Nothing Special   »   [go: up one dir, main page]

WO2005100548A1 - 精巣細胞由来多能性幹細胞の製造方法 - Google Patents

精巣細胞由来多能性幹細胞の製造方法 Download PDF

Info

Publication number
WO2005100548A1
WO2005100548A1 PCT/JP2004/017125 JP2004017125W WO2005100548A1 WO 2005100548 A1 WO2005100548 A1 WO 2005100548A1 JP 2004017125 W JP2004017125 W JP 2004017125W WO 2005100548 A1 WO2005100548 A1 WO 2005100548A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
pluripotent stem
stem cells
gdnf
Prior art date
Application number
PCT/JP2004/017125
Other languages
English (en)
French (fr)
Inventor
Takashi Shinohara
Mito Shinohara
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to US10/594,864 priority Critical patent/US20070202590A1/en
Priority to CA002561690A priority patent/CA2561690A1/en
Priority to EP04799738A priority patent/EP1741776A4/en
Priority to JP2006512244A priority patent/JP4314372B2/ja
Priority to AU2004318461A priority patent/AU2004318461B9/en
Publication of WO2005100548A1 publication Critical patent/WO2005100548A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/235Leukemia inhibitory factor [LIF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/04Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from germ cells

Definitions

  • the present invention provides a method for producing a pluripotent stem cell using testis cells, a pluripotent stem cell produced by the method, a chimeric embryo derived from the pluripotent stem cell, a chimeric animal, a non-human animal, and the like.
  • the present invention relates to a method for producing functional cells such as mesodermal cells from the pluripotent stem cells, a composition for producing pluripotent stem cells derived from testis cells, and the like.
  • Germ cells are unique in their ability to transmit genes to offspring. Although this cell is highly specialized for producing gametes for reproduction, much evidence suggests the pluripotency of this cell. For example, teratomas almost always occur in the gonads and contain many types of cells and tissues at various stages of maturation. In addition, fetal germ cells are known to give rise to pluripotent cells when cultured under special conditions. These embryonic germ cells (EG cells) have differentiation characteristics similar to those of lunar Pi stem cells (embryonic stem cells: ES cells) isolated from the inner cell mass. These findings strongly suggest that germline lineage cells maintain the ability to generate pluripotent cells, but no pluripotent cells have been established from normal gonads after birth. Since ES cells and EG cells are all collected from prenatal embryos or fetuses, there is a major ethical problem in clinical application to humans. The development of technology to establish cells was required.
  • Neonatal testis cells are expressed in the presence of glial cell-derived neurotrophic factor (GD NF), leukemia inhibitory factor (LIF), epithelial cell growth factor (EGF), base '
  • GD NF glial cell-derived neurotrophic factor
  • LIF leukemia inhibitory factor
  • EGF epithelial cell growth factor
  • bFGF base '
  • the cultured cells When transplanted into the seminiferous tubules of pregnant mice, the cultured cells produce normal sperm and offspring, and no differentiation to teratoma or somatic cells is observed, indicating that they are completely committed to the germline. Was done. This is in contrast to ES cells, which give rise to teratomas when transferred to seminiferous tubules.
  • the present inventors named the cells germline stem cells (germline stem cells: GS cells) in order to lglj these cells with ES cells and EG cells.
  • GS cells are a third method of expanding germline cells, but are clearly different from ES / EG cells in their differentiation potential.
  • an object of the present invention is to provide a new method for producing pluripotent stem cells from a postnatal individual. Disclosure of the invention
  • mice testis cells are cultured under conditions similar to GS cell culture, they are indistinguishable from ES cell coeloes in addition to GS cells.
  • the appearance of a morphological appearance of colouyu was confirmed.
  • These ES-like cells grew selectively under ES cell culture conditions.
  • the ES-like cells generate teratoma when implanted subcutaneously in nude mice, etc., are induced to differentiate into various functional cells in vitro, and are microphone-injected into the blastcyst of the ES-like cells.
  • extremely diverse tissues including cultured cells are formed. Therefore, it has been found that the ES-like cells have pluripotency like ES cells, and the present invention has been completed. It led to.
  • the present invention relates to the following.
  • a method for producing pluripotent stem cells comprising culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain pluripotent stem cells.
  • GDNF glial cell-derived neurotrophic factor
  • testis cells are spermatogonial stem cells.
  • testis cells are P53-deficient.
  • Step 1 a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain cultured cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 Using a medium containing leukemia inhibitory factor (LIF), cultivate the cultured cells obtained in step 1 to obtain pluripotent stem cells.
  • LIF leukemia inhibitory factor
  • the above step 1 comprises culturing testis cells 1 "in the presence of feeder cells.
  • Step 1 a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain GS cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 A step of culturing the GS cells obtained in Step 1 using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain pluripotent stem cells.
  • GDNF glial cell-derived neurotrophic factor
  • testis cells are derived from a mammal.
  • the pluripotent stem cell is positive for at least one selected from the group consisting of SSEA-1, Forssman antigen, ⁇ 1-integrin, ⁇ 6-integrin, EpCAM, CD9, EE2 and c-kit. As described in (1), ⁇ Fe manufacturing method. (16) pluripotent stem cells are positive for SSEA-1, Forssman antigen, / 31-integrin, ⁇ 3 ⁇ 46-integrin, EpCAM, CD9, EE2 and c-1k: it ).
  • At least one selected from the group consisting of S SEA-1, Forssman antigen, ⁇ 1 integrin, 6-integrin, EpCAM, CD9, EE2 and c-kit There is a pluripotent stem cell derived from testis cells.
  • a method for producing a chimeric embryo comprising the following steps:
  • Step 1 a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor GDNF or its equivalent to obtain pluripotent stem cells;
  • Step 2 introducing the pluripotent stem cells into a host embryo to obtain a chimeric embryo o
  • Step 1 a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or its fO equivalent to obtain pluripotent stem cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 introducing the pluripotent stem cells into a host embryo to obtain a chimeric embryo
  • Step 3 Transfer the chimeric embryo into the uterus or fallopian tube of the host animal to obtain a chimeric animal (excluding humans).
  • Step 1 Testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or its C equivalent Culturing to obtain pluripotent stem cells;
  • Step 2 Testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or its C equivalent Culturing to obtain pluripotent stem cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 introducing the pluripotent stem cells into a host embryo to obtain a chimeric embryo
  • Step 3 transferring the chimeric embryo into the uterus of a host animal to obtain a chimeric animal (excluding human);
  • Step 4 Crossing the chimeric animal to obtain a non-human animal derived from pluripotent stem cells (23)
  • a method for producing a tetraploid chimeric embryo comprising the following steps:
  • Step 1 a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain pluripotent stem cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 Transducing the pluripotent stem cell into a tetraploid embryo to obtain a tetraploid chimeric embryo
  • Step 2 A method for producing a non-human animal derived from a pluripotent stem cell, comprising the following steps: (Step 1) a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain pluripotent stem cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 introducing the pluripotent stem cells into a tetraploid embryo to obtain a tetraploid chimeric embryo;
  • Step 3 Transfer the tetraploid chimeric embryo into the uterus or fallopian tube of a host animal to obtain a non-human animal derived from pluripotent stem cells
  • Step 1 a step of culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof to obtain pluripotent stem cells;
  • GDNF glial cell-derived neurotrophic factor
  • Step 2 The pluripotent stem cells are cultured under functional cell differentiation conditions to obtain functional cells.
  • the functional cells are mesodermal cells.
  • the mesodermal cell is any one selected from the group consisting of a blood cell, a vascular cell, and a cardiomyocyte.
  • the production method according to (25), wherein the functional cell is an ectodermal cell.
  • Nervous cells are neurons, glial cells, oligodendrocytes and more! ⁇ The method according to (29) above, which is any one selected from the group consisting of mouth sites.
  • GDNF glial cell-derived neurotrophic factor
  • LIF leukemia inhibitory factor
  • pluripotent stem cells such as ES cells and EG cells, which could not be obtained from a prenatal individual (fertilized egg, embryo, etc.), can be obtained from a postnatal individual. It is possible to build.
  • the pluripotent stem cells it is possible to construct a variety of cells having cord compatibility for themselves, which is useful in the medical fields such as regenerative medicine and gene therapy.
  • the pluripotent stem cells can be used for producing genetically modified animals such as transgenic animals and knockout animals, and thus are useful in the field of biotechnology.
  • FIG. 1 is a photograph showing the morphology of GS cells and colonies of pluripotent stem cells obtained by the production method of the present invention.
  • the lower right line indicates 5 ° ⁇ m.
  • a is a photograph showing a state in which colonies of GS cells (white arrowheads) and the pluripotent stem cells (white arrowheads) are mixed in the initial stage of culture.
  • (b) is a photograph showing the morphology of the osteotomy of the pluripotent stem cell J3 at the initial stage of culture. Pluripotent stem cells are more packed.
  • c is a photograph showing the fully established form of the pluripotent stem cell. The colony morphology is completely ES cell colony-like.
  • d is a photograph showing the morphology of a typical GS cell colony.
  • Figure 2 shows the distribution of metaphase spreads with different chromosome numbers. At least 20 cells were counted. ES cells (ES (129)), ddY mouse-derived ES-like cells (ES-like (ddY)), DBA / 2 mouse-derived ES-like cells (ES-like (DBA)), and DBAZ2 mouse-derived GS cells (GS (GS ( DBA)).
  • the vertical axis shows frequency (%), and the horizontal axis shows the number of chromosomes.
  • FIG. 3 is a histogram showing the expression of cell surface markers of pluripotent stem cells obtained by the production method of the present invention.
  • A is SSEA-1;
  • (b) is] 31-integrin;
  • (c) is a6-integrin;
  • (d) is EpCAM;
  • (e) is CD9;
  • (g) shows expression of EE2,
  • (h) shows expression of c-kit.
  • the vertical axis indicates the number of cells (cells), and the horizontal axis indicates the expression of each cell surface marker as relative fluorescence intensity.
  • the white column shows the histogram when cells were stained without using the primary antibody (negative control), and the black column shows the histogram when cells were stained using the primary antibody.
  • the percentage of cells in the gate relative to the total number of cells is (a) 85.14%, (b) 93.72%, (c) 97.98%, (d) 96.36%, (e) 99.11%, (f) 25.38%, (g) 92,29% and (h) 57.88%.
  • FIG. 4 is a histogram showing the expression of cell surface markers of GS cells.
  • A is SSEA-1;
  • (b) is] 31-integrin;
  • (c) is ⁇ 6-integrin;
  • (d) is EpCAM;
  • (e) is CD9;
  • (f) is Forssman antigen;
  • (g) Indicates expression of EE2, and
  • (h) indicates expression of c-kit.
  • the vertical axis shows the number of fine S packets (pieces), and the horizontal axis shows the expression of each cell surface marker as relative fluorescence intensity.
  • the white column shows the histogram when cells were stained without using the primary antibody (negative control), and the black column shows the histogram when cells were stained using the primary antibody.
  • FIG. 5 is a histogram showing the expression of cell surface markers of ES cells.
  • A) is SSEA-1;
  • B) is 1-integrin;
  • C) is ⁇ 6-integrin;
  • D) is EpCAM;
  • e) is CD9;
  • F) is Forssman antigen;
  • g) Indicates expression of EE2, and
  • (h) indicates expression of c-kit.
  • the vertical axis indicates the number of cells (cells), and the horizontal axis indicates the expression of each cell surface marker as relative fluorescence intensity.
  • the white column shows the histogram when the cells were stained without using the primary antibody (negative control), and the black column shows the histogram when the cells were stained using the primary antibody.
  • the percentage of cells in the gate relative to the total cell number is (a) 96.46%, (b) 99.69%, (c) 97.23%, (d) 96.10%, (e) 99.68%, (f) 79.11%, (g) 81.78%, and (h) 93.90%.
  • FIG. 6 is a histogram showing the expression of a cell surface marker on testis cells before the start of culture.
  • A shows the expression of SSEA-1 and
  • b shows the expression of Forssman antigen.
  • Vertical axis Indicates the number of cells (cells), and the horizontal axis indicates the relative fluorescence intensity.
  • the white column shows the histogram when cells were stained without using the primary antibody (negative control), and the black column shows the histogram when cells were stained using the primary antibody.
  • the ratio (%) of cells in the gate to the total cell number is (a) 0.92% and (b) 43.02%, respectively.
  • FIG. 7 is a histogram showing the expression of each cell surface marker of testis cells before the start of culture.
  • the vertical axis shows the number of cells (cells), and the horizontal axis shows the relative fluorescence intensity.
  • the white column shows the histogram when cells were stained without using the primary antibody (negative control), and the gray column shows the histogram when cells were stained using the primary antibody. The percentage (%) of positive cells to the total cell number is shown in each histogram.
  • FIG. 8 shows the results of double immunostaining of neonatal testis cells with an anti-EE2 antibody and an anti-Forssman antigen antibody.
  • FIG. 9 is a diagram showing the results of staining with Al-force phosphatase.
  • A shows a colony of pluripotent stem cells obtained by the production method of the present invention,
  • b shows a colony of GS cells, and
  • c shows a colony of ES cells.
  • FIG. 10 shows the results of RT-PCR analysis.
  • 3 shows the expression of OCT-4, Rex_1, Nanog and HPRT in GS cells (GS) and pluripotent stem cells (mGS) obtained by the production method of the present invention.
  • FIG. 11 shows the results of RT-PCR analysis. Three-fold serial dilutions of cDNA from GS cells (GS), ES-like cells (ES-1 ike) and S cells (ES) were amplified with specific primers.
  • FIG. 12 is a diagram showing the results of imprinting of imprinting on ES-like cells.
  • 3 shows DMR methylation of H19, Meg3IG, Rasgrfl, Igf2r and Peg10 regions.
  • DNA methylation was analyzed by sulfite chromosome sequencing.
  • the black ellipses indicate methylated cytosine-guanine sites (CpGs), and the white ellipses indicate unmethylated CPGs.
  • FIG. 13 is a diagram showing an analysis result of imprinting in ES-like cells.
  • A COBRA of GS cells and ES-like cells from P53 knockout mice. The day on which ES-like cells were found was designated as day 0, and cells were harvested at the times indicated. In this culture, only ES-like cells were found by day 12. The numbers at the bottom of the figure indicate the percentage of methylation.
  • B CO BRA in the upstream region of the Oct-4 gene in ES-like cells expressed by wild-type mice (Wild Type) and P53 knockout mice (P53). The numbers below the figure indicate the percentage of methylation (%).
  • the figure on the right is a schematic diagram of the upstream region of the Oct-14 gene. White arrowheads indicate the size of unmethylated DNA. Black arrowheads indicate the size of methylated DNA. The enzyme used to cleave each site is indicated in parentheses. U: uncut, C: cut.
  • FIG. 14 is a diagram showing the differentiation of ES-like cells at the in vivo mouth and in vivo.
  • A-H is a diagram showing differentiation in OP9 cells.
  • A is a view showing a paving stone-like structure (hemocyte cells) on day 8.
  • FIG. (B) shows the development of CD45-positive hematopoietic cells 7 days after co-culture (left). In this cell group, Gr1-positive granulocytes, Mac1-positive macrophages or Ter119-positive erythrocytes were observed (right).
  • C shows Mei-Giemsa staining of the collected cells. Myeloid progenitor cells (arrowheads) and erythroid cells (arrows) were observed.
  • FIG. D, E shows the differentiation of vascular cells (such as vascular endothelial cells).
  • F1k-1 positive cells were sorted 4 days after co-culture, and CD31 positive (D) or VE-forced herin positive (E) vascular cells appeared 6 days after cell sorting.
  • FH is a diagram showing the differentiation of the myocardium.
  • F1k-1 positive cells differentiated into MF20-positive (F) or cTn-I-positive (G) myocardium 6 days after sorting.
  • I is a diagram showing red blood cells generated from an embryo body in methyl cellulose 8 days after culture. Cells show red color.
  • J-M Neuronal differentiation on gelatin coated plates.
  • Tu j-positive neurons J 5 days after induction, GFAP-positive astrocytes (K) and MBP-positive oligodendrocytes (L) 7 days after induction.
  • Tu j-positive eurones arrowheads
  • TH and Tu j-positive dopaminergic neurons appeared (M).
  • FIG. 4 is a view showing sperm formation from GS cells.
  • FIG. 15 is a diagram showing the results of flow cytometry analysis.
  • A shows the results of the negative control
  • (b) shows the results of analysis of Terl9
  • (c) shows the results of analysis of CD45
  • (d) shows the results of analysis of MaclZ Gr1 (stained with Mix).
  • the vertical axis shows the expression of each cell surface marker
  • the horizontal axis shows the expression of EGFP as relative fluorescence intensity.
  • A)-(The middle and lower tables show the number of plots (events) at each quadrant gate (upper left, upper right, lower left, lower right), percentage of total surviving cells (% gate), total The ratio to the cell number (total%) is shown.
  • FIG. 16 is a diagram showing the production of a chimeric animal.
  • A The 12.5—dpc chimeric embryo shows fluorescence under UV light (arrow). No fluorescence was observed in the control embryos of the littermates (arrowheads). The left figure is an observation under visible light.
  • B Newborn chimeric animals (arrows) showed fluorescence.
  • C Mature chimeric animal. Shows coat color (yellowish brown) from donor cells.
  • D-I is a diagram showing a sagittal section of a 12.5—dpc chimeric embryo. Fluorescence was observed in the brain (D), intestinal tract (E), heart (F), liver (G), lower spinal cord (neural tube) (H), and placenta (I).
  • FIG. 17 shows the results of observation of newborn chimeric mice under UV light.
  • Fig. 18 shows the results of fluorescence microscopic observation of frozen sections of chimeric mouse embryos (lower part of spinal cord (neural tube)).
  • the method for producing pluripotent stem cells of the present invention comprises: culturing testis cells using a medium containing glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof; (Eg, multipotent germline stem cells (mGS cells)) may be obtained (eg, isolation, separation, selection, purification, etc.).
  • GDNF glial cell-derived neurotrophic factor
  • mGS cells multipotent germline stem cells
  • Pluripotent stem cells refer to cells that can be cultured in vitro, can proliferate for a long period of time, have autonomy, and have the ability to differentiate into all cells constituting the living body and their precursor cells.
  • Testis cells include all cells that make up the testis, such as spermatogonial stem cells, spermatogonia, spermatids, spermatogonia, spermatocytes, spermatozoa, spermatozoa, Leydig cells, and Sertoli cells. , Intercellular cells, male germ cells, germ cells and the like.
  • Spermatogonial stem cells are capable of self-renewal and capable of differentiating into spermatozoa or their progenitor cells (eg, spermatogonia, spermatids, spermatids, spermatocytes, spermatids, etc.) (ability as spermatogonial stem cells)
  • a germline cell having Examples of spermatogonial stem cells include primordia 1 germ cells, male germ cells (gonocytes), spermatogonia that are stem cells (cells that have the ability as spermatogonia stem cells among the spermatogonia), germ line Stem cells (GS cells) and the like.
  • the spermatogonial stem cells are preferably male germ cells (gonocytes), spermatogonia that are stem cells, or GS cells.
  • a GS cell is a spermatogonial stem cell that has been grown in vitro depending on a GDNF receptor agonist compound (GDNF or an equivalent thereof), for example, Biol. R-labeled rod., Vol. 69, p612-616, 2003 Refers to spermatogonial stem cells grown by the method described in (1).
  • GDNF receptor agonist compound for example, Biol. R-labeled rod., Vol. 69, p612-616, 2003 Refers to spermatogonial stem cells grown by the method described in (1).
  • Testis cells can be prepared from the testis by a method known per se. For example, testes are removed and testis cells are dispersed by excising the removed testes with a degrading enzyme such as collagenase, trypsin, or DNase (eg, Biol. Reprod., Vol. 69, p6 12-616, 2003). The testis cells are washed with a culture solution or the like, and used for producing the pluripotent stem cells of the present invention.
  • a degrading enzyme such as collagenase, trypsin, or DNase (eg, Biol. Reprod., Vol. 69, p6 12-616, 2003).
  • the testis cells are washed with a culture solution or the like, and used for producing the pluripotent stem cells of the present invention.
  • testis cells may have been cultured before being subjected to the production of the pluripotent stem cells of the present invention.
  • the culture conditions are not particularly limited.
  • testis cells obtained by the above-described enzyme treatment are used to produce glial cell-derived neurotrophic cells.
  • GDNF factor
  • LIF leukemia inhibitory factor
  • spermatogonial stem cells can be expanded to obtain GS cells, which may be used.
  • testis cells may be those obtained by concentrating a fraction having a high ability to produce pluripotent stem cells before being subjected to the production of the pluripotent stem cells of the present invention.
  • fractions can include, for example, spermatogonial stem cells, spermatogonia, male germ cells, germ cells, and the like.
  • the enrichment method examples include a method using a senor sorter or a microbead using an antibody that recognizes a cell surface antigen specifically expressed in the cells of the fraction.
  • spermatogonial stem cells can be enriched using cell surface antigens such as ⁇ 6-integrin, c-kit, CD9 as an index (eg, Proc Natl Acad Sci U
  • spermatogonial stem cells can be enriched using dye such as Hoechst (see Development, 131, 479-487, 2004, etc.).
  • testis cells used in the present invention are not particularly limited as long as they are derived from animals.
  • the animal is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention, and may be a vertebrate or a vertebrate, but is preferably a vertebrate.
  • Vertebrate animals include, for example, mammals, birds, fish, amphibians, and reptiles.
  • mammals include, but are not limited to, rodents such as mice, rats, hamsters, and guinea pigs, and experimental animals such as egrets, and livestock such as pigs, porcines, goats, magpies, and higgies;
  • pets such as dogs and cats, and primates such as humans, monkeys, orangutans, and chimpanzees.
  • Birds include chickens, quails and ahi , Goose, turkey, ostrich, emu, ostrich, guinea fowl, pigeon, etc.
  • the vertebrate is preferably a mammal.
  • the mammal may be before birth or after birth as long as pluripotent stem cells can be produced by the method of the present invention, but is preferably after birth.
  • the stage of development of the fetus using a prenatal fetus is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention, and for example, the development stage after the formation of a male genital ridge is performed. No.
  • mice after 12.5 dpc, for example, 13.0 dpc or more, preferably 13.5 dpc or more, more preferably 14.5 dpc or more, and even more preferably 16.5 or more.
  • the stage of occurrence after dpc can be mentioned.
  • the age of the animal is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention, and may be any of a neonate, a baby, an adult, and a senile body Good power It is preferable to use younger animals from the viewpoint of production efficiency, because the younger animals have higher frequencies of stem cells (such as spermatogonial stem cells) contained in the testes. That is, the animal used is preferably a newborn or a newborn, more preferably a newborn.
  • an adult refers to an individual who has reached sexual maturity (for example, 4 weeks or more in mice), and a baby refers to an individual who has not reached sexual maturity but is forming spermatozoa (eg, 5 to 4 days in mice).
  • Newborn refers to an individual before spermatogenesis has begun (eg, 0-4 days old in mice).
  • the age of the mouse is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention, but for example, 0 to 8 weeks old, preferably 0 to 3 weeks old More preferably, it is 0-8 days old, most preferably 0-2 days old.
  • 0 day (week) age means the day of birth.
  • P53 defective testis cells may be used as testis cells used in the present invention.
  • pluripotent stem cells can be obtained with extremely high efficiency as compared with the case of using wild-type testis cells.
  • P 5 3 U for deficient testicular cells for IJ in adult-derived cells as testis cells or ⁇ using GS cells, P 5 3 U for deficient testicular cells for IJ.
  • P53 insufficiency refers to a state in which the P53 gene is insufficient in S function, that is, a state in which the normal function of the P53 gene cannot be sufficiently exhibited, and the p53 gene is expressed at all. Not expressed, or the expression level of P53 gene is reduced to the extent that the normal function inherent to P53 gene cannot be exhibited, or the function of P53 gene product is completely lost, or The normal function of the P53 gene cannot be exhibited, but the function of the P53 gene product is reduced.
  • P53-deficient testis cells examples include P53 gene-deficient homozygotes or P53 gene-deficient heterozygotes, preferably P53 gene-deficient homozygotes.
  • P53-deficient testis cells can be obtained, for example, by collecting testis cells of a P53-deficient animal (such as a P53 gene-deficient animal).
  • P53-deficient testicular itaspores can also be obtained by introducing a targeting vector for the P53 gene into testis cells and deleting the P53 gene by homologous recombination.
  • the P53 defective testis cell is a substance that suppresses the expression or function of the P53 gene (for example, an antisense nucleic acid, an RNAi-inducing nucleic acid (siRNA, stRNA, miRNA etc.) into cells.
  • the substance that suppresses the expression or function of P53 can be introduced into testis cells by a method known per se.
  • the substance that suppresses the expression or function of the P53 gene contains a nucleic acid molecule or a nucleic acid molecule.
  • a calcium phosphate method, a lipofection method, a liposome method, an electoral poration method, or the like can be used.
  • glial cell-derived neurotrophic factor is not particularly limited as long as it can achieve the production of pluripotent stem cells when used in the method of the present invention.
  • Glial cell-derived neurotrophic factor (GD NF) against GD NF-like compounds such as retorin (Neurturin), persephin, artemin, etc., GD NF receptor (group) or co-receptor (group) and Other compounds having the same action as the GD NF-like compound (for example, an antibody specifically recognizing a GD NF receptor (group) or an auxiliary receptor (group), a GD NF receptor (group) or a trapping receptor (group)) , Etc.).
  • this Receptor (s) or trapping receptor (s) include Ret tyrosine kinase and GDNF-family receptor ⁇ : s, respectively.
  • a GDNF-like compound is a compound having a structure similar to that of glial cell-derived neurotrophic factor (GDNF) or a compound that acts on its receptor or co-receptor like glial cell-derived neurotrophic factor (GDNF).
  • GDNF glial cell-derived neurotrophic factor
  • Examples of the GDNF-like compound include Nordrin, Percefin, Artemin and the like.
  • Glial cell-derived neurotrophic factor (GDNF) and GDNF-like compounds are structurally similar; Act as signal transduction receptors.
  • a compound that acts like a glial cell-derived neurotrophic factor refers to a receptor that transmits a glial cell-derived neurotrophic factor (GDNF) signal or its co-receptor, and a glial cell-derived neurotrophic factor. (GDNF).
  • GDNF receptor means a substance that binds glial cell-derived neurotrophic factor (GDNF) or a GDNF-like compound, that is, a compound that can transmit a signal of glial cell-derived neurotrophic factor (GDNF) or a GDNF-like compound.
  • the "GDNF receptor” includes, in particular, glial cell-derived neurotrophic factor (GDNF) or cRet receptor osteokinase, which is a signal-mediated receptor for GDNF-like compounds.
  • GDNF co-receptor refers to a cell that does not transmit the signal of glial cell-derived neurotrophic factor (GDNF) or GDNF-like compound, but transmits the signal of glial cell-derived neurotrophic factor (GDNF) or GDNF-like compound. Means a receptor that activates the receptor. Such compounds are, in particular, receptors whose members are called GDNF family receptors ⁇ : s (GFRa). They are also associated with the glial cell-derived neurotrophic factor (GDNF), percefin, artemin and nortrin signaling receptor complex.
  • the Receptors of the family include 4 members GFRa1-4) (Jing, S., et al., Cell, 85, 9-10 (1996) Jing, SQ, et al., J. Biol. Chem., 272, 3 3111-33117 (1997) Trean or, JJ, et al., Nature, 382, 80-83 (1996) Sub anto, P., et al., Human Molecular Genetics, 6, 1267-1273 (1997)) Known. They can independently transmit signals, but all are essential for ligand binding and cRet activation.
  • the concentration of glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof contained in the medium is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention.
  • GDNF glial cell-derived neurotrophic factor
  • the concentration of glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof contained in the medium is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention.
  • 0.05 ng / m1 to 10 Omg / m1 for example 0.5 ngZml to 100 g / ml, preferably 0.5 ngZml to 10 ⁇ gZml, more preferably 0.5 ngZml.
  • the medium used in the production method of the present invention preferably further contains a leukemia inhibitory factor (LIF).
  • LIF leukemia inhibitory factor
  • LIF leukemia inhibitory factor
  • the medium used in the production method of the present invention preferably further contains at least one of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and more preferably both.
  • EGF epidermal growth factor
  • bFGF basic fibroblast growth factor
  • EGF epidermal growth factor
  • its concentration is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention.
  • Concentration 0.05 ng / ml 0 to 10 mg / ml e.g. 0.5 ng / ml to 100 ⁇ g / ml, preferably 0.5 ng / ml to 0 ⁇ g / ml N 5 ng / ml to l / g / ml, more preferably 0.5 to 200 ng / ml, even more preferably 0.5-50 ng / ml, most preferably 2-30 ng / ml.
  • the base '! ⁇ When fibroblast growth factor (bFGF) is contained in the culture medium, its concentration is not particularly limited as long as pluripotent stem cells can be produced by the method of Shimaki, but it is usually 0.05n gZml to lO OmgZml, for example 0.5 ng gZm1 to: L 00 ⁇ gZm1, preferably 0.5 ngZml to: 10 ⁇ gZml, more preferably 0.5 ngZml to 1 ⁇ g / m1, more preferably 0.5 to 200 ng / ml, even more preferably 0.5 to 50 ng / ml, most preferably 2 to 20 ng / ml.
  • bFGF fibroblast growth factor
  • cytokines such as glial cell nutritional factor (GDNF), leukemia inhibitory factor (LIF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF)
  • GDNF glial cell nutritional factor
  • LIF leukemia inhibitory factor
  • EGF epidermal growth factor
  • bFGF basic fibroblast growth factor
  • Glial cell-derived neurotrophic factor includes, for example, human and rat (W).
  • GDNF glial cell-derived neurotrophic factor
  • LIF leukemia inhibitory factor
  • human Japanese Patent Application Laid-Open No. 1-502985
  • mouse Japanese Patent Application Laid-Open No. 1-502985
  • hidge Japanese Patent Application Laid-Open No. 4-502554
  • Japanese Patent Application Laid-Open No. 5-502554 Japanese Patent Application Laid-Open No. 5-502554
  • Leukemia Inhibitory Factors LIF
  • epidermal growth factor examples include, for example, mouse (see Nature, 257, 325-327, 1975) and human (see, for example, Proc Natl Acad Sci USA, 88, 415, 1991). (EGF) is exemplified.
  • bFOF basic blast growth factor
  • human bFGF see, for example, Endocrine Rev., 8, 95, 1987
  • pesticide bFGF for example, Proc. Natl. Acad. Sci. USA, 81, 6963, 1984
  • mouse bFGF for example, Dev. Biol., 138, 454-
  • 463, 1990 rat b FGF (see, for example, Biochem. Biophys. Res. Commun., 157, 256-263, 1988) and the like.
  • the cytokinin may be a purified natural, synthetic or recombinant protein as long as the pluripotent stem cells can be obtained when used in the method for producing pluripotent stem cells of the present invention.
  • Mutant proteins including insertional, substitutional and deletional variants), fragments, and chemically modified derivatives thereof. It also includes proteins substantially homologous to the wild-type amino acid sequence of each cytokine described above.
  • the number of amino acids inserted, substituted or deleted in the mutein is usually 1 to 20, preferably 1 to 10, more preferably 1 to 5, and most preferably 1 or 2.
  • Substantially homologous means that the degree of homology to the wild-type three amino acid roosters is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more, and most preferably Means more than 95%.
  • the percentage of homology (%) helps to align the sequences as described in (Atlas of Protein Sequence and Structure v. 5, p. 124, National Biochemical Research Foundation, Washington, DC (1972)). If four gaps can be introduced in a 100-amino acid length to achieve this, the percentage of the same amino acid residue in the compared sequences that is the smaller of the two sequences to be aligned (%).
  • the stringent conditions include, for example, the expression of cloned genes in E. coli (Sambrook, J.) (Molecular Cloning: A laboratory manual (1989)) Cold Spring harbor Laboratory Press, New York, USA, 9.47-9.62 and 11.45-11.61 '' Examples of hybridization conditions (eg, about 45, 6. hybridization in OXSSC, etc.) are exemplified.
  • a pluripotent stem cell In the culture of stem cells such as pluripotent stem cells, more stable culture of stem cells can be achieved by using a medium containing cytokines such as LIF, EGF, and bFGF. Therefore, in the production method of the present invention, a pluripotent stem cell can be produced more stably by using a medium containing LIF, EGF, bFGF and the like.
  • LIF can be useful, for example, for maintaining the undifferentiated state of pluripotent stem cells
  • EGF and bFGF can be useful, for example, for enhancing proliferation of pluripotent stem cells.
  • a basal medium used in the method of the present invention may be a known medium per se, and is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention.
  • a medium modified for ES cell culture or the like may be used, or a mixture of the above-described basal mediums may be used.
  • the medium itself may contain ⁇ P additives.
  • Additives are not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention.
  • examples of such additives include growth factors (eg, insulin), iron sources (eg, transferrin), and polyamines (eg, putrescine).
  • Minerals eg, sodium selenate, etc.
  • sugars eg, glucose, etc.
  • shelvic acid eg, pyruvate, lactic acid, etc.
  • serum proteins eg, anolebumin, etc.
  • amino acids eg, L-glutamine, etc.
  • reducing agents For example, 2-mercadatoethanol, etc., vitamins (eg, ascorbic acid, d-biotin, etc.), steroids (eg,] 3-estradiol, progesterone, etc.), antibiotics (eg, streptomycin, penicillin, gentamicin, etc.) , Buffer (eg HEP ES etc.), nutrition ⁇ ⁇ ⁇ mouth food ( StemPro-Nutrient Supplement, etc.), and the like if example.
  • sugars eg, glucose, etc.
  • shelvic acid eg, pyruvate, lactic acid, etc.
  • serum proteins eg, anolebumin, etc.
  • the additives are preferably contained within a concentration range known per se.
  • the medium can contain serum.
  • the serum is not particularly limited as long as it is animal-derived serum as long as pluripotent stem cells can be produced by the method of the present invention.
  • the serum is derived from the above-mentioned mammals (eg, fetal fetus serum, human serum). Etc.).
  • a blood sugar substitute additive for example, Knockout Serum Replacement (KSR) (Invitrogen3 ⁇ 4t) or the like
  • KSR Knockout Serum Replacement
  • the concentration of serum is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention, but is usually in the range of 0.1 to 30 (v / v)%.
  • testis cells may be cultured in the presence of feeder cells.
  • the feeder cell is not particularly limited as long as a pluripotent stem cell can be produced by the method of the present invention, but it is used when culturing pluripotent stem cells such as ES cells and EG cells while maintaining pluripotency. It is possible to use a single feeder cell of ⁇ itself, for example, fibroblasts (mouse fetal fibroblasts, mouse «I blast cell line s TO, etc.).
  • the feeder cells have been inactivated by a method known per se, for example, irradiation with a thigh line (such as gamma rays) or treatment with an anticancer agent (such as mitomycin C).
  • a thigh line such as gamma rays
  • an anticancer agent such as mitomycin C
  • the culture conditions in the production method of the present invention culture conditions generally used in cell culture technology can be used.
  • the culture ⁇ is usually in the range of about 30 to 40 ° C, preferably about 37 ° C.
  • 00 2 concentration is usually in the range of about 1 to 1 0%, preferably about 5% illustration.
  • the humidity is usually in the range of about 70 to: L00%, preferably about 95 to: L00%.
  • Testis cells isolated from the testis are suspended in a medium, seeded in a cell culture container, and cultured (first culture).
  • the container for cell culture those used in ordinary cell culture can be used, but it is preferably coated with gelatin or the like to promote adhesion of testis cells to the container.
  • the vessels used for the following culture it is preferable that the stem cells be produced about 6 to 18 hours after the start of the first culture (for example, After the overnight culture, the cultured cells in the first culture, preferably in suspension (including at least reproductive Hideta spores), are subcultured to another cell culture vessel (second culture). Culture).
  • the subcultured cells vary depending on the culture conditions, but usually within 1 week after subculture, they form a cog knee on the bottom of the culture container. The knee can be formed using a microscope or the like.
  • the cells are dispersed by trypsin treatment or the like, resuspended in the medium, and further subcultured to a new culture plate (third culture) .
  • the flat shaped somatic cells disappear. Therefore, after the second or third passage, the cells are preferably cultured in the presence of one feeder cell.
  • the passage interval and the cell dilution ratio are appropriately determined depending on the culture conditions. For example, every 2 to 5 days,:! 11Z4 dilution (preferably 1-1Z2 dilution at the beginning of culture) is exemplified.
  • Examples of the passage between established ES cell-like colonies and the dilution ratio of cells include, for example, 2 to 5 day intervals and 1Z4 to 1/10 dilution.
  • the cultured cells form two types of colloys by about 3 to 6 weeks after the start of the culture.
  • One colony has a morphology characterized by intercellular bridges and morula-like structures, which are GS cell colonies.
  • the other colony is more tightly packed and has a morphology very similar to the morphology of the ES cell colonies, which is the pluripotent stem cell colony of the present invention. Therefore, it is possible to clearly and visually distinguish the colony of GS cells from the colony of pluripotent stem cells according to the present invention.
  • a pluripotent stem cell can be isolated simply by limiting dilution using a Pasteur pipette, a micromanipulator, or the like to selectively increase the colony of the pluripotent stem cell under a microscope. Can be released.
  • pluripotent stem cells can be isolated using a cell sorter or the like, using the cell surface strength of the pluripotent stem cells as an index.
  • GS cells are obtained by culturing testis cells using a medium containing GDNF or an equivalent thereof under the same culture conditions as described above, and the GS cells are further cultured.
  • pluripotent stem cells can be derived from GS cells, and the pluripotent stem cells of the present invention can be obtained.
  • GS cells can be isolated by selective pick-up using a Surebi pet, micromanipulation, or the like.
  • the culture period for obtaining the ⁇ ⁇ GS cells is not particularly limited as long as pluripotent stem cells can be produced by the method of the present invention, but the culture period is usually within one year, for example, within six months. Preferably, it is within 3 months, more preferably within 7 weeks.
  • a medium having the same composition may be used throughout the entire process, or a medium having a plurality of compositions may be selectively used over time. By doing so, pluripotent stem cells can be more selectively proliferated, and pluripotent stem meniscus can be produced more efficiently.
  • the medium used for culture is changed to a medium used for the initial culture of testis cells (medium A) or a medium more suitable for long-term culture of pluripotent stem cells (medium B). can do.
  • pluripotent stem cells can be efficiently obtained by culturing testis cells using the medium A to obtain cultured cells, and culturing the cultured cells using the medium B.
  • the cytodynamic force that can be contained in the medium A is the same as described above.
  • Medium B contains the above-mentioned cytodynamic factors (glial cell-derived neurotrophic factor (GDNF) or equivalent, leukemia inhibitory factor (LIF), epidermal growth factor (EGF), basic! H blast growth factor (bFGF) )), But preferably contains leukemia inhibitory factor (LIF) at the same concentration as described above.
  • GDNF glial cell-derived neurotrophic factor
  • LIF leukemia inhibitory factor
  • EGF epidermal growth factor
  • bFGF basic! H blast growth factor
  • the concentration of serum that can be contained in each of the culture media A and B is the same as described above, but the concentration of serum that can be contained in the culture medium A is preferably 0.1 to 5 (v / v)%. And more preferably O.3 to 3 (v / v)%.
  • the concentration of serum that can be contained in Medium B is Preferably it is 2 to 30 (v / v)%, more preferably 10 to 20 (v / v)%.
  • the basal medium of each of the mediums A and B is the same as described above.
  • the basal medium of the medium A is a basal medium (eg, StemPro®) preferably used for culturing spermatogonial stem cells (such as GS cells). ⁇ 34 S FM etc.)
  • the basal medium of the medium B can be a basal medium (eg, DMEM etc.) suitably used for culturing ES cells.
  • the additives that can be contained in the culture media A and B are the same as described above.
  • the time at which the medium is converted from medium A to medium B varies depending on the culture conditions and the like, and thus cannot be uniformly defined.For example, in the case of mice, 10 to 12 O days after the start of the first culture, preferably 14 to 40 days later.
  • the cells were transferred to the medium B using a medium having a composition in which glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof was added at the above-described concentration.
  • GDNF glial cell-derived neurotrophic factor
  • the culture of testis cells using the medium A and the medium B may be performed under a single feeder cell as described above.
  • Pluripotent stem cells obtained by the production method of the present invention proliferate while maintaining pluripotency, usually for 2 months or more, preferably 5 months or more.
  • the above-described medium B is preferably used.
  • Whether or not the cells obtained by the production method of the present invention retain pluripotency can be determined by a method known per se as exemplified below.
  • a cell surface marker or the like of the obtained cells is analyzed using a flow cytometer or the like.
  • useful cell surface markers include SSEA-1 (ES «marker), Forssman antigen (ES cell marker), j31 and ⁇ 6-integrin (ES and GS cell markers), EpCAM (ES cell And spermatogonia (spermatogonia) marker, CD9 (ES cell and spermatogonia stem cell marker), EE2 (spermatogonia cell marker), c-kit (differentiated spermatogonia cell marker) and the like.
  • Pluripotent stem cells obtained by the production method of the present invention include, for example, mouse-derived pluripotent stem cells, such as SSEA-1, Forssman antigen, ⁇ 1- and ⁇ 6-integrin, EpCAM, CD9, At least one selected from the group consisting of EE2 and c-kit is positive, and preferably all are positive. In addition, Forssman antigen and C-kit are preferably weakly positive. Since SSEA-1 and Forssman antigen are negative in GS cells, pluripotent stem cells obtained by the production method of the present invention are clearly distinguished from GS cells.
  • mouse-derived pluripotent stem cells such as SSEA-1, Forssman antigen, ⁇ 1- and ⁇ 6-integrin, EpCAM, CD9
  • At least one selected from the group consisting of EE2 and c-kit is positive, and preferably all are positive.
  • Forssman antigen and C-kit are preferably weakly positive. Since SSEA-1 and Forssman antigen are negative in
  • the expression of the cell surface marker being “negative” means that the cell surface marker is expressed on the cell surface and that specific binding to the cell surface marker by a specific antibody can be confirmed.
  • “Weakly positive” means that the expression level of the cell surface marker is relatively weak compared to other cells, the expression level of the cell surface marker is weak, the population is relatively large, or the cell surface marker is This means that the ratio of expressed cell clusters is relatively small. Even in pluripotent stem cells of animal species other than mouse, the expression pattern of cell surface markers is the same as in mice. However, if there is a marker that is not naturally possessed by the animal species, the marker will be excluded from analysis, and species differences will be considered.
  • the cells retain pluripotency by measuring the activity of al force phosphatase in the cells of the infested cells obtained by the production method of the present invention by a method known per se. You can decide whether or not it is good.
  • Pluripotent stem cells obtained by the production method of the present invention are positive for alkaline phosphatase, like ES cells.
  • pluripotent stem cells obtained by the production method of the present invention are clearly distinguished from GS cells, since GS cells are weakly positive or negative for alkaline phosphatase.
  • genes specifically expressed in pluripotent stem cells include Oct-4, Rex-1, Na nog, Cripto, EIas, and UTF1. Examples of molecules essential for maintaining undifferentiated ES cells, such as ZFP57, Esg-1 and the like.
  • the pluripotent stem cells obtained by the method are at least any one selected from the group consisting of Oct-4, Rex-1, Na nog, Cripto, ERas, UTF1, ZFP57 and Esg-1. These genes are expressed, and preferably all genes are expressed. In GS cells, the expression of these genes is generally weaker than the pluripotent stem cells obtained by the production method of the present invention, and in particular, almost no expression of Nanog is observed. The GS cells are clearly adjusted from IJ.
  • sulfite chromosome sequencing of DMR in chromosome DNA (Development, vol.129, pl807—1817, 2002) and COBR humans (Nucl. Acid. Res., Vol.25, p2532-2534, 1997)
  • the cells obtained by the production method of the present invention retain pluripotency, or other stem cells (ES cells, GS Cells, etc.).
  • the pluripotent stem cells obtained by the method of the present invention are derived from a mouse, the DMRs of Igf2r and Peg10, which are maternally imprinted regions, are hardly methylated, and the ES cells are more methylated.
  • the DMRs of the paternally imprinted regions HI 9 and Meg 3 IG are almost completely methylated in GS cells, but are incompletely methylated in the pluripotent stem cells of the present invention. Yes (for example, methyl (0 to 60% as a dangling frequency).
  • the imprinting By tracking the pattern, the ratio of the pluripotent stem cells in the culture and the progress of the production can be determined. That is, with the derivation of pluripotent stem cells from GS cells, the frequency of DMR methyl fogging in the paternal imprint region (H19, Meg3IG, Rasgfr1, etc.) may decrease.
  • the pluripotent stem cells produced by the method of the present invention are brought into an undifferentiated state by changing the DMR in the Oct-4 region to a low methylated state (for example, a state with a methylation frequency of 20% or less). You can also confirm that you are maintaining.
  • the cells obtained by the production method of the present invention are injected subcutaneously or into the seminiferous tubule of an immunodeficient animal or an animal that has induced tolerance, and analyzed for the presence or absence of teratoma formation. Even so, the pluripotency of the cell can be improved.
  • Pluripotent stem cells obtained by the production method of the present invention can form teratomas, and various cells divided into three germ layers (eg, nerve, epidermis, muscle, bronchial epithelium, Cartilage, bone, squamous epithelium, neuroepithelium, etc.) are heard.
  • GS cells when GS cells are injected into seminiferous tubules, they form sperm-forming colonies and do not form teratomas. Therefore, pluripotent stem cells obtained by the production method of the present invention are clearly distinguished from GS cells.
  • cells obtained by the method of the present invention are introduced into host embryos, and the presence or absence of birth of a chimeric animal is analyzed to determine whether the cells retain pluripotency. Can be confirmed.
  • the pluripotent stem cells obtained by the production method of the present invention are introduced into a host embryo, they can contribute to the normal development of a chimeric animal.
  • GS cells are introduced into host embryos, they cannot contribute to the normal development of chimeric animals, and therefore, pluripotent stem cells obtained by the production method of the present invention are clearly distinguished from GS cells. Is done.
  • “Functional cells” are somatic cells or germ cells that can be derived from ES or EG cells, and include, for example, ectodermal cells, mesodermal cells, and endodermal cells.
  • the pluripotent stem cells obtained by the production method of the present invention are differentiated into mesodermal cells by culturing them under mesodermal cell differentiation conditions known per se.
  • mesodermal cells examples include, but are not limited to, blood cells (including hematopoietic cells), vascular cells (vascular endothelial cells, etc.), cardiomyocytes (eg, atrial muscle cells, ventricular muscle cells, etc.), Examples include bone cells, chondrocytes, tendon cells, fat cells, skeletal muscle cells, and smooth muscle cells.
  • the mesodermal cells are blood cells, vascular cells (such as vascular endothelial cells) or cardiomyocytes.
  • blood cells examples include, but are not limited to, blood cells (eg, CD45 positive cells), erythroid cells (eg, Ter119 positive cells), myeloid cells (eg, monocytes) Lineage cells (eg, ⁇ MAC1-positive cells), neutrophil cells (eg, Grl-positive cells, etc.).
  • the above cardiomyocytes include, for example, 20 live cells, etc., cn-I ⁇ cells, etc., Atrial muscle cells, ANP lift cells, etc., and cardiac muscles, MLC 2v H v cells, etc.
  • Vascular cells (such as vascular endothelial cells) include, for example, CD31-positive cells, VE-cadherin-positive cells, and the like. Vascular cells can also be identified by uptake of Di I-acetylated low-density lipoprotein.
  • the conditions for the differentiation of mesodermal cells include those known per se, which enable the differentiation of ES or EG cells into germ cells.
  • Examples of the conditions include, but are not limited to, culture in a type IV collagen-coated plate (eg, blood, vol. 93, p 1253-1263, 1999), culture in methylcellulose medium (Development, vol 125, pl747-1757, 1998), feeder cells for inducing mesoderm cell differentiation (for example, straws such as OP9 cells). Natl. Acad. Sci. USA, vol. 100, p4018-4023, 2003; Exp. Hematol., Vol. 22, p979—984; Science, vol. 272, 722-724. 93, pl253-1263, 1999; Development, vol 125, pl747-1757, 1998, etc.).
  • the pluripotent stem cells obtained by the production method of the present invention are differentiated into blood cells or vascular cells (such as vascular endothelial cells)
  • the pluripotent stem cells are preferably differentiated from the above-mentioned mesodermal cells. guiding feeder one cellular co-cultured (e.g. rp roc. Natl. Acad. Sci . USA, vol. 100, p4018-4023, 2003 ",” ⁇ ⁇ Hematol., vol. 22 , p979- 984 “,” Sc ience, vol. 272, 722-724, 1996 ”).
  • the pluripotent stem cells are co-cultured with the above-mentioned feeder envelope for mesodermal cell differentiation induction to induce differentiation into vascular-hematopoietic progenitor cells.
  • Vascular cells can be obtained by collecting AM-1 positive cells and F1k-1 positive cells and co-culturing the obtained cells with feeder cells for inducing germ cell differentiation.
  • the cells may be cultured in methylcellulose medium (Development, vol 125, pl747-1757, 1998).
  • the pluripotent stem cells obtained by the production method of the present invention are differentiated into cardiomyocytes
  • the pluripotent stem cells are fed in the presence of the above-mentioned mesodermal cell differentiation induction feeder in the presence of SCF.
  • Co-culture with cells eg Proc. Natl. Acad. Sci. USA, vol. 10 0, p4018-4023, 2003, etc.
  • F1k-11-positive cells were collected by co-culturing the pluripotent stem cells with the above-described feeder cell for inducing differentiation of mesodermal cells, and obtained.
  • Cardiomyocytes can be obtained by co-culturing the cells with a feeder cell for inducing differentiation of mesodermal cells.
  • the pluripotent stem cells obtained by the production method of the present invention are themselves ⁇ ! By culturing under ectoderm cell differentiation conditions, the cells differentiate into ectoderm cells.
  • the ectodermal cells are not particularly limited, and include, for example, neural cells, epidermal cells, and the like.
  • the ectodermal cell differentiation conditions include, but are not particularly limited to, conditions of autogenous ES cells or EG cells that can be ligated to ectodermal cells. .
  • Pluripotent stem cells obtained by the production method of the present invention are differentiated into neural cells by culturing them under known conditions for syndrome cell differentiation.
  • Neural cells include, for example, nerve cells (eg, * MAP2-positive cells, Tuj-positive cells, etc.), dopaminergic neurons (eg, both TH and Tuj-positive cells, etc.), glial cells ( For example, MBP-positive cells, etc., oligodendrocytes (eg, MBP-positive cells), astrocytes (eg, GFAP positive I "living cells, etc.) and the like.
  • Neural cell differentiation conditions include, but are not particularly limited to, conditions known per se capable of converting ES or EG cells into neural cells, and for example, a neural cell differentiation induction medium (eg, N2B27 medium) was used. Cultivation on a gelatin-coated plate can be achieved (for example, see Nature Biotechnology, vol. 21, 183-186, 2003, etc.).
  • a neural cell differentiation induction medium eg, N2B27 medium
  • the pluripotent stem cells obtained by the production method of the present invention are differentiated into endodermal cells by culturing them under known endodermal cell differentiation conditions.
  • the inner moon Pi lobe cell include, but are not particularly limited to, digestive cells, ⁇ cells, hepatocytes, respiratory cells, thyroid gland, and the like.
  • the conditions for differentiation of endoderm cells include those known per se for ES cells to differentiate EG cells into endoderm cells, and are not particularly limited.For example, differentiation conditions for insulin-producing cells (Proc Natl Acad Sci USA, 97, 11307-113 12).
  • the pluripotent stem cells obtained by the production method of the present invention can be separated and stored semipermanently, and can be thawed and put to sleep as needed.
  • the pluripotent stem cells maintain pluripotency even after cryopreservation and thawing.
  • cryopreservation cells known per se such as a cell panker (DIA-IATR0N: 1) containing dimethinoles rufoxide and fetal serum albumin are suspended in a preservation composition.
  • the pluripotent stem cells obtained by the production method of the present invention are put to sleep after cryopreservation, they are thawed in a solvent according to a conventional method and suspended to obtain a cell suspension.
  • the method of thawing is not particularly limited.
  • the thawing can be carried out in a thermostat at 37 ° C. using DEM (DMEM / FCS) containing 10% fetal bovine serum.
  • DEM DMEM / FCS
  • DMEMZF CS 10% fetal bovine serum
  • the pluripotency of the pluripotent stem cells once awake is maintained even if the cells are frozen again after culturing.
  • the pluripotent stem cells obtained by the production method of the present invention can proliferate while maintaining pluripotency for a long period of time, so that the gene of the pluripotent stem cells is modified by a method known per se.
  • the ability to produce a pluripotent stem cell into which a specific foreign gene has been introduced, or a genetically modified pluripotent stem cell such as a pluripotent stem cell deficient in a certain gene can be produced.
  • a vector constructed so that a specific gene can be functionally expressed is introduced into a pluripotent stem cell.
  • a vector a plasmid vector or a virus vector can be used.
  • the virus vector include retrovirus, adenovirus, centivirus, herpes virus, adeno-associated virus, parpovirus, Semliki forest virus, and vaccinia virus.
  • Examples of a method for introducing a vector into a pluripotent stem cell include a general gene transfer method such as a calcium phosphate method, a DEAE dextran method, an electroporation method, or a lipofection method. If a virus is used for the vector, The virus genome may be introduced into cells by the general gene transfer method described above, or the virus genome may be introduced into cells by infecting cells with virus particles.
  • a marker gene can be introduced into the cell at the same time as the vector, and the cells can be cultured by a method suitable for the properties of the marker gene .
  • the marker gene is a gene that confers drug resistance to a selected drug exhibiting a lethal activity on host cells
  • the cells into which the vector has been introduced may be cultured using a medium containing the drug. .
  • Examples of the combination of the drug-resistance conferring gene and the selected drug include a combination of a neomycin resistance conferring gene and neomycin, a combination of a hygromycin resistance conferring gene and hygromycin, blasticidin S, a metazygotic conferring gene and blasticidin Combinations with S can be given.
  • Methods for obtaining pluripotent stem cells deficient in a specific gene include, for example, homologous recombination (gene targeting method) using a targeting vector. That is, the chromosomal DNA of a specific gene is isolated, and its exon portion is a drug resistance gene typified by a neomycin resistance gene, a hygromycin resistance gene, or 1 ac Z () 3-galactosidase gene), cat (chloramphenicol acetinole)
  • a reporter gene such as the transerase gene, or a DNA sequence that terminates gene transcription in the intron between exons (eg, poly A addition) Signal, etc., to prevent the synthesis of complete messenger RNA, etc., resulting in the DNA sequence (targeting vector) having a DNA sequence constructed to disrupt the gene.
  • chromosome of the pluripotent stem cell by the ⁇ on the DNA of the gene indicates the DNA sequence of the specific gene used for Southern hybridization analysis or the targeting vector and the specific gene used for the preparation of the targeting vector using the DNA sequence as a probe.
  • Primers can be obtained by analyzing by PCR and selecting pluripotent stem cells lacking a specific gene.
  • a thread-specific or launch A Cre-1 ox P system or the like which deletes a specific gene in a stage-specific manner may be used (Marth, JD (1996) Clin. Invest. 97: 1999- 2002; Wagner, KU et al. (1997) Nucleic Acids Res. 25: 4323-4330).
  • Pluripotent stem cells obtained by the production method of the present invention have the ability to differentiate into all somatic cells constituting the living body, and all the test techniques and methods applied to ES cells and EG cells It can be applied to diverse stem cells, and various functional cells, tissues, animals (excluding humans), etc. can be produced using the pluripotent stem cells. Also, by using pluripotent stem cells whose genes have been modified by the above-described method, various functional cells whose genes have been modified, such as animals and animals (excluding humans), can be produced.
  • the above-mentioned mesodermal cells can be produced by culturing the pluripotent stem cells obtained by the production method of the present invention under the above-mentioned mesodermal cell sorting conditions. Further, by culturing mouse pluripotent stem cells obtained by the production method of the present invention under the above-mentioned ectodermal cell (for example, neural cell etc.) differentiation conditions, the above-mentioned outer g $ leaf cell (for example, Nervous system cells).
  • the above-mentioned outer g $ leaf cell for example, Nervous system cells.
  • the above-mentioned endodermal cells can be produced by culturing the pluripotent stem cells obtained by the production method of the present invention under the above-mentioned endodermal cell differentiation conditions.
  • Fertil. Dev., 10, 31, 1998) to produce various functional cells by inducing differentiation into various functional cells.
  • the method described in Proc Natl Acad Sci USA, vol. 100, p . 11457-11462, 2003, or Nature, vol. 427, pl48-154, 2004, can be used to remove sperm from the pluripotent stem cells of the present invention. It may also be possible to obtain progeny animals of the pluripotent stem cells by producing germ cells and using them for crossing.
  • the teratoma is formed by transferring the pluripotent stem cells obtained by the production method of the present invention to an immunodeficient animal such as a nude mouse or an animal in which immune tolerance has been induced, thereby forming various functional cells from the teratoma. Can also be isolated.
  • a gene-modified functional cell can be obtained. It is.
  • the production of animals (excluding humans) using the pluripotent stem cells according to the present invention can be performed according to a method known per se, for example, a method using a chimeric embryo.
  • a pluripotent stem cell obtained by the production method of the present invention is introduced into a host embryo to obtain a chimeric Pi.
  • the animal species of the “host” is preferably the same as the animal species of the pluripotent stem cells to be introduced.
  • the “embryo” is not particularly limited, but includes, for example, embryo transfection and 8-cell stage embryo.
  • An “embryo” can be obtained by mating a female animal that has been subjected to superovulation with a hormonal agent (for example, using PMS G having an FSH-like action and hCG having an LH action) to a male animal. it can.
  • a hormonal agent for example, using PMS G having an FSH-like action and hCG having an LH action
  • any of the known methods such as the microinjection method and the method can be used.
  • the chimeric embryo is transferred to the uterus or fallopian tube of a host animal to obtain a chimeric animal (excluding humans).
  • the host animal is preferably a pseudopregnant animal.
  • a pseudopregnant animal can be obtained by mating a female animal in a normal cycle with a male animal castrated by vasectomy or the like.
  • the host animal into which the chimeric embryo has been transferred becomes pregnant and gives birth to a chimeric animal (excluding humans).
  • the chimeric animal (excluding humans) is crossed with a normal animal or the chimeric animal, and an individual having the pluripotent stem cell-derived gene is selected from the next generation (F 1) individuals.
  • an animal excluding human
  • having the pluripotent stem cell-derived gene animal derived from the pluripotent stem cell
  • the ability to use various traits as indices, such as body color or coat color is used as an index. It is also possible to select by extracting DNA from a part of the body and performing Southern blot analysis or PCR assay.
  • the pluripotent stem cells according to the present invention are introduced into a tetraploid embryo, a tetraploid chimeric embryo is obtained, and the tetraploid chimeric embryo is transferred to a child or oviduct of a host animal.
  • Animals derived from pluripotent stem cells can also be obtained directly (Proc. Natl. Acad. Sci. USA, vol 90, p8424-8428, 1993).
  • a tetraploid embryo can be obtained by electrofusion of the medullary vesicles by its own method, but it can also be electrofused by applying an electropulse to a two-cell vesicle in a mannitol. Good.
  • an animal (transgenic animal) having the introduced foreign gene can be obtained from a pluripotent stem cell into which a specific foreign gene has been introduced.
  • Gene-deficient heterozygous animals can be obtained from pluripotent stem cells deficient in a specific gene. Further, by breeding the obtained gene-deficient heterozygous animal, a gene-deficient homozygous animal can be obtained.
  • the present invention also relates to a composition for producing testicular cells-derived pluripotent stem cells, comprising glial cell-derived neurotrophic factor (GDNF) or an equivalent thereof.
  • Pluripotent stem cells derived from testis cells can be obtained by culturing testis cells using the medium containing the composition according to the method described above.
  • the composition can further include a leukemia inhibitory factor (LIF).
  • LIF leukemia inhibitory factor
  • the composition may further include at least one, and preferably all of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF).
  • the composition may further comprise a physiologically acceptable carrier, excipient, preservative, stabilizer, binder, solubilizing agent, nonionic surfactant, buffer, preservative, antioxidant, Additives, basal media, etc. can be included.
  • the composition is used in the form of isotonic water or powder, for example, by being added to the medium used in the production method of the present invention.
  • the composition may be a medium used in the production method of the present invention.
  • testis cells were transgenic mice strain C57BL6 / Tg14 (act-EGFP-OsbyOl) (hereinafter sometimes referred to as Green mice) crossed with d dY mouse, DBA / 2 mouse, or DBAZ2 packed ground (Osaka University (Provided by Dr. Okabe) and newborn babies (0-8 days old). Since the Green mice express the EGFP gene in virtually all cell types, it is possible to track cells derived from the mouse using EGFP fluorescence as an index.
  • testis cells were collected from neonates of P53-deficient mice (One ogene, vol. 8, ⁇ 3313-3332, 1993) with an ICR background.
  • Testis cells were collected by a two-step enzyme using collagenase (Type IV, Sigma) and trypsin (Invitrogen ring).
  • testis of a mouse is excised, the white membrane is removed in PBS, and incubated in a Hanks solution containing lmgZml collagenase (type I) at 37 ° C for 15 minutes with appropriate shaking, and the seminiferous tubule is removed.
  • a Hanks solution containing lmgZml collagenase (type I) at 37 ° C for 15 minutes with appropriate shaking, and the seminiferous tubule is removed.
  • trypsin solution containing 1.4 mg Zml DNase at 37 with shaking as appropriate. I fell apart.
  • pipetting was performed to obtain a cell suspension.
  • testis cells were distributed on gelatin-coated thread-culture plates (2 ⁇ 10 5 cells / 3.8 cm 2 ).
  • the culture medium for testis cells is StemPro supplement (Invitrogen
  • the floating cells were passaged to a second culture plate after vigorous pipetting.
  • the passaged cells grew within one week and spread to the bottom of the plate, forming colonies.
  • the cells were then further cultured at a final concentration of 15 (v / v) 0 / oFCS, 0.1 lmM 2-mercaptoethanol, and 10 3 units / ml ESGRO (1 eukemia inhibitory factor), Invitrogen D: The cells were maintained in a Danolebecco-modified single medium supplemented with t3 ⁇ 4).
  • the cells in a final concentration of 15 (vZv)% FCS, 0. 05mM 2- mercaptoethanol, the ⁇ Pi 1 0 3 units / ml E SGRO
  • the cells were cultured and maintained in Dulbecco's modified Eagle medium supplemented with (mouse leukemia inhibitory factor x in vitro gene: h).
  • the culture conditions may be referred to as ES cell culture conditions.
  • mice For adult testis culture, 2 ⁇ 10 7 cells from P53-deficient mice aged 3 to 8 weeks were used, and spermatogonial stem cells were cultured with anti-CD9 antibody (Biol. Reprod., Vol. 70, p70). - 75, 2 004) to be recovered as the mounting ⁇ , the selected cells were seeded onto gelatin-coated plates (3 XI 0 5 cells 9. 5 cm 2). GS cell colonies were picked up by micro-purification and transferred to MEF for propagation.
  • ES-like cells and GS cells could also be separated by picking up colonies under a stereoscopic microscope with a pasteur pipe or the like.
  • the cultured cells are cultured on one layer of OP9 feeder, and the sorting of the cells is described above (Science, vol.272, p722-724, 1996, Development, vol125, p. 1747-1757, 1998, Proc. Natl. Acad. Sci. USA, vol. 100, p4018-4023, 2003, Bio od, vol.93, p 1253-1263, 1999, etc.). All sitkines used for differentiation were provided by Kirin Brewery Co., Ltd.
  • differentiation was induced from cultured cells into blood cells as described in (Development, vol 125, pl747-1757, 1998). That is, the cultured cells were cultured in methylcellulose medium.
  • the induction of the differentiation of the cultured cells into cardiomyocytes at the in vivo mouth was performed as described in (Pro Natl. Acad. Sci. USA, vol. 100, p4018-4023, 2003). That is, the cultured cells were cultured on OP9 stromal feeder under SCF to induce differentiation into cardiomyocytes.
  • vascular cells such as vascular endothelial cells
  • vascular endothelial cells such as vascular endothelial cells
  • the cultured cells are cultured on an OP9 stromal feeder to induce differentiation into vascular progenitor cells.
  • PE CAM-1 positive cells are sorted, and the sorted cells are further purified by OP.
  • Culture on 9 stromal feeders induced differentiation into vascular cells (such as vascular endothelial cells).
  • Vascular cells were identified by uptake of Di I-acetylated low density lipoprotein (Molecular Probes).
  • N2B27 medium as described in (Nature Biotechnology, vol. 21, pl83-186, 2003). That is, the cultured cells were seeded at a density of 0.5-1.5 ⁇ 10 4 / cm 2 on a 0.1% gelatin-coated expanded plastic plate in N2B27 medium. The medium was changed every two days.
  • N 2 B 27 is a modified N 2
  • the mouthpiece 1 1 mixture of DMEM / F12 (Sigma
  • ES cells cells derived from a 129 s Vj mouse were used.
  • D3 ES cells expressing the EGFP gene ubiquitously under the CAG promoter were used. . ES cells were maintained in standard ES cell medium.
  • flow cytometry was carried out to examine the expression of markers such as Es cells and spermatogenic cells known per se.
  • Primary antibodies include rat anti-EpCAM (G8.8), mouse anti-SSEA-1 (MC-480), mouse anti-sarcomeric protein (MF20) (development research hybridoma punk, University of Iowa), rat anti-mouse Forssman antigen (Ml / 87), rat anti-human ⁇ 6-integrin (CD49f) (GoH3), biotinylated hamster antirat] 31 integrin (CD29) (Ha2 / 5), Rat anti-mouse CD 9 (KMC8), APC-conjugated rat anti-mouse C-kit (CD117) (2B8), rat anti-mouse CD31 (MEC13.3), PE-conjugated rat anti-mouse Ter1 19 (Ter-119 ), Piotinylated rat anti-mouse Mac 1 (Ml / 70), Piotinylated rat anti-mouse Gr 1 (RB6-8C5), Rat anti-mouse VE
  • Mouse anti-human myelin basic protein (MBP) Pm43
  • Egret glial fibrillary acidic protein; GFAP perch anti-mouse stylosin hydroxylase
  • TH perch anti-mouse stylosin hydroxylase
  • Tij mouse anti-human j3-tubulin III
  • Sigma an anti-MAP2 ⁇ sagi polyclonal antibody
  • MF20 mouse anti-myosin heavy chain monoclonal antibody
  • APC-conjugated goat anti-rat IgG (Cedarlane ⁇ ⁇ ), APC-conjugated streptavidin (BD Biosciences: fc ⁇ ), Alexa F 1 uor 488-conjugated goat anti-mouse IgG, Alexa F 1 UOR 647 coupled catcher formic anti-rat I gM, A (molecular probe,) 1 exa F 1 uor 633 coupled catcher formic anti-mouse I gM, Cy 3 forming abutment bar anti-mouse I g G, Cy 3 binding b Pas anti Usagi I gG, ALP or Paoki oxidase binding b Pas anti-mouse I g G, ALP-conjugated donkey anti Usagi I gG (Jackson I Munorisachine: fc), ALP bound Usagi anti catcher formic I gG (manufactured by vector Laboratories) or ALP binding catcher formate Anti-rat IgG
  • the cell staining technique was performed as described in (Proc Natl Acad Sci USA, vol. 96, P 5504-5509, 1999). The cells were horned using the FACS-Calibur system (manufactured by BD Biosciences).
  • Immunocytostaining of functional cells differentiated in vitro was performed using standard protocols. That is, the cells were fixed with 4 ° / 0 paraformaldehyde (in PBS), treated with a primary antibody, and the localization of the antigen was visualized using a Cy3-conjugated secondary antibody.
  • ALP or DAB staining was performed using the VECTOR Anolecaliphosphatase substrate kit or the DAB substrate kit (Vector Laboratories), respectively, according to the manufacturer's protocol.
  • Alkaline phosphatase staining was performed as described (Nature, vol. 352, 809-811, 1991; Cell, vo 1.44, 831-838, 1986).
  • Fetal mice at 12.5 dpc were excised and observed using a stereomicroscope under UV light.
  • the fetal mouse was fixed in 4% paraformaldehyde, frozen in a Tissue-Tek OCT compound (Sakura Seiki), and a frozen section was prepared.
  • the sections were analyzed for chimerism using a fluorescence microscope (olympus confocal laser scanning microscope) using the fluorescence of EGFP from Green mice as an index.
  • PI was used as a control stain.
  • Microinsemination was performed as previously described using BD F1 oocytes (Development, vol. 121, p2397-2405, 1995). Embryos were transferred the day after culture.
  • Sulfite chromosome sequencing of the DMR of the imprinted gene was performed as previously described (Development, vol.129, pl807-1817, 2002). PCR amplification of each DMR region from the sulfite-treated chromosome DNA was performed using the following specific primers.
  • the DNA sequence was determined in both directions.
  • the PCR product was digested with a restriction enzyme that recognizes the sequence containing CpG in the original unconverted DNA (Nucl. Acid. Res., Vol. 25, 2532-2534, 1997).
  • the strength of the digested DNA band was quantified using ImageGauge software (Fuji Photo Filme: fc ⁇ ). Result
  • ES cell-like colonies were transformed using Dulbecco's modified Ig / kfc medium supplemented with FCS, 2-mercaptoethanol, mouse leukemia inhibitory factor (LIF), and glial cell-derived neurotrophic factor (GDNF).
  • FCS Dulbecco's modified Ig / kfc medium supplemented with FCS, 2-mercaptoethanol, mouse leukemia inhibitory factor (LIF), and glial cell-derived neurotrophic factor (GDNF).
  • LIF mouse leukemia inhibitory factor
  • GDNF glial cell-derived neurotrophic factor
  • GS cells can proliferate under these conditions due to the absence of GDNF (Science, vol.287, pl489-1493, 2000), which is an essential growth factor for spermatogonial stem cell self-renewal division. Not possible ⁇
  • ES-like cells have a normal karyotype (40, XY) in 70-85% of metaphase spreads. (Fig. 2).
  • the ES-like cells proliferated in vitro for 30 months or more at passages 48 or more for more than 5 months while remaining undifferentiated. These results were reproducible. 4 cells out of 21 experiments, including mice of different stainers (ddY, DBA / 2, ICR, etc.) and ages (0-8 days), obtained similar cells. .
  • the total frequency of forming ES-like cells was about 1.5 ⁇ 10 7 cells (corresponding to 35 neonatal testes).
  • neonatal testis cells were cultured directly under £ S cell culture conditions, but neither GS cells nor ES-like cells appeared.
  • neonatal testis cells were cultured in the presence of membrane-bound steel factor (mSCF), 1 and 130 (EG cell culture conditions), and GS cells, ES-like cells GDNF was essential for the development of both GS cells and ES-like cells.
  • mSCF membrane-bound steel factor
  • 1 and 130 EG cell culture conditions
  • GS cells In order to determine the ability of GS cells to convert to ES-like cells, a total of 148 GS wells and vesicle colonies were picked up by micromanipulation two months after the start of culture. GS cells were transferred to 96-well plates and expanded for another 3 months. As a result, one GS cell strain produced ES-like cells. The pluripotency of the ES-like cells was confirmed by the ability to form teratoma in vivo by subcutaneous injection into nude mice II. Furthermore, the present inventors have found that P53 knockout mice (Oncogene, vol. 8, p3313-3322, 1 993) 0 P53 knockout mice develop testicular tera] ⁇ ma at a high frequency (APMIS, vol.
  • ES-like cells could be closely involved with teratoma-forming cells, and examined the ability of established GS cells from the line to convert to ES-like cells more easily.
  • GS cells were established from newborn P53 knockout mice in the ICCR background. The growth speed and morphology of GS cells were indistinguishable from those of wild-type cells, and GDNF was also required to obtain GS cells.2jr months after culture, 30-40 undifferentiated forms of GS Cell knees were picked up by micromanipulation, transferred to a 96-well plate, and cultured in GS cell culture medium (containing GDNF, LIF, bFGF and EGF). Significantly, in two different experiments, ES-like cells appeared in GS cell-derived cultures within two months and were morphologically distinguishable from the ES-like colonies from wild type cells. None
  • GS cells were harvested from 3-8 week old mice using anti-CD9 antibody and cultured in GS cell medium. GS cells developed in a few tests. Four to seven days after the start of the culture, undifferentiated forms of GS cells were picked up, and colonies were grown on mouse embryonic blasts (MEF) inactivated at mitomycin C at the inlet. In total, ES-like cells appeared within 4 weeks of culture in 2 of the 8 tests.
  • MEF mouse embryonic blasts
  • Pi C D9 ES cells and spermatogonial stem cells (GS cells) marker
  • GS cells spermatogonial stem cells
  • EE 2 spermatogonia marker
  • Forssman antigen ES cell marker 1
  • c-kit differentiated Spermatogonia marker
  • GS cells are completely negative for SSEA-1 and Forssman antigen ( Figures 4 (a) and (f)), indicating that the ES-like cells have a different phenotype than GS cells It has been suggested.
  • the GS cells were positive for 1- and ⁇ 6-integrin, EpCAM, CD9, EE2 and T> c-kit. (Fig. 4 (b)-(e), (g), (h)). GS cells from PS3 knockout mice showed a similar expression profile / data (data not shown).
  • ES cells were positive for SSEA-1,) 31- and ⁇ 6-integrin, EpCAM, CD9, Forssman antigen and c-kit, and EE2 was weakly positive (Fig. 5 (a) ⁇ (! 1)).
  • ES-like cells were strongly positive for the al force phosphatase characteristic of ES cells (FIG. 9 (a)).
  • GS cells were weakly positive or negative for alkaline phosphatase (FIG. 9 (b)), suggesting that the ES-like cells had a phenotype different from that of GS cells.
  • the ES cells were positive for al force phosphatase (FIG. 9 (c)).
  • RT-PCR reverse transcription polymerase chain reaction
  • Oct-4, Rex-1 and Nanog essential for maintaining undifferentiated ES cells (Stem Cells, vol.19, p271-278, 2001, Proc. Natl. Acad. Sci. USA , vol.100, pl4926- 14931, 2003, Cell, vol.113, p631-642, 2003, Cell, vol.113, p643-655, 2003), ES-like cells are Cripto, EIRas, UTFl and others. ZFP57 was expressed at the same level as ES cells (Dev. Biol., Vol. 235, 12-32, 2001; Nature, vol. 423, 541-545, 2003; EMB0 J., vol. 17, p2019—2032, 1998; Genome Res., vol.
  • ES-like cells In order to analyze the imprinting pattern of ES-like cells, three paternal imprint regions (HI 9, Meg 3 IG and Rasgrf 1 region) and two maternal imprint regions (I gf 2 r and P Differentially methylated regions (DMRs) in two different cells were tested by sulfite sequencing (FIG. 12).
  • the paternally imprinted area was methylated to a different extent, but the maternally imprinted area was hardly methylated in ES-like cells.
  • DMR is generally more methylated than in ES-like cells, including in the maternally imprinted region, and DMR in the H19 region is more extensively methylated than in other regions. Had been converted.
  • GS cells showed a completely male imprinting pattern (complete methylation of H19 and Meg3IGDMR and demethylation of Igf2rDMR).
  • ES-like cells from Green mice were primarily transferred to a single OP 9 stroma feeder.
  • OP 9 stroma feeder cell can support the differentiation of mesodermal cells such as hematopoietic cells, blood cells and muscle cells (Science, vol.265, ⁇ 1098-11 ⁇ 1, 1994; Proc. Natl. Acad. Sci. U SA, vol.100, p4018-4023, 2003).
  • Hematopoietic cells include erythroid (Ter 119 positive cells), blood cells (CD45 positive cells), myeloid cells (myeloid progenitor cells, monocyte cells (Mac 1 positive cells), neutrophils Spheroid cells (Gr1-positive cells)) (Fig. 14A-H, Fig. 15).
  • ES-like cells were cultured in methylcellulose to form a cumbroid body (Fig. 14I).
  • ES-like cells were placed on a gelatin-coated dish for differentiation of neural lineage cells (Nat. Biotech., Vol. 21, pl83-186, 2003), the cells became neurons (MAP2-positive cells) or glial cells. (MBP-positive cells) (Fig. 14J-L).
  • MBP-positive cells glial cells.
  • Dopaminergic neurons are also less frequent (Fig. 14M). Comparing the differentiation efficiency using ES cells, ES-like cells produced more Darya cells than ES cells, and ES ⁇ cells produced significantly more vascular cells (such as vascular endothelial cells) or cardiomyocyte coloie . However, ES-like cells were able to produce all the expected lineages using the protocol for ES cell differentiation (Table 1).
  • Table 1 shows in vitro sorting of ES-like cells from testis. The values in the table indicate the average soil SEM. Results from at least three studies. ES cells were derived from 129 mice, whereas ES-like cells were derived from DBA2 mice. *: F 1k-1 positive cells (5 10 3 ) force S co-culture 4 days after sorting and re-seeding on OP 9 plate in 24-well plate. The cells were collected after 7 days of sorting and analyzed by flow cytometry.Red blood cells, macrophages and granulocytes were confirmed by anti-Ter119, anti-Mac1 and anti-Gr1 antibodies, respectively. The number of positive cells in each well is shown in Table 1.
  • Vascular cells were determined by incorporation of Di I-acetylated low-density lipoprotein.
  • Cells (2.5 10 4 ) were seeded on gelatin in a 48-well plate, and the number of positive cells per cm 2 was 5 days after seeding. (Durong) or 7 (last mouth site or oligodendrocyte). Neurons were determined by anti-Tuj antibodies, while astrocytes and oligodendrocytes were determined by anti-GFAP or anti-MBP antibodies, respectively. Dopamine neurons were produced at ⁇ 10 cells / well. 11: t—statistically significant (P ⁇ 0.05) by test.
  • ES-like cells were further tested for their ability to form teratomas in vivo by subcutaneous injection into nude mice. Three to four weeks after transplantation, in all the recipients (8Z8), the transplanted cells developed a typical teratoma (Fig. 14N).
  • the cancer (teratoma) contained derivatives of three germ layers (embryonic germ layer), such as nerves, epidermis, muscle, bronchial epithelium, cartilage, bone, squamous cells, and neuroepithelium. Similar results were obtained using ES-like cells (8/8) from three different clones and P53 knockout mice, with no significant fiber-to-fibre differences from teratomas derived from ES cells Was.
  • spermatogonial stem cells allow the empty seminiferous tubules of an infertile animal to recolonize and differentiate into mature spermatozoa.
  • the cultured cells were transplanted into immunosuppressed immature W mice (Biol. Reprod., Vol. 68, pl67-173, 2003).
  • This mouse is congenitally infertile and has no endogenous differentiating germ cells in the seminal tubules (Proc. Natl. Acad. Sci. USA, vol. 91, pi 1298-11302, 1994). ).
  • All recipient animals (1 OZ 10) developed teratoma in the testes.
  • the tubule tissue was disorganized and histological analysis showed no signs of spermatogenesis.
  • the cell types observed in the teratoma are similar to those generated by subcutaneous injection (data not shown), indicating that the microenvironment of the seminiferous tubules does not affect the differentiation pattern of the cultured cells. Is shown.
  • wild-type or P53 knockdown When sperm GS cells were injected into the seminiferous tubules, normal spermatogenesis was observed within two months after transplantation (Fig. 140-Q).
  • ES-like cells were disrupted into embryo embryos. ES cells colonize and contribute to all cell types in the body, including the germline. 5 to 15 (ES-like cells from OGreen mice were injected into the C57B LZ 6 embryo capsule. The percentage of euploid cells that significantly affected the rate of chimerism ⁇ 3 germline transmission was: At the time of injection, it is 70% ft (Transgenic Res., Vol. 6, p321—328, 1997).
  • EGFP-positive donor cell contribution S Central nervous system (brain, spinal cord, neural tube, etc.), liver, heart It was found in other tissues including lung, testis, body SI5 (somites), intestinal tract, yolk sac, and placental chorionic membrane (Fig. 16D-J) (Fig. 16D-J). ).
  • Table 2 shows the contribution of ES-like cells to embryonic development.
  • NA Not implemented.
  • In some studies, fetuses were delivered by cesarean section at 19.5 dpc.
  • Indicates the number of surviving pups on the next day after birth.
  • the ES-like cells of the present invention were shown to have the ability (totipotency) to differentiate into all somatic cells of the living body including the germ line.
  • EG cells are only an example of the isolation of pluripotent stem cells from early germ cells (Nature, vol. 359, p550-551, 1992; Cell, vol. 70, p841-847). , 1992). EG cells are derived from early germ cells recovered from 8.5-12.5 dpc fetuses and cultured in vitro using a mixture of mSCF, LIF and bFGF. However, except for the case where cells are cultured after teratoma formation in vivo, pluripotent cells cannot be isolated from neonatal germ cells using the same culture conditions. 120, p3197-3204, 1994). The ES-like cells of the present invention are unlikely to be derived from teratoma for two reasons.
  • the frequency of propagation of the ES-like cells of the present invention is significantly higher than the extremely low frequency of spontaneous teratoma formation (1 out of 1 2 9 2 males on the L29 hybrid background). Teratomas (J. Natl. Cancer. Inst., Vol. 27, p443—453, 1961)).
  • growth factor recruitment is essential for the establishment of ES-like cells. Indeed, a small number of EC thin-months have been harvested from natural teratocarcinomas that have occurred naturally (Experimental approaches to mammalian emionic development, Cambridge University Press, p475-508, 1986).
  • the ability to form pluripotent cells may be intrinsic to the germline.
  • the present invention is based on the above embodiment. We propose to call ES-like cells multipotent germline stem cells (mGS cells) to distinguish them from GS cells that can only differentiate into the germ line.
  • mGS cells multipotent germline stem cells
  • mGS cells appear independently of GS cells and are in the testes from fetal life; ⁇ It originates from a population of undifferentiated pluripotent cells that have existed. While EG cells established from PGC to 1 2 5 dpc. (Cell, vol 70, p841 ⁇ 847, 1992;.. Develop ment, vol 120, P 3197- 3204, 1994), cells with similar characteristics May have remained in neonatal testes and produced ES-like cells. Indeed, the results of imprinting analysis of wild-type mGS cells suggest a different origin for mGS cells.
  • GS cells have a typical male imprinting pattern, and the imprinting pattern of mGS cells was clearly different from that of male germ cells and somatic cells. This suggests that mGS cells may partially originate from male germ cells that have undergone imprint elimination.
  • mGS cells Male germ cells in neonatal testes have been reported to be heterogenous; pseudopod male germ cells have the ability to produce spermatogenesis following spermatogonia transplantation. In contrast, round male germ cells do not undergo spermatogenesis and undergo apoptosis in vitro. Because mGS cells differ from GS cells in spermatogonial stem cell activity, mGS and GS cells may originate from different male germ cell types.
  • mGS cells are derived from spermatogonial stem cells, and the ability to become pluripotent cells may be one of the general features of germline cells (such as spermatogonial stem cells). That is. Interaction with Sertoli cells can normally direct germ cells to spermatogenesis and suppress multilineage differentiation in the testis. However, when germline cells are continuously stimulated and grown in the absence of Sertoli cells in the culture conditions of the present invention, germ cells are released from this repression and some of the cells become pluripotent. It may be transformed into a sex cell.
  • Teratogenesis is highly susceptible to environmental influences, and in vivo, teratoma formation is significantly enhanced by ectopic transplantation of fetal genital ridge ( ⁇ 10-fold) (Cell Dev., Vol. 15, p6 9-74, 1984).
  • the testis environment appears to be inhibitory for multi-lineage differentiation, since ⁇ rf3 ⁇ 4 of somatic cells by passage in is effective in establishing mGS cells.
  • PGCs can only become pluripotent after in vitro culture and cytokine recruitment is also required for EG cell conversion (Cell, vol. 70, p841-847, 1992; Nature, vol. 359, p550-551). , 1992), that growth stimulation and release from somatic cells may have altered the germline cell differentiation program.
  • GS cells from GS cell colonies derived from wild-type and P53 knockout mice indicate that mGS cells are generated from GS cells. Deletion of the P53 gene increases sensitivity to testicular teratoma formation by 100-fold (APMIS, vol. Ill, pl84-191, 2003). Nevertheless, GS cells from this lineage are morphologically similar to wild-type spermatogonia and produce spermatogenesis that appears normal when transferred into seminiferous tubules. In this sense, GS cells from P53 knockout mice are indistinguishable from wild-type GS cells and meet the criteria for spermatogonial stem cells.
  • mGS cells are transferred back into the seminiferous tubules, they form teratomas, which means that the seminiferous tubule environment is no longer reproductive after the cells become pluripotent. This indicates that it cannot support cell differentiation (spermatogenesis). This is in contrast to GS cells, which can produce normal spermatogenesis after prolonged culture (Biol. Reprod., Vol. 69, p612-616, 2003). Thus, mGS cells are more closely related to ES ⁇ EG cells with respect to cell function.
  • GDNF is an essential factor for promoting self-renewing division of spermatogonial stem cells in vivo (Science, vol. 278, pl489-1493, 2000).
  • mGS cells produced by the production method of the present invention differ from other reported pluripotent cells obtained from postnatal animals in terms of morphology, marker expression, and differentiation ability. (Trends Cell Biol., Vol. 12, ⁇ 502-508, 20 02; Cell, vol. 116, p639-648, 2004). Although it is important to study the biology of individual cell types and evaluate their potential for clinical application, mGS cells can be directly applied to technologies for extracting specific lineage cells from ES cells. It has important advantages.
  • mGS cells can be obtained from postnatal animals without sacrificing animals (including fetuses and embryos), derivation of mGS cells has fewer ethical issues than ES cells. Absent. Furthermore, the availability of a ⁇ RTIgt; compatible ⁇ / RTI> and pluripotent thread for autologous transplantation would also avoid the immunological problems associated with ⁇ S cell-based technology. The results of the ⁇ 53 knockout mouse test and the like suggest that mGS cells can arise from mature testis. At the current stage of research, it is important to develop a system for more efficiently deriving GS cells from mature testes.For example, suppression of P53 expression in GS cells It may be useful to increase the frequency of derivation. It will also be important to test the effect of imprinting on the range and efficiency of differentiation.
  • pluripotent stem cells which can be obtained only from fertilized eggs and embryos, from postnatal individuals.
  • pluripotent stem cells it is possible to construct a variety of tissues that are compatible for autotransfer and are useful in the medical fields such as regenerative medicine and gene therapy.
  • the pluripotent stem cells can be used for producing transgenic animals, knockout animals, and the like, and thus are useful in the field of biotechnology.
  • SEQ ID NO: 2 Oct-4 specific primer
  • SEQ ID NO: 3 UTF-1 specific primer
  • SEQ ID NO: 4 Specific primer for UTF1
  • SEQ ID NO: 5 Specific primer of HPRT
  • SEQ ID NO: 6 Specific primer for HPRT
  • SEQ ID NO: 7 Specific primer for HI 9
  • SEQ ID NO: 8 Specific primer for HI 9
  • SEQ ID NO: 9 Specific primer for Meg3IG
  • SEQ ID NO: 10 Specific primer for Meg3IG
  • SEQ ID NO: 11 Specific primer for Rasgrf1
  • SEQ ID NO: 12 Specific primer for Rasgrf1
  • SEQ ID NO: 13 Specific primer for Ig f 2 r
  • SEQ ID NO: 14 Specific primer for Ig f 2 r
  • SEQ ID NO: 15 Specific primer for Peg10
  • SEQ ID NO: 16 Specific primer for Peg10
  • SEQ ID NO: 17 Specific primer for Oct-4
  • SEQ ID NO: 18 Specific primer for Oct-4

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明は、グリア細胞由来神経栄養因子(GDNF)又はその均等物を含む培地を用いて精巣細胞を培養し、多能性幹細胞を得ることを含む、多能性幹細胞の製造方法を提供する。当該培地は更に白血病抑制因子(LIF)、上皮細胞成長因子(EGF)、塩基性繊維芽細胞成長因子(bFGF)等を含むことができる。本発明の製造方法を用いれば、従来受精卵や胚などからのみ得ることの出来た多能性幹細胞を、出生後の個体から製造することが可能である。当該多能性幹細胞を用いれば、自家移植のための組織適合性を有する多様な組織を構築することが可能であり、再生医療や遺伝子治療等の医学分野において有用である。また、当該多能性幹細胞はトランスジェニック動物やノックアウト動物等の作成に用いることが出来るので、バイオテクノロジー分野において有用である。

Description

明細書
精巣細胞由来多能性幹細胞の製造方法 技術分野
本発明は、 精巣細胞を用いて多能性幹細胞を製造する方法、 当該方法により製造 された多能性幹細胞、 当該多能性幹細胞に由来するキメラ胚、 キメラ動物、 非ヒト 動物等を製造する方法、 当該多能性幹細胞から中胚葉系細胞等の機能細胞を製造す る方法、 精巣細胞に由来する多能性幹細胞の製造用組成物等に関する。 背景技術
生殖細胞 (germ cell)は子孫へ遺伝子を伝播する能力を有する点でユニークであ る。 この細胞は生殖のための配偶子を作るために高度に特殊化されているが、 多く の証拠によりこの細胞の多能性が示唆されている。 例えば、 テラトーマ(teratoma) は、 生殖腺にほとんど常に発生し、 多様な成熟段階の多種の細胞や組織を含む。 さ らに、 胎仔生殖細胞は特殊な条件下で培養した時に、 多能性細胞を生ずることが知 られている。 これらの胚性生殖細胞 (embryonic germ cell : E G細胞) は内部細胞 塊 (inner cell mass) から単離した月丕性幹細胞(embryonic stem cell : E S細胞) に類似した分化特性を有している。 これらの知見は、 生殖系列 (germline lineage) 細胞は多能性細胞を生み出す能力を維持していることを強く示唆するが、 出生後の 正常生殖腺から多能性細胞が確立できたことはない。 E S細胞及ぴ E G細胞は、 レヽ ずれも出生前の胚あるいは胎仔から採取されるので、 ヒトへの臨床応用に際しては、 倫理上の大きな問題を有しており、 出生後の個体から多能性細胞を樹立する技術の 開発が求められていた。
本願発明者らは、 体内において子孫へ遺伝情報を伝えることのできる唯一の幹細 胞である、 精原幹細胞のインビトロ培養方法を開発した (Biol. Reprod. , vol. 69, P612-616, 2003)。新生仔の精巣細胞をグリア細胞由来神経栄養因子(GD N F)、 白血病抑制因子 (L I F) 、 上皮細胞成長因子 (E G F) 、 塩基' |«維芽細胞成長 因子 (b F G F) 等の存在下で培養すると、 生殖細胞が固有の形状のコロニ を形 成し、 幹細胞が 5ヶ月以上にわたり増殖した。 妊マウスの精細管に移植すると、 培養した細胞は正常な精子及び子孫を産出し、 テラトーマや体細胞への分化は認め られないことから、 生殖細胞系列に完全にコミ トしていることが示された。 これ は精細管に移入するとテラトーマを生ずる ES細胞とは対照的である。 これらの結 果に基づき、 本願発明者らは、 この細胞を ES細胞や EG細胞と l gljするために、 生殖系列幹細胞 (germline stem cell: GS細月包) と名づけた。 即ち、 GS細胞は 生殖系列細胞を拡大させる第 3の方法の意義が るが、 E S/EG細胞とは分化能 力において明らかに異なっている。
上記事情に鑑み、 本発明は、 出生後の個体から多能性幹細胞を製造する新たな方 法を することを目的とする。 発明の開示
上記目的を達成すベく鋭意研究した結果、 新^マゥスの精巣細胞を G S細胞培養 と類似の条件下で培養すると、 GS細胞のコ口-一に加えて、 ES細胞コロエーと 識別がつかない形態を呈するコロユーが出現することを^した。 これらの ES様 細胞は E S細胞培養条件下で選択的に増殖した。 当該 E S様細胞はヌードマウスの 皮下等に移植するとテラトーマを発生すること、 インビトロで多様な機能細胞へと 分化誘導されること、 当該 E S様細胞を胚麵包 (blastcyst)内にマイク口インジエタ ションすることにより正常な胚発生が起こり、 ^:殖細胞も含む極めて多様な組織を 形成することなどから、 当該 ES様細胞は、 ES細胞と同様に多能性を有すること を見出し、 本発明を完成させるに至った。
即ち、 本発明は以下に関する。
(1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を用い て精巣細胞を培養し、 多能性幹細胞を得ることを含む、 多能性幹細胞の製造方法。
(2)培地が更に白血病抑制因子(L I F) を會む、 上記 (1) に記載の製造方法。
(3) 培地が更に上皮細胞成長因子 (EGF) 及び塩基性繊維芽細胞成長因子 (b FGF) の少なくともいずれかを含む、 上記 (L) 又は (2) のいずれか 1つに記 載の製造方法。 (4)精巣細胞をフィーダ一細胞の 下で培養することを tむ、上記 (1)〜(3) のいずれか 1つに記載の製造方法。
(5) 該精巣細胞は精原幹細胞である、 上記 (1) に記載の製造方法。
(6) 該精原幹細胞は GS細胞である、 上記 (5) に記載の製造方法。
(7) 該精巣細胞は P 53不全である、 上記 (1) に記載の製造方法。
(8) 以下の工程を含む、 上記 (1) に記載の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はそ ( 均等物を含む培地を 用いて精巣細胞を培養し、 培養細胞を得る工程;
(工程 2) 白血病抑制因子 (L I F) を含む培地を用いて、 IC程 1で得られた培養 細胞を培養し、 多能性幹細胞を得るェ
(9) 工程 1の培地が更に白血病抑制因子 (L I F) を含む、 上記 (8) に記載の 製造方法。
(10) 工程 1の培地が更に上皮細胞成長因子 (EGF) 及 υ塩基性繊維芽細胞成 長因子 (bFGF) の少なくともいずれかを含む、 上記 (8) 又は (9) のいずれ 力 1つに記載の製造方法。
(11) 工程 1が精巣細胞をフィーダ一細胞の存在下で培養 1 "ることを含む、 上記
(8) 〜 (10) のいずれか 1つに記載の製造方法。
(12) 以下の工程を含む、 上記 (1) に記載の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はそ 均等物を含む培地を 用いて精巣細胞を培養し、 GS細胞を得る工程;
(工程 2) グリア細胞由来神経栄養因子 (GDNF) 又はそ O均等物を含む培地を 用いて、 工程 1で得られた GS細胞を培養し、 多能性幹細胞 得る工程。
(13) 精巣細胞が哺乳動物由来である、 上記 (1) 〜 (12) のいずれか 1つに 記載の製造方法。
(14) 哺乳動物が出生後である、 上記 (13) に記載の製造方法。
(15) 多能性幹細胞が S S E A— 1、 フォルスマン抗原、 β 1—ィンテグリン、 α 6—インテグリン、 EpCAM、 CD9、 EE2及び c一 k i tからなる群から 選ばれる少なくともいずれかが陽性である、 上記 (1) に記 <feの製造方法。 (1 6) 多能性幹細胞が S S E A— 1、 フォルスマン抗原、 /3 1—ィンテグリン、 <¾ 6—インテグリン、 EpCAM、 CD9、 EE2及ぴ c一 k: i tが陽性である、 上記 (1 5) に記載の製造方法。
(1 7) 上記 (1) 〜 (16) のいずれか 1つに記載の製造お法により製造された 多能性幹細胞。
(1 8) S SEA— 1、 フォルスマン抗原、 β 1一インテグ ン、 6—インテグ リン、 EpCAM、 CD9、 EE 2及ぴ c—k i tからなる祥から選ばれる少なく ともいずれかが陽'性である、 精巣細胞に由来する多能性幹細跑。
(1 9) S SEA— 1、 フォルスマン抗原、 )3 1—インテグ 1 ン、 a 6一^ Γンテグ リン、 EpCAM、 CD 9、 ££2及ぴ。一¾: 1 tが陽 I"生で feる、 上記 (1 8) に 記載の多能性幹細胞。
(20) 以下の工程を含む、 キメラ胚の製造方法:
(工程 1) グリア細胞由来神経栄養因子 GDNF) 又はそ ( 均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 当該多能性幹細胞を宿主胚に導入し、 キメラ胚を得る工禾 o
(21) 以下の工程を含む、 キメラ動物 (ヒトを除く) の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はそ fO均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 当該多能性幹細胞を宿主胚に導入し、 キメラ胚を得る工程;
(工程 3) 当該キメラ胚を宿主動物の子宮又は卵管に移入し、 キメラ動物 (ヒトを 除く) を得るェ @o
(22) 以下の工程を含む、 多能性幹細胞に由来する非ヒト躭物の製造方法: (工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はそ C 均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 当該多能性幹細胞を宿主胚に導入し、 キメラ胚を得る工程;
(工程 3) 当該キメラ胚を宿主動物の子宮に移入し、 キメラ就物 (ヒトを除く) を 得る工程; (工程 4) 当該キメラ動物を交配し、 多能性幹細胞に由来する非ヒト動物を得るェ (23) 以下の工程を含む、 4倍体キメラ胚の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 該多能性幹細胞を 4倍体胚に導入し、 4倍体キメラ胚を得るェ私 (24) 以下の工程を含む、 多能性幹細胞に由来する非ヒト動物の製造方法: (工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 該多能性幹細胞を 4倍体胚に導入し、 4倍体キメラ胚を得るェ港;
(工程 3) 当該 4倍体キメラ胚を宿主動物の子宮又は卵管に移入し、 多能叶生幹細胞 に由来する非ヒト動物を得るェ禾
(25) 以下の工程を含む、 機能細胞の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 該多能性幹細胞を機能細胞分化条件にて培養し、 機能細胞を得るェ (26) 該機能細胞は中胚葉系細胞である、 上記 (25) に記載の製造方法。 (27) 該中胚葉系細胞が、 血球系細胞、 脈管系細胞おょぴ心筋細胞からなる群か ら選ばれるいずれかである、 上記 (26) に記載の製造方法。
(28) 該機能細胞は外胚葉系細胞である、 上記 (25) に記載の製造方法。 (29) 該外胚葉系細胞は神経系細胞である、 上記 (28) に記載の製造:^法。 (30) 神経系細胞が、 神経細胞、 グリア細胞、 オリゴデンドロサイト及!^ァスト 口サイトからなる群から選ばれるいずれかである、 上記 (29) に記載の 法。 (31) 該機能細胞は内胚葉系細胞である、 上記 (25) に記載の製造方去。 ( 32) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む、 精皋細 胞に由来する多能性幹細胞の製造用組成物。
(33) 更に白血病抑制因子 (L I F) を含む、 上記 (32) に記載の組威物。 (34) 更に上皮細胞成長因子 (EGF) 及び塩基性 »芽細胞成長因子 (fc FG F) の少なくともいずれかを含む、 上記 (32) 又は (33) のいずれかに fE載の 糸賊物。
本発明の製造方法を用いれば、 従来出生前の個体 (受精卵、 胚等) からし 、得る ことの出来なかった E S細胞や EG細胞等の多能性幹細胞を、 出生後の個体 ゝら製 造することが可能である。 当該多能性幹細胞を用いれば、 自家 のための紐織適 合性を有する多様な «を構築することが可能であり、 再生医療、 遺伝子治療等の 医学分野において有用である。 また、 当該多能性幹細胞はトランスジェユック動物 やノックァゥト動物等の遺伝子改変動物の作成に用いることが出来るので、 ィォ テクノロジ—分野において有用である。 図面の簡単な説明
図 1は GS細胞おょぴ、 本発明の製造方法により得られた多能性幹細胞のコロニ 一の形態を表す写真である。 a〜 dの各図において、 右下の線はいずれも 5◦ μ m を示す。 aは培養の初期段階において GS細胞 (白矢頭) および当該多能性幹細胞 (白矢印) のコロニーが混在している状態を示す写真である。 bは培養の初期段階 における当該多能'性幹細 J3包のコ口ニーの形態を示す写真である。 多能性幹細 同士 がより詰め込まれている (packed) 。 cは完全に確立された当該多能性幹細 のコ 口-一の形態を示す写真である。 コロニーの形態が完全に E S細胞コロニー様とな つている。 dは典型的な GS細胞のコロニーの形態を示す写真である。
図 2は異なる染色体数を有する分裂中期スプレツド (metaphase spread)の分布を 示す。 少なくとも 20個の細胞が計測された。 ES細胞 (ES(129)) 、 ddYマウス 由来 ES様細胞(ES- like (ddY))、 DBA/ 2マウス由来 E S様細胞(ES - like (DBA)) 及ぴ DBAZ2マウス由来 GS細胞 (GS(DBA))からの結果である。縦軸には頻度 (%) を、 横軸には染色体数を示す。
図 3は本発明の製造方法により得られた多能性幹細胞の細胞表面マーカ の発現 を表すヒストグラムである。 (a) は SSEA— 1、 (b) は ]31—インテグリン、 (c) は a 6—インテグリン、 (d) は EpCAM、 (e) は CD9、 (f ) はフ オノレスマン抗原、 ( g ) は E E 2、 ( h ) は c— k i tの各発現を示す。 縦軸には 細胞数(個) を、横軸には各細胞表面マーカーの発現を相対的蛍光強度として示す。 白色カラムは一次抗体を用いずに細胞を染色した場合 (ネガティブコントロール) のヒストグラムを、 黒色力ラムは一次抗体を用いて細胞を染色した のヒストグ ラムを示す。 細胞数全体に対するゲート中の細胞の割合 (%) は、 それぞれ、 (a) 85.14%、 (b) 93.72%、 (c) 97.98%, (d) 96.36%、 (e) 99.11%、 (f) 25.38%、 (g) 92,29%、 (h) は 57.88%である。
図 4は G S細胞の細胞表面マ ^カーの発現を表すヒストグラムである。 ( a ) は SSEA— 1、 (b) は ]31—インテグリン、 (c) は α 6—インテグリン、 (d) は EpCAM、 (e) は CD 9、 (f ) はフォルスマン抗原、 (g) は EE 2、 (h) は c— k i tの発現を示す。 縦軸には細 S包数 (個) を、 横軸には各細胞表面マーカ 一の発現を相対的蛍光強度として示す。 白色カラムは一次抗体を用いずに細胞を染 色した (ネガティブコントロール) のヒストグラムを、 黒色カラムは一次抗体 を用いて細胞を染色した場合のヒストグラムを示す。 細胞数全体に対するゲート中 の細胞の割合 (%) は、それぞれ、 (a) 0.67%、 (b) 84.83%、 (c) 99.70%、 (d) 99.20%、 (e) 99.11%、 (f ) 1.72%、 (g) 92.78%、 (h) は 64.14%である。 図 5は ES細胞の細胞表面マーカーの発現を表すヒストグラムである。 (a) は S SEA— 1、 (b) は 1—インテグリン、 (c) は α 6—インテグリン、 (d) は EpCAM、 (e) は CD 9、 (f ) はフォルスマン抗原、 (g) は EE 2、 (h) は c— k i tの発現を示す。 縦軸には細胞数 (個) を、 横軸には各細胞表面マーカ 一の発現を相対的蛍光強度として示す。 白色カラムは一次抗体を用いずに細胞を染 色した場合 (ネガティブコントロール) のヒストグラムを、 黒色カラムは一次抗体 を用いて細胞を染色した場合のヒストグラムを示す。 細胞数全体に対するゲート中 の細胞の割合 (%) は、 それぞれ、 (a) 96.46%、 (b) 99.69%、 (c) 97.23%、 (d) 96.10%、 (e) 99.68%、 (f ) 79.11%、 (g) 81.78%、 (h) は 93.90%であ る。
図 6は培養開始前における精巣細胞の細胞表面マーカーの発現を表すヒストダラ ムである。 (a) は SSEA— 1、 (b) はフォルスマン抗原の発現を示す。 縦軸 には細胞数 (個) を、 横軸には相対的蛍光強度を示す。 白色カラムは一次抗体を用 いずに細胞を染色した場合 (ネガティブコントロール) のヒストグラムを、 黒色力 ラムは一次抗体を用いて細胞を染色した のヒストグラムを示す。 細胞数全体に 対するゲート中の細胞の割合 (%) は、 それぞれ、 (a) 0.92%、 (b) 43.02%であ る。
図 7は培養開始前における精巣細胞の各細胞表面マーカーの発現を表すヒストグ ラムである。 縦軸には細胞数 (個) を、 横軸には相対的蛍光強度を示す。 白色カラ ムは一次抗体を用いずに細胞を染色した場合 (ネガティブコントロール) のヒスト グラムを、 灰色カラムは一次抗体を用いて細胞を染色した のヒストグラムを示 す。 細胞数全体に対する陽性細胞の割合 (%) を各ヒストグラム内に示す。
図 8は抗 E E 2抗体及ぴ抗フォルスマン抗原抗体による新生精巣細胞の二重免疫 染色の結果を示す図である。
図 9はアル力リフォスファターゼ染色の結果を表す図である。 (a ) は本発明の 製造方法により得られた多能性幹細胞のコロユー、 (b) は GS細胞のコロニー、 (c) は E S細胞のコロニーをそれぞれ示す。
図 10は RT— PCRの解析結果を表す図である。 G S細胞 (GS) 及び本発明 の製造方法により得られた多能性幹細胞 (mGS) の OCT— 4、 Re x_l、 N a n o g及ぴ H PRTの発現を示す。
図 11は RT— PCRの解析結果を表す図である。 GS細胞 (GS) 、 E S様細 胞 (E S— 1 i k e ) 及ひ Έ S細胞 (E S ) からの c D N Aの 3倍希釈系列が特異 的プライマーにより増幅された。
図 12は E S様細胞におけるィンプリンティングの角科斤結果を表す図である。 H 19、 Me g 3 I G、 Ra s g r f l、 I g f 2 r及ぴ P e g 10領域の DMRメ チル化を示す。 DN Aメチル化が亜硫酸染色体シークェンシングにより解析された。 黒楕円はメチル化シトシン一グァニン部位 (CpGs) を、 白楕円は非メチル化 C P G sを示す。
図 13は E S様細胞におけるィンプリンティングの解析結果を表す図である。 (A) P 53ノックアウトマウスからの GS細胞及び ES様細胞の COBRAを示 す。 ES様細胞が見出された日を 0日目と示し、 記載された時間にて細胞が採集さ れた。 この: t咅養において、 12日目までには ES様細胞のみが見出された。 図の下 の数字はメチル化の割合 (%) を示す。 (B) 野生型マウス (Wild Type) 及ぴ P 5 3ノックアウトマウス (P53) 力 の ES様細胞における、 Oc t— 4遺伝子上流領 域の CO BRAを示す。 図の下の数字はメチル化の割合 (%) を示す。 右図は Oc t一 4遺伝子上流領域の模式図である。 白矢頭は非メチル化 DN Aの大きさを示す。 黒矢頭はメチル化 DN Aの大きさを示す。 各部位を切断するために用いられた酵素 は括弧内に示す。 U:非切断、 C:切断。
図 14は E S様細胞におけるインビト口及びィンビポでの分化を示す図である。 (A-H) OP 9細胞での分化を示す図である。 (A) 8日目における敷石状構造 (血球系細胞) を示す図である。 (B) 共培養 7日後の CD 45陽性造血細胞の発 生を示す図である (左) 。 該細胞群において、 Gr 1陽性顆粒球、 Ma c 1陽性マ クロファージ又は Te r 119陽性赤血球が観察された (右) 。 (C) 採集された 細胞のメイ一ギムザ染色を示す図である。 ミエロイド前駆細胞(矢頭) と赤芽球(矢 印) が観察された。 (D、 E)脈管細胞 (血管内皮細胞等) の分化を示す図である。 F 1 k— 1陽性細胞は共培養 4日後に選別され、 CD 31陽性 (D) 又は VE力ド ヘリン陽性 (E) 脈管細胞は細胞選別の 6日後に出現した。 (F— H) 心筋の分化 を示す図である。 F 1 k— 1陽性細胞は選別の 6日後に MF20陽性 (F) 又は c Tn— I陽性 (G) 心筋に分化した。 (Η) ΑΝΡ陽性 (青) 心房筋及び MLC2 V陽性 (茶) 心室筋を示す図である。 (I) 培養 8日後にメチルセルロース内のェ ンブリオボディから発生した赤血球細胞を示す図である。 細胞は赤色を示す。 ( J — M) ゼラチン被覆プレート上での神経細胞の分化を示す図である。 誘導後 5日目 の Tu j陽性ニューロン (J) 、 誘導後 7日目の GFAP陽性ァストロサイト (K) 及び MB P陽性オリゴデンドロサイト (L) を示す。 Tu j陽性ェユーロン (矢頭) の中に、 TH及ぴ Tu j両陽性ドパミン作動性ニューロン(矢印)が出現した(M)。
(N) 皮下のテラトーマ切片を示す図である。 腫瘍は多様な分化細胞型を有し、 筋 (m) 、 神経 (n) 、 そして上皮 (e) 組織を含む。 (O-Q) P 53ノックァゥ ト GS細胞からの精子形成を示す図である。 (O) 非, (左) 及び移植 (右) レ ピシェント精巣の巨視的比較を示す図である。移植精巣はサイズの上昇を示す。 (P、 Q) 非移植 (P) 及 植 (Q) W精巣の繊学的様相を示す図である。 精子形成 において正常な様相を示す (Q) 。 染色: Cy 3、 赤 ( J— M) ; Al e X a F 1 u o r 488、 緑(M) 。 スケールパー = 50 μ m (A、 D— I、 J、 K、 M)、 20 μπι (C、 L) 、 200jum (N、 P、 Q) 、 lmm (O)。
図 15はフロ一サイトメトリ一解析の結果を表す図である。 ( a ) はネガティ プコントロール、 (b) は Te r l l 9、 (c) は CD45、 (d) は Ma c lZ Gr 1 (Mi xで染色) の解析結果を示す。 (a) 〜(d) 中、 上側のドットプ ロットにおいて、 縦軸には各細胞表面マーカーの発現を、 横軸には EGFPの発現 を相対的蛍光強度としてそれぞれ示す。 (a) 〜 ( 中、 下側の表は、 各 4分 割ゲート (左上、 右上、 左下、 右下) におけるプロット数 (イベント) 、全生存細 胞数に対する割合 (%ゲ一ト) 、全細胞数に対する割合 (%全体) を示す。
図 16はキメラ動物の作製を示す図である。 (A) 12. 5— dp cキメラ胚は、 UV光下で蛍光発光を示す (矢印) 。 同腹のコントロール胚 (矢頭) では、 蛍光発 光は観察されなかった。左図は可視光下での観察である。 (B)新生キメラ動物 (矢 印) は、 蛍光発光を示した。 (C) 成熟キメラ動物である。 ドナー細胞由来の被毛 色 (黄褐色) を示す。 (D-I) 12. 5— dp cキメラ胚の側矢状断面を示す図 である。 蛍光発光は、 脳 (D) 、 腸管 (E) 、 心臓 (F) 、 肝臓 (G) 、 脊髄 (神 経管) 下部 (H) 及び胎盤 (I) で観察された。 (J) キメラマウス由来の精巣は、 蛍光発光を示した。 精巣細胞懸濁液中の生殖細胞の中に、 EGFP発現が観察され た (挿入図) 。 (K) キメラ由来の子孫を示す図である。 子孫の一個体 (矢印) は 蛍光発光を示し、 ドナー由来であることが ¾^された。 (L) ES様細胞を 4倍体 胚と纏させて作製した 10. 5— dp c胚 (矢印) と卵黄嚢は、 蛍光発光を示し た。 胎盤 (矢頭) では蛍光は観察されなかった。 対比染色はプロビジゥムアイオダ イド (P I) で行った (D— I) 。 染色: EGFP, 緑(A、 B、 D-L) ; P I、 赤 (D— I) 。 スケ一/レバー = 100 μιη (D - I ) 、 lmm (J)。
図 17はキメラマウス新生仔の UV光下での観察結果を示す。 図 1 8はキメラマウス胎仔の凍結切片の蛍光顕微鏡にょる«学的観察結果を示 す図である (脊髄 (神経管) 下部) 。 発明の詳細な説明
本発明の多能性幹細胞の製造方法は、 グリア細胞由来神経栄養因子 (G D N F) 又はその均等物を含む培地を用いて精巣細胞を培養し、 多能性幹細胞 (本明細書に おいて、 E S様細胞又は多能性生殖系列幹細胞 (multipotent germline stem cell s : mG S細胞) と呼ぶ場合がある) を得ること (例えば単離、分離、選別、精製等) を含む。
多能性幹細胞とは、 インビトロにおいて培養可能で、 長期間にわたって増殖する ことができ、 自己 能を持ち、 生体を構成する全ての細胞やその前駆細胞に分化 しうる能力を有する細胞をいう。
精巣細胞とは、 精巣を構成する全ての細胞を含み、 例えば、 精原幹細胞、 精原細 胞、 精細胞、 精祖細胞、 精母細胞、 精觸田胞、 精子、 ライディヒ細胞、 セルトリ細 胞、 間細胞、 雄性生殖細胞、 生殖細胞等が挙げられる。
精原幹細胞とは、 自己再生し、 精子又はその前駆細胞 (例えば精原細胞、 精細胞、 精袓細胞、 精母細胞、 精娘細胞等) へ分化し得る能力 (精原幹細胞としての能力) を 有する生殖系列細胞をいう。 精原幹細胞としては、例えば、始原生殖細胞 (primordia 1 germ cell) ,雄性生殖細胞 (gonocyte)、幹細胞である精原細胞 (精原細胞のうち精 原幹細胞としての能力を有する細胞)、 生殖系列幹細胞 (G S細胞) 等が挙げられる 。 本発明において、 精原幹細胞は、 好ましくは、雄性生殖細胞 (gonocyte) , 幹細胞で ある精原細胞又は G S細胞である。
G S細胞とは、 インビトロで G D N Fレセプター作動性化合物 (GD N F又はそ の均等物) に依存的に増殖された精原幹細胞、 例えば、 Biol. R印 rod. , vol. 69, p612 - 616, 2003に記載された方法により増殖された精原幹細胞をいう。
精巣細胞は、 精巣より自体公知の方法で調製することができる。 例えば精巣を摘 出し、 摘出された精巣をコラゲナーゼ、 トリプシン、 D N a s eなどの分解酵素で 消ィ匕することにより、 精巣細胞を分散させる (例えば、 Biol. Reprod. , vol. 69, p6 12-616, 2003等を参照) 。 精巣細胞は培養液等により洗浄され、 本発明の多能性幹 細胞の製造に供せられる。
当該精巣細胞は、 本発明の多能性幹細胞の製造に供せられる前に、 培養されてい てもよい。 培養条件は、 特に限定されないが、 たとえば、 Biol. Reprod. , vol. 69, p612— 616, 2003に記載されているように、 上述の酵素処理で得られた精巣細胞をグ リア細胞由来神経栄養因子 (GD N F) 、 白血病抑制因子 (L I F) 等の存在下で 培養させることにより、 精原幹細胞を増殖させ、 G S細胞を得て、 これを用いても よい。
また、 当該精巣細胞は、 本発明の多能性幹細胞の製造に供せられる前に、 多能性 幹細胞を産生する能力の高い画分を濃縮したものであってもよい。 当該画分として は、 例えば、 精原幹細胞、 精原細胞、 雄性生殖細胞、 生殖細胞等があり得る。
濃縮方法としては、 例えば当該画分の細胞に特異的に発現する細胞表面抗原を認 識する抗体を用いて、 セノレソーターや、 {«性マイクロビーズ等を用いる方法な どが挙げられる。 例えば、 精原幹細胞は、 α 6—インテグリン、 c一 k i t、 C D 9等の細胞表面抗原を指標に濃縮することができる(例えば、 Proc Natl Acad Sci U
SA, 97, 8346-8351, 2001; Biol. Reprod. , vol. 70, p70 - 75, 2004等を参照)。 あ るいはへキスト等の d y eを用いて精原幹細胞を濃縮することも可能である (Devel opment, 131, 479-487, 2004等を参照) 。
本 明において用いられる精巣細胞は、 動物由来であれば、 特に限定されない。 当該動物は、 本発明の方法により多能性幹細胞を製造し得る範囲において特に限定 されず、 脊椎動物、 »椎動物のいずれであってもよいが好ましくは脊椎動物であ る。
脊椎動物としては、 例えば、 哺乳動物、 鳥、 魚、 両生動物および爬虫類動物が挙 げられる。 哺乳動物としては、 特に限られないが、 例えば、 マウス、 ラット、 ハム スター、モルモット等のげつ歯類やゥサギ等の実験動物、 ブタ、 ゥシ、ャギ、 ゥマ、 ヒッジ等の家畜、 ィヌ、 ネコ等のペット、 ヒト、 サル、 オランウータン、 チンパン ジーなどの霊長類を挙げることが出来る。 鳥類としては、 ニヮトリ、 ゥズラ、 ァヒ ル、 ガチョウ、 シチメンチヨウ、 オーストリッチ、 エミュ、 ダチョウ、 ホロホロ鳥、 ハト等を挙ずることができる。
脊椎動物は、 好ましくは哺乳動物である。
当該哺乳動物は、 本発明の方法により多能性幹細胞を製造し得る範囲において、 出生前であっても、 出生後であってもよいが、 好ましくは出生後である。
出生前の胎仔を用いる 、 該胎仔の発生段階は、 本発明の方法により多能性幹 細胞を製造し得る範囲において特に限定されず、例えば雄性生殖堤 (genital ridge) の形成以降の発生段階が挙げられる。 例えば、 マウスにおいては、 1 2 . 5 d p c より後、 例えば 1 3 . 0 d p c以降、 好ましくは 1 3 . 5 d p c以降、 より好まし くは 1 4 . 5 d p c以降、 更に好ましくは 1 6 . 5 d p c以降の発生段階を挙げる ことが出来る。
出生後の動物を用いる 、 該動物の齢は、 本発明の方法により多能性幹細胞を 製造し得る範囲において特に限定されず、'新生仔、 幼仔、 成体、 老体のいずれであ つてもよい力 若齢の動物ほど精巣に含まれる幹細胞 (精原幹細胞等) の頻度が高 いこと等から、 製造効率の観点からはより若齢の動物を用いることが好ましい。 即 ち、用いられる動物は、好ましくは新生仔又は幼仔、 より好ましくは新生仔である。 ここで成体とは性成熟に達した個体 (例えばマウスでは 4週以上の齢) を、 幼仔と は性成熟には達していないが精子形成をしている個体 (例えばマウスでは 5日〜 4 週齢) を、 新生仔とは精子形成が開始される以前の個体 (例えばマウスでは 0〜4 日齢) をいう。
出生後の動物としてマウスを用いる場合、 該マウスの齢は、 本発明の方法により 多能性幹細胞を製造し得る範囲において特に限定されないが、 例えば 0〜 8週齢、 好ましくは 0〜3週齢、 より好ましくは 0〜8日齢、 最も好ましくは 0〜2日齢で ある。 0日 (週) 齢とは、 出生当日を意味する。
本発明において用いられる精巣細胞として P 5 3不全精巣細胞を用いてもよい。本 発明の製造方法において P 5 3不全精巣細胞を用いることにより、野生型精巣細胞を 用いた場合と比較して、極めて高い効率で多能性幹細胞を得ることが出来る場合があ る。 特に、精巣細胞として成体由来の細胞や、 G S細胞を用いる^^等において、 P 5 3不全精巣細胞の禾 IJ用は Uである。
「P 5 3不全」 とは P 5 3遺伝子力 S機能的に不十分である状態、即ち P 5 3遺伝子 が本来有する正常な機能を十分に発揮できない状態をいい、 p 5 3遺伝子が全く発現 していない状態、ま fこは P 5 3遺伝子が本来有する正常な機能が発揮できない程度に その発現量が低下している状態、あるいは P 5 3遺伝子産物の機能が完全に喪失した 状態、または P 5 3遺伝子が本来有する正常な機能が発揮できない に P 5 3遺伝 子産物の機能が低下した状態が挙げられる。
P 5 3不全精巣細胞としては、例えば、 P 5 3遺伝子欠損ホモ接合体又は P 5 3遺 伝子欠損へテロ接合体、好ましくは P 5 3遺伝子欠損ホモ接合体を挙げることが出来 る。 P 5 3不全精巣細胞は、 例えば、 P 5 3不全動物 ( P 5 3遺伝子欠損動物等) の 精巣細胞を回収することにより得ることが出来る。或いは P 5 3遺伝子に対するター ゲッティングベクターを精巣細胞に導入し、相同性組換えにより P 5 3遺伝子を欠損 させることによつても、 P 5 3不全精巣糸田胞を得ることが出来る。
また、別の実施態様では、 P 5 3不全精巣細胞は、 P 5 3遺伝子の発現または機能 を抑制する物質 (例えば、 アンチセンス核酸、 R NA i誘導性核酸 (s i R NA、 s t R NA、 m i RNA等) 等) の細胞への導入により製造することが出来る。 P 5 3 の発現または機能を抑制する物質の精巣細胞への導入は、 自体公知の方法により行う ことができ、例えば、 P 5 3遺伝子の発現または機能を抑制する物質が核酸分子又は それを含む発現ベクターである場合、 リン酸カルシウム法、 リポフエクシヨン法 リ ポソーム法、 エレクト口ポレーシヨン法などが用いられ得る。
本発明において、 グリア細胞由来神経栄養因子 (GD N F) の均等物とは、 本発 明の方法において用いられたときに多能性幹細胞の製造を達成し得る範囲において 特に限定されないが、 ノ/レトリン (Neurturin) 、 ぺルセフィン (Persephin) 、 ァ ルテミン (Artemin)等の GD N F様化合物、 GD N Fレセプター (群) または補助レ セプター (群) に対してグリア細胞由来神経栄養因子 (GD N F) および GD N F 様化合物と同様の作用を有する他の化合物 (例えば GD N Fレセプター (群) また は補助レセプター (群) を特異的に認識する抗体、 GD N Fレセプター (群) また は捕助レセプター (群) に対する作動性化合物等) を含む概念である。 このような レセプター (群) または捕助レセプター (群) には、 それぞれ Re tチロシンキナ ーゼおよび GDNF—ファミリーレセプター α : sが含まれる。
GDNF様化合物とは、 グリア細胞由来神経栄養因子 (GDNF) と類似の構造 を有する力 \ あるいはそのレセプターまたは補助レセプターに対してグリア細胞由 来神経栄養因子 (GDNF) のように作用する化合物、 例えば本発明の方法におい て用いられたときに多能性幹細胞の製造を達成し得る化合物を意味する。 GDNF 様化合物としては、特に、 ノルトリン、ぺルセフィン、 アルテミン等が挙げられる。 グリア細胞由来神経栄養因子 (GDNF) および GDNF様化合物は構造的に類 似し、 cRe tレセプターチ口シンキナーゼは、 グリア細胞由来神経栄養因子 (G DNF) 、 ノノレトリン、 ペルセフィンぉよぴアルテミンの共通するシグナル伝達レ セプターとして作用する。
「グリア細胞由来神経栄養因子 (GDNF) のように作用する化合物」 とは、 グ リア細胞由来神経栄養因子 (GDNF) のシグナルを伝達するレセプターまたはそ の補助レセプターに対し、 グリア細胞由来神経栄養因子 (GDNF) と同様に作用 する化合物を意味する。
「GDNFレセプター」 とは、 グリア細胞由来神経栄養因子 (GDNF) または GDNF様化合物の結合物質、 すなわち、 グリア細胞由来神経栄養因子 (GDNF) または GDNF様化合物のシグナルを伝達可能な化合物を意味する。 「GDNFレ セプター」 としては、 特に、 グリア細胞由来神経栄養因子 (GDNF) または GD NF様化合物のシグナル媒介性レセプターである c R e tレセプターチ口シンキナ ーゼが挙げられる。
「GDNF補助レセプター」 とは、 グリア細胞由来神経栄養因子 (GDNF) ま たは GDNF様化合物のシグナルを伝達しなレヽが、グリア細胞由来神経栄養因子(G DNF) または GDNF様化合物のシグナルを伝達するレセプターを活性化するレ セプターを意味する。 このような化合物は、 特に、 そのメンバーが GDNFフアミ リーレセプター αs (GFRa) と称されるレセプターである。 これらはまた、 グリア細胞由来神経栄養因子 (GDNF) 、 ぺルセフィン、 アルテミンおよびノル トリンのシグナル伝達レセプター複合体 (signaling receptor complex)と関係す る。 該ファミリーのレセプターとしては 4メン GFRa l〜4) (Jing, S. , et al., Cell, 85, 9 - 10 (1996) Jing, S. Q. , et al., J. Biol. Chem., 272, 3 3111-33117 (1997) Trean or, J. J. , et al. , Nature, 382, 80-83 (1996) Sub anto, P., et al. , Human Molecular Genetics, 6, 1267-1273 (1997))が既知であ る。 これらは独立してシグナルを伝 "ることができるが、 すべてがリガンド結合 および c R e t活性化に不可欠である。
本発明の製造方法において、 培地中に含まれるグリア細胞由来神経栄養因子 (G DNF) 又はその均等物の濃度は、 本発明の方法により多能性幹細胞を製造し得る 範囲において特に限定されないが、 通常 0. 05 n g/m 1〜1 0 Omg/m 1、 例えば 0. 5 n gZml〜l 00 g/ml、 好ましくは 0. 5 n gZml〜10 μ gZm l、 より好ましくは 0. 5 n gZml〜l gZm l、更に好ましくは 0. 5〜200n gZm l、 いっそうより好ましくは 0. 5〜50 ng/ml、 最も好まし くは 2〜20 ng/mlである。
本発明の製造方法において用いられる培地は、 更に白血病阻害因子 (L I F) を 含むことが好ましレ、。
本発明の製造方法において、 白血病阻害因子 (L I F) が培地中に含まれる場合 には、 その濃度は、 本発明の方法により多能性幹細胞を製造し得る範囲において特 に限定されないが、通常 1 0〜 1 0 6units/m 1、例えば 1 0〜 1 05units/m 1、 好ましくは 1 02〜: L 04 units/m より好ましくは 3 X 1 02〜 5 X 1 03 units/ml である。
本発明の製造方法において用いられる培地は、 好ましくは更に上皮細胞成長因子 (EGF) 及び塩基†«維芽細胞成長因子 (b FGF) の少なくともいずれか、 よ り好ましくは両方を含む。
本発明の製造方法において、 上皮細胞成長因子 (EGF) が培地中に含まれる場 合には、 その濃度は、 本発明の方法により多能性幹細胞を製造し得る範囲において 特に限定されないが、通常濃度 0. 0 5 n gZm 1〜1 0 OmgZm 1、例えば 0. 5 n g/ml〜l 00 μ g/ml、好ましくま 0. 5 n g/ml ~l 0 μ g/ml N より好ましくは 0. 5 n g /ml〜l / g/m l、 更に好ましくは 0. 5〜200 n g/ml、 いっそうより好ましくは 0. 5〜50 ng/ml、 最も好ましくは 2〜 3 0 ng/mlである。
本発明の製造方法において、 塩基'! ^維芽細胞成長因子 (bFGF) が培地中に 含まれる場合には、 その濃度は、 本紫明の方法により多能性幹細胞を製造し得る範 囲において特に限定されないが、通常濃度 0. 05n gZml〜l O OmgZml、 例えば 0. 5 n gZm 1〜: L 00 μ gZm 1、 好ましくは 0. 5ngZml〜: 10 β gZml、 より好ましくは 0. 5n gZml〜l μ g/m 1 ,更に好ましくは 0. 5〜200n g/ml、 いっそうより好ましくは 0. 5〜50 ng/ml、 最も好まし くは 2〜20 ng/mlである。
本発明において培地に含まれうるサイトカイン(グリア細胞由 経栄養因子(G DNF) 、 白血病抑制因子 (L I F) 、 上皮細胞成長因子 (EGF) 及び塩基性繊 維芽細胞成長因子 (bFGF) 等) は、 動物由来のもの、 好ましくは上述の哺乳動 物由来のものであれば、 本発明の方法により多能性幹細胞を製造し得る範囲におい て特に限定されない。
グリア細胞由来神経栄養因子(GDNF) としては、例えば、 ヒト及ぴラット (W
093/06116号パンフレツト) 、 マウス (例えば Gene 203, 2, 149-157, 19 97参照)等のグリア細胞由来神経栄養因子 (GDNF) が例示される。
白血病阻害因子 (L I F) としては、 例えば、 ヒ ト (特開平 1 - 502985号公報) 、 マウス (特開平 1-502985号公報) 、 ヒッジ (特開平 4 - 502554号公報) 、 プタ (特 開平 4-502554号公報) 、 ゥシ (特開平 8- 154681号公報) 等の白血病阻害因子 (L
1 F) が例示される。
上皮細胞成長因子 (EGF) としては、 例えば、 マウス (例えば Nature, 257, 3 25-327, 1975参照)、 ヒト (例えば Proc Natl Acad Sci USA, 88, 415, 1991参照) 等の上皮細胞成長因子 (EGF) が例示される。
塩基性 «芽細胞成長因子 (bFOF) としては、 例えば、 ヒ ト bFGF (例え ば Endocrine Rev. , 8, 95, 1987参照)、 ゥシ bFGF (例えば Proc. Natl. Acad. Sci. USA, 81, 6963, 1984参照)、 ウス bFGF (例えば Dev. Biol. , 138, 454- 463, 1990参照)、 ラット b F G F (例えば Biochem. Biophys. Res. Commun. , 157, 256-263, 1988参照) 等が例示される。
また、 当該サイト力インは、 本発明の多能性幹細胞の製造方法において用いられ た際に、 当該多能性幹細胞の獲得を達成し得る範囲において、 精製された天然、 合 成または組換えタンパク質、 変異体タンパク質 (挿入、 置換および欠失変異体を含 む) 、 フラグメント、 および化学修飾されたそれらの誘導体を含む。 また、 上述の 各サイトカインの野生型のアミノ酸配列と実質的に相同なタンパク質も含む。
変異タンパク質における挿入、 置換又は欠失されるアミノ酸の数は通常 1〜2 0 個、 好ましくは 1〜1 0個、 より好ましくは 1〜5個、 最も好ましくは 1又は 2個 である。
「実質的に相同」 とは、 野生型のアミノ酸酉 3列に対する相同性の程度が、 好まし くは、 70%以上、 より好ましくは 80%以上、 さらに好ましくは 90%以上、 最も好 ましくは 95%以上であることを意味する。 相同性の割合 (%) は、 (Atlas of Pro tein Sequence and Structure v. 5, p. 124, National Biochemical Research Found ation, Washington, D. C. (1972) ) に記載されているとおり、 配列の整列を助する ために 100ァミノ酸長中に 4個のギヤップを導入しうる場合には、 比較する配列中 の同一のアミノ酸残基であって整列する 2種の配列の小さい方に するアミノ酸 残基の割合 (%) として算出される。 また、 野生型のアミノ酸配列を有する上記各 サイトカインに対する抗体との交差反応性に基づいて単離しうる任意のタンパク質、 あるいは上記各サイトカインの野生型のアミノ酸配列をコードする遺伝子または遺 伝子セグメントとのストリンジェントな条件下におけるハイブリダィゼーションに より単離される遺伝子によりコードされるタンパク質が、 実質的に相同なものとし て含まれる。
上記ストリンジェントな条件としては、 例えばサムプルツクら (Sambrook, J. ) の 「大腸菌におけるクローン遺伝子の発現 (Expression of cloned genes in E. col i) (Molecular Cloning: A laboratory manual (1989) ) Cold Spring harbor Lab oratory Press, New York, USA, 9. 47-9. 62及ぴ 11. 45- 11. 61」 等に記載されたハ イブリダィゼ一シヨン条件 (例えば、 約 45で、 6. OXSSC中におけるハイブ リダィゼーシヨン等) が例示される。
多能性幹細胞等の幹細胞の培養においては、 L I F、 EGF、 bFGF等のサイ トカインを含む培地を用いることにより、 より安定した幹細胞の培養が達成できる。 それゆえ、 本発明の製造方法において、 L I F、 EGF, bFGF等を含む培地を 用 ヽることにより、 より安定して多能性幹細胞を製造することができる。
L I Fは例えば多能性幹細胞の未分化状態の維持に、 E G F及ぴ b F G Fは例え ば多能性幹細胞の増殖の増強に、 それぞれ有用であり得る。
; ^明の製 法にぉレヽて用いられる培地の基礎培地は、 自体公知のものを用い ることができ、 本発明の方法により多能性幹細胞を製造し得る範囲において特に限 定されないが、 例えば DMEM、 EMEM、 RPMI _1640、 a— MEM、 F - 1 2、 F— 10、 M— 199、 HAM、 ATCC-CRCM30、 DM— 160、 DM— 201、 BME、 S FM— 101、 F i s c he r、 McCo y' s 5A、 Le i b o v i t z' s L— 15 、 R ITC80— 7、 HF— Cl、 MCDB 10 7、 NCTC 135、 Wa ymou t h' s MB 752/1、 S t emP r o- 34 SFM等が挙げられる。 また、 ES細胞培養用等に改変された培地を用 いてもよく、 上記基礎培地の混合物を用いてもよい。
当該培地は、 自体^ Pの添加物を含むことができる。 添加物としては、 本発明の 方 ifeにより多能性幹細胞を製造し得る範囲において特に限定されないが、 例えば成 長因子 (例えばインスリン等) 、 鉄源 (例えばトランスフェリン等) 、 ポリアミン 類 (例えばプトレシン等) 、 ミネラル (例えばセレン酸ナトリウム等) 、 糖類 (例 えばグルコース等) 、 棚酸 (例えばピルビン酸、 乳酸等) 、 血清蛋白質 (例えば ァノレブミン等) 、 アミノ酸 (例えば L—グルタミン等) 、 還元剤 (例えば 2—メル カダトエタノール等) 、 ビタミン類 (例えばァスコルビン酸、 d—ビォチン等) 、 ステロイド (例えば ]3—エストラジオール、 プロゲステロン等) 、 抗生物質 (例え ばス トレプトマイシン、 ペニシリン、 ゲンタマイシン等) 、 緩衝剤 (例えば HEP ES等) 、栄養^ ¾口物(例えば StemPro-Nutrient Supplement等)等が挙げられる。 当 添加物は、 それぞれ自体公知の濃度範囲内で含まれることが好ましレ、。 また、 当該培地は、 血清を含むことができる。 血清としては、 動物由来の血清で あれば、 本発明の方法により多能性幹細胞を製造し得る範囲において特に限定され ないが、 好ましくは上記哺乳動物由来の血清 (例えばゥシ胎仔血清、 ヒト血清等) である。 また血?胄の代替添加物 (例えば Knockout Serum Replacement (KSR) (Invi trogen¾t ) 等) を用いてもよい。 血清の濃度は、 本発明の方法により多能性幹細 胞を製造し得る範囲において特に限定されないが、通常、 O . 1〜3 0 ( v / v ) % の範囲である。
本発明の製造方法においては、 精巣細胞をフィーダ—細胞の存在下で培養しても よい。 フィーダ一細胞としては、 本発明の方法により多能性幹細胞を製造し得る範 囲において特に限定されないが、 E S細胞や E G細胞等の多能性幹細胞を多能性を 維持しながら培養する際に用いられる自体^ αのフィーダ一細胞を用いることがで き、 例えば、 繊維芽細胞 (マウス胎仔繊維芽細胞、 マウス «I芽細胞株 s TO等) が挙げられる。
フィーダ一細胞は自体公知の方法、例えば腿線(ガンマ線等)照射や抗癌剤(マ イトマイシン C等) 処理等で不活化されていることが好ましい。
本発明の製造方法における細胞培養条件は、 細胞培養技術において通常用いられ ている培養条件を用いることができる。 例えば、 培養 ^^は通常約 3 0〜4 0 °Cの 範囲であり、 好ましくは約 3 7°Cが例示される。 002濃度は通常約1〜1 0 %の範 囲であり、 好ましくは約 5 %が例示される。 湿度は通常約 7 0〜: L 0 0 %の範囲で あり、 好ましくは約 9 5〜: L 0 0 %が例示される。
本発明の多能性幹細胞の製造方法を、 更に詳細に説明すると、 例えば以下の通り である。
精巣より分離された精巣細胞を、 培地中に懸濁し、 細胞培養用容器内に播種し、 培養する (第一の培養) 。
当該細胞培養用容器は、 通常の細胞培養において使用されるものを用いることが できるが、 好ましくは、 精巣細胞の容器への接着を促進させるために、 ゼラチン等 によってコーティングされている。 以下の培養に用いられる容器も同様である。 第一の培養を継続することのみによっても、 多能' [·生幹細胞を製造することは可能 であるが、 好ましくは、 第一の培養の開始から約 6〜: 1 8時間後 (例えば一晩培養 後) に、 第一の培養における培養細胞、 好ましくは浮遊している培養細胞 (少なか らず生殖秀田胞を含む) を、 別の細胞培養用容器へ継代する (第二の培養) 。 継代さ れた細胞は、 培養条件によっても異なるが、 継代後通常 1週間以内に、 細胞; t咅養用 容器の底面にコ口ニーを形成する。 コ口ニー形成は顕微鏡等を用いて麵すること ができる。
好ましくは、 第二の培養の開始から通常 5〜 1 4 S後、 細胞をトリプシン処理等 により分散し、 培地中に再度懸濁して、 更に新しい培養用プレートへ継代する (第 3の培養) 。 同様に継代を繰り返すことで、 平坦な形状の体細胞は消滅する。 従つ て、 2度目あるいは 3度目の継代以降は、 細胞をフィーダ一細胞の存在下で培養す ることが好ましい。 継代の間隔、 細胞の希釈率は、 培養条件によって適宜判断され るが、 例えば 2〜5日間隔、 :!〜 1 Z 4希釈 (培養初期においては好ましくは 1〜 1 Z 2希釈) が例示される。 また、 確立された E S細胞様コロニーの継代の間隔、 細胞の希釈率としては、例えば 2〜5日間隔、 1 Z4〜1 / 1 0希釈が例示される。 上記培養において、 培養された細胞は培養開始後約 3〜 6週閎までには、 2種類 の形態のコロユーを形成する。 一方のコロニーは、 細胞間架橋(intercellular br id ge)と桑実胚 (morula)様構造により特徴付けられる形態を有しており、 これは G S細 胞のコロニーである。 他方のコロユーは、 より硬く詰め込まれ (packed)、 E S細胞 のコロニーの形態と極めて類似した形態を有しており、 これは本発明に係る多能性 幹細胞のコロエーである。 従って、 G S細胞のコ口-一と、 本 明にかかる多能性 幹細胞のコロニーとは、 明確に視覚的に識別することができる。
上述の形態を指標に、 例えば、 顕微鏡下で多能性幹細胞のコロニーをパスツール ピペット、 マイクロマニピュレータ一等を用いて選択的にビッグアップする力 \ 限 界希釈等により、 多能性幹細胞を単離し得る。 あるいは多能性幹細胞の細胞表面マ 一力一等を指標にして、 セルソーター等を用いて多能性幹細胞 単離し得る。
また、 一態様において、 上述と同様の培養条件により、 GD N F又はその均等物を 含む培地を用いて精巣細胞を培養することにより G S細胞を得て、該 G S細胞を更に 上述の培養条件により GDNF又はその均等物を含む培地を用いて引続き培養する ことによっても、 GS細胞から多能性幹細胞が派生し、本発明の多能性幹細胞を得る ことが出来る。
G S細胞のコロニーの形態は、上述の通り、本発明に係る多能性幹細胞のコロニー と、 明確に視覚的に ItSlJ可能であり、顕微鏡下で G S細胞のコ口エーをノヽ。スツーレビ ペット、マイクロマニピュレーション等を用いて選択的にピックアップする力 \ 限界 希釈等により、 GS細胞を単離し得る。
この β\ GS細胞を獲得するための培養期間は、本発明の方法により多能性幹細 胞を製造し得る範囲において特に限定されないが、該培養期間は通常 1年以内、例え ば 6ヶ月以内、 好ましくは 3ヶ月以内、 より好ましくは 7週間以内である。
本発明の多能性幹細胞の製造方法においては、 工程全体を通して、 同一組成の培 地を用いてもよいが、 複数の組成の培地を、 経時的に使い分けて用いてもよい。 こ のようにすることで多能性幹細胞をより選択的に増殖させ、 多能性幹細月包をより効 率よく製造することができる がある。
例えば、 培養に用いる培地を、 培養の途中で、 精巣細胞の初期の培養に用いる培 地 (培地 Aとする) 、 多能性幹細胞の長期培養により適した培地 (培地 Bとす る) へ変換することができる。
即ち、 培地 Aを用いて精巣細胞を培養し、 培養細胞を得て、 当該培養細胞を培地 Bを用いて培養することで、 多能性幹細胞を効率よく得ることができる。
培地 Aに含まれ得るサイト力インは、 上述と同様である。
培地 Bは上述のサイト力イン (グリア細胞由来神経栄養因子 (GDNF) 又はそ の均等物、 白血病抑制因子 (L I F) 、 上皮細胞成長因子 (EGF) 、 基性! H 芽細胞成長因子 (bFGF) ) を含まなくてもよいが、 好ましくは白血病抑制因子 (L I F) を上述と同様の濃度で含む。
また、 培地 A、 Bにそれぞれ含まれ得る血清の濃度は、 上述と同様であるが、 培 地 A中に含まれ得る血清の濃度は、 好ましくは 0. 1〜5 (v/v) %であり、 よ り好ましくは O. 3〜3 (v/v) %である。培地 B中に含まれ得る血清の濃度は、 好ましくは 2〜30 (v/v) %であり、 より好ましくは 10〜20 (v/v) % である。
また、 培地 A、 Bのそれぞれの基礎培地は、 上述と同様であるが、 培地 Aの基礎 培地は、 精原幹細胞 (GS細胞等) の培養に好適に用いられる基礎培地 (例えば S t emPr o-34 S FM等) であり得、 培地 Bの基礎培地は E S細胞の培養に 好適に用いられる基礎培地 (例えば DMEM等) であり得る。
培地 A、 Bが含むことができる添加物は、 上述と同様である。
培地を培地 Aから培地 Bに変換する時期は、 培養条件等によって異なるため、 一 律に規定しがたいが、 例えばマウスの場合、 第一の培養の開始から 10〜12 O日 後、 好ましくは 14〜40日後である。
更に、 培地 Aを培地 Bへ変換した直後の約 4〜40日間、 培地 Bにグリア細胞由 来神経栄養因子 (GDNF) 又はその均等物を上述の濃度で添加した組成の培地を 用いて細胞を培養することにより、 より高い効率で多能性幹細胞を製造し得る。 またこのような培地 A、 培地 Bを用いる精巣細胞の培養は上述と同様にフィーダ 一細胞の 下で行つてもよい。
本発明の製造方法により得られた多能性幹細胞は、 通常 2ヶ月以上、 好ましくは 5ヶ月以上にわたり、 多能性を維持しながら増殖する。
単離された当該多能性幹細胞の維持、 増殖、 培養においては、 好ましくは、 上述 の培地 Bが用いられる。
本発明の製造方法により得られた細胞が多能性を保持しているカゝ否かは、 以下に 例示する自体公知の方法により 、することができる。
例えば、 フローサイトメ タ一等を用いて、 得られた細胞の細胞表面マーカー等 の発現が解析される。 有用な細胞表面マーカーとしては、 SSEA— 1 (ES« マーカー) 、 フォルスマン抗原 (ES細胞マーカー) 、 j31—及ぴ α 6—インテグ リン (ES及ぴ GS細胞マ 力一) 、 EpCAM (E S細胞及ぴ精原細胞(spermato gonia)マーカー) 、 CD9 (E S細胞及び精原幹細胞マーカー) 、 EE2 (精原細 胞マーカー) 、 c - kit (分化した精原細胞マーカー) 等が挙げられる。 本発明の製造方法により得られる多能性幹細胞は、 例えばマウス由来の多能性幹 細胞であれば、 S S E A— 1、 フォルスマン抗原、 β 1ー及ぴ α 6—ィンテグリン、 EpCAM、 CD 9、 EE 2及ぴ c- kitからなる群から選ばれる少なくともいずれ かが陽性であり、 好ましくは、 全てが陽 I·生である。 また、 フォルスマン抗原及ぴ C- kitは好ましくは弱陽性である。 G S細胞ほ S SEA- 1及ぴフォルスマン抗原が陰 性であるので、 本発明の製造方法により得られる多能性幹細胞は GS細胞から明確 に識別される。
ここで細胞表面マーカーの発現が 「隞性」 とは、 細胞表面マーカーが細胞表面上 に発現しており、 当該細胞表面マーカーに する特異的抗体による特異的結合が確 認できることをいう。 「弱陽性」 とは、 他の細胞と比較して、 細胞表面マーカーの 発現量が相対的に弱い、 細胞表面マーカーの発現量の弱レ、集団が相対的に多い、 又 は細胞表面マーカーを発現している細胞梟団の割合が相対的に少ないこと等をいう。 マウス以外の動物種の多能性幹細胞にお X、ても、 細胞表面マーカーの発現様式は マウスと同様である。 ただし、 当該動物種^生来的に保有していないマーカーがあ る場合は、 当該マーカーは解析から除外されるなど、 種差が考慮される。
また、 本発明の製造方法により得られた翻胞の細胞内のアル力リフォスファタ一 ゼの活性を自体公知の方法により測定することによつても、 当該細胞が多能性を保 持しているカゝ否かを することができる。 本発明の製造方法により得られる多能 性幹細胞は、 ES細胞と同様にアルカリフォスファターゼが陽性である。 一方、 G S細胞はアル力リフォスファタ一ゼが弱陽'性乃至陰性であるので、 本発明の製造方 法により得られる多能性幹細胞は、 GS細月包から明確に識別される。
あるレヽは、 車 ポリメフーセ途鎖反心、: reverse transcription polymerase cha in reaction: RT- PCR)等によって、 多能性幹細胞に特異的に発現している遺伝子等 の発現を解析することによつても、 本発明の製造方法により得られた細胞が多能性 を保持しているカゝ否かを確認することができる。 例えばマウス由来の多能性幹細胞 であれば、 多能性幹細胞に特異的に発現している遺伝子としては、 Oc t— 4、 R e x— 1、 Na no g、 Cr i p t o、 EI a s、 UTF 1、 ZFP57、 E s g — 1等の未分化な E S細胞を維持するのに必須の分子が例示される。 本発明の製造 方法により得られる多能性幹細胞は、 Oc t— 4、 Re x— 1、 Na no g、 C r i p t o、 ERa s、 UTF 1、 ZFP 57及ぴ E s g— 1からなる群から選ばれ る少なくともいずれかの遺伝子を発現しており、 好ましくは、 全ての遺伝子を発現 している。 GS細胞においては、 これらの遣伝子の発現は本発明の製造方法により 得られる多能性幹細胞と比較して一般に弱く、 特に N a n o gの発現がほとんど認 められず、 当該多能性幹細胞は、 GS細胞から明確に調 IJされる。
更に、 染色体 DN A中の DMRの亜硫酸染色体シークェンシング (Development, vol.129, pl807— 1817, 2002) や CO BR人 (Nucl. Acid. Res., vol.25, p2532 - 25 34, 1997) 等により、 細胞のインプリンティングノ ターンを解析することによって も、 本発明の製造方法により得られた細胞が多能性を保持しているかを確認し、 或 いは他の幹細胞 (ES細胞、 GS細胞等) と明確に識別することが出来る。 例えば 本発明の方法により得られた多能性幹細胞がマウス由来であれば、 母性ィンプリン ト領域である I g f 2 r及ぴ P e g 10の DMRはほとんどメチル化されていない 、 ES細胞はよりメチル化されている (例えばメチル化頻度として 2倍以上) 。 また、 父性インプリント領域である HI 9及び Me g 3 I Gの DMRは、 GS細胞 においてはほぼ完全にメチル化されているが、 本発明の多能性幹細胞においてはそ のメチル化は不完全である (例えばメチル(匕頻度として 0〜 60%) 。
G S細胞の DMRはほぼ完全に雄性のインプリンティングパターンを有し得るの で、 本発明の方法を用いて精原幹細胞 (GS細胞等) 力 多能性幹細胞を製造する 際に、 該ィンプリンティングパターンを追跡することにより、 培養物中の該多能性 幹細胞の割合や、 製造の進行の程度を把握することが出来る。 即ち、 GS細胞から の多能性幹細胞の派生に伴い、 父性インプリント領域 (H19、 Me g 3 I G、 R a s g f r 1等) における DMRのメチル f匕頻度は低下し得る。
また、 Oc t— 4領域の DMRの低メチ 匕状態 (例えばメチル化頻度として 2 0%以下の状態) を «することにより、 本発明の方法により製造された多能性幹 細胞が未分化状態を維持していることを確認することも出来る。
本発明の製造方法により得られた細胞を、 免疫不全動物や免疫寛容を誘導した動 物の皮下又は精細管内等へ注入し、 テラトーマの形成の有無を解析することによつ ても、 当該細胞の多能性を ¾mできる。 本発明の製造方法により得られた多能性幹 細胞はテラトーマを形成することができ、 当該テラトーマ内には 3つの胚葉系に分 化した多様な細胞 (例えば神経、 表皮、 筋肉、 気管支上皮、 軟骨、 骨、 扁平上皮、 神経上皮等) が聽される。 一方、 G S細胞は精細管内へ注入されると、 精子形成 コロニーを形成し、 テラトーマを形成しない。 従って、 本発明の製造方法により得 られる多能性幹細胞は G S細胞と明確に識別される。
また、 本発明の製駄法により得られた細胞を宿主胚に導入し、 キメラ動物の誕 生の有無を解析することによつても、 当該細胞が多能性を保持しているカゝ否かを確 認することができる。 本発明の製造方法により得られた多能性幹細胞は、 宿主胚に 導入されると、 キメラ動物の正常な発生に寄与することができる。 一方、 G S細胞 は宿主胚に導入されても、 キメラ動物の正常な発生に寄与することは出来ず、 従つ て、 本発明の製造方法により得られる多能性幹細胞は G S細胞と明確に識別される。 また、 インビトロにおいて E S又は E G細胞を各種の機能細胞へ分化させる自体 公知の方法を適用し、 本努明の製造方法により得られた 田胞のィンビトロにおける 分化能力を解析することによつても、 当該細胞の多能性を麵できる。 「機能細胞」 とは、 E S又は E G細胞から派生し得る体細胞又は生殖 田胞であり、 例えば、 外胚 葉系細胞、 中胚葉系細胞、 内胚葉系細胞等を挙げることが出来る。
例えば、 本発明の製造方法により得られる多能性幹細胞は、 自体公知の中胚葉系 細胞分化条件にて培養することにより、 中胚葉系細胞へ分化する。
中胚葉系細胞としては、 特に限定されないが、 例えば、 血球系細胞 (造血系細胞 を含む) 、 脈管系細胞 (血管内皮細胞等) 、 心筋細胞 (例えば心房筋細胞、 心室筋 細胞等) 、 骨細胞, 軟骨細胞, 腱細胞, 脂肪細胞、 骨格筋細胞、 平滑筋細胞等が挙 げられる。 好ましくは、 中胚葉系細胞は、 血球系細胞、 脈管系細胞 (血管内皮細胞 等) 又は心筋細胞である。
上記血球系細胞としては、 特に限定されないが、 例え 血球細胞 (例えば C D 4 5陽性細胞など) 、 赤芽球系細胞 (例えば T e r 1 1 9陽性細胞など) 、 ミエロイ ド系細胞 (例えば単球系細胞 (例え^ MA C 1陽性細胞など) 、 好中球系細胞 (例 えば G r l陽性細胞など) ) などが挙げられる。 上記心筋細胞としては、例えは 2 0 生細胞等、 c n - I隞性細胞などが、 心房筋細胞としては AN P lift細胞等、 心 筋としては ML C 2 v H†生細胞等、 上 記脈管系細胞 (血管内皮細胞等) としては、 例えば C D 3 1陽性細胞、 V Eカドへ リン陽性細胞などが挙げられる。 脈管系細胞は D i Iァセチル化低密度リポタンパ ク質の取込によっても特定され得る。
中胚葉系細胞分化条件としては、 E S又は E G細胞を 胚葉系細胞へ分化させ得 る、 自体公知の条件が挙げられ、 特に限定されないが、 えばタイプ I Vコラーゲ ンコートしたプレート中における培養 (例えば Blood, vol. 93, P1253- 1263, 1999 等参照) 、 メチルセルロース培地中での培養 (Development, vol 125, pl747- 1757, 1998)、 中胚葉系細胞分化誘導用フィーダー細胞 (例えば O P 9細胞などのストロー マ細胞) との共培養 (Proc. Natl. Acad. Sci. USA, vol. 100, p4018-4023, 2003 ; Exp. Hematol. , vol. 22, p979—984; Science, vol. 272, 722-724, 1996; Blood, v ol. 93, pl253— 1263, 1999; Development, vol 125, pl747— 1757, 1998等参照)など が挙げられる。
本発明の製造方法により得られる多能性幹細胞を血球系細胞や脈管系細胞 (血管 内皮細胞等) へ分化させる場合には、 好適には、 当該多維性幹細胞を上述の中胚葉 系細胞分化誘導用フィーダ一細胞と共培養する (例えば rproc. Natl. Acad. Sci. USA, vol. 100, p4018-4023, 2003」、 「Εχρ· Hematol. , vol. 22, p979- 984」 、 「Sc ience, vol. 272, 722-724, 1996」 等参照) 。 例えばマウスの場合には、 当該多能性 幹細胞を上述の中胚葉系細胞分化誘導用フィーダー細包と共培養することにより、 脈管一造血前駆細胞への分化を誘導し、 該細胞を例えば P E C AM- 1陽性細胞、 F 1 k一 1陽性細胞として採取し、 得られた細胞を更に 胚葉系細胞分化誘導用フ ィーダ一細胞と共培養することにより、 脈管細胞を得ることが出来る。 或いは、 該 細胞はメチルセルロース培地中で培養されてもよい (Development, vol 125, pl747 —1757, 1998)。
また、 本発明の製造方法により得られる多能性幹細胞 心筋細胞へ分化させる場 合には、 好適には、 当該多能性幹細胞を S C Fの存在下で上述の中胚葉系細胞分化 誘導用フィーダ一細胞と共培養する (例えば Proc. Natl. Acad. Sci. USA, vol. 10 0, p4018-4023, 2003等参照) 。 或いは、例えばマウスの場合には、 当該多能性幹細 胞を上述の中胚葉系細胞分化誘導用フィーダ一細胞と共培養することにより、 F 1 k一 1陽性細胞を採取し、 得られた細胞を更に中胚葉系細胞分化誘導用フィーダ一 細胞と共培養することにより、 心筋細胞を得ることが出来る。
また、 本発明の製造方法により得られる多能性幹細胞は、 自体^!の外胚葉系細 胞分化条件にて培養することにより、 外胚葉系細胞へ分化する。 外胚葉系細胞とし ては、 特に限定されないが、 例えば、 神経系細胞、 表皮系細胞等が举げられる。 外 胚葉系細胞分化条件としては、 E S又は E G細胞を外胚葉系細胞へ 匕させ得る自 体 の条件が挙げられ、 特に限定されないが、 例えば、 下記の神經系細胞分化誘 導条件等が挙げられる。
本発明の製造方法により得られる多能性幹細胞は、 自体公知の神凝系細胞分化条 件にて培養することにより、 神経系細胞へ分化する。 神経系細胞と しては、 例えば 神経細胞 (例えは *MA P 2陽性細胞、 T u j陽性細胞など) 、 ドパミン作動性ニュ 一ロン (例えば TH及ぴ T u j両陽性細胞など) 、 グリア細胞 (例えば MB P陽性 細胞など) 、 オリゴデンドロサイト (例えば MB P陽性細胞など) 、 ァストロサイ ト (例えば G F A P陽 I"生細胞等) 等が挙げられる。
神経系細胞分化条件としては、 E S又は E G細胞を神経系細胞へ 化させ得る自 体公知の条件が挙げられ、特に限定されないが、例えば、神経細胞分化誘導培地(例 えば N2B27培地) を用いたゼラチンコートプレート上での培養等が举げられる (例 えば Nature Biotechnology, vol. 21, 183-186, 2003等参照) 。
また、 本発明の製造方法により得られる多能性幹細胞は、 自体公知の内胚葉系細 胞分化条件にて培養することにより、 内胚葉系細胞へ分化する。 内月丕葉系細胞とし ては、 特に限定されないが、 例えば、 消化器系細胞、 腌細胞、 肝細胞、 呼吸器系細 胞、 甲状腺等が挙げられる。 内胚葉系細胞分化条件としては、 E Sスは E G細胞を 内胚葉系細胞へ分化させ得る自体公知の条件が挙げられ、 特に限定されないが、 例 えば、 インスリン産生細胞への分化条件 (Proc Natl Acad Sci USA, 97, 11307-113 12) 等が挙げられる。 本発明の製造方法により得られた多能性幹細胞は、 半永久的に離保存すること が可能であって、 必要に応じて融解'起眠して使用することができる。 当該多 1^†生 幹細胞は凍結保存'融解後も多能性を維持する。 凍結保存においては、 ジメチノレス ルホキシドとゥシ胎仔血清アルブミンを含有するセルパンカー (DIA-IATR0Nネ: 1 ) 等の自体公知の細胞赚保存用組成物中に細胞を懸濁し、 - 8 0〜― 2 0 0 °C、 好 ましくは一 1 9 6で (液体窒素中) の条件で細胞を保存する。
本発明の製造方法により得られた多能性幹細胞を凍結保存後起眠させる際に〖ま、 常法に従って溶媒中で融解し、 懸濁して細胞浮遊液とする。 融解の方法も特に P艮定 されないが、 例えば、 3 7 °Cの恒温槽中で、 1 0 %胎仔ゥシ血清を含有する D E M (DMEM/F C S ) を用いて行うことができる。 具体的には、 恒温槽に凍 チ ユープを浮かべ、 凍結させた細胞へ DMEMZF C Sを滴下して融解する。 細月包を 遠心して洗浄した後、 培地に再度懸濁する。
一度起眠した当該多能性幹細胞を、 培 後、 再度凍結しても、 当該細胞の多鲑性 は維持される。
本発明の製造方法により得られた多能性幹細胞は、 長期間にわたって、 多能†feを 維持した状態で増殖することができるので、 自体公知の方法で、 当該多能性幹細胞 の遺伝子を改変し、 例えば、 特定の外来遺伝子が導入された多能性幹細胞や、 定 の遺伝子を欠損した多能性幹細胞等の遺伝子改変多能性幹細胞を製造すること力 で さる。
本発明の製造方法により得られた多能性幹細胞への遺伝子導入の方法として〖ま、 例えば、 特定の遺伝子が機能的に発現できるように構築されたべクターを多能†fe幹 細胞に導入する。 ベクターとしては、 プラスミドベクター、 ウィルスベクター寧を 用いることができる。 また、 ウィルスベクターとしては、 レトロウイルス、 アデノ ウィルス、 センチウィルス、 ヘルぺスウィルス、 アデノ随伴ウィルス、 パルポ イ ルス、 セムリキ森林ウィルス、 ヮクシニアウイルス等が挙げられる。
ベクターを多能性幹細胞に導入する方法としては、例えば、リン酸カルシウム法、 DEAEデキストラン法、 エレクトロボレーンョン法、 またはリポフエクション法等の 一般的な遺伝子導入法が挙げられる。 ウィルスをベクターに用いる場合には、 ±:述 の一般的な遺伝子導入法によりウィルスのゲノムを細胞に導入してもよいし、 ウイ ルス粒子を、 細胞へ感染させることによつても、 該ウィルスのゲノムを細胞に導入 することができる。
特定の外来遺伝子が導入された安定な遺伝子改変多能性幹細胞を選択するには、 例えば、 ベクターと同時にマーカー遺伝子を細胞へ導入し、 マーカー遺伝子の性質 に応じた方法で細胞を培養すればよい。 例えば、 マーカー遺伝子が、 宿主細胞に致 死活性を示す選抜薬剤に対する薬剤耐性を付与する遺伝子である ^には、 該薬剤 を添加した培地を用いて、 ベクターが導入された細胞を培養すれば良い。 薬剤耐性 付与遺伝子と選抜薬剤の組み合わせとしては、 例えば、 ネオマイシン耐性付与遺伝 子とネオマイシンとの組み合わせ、 ハイグロマイシン耐性付与遺伝子とハイグロマ ィシンとの組み合わせ、 ブラストサイジン S而村生付与遺伝子とブラストサイジン S との組み合わせなどをあげることができる。
特定の遺伝子を欠損した多能性幹細胞を得る方法としては、 例えばターゲッティ ングベクターを用いた相同的組換え (ジーンターゲッティング法) が挙げられる。 即ち、 特定の遺伝子の染色体 D N Aを単離し、 そのェキソン部分にネオマイシン耐 性遺伝子、 ハイグロマイシン耐性遺伝子を代表とする薬剤耐性遺伝子、 あるいは 1 a c Z ( )3—ガラクトシダーゼ遺伝子) 、 c a t (クロラムフエ二コールァセチノレ トランスフエラーゼ遺伝子) を代表とするレポーター遺伝子等を挿入することによ りェキソンの機能を破壌する力、 あるいはェキソン間のィントロン部分に遺伝子の 転写を終結させる D NA配列 (例えば、 poly A付加シグナルなど) を挿入し、 完全 なメッセンジャー R NAを合成できなくすること等によって、 結果的に遺伝子を破 壊するように構築した D N A配列を有する DN A鎖 (ターゲッティングベクター) を、 相同組換え法により多能性幹細胞の染色体に導入し、 得られた細胞について当 該特定の遺伝子の D N A上ある ヽはその近傍 D N A配列をプローブとしたサザン ハイプリダイゼーシヨン解析あるいはターゲッティングベクター上の DN A配列と ターゲッティングベクタ 作製に使用した特定の遺伝子の DN A以外の近傍領域の D NA配列をプライマーとした: P C R法により解析し、 特定の遺伝子を欠損した多 能性幹細胞を選択することにより得ることができる。 或いは、 糸慮特異的または発 達段階特異的な様式で特定の遺伝子を欠失させる C r e- 1 o x P系等を用いても よい (Ma r t h, J. D. (1996) C l i n. I nv e s t. 97 : 1 999-2002 ; Wa gne r, K. U. ら (1997) Nuc l e i c Ac i d s Re s. 25 : 4323— 4330) 。
本発明の製造方法により得られた多能性幹細胞は、 生体を構成する全ての体細胞 へ分化する能力を有しており、 E S細胞や EG細胞に適用される全ての試験技術、 方法を当該多様性幹細胞に適用することができ、 当該多能性幹細胞を用いて多様な 機能細胞、 組織、 動物 (ヒトを除く) 等を製造することができる。 また上述の方法 で遺伝子を改変した多能性幹細胞を用いれば、遺伝子が改変された多様な機能細胞、 «、 動物 (ヒトを除く) 等を製造することができる。
例えば、 本発明の製造方法により得られた多能性幹細胞を上述の中胚葉系細胞分 ィ匕条件にて培養することにより、 上述の中胚葉系細胞を製造することができる。 また、 本発明の製造方法により得られるマウスの多能性幹細胞を上述の外胚葉系 細胞 (例えば神経系細胞等) 分化条件にて培養することにより、 上述の外 g$葉系細 胞 (例えば神経系細胞) を製造することができる。
更に、 本発明の製造方法により得られた多能性幹細胞を上述の内胚葉系細胞分化 条件にて培養することにより、 上述の内胚葉系細胞を製造することができる。
その他、 本発明の製造方法により得られた多能性幹細胞を、 例えば、 ES細胞を 脈管細胞(血管内皮細胞等)へ分化させる方法(Development, vol.125, 1747 - 1757, 1998) 、 ES細胞を神経細胞へ分化させる方法 (Neuron, vol.28, 31-40, 2000)、 ES細胞を色素細胞へ分化させる方法 (Development, vol.125, 2915-2923, 1998)、 ES細胞をインスリン産生細胞へ分化させる方法 (Proc Natl Acad Sci USA, 97, 1 1307 - 11312, 2000) 、 E S細胞を外胚葉系細胞へ分化させる方法 (WOO 1/08 8100号パンフレット) 、 ES細胞の細胞塊 (ェンプリオイドボディ) を形成さ せることにより内胚葉細胞、 外胚葉細胞、 中胚葉細胞、 血液細胞、 内皮細胞、 軟骨 細胞、 骨格筋細胞、 平滑筋細胞、 心筋細胞、 グリア細胞、 神経細胞、 上皮細胞、 メ ラノサイト、 ケラチノサイトを製造する方法 (Reprod. Fertil. Dev. , 10, 31, 1998) 等 を用いて、 多様な機能細胞へと分化誘導することにより、 多様な機能細胞を製造す ることができる。 或いは、 Proc Natl Acad Sci USA, vol. 100, P11457- 11462, 2003 や、 Nature, vol. 427, pl48-154, 2004に記載された方法により、本発明の多能性幹 細胞より精子等の生殖細胞を製造し、 これを交配に用いることにより該多能性幹細 胞の子孫動物を得ることも可能であり得る。
また、 本発明の製造方法により得られた多能性幹細胞をヌードマウス等の免疫不 全動物や、 免疫寛容を誘導した動物に移入することによりテラトーマを形成させ、 当該テラトーマ中から多様な機能細胞を単離することもできる。
更に、 本発明の製造方法により得られた多能性幹細胞の遺伝子を改変し、 得られ た遺伝子改変多能性幹細胞に上述の方法を適用することにより、 遺伝子改変機能細 胞を得ることが可能である。
本発明に係る多能性幹細胞を用いた動物 (ヒトを除く) の製造は、 例えばキメラ 胚を用いる方法等の自体公知の方法に準じて行うことができる。
例えば、 まず本発明の製造方法により得られた多能性幹細胞を宿主胚に導入し、 キメラ丕を得る。 「宿主」 の動物種は、 導入される多能性幹細胞の動物種と同一で あることが好ましい。 「胚」 としては、 特に限定されないが、 例えば胚翻包、 8細 胞期胚等が挙げられる。
「胚」 はホルモン剤 (例えば、 F S H様作用を有する PMS Gおよび L H作用を 有する h C Gを使用) 等により過排卵処理を施した雌動物を、 雄動物と交配させる ことに等より得ることができる。 多能性幹細胞を宿主胚に導入する方法としては、 マイクロインジュクシヨン法や 法等が知られている力 いずれの方法を用いる ことも可能である。
次に、 当該キメラ胚を宿主動物の子宮又は卵管に移入し、 キメラ動物 (ヒトを除 く) を得る。 宿主動物は好ましくは偽妊娠動物である。 偽妊娠動物は、 正常性周期 の雌動物を、 精管結紮などにより去勢した雄動物と交配することにより得ることが できる。 キメラ胚が移入された宿主動物は、 妊娠し、 キメラ動物 (ヒトを除く) を 出産する。
更に、 当該キメラ動物 (ヒトを除く) を正常動物又は当該キメラ動物同士と交配 し、 次世代 (F 1 ) 個体の中から当該多能性幹細胞由来遺伝子を保有する個体を選 択することにより、当該多能性幹細胞由来遺伝子を保有する動物(ヒトを除く) (当 該多能性幹細胞に由来する動物) を得ることができる。 多能性幹細胞由来遺伝子を 保有する動物 (ヒトを除く) の選択は、 様々な形質を指標として用いることができ る力 例えば体色や被毛色が指標として用いられる。 また、 体の一部から DNAを 抽出し、 サザンプロット解析や P C Rアツセィを行うことにより、 選択を行うこと もまた可能である。
また、 本発明に係る多能性幹細胞を 4倍体胚に導入し、 4倍体キメラ胚を得て、 当該 4倍体キメラ胚を宿主動物の子官又は卵管に移入することによって、 該多能性 幹細胞に由来する動物を直接得ることも出来る (Proc. Natl. Acad. Sci. USA, vol 90, p8424-8428, 1993)。 4倍体胚は自体 の方法により胚髓包を電気融合させ ることにより得ることが出来るが、 2細胞 包をマンニト一ル»中で電気パル スを適用することによつて電気融合させてもよい。
上述の方法を用いることにより、 例えば特定の外来遺伝子が導入された多能性幹 細胞から、 当該導入された外来遺伝子を保有する動物 (トランスジエニック動物) を得ることができる。 また、 特定の遺伝子を欠損した多能性幹細胞から、 遺伝子欠 損へテロ接合体動物を得ることができる。 更に得られた遺伝子欠損へテロ接合体動 物を繁殖させることで、 遺伝子欠損ホモ接合体動物を得ることができる。
また、 本発明は、 グリア細胞由来神経栄養因子 (GD N F) 又はその均等物を含 む、 精巣細胞に由来する多能性幹細胞の製造用組成物に関する。 当該組成物を含む 培地を用いて、 上述の方法により精巣細胞を培養することにより、 精巣細胞に由来 する多能性幹細胞を得ることができる。
当該組成物は、 更に白血病抑制因子 (L I F) を含むことが出来る。
また、 当該組成物は、 更に上皮細胞成長因子 (E G F) 及び塩基性繊維芽細胞成 長因子 (b F G F) の少なくともいずれか、 好ましくは全てを含むことができる。 当該組成物は、 更に生理学的に許容される担体、 賦形剤、 防腐剤、 安定剤、 結合 剤、 溶解補助剤、 非イオン性界面活性剤、 緩衝剤、 保存剤、 酸化防止剤、 上述の添 加物、 基礎培地などを含むことができる。 当該組成物は、 等張な水赚、 あるいは粉末等の状態で、 本発明の製造方法に用 いる培地に添加されるなどして用いられる。 あるいは当該組成物は、 本発明の製造 方法に用いられる培地であってもよい。
以下、 実施例を示して本発明をより具体的に説明するが、 本発明は以下に示す実 施例によって何ら限定されるものではない。 実施例
実験材料及び方法
(細胞培養)
精巣細胞は、 d dYマウス、 DBA/2マウス、 あるいは DBAZ2パックグラ ゥンドにかけあわせたトランスジエニックマウス系統 C 57BL6/Tg 14 (act - EGFP - OsbyOl) (以下 Green miceと呼ぶことがある) (大阪大学、 岡部博士より提 供) の新生仔 (生後 0〜 8日齢) から採集された。 この Green miceは E G F P遺伝 子を実質的に全ての細胞型において発現しているので、 EGF Pの蛍光を指標に当 該マウス由来の細胞を追跡することが可能である。
また、 幾つかの試験においては I CRバックグラウンドの P 53欠損マウス (One ogene, vol.8, ρ3313~3322, 1993) の新生仔から、 精巣細胞が採集された。
精巣細胞はコラゲナーゼ (タイプ IV、 シグマ社製) およびトリプシン (インビ トロゲンネ環) を用いた 2段階酵素^^によって採集された。
即ち、 マウスの精巣を摘出し、 PBS中で白膜を除去し、 lmgZmlコラゲナ ーゼ (I型) を含むハンクス液中、 37 °Cにて適宜振蘯しながら 15分間インキュ ベートし、 精細管をほぐした。 P B Sにより 2回洗浄してはがれた間質の細胞を除 去した後、 1. 4mgZml DNa s eを含む 0. 25 %トリプシン液中で 37で にて適宜振蘯しながら 15分間インキュベートし、 精細管をばらばらにした。 PB Sを加え、 トリプシンを不活性化した後、 ピペッティングを行って細胞浮遊液を得 た。 これを 20〜 30 μ mのナイ口ンメッシュに通して未消化細胞塊を除去し、 6 00 X gで 5分間遠心して精巣細胞を回収した。 精巣細胞は、 ゼラチンコートされた糸 咅養プレートに配分された (2 X 105細 胞 /3. 8 cm2) 。 精巣細胞用の培養培地は、 StemProサプリメント (Invitrogen
、 25 μ g /m 1 インスリン、 100// g/ml トランスフェリン、 6 0 -Μ プトレシン、 30 ηΜ セレン酸ナトリウム、 6mgZml D— (+) ーグノレコース、 30/z gZml ピノレビン酸、 1 μ 1 /m 1 DL—乳酸 (シグマ ネ環) 、 5mg/m 1 ゥシァノレブミン (I CN バイオメディカルネ環) 、 2m M L—グルタミン、 5 X 10— 5M 2—メルカプトエタノール、 MEM非必須ビ タミン溶液 (Invitrogen標) 、 10— 4M ァスコノレビン酸、 10 μ g/m 1 d ービ才チン、 30n gZml ーェストラジオ一ノレ、 60 n g/m 1 プロゲス テロン (シグマ社製) 、 20 n g/m 1 マウス上皮細胞成長因子 (EGF : Becto n Dickinson ±¾) 、 10 n g/m 1 塩基性 锥芽細胞成長因子 ( b F G F : Bee ton Dickinson ΐΜ) 、 103units/ml ESGRO (マウス白血病抑制因子: L I F、 Invitrogen ^± ) 、 10 n g/m 1 組換えラット GDNF (R&Dシステム ズ ¾ ) 、 1 (v/v) %ゥシ胎仔血清 (JRH バイオサイエンスネ: h^) が添加 された StemPro- 34 SFM (Invitrogenネ環)を使用した。 細胞は 5 %の二酸化炭素を含 む空気中で、 37 °Cで維持された。
一晚のィンキュベート後に、 浮遊している細胞は活発なピベッティングの後に第 2培養プレートへ継代された。 継代された細胞は 1週間以内に増殖してプレートの 底に拡がり、 コロニーを形成した。
細胞はトリプシン処理によって分散され、 5〜14日間隔 (この間隔を D I Vと 称することがある) で、 生体外の新しい培養プレート (X 1〜X 1Z2希釈) へ移 された。 コロニーは、約 10日で本来の大きさに成長し、細胞は再び継代された (X 1希釈) 。 2度目あるいは 3度目の継代から、 細胞はマイトマイシン Cで不活性化 されたマウス胎仔繊維芽細胞 (MEF) で維持され、 2〜5日毎に、 培養初期は 1 力ら 1/2希釈、 その後 1から 1Z4希釈の新しい ME Fへ継代された。 更に、 確 立された ES細胞様コロユーは、 2〜5日毎に 1Z4から lZl 0希釈の新しい M EFへ継代された。 ES細胞様コロニーの出現後、細胞は、最終濃度として 15 (v/v) %FCS、 0. lmM 2—メルカプトエタノール、 103 units/mlの ESGRO (マウス白 血病阻害因子 (leukemia inhibitory factor) 、 インビトロゲン社製) 及ぴ 1 On g/m 1 糸且換えラット GDNF (R&Dシステムズ社製) を添口したダルベッコ 改変ィーグル培地にて培養された。
その後更に細胞は最終濃度として 15 (v/v) 0/oFCS、 0. lmM 2—メ ルカプトエタノール、及ぴ 103 units/mlの ESGRO (マウス白血病阻害因子(1 eukemia inhibitory factor) 、 インビトロゲンネ: t¾) を添加したダノレべッコ改変ィ 一グル培地にて維持された。
また、 一部の試験においては、 ES細胞様コロニーの出現後、 細胞は最終濃度と して 15 (vZv) %FCS、 0. 05mM 2—メルカプトエタノール、 及ぴ 1 03 units/mlの E SGRO (マウス白血病阻害因子(leukemia inhibitory factor) x インビトロゲンネ: h ) を添加したダルベッコ改変イーグル培地にて培養され、 維持 された。 (当該培養条件を ES細胞培養条件という場合がある。 )
新生仔精巣から E G細胞を誘導するために、同様の培地に 2 On g/m 1 ヒト b FGF (インビトロゲン社製)を更に補充し、細胞は S 14-m220 (大阪大学 仲 野博士より ) 上で培養された。
成体精巣培養のために、 3〜8週齢の P 53欠損マウスからの 2 X 107個の細胞 が用いられ、抗 CD 9抗体により精原幹細胞が (Biol. Reprod. , vol.70, p70- 75, 2 004) に霄己載されたように回収され、 選択された細胞がゼラチンコートプレート上に 播種された (3 X I 05細胞 9. 5 cm2)。 G S細胞コロニーをマイクロマユピュ レーシヨンによりピックアップし、 增殖のために ME Fへ移した。
ES様細胞と GS細胞とは、 実体顕微鏡下でコロニーをパスツールピぺット等で ピックアップすることによつても分離できた。
中胚葉系列への分化のために、 培養細胞は OP 9フィーダ一層上にて培養され、 細胞の分ィ匕は既述 (Science, vol.272, p722 - 724, 1996、 Development, vol 125, p 1747-1757, 1998、 Proc. Natl. Acad. Sci. USA, vol.100, p4018 - 4023, 2003、 Bio od, vol.93, P1253 - 1263, 1999等) の通り実施された。 分化に用いられた全てのサ ィトカインはキリンビール株式会社より提供された。
培養細胞のィンビトロにおける血球系細胞への分化誘導は、 (Science, vol.272, P722-724, 1996)の記載に従って実施された。 即ち、 当該培養細胞を O P 9ストロー マフィーダー上で培養することにより、 血球系細胞への分化を誘導した。
また、 一部の試験においては、 (Development, vol 125, pl747-1757, 1998)の記 載に従って、 培養細胞から血球系細胞への分化誘導が行われた。 即ち、 培養細胞を メチルセル口ース培地中で培養した。
培養細胞の、 インビト口における心筋細胞への分化誘導は、 (Pro Natl. Acad. Sci. USA, vol.100, p4018- 4023, 2003)の記載に従って実施された。 即ち、 当該培 養細胞を、 S C Fの 下、 OP9ストローマフィーダー上で培養することにより、 心筋細胞への分化を誘導した。
培養細胞の、 インビト口における脈管細胞 (血管内皮細胞等) の分化誘導は、 (Pr oc. Natl. Acad. Sci. USA, vol.100, p4018 - 4023, 2003)の記載に従って実施され た。 即ち、 当該培養細胞を O P 9ストローマフィーダー上において培養することに より、 脈管 前駆細胞へ分化を誘導し、 5日後に P E CAM— 1陽性細胞をソ ートし、 ソートされた細胞をさらに OP 9ストローマフィーダ一上で培養すること により、 脈管細胞 (血管内皮細胞等) への分化を誘導した。
脈管細胞は D i Iァセチル化低密度リポタンパク質 (モレキュラープローブス社 製) の取込により特定された。
培養細胞の、 インビトロにおける神経細胞およぴグリァ細胞への分化誘導は、 N 2B 27培地を用い、 (Nature Biotechnology, vol.21, pl83 - 186, 2003) の記載 に従って実施された。 即ち、 当該培養細胞を、 N2B27培地中、 0. 1%ゼラチ ンコート組膨咅養プラスチックプレートに 0. 5— 1. 5 X 104/cm2の密 度で播種した。 培地は 2日ごとに新しいものと交換した。 N 2 B 27は、 改変 N 2
(25 g/m 1 インシュリン、 100 g ml アポトランスフェリン、 6ng /m 1 プロゲステロン、 l e gZml プトレシン、 30nM セレン酸ナトリ ゥム及ぴ 50 g /m 1 ゥシ血清アルブミンフラクション V (Gibcoネ±^) ) を添口 した DMEM/F 1 2 (Sigma |±¾) と B 2 7を ^/卩した Neurobasal培地 (共に Gi bco ) との 1 : 1の混合液である。
また、 E S細胞としては、 1 2 9 s V jマウス由来のものを用いた。
一部の試験においては、 C AGプロモーターの下で E G F P遺伝子をュビキタス に発現している D 3 E S細胞 (大阪大学岡部博士より提供: Gene, vol. 108, pl93 - 200, 1991) が用いられた。 E S細胞は標準的な E S細胞培地で維持された。
(抗体及び染色)
本発明の製造方法で製造された細胞等の性質を ¾mするために、 自体公知の E S 細胞や精子形成細胞等のマーカーの発現を調べるフローサイトメトリー力 S実施され た。
一次抗体としては、 ラット抗 EpCAM(G8. 8)、 マウス抗 SSEA - 1 (MC - 480)、 マウス抗 筋繊維タンパク質(sarcomeric protein) (MF20) (発生研究ハイブリドーマパンク、 アイオワ大学) 、 ラット抗マウスフォルスマン (Forssman)抗原 (Ml/87)、 ラット抗ヒ ト α 6—インテグリン (CD49f) (GoH3)、 ビォチン化ハムスター抗ラット ]3 1インテグ リン (CD29) (Ha2/5)、 ビ才チンィ匕ラット抗マウス C D 9 (KMC8)、 A P C結合ラット抗 マウス C- kit (CD117) (2B8)、 ラット抗マウス C D 3 1 (MEC13. 3)、 P E結合ラット抗 マウス T e r 1 1 9 (Ter- 119)、 ピオチン化ラット抗マウス M a c 1 (Ml/70)、 ピオ チン化ラット抗マウス G r 1 (RB6-8C5)、 ラット抗マウス V E—力ドヘリン(11D4. 1)、 ?0結合ラット抗マゥス。0 4 5 (30 11) (B Dバイオサイエンスネ環) 、 ラッ ト抗 T DA抗原 (EE2) (大阪大学西宗博士より搬) 、 A P C結合ラット抗マウス F 1 k— 1 (AVaS12 a l) (理研西川博士より提供) 、 ャギ抗マウス心筋トロポニン一 1 (cTn-1) (サンタクルスバイォテクノロジーネ燭 、 マウス抗ヒトミオシン軽鎖 2 V (MLC2v) (ァレクシスパイオケミカルズ機) 、 ゥサギ抗マウス心房性ナトリウム利 尿ペプチド(atrial natriuretic peptide; ANP) (プロトスバイオテックコーポレー シヨンネ環)、 マウス抗ヒトミエリン塩基性タンパク質 (MBP) (Pm43)、 ゥサギ抗グリ ァ繊維性酸性タンパク質(glial fibrillary acidic protein; GFAP)、 ゥサギ抗マウ スタイロシンヒドロキシラーゼ (TH)、 マウス抗ヒト j3—チュブリン I I I (Tuj) (SDL. 3D10) (シグマ社製) 、 抗 MAP 2ゥサギポリクローナル抗体、 マウス抗ミオシン重 鎖モノクローナル抗体 (MF 2 0) が用いられた。
A P C結合ャギ抗ラット I g G (Cedarlane†± )、 A P C結合ストレプトァビジ ン (BDバイオサイエンスネ: fc^) 、 Al e x a F 1 u o r 488結合ャギ抗マウ ス I gG、Al e xa F 1 u o r 647結合ャギ抗ラット I gM、 A 1 e x a F 1 u o r 633結合ャギ抗マウス I gM (モレキュラープローブ社製) 、 Cy 3結 合口バ抗マウス I gG、 Cy 3結合ロパ抗ゥサギ I gG、 ALP若しくはパーォキ シダーゼ結合ロパ抗マウス I g G、 ALP結合ロバ抗ゥサギ I gG (ジャクソンィ ムノリサーチネ: fc )、 ALP結合ゥサギ抗ャギ I gG (ベクターラボラトリーズ社 製) 又は ALP結合ャギ抗ラッ ト I gG (ケミコンネ環) が二次抗体として用いら れた。
細胞染色技術は (Proc Natl Acad Sci USA, vol.96, P5504 - 5509, 1999) の記載 に従って実施された。細胞は F ACS— Caliburシステム (BDバイオサイエンス社 製) で角蜥した。
ィンビトロで分化させた機能細胞の免疫細胞染色は、 標準的なプロトコールを用 いて実施された。 即ち細胞を 4 ο/0パラホルムアルデヒド (PBS中) で固定し、一次抗 体で処理し、 抗原の局在を Cy 3を結合させた二次抗体を用いて可視ィ匕した。
ALP又は DAB染色は、 VECTORァノレカリフォスファターゼ基質キット又 は DAB基質キット (ベクターラボラトリーズ ) を用い、 製造者のプロトコ一 7レに従って、 それぞれ行われた。
アルカリフォスファターゼ染色は (Nature, vol.352, 809-811, 1991 ; Cell, vo 1.44, 831 - 838, 1986)の記載に従って実施された。
(移植及ぴレシピエントの解折)
テラトーマ形成の角晰においては、約 2 X 106個の培養された細胞が KSNヌ一 ドマウス (日本 SLC) の皮下に注入され、 移植から 3週間後に角浙された。 形成 された組織は 10%中性緩衝ホルマリンで固定され、 パラフィン切片の処理がなさ れた。 切片はへマトキシリンおょぴェォジンで染色され、 顕微鏡下観察された。 精細管内への微注入のために、 約 3X 105個の細胞が免疫抑制された Wマウス (日本 SLC) レシピエントの精細管内へ輸出管を通して注入された (Biol. Repro d., vol.68, 167-173, 2003) 。
全ての動物実験のプロトコールは、 京都大学の動物保護および使用制度委員会に よって承認されたものである。
(キメラ形成及び顕微受精)
。5781/6マゥスの3.5 dpc胚^!包の割腔 (blastocoel) 内に 10から 15 個の Green mice由来の培養された細胞がピエゾ駆動マイクロマェピュレーターを用 いて注入された (Development, vol.121, 2397-2405, 1995) 。 胚編包は 2.5dpcの 偽妊娠 I C R里親マウスの卵管又は子宮に、 微注入の日に戻された。 約 70 %の細 胞が注入時に、 ES細胞注入後のキメリズムの割^3生殖系列への伝達 (germline t ransmission)に影響を及ぼす正倍数性核型 (euploid karyotype) を保持していた。
4倍体胚凝集キメラが、 2細胞胚塑包を 300 mMマンニトール激夜中で電気パ ルス (2500VZcm 10/z秒) を適用することによって電気融合させたこと を除き、 Na gyらが開発した方法 (Proc. Natl. Acad. Sci. USA, vol.90, p8424 -8428, 1993) を用いて作成された。
12.5 dpcの胎仔マウスを摘出し、 UV光下実体顕微鏡を用いて観察した。 また、 当該胎仔マウスは 4%パラホルムアルデヒド中で固定し、 Tissue- Tek OCT compound (サクラ精機) 中で凍結し、 凍結切片を作成した。 切片は、 蛍光顕微鏡 (ォリンパ ス共焦点レーザースキャニング顕微鏡) を用いて Green mice由来の EGFPの蛍光 を指標にキメリズムを解析した。 対照染色としては P Iを用いた。
また自然分娩により出産されたキメラマウス新生仔を、 UV光下実体顕微鏡を用 いて観察した。
顕微受精は B D F 1卵母細胞を用レヽて既述の通り行われた (Development, vol.12 1, p2397-2405, 1995) 。 胚は培養の翌日に移入された。
(RT-PCR)
尺丁ー?01 にょる0 c t— 4、 HPRT、 Re x— 1、 Na no g、 ER a s、 E s g— l、 Cr i p t o及ぴ Z FP 5 7の発現の解析は、 (Science, vol.297, 3 92-395, 2002; Mol. Cell. Biol. , vol.13, 473-486, 1993; Cell, vol.113, 631- 642, 2003; PNAS, vol.100, 14926-14931, 2003; Nature, vol.423, 541—545, 200 3; Genome Res. , vol.12, 1921-1928, 2002; Dev. Biol. , vol.235, 12—32, 2001; Dev. Biol. , vol.265, 491-501, 2004等)に記載の特異的プライマーを用いて実施 された。 Oc t— 4、 UTF 1及ぴ HPRTの PCR増幅は下記の特異的プライマ 一を用いて行われた。
[O c t -4]
5, -AGCTGCTGAAGCAGAAGAGG-3 ' (配列番号 1)
5, -GGTTCTCATTGTTGTCGGCT-3 ' (配列番号 2)
[UTF 1]
5, -GATGTCCCGGTGACTACGTCT-3 (配列番号 3)
5, -TCGGGGAGGATTCGAAGGTAT-3 (配列番号 4)
[HPRT]
5, -GCTGGTGAAAAGGACCTCT-3 ' (配列番号 5)
5 , -CACAGGACTAGAACACCTGC-3 ' (配列番号 6)
(インプリントされた遺伝子の解析)
インプリントされた遺伝子の DMRの亜硫酸染色体シークェンシングは既述の通 りに行われた (Development, vol.129, pl807-1817, 2002) 。 亜硫酸処理された染 色体 D N Aからの各々の DMR領域の P C R増幅は、 下記の特異的プライマーを用 いて行われた。
[HI 9]
5, -GGAATATTTGTGTTTTTGGAGGG-3 ' (配列番号 7)
5' -AATTTGGGTTGGAGATGAAAATATTG-3 ' (配列番号 8)
[Me g 3 I G]
5, -GGTTTGGTATATATGGATGTATTGTAATATAGG-3, (配列番号 9 )
5, -ATAAAACACCAAATCTATACCAAAATATACC-3 ' (配列番号 10)
[Ra s g r f l]
5, -GTGTAGAATATGGGGTTGTTTTATATTG-3 ' (酉 3列番号 1 1) 5' -ATAATACAACAACAACAATAACAATC-3 ' (配列番号 1 2)
[I g f 2 r]
5' -TTAGTGGGGTATTTTTATTTGTATGG-3 ' (配列番号 1 3)
5, -AAATATCCTAAAAATACAAACTACACAA-3 ' (配列番 H 4)
[P e g 10]
5, -GTAAAGTGATTGGTTTTGTATTTTTAAGTG-3 ' (配列番号 15)
5, -TTAATTACTCTCCTACAACTTTCCAAATT-3 ' (配列番号 16)
[Oc t-4]
5' -GGTTTTTTAGAGGATGGTTGAGTG-3' (配列番号 17)
5, -TCCAACCCTACTAACCCATCACC-3 ' (配列番号 18)
DNA配列は両方向において決定された。 COBRAについては、 PCR産物は 起源となる未転換 DNA中の C p Gを含む配列を認識する制限酵素により消化され た (Nucl. Acid. Res., vol.25, 2532 - 2534, 1997) 。 消化された DNAパンドの強 度は、 ImageGaugeソフトウェア (フジ写真フィルムネ: fc^) により定量された。 結果
新生仔のDBAノ2マゥス又はd dyマゥスの精巣をGDNF, bFGF、 EG
Fおよび L I Fを含有する培養液中で培養した際に、 コロユーの大部分は、 細胞間 架橋 (intercellular bridge)と桑実胚 (morula)様構造により特徴付けられる、 G S 系田胞の典型的な^を有していた (図 I d) 。 し力 しな力 Sら、 少数 « 5 %) のコ 口-一は ES細胞への著しい類似を呈していた (図 l a及び b)。 これらのコロニー はより硬く詰め込まれ (packed), 通常培養開始後 3から 6週間 (約 4〜7回継代) 以内に出現した。
これらの E S細胞様コロニーは、 FCS、 2—メルカプトエタノール、 マウス白 血病阻害因子 (L I F) 、 及ぴグリア細胞由来神経栄養因子 (GDNF) を添加し たダルベッコ改変ィーグ /kfc咅地用いて、 マウス胎仔繊雑芽細胞フィーダー上にて培 養すると、 数の増加により選択的に増殖した。 2から 3回の継代後、 培養中のほと んどのコロエーは ES細胞様コロニーとなった (図 1 c) 。 これらの ES細胞様コ 口ユーは ES細胞培養条件 (FCS、 2—メルカプトエタ 一ル及ぴマウス白血病 P且害因子 (L I F) を添加したダルベッコ改変イーグル培地を用いて、 マウス胎仔 繊維芽 田胞フィーダ一上にて培養) にて維持することが可能であった。 この後、 細 胞を E S細胞培養条件下で維持する限りは、 形態は変ィ匕しなかった。 反対に GS細 胞は、精原幹細胞の自己再生分裂のための必須の成長因子である GDNF (Science, vol.287, pl489-1493, 2000) の不在のため、 該条件下では増殖することが出来な かった σ
へキスト 33258を添加したキナクリン染色による染色体角浙 (cytogenetic a nalysi s)は、 E S様細胞が、分裂中期スプレツド (metaphase spread)の 70〜 85 % において正常な核型 (karyotype) (40、 XY) を有することを示した (図 2) 。 当該 ES様細胞は、 インビトロで、 30乃至 48回の継代で 5ヶ月以上、 未分化 状態を雑持しながら増殖した。 これらの結果は再現性があった。 なぜなら、 異なる 染色機 (d dY、 DBA/2, I CR等) や齢 (0から 8日齢) のマウスを含む 21回の実験中 4回にお 、て同様な細胞が獲得されたからである。
ES様細胞を形成する全頻度は約 1. 5X 107個細胞中 1個であった (新生仔精 巣 35個に相当) 。 意義深いことに、 少なくとも 20回の試験において、 新生仔精 巣細胞を直接 £S細胞培養条件で培養しても、 GS細胞、 ES様細胞のいずれも出 現しなかった。 同様に、 少なくとも 15回の試験において、 新生仔精巣細胞を膜結 合スチール因子 (mSCF) 、 1 及ぴ13 0 の存在 (EG細胞培養条件) 下 で培養しても、 GS細胞、 ES様細胞のいずれも出現しなかった; GDNFの添加 が G S 田胞及ぴ E S様細胞コ口ニーの両方の発生に必須であった。
G S細胞が E S様細胞に転換し得るカゝ決定するために、 培養開始から 2ヶ月後に、 マイク ロマニピユレーションにより全部で 148個の GS井、田胞コロニーをピックァ ップした。 GS細胞は 96穴プレートに移され、 更に 3ヶ月増殖された。 その結果、 1個の G S細胞コ口ユーが E S様細胞を産生した。該 E S様細胞の多能性はヌードマ ウス內への皮下注入による、インビボにおけるテラトーマ形成能力により確認された 更に、本発明者らは P 53ノックアウトマウス (Oncogene, vol.8, p3313-3322, 1 993) を用いた 0 P 53ノックアウトマウスは高い頻度で精巣テラ ] ^一マを発症する (APMIS, vol. Ill, pl84-191, 2003)。 本発明者らは E S様細胞がテラトーマ形成細 胞と密接に関与し得るとの仮説を立て、当該系統からの確立された G S細胞がより容 易に ES様細胞に転換する力検討した。 GS細胞が I CRパックグラウンドの新生 P 53ノックァクトマウスから確立された。 GS細胞の増殖スピード及び形態は野生型 細胞のそれらと区別がつ力ず、 GS細胞を得るために GDNFが同様に必要であった 培養から 2jr月後、 30〜40個の未分化形態の G S細胞コ口ニーがマイクロマ二 ピユレーシヨンによりピックアップされ、 96穴プレートに移され、 GS細胞培養液 (GDNF、 L I F、 bFGF、 EGF含有) 中で培養された。 意義深いことに、 2 つの異なる試驗において、 2ヶ月以内に GS細胞由来培養物中に ES様細胞が出現し 、 該コ口ニー {ま野生型細胞からの ES様コロユーと形態学的に区別できなかつた。
Ρ53ノックアウト GS細胞からの E S様細胞の出現頻度 ( 2回の試験中 2回) は 野生型 GS細包を用いた場合と比較して極めて高かった。
Ρ53ノックアウトマウスを用い、本発明者らは成熟精巣からの G S細胞が E S様 細胞を産生できるかについても試験した。精原幹細胞が抗 CD 9抗体を用いて 3〜 8 週齢マウスから採集され、 GS細胞培地中で培養された。 GS細胞は 2乃至 3の試験 におレ、て発生した。培養開始から 4〜 7日後に未分化形態の G S細 J3包がピックァップ され、 インビ卜口でマイトマイシン C不活化されたマウス胚性 «芽細胞 (MEF) 上にてコロニーが増殖された。 全体で、 8回の試験中 2回において、 培養 4週以内に ES様細胞が 現した。
これらの E S様細胞の表現型を調べるために、 Green miceからの培養を確立した。 当該 miceは EGFP (enhanced green fluorescent protein) を、 精原細胞を含め てュビキタス^:発現しているので (Biol. Reprod. , vol.69, p612- 616, 2003) 、 U V光励起により培養細胞をフィ一ダー細胞から識別することができる。
上記培養細胞中の EGFP陽性の細胞 (ES様細胞) について表面抗原の発現が フロ^ _サイト 一ターにより解析され、 当該細胞がほぼ一つの形質学的集団を構成 することが示された (図 3) 。 図 3 (a)〜(h) に示されるように、 当該細胞は、 S SEA- 1 (ES細胞マーカ一 ) (Proc. Natl. Acad. Sci. USA, vol.75, p5565 - 5569, 1978) 、 j31—及び a 6—インテグリン (E S及ぴ G S細胞マーカー) (Bi ol. Reprod. , vol.69, p612- 616, 2003) 、 E CAM (E S細胞及び精原細胞(spe rmatogonia)マーカー) (J. Reprod. Fertil. , vol.116, p379— 384, 1999)ぉょぴ C D9 (ES細胞及び精原幹細胞 (GS細胞) マーカー) (Biol. Reprod. , vol.70, P70 - 75, 2004) が陽性であり、 EE 2 (精原細胞マーカー) (Mol. Reprod. Dev., vol.40, p221-227, 1995) は陽'性又は弱陽性、 フォルスマン抗原 (ES細胞マーカ 一) (Nature, vol.292, pl54- 156, 1981)及び c - kit (分化した精原細胞マーカ一) (E ndocrinology, vol.140, p5894— 5900, 1999)が弱陽性であった。
これとは対照に、 G S細胞は S S E A— 1及びフォルスマン抗原が完全に陰性で あることから (図 4 (a) 、 ( f ) ) 、 当該 ES様細胞は GS細胞とは異なる表現 型を有することが示唆された。 また、 GS細胞は 1—及び α 6—インテグリン、 EpCAM、 CD 9、 EE 2及 T>c- kitが陽性であった。 (図 4 (b) 〜(e) 、 (g) 、 (h) )。 PS 3ノックアウトマウスからの GS細胞は同様の発現プロフ アイ/レを示した (データ示さず) 。
また、 ES細胞は SSEA— 1、 )31—及ぴ α 6—インテグリン、 EpCAM、 C D 9、 フォルスマン抗原及び c- kitが陽性であり、 EE 2は弱陽性であつた (図 5 (a) 〜 (! 1) )。
培養開始前の精巣細胞は、 S SEA— 1が陰性であり、 40%髓の集団がフォ ルスマン抗原陽性であった (図 6 (a) (b) 、 図 7) 。 培養開始前の新生精巣細 胞集団においてフォルスマン抗原の幾つカゝの発現を見出したが、 それは非生殖細胞 集団による発現であって、 EE 2陽性細胞は見出せなかった (図 8)。
当該 E S様細胞は、 E S細胞に特徴的であるアル力リフォスファタ一ゼが強陽性 であった (図 9 (a) ) 。 一方 GS細胞はアルカリフォスファタ一ゼが弱陽性乃至 陰性であり (図 9 (b) ) 、 当該 ES様細胞は GS細胞とは異なる表現型を有する ことが示唆された。 E S細胞はアル力リフォスファターゼが陽性であつた (図 9 (c) )。 次に、 本発明者らは、 逆転写ポリメラーゼ連鎖反応 (reverse transcription poly merase chain reaction: RT—PCR) ¾·用レヽて、 月丕 '14カノレシノーマ ^embryonal carcino ma: EC) 又は ES細部に特異的に発現している多くの分子を試験した。 未分化な E S細胞を維持するのに必須な O c t— 4、 Re x— 1及ぴ N a n o gに加え (Stem Cells, vol.19, p271-278, 2001、 Proc. Natl. Acad. Sci. USA, vol.100, pl4926- 14931, 2003、 Cell, vol.113, p631-642, 2003、 Cell, vol.113, p643- 655, 2003)、 E S様細胞は C r i p t o、 EIRa s、 UTF l及ぴ Z F P 57を E S細胞と同様 のレベルで発現していた (Dev. Biol. , vol.235, 12 - 32, 2001; Nature, vol.423, 541-545, 2003; EMB0 J. , vol.17, p2019— 2032, 1998; Genome Res. , vol.12, 192 1-1928, 2002; Dev. Biol. , vol.265, 491 - 501, 2004) 。 これらの結果は、 当該 E S様細胞は、 ES細胞と表現型が類似していることを示唆した。 一方、 GS細胞も これらの分子の幾つかを発現するが、 発現は一般により弱かった。 重要なことに、 G S細胞においては N a n o gの発現がほとんど認められず、 G S細胞は E S細胞 とは異なる自己再生の為のメ力二ズムを有し、 また当該 E S様細胞は G S細胞とは 異なる表現型を有することが示唆された (図 10、 11)。
E S様細胞のィンプリンティングパターンを解析するために、 3つの父性ィンプリ ント領域(HI 9、 Me g 3 I G及ぴ R a s g r f 1領域) 及ぴ 2つの母性インプ リント領域 (I g f 2 r及び P e g 10領域) の示差的メチル化領域 (differential ly methylated regions: DMRs) 力 S 2つの独立した細胞について亜硫酸シークェンシ ングにより試験された (図 12 )。 父性ィンプリント領域は異なる程度でメチルイ匕さ れていたが、母性ィンプリント領域は E S様細胞においてはほとんどメチル化されて いなかった。 ES細胞における: DMRは、 母性インプリント領域も含めて、 一般的に ES様細胞におけるものよりも、 よりメチル化されており、 H19領域のDMRは他 の領域の DMRよりも、 より広範囲にわたってメチル化されていた。 逆に、 GS細胞 は完全に雄性のィンプリンティングパターン(H 19及び Me g 3 I G DMRの 完全なメチル化、 並びに I g f 2 r DMRの脱メチルイ匕) を示した。
次に、本発明者らは P 53ノックァゥトマウスからの GS又は ES様細胞のインプ リント状態を試験した。 GS細胞の E S様細胞への転換の間の 4つの異なる時点での 同じ細胞集団から、染色体 DNAが単離された。 この試験において、 DMRのインプ リント状態は結合亜硫酸制限解析 (combined bisulfite restriction analysis: COB RA) (Nucl. Acid. Res., vol.25, p2532 - 2534, 1997) により決定された (図 13 A )。 野生型 GS細胞の解析から推測されるように、 P 53ノックアウトマウスからの GS細胞は雄性インプリントパターンを有して V、た。 しかしながら、 HI 9、 Me g 3 I G及ぴ R a s g f r 1領域の DMRにおけるメチル化の消失、及ぴ I g f 2 r領 域中の DMRのメチル化が、 ES様細胞出現後すぐに観察された。 インプリントパタ ーンの混乱は GS細胞が消失した時にさえ縦し、 ES様細胞の出現 18日後におい て、 Pe g 10領域の DMRのみがそのままであった。 E S細胞及ぴ E S様細胞にお ける O c t— 4領域の DMRは全て低メチル化(hypomethylated)されており、これは これらの細胞の未分化状態を ift^した(J. Biol. Chem. , vol.279, ρ17063- 17069, 2 004) (図 13Β)。
Ε S様細胞が体細胞系列へ分化することが出来るかを決定するために、本願発明者 らはィンビトロで E S細胞の分化を誘導するためにデザインされた方法を用いた。 Gr een mice由来の E S様細胞は第一に O P 9スト ローマフィーダ一層に移された。 OP 9ストローマフィーダ一細胞は造血系細胞、血球細胞や筋細胞等の中胚葉系細胞の分 化を支持できる (Science, vol.265, ρ1098-11Ο1, 1994; Proc. Natl. Acad. Sci. U SA, vol.100, p4018- 4023, 2003)。 10日以内に、 造血系細胞、 血球系細胞、 脈管 細胞 (血管内皮細胞等) (CD 31陽性細胞) 及ぴ自発的に拍動する心筋細胞 (MF 20陽性細胞) を含む多様な細胞が ¾ された。 血球系細胞には、赤芽球 (Te r 1 19陽性細胞) 、 血球細胞 (CD 45陽性細胞) 、 ミエロイド系細胞 (ミエロイド前 駆細胞、 単球系細胞 (Ma c 1陽性細胞) 、 好中球系細胞 (Gr 1陽性細胞) ) が含 まれていた (図 14A— H、 図 15)。
E S様細胞をメチルセル口ース中で培養し、ュンブリオイドボディを形成させたと きにも、 造血を誘導することが出来た (図 14 I) 。 神経系列細胞の分化のために、 ES様細胞をゼラチンコートディッシュ上へ すと (Nat. Biotech. , vol.21, pl83 - 186, 2003) 、 該細胞はニューロン (MAP 2陽性細胞) 又はグリア細胞 (MB P陽 性細胞) を形成した (図 14 J— L) 。 ドパミン作動性ニューロンも、 低い頻度なが ら見出された (図 14M) 。 ES細胞を用いて分化効率を比較すると、 ES様細胞は E S細胞よりもよりダリァ細胞を産生し、 E S镔細胞から有意によりの多く脈管細胞 (血管内皮細胞等) または心筋細胞コロエーが 生した。 しかしながら、 ES様細胞 は、 ES細胞分化のためのプロトコールを用いて期待される全ての系列を産生するこ とが出来た (表 1) 。
表 1
Figure imgf000049_0001
表 1は精巣からの E S様細胞のィンビトロ分ィ匕を示す。 表中の値は平均値土 S E Mを示す。 少なくとも 3試験からの結果である。 ES細胞は 129マウスからの由 来であり、 一方、 ES様細胞は DBA 2マウスからの由来である。 * : F 1 k— 1陽性細胞 (5 103)力 S共培養 4日後にソ^ "トされ、 24穴プレート中の OP 9フィ ^_ダ一上へ再び播かれた。 † :細胞はソーティング 7日後に回収され、 フローサイ トメトリーにより解析された。 赤血球、 マクロファージ及ぴ顆粒球が、 それぞれ抗 Te r 119、 抗 Ma c 1及ぴ抗 Gr 1抗体に り確認された。 ί :ソーティング 8日後における、 それぞれのゥエル中の陽性細跑の数を示す。 脈管細胞は D i I一 ァセチル化低比重リポタンパク質の取り込みに り決定された。 心筋コロニーは、 拍動しているコロニーを数えることにより ¾ ^された。 § : 48穴プレート中のゼ ラチン上に細胞 (2.5 104)が播力れ、 1 cm2あたりの陽性細胞の数が、 播腫後 5日 (ュユーロン) 又は 7日 (ァスト口サイト又はオリゴデンドロサイト) に決定され た。 ニューロンは抗 T u j抗体により、 一方ァストロサイ ト及ぴオリゴデンドロサ ィトは、 それぞれ、 抗 G F A P抗体又は抗 MB P抗体によ り決定された。 ドパミン ィ^¾性ニューロンが〜 1 0細胞/ゥエル産生された。 11 : t—テストにより統計学 的に有意 (Pく 0. 05)であることを示す。
E S様細胞は、ヌードマウス内への皮下注入により、インビボにおいてテラトーマ を形成する能力について更に試験された。移植後 3乃至 4週間で、全てのレシピエン ト (8Z8) において、 移植された細胞は典型的なテラトーマを生じた (図 1 4 N) 。 当該癌 (テラトーマ) には、 3つの胚葉 (embryonic germ layer) の派生物、 例え ば神経、 表皮、 筋肉、 気管支上皮、 軟骨、 骨、 扁平上皮細胞、 神経上皮等が含まれて いた。 同様の結果が、 3つの異なるクローンや P 5 3ノックアウトマウスからの E S 様細胞 ( 8 / 8 ) を用いて得られ、 E S細胞に由来するテラトーマとの有意な糸纖学 的差異は観察されなかった。 これとは対照に、 G S細胞や新鮮な精巣細胞をヌードマ ウスの皮下へ移植しても、 癌形成は認められなかった (データ示さず) 。 従って、 当 該 E S様細胞は、 E S細胞と類似した様式で、多様な体細胞系列へ分化する特性を有 することが示された。
当該 E S様細胞は精巣からの起源であるので、生殖系列綱胞への分化能力は、精原 細胞移植の技術により試験された(Proc. Natl. Acad. Sci. USA, vol. 91, pi 1298-1 1302, 1994 ;特表平 7- 501705号公報) 。 この方法は、 精原幹細胞により、 不妊動物の 空の精細管を再コロエー化 (recolonize) させて、成熟精子へ分化させる。 当該培養 細胞を免疫抑制された未成熟の Wマウス内に移植した(Biol. Reprod. , vol. 68, pl6 7-173, 2003) 。 このマウスは先天的に不妊であって、 精 田管内に内在性の分化して いる生殖細胞を有していない(Proc. Natl. Acad. Sci. USA, vol. 91, pi 1298-11302 , 1994) 。 移植後 1ヶ月で、 全てのレシピエント動物 (1 OZ 1 0) は精巣内にテラ ト一マを発生した。精細管組織は乱れており、組織学的解析では精子形成の兆候はな かった。 テラトーマ内に認められた細胞の型は、皮下注入により発生させたものと同 様であり (データ示さず) 、 このことは精細管の微小環境は当該培養細胞の分化パタ ーンに影響しないことを示している。 これとは対照に、野生型又は P 5 3ノックァゥ トの G S細胞が精細管内に注入されたときには、移植後 2ヶ月以内に正常な精子形成 が認められた (図 140— Q) 。
更に当該 E S様細胞のインビポにおける分化特性を調べるために、 当該 E S様細胞 を胚翻包内に微 した。 なぜなら、 ES細胞は胚翻包へ入り(colonize)、 生殖系列 を含む、体内の全ての細胞型に寄与するからである。 5から 15個 (OGreen mice由来 の E S様細胞を C 57B LZ 6の胚麵包内に注入した。キメリズム^3生殖系列伝達の 割合に極めて影響を及ぼす正倍数性細胞 (euploid cell) の割合は、 注入時には 70 %であつ ft (Transgenic Res., vol.6, p321— 328, 1997) 。
インビトロで 24時間培養後、当該キメラ胚は偽妊娠レシピエン卜マウスの子宮に 戻された。 レシピエント動物の幾つかはキメリズムをみるために 12. 5 d p cで角军 祈され、他のレシピエントは最後まで発生させた。胎生 12. 5日において胎仔は正 常に発生し、 25% (3/12) においてキメリズムが観察され、 U台仔の全身におい て UV光下で EGFPの榮現が認められた (図 16A)。 キメラマクス胎仔は自然分 娩により出産され、新生動物では 36% (13/36) において S台イ子と同様にキメリ ズムが観察された (図 16 B) (図 17) 。 キメリズムは成熟期の波毛色によっても βされた (図 16C) 。 EGFP発現を示す 6匹の死んだ胎仔を め、 幾つかの胚 は部分的に又は完全に堕胎されてレ、た。 ドナー細胞の寄与のパターンは解析された両 方の段階(胎仔及び新生仔) において類似していた; EGFP陽性ドナー細胞の寄与 力 S中枢神経系 (脳、 脊髄、 神経管等)、 肝臓、 心臓、 肺、 精巣、 体 SI5 (somites), 腸 管、 及ぴ卵黄嚢 (yolk sac)、 胎盤の絨毛膜 (chorionic membrane) 含む他の組織に おいて認められた (図 16D— J) (図 18) 。
ドナー細胞は 6週齢におけるキメラマウスの精巣内においても見出されたので、子 孫を獲得するために顕微受精を行った。 円形の精子が回収され、 C5 7BL/6 XD BA/2 (BDF 1) 卵母細胞中へ微注入された。 81個の培養された胚のうち、 6 4個 ( 79 %) が 2細胞へ分化し、 5匹の偽妊娠雌内へ移入された。 18個 (22% ) の胚が着床し、 レシピエントマウスからの 2匹の子孫のうち 1匹力 Sドナー起源を表 す EG FP蛍光を示した (図 16K) 。 興味深いことに、 対照 ES細胞は胚への幅広 い寄与を示した力 GS細胞を用いた試験においてはドナー細胞の替与は観察されな かった (表 2 ) 。
表 2
Figure imgf000052_0001
表 2は E S様細胞の胚発生への寄与を示す。 NA :不実施を示す。 ^ :幾つかの 試験では、 胎仔は 1 9 . 5 d p cにて帝王切開により分娩された。 † :出生後翌日 において生存している仔の数を示す。
E S陽細胞の全発生能を試験するために、本発明者らは 4倍体補足技術 (tetraploi d complementation technique) (Proc. Natl. Acad. Sci. USA, vol. 90, p8424-8428 , 1993) を用いた。 この技術は、全てドナー E S細胞からなる生存動 の産生を可能 にする。全部で 9 2個の 4倍体胚が電気融合により創造され、 E S様細胞と凝集され 、偽妊娠 I C R雌へ移入された。 レシピエント動物の幾つかは 1 0 . 5 d p cにて屠 殺され、 1匹の正常に見える胎仔と正常な胎盤による多くの吸収力 S認められた。胎仔 は ヽくつかの成長遅延を示したものの、卵黄嚢を含む全身に渡り E G F P遺伝子を明 確に発現していた (図 1 6 L) 。 このことは、胎仔はドナー E S様細 S包に由来するこ とを示す。
以上より、 ィンビボにおいても本発明の E S様細胞は生殖系列を含む生体のあら ゆる体細胞に分化しうる能力 (全能性) を有することが示された。
(考察) 上記実施例は、 出生後の精巣の中に多能性の幹細胞の を明らかとした。 「幹 細胞可塑性」 現象の幾つかのケースは細胞融合が原因であるが (Cell, vol. 116, p6 39-648, 2004) 、 本発明の E S様細胞は同じメカニズムによっては説明できない。 なぜなら、 本発明の E S様細胞は皮下,後にテラトーマを形成するからである。 精巣由来の E S様細胞は、 E SZE G細胞の出生後の相対物 (counterpart)であり う る。 上記実施例の結果は予期できないものである。 なぜなら、 P G Cは 1 3. 5 a p c後に試験的テラトーマ形成又は E G細胞形成に対して抵抗性になるからである (Cell Differ. , vol. 15, p69— 74, 1984; Development, vol. 120, p3197-3204, 19 94) 。 E G細胞は初期の生殖細胞からの多能性幹細胞の単離物の例でしかなレ、と弯 えられる (Nature, vol. 359, p550 - 551, 1992; Cell, vol. 70, p841 - 847, 1992) 。 E G細胞は 8 . 5 - 1 2 . 5 d p c胎仔から回収された初期の生殖細胞に由来し、 m S C F、 L I F及ぴ b F G Fの混合物を用いてインビトロで培養される。 しかし ながら、 細胞をインビボでテラトーマ形成させた後に培養するケースを除けば、 多 能性細胞は同じ培養条件を用いても、 新生の生殖細胞から単離することはできなレ、 (Development, vol. 120, p3197- 3204, 1994) 。 本発明の E S様細胞は 2つの理 によりテラトーマ由来ではなさそうである。 第一に、 本発明に係る E S様細胞の派 生物の頻度は自然に起こるテラトーマ形成の極めて低い頻度よりも有意に高い (L 2 9ハイプリッドバックグラウンドの雄 1 1 2 9 2匹中、 1つのテラトーマ (J. Na tl. Cancer. Inst. , vol. 27, p443— 453, 1961) ) 。 第二に、 増殖因子の補充が E S 様細胞の確立に必須である。 実際に、 自然に起こったテラトカルシノーマから少^: の E C細月包株し力獲 ¼されていなレヽ (Experimental approaches to mammalian embr yonic development, Cambridge University Press, p475-508, 1986) 。 従って、 多 能性細胞を形成する能力は生殖系列に内在し得る。 上記実施例に基づき、 本発明。 E S様細胞を、 生殖系列にのみ分化できる G S細胞と識別するために、 多能性生痕 系列幹細胞 (multipotent germline stem cells : mG S細胞) と呼ぶことを提案す る。
本発明において、 提案される一つの重要な問題は、 mG S細胞の起源である。 一 つの可能性は、 mG S細胞は G S細胞から独立して出現し、 胎仔期から精巣中に;^ 在していた未分化の多能性細胞の集団を起源とすることである。 E G細胞は 1 2 . 5 d p cまでの P G Cから樹立されたが (Cell, vol. 70, p841~847, 1992; Develop ment, vol. 120, P3197- 3204, 1994) 、 類似の特徴を有する細胞が新生精巣中に残存 し、 E S様細胞を産生したのかもしれない。 実際に、 野生型 mG S細胞のインプリ ンティング解析の結果は mG S細胞のための異なる起源を示唆する。 雄性の生殖細 胞においては、 染色体インプリンティングは胎仔期の間に消去され、 雄特異的イン プリンティングが出生時あたりに前精原細胞において獲得されはじめ、 出生後に完 了する (Genomics, vol. 58, pl8— 28, 1999; Hum. Mol. Genet. , vol. 9, p2885- 2894: 2000; Genes Dev. , vol. 6, p705- 714, 1992) 。 G S細胞は典型的な雄性インプリ ンティングパターンを有しており、 mG S細胞のインプリンティングパターンは雄 性の生殖細胞や体細胞とは明らかに異なってレ、た。 これは mG S細胞が、 インプリ ント消去を受けた雄性の生殖細胞を部分的に起源とし得ることを示唆する。
新生仔精巣中の雄性生殖細胞 (gonocyte)は異成分性 (heterogenous) であると報 告されている;偽足性 (pseudopod)雄性生殖細胞は精原細胞移植の後に精子形成を生 ずる能力を有す一方、 円形 (round)雄性生殖細胞は精子形成を生じず、 インビトロで アポトーシスを起こす。 精原幹細胞活性に関して mG S細胞は G S細胞とは異なつ ているので、 mG S及ぴ G S細胞は異なった雄性生殖細胞の型を起源としているか もしれない。
もう一方の可能性は、 mG S細胞は精原幹細胞に由来し、 多能性細胞になれる能 力は生殖系列細胞 (精原幹細胞等) の一般的な特徴の 1つであるかもしれないとい うことである。 セルトリ細胞との相互作用は、 通常は生殖細胞を精子形成に向かわ せ、 精巣内における多系列分化を抑制し得る。 しかしながら、 本発明の培養条件中 で、 セルトリ細胞の不在下で生殖系列細胞を継続的に刺激して増殖させたときに、 生殖細胞がこの抑制から開放され、 細胞のうちのいくつかが多能性細胞に転換する のかもしれない。 テラトジェネシス(teratogenesis)は環境の影響に対して感受性が 強く、 インビボにおいて胎仔生殖堤 (fetal genital ridge) の子宫外 (ectopic)移 植によりテラトーマ形成は有意に高められる (〜1 0倍) (Cell Dev. , vol. 15, p6 9-74, 1984) 。 本発明の多能性幹細胞の製造方法において、 培養開始後の早い時点 における継代による体細胞の^ rf¾が、 mGS細胞の樹立に有効であることから、 精 巣の環境は多系列分化にとって抑制的であるようである。 PGCはインビトロ培養 後にのみ多能性となることができ、 サイトカイン補充が EG細胞転換にも必要であ るので (Cell, vol.70, p841-847, 1992; Nature, vol.359, p550- 551, 1992) 、 増 殖刺激及ぴ体細胞からの解放が生殖系列細胞の分化プログラムを変更したのかもし れない。
上記実施例中の証拠の多く力 精原幹細胞の多能的特性のための支持を^^して いる。 第一に、 新生精巣中には PGC様生殖細胞は見出されず、 EG細胞培養条件 (mSCF + L I F + bFGF) 中では新生精巣から mG S細胞を誘導することは 出来なかった。従って、 mG S細胞は EG細胞とは異なるメカニズムを経て発生し、 該結果は新生精巣中の PGC様細胞は、 たとえ存在するとしても、 mGS細胞の創 造の原因ではないことを示唆している。
第二に、 野生型及ぴ P 53ノックァゥトマウス由来の GS細胞コロニーをピック ァップしたものから mG S細胞が出現したという結果は、 mGS細胞は G S細胞か ら発生することを意味する。 P 53遺伝子の欠失により精巣テラトーマ形成に対す る感受性が 100倍も増加する (APMIS, vol. Ill, pl84- 191, 2003) 。 それにもか かわらず、 この系統からの G S細胞は形質学的には野生型精原細胞と類似しており、 精細管中に移入したときに正常にみえる精子形成を産生する。 この意味で、 P53 ノックアウトマウスからの GS細胞は野生型 G S細胞と区別がつかず、 精原幹細胞 のための規準を満たす。 このモデルを用いて、 GS細胞における雄性インプリント の喪失に伴い、 mGS細胞に部分的雄性インプリントが起こることを見出した。 野 生型 G S細胞においても同様であると考えられる;部分的な雄性ィンプリントパタ ーンは mGS細胞の起源を直接示すものではなく、 むしろ E SZEG細胞において 報告されているように (Development, vol.120, p3197 - 3204, 1994; Development, vol.125, p2273 - 2282, 1998; Science, vol.293, p95 - 97, 2001) インビトロにおけ るェピジエネティックな不安定性を示しているのかもしれなレ、。
これらの結果は、 GS細胞が多能性である、 或いは一つの遺伝子 (P 53) の欠 失によってより容易に多能性を獲得し得ることを強く示唆する。 マウスにおけるテ ラトーマ形成は、 もっぱら 1 2 9 Z S vバックグラウンドにおいて発生し、 P G C から発生すると考えられている (Cell Differ. , vol. 15, p69 - 74, 1984) 。 しかし ながら、 上記実施例は精原幹細胞が多能性であることを強く示唆する。
興味深いことに、 mG S細胞における多能性の獲得は精原幹細胞潜在力の喪失と 同時に起こる。 精巣起源であるにもかかわらず、 mG S細胞は精細管中に戻して移 入されたときに、 テラトーマを形成することは、 精細管の環境はもはや細胞が多能 性となった後で 生殖細胞分化 (精子形成) を支持できないことを示している。 こ れは、 長期間培養後に正常な精子形成を生ずることができる G S細胞とは対照的で ある (Biol. Reprod. , vol. 69, p612- 616, 2003) 。 従って、 mG S細胞は E S ^E G細胞と細胞機能に関してより密接に関連している。 精原幹細胞潜在力の喪失の理 由は不明である; しかしながら、 これは mG S細胞の樹立過程の間における GD N Fに対する反応性の喪失と関連して 、るかもしれな 、と推測される。 なぜなら G D N Fはインビボにおレヽて精原幹細胞の自己更新 (self-renewing) 分裂を促進するた めの必須因子であるからである (Science, vol. 278, pl489- 1493, 2000) 。
上記実施例において最も重要な結果の一つは、 mG S細胞の正常胚発生への寄与 である。 ドナー細胞マーカーが生殖系列細胞を含む生体の多様な部分に存在した。 これらの結果は、 mG S細胞は癌を産生するのみならず、 正常胚発生にも寄与し得 ることを実証する。 mG S細胞のィンプリント状態は生殖系列能力には影響を及ぼ さず、 キメラ動物から正常な子孫が獲得された。 これは、 E S細胞および E G細胞 の両方が、 たとえ雄性インプリントパターンを伴っていても生殖系列キメラを産生 するとの以目 |J'の幸艮告と一致する (Experimental approaches to mammalian embryoni c development, Cambridge University Press, p475- 508, 198b; Development, vo 1. 120, p3197— 3204, 1994; Dev. Biol., vol. 161, p626—628, 1994; Curr. Biol. , vol. 7, p881- 884, 1997) 。
出生後の精巣からの多能性幹細胞の派生は、 医学及ぴバイォテクノロジ一におけ る重要な実用価値を有する。 本発明の製造方法により製造された mG S細胞は、 他 に報告された出生後動物から得られた多能性細胞とは、 形態学、 マーカーの発現、 ぉょぴ分化能力の点から異なっている (Trends Cell Biol. , vol. 12, ρ502 - 508, 20 02; Cell, vol. 116, p639- 648, 2004) 。 個々の細胞型の生物学を研究し、 臨床応用 の可能性を評価するのは重要であるが、 mG S細胞は、 E S細胞から特定の系列の 細胞を引き出すための技術を直接適用できる点で重要な利点を有している。 mG S 細胞は出生後の動物から、 動物 (胎仔ゃ胚を含む) を犠牲にすることなく獲得する ことができるので、 mG S細胞の派生は E S細胞と比較して倫理上の問題もより少 ない。 更に自家移植のために、 «適合性で多能的な糸 1 ¾を利用できることは、 Ε S細胞を基礎とした技術に関連した免疫学的問題を回避することもできるであろう。 Ρ 5 3ノックァゥトマウス試験等の結果は、 mG S細胞は成熟精巣から生じ得る事 を示唆する。 現研究段階においては、 成熟精巣から G S細胞をより効率的に導くた めの系の開発が重要であり、 例えば RN A干渉等により、 G S細胞における P 5 3 発現の抑制が、 mG S細胞の派生の頻度を増大させるのに有用かもしれない。 また 分化の範囲及ぴ効率に対するィンプリンティングの影響を試験することも重要であ ろう。
出生後の雄性生殖細胞は精子を産生するために完全にコミットしていると考えら れていたが、 本発明は、 その多能性を証明し、 また E S様幹細胞を派生する源とし て精巣が役立つことが示唆された。 G S細胞と併せて、 ここに述べた新たな幹細胞 株は、 生殖系列の生物学の理解に重要な関わりあいがあり、 パイォテクノロジ一お よぴ医学のための比類のないッールを提供する。 産業上の利用可能性
本発明の製造方法を用いれば、 従来受精卵ゃ胚などからのみ得ることの出来た多 能性幹細胞を、 出生後の個体から製造することが可能である。 当該多能性幹細胞を 用いれば、 自家移値のための 適合性を有する多様な組織を構築することが可能 であり、 再生医療、 遺伝子治療等の医学分野において有用である。 また、 また、 当 該多能性幹細胞はトランスジェニック動物ゃノックアウト動物等の作成に用レヽるこ とが出来るので、 パイォテクノロジー分野にぉレ、て有用である。 本出願は日本で出願された特願 2004— 101320 (出願 B : 2004年 3 月 30日) を基礎としており、 その内容は本明細書に全て包含されるものである。
配列表フリーテキス ト
配列番号 1 : Oc t— 4の特異的プライマー
配列番号 2 : Oc t— 4の特異的プライマー
配列番号 3 : UTF 1の特異的プライマー
配列番号 4 : UTF 1の特異的プライマー
配列番号 5 : HPRTの特異的プラィマー
配列番号 6 : HPRTの特異的プライマー
配列番号 7 : HI 9の特異的プライマー
配列番号 8 : HI 9の特異的プライマー
配列番号 9 : M e g 3 I Gの特異的プライマー
配列番号 10 : Me g 3 I Gの特異的プライマー
配列番号 11 : R a s g r f 1の特異的プライマー
配列番号 12 : R a s g r f 1の特異的プライマー
配列番号 13 : I g f 2 rの特異的プライマー
配列番号 14 : I g f 2 rの特異的プライマー
配列番号 15 : P e g 10の特異的プライマー
配列番号 16 : P e g 10の特異的プライマー
配列番号 17 : O c t— 4の特異的プライマー
配列番号 18 : O c t-4の特異的プライマー

Claims

請求の範囲
I. グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を用い て精巣細胞を培養し、 多能性幹細胞を得ることを含む、 多能性幹細胞の製造方法。
2. 培地が更に白血病抑制因子 (L I F) を含む、 請求項 1に記載の製造方法。
3. 培地が更に上皮細胞成長因子 (EGF) 及び塩基性繊維芽細胞成長因子 (b FGF) の少なくともレ、ずれかを含む、 請求項 1又は 2のいずれか 1項に記載の製 造方法。
4. 精巣細胞をフィーダー細胞の ¾E下で培養することを含む、 請求項 1〜 3の V、ずれか 1項に記載の製造方法。
5. 該精巣細胞は精原幹細胞である、 請求項 1に記載の製造方法。
6. 該精原幹細胞は G S細胞である、 請求項 5に記載の製造方法。
7. 該精巣細胞は P 53不全である、 請求項 1に記載の製造方法。
8. 以下の工程を含む、 請求項 1に記載の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 培養細胞を得る工程;
(工程 2) 白血病抑制因子 (L I F) を含む培地を用いて、 工程 1で得られた培養 細胞を培養し、 多能性幹細胞を得る
9. 工程 1の培地が更に白血病抑制因子 (L I F) を含む、 請求項 8に記載の製 造方法。
10. 工程 1の培地が更に上皮細胞成長因子 (E G F) 及び塩基性 »芽細胞成 長因子 (bFGF) の少なくともいずれかを含む、 請求項 8又は 9のいずれか 1項 に霄己載の製造方法。
I I. 工程 1が精巣細胞をブイーダー細胞の存在下で培養することを含む、 請求 項 8〜 10のレ、ずれか 1項に記載の製造方法。
12. 以下の工程を含む、 請求項 1に記載の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用レ、て精巣細胞を培養し、 G S細胞を得る工程; (工程 2) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて、 工程 1で得られた GS細胞を培養し、 多能性幹細胞を得るェ
1 3. 精巣細胞が哺乳動物由来である、 請求項 1〜 1 2のいずれか 1項に記載の 製造方 feo
14. 哺乳動物が出生後である、 請求項 1 3に記載の製造方法。
1 5. 多能性幹細胞が S S E A— 1、 フオ レスマン抗原、 j3 1—インテグリン、 α 6—インテグリン、 E p CAM、 CD 9、 E E 2及ぴ c— k i tからなる群から 選ばれる少なくともいずれかが陽性である、 請求項 1に記載の製 法。
1 6. 多能性幹細胞が S SEA— 1、 フオノレスマン抗原、 j3 1—インテグリン、 o; 6—インテグリン、 E p CAM、 CD 9、 E E 2及ぴ c一 k i tが陽性である、 請求項 1 5に記載の製造方法。
1 7. 請求項 1〜 1 6のいずれか 1項に記載の製造方法により製造された多能性 幹細胞。
1 8. S SEA— 1、 フォルスマン抗原、 β 1一インテグリン、 ο; 6—インテグ リン、 E p CAM、 CD 9, E E 2及ぴ c— k i tからなる群から選ばれる少なく ともいずれかが陽性である、 精巣細胞に由来する多能性幹細胞。
1 9. S SEA— 1、 フォルスマン抗原、 1一インテグリン、 a 6—インテグ リン、 E p CAM、 CD 9、 ££ 2及ぴ。ー1?^ tが陽性である、 請求項 1 8に記 載の多詣性幹細胞。
20. 以下の工程を含む、 キメラ胚の製造方法:
(工程 1 ) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて清巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2 ) 当該多能性幹細胞を宿主胚に導入し、 キメラ胚を得る工程。
2 1. 以下の工程を含む、 キメラ動物 (ヒトを除く) の製造方法:
(工程 1 ) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて樁巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2 ) 当該多能性幹細胞を宿主胚に導入し、 キメラ胚を得る工程; (工程 3) 当該キメラ胚を宿主動物の子宮又は卵管に移入し、 キメラ動物 (ヒトを 除く) を得るェ
22. 以下の工程を含む、 多能性幹細胞に由来する非ヒト動物の製造方法: (工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 当該多能性幹細胞を宿主胚に導入し、 キメラ胚を得る工程;
(工程 3) 当該キメラ胚を宿主動物の子宮に移入し、 キメラ動物 (ヒトを除く) を 得る工程;
(工程 4) 当該キメラ動物を交配し、 多能性幹細胞に由来する非ヒト動物を得るェ @o
23. 以下の工程を含む、 4倍体キメラ胚の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 該多能性幹細胞を 4倍体胚に導入し、 4倍体キメラ胚を得るェ禾
24. 以下の工程を含む、 多能性幹細胞に由来する非ヒト動物の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(工程 2) 該多能性幹細胞を 4倍体胚に導入し、 4倍体キメラ胚を得る工程; (工程 3) 当該 4倍体キメラ胚を宿主動物の子宮又は卵管に移入し、 多能性幹細胞 に由来する非ヒト動物を得る工程。
25. 以下の工程を含む、 機能細胞の製造方法:
(工程 1) グリア細胞由来神経栄養因子 (GDNF) 又はその均等物を含む培地を 用いて精巣細胞を培養し、 多能性幹細胞を得る工程;
(ェ程 2) 該多能性幹細胞を機能細胞分化条件にて培養し、 機能細胞を得るェ
26. 該機能細胞は中胚葉系細胞である、 請求項 25に記載の製造方法。
27. 該中胚葉系細胞が、 血球系細胞、 脈管系細胞および心筋細胞からなる群か ら選ばれるいずれかである、 請求項 26に記載の製造方法。
28. 該機能細胞は外胚葉系細胞である、 請求項 25に記載の製造方法。 2 9 · 該外胚葉系細胞は神経系細胞である、 請求項 2 8に記載の製造方法。
3 0. 神経系細胞力 神経細胞、 グリア細月包、 オリゴデンドロサイト及ぴァスト 口サイトからなる群から選ばれるいずれかである、 請求項 2 9に記載の方法。
3 1 . 該機能細胞は内胚葉系細胞である、 請求項 2 5に記載の製造方法。
3 2. グリア細胞由来神経栄養因子 (GDN F) 又はその均等物を含む、 精巣細 胞に由来する多能性幹細胞の製造用組成物。
3 3. 更に白血病抑制因子 (L I F) を含む、 請求項 3 2に記載の組成物。 3 4. 更〖こ上皮細胞成長因子 (E G F) 及び塩基性繊維芽細胞成長因子 (b F G F)の少なく ともいずれかを含む、請求項 3 2又は 3 3のいずれ力に記載の組成物。
PCT/JP2004/017125 2004-03-30 2004-11-11 精巣細胞由来多能性幹細胞の製造方法 WO2005100548A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/594,864 US20070202590A1 (en) 2004-03-30 2004-11-11 Process For Producing Multipotential Stem Cell Origination In Testoid Cell
CA002561690A CA2561690A1 (en) 2004-03-30 2004-11-11 Process for producing multipotential stem cell originating in testoid cell
EP04799738A EP1741776A4 (en) 2004-03-30 2004-11-11 METHOD FOR PRODUCING A MULTIPOTENTIAL STEM CELL FROM A TESTOID CELL
JP2006512244A JP4314372B2 (ja) 2004-03-30 2004-11-11 精巣細胞由来多能性幹細胞の製造方法
AU2004318461A AU2004318461B9 (en) 2004-03-30 2004-11-11 Process for producing multipotential stem cell originating in testoid cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-101320 2004-03-30
JP2004101320 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005100548A1 true WO2005100548A1 (ja) 2005-10-27

Family

ID=35149996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017125 WO2005100548A1 (ja) 2004-03-30 2004-11-11 精巣細胞由来多能性幹細胞の製造方法

Country Status (6)

Country Link
US (1) US20070202590A1 (ja)
EP (1) EP1741776A4 (ja)
JP (1) JP4314372B2 (ja)
AU (1) AU2004318461B9 (ja)
CA (1) CA2561690A1 (ja)
WO (1) WO2005100548A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012009A1 (en) * 2005-07-15 2007-01-25 Primegen Biotech, Llc Therapeutic reprogramming of germ line stem cells
WO2007051625A2 (en) * 2005-11-02 2007-05-10 Georg-August-Universität Göttingen Compositions and methods for producing pluripotent cells from adult testis
WO2007115216A1 (en) * 2006-03-30 2007-10-11 Primegen Biotech Llc Reprogramming of adult human testicular stem cells to pluripotent germ-line stem cells
JP2011188860A (ja) * 2005-12-13 2011-09-29 Kyoto Univ 誘導多能性幹細胞
JP2012531207A (ja) * 2009-06-25 2012-12-10 ジェロン・コーポレーション 対象外の表現型が除外された、分化多能性幹細胞の子孫
WO2013100140A1 (ja) * 2011-12-29 2013-07-04 国立大学法人 京都大学 生殖細胞からの多能性幹細胞様細胞の誘導
WO2014157257A1 (ja) 2013-03-25 2014-10-02 公益財団法人先端医療振興財団 細胞の選別方法
JP2015508653A (ja) * 2012-02-14 2015-03-23 ワシントン ステイト ユニバーシティ ウシ及びブタ精原幹細胞の培養のためのフィーダーフリー法
WO2018181342A1 (ja) 2017-03-28 2018-10-04 味の素株式会社 未分化維持培地添加剤
WO2018235583A1 (ja) 2017-06-19 2018-12-27 公益財団法人神戸医療産業都市推進機構 多能性幹細胞の分化能の予測方法及びそのための試薬
WO2019189758A1 (ja) 2018-03-30 2019-10-03 味の素株式会社 ポリリジン類縁体を含む、細胞増殖促進用組成物
WO2021033699A1 (ja) * 2019-08-20 2021-02-25 国立大学法人京都大学 心筋細胞の富化方法
JP2022043344A (ja) * 2014-03-19 2022-03-15 ブイセル セラピューティックス,インコーポレイテッド 多能性細胞に関連する方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1616944A4 (en) * 2003-04-15 2007-10-10 Univ Kyoto PROCESS FOR THE GROWING OF SPERMASTAMM CELLS IN VITRO, SPERMASTAMM CELLS TREATED WITH THIS METHOD AND MEDIATIVE ADDITIVE KIT TO BE USED IN VITRO SPERMASTAMM CELLS
WO2009021151A1 (en) * 2007-08-07 2009-02-12 Primegen Biotech Llc Isolation, characterization and propagation of germline stem cells
CN101835890B (zh) * 2008-06-27 2013-07-24 国立大学法人京都大学 有效建立诱导的多能干细胞的方法
EP2218778A1 (en) * 2009-02-16 2010-08-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Conversion of unipotent germline stem cells into pluripotent stem cells without exogenous factors
AU2010314989B2 (en) 2009-11-05 2013-10-24 Johnny Yung-Chiong Chow Ex host maturation of germline stem cells
US20150247120A1 (en) * 2014-02-28 2015-09-03 Chauncey B. Sayre Method for Reprogramming Canine Testicular Cells
WO2017002888A1 (ja) * 2015-06-29 2017-01-05 国立大学法人京都大学 多能性幹細胞から生殖細胞への分化誘導方法
KR101946134B1 (ko) * 2017-01-10 2019-02-08 중앙대학교 산학협력단 모낭세포로부터 생식선 줄기세포로의 분화방법 및 이의 용도
WO2019104036A1 (en) * 2017-11-21 2019-05-31 Georgetown University Process for continuous cell culture of gpscs
CN108504570A (zh) * 2018-04-09 2018-09-07 西安交通大学医学院第二附属医院 睾丸组织培养的装置及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690926A (en) * 1992-10-08 1997-11-25 Vanderbilt University Pluripotential embryonic cells and methods of making same
EP1616944A4 (en) * 2003-04-15 2007-10-10 Univ Kyoto PROCESS FOR THE GROWING OF SPERMASTAMM CELLS IN VITRO, SPERMASTAMM CELLS TREATED WITH THIS METHOD AND MEDIATIVE ADDITIVE KIT TO BE USED IN VITRO SPERMASTAMM CELLS

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KANATSU-SHINOHARA, M. ET AL.: "CD9 is a surface marker on mouse and rat male germline stem cells", BIOL.REPROD., vol. 70, no. 1, January 2004 (2004-01-01), pages 70 - 75, XP002985006 *
KANATSU-SHINOHARA, M. ET AL.: "Generation of Pluripotent Stem Cells from Neonatal mouse Testis", CELL, vol. 119, 29 December 2004 (2004-12-29), pages 1001 - 1012, XP002985005 *
See also references of EP1741776A4 *
SHINOHARA, T. ET AL.: "Germ line stem cell competition in postnatal mouse testes", BIOL.REPROD., vol. 66, no. 5, May 2002 (2002-05-01), pages 1491 - 1497, XP002985008 *
TADOKORO, Y. ET AL.: "Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway", MECH. DEV., vol. 113, no. 1, April 2002 (2002-04-01), pages 29 - 39, XP002985007 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012009A1 (en) * 2005-07-15 2007-01-25 Primegen Biotech, Llc Therapeutic reprogramming of germ line stem cells
WO2007051625A2 (en) * 2005-11-02 2007-05-10 Georg-August-Universität Göttingen Compositions and methods for producing pluripotent cells from adult testis
WO2007051625A3 (en) * 2005-11-02 2007-07-19 Univ Goettingen Georg August Compositions and methods for producing pluripotent cells from adult testis
JP2011188860A (ja) * 2005-12-13 2011-09-29 Kyoto Univ 誘導多能性幹細胞
JP2014000083A (ja) * 2005-12-13 2014-01-09 Kyoto Univ 誘導多能性幹細胞
WO2007115216A1 (en) * 2006-03-30 2007-10-11 Primegen Biotech Llc Reprogramming of adult human testicular stem cells to pluripotent germ-line stem cells
JP2012531207A (ja) * 2009-06-25 2012-12-10 ジェロン・コーポレーション 対象外の表現型が除外された、分化多能性幹細胞の子孫
WO2013100140A1 (ja) * 2011-12-29 2013-07-04 国立大学法人 京都大学 生殖細胞からの多能性幹細胞様細胞の誘導
JP2015508653A (ja) * 2012-02-14 2015-03-23 ワシントン ステイト ユニバーシティ ウシ及びブタ精原幹細胞の培養のためのフィーダーフリー法
WO2014157257A1 (ja) 2013-03-25 2014-10-02 公益財団法人先端医療振興財団 細胞の選別方法
JP2022043344A (ja) * 2014-03-19 2022-03-15 ブイセル セラピューティックス,インコーポレイテッド 多能性細胞に関連する方法
WO2018181342A1 (ja) 2017-03-28 2018-10-04 味の素株式会社 未分化維持培地添加剤
WO2018235583A1 (ja) 2017-06-19 2018-12-27 公益財団法人神戸医療産業都市推進機構 多能性幹細胞の分化能の予測方法及びそのための試薬
WO2019189758A1 (ja) 2018-03-30 2019-10-03 味の素株式会社 ポリリジン類縁体を含む、細胞増殖促進用組成物
WO2021033699A1 (ja) * 2019-08-20 2021-02-25 国立大学法人京都大学 心筋細胞の富化方法
JP7541748B2 (ja) 2019-08-20 2024-08-29 オリヅルセラピューティクス株式会社 心筋細胞の富化方法

Also Published As

Publication number Publication date
JPWO2005100548A1 (ja) 2008-03-06
AU2004318461B9 (en) 2009-02-26
CA2561690A1 (en) 2005-10-27
AU2004318461B2 (en) 2008-09-18
EP1741776A1 (en) 2007-01-10
EP1741776A4 (en) 2007-05-30
AU2004318461A1 (en) 2005-10-27
JP4314372B2 (ja) 2009-08-12
US20070202590A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4314372B2 (ja) 精巣細胞由来多能性幹細胞の製造方法
US8431395B2 (en) Pluripotent cells from rat and other species
WO2017047799A1 (ja) 始原生殖細胞を機能的に成熟した卵母細胞へと分化させる培養方法
JP5572650B2 (ja) リンパ造血組織を定着させるためのmapcまたはそれらの子孫の使用
Aleckovic et al. Is teratoma formation in stem cell research a characterization tool or a window to developmental biology?
JP2009502124A (ja) 生殖系列幹細胞の療法的再プログラミング
WO2011071085A1 (ja) 多能性幹細胞から分化誘導された細胞の生産方法
US20070298496A1 (en) Method of deriving pluripotent stem cells from a single blastomere
US6703209B1 (en) Porcine totipotent cells and method for long-term culture
Durcova-Hills et al. Developmental fate of embryonic germ cells (EGCs), in vivo and in vitro
WO2010069008A9 (en) A germline competent cell derived from adult tissue
WO1999009141A1 (en) Porcine totipotent cells and method for long-term culture
Heo et al. Production of somatic chimera chicks by injection of bone marrow cells into recipient blastoderms
US20070250943A1 (en) Construction of Chimera Using En Cells
JP2008104401A (ja) 精原幹細胞のインビトロ増殖方法
JP2006115767A (ja) フィーダー細胞の不在下で精原幹細胞を増殖させる方法
AU2013201718B2 (en) Pluripotent cells from rat and other species
JP2024006674A (ja) 精巣体細胞様細胞の製造方法、精巣体細胞様細胞、精子の形成方法、中期中胚葉様細胞を精巣体細胞様細胞に分化誘導する方法、精巣体細胞様細胞の製造用培地サプリメント、及び精巣体細胞様細胞の製造用培地キット
WO2006028278A1 (ja) 雄性生殖系列幹細胞のインビトロでの増殖方法
JPWO2007108393A1 (ja) 雄性生殖系列幹細胞のインビトロ増殖方法
Nowak-Imialek et al. Embryonic Stem Cells and Fetal Development Models
JP2004344060A (ja) ウシ胚性幹細胞及びウシの作出方法
KR20140043260A (ko) 수정란에 골수세포의 주입을 통한 조류 체세포 카이메라의 제조 방법
MXPA99008933A (es) Linea de celulas germinales embrionicas, humanas y metodos de uso

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512244

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2561690

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004318461

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004799738

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004318461

Country of ref document: AU

Date of ref document: 20041111

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004318461

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10594864

Country of ref document: US

Ref document number: 2007202590

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004799738

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594864

Country of ref document: US