WO2005105704A1 - チタン酸アルミニウムマグネシウム結晶構造物及びその製造方法 - Google Patents
チタン酸アルミニウムマグネシウム結晶構造物及びその製造方法 Download PDFInfo
- Publication number
- WO2005105704A1 WO2005105704A1 PCT/JP2005/008226 JP2005008226W WO2005105704A1 WO 2005105704 A1 WO2005105704 A1 WO 2005105704A1 JP 2005008226 W JP2005008226 W JP 2005008226W WO 2005105704 A1 WO2005105704 A1 WO 2005105704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium titanate
- aluminum
- crystal structure
- aluminum magnesium
- titanate
- Prior art date
Links
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000013078 crystal Substances 0.000 title claims abstract description 72
- 229910000505 Al2TiO5 Inorganic materials 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 239000006104 solid solution Substances 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000012298 atmosphere Substances 0.000 claims abstract description 6
- 239000002344 surface layer Substances 0.000 claims abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 83
- 150000001875 compounds Chemical class 0.000 claims description 41
- 239000011777 magnesium Substances 0.000 claims description 41
- 229910052749 magnesium Inorganic materials 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 21
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 15
- 238000000465 moulding Methods 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000002210 silicon-based material Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 7
- 238000013001 point bending Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000010433 feldspar Substances 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 229910052655 plagioclase feldspar Inorganic materials 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- 239000002734 clay mineral Substances 0.000 claims description 3
- 229910052878 cordierite Inorganic materials 0.000 claims description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims 2
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 claims 1
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 11
- 230000035939 shock Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 239000010936 titanium Substances 0.000 description 17
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005245 sintering Methods 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 9
- 239000000395 magnesium oxide Substances 0.000 description 7
- 235000012245 magnesium oxide Nutrition 0.000 description 7
- -1 aluminum-titanium magnesium Chemical compound 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 229910052596 spinel Inorganic materials 0.000 description 5
- 239000011029 spinel Substances 0.000 description 5
- 229910052650 alkali feldspar Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910020068 MgAl Inorganic materials 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910001579 aluminosilicate mineral Inorganic materials 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- GLDUZMNCEGHSBP-UHFFFAOYSA-N 2-(2-octylphenoxy)ethanol Chemical compound CCCCCCCCC1=CC=CC=C1OCCO GLDUZMNCEGHSBP-UHFFFAOYSA-N 0.000 description 1
- 229910017121 AlSiO Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PVYXVFBYERYVFM-UHFFFAOYSA-N alumane;magnesium Chemical compound [Mg].[AlH3].[AlH3] PVYXVFBYERYVFM-UHFFFAOYSA-N 0.000 description 1
- GSWGDDYIUCWADU-UHFFFAOYSA-N aluminum magnesium oxygen(2-) Chemical compound [O--].[Mg++].[Al+3] GSWGDDYIUCWADU-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000000020 growth cone Anatomy 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/478—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
- C04B2235/3472—Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
- C04B2235/3481—Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Definitions
- the present invention relates to an aluminum magnesium titanate crystal structure and a method for producing the same.
- the present invention provides a crystalline structure of aluminum magnesium titanate, more specifically, it has high heat resistance, extremely low thermal expansion and high corrosion resistance, and can be used stably even at high temperatures, and can be used continuously.
- the present invention relates to an aluminum magnesium titanate crystal structure having a large and large mechanical strength and a method for producing the same.
- Aluminum magnesium titanate is an all-solid solution formed over the entire composition range of aluminum titanate and magnesium titanate.
- the sintered body has high heat resistance, low coefficient of thermal expansion, and excellent corrosion resistance.
- the melting point of aluminum titanate magnesium is, for example, about 1640 ° C. for a sintered body in which aluminum titanate and magnesium titanate form a solid solution near equimolar ratio. This is lower than the melting point of aluminum titanate, about 1870 ° C, but exceeds the melting point of magnesium titanate, 1600 ° C. For this reason, aluminum magnesium titanate generally has a higher heat and high temperature limit than aluminum titanate, but is superior to magnesium titanate.
- the aluminum titanate sintered body and the magnesium titanate sintered body each have a pseudo-brookite type crystal structure in which the crystal grains constituting the sintered body have an anisotropic thermal expansion coefficient. For this reason, there is a drawback in that mechanical cracks and voids tend to develop at the crystal grain interface due to stress during heating and cooling, and mechanical strength tends to decrease. Since aluminum magnesium titanate has the same disadvantages, the aluminum magnesium titanate sintered body also has insufficient mechanical strength. In particular, when used in applications where loads are applied at high temperatures, sufficient durability cannot be exhibited.
- the lower limit of the synthesis temperature of aluminum titanate is 1280 ° C
- the lower limit of the synthesis temperature of magnesium titanate is 900 ° C.
- the V ⁇ deviation is unstable at a temperature lower than the synthesis temperature range.
- magnesium aluminum titanate are also unstable at temperatures lower than the synthesis temperature range, similarly to aluminum titanate and magnesium titanate. Therefore, when aluminum magnesium titanate is used for a long time in the decomposition temperature range, TiO
- the decomposition temperature range of nesium depends on the solid solution ratio of aluminum titanate and magnesium titanate, and is usually about 800 to 1280 ° C.
- TiO Le
- the conventional aluminum magnesium titanate sintered body cannot be used continuously in such a decomposition temperature range, and its large heat resistance, extremely small thermal expansion property and excellent corrosion resistance are not good. Nevertheless, its use was limited due to its low reliability due to problems of thermal decomposition and mechanical strength.
- Non-patent document 1 Journal of American Ceramic Society, 1998, 81 [10] pp. 2645-2653
- the present invention has been made in view of the above problems, and an object of the present invention is to provide high heat resistance, extremely low thermal expansion, and high corrosion resistance, but at a high temperature where thermal decomposition is small. Another object of the present invention is to provide a crystal structure of aluminum-titanium magnesium titanate which is stable and can be used continuously and has a large mechanical strength. Means for solving the problem
- Aluminum magnesium aluminum titanate represented by Ti O (where 0.1 ⁇ x ⁇ l)
- a part of the A1 atom in the aluminum magnesium titanate crystal is obtained by doping the body crystal with a silicon-containing conjugate having a melting point in a specific temperature range, preferably an aluminosilicate conjugate.
- a silicon-containing conjugate having a melting point in a specific temperature range preferably an aluminosilicate conjugate.
- the present inventors have found that an aluminum magnesium titanate crystal structure having a solid solution force, in which is substituted by a Si atom, can achieve the above object, and have reached the present invention.
- the present invention is characterized by the following gist of a strong aluminum magnesium titanate crystal structure and a method for producing the same.
- aluminosilicate is a mineral selected from plagioclase, feldspar, mica clay mineral, zeolite, and cordierite.
- the present invention as described above, the original heat resistance and extremely small! /, Having a thermal expansion coefficient, An aluminum magnesium titanate crystal structure having excellent thermal shock resistance, high thermal decomposition resistance, and high mechanical strength is newly provided. It is not always clear why the present invention can provide an aluminum magnesium titanate crystal structure having excellent properties as described above, but it is presumed to be due to the following reasons.
- the production of aluminum magnesium titanate is carried out by Since the silicon-containing compound in the phase state melts at 700 to 1500 ° C, the reaction of forming aluminum magnesium titanate takes place in the liquid phase, forming dense crystals and improving the mechanical strength. Then, a part of A1 in the crystal lattice of aluminum magnesium titanate is replaced by the Si component contained in the silicon-containing compound and forms a solid solution, but the aluminum titanate crystal system has priority over the magnesium titanate crystal system. Solid solution.
- Si preferentially forms a solid solution with the crystal lattice of aluminum titanate and mainly occupies the A1 site.
- tetravalent Si pairs with divalent Mg in the system rather than replacing the A1 site, which originally maintains a trivalent charge balance, by itself, and both Si and Mg Will result in a total of 6 valences, replacing two adjacent A1s (total 6 valences). It is thought that the simultaneous presence of Si and Mg can suppress the diffusion of ions between cations even at high temperatures, and achieve a more stable thermal structure, resulting in even better resistance to thermal decomposition.
- the aluminum magnesium titanate crystal structure according to the present invention has a composition formula: Mg A1
- the solid solution force in which a part of the A1 atom in the above is replaced by a Si atom also becomes.
- Substitution with Si atoms is within the solid solubility limit As much power as possible.
- the X value is preferably 0.1 ⁇ 1 and more preferably 0.25 ⁇ x ⁇ 0.75.
- A1 atoms in aluminum magnesium titanate crystal is preferably that 0.1 to 1 mol%, particularly preferably 0.2 to 0.7 mol 0/0, rather most preferred 0.
- the crystal structure of the present invention which also has a solid solution force replaced by Si atoms, has a thermal expansion coefficient of — 6 X 10 — 6 (lZK) when heated to 50 to 800 ° C at a heating rate of 20 ° CZ.
- ⁇ 6 X 10_ 6 (1 ⁇ ) furthermore, - 3 X 10 _6 (lZK ) ⁇ 3 X 10 _6 (lZK), that has a very small Netsu ⁇ tonicity.
- the thermal shock resistance is extremely large and excellent.
- a feature of the aluminum magnesium titanate crystal structure of the present invention is that it has high thermal decomposition resistance, which can be used stably even at high temperatures and can be used continuously.
- This thermal decomposition resistance is such that the residual ratio of aluminum titanate magnesium kept in the atmosphere at 1100 ° C for 300 hours is 50% or more, the excellent one is 75% or more, and the most excellent one is 90% or more. Show.
- the conventional aluminum magnesium titanate which has a residual rate of aluminum magnesium titanate of at most about 35%, as shown in the comparative examples described below. Therefore, the aluminum magnesium titanate crystal structure of the present invention provides a highly reliable material that can be used stably for a long time in the high-temperature region including the above-mentioned decomposable temperature range of 800 to 1280 ° C.
- a feature of the aluminum magnesium titanate crystal structure of the present invention is that it has excellent mechanical strength.
- the three-point bending strength is 25MPa or more, excellent is 30MPa or more, and the most excellent one is 40MPa or more according to JIS R1601, which is a representative index of mechanical strength.
- JIS R1601 is a representative index of mechanical strength.
- the aluminum magnesium titanate crystal structure of the present invention has a high mechanical strength which cannot be used with conventional aluminum magnesium titanate. Provide materials that can be used in required fields.
- the aluminum magnesium titanate crystal structure of the present invention has a composition formula: MgAlTi ⁇ 2-x)
- the Mg-containing compound, A1-containing compound, and Ti-containing conjugate used above can be used without particular limitation as long as they can synthesize aluminum magnesium titanate by firing.
- the Mg-containing compound, the A1-containing compound, and the Ti-containing compound need not be separate compounds, but may be compounds containing two or more metal components. These compounds are usually used as raw materials for various ceramics such as alumina ceramics, titer ceramics, magnesia ceramics, aluminum titanate ceramics, magnesium titanate ceramics, spinel ceramics, and aluminum magnesium titanate ceramics. Please use it appropriately. Specific examples of such compounds include oxides such as Al O, TiO, and MgO, MgAl O, Al TiO, and Mg and Ti.
- Group power consisting of complex oxides containing two or more metal components such as spinel-type structures containing 2 3 2 2 4 2 5, Al, Ti and Mg
- metal components such as spinel-type structures containing 2 3 2 2 4 2 5, Al, Ti and Mg
- One or more selected metal components Carbonates, nitrates, sulfates, etc.
- the mixing ratio of the Mg-containing compound, the A1-containing compound, and the Ti-containing compound is as follows.
- the ratio of the metal component contained in these compounds is represented by the above-mentioned composition formula: Mg Al Ti O
- the ratio is made to be the same as the metal component ratio of Mg, Al and Ti in aluminum magnesium titanate, preferably substantially the same.
- the mixture containing the above-mentioned Mg-containing compound, A1-containing compound and Ti-containing compound contains silicon having a melting point of 700 to 1500 ° C.
- the compounds are mixed. Silicon containing compounds used The melting point of the product is important. If the melting point is lower than 700 ° C, the additive melts before sintering, and a crystalline structure with sufficient strength is not formed in the compact. On the other hand, when the temperature is higher than 1500 ° C, the formation reaction cannot be performed in the liquid phase by melting the additive after the formation reaction of aluminum magnesium titanate, so that the solid solution of Si atoms becomes difficult, and the present invention Objective cannot be achieved. For example, when using SiO with a melting point of 1723 ° C,
- the melting point of the silicon-containing compound is preferably 900 to 1300 ° C, particularly preferably 1000 to 1200 ° C.
- aluminosilicate is preferable.
- the aluminosilicate may be a natural ore or a synthetic product, but an aluminosilicate mineral is particularly preferred in terms of availability and cost.
- the aluminosilicate minerals include various materials such as plagioclase, feldspar, alkali feldspar, mica clay mineral, zeolite, and cordierite. Among them, alkali feldspar, plagioclase and quasi-feldspar are particularly effective for promoting sintering of aluminum magnesium titanate having a low melting point.
- the amount of the silicon-containing compound used is related to the ratio of the A1 atom replaced by the Si atom in the aluminum magnesium titanate crystal, but the Mg-containing compound, the A1-containing compound, and the Ti-containing compound are used. 1 to L0 parts by mass, preferably 3 to 5 parts by mass, based on 100 parts by mass of the total value of each compound as an oxide.
- the total amount obtained by converting the mixture in this case as an oxidized product means that after performing a heat treatment for removing water and organic substances contained in the mixture, and when performing a preliminary sintering, And the weight before pre-sintering after temporary sintering.
- additives can be added to the raw material mixture containing the Mg-containing compound, the A1-containing compound, the Ti-containing compound, and the silicon-containing compound. Can improve the properties of objects.
- Other additives include, for example, SiO, ZrO, F
- One or more of these additives are preferably added in an amount of 15 parts by mass or less based on 100 parts by mass of the mixture.
- the above Mg-containing compound, A1-containing compound, Ti-containing compound, and silicon-containing compound The raw material mixture is thoroughly mixed and pulverized. Mixing and pulverization of the mixture are not particularly limited and are performed according to a known method. For example, it is performed using a ball mill, a medium stirring mill, or the like.
- the degree of pulverization of the raw material mixture is not particularly limited, but the average particle diameter is preferably 30 ⁇ m or less, particularly preferably 8 to 15 ⁇ m or less. This is preferably such that no secondary particles are formed!
- the mixture can be fired as it is, but it is preferable that the mixture is fired after being formed in advance into a molded product as a final use form.
- a molding aid can be preferably added to the above mixture.
- Known molding aids such as a binder, a release agent, an antifoaming agent, and a deflocculant can be used.
- the binder include polyvinylinoleanol, microwax emulsion, methylcellulose, and canoleboxymethylcellulose.
- a power defoaming agent such as emulsion stearate is preferable, and as a peptizer such as n-octyl alcohol and octyl phenoxyethanol, getylamine, triethylamine and the like are preferable.
- the amount of the molding aid used is not particularly limited, but in the case of the present invention, each of the Mg-containing compound, the A1-containing compound and the Ti-containing compound used as a raw material was converted as an oxide.
- the binder is preferably about 0.2 to 0.6 parts by mass
- the release agent is preferably about 0.2 to 0.7 parts by mass
- the defoaming agent is preferably 0.5 to 1.5 parts by mass. It is preferable to use about 0.5 to 1.5 parts by weight of a peptizer.
- the raw material mixture to which the molding aid has been added is mixed, kneaded, and molded.
- press molding, sheet molding, injection molding, extrusion molding, injection molding, CIP molding and the like can be used.
- Firing preferably dry] and then 1200-1700. ⁇ , preferably 11300-1500.
- C soldered.
- the sintering atmosphere is preferably an oxygen-containing atmosphere, such as in air, which is usually employed without any particular limitation.
- the sintering time is usually about 1 to 20 hours, as long as sintering proceeds until sintering proceeds sufficiently.
- pre-sintering is preferably performed in a temperature range of about 700 to 1000 ° C. by gentle heating for about 10 to 30 hours, thereby obtaining titanium.
- the stress in the sintered body that causes cracks when the magnesium aluminum oxide is formed can be reduced, and the generation of cracks in the sintered body can be suppressed, and a uniform sintered body can be easily obtained. .
- the sintered body of the present invention obtained as described above has both excellent heat resistance and a low coefficient of thermal expansion, and also has excellent thermal decomposition due to its stabilized crystal structure. It becomes a crystalline structure having high resistance and high mechanical strength.
- substitution ratio 1 to: Add LO parts by mass, add 0.25 parts by mass of polyvinyl alcohol as binder, 1 part by mass of getylamine as deflocculant, and polypropylene as defoamer Recall was added in 0.5 parts by mass each. Next, the mixture was mixed in a ball mill for 3 hours and dried in a dryer at 120 ° C for 12 hours or more to obtain a raw material powder.
- the obtained raw material powder was pulverized to about 150 mesh and pressed at a molding pressure of 60 MPa to obtain a growth cone of 10 Omm ⁇ 100 mm ⁇ 10 mm.
- the molded body was fired in the air according to the following heating pattern and then allowed to cool to obtain a sintered aluminum magnesium titanate.
- Samples were obtained by polishing the crystal structures of the sintered bodies of Examples 1 to 5 obtained above, and these were obtained by observation with a TEM (transmission electron microscope) and EDX elemental analysis. In the crystal grains of Examples 1 to 5, the presence of Si ions dissolved in the crystal grains was observed. Then, the crystal structures of Examples 1 to 5 were subjected to a top-down analysis of 29 Si using NMR (nuclear magnetic resonance apparatus). This indicates that the A1 atom (6-coordinate) was replaced by a solid solution in the reaction under the liquid phase from the silicon-containing conjugate in which the Si atom was present in the 4-coordinate. Show.
- the sintered bodies of Examples 1 to 5 and the sintered body of Comparative Example 1 were cut into 5 mm X 5 mm X 20 mm, respectively, in accordance with JIS R1618.
- the coefficient of thermal expansion was determined based on the amount of expansion in the longitudinal direction when the 50 ° C force was also heated to 800 ° C under the conditions of a temperature rate of 20 ° CZ. The results are shown in Table 1.
- the sintered bodies of Examples 1 to 5 and the crystal structure of Comparative Example 1 were all 10 mm It was cut into X 10 mm X 10 mm, kept in the atmosphere at 1100 ° C, and the residual ratio ⁇ (%) of aluminum magnesium titanate after 300 hours was obtained.
- the residual ratio of aluminum magnesium titanate was determined by XRD measurement according to the following method.
- the strength ratio R of aluminum magnesium titanate to rutile was determined in the same manner.
- each of the sintered bodies of Examples 1 to 5 and Comparative Example 1 was cut into a piece of 3 mm ⁇ 4 mm ⁇ 40 mm and subjected to surface polishing and edge polishing (squaring).
- surface polishing and edge polishing for this, the three-point bending strength was measured according to JIS R1601, and the results are shown in Table 1, respectively.
- Example 1 0.1. 0.8 3.27 90. 9 32.8 ( ⁇ 0.6) Projection 2 0.3.1 3.35 100 48.2 ( ⁇ 1.7)
- Example 3 0.4 1 2 3.35 95.4 46.4 ( ⁇ 1.9)
- Example 4 0.6 1.7 3.41 97.8 49.8 ( ⁇ 1.9) 2)
- Example 5 1.0 1.9 3.46 96.7 51.0 ( ⁇ 1.6) Comparative Example 1 0 0.9.23 34.8.9.6 ( ⁇ 0.6) [0041]
- the solid solution substituted by a partial force element of the A1 atom in the aluminum magnesium titanate crystal has a lower thermal expansion property than the comparative example 1. It can be seen that the residual ratio of aluminum magnesium titanate crystals is high. Furthermore, it can be seen that the crystal structures of Examples 1 to 5 have much better mechanical strength than Comparative Example 1.
- an aluminum-magnesium titanate sintered body was obtained in the same manner as in Examples 1 to 5 described above. From the obtained sintered body, a test body was cut out in the same manner as in Examples 1 to 5, and the thermal expansion coefficient, the residual ratio of aluminum magnesium titanate ⁇ (%), and the three-point bending strength were measured. Table 3 shows the results.
- the aluminum titanate of Examples 6 to 10 was liquid-phase sintered with a Si-containing conjugate that melted at a temperature at which aluminum magnesium titanate crystals were formed. It can be seen that the magnesium crystal structure has a lower thermal expansion property, a higher residual ratio ⁇ (%) of aluminum magnesium titanate crystals, and higher mechanical strength than Comparative Example 1.
- Aluminum magnesium titanate having excellent heat resistance and extremely small thermal expansion coefficient, excellent thermal shock resistance, high thermal decomposition resistance, and high mechanical strength
- Powerful crystal structures include firing furnace jigs such as crucibles, setters, pots, furnace materials, etc .; filters and catalyst carriers for exhaust gas purification such as diesel engines and gasoline engines; components of power generation equipment; substrates, capacitors, etc. It can be suitably used in a wide range of fields such as electronic components.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006512851A JP5230935B2 (ja) | 2004-04-28 | 2005-04-28 | チタン酸アルミニウムマグネシウム結晶構造物及びその製造方法 |
EP05737257.5A EP1741684B1 (en) | 2004-04-28 | 2005-04-28 | Magnesium aluminium titanate crystal structure and method for producing same |
CA002563600A CA2563600A1 (en) | 2004-04-28 | 2005-04-28 | Aluminum magnesium titanate crystal structure, and process for its production |
US11/587,991 US8557216B2 (en) | 2004-04-28 | 2005-04-28 | Magnesium aluminum titanate crystal structure and method for producing same |
KR1020067018839A KR101158383B1 (ko) | 2004-04-28 | 2005-04-28 | 티탄산 알루미늄 마그네슘 결정 구조물 및 그 제조방법 |
US14/012,371 US20130345043A1 (en) | 2004-04-28 | 2013-08-28 | Magnesium aluminum titanate crystal structure and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-134662 | 2004-04-28 | ||
JP2004134662 | 2004-04-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/012,371 Continuation US20130345043A1 (en) | 2004-04-28 | 2013-08-28 | Magnesium aluminum titanate crystal structure and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005105704A1 true WO2005105704A1 (ja) | 2005-11-10 |
Family
ID=35241592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/008226 WO2005105704A1 (ja) | 2004-04-28 | 2005-04-28 | チタン酸アルミニウムマグネシウム結晶構造物及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8557216B2 (ja) |
EP (1) | EP1741684B1 (ja) |
JP (1) | JP5230935B2 (ja) |
KR (1) | KR101158383B1 (ja) |
CN (1) | CN100447105C (ja) |
CA (1) | CA2563600A1 (ja) |
WO (1) | WO2005105704A1 (ja) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006327842A (ja) * | 2005-05-23 | 2006-12-07 | Ohcera Co Ltd | マイクロ波焼成炉用の耐火断熱材 |
WO2008005249A2 (en) * | 2006-06-30 | 2008-01-10 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
JP2009084064A (ja) * | 2007-09-27 | 2009-04-23 | Kyocera Corp | 耐熱性セラミック部材およびフィルタ |
WO2009063997A1 (ja) | 2007-11-14 | 2009-05-22 | Hitachi Metals, Ltd. | チタン酸アルミニウム質セラミックハニカム構造体、その製造方法、及びそれを製造するための原料粉末 |
WO2009087997A1 (ja) | 2008-01-09 | 2009-07-16 | Sumitomo Chemical Company, Limited | チタン酸アルミニウム系セラミックスの製造方法 |
WO2009087912A1 (ja) | 2008-01-07 | 2009-07-16 | Sumitomo Chemical Company, Limited | チタン酸アルミニウムセラミックスの製造方法 |
JP2009196881A (ja) * | 2008-01-21 | 2009-09-03 | Sumitomo Chemical Co Ltd | チタン酸アルミニウムマグネシウム−アルミナ複合セラミックス |
WO2009154219A1 (ja) | 2008-06-18 | 2009-12-23 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010013293A (ja) * | 2008-06-30 | 2010-01-21 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス粉末の製造方法 |
WO2010026982A1 (ja) | 2008-09-04 | 2010-03-11 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010083738A (ja) * | 2008-10-02 | 2010-04-15 | Hitachi Metals Ltd | チタン酸アルミニウム質セラミックハニカム構造体の製造方法 |
WO2010041648A1 (ja) | 2008-10-07 | 2010-04-15 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス粉末の製造方法 |
WO2010053122A1 (ja) | 2008-11-07 | 2010-05-14 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010111552A (ja) * | 2008-11-08 | 2010-05-20 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010111551A (ja) * | 2008-11-08 | 2010-05-20 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010116289A (ja) * | 2008-11-12 | 2010-05-27 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
WO2010067859A1 (ja) | 2008-12-11 | 2010-06-17 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
WO2010074231A1 (ja) | 2008-12-25 | 2010-07-01 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
JP2010150054A (ja) * | 2008-12-24 | 2010-07-08 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス |
WO2010079806A1 (ja) | 2009-01-07 | 2010-07-15 | 住友化学株式会社 | 多孔質セラミックス成形体及びその製造方法 |
JP2010180120A (ja) * | 2009-01-07 | 2010-08-19 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法および多孔質セラミックス成形体、ならびに多孔質セラミックス成形体の試験方法 |
WO2010095615A1 (ja) * | 2009-02-17 | 2010-08-26 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
WO2010095616A1 (ja) | 2009-02-17 | 2010-08-26 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス |
JP2010215482A (ja) * | 2009-03-19 | 2010-09-30 | Sumitomo Chemical Co Ltd | 多孔質セラミックス成形体の製造方法および多孔質セラミックス成形体 |
WO2010113893A1 (ja) | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス体の製造方法 |
WO2010113895A1 (ja) | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス体の製造方法 |
JP2010235333A (ja) * | 2009-03-30 | 2010-10-21 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体 |
JP2010235386A (ja) * | 2009-03-31 | 2010-10-21 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス |
WO2011007852A1 (ja) | 2009-07-16 | 2011-01-20 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
WO2011019087A1 (ja) | 2009-08-12 | 2011-02-17 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス |
WO2011027904A1 (ja) | 2009-09-03 | 2011-03-10 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法およびチタン酸アルミニウム系焼成体 |
WO2011037177A1 (ja) | 2009-09-25 | 2011-03-31 | 住友化学株式会社 | セラミックス焼成体の製造方法 |
WO2011040457A1 (ja) | 2009-10-01 | 2011-04-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス焼成体の製造方法 |
WO2011081217A1 (ja) | 2009-12-28 | 2011-07-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
WO2011111633A1 (ja) | 2010-03-08 | 2011-09-15 | 住友化学株式会社 | 多孔質チタン酸アルミニウムマグネシウムの製造方法および多孔質チタン酸アルミニウムマグネシウム |
WO2011111666A1 (ja) | 2010-03-08 | 2011-09-15 | 住友化学株式会社 | グリーン成形体、及び、チタン酸アルミニウム焼成体の製造方法 |
WO2011118025A1 (ja) | 2010-03-26 | 2011-09-29 | 大塚化学株式会社 | 柱状チタン酸アルミニウム及びその製造方法 |
JP2011526575A (ja) * | 2008-07-04 | 2011-10-13 | サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン | Al、Ti、Mg及びZrを含む溶融酸化物粒子及びこのような粒子を含むセラミック材料 |
JP2012020928A (ja) * | 2011-08-24 | 2012-02-02 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法 |
JP2012229142A (ja) * | 2011-04-26 | 2012-11-22 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム質ハニカム構造体 |
JP5246889B2 (ja) * | 2008-03-26 | 2013-07-24 | 京セラ株式会社 | 多孔質セラミック部材およびその製法ならびにフィルタ |
WO2014104179A1 (ja) * | 2012-12-27 | 2014-07-03 | 住友化学株式会社 | ハニカムフィルタ及びその製造方法、並びに、チタン酸アルミニウム系セラミックス及びその製造方法 |
US10450233B2 (en) | 2006-06-30 | 2019-10-22 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
JP2020024899A (ja) * | 2018-05-09 | 2020-02-13 | パナソニックIpマネジメント株式会社 | 固体電解質およびそれを用いたマグネシウム二次電池 |
CN112552711A (zh) * | 2020-12-25 | 2021-03-26 | 江苏特丰新材料科技有限公司 | 一种近红外高反射率钛系白色颜料钛酸铝镁的制备工艺 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10501375B2 (en) | 2006-06-30 | 2019-12-10 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
KR20100118976A (ko) * | 2008-01-21 | 2010-11-08 | 스미또모 가가꾸 가부시끼가이샤 | 티탄산알루미늄마그네슘의 제조 방법 |
FR2933399B1 (fr) * | 2008-07-04 | 2011-02-18 | Saint Gobain Ct Recherches | Melange de grains pour la synthese d'une structure poreuse du type titanate d'alumine |
FR2933401B1 (fr) * | 2008-07-04 | 2010-07-30 | Saint Gobain Ct Recherches | Structure poreuse du type titanate d'alumine |
EP2421686A1 (fr) | 2008-12-23 | 2012-02-29 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different |
JP2010195634A (ja) * | 2009-02-25 | 2010-09-09 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体 |
JP2011140210A (ja) * | 2009-06-24 | 2011-07-21 | Sumitomo Chemical Co Ltd | 成形体およびその製造方法、並びに触媒およびその製造方法 |
CN102336566A (zh) * | 2010-07-28 | 2012-02-01 | 鸿富锦精密工业(深圳)有限公司 | 复合靶材及其制备方法 |
CN102515267B (zh) * | 2011-11-03 | 2014-03-05 | 攀枝花鼎星钛业有限公司 | 高电阻率钛白粉的生产方法 |
US10526249B2 (en) | 2012-11-30 | 2020-01-07 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
US9079799B2 (en) | 2012-11-30 | 2015-07-14 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
JP7346116B2 (ja) * | 2019-07-12 | 2023-09-19 | 住友化学株式会社 | 粉体及び固体組成物 |
CN112174690A (zh) * | 2020-10-12 | 2021-01-05 | 南京理工大学 | 一种利用木棉纤维制备中空钛酸铝纤维的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483944A (en) | 1983-07-27 | 1984-11-20 | Corning Glass Works | Aluminum titanate-mullite ceramic articles |
CN1156412C (zh) * | 2000-07-13 | 2004-07-07 | 胡勇波 | 复合材料蜂窝陶瓷及其制造方法 |
JP3600933B2 (ja) | 2000-11-08 | 2004-12-15 | オーセラ株式会社 | チタン酸アルミニウム系焼結体の製造方法 |
JP3489030B1 (ja) * | 2002-04-26 | 2004-01-19 | 勉 福田 | チタン酸アルミニウム系焼結体の製造方法 |
JP4324799B2 (ja) * | 2002-11-01 | 2009-09-02 | オーセラ株式会社 | チタン酸アルミニウムマグネシウム焼結体の製造方法 |
CN1816379B (zh) * | 2003-07-11 | 2010-11-24 | 王世来股份有限公司 | 废气净化蜂窝状过滤器及其制造方法 |
US8685363B2 (en) * | 2003-07-29 | 2014-04-01 | Ohcera Co., Ltd. | Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof |
-
2005
- 2005-04-28 KR KR1020067018839A patent/KR101158383B1/ko active IP Right Grant
- 2005-04-28 US US11/587,991 patent/US8557216B2/en not_active Expired - Fee Related
- 2005-04-28 CA CA002563600A patent/CA2563600A1/en not_active Abandoned
- 2005-04-28 JP JP2006512851A patent/JP5230935B2/ja not_active Expired - Fee Related
- 2005-04-28 CN CNB2005800127478A patent/CN100447105C/zh not_active Expired - Fee Related
- 2005-04-28 WO PCT/JP2005/008226 patent/WO2005105704A1/ja not_active Application Discontinuation
- 2005-04-28 EP EP05737257.5A patent/EP1741684B1/en not_active Not-in-force
-
2013
- 2013-08-28 US US14/012,371 patent/US20130345043A1/en not_active Abandoned
Non-Patent Citations (3)
Title |
---|
BUSCAGLIA V. ET AL: "Decomposition of Al2TiO5-MgTi2O5 Solid Solutions: A Thermodynamic Approach", JOURNALOF MATERIAL SCIENCE, vol. 31, no. 19, 1996, pages 5009 - 5016, XP002994409 * |
DAIMON H. ET AL: "Al2TiO5-MgTi205-kei Haiko Shoketsutai no Chosei to Netsubocho Tokusei", 1990 NEN HAKKO, THE CERAMIC SOCIETY OF JAPAN GAKUJUTSU RONBUNSHI, vol. 98, no. 4, 1990, pages 365 - 369, XP002994410 * |
GIORDANO L. ET AL: "Microstructure and Thermal Expansion of Al2TiO5-MgTi2O5 Solid Solutions Obtained by Reaction Sintering", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 22, no. 11, 2002, pages 1811 - 1822, XP004355160 * |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006327842A (ja) * | 2005-05-23 | 2006-12-07 | Ohcera Co Ltd | マイクロ波焼成炉用の耐火断熱材 |
US8673045B2 (en) * | 2006-06-30 | 2014-03-18 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
WO2008005249A2 (en) * | 2006-06-30 | 2008-01-10 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
WO2008005249A3 (en) * | 2006-06-30 | 2008-06-19 | Corning Inc | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
US10450233B2 (en) | 2006-06-30 | 2019-10-22 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
CN102690117A (zh) * | 2006-06-30 | 2012-09-26 | 康宁股份有限公司 | 堇青石铝镁钛酸盐组合物及包含该组合物的陶瓷制品 |
US8394167B2 (en) * | 2006-06-30 | 2013-03-12 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
US20130210608A1 (en) * | 2006-06-30 | 2013-08-15 | Gregory Albert Merkel | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
JP2009542566A (ja) * | 2006-06-30 | 2009-12-03 | コーニング インコーポレイテッド | コージェライトチタン酸アルミニウムマグネシウム組成物及びこの組成物を含むセラミック製品 |
EP2594543A3 (en) * | 2006-06-30 | 2016-05-25 | Corning Incorporated | Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same |
JP2009084064A (ja) * | 2007-09-27 | 2009-04-23 | Kyocera Corp | 耐熱性セラミック部材およびフィルタ |
WO2009063997A1 (ja) | 2007-11-14 | 2009-05-22 | Hitachi Metals, Ltd. | チタン酸アルミニウム質セラミックハニカム構造体、その製造方法、及びそれを製造するための原料粉末 |
US9011757B2 (en) | 2007-11-14 | 2015-04-21 | Hitachi Metals, Ltd. | Aluminum-titanate-based ceramic honeycomb structure, its production method, and starting material powder for producing same |
US8663777B2 (en) | 2007-11-14 | 2014-03-04 | Hitachi Metals, Ltd. | Aluminum-titanate-based ceramic honeycomb structure, its production method, and starting material powder for producing same |
WO2009087912A1 (ja) | 2008-01-07 | 2009-07-16 | Sumitomo Chemical Company, Limited | チタン酸アルミニウムセラミックスの製造方法 |
JP2010100510A (ja) * | 2008-01-07 | 2010-05-06 | Sumitomo Chemical Co Ltd | チタン酸アルミニウムセラミックスの製造方法 |
JP2009184903A (ja) * | 2008-01-09 | 2009-08-20 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2012162455A (ja) * | 2008-01-09 | 2012-08-30 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
WO2009087997A1 (ja) | 2008-01-09 | 2009-07-16 | Sumitomo Chemical Company, Limited | チタン酸アルミニウム系セラミックスの製造方法 |
JP2009196881A (ja) * | 2008-01-21 | 2009-09-03 | Sumitomo Chemical Co Ltd | チタン酸アルミニウムマグネシウム−アルミナ複合セラミックス |
JP5246889B2 (ja) * | 2008-03-26 | 2013-07-24 | 京セラ株式会社 | 多孔質セラミック部材およびその製法ならびにフィルタ |
WO2009154219A1 (ja) | 2008-06-18 | 2009-12-23 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010159197A (ja) * | 2008-06-18 | 2010-07-22 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010013293A (ja) * | 2008-06-30 | 2010-01-21 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス粉末の製造方法 |
JP2011526575A (ja) * | 2008-07-04 | 2011-10-13 | サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン | Al、Ti、Mg及びZrを含む溶融酸化物粒子及びこのような粒子を含むセラミック材料 |
WO2010026982A1 (ja) | 2008-09-04 | 2010-03-11 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010083738A (ja) * | 2008-10-02 | 2010-04-15 | Hitachi Metals Ltd | チタン酸アルミニウム質セラミックハニカム構造体の製造方法 |
US8920705B2 (en) | 2008-10-07 | 2014-12-30 | Sumitomo Chemical Company, Limited | Process for producing a powder of aluminum titanate-based ceramics |
KR101614181B1 (ko) | 2008-10-07 | 2016-04-20 | 스미또모 가가꾸 가부시끼가이샤 | 티탄산알루미늄계 세라믹스 분말의 제조 방법 |
WO2010041648A1 (ja) | 2008-10-07 | 2010-04-15 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス粉末の製造方法 |
WO2010053122A1 (ja) | 2008-11-07 | 2010-05-14 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010111551A (ja) * | 2008-11-08 | 2010-05-20 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010111552A (ja) * | 2008-11-08 | 2010-05-20 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010116289A (ja) * | 2008-11-12 | 2010-05-27 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法 |
JP2010138036A (ja) * | 2008-12-11 | 2010-06-24 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法 |
WO2010067859A1 (ja) | 2008-12-11 | 2010-06-17 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
JP2010150054A (ja) * | 2008-12-24 | 2010-07-08 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス |
WO2010074231A1 (ja) | 2008-12-25 | 2010-07-01 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
JP2010150088A (ja) * | 2008-12-25 | 2010-07-08 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法 |
WO2010079806A1 (ja) | 2009-01-07 | 2010-07-15 | 住友化学株式会社 | 多孔質セラミックス成形体及びその製造方法 |
JP2010180120A (ja) * | 2009-01-07 | 2010-08-19 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法および多孔質セラミックス成形体、ならびに多孔質セラミックス成形体の試験方法 |
WO2010095615A1 (ja) * | 2009-02-17 | 2010-08-26 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
US8853114B2 (en) | 2009-02-17 | 2014-10-07 | Sumitomo Chemical Company, Limited | Aluminum titanate-based ceramics |
WO2010095616A1 (ja) | 2009-02-17 | 2010-08-26 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス |
JP2010215482A (ja) * | 2009-03-19 | 2010-09-30 | Sumitomo Chemical Co Ltd | 多孔質セラミックス成形体の製造方法および多孔質セラミックス成形体 |
WO2010113895A1 (ja) | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス体の製造方法 |
JP2010235333A (ja) * | 2009-03-30 | 2010-10-21 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体 |
US8673044B2 (en) | 2009-03-30 | 2014-03-18 | Sumitomo Chemical Company, Limited | Process for producing aluminum titanate-based ceramics body |
JP2010254557A (ja) * | 2009-03-30 | 2010-11-11 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス体の製造方法 |
WO2010113893A1 (ja) | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス体の製造方法 |
JP2010254558A (ja) * | 2009-03-30 | 2010-11-11 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックス体の製造方法 |
JP2010235386A (ja) * | 2009-03-31 | 2010-10-21 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス |
WO2011007852A1 (ja) | 2009-07-16 | 2011-01-20 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法 |
JP2011020899A (ja) * | 2009-07-16 | 2011-02-03 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法 |
WO2011019087A1 (ja) | 2009-08-12 | 2011-02-17 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス |
WO2011027904A1 (ja) | 2009-09-03 | 2011-03-10 | 住友化学株式会社 | チタン酸アルミニウム系焼成体の製造方法およびチタン酸アルミニウム系焼成体 |
JP2011051854A (ja) * | 2009-09-03 | 2011-03-17 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法およびセラミックス成形体 |
WO2011037177A1 (ja) | 2009-09-25 | 2011-03-31 | 住友化学株式会社 | セラミックス焼成体の製造方法 |
US9272957B2 (en) | 2009-10-01 | 2016-03-01 | Sumitomo Chemical Company, Limited | Process for producing aluminum titanate-based ceramics fired body |
WO2011040457A1 (ja) | 2009-10-01 | 2011-04-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックス焼成体の製造方法 |
WO2011081217A1 (ja) | 2009-12-28 | 2011-07-07 | 住友化学株式会社 | チタン酸アルミニウム系セラミックスの製造方法 |
US8921249B2 (en) | 2010-03-08 | 2014-12-30 | Sumitomo Chemical Company, Limited | Method for producing porous aluminum magnesium titanate and porous aluminum magnesium titanate |
WO2011111666A1 (ja) | 2010-03-08 | 2011-09-15 | 住友化学株式会社 | グリーン成形体、及び、チタン酸アルミニウム焼成体の製造方法 |
WO2011111633A1 (ja) | 2010-03-08 | 2011-09-15 | 住友化学株式会社 | 多孔質チタン酸アルミニウムマグネシウムの製造方法および多孔質チタン酸アルミニウムマグネシウム |
US8859447B2 (en) | 2010-03-26 | 2014-10-14 | Otsuka Chemical Co., Ltd. | Columnar aluminum titanate and method for producing same |
WO2011118025A1 (ja) | 2010-03-26 | 2011-09-29 | 大塚化学株式会社 | 柱状チタン酸アルミニウム及びその製造方法 |
JP2012229142A (ja) * | 2011-04-26 | 2012-11-22 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム質ハニカム構造体 |
JP2012020928A (ja) * | 2011-08-24 | 2012-02-02 | Sumitomo Chemical Co Ltd | チタン酸アルミニウム系焼成体の製造方法 |
WO2014104179A1 (ja) * | 2012-12-27 | 2014-07-03 | 住友化学株式会社 | ハニカムフィルタ及びその製造方法、並びに、チタン酸アルミニウム系セラミックス及びその製造方法 |
JP2020024899A (ja) * | 2018-05-09 | 2020-02-13 | パナソニックIpマネジメント株式会社 | 固体電解質およびそれを用いたマグネシウム二次電池 |
JP7249581B2 (ja) | 2018-05-09 | 2023-03-31 | パナソニックIpマネジメント株式会社 | 固体電解質およびそれを用いたマグネシウム二次電池 |
CN112552711A (zh) * | 2020-12-25 | 2021-03-26 | 江苏特丰新材料科技有限公司 | 一种近红外高反射率钛系白色颜料钛酸铝镁的制备工艺 |
CN112552711B (zh) * | 2020-12-25 | 2022-03-22 | 江苏特丰新材料科技有限公司 | 一种近红外高反射率钛系白色颜料钛酸铝镁的制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
JP5230935B2 (ja) | 2013-07-10 |
EP1741684A4 (en) | 2009-08-19 |
US20070224110A1 (en) | 2007-09-27 |
EP1741684B1 (en) | 2018-11-07 |
CN1946653A (zh) | 2007-04-11 |
US20130345043A1 (en) | 2013-12-26 |
CN100447105C (zh) | 2008-12-31 |
CA2563600A1 (en) | 2005-11-10 |
KR20070012365A (ko) | 2007-01-25 |
KR101158383B1 (ko) | 2012-06-22 |
US8557216B2 (en) | 2013-10-15 |
EP1741684A1 (en) | 2007-01-10 |
JPWO2005105704A1 (ja) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005105704A1 (ja) | チタン酸アルミニウムマグネシウム結晶構造物及びその製造方法 | |
KR100995642B1 (ko) | 티탄산 알루미늄 마그네슘 소결체의 제조 방법 | |
KR100956690B1 (ko) | 티탄산 알루미늄 소결체의 제조 방법 | |
JP4903821B2 (ja) | チタン酸アルミニウムマグネシウム−アルミナ複合セラミックス | |
JP3600933B2 (ja) | チタン酸アルミニウム系焼結体の製造方法 | |
Viswabaskaran et al. | Effect of MgO, Y2O3 and boehmite additives on the sintering behaviour of mullite formed from kaolinite-reactive alumina | |
TW201100353A (en) | Process for producing aluminum titanate-based ceramics fired body and aluminum titanate-based ceramics fired body | |
TW201107268A (en) | Method for producing aluminum titanate ceramic body | |
WO2010074231A1 (ja) | チタン酸アルミニウム系焼成体の製造方法 | |
EP2454214A1 (en) | Aluminium magnesium titanate composite ceramics | |
JP4612330B2 (ja) | ロータリーキルン | |
Kenawy et al. | Impact of Sintering Conditions for a Robust Cordierite Ceramic Reinforced with Nano-Silicon Nitride | |
JP2006327842A (ja) | マイクロ波焼成炉用の耐火断熱材 | |
Glymond et al. | Tailoring microstructures in mullite for toughness enhancement | |
JPH09268053A (ja) | リン酸塩焼結体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020067018839 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006512851 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2563600 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580012747.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005737257 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3089/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11587991 Country of ref document: US Ref document number: 2007224110 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005737257 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067018839 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 11587991 Country of ref document: US |