery Device |
US10525201B2 (en) * | 2012-05-31 | 2020-01-07 | Shl Medical Ag | Medicament delivery device |
EP2716316A1 (en) * | 2012-10-04 | 2014-04-09 | Sanofi-Aventis Deutschland GmbH | Medicament delivery device with damping mechanism |
WO2014053495A1 (en) * | 2012-10-04 | 2014-04-10 | Sanofi-Aventis Deutschland Gmbh | Medicament delivery device with damping mechanism |
US9925337B2 (en) | 2013-03-14 | 2018-03-27 | Eli Lilly And Company | Delay mechanism suitable for compact automatic injection device |
US9913943B2 (en) | 2013-03-14 | 2018-03-13 | Eli Lilly And Company | Trigger assembly for an automatic injection device |
US10799646B2 (en) | 2013-06-11 | 2020-10-13 | Cilag Gmbh International | Injection device |
US11173255B2 (en) | 2013-06-11 | 2021-11-16 | Cilag Gmbh International | Injection device |
US10709849B2 (en) | 2013-06-11 | 2020-07-14 | Cilag Gmbh International | Guide for an injection device |
US11123492B2 (en) | 2013-06-11 | 2021-09-21 | Cilag Gmbh International | Injection device |
US20170182253A1 (en) * | 2014-05-07 | 2017-06-29 | Amgen Inc. | Autoinjector with shock reducing elements |
US10722655B2 (en) * | 2014-05-07 | 2020-07-28 | Amgen Inc. | Autoinjector with shock reducing elements |
US12029882B2 (en) | 2014-05-07 | 2024-07-09 | Amgen Inc. | Autoinjector with shock reducing elements |
US10384009B2 (en) | 2014-09-01 | 2019-08-20 | Shl Medical Ag | Signal delaying assembly for a medicament delivery device |
FR3046078A1 (en) * | 2015-12-24 | 2017-06-30 | Nemera La Verpilliere | AUTOMATIC INJECTION DEVICE WITH IMPROVED PISTON ROD. |
WO2019192662A1 (en) | 2018-04-04 | 2019-10-10 | Cpu Innovation Aps | Auto injector with improved functionality |
US11660397B2 (en) | 2018-04-04 | 2023-05-30 | Shaily Engineering Plastics Ltd. | Auto injector with improved functionality |
US12097358B2 (en) | 2018-04-04 | 2024-09-24 | Shaily Engineering Plastics Ltd. | Auto injector with improved functionality |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7901377B1 (en) | Injection device | |
CA2568655C (en) | Injection device | |
EP1755710B1 (en) | Injection device | |
AU2005247148B2 (en) | Injection device | |
US8313463B2 (en) | Injection device | |
CN100444908C (en) | Injection device | |
EP0956061B1 (en) | Hollow-needle drugs etc. applicators | |
NZ562362A (en) | Injection device (adaptable device) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2568677 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007514110 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/013899 Country of ref document: MX Ref document number: 179654 Country of ref document: IL |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005747009 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005247147 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200610831 Country of ref document: ZA Ref document number: 3867/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 552329 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067027624 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200602238 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580023910.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2005247147 Country of ref document: AU Date of ref document: 20050527 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005247147 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005747009 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067027624 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0510443 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11579560 Country of ref document: US |