Nothing Special   »   [go: up one dir, main page]

WO2005010184A1 - Method of detecting mutation - Google Patents

Method of detecting mutation Download PDF

Info

Publication number
WO2005010184A1
WO2005010184A1 PCT/JP2004/010893 JP2004010893W WO2005010184A1 WO 2005010184 A1 WO2005010184 A1 WO 2005010184A1 JP 2004010893 W JP2004010893 W JP 2004010893W WO 2005010184 A1 WO2005010184 A1 WO 2005010184A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
microbeads
sequence
target dna
tag
Prior art date
Application number
PCT/JP2004/010893
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuto Koyama
Junichi Mineno
Masanori Takayama
Hiroyuki Izu
Shusaku Yamashita
Hiroaki Sagawa
Ikunoshin Kato
Original Assignee
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc. filed Critical Takara Bio Inc.
Publication of WO2005010184A1 publication Critical patent/WO2005010184A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the present invention relates to a method for determining a DNA base sequence.
  • the present invention also relates to a method for detecting a mutation using the method for determining a base sequence.
  • DNA sequencing is an essential technique for obtaining genetic information of organisms.
  • Conventionally, widely used nucleotide sequencing techniques are described in the Chemical Chemistry [Maxam et al., Proceedings of Nationala 1 Accady of Sciences USA, Vol. 74, 1258-1262, 1977] and the enzymatic synthesis method [Sanger et al., Bulletin of the American Academy of Sciences, Vol. 74, pp. 5463-5467, 1977].
  • the former is called the Maxam-Gilbert method
  • the latter is called the dideoxy method or the Sanger method.
  • the automatic sequencer based on the principle has been widely spread and has become the mainstream of DNA sequencing. Since these methods require at least one reaction and electrophoresis per sample, the maximum number of sequences that can be obtained at one time using the latest sequencer is 384. .
  • Matsushiburi Parallel Signature Sequencing Method (MPSS method, Brenner et al., Nature Biotechnology, Volume 18, 630-634, 2000, Special Edition Table 1-111 507528] is a technique for determining a base sequence based on a completely different principle from the above-described base sequence determination method.
  • the DNA to be sampled is bound to the microbeads, the microbeads are two-dimensionally filled in a flow cell, and a series of reactions and detections are performed. You can decide.
  • the genomic DNA base sequence differs among individuals, and the site where these phenomena are different is called a genetic polymorphism.
  • a gene that occurs at a frequency of 1% or more in a population is defined as a genetic polymorphism.
  • the following three types of polymorphism markers are mainly used.
  • restriction fragment length polymorphism (restrictionfra gme ntlengthpol ymo r ph i sm ⁇ RFLP), simple arrangement polymorphism (s imp lese qu encel en gthpol ymo rphi sm, SS LP) and single nucleotide polymorphism (si ng lenucleotidepol ymo rphi sm (SNP).
  • SNP single nucleotide polymorphism
  • microsatellite There are many repetitive sequences of 1 to 6 bases in the genome, which are called microsatellite.
  • the number of microsatellite repetitions may vary from individual to individual, and is referred to as SSLP.
  • SSLP The sequence around the microsatellite is different for each repetitive sequence.
  • PCR polymerase chain reaction
  • the number of repetitions can be easily known.
  • a higher density of polymorphic markers than S SLP is required.
  • SNP is the most frequently found polymorphism and is present in humans at a rate of about 1 kb. SNP analysis is useful for understanding the relationship between side effects and individual differences, and for performing more effective and safe medical treatment.Screening and tying of SNPs are conducted on a large scale worldwide. Has been done.
  • the most direct method for detecting a new SNP is to compare the genomic DNA sequences of multiple individuals.
  • the sequence reaction and analysis using an automatic sequencer require a great deal of cost and labor. It costs.
  • An object of the present invention is to provide a method for inexpensively and accurately determining the DNA base sequence of a large number of samples. It is also an object of the present invention to provide a method for detecting mutations at a low cost and with high accuracy using the base rooster sequence determination method.
  • the present inventors have conducted intensive studies, fragmented DNA, ligated the fragmented DNA to a tag vector, prepared a tag library, and bounded a DNA fragment whose base sequence was to be determined to a microphone opening bead.
  • the present inventors have found that a DNA sequence can be determined efficiently by determining a nucleotide sequence by an operation comprising the same steps as the MPSS method, and that the present invention has been found that mutation can be detected by a similar method. completed. That is, the first invention of the present invention is a method for determining a DNA base sequence, which comprises the following steps. ----
  • step (3) (4) a step of binding the DNA obtained in step (3) to microbeads
  • step (8) hybridizing the microbeads obtained in step (8) with a decoder probe to identify an encoded adapter ligated to the target DNA;
  • a second invention of the present invention is a method for detecting a mutation, comprising the following steps.
  • step (10) a step of performing hybridization of the microbeads obtained in step (9) and a decoder probe to identify an encoded adapter ligated to the target DNA
  • step (10) Remove the decoder probe from the microbeads in step (10) to obtain Using the obtained microbeads in the following step (8), and
  • DNA Microphone Bead Array Technology is a technology disclosed in Japanese Patent Application Publication No. 11-507528 and Brena et al., Bulletin of the National Academy of Sciences, Vol. 97, pp. 165-1670, 2000 It refers to technology for analyzing gene expression and gene structure by applying it.
  • a library of DNA immobilized on the microbeads can be prepared, and one type of D ⁇ A is bound to one bead of the microphone mouth.
  • Tag library refers to a library of DNAs that is bound to the microbeads in the DNA microbead array technology. Each clone in the tag library is DNA containing the tag sequence and the DNA to be bound to the microbeads in the same molecule, and a set of these clones is the tag library.
  • a “tag” is an oligonucleotide that is covalently linked to DNA to be attached to the microbeads in DNA microbead array technology, and is used to place a single-sequence DNA on each microbead.
  • the repertoire of tags must be sufficiently larger than the number of clones in the tag library.
  • an “anti-tag” is an oligonucleotide that is covalently bonded to a microbead in DNA microbead array technology and has a sequence that is complementary to the tag.
  • a single array of anti-tags is bound to one microphone mouth bead.
  • the repertoire of multi-tags is substantially the same size as the repertoire of tags.
  • the “MPSS method” is a technology disclosed in Japanese Patent Application Laid-Open No. 2000-501500 and Nayya Biotechnology, Vol. 18, pp. 60-634, 2000. Means.
  • microbeads to which DNA has been bound prepared by DNA microbead array technology, are two-dimensionally packed in a flow cell, digested with type liS restriction enzymes, and the resulting protruding ends are connected to an adapter and ligated. This is a technique for identifying the adapters using fluorescent probes in a flow cell.
  • encoded adapter refers to a mixture of partially double-stranded oligonucleotides used for ligation to a protruding end of a target DNA in the MPSS method.
  • One end of the adapter (hereinafter referred to as A-terminal) may be a protruding end having a sequence to which a decoder probe described below can hybridize.
  • the other end (hereinafter, referred to as B-terminus) may be a protruding end satisfying the following conditions.
  • the type used in the “step of determining the base sequence of the target DNA fragment” in the present invention a 5, 1 or '3, one protruding end capable of ligating to the end of the target DNA generated by the type ⁇ Is restriction enzyme. is there. That is, when the above-mentioned restriction enzyme generates a 5'- (or 3'-) end protruding N base, the A-terminal is also a 5'- (or 3'-) end protruding N base.
  • the n-th base (1 ⁇ n ⁇ N) at the B-terminus is any of A, G, C or T; A mixture of four bases.
  • the central double-stranded portion of the enzyme adapter has the type II s restriction enzyme recognition sequence described above.
  • This restriction enzyme recognition sequence is adjacent to the protruding end sequence used for ligation when DNA obtained by ligating an encoded adapter to a target DNA fragment is digested with the restriction enzyme. It suffices if the sequence of the target DNA is designed to be generated as a protruding end.
  • the encoded adapters in each group are a mixture of 4 N_1 B-terminals, and the entire encoded adapter is 4 XN groups.
  • NX 4 consists of N types of arrays.
  • Suitable adapters that can be suitably used include those described in American Academy of Sciences, Vol. 97, pp. 165-1670, 2000.
  • the enzyme adapter is applicable when using BbVI as a type II s restriction enzyme.
  • the A-terminus has a 3-base overhang with 10 bases, and the B-end has a 5-overhang structure with 4 bases. are doing.
  • Decoder probe is a fluorescently labeled oligonucleotide used to detect which group of the encoded adapter belongs to the MPSS method, and a sequence complementary to the A-terminal sequence of the encoded adapter is used. You only need to have it.
  • fluorescent dye used for the decoder probe, and proteins such as phycoerythrin, low molecular weight compounds such as fluorescein, and quantum dots can be used.
  • Type II s restriction enzyme is a restriction enzyme that recognizes an asymmetric sequence and cuts a site different from the recognition sequence.
  • Type II s restriction enzymes used in step "of determining the nucleotide sequence of I 7 target DN A fragment of the present invention need only include the following conditions. i) Generate 5, 1, or 3 'overhanging ends.
  • the distance between the cleavage site and the recognition sequence is N bases or more, where N is the length of the protruding base at the generated end.
  • a preferred example of the type IIs restriction enzyme used in the "step of determining the nucleotide sequence of the target DNA fragment" is BbvI. As shown below, this enzyme recognizes the GCAG C sequence and generates a 5,1 terminal with four bases protruding.
  • Target DNA refers to DNA whose nucleotide sequence is to be determined. It also refers to the DNA for which the mutation is to be detected. There is no particular limitation on the method of preparing the target DNA.For example, genomic DNA, cDNA, DNA amplified by PCR from these DNAs, or these DNAs are cloned into a vector, for example, a plasmid vector or a bacterio phage vector. NA, a mixture of cloned DNA, and those obtained by removing the vector portion from these cloned DNAs by restriction enzyme digestion or the like.
  • mutation means that genomic DNA sequences are different between individuals, between alleles of the same individual, between cells, or between alleles of the same cell, and at different sites. That is, it includes genetic polymorphisms, mutations, mutations caused by mutagenic agents or electromagnetic waves, mutations caused by artificial gene recombination, and changes in the genomic DNA sequence caused by infection with a virus or the like.
  • mutant includes various forms of mutation such as “base substitution”, “deletion mutation”, “insertion mutation” and the like.
  • base substitution means that at a specific site on a nucleic acid, a part of the base is replaced by another base.
  • the number of bases substituted in the “base substitution” described in the present specification is not particularly limited, and one or more bases may be substituted.
  • Substitutions found in one base in the nucleotide sequence are called “Single Nucleotide Substitution Polymorphisms (SNPs) J.
  • SNPs Single Nucleotide Substitution Polymorphisms
  • deletion mutation means that at a specific site on a nucleic acid, a part of the nucleotide sequence is deleted.
  • the deleted base sequence may be a single base or a plurality of bases.
  • deletions of these nucleotide sequences include those occurring at a plurality of positions in a specific region on a nucleic acid.
  • “deletion mutations” include deletion of a specific region of a gene, for example, but not limited to, for example, the region of exon and Z or intron, and deletion of the full length of the gene. Further, deletion of a base sequence artificially introduced into a nucleic acid is also included in the “deletion mutation” in the present specification.
  • the “insertion mutation” described in this specification means that a base sequence is inserted at a specific site on a nucleic acid.
  • the inserted base sequence may be a single base, a plurality of bases, or an arbitrary chain length.
  • these base sequences The insertion of a row includes those occurring at a plurality of positions in a specific region on the nucleic acid.
  • insertion of a base sequence artificially introduced into a nucleic acid is also included in the “insertion mutation” in this specification.
  • the present invention is suitable for detecting genomic polymorphisms and variations, particularly for detecting and screening base substitutions on genes, for example, SNPs.
  • the first embodiment of the present invention is the determination of a DNA base sequence, which is performed by the following steps.
  • the target DNA is first fragmented.
  • preparation of DNA having an internal sequence of the target DNA at the end is referred to as fragmentation.
  • the method of fragmentation is not particularly limited, but a method using an enzyme, a physical method such as sonication shearing, a chemical method such as an acid treatment, or a method combining these methods can be used.
  • Deoxyribonuclease (DNase) can be used as the enzyme.
  • restriction enzymes and endo-type enzymes such as DNaseI can be suitably used.
  • DNA having an internal sequence at the end of the target DNA can be obtained by partially digesting the target DNA with an exonuclease, for example, BAL31 exonuclease, exonuclease III, exonuclease, T4 DNA polymerase, or the like.
  • exonuclease for example, BAL31 exonuclease, exonuclease III, exonuclease, T4 DNA polymerase, or the like.
  • exonuclease for example, BAL31 exonuclease, exonuclease III, exonuclease, T4 DNA polymerase, or the like.
  • exonuclease for example, BAL31 exonuclease, exonuclease III, exonuclease, T4 DNA polymerase, or the like.
  • E. coli nuclease is also included in the fragmentation herein.
  • the fragmentation method can be appropriately selected depending on whether the sequence to be determined is the whole sequence of the target DNA, a part of the force, and if so, which part.
  • a method of randomly fragmenting DNA for example, DNaseI treatment, ultrasonic treatment, acid treatment and the like can be suitably used.
  • the sequence of the target portion can be determined efficiently by fragmentation using a restriction enzyme that recognizes the sequence.
  • the degree of fragmentation may be appropriately selected depending on the length of the sequence to be determined and the fragmentation method.However, in the base sequencing step described below, a sequence of about 20 bases can be decoded. It is desirable to set the conditions as described above.
  • the following method can be suitably used.
  • the target DNA is amplified by PCR.
  • one or both primers are biotinylated.
  • the target DNA is fragmented by sonication, and the terminal phosphate group is removed by alkaline phosphatase, the terminal is blunted by DNA polymerase, and phosphorylation of the one end by polynucleotide kinase is performed.
  • a first adapter having a MmeI recognition site at this end is ligated, and DNA containing biotin is bound to magnetic beads on which avidin has been immobilized.
  • the DNA is digested with MmeI to cut out a DNA consisting of the first adapter and a target DNA of about 20 base pairs adjacent thereto.
  • a second adapter is ligated to the end generated by MmeI digestion of this DNA.
  • the DNA thus obtained is used in the following steps for preparing a doug library.
  • the fragmented target DNA prepared in step (1) is ligated to a tag vector.
  • a tag vector As the tag sequence contained in the tag vector, those disclosed in Japanese Translation of PCT International Publication No. 11'1-507528- can be used. Among them, the Bulletin of the National Academy of Sciences, Vol. 97, No. 1665-1670 Pages, 2000, are particularly preferably used. It is also desirable that the tag vector contains a selection marker for drug resistance and the like. When E. coli is used as a host, genes such as ampicillin resistance, chloramphenicol resistance, kanamycin resistance, and streptomycin resistance can be used as markers.
  • the ends of the DNA fragment ligated to the tag vector may be blunt-ended by enzymatic treatment, for example, treatment with BAL31 exonuclease, T4 DNA polymerase, Klenow enzyme, or a combination of these enzymes. .
  • the DNA fragment thus prepared can be efficiently ligated to a tag vector that has been linearized by treatment with a restriction enzyme that generates blunt ends. Fragmentation by physical or chemical treatment
  • the end shapes of the DNA fragments are irregular, and usually contain a mixture of 5, 10 ⁇ , 5'-phosphate, 3, 1 O, 3'-phosphate. Of these, only DNA having 5, monophosphate and 3, 1OH groups can be used as substrates for DNA ligases such as T4 DNA ligase.
  • a protruding end can be obtained by ligating a linker to the blunted end of the fragmented DNA and digesting with a restriction enzyme that recognizes the sequence of the linker, or ligating an adapter. This DNA fragment can be more efficiently linked to a linear tag vector having complementary ends.
  • the tag vector linked to the fragmented DNA is introduced into an appropriate host, preferably E. coli.
  • DNA can be introduced into a host by a known method, and there is no particular limitation.
  • an electroporation method or a method using a competent cell can be used.
  • the transformant is cultured under the selection pressure corresponding to the marker gene of the tag vector, and a tag library, which is a mixture of fragmented DNA and DNA linked to the tag vector, is prepared from the cells.
  • the preparation of the tag library may be performed by preparing the DNA by a known method.
  • the tag vector is a plasmid vector, for example, the Arikari-SDS method can be used.
  • Independent clones appropriately set Surebayore the purpose, but, 1 0 4 or more in consideration of the sequencing capabilities of MP SS, preferably 1 0 5 or more, more preferably be set to 1 0 6 or more Guess. It is effective to prepare a tag library as a plurality of pools and obtain the desired number of clones by selecting the number of pools to be used. In this case, a tag library having the desired number of clones can be easily prepared by setting the number of clones per pool to 10,000 to several hundred thousand and the number of pools to be prepared from 2 to 100.
  • the tag vector of Tokuheihei 1 1-5 0 7 5 2 8 is a mixture of about 1.70 million types of plasmids with different tag sequences. Sequence analysis by MPSS method In this method, it is necessary to bind one type of DNA to one microphone mouth bead, and therefore, one type of tag sequence must correspond to one type of target DNA sequence. By setting the number of clones included in each pool of the tag library to 170,000 to 100,000 and binding the target DNA to the microphone bead for each pool, two or more target DNAs bind Tags can be reduced to a low value of 0.5 to several percent.
  • a fragment containing the target DNA fragment and the tag is prepared from the tag library.
  • the method is not particularly limited.For example, a method of removing the vector portion from the DNA by digestion with one or more appropriate restriction enzymes, followed by molecular weight fractionation by gel electrophoresis or gel filtration, and a method by PCR Is mentioned.
  • the PCR method has advantages such as being simple when preparing a large amount of DNA containing a target DNA and a tag, and being able to amplify only the desired portion, so that the contamination of the vector portion can be suppressed to a small amount.
  • the subsequent operation can be performed efficiently and easily by labeling the primer on the target DNA side with a fluorescent group and the primer on the tag side with a group capable of specific selection such as biotin.
  • the tag portion of this DNA is made single-stranded by, for example, the following method.
  • the tag for 2000 consists of A, T, and G bases, and the tag chain consists of T, A, and C.
  • digest the DNA with a restriction enzyme that cuts between the tag and the terminus on the tag side, remove the terminal fragment, and then use (4 DNA polymerase in the presence of 10 to 4 tags to remove only the tag portion). Can be single-stranded.
  • microbeads anti-tagged micro-mouth beads
  • Microbeads can be prepared, for example, by the method described in JP-T-11-507528 and the bulletin of the National Academy of Sciences, Vol. 97, pp. 1665-1670, 2000. Mix target DNA with single-stranded tag and microbeads and incubate. I The conditions of the composition and temperature of the incubation solution are not particularly limited as long as the anti-tag on the microbeads and the single-stranded tag bound to the fragmented target DNA specifically hybridize. Vol. 97, pp.
  • a covalent bond is formed between the anti-tag and the target DNA fragment bound to the microbeads by DNA ligase.
  • the DNA ligase to be used is not particularly limited.
  • T4 DNA ligase and Escherichia coli DNA ligase can be suitably used.
  • Performing DNA polymerase in the presence of dATP, dGTP, dCTP, or dTTP prior to the reaction with DNA ligase may increase the efficiency of the DNA ligase reaction.This reaction may be performed if necessary.
  • the DNA polymerase to be used is not particularly limited, but for example, T4 DNA polymerase is preferably used.
  • the base sequence of the DNA immobilized on the microbeads prepared in the above step (4) can be determined according to the following operation.
  • start adapter 1 for analyzing four bases from the end of the target DNA and a target sequence Starter adapter (start adapter 2) for analysis of 4 bases at a distance of 2 bases from the end of the primer may be used, or only one starter adapter may be used. Good.
  • the recognition sequence of the type II s restriction enzyme to be used in the next step is previously inserted into the tag vector used in step (2) near the site where the target DNA is to be cloned. Removal of the DNA fragment containing the fluorescent group and ligation of the starting adapter can be omitted.
  • the microbead prepared in this way is two-dimensionally filled in a flow cell.
  • the flow cell is composed of glass plates stacked at intervals slightly wider than the diameter of the microphone bead, and there is a dam near the outlet to prevent the beads from flowing out. Perform the following reaction in a flow cell to determine the nucleotide sequence of the target DNA.
  • the starting adapter has a type lis restriction enzyme recognition sequence, and is designed so that the end of the target DNA becomes a protruding end when digested with this enzyme.
  • the type II s restriction enzyme is passed through the flow cell filled with beads and reacted with DNA on the beads to make the end of the target DNA a protruding end.
  • the type lis restriction enzyme is not particularly limited as long as it generates a protruding end, but an enzyme generating a 4-base protruding end, for example, BbVI can be suitably used.
  • the adapter is a partially double-stranded synthetic DNA having a 4 ′ 5 ′ overhang at one end and a 10 ′ 3,1 overhang at the other end.
  • the sequence of the double-stranded portion of the dead adapter is common, and is divided into 16 groups by the sequence at the protruding end. Enco and dead adapters belonging to the same group have one 5'-protruding end and one 3'-protruding end sequence in common, and the remaining three bases of one protruding end have four types of bases. It is a mixture.
  • the structure of the encoder adapter is not particularly limited as long as it can perform MPSS. That is, if it has a single-stranded portion linked to the protruding end of the target DNA, a double-stranded portion having a type lis restriction enzyme recognition sequence, and a single-stranded portion for hybridizing a decoder probe, Good.
  • the type II s restriction enzyme recognition sequence and its position can be recognized by the type II s restriction enzyme used here, as long as it can generate a protruding end from which the base to be determined next protrudes.
  • the decoder-one probe only needs to have a sequence complementary to the decoder probe binding sequence of the encoded adapter and a fluorescent group.
  • the fluorescent group for example, phycoerythrin can be suitably used.
  • the base adjacent to the base sequence determined above becomes a protruding end. From here on, the base sequence is determined by repeating the cycle of ligation of the adapter ( e ), hybridization with the decoder probe, recording with the CCD camera, and removal of the decoder probe (f). Yes, as described above, several hundred thousand to 100,000 DNA bases consisting of about 20 bases A row is obtained.
  • MPDS Massively Parallel Diced-DNA Sequencing
  • a second embodiment of the present invention is the detection of a mutation.
  • the size (A), the number of individuals (B), the redundancy (C), and the sequence length (D) determined by the MPDS method described above, of the target DNA to be detected And the number of sequences (E) obtained by the MPDS method has the following relationship.
  • a target DNA to be detected is amplified, and its base sequence is determined.
  • the size of the target DNA to be detected may be appropriately selected depending on the size of the gene to be analyzed, the number of individuals, and the required degree of redundancy. From the standpoint of ease of amplification, it is desirable that the number be several kb or less or ten and several kb or less. If you want to cover a wider area than this, you can divide it into several areas and amplify them separately.
  • the amplification method is not particularly limited, and a method of amplifying in vitro or a method of amplifying by i ⁇ can be used. For example,?
  • DNA may be cloned and amplified in a host cell such as Escherichia coli, or a combination of these methods may be used.
  • the nucleotide sequence of the target DNA thus amplified is determined according to the first embodiment of the present invention, and the mutation is detected.
  • samples from each individual are mixed, but there is no particular limitation on the stage at which the samples are mixed.
  • genomic DNA or cDNA from each individual who becomes type III may be mixed and then amplified, or the target DNA amplified for each individual may be mixed.
  • the fragmented target DNA may be mixed, the tag library prepared for each individual may be mixed, or migrobeads may be prepared for each individual, mixed, and then mixed with the MPDS method.
  • the nucleotide sequence may be deciphered by the above method, or may be mixed at other stages.
  • a homology search is performed between the known sequence of the target sequence and the sequence obtained by the MPDS method.
  • Known programs such as BLAST can be used as the homology search program.
  • alignment can be performed by performing homology search on this sequence, and the sequence differs.
  • the presence and frequency of the mutation can be known from the base and its frequency.
  • --Target DNA is prepared from a plurality of groups, for example, a normal group and a patient group, and the mutation is detected according to the second embodiment of the present invention, thereby screening for a genetic polymorphism associated with a disease. can do.
  • the number of individuals in each group can be set as appropriate depending on how often a gene polymorphism that appears should be screened, and the size of the target DNA and the required redundancy. For example, when screening polymorphisms present in a target DNA region of 10 kb from 119 individuals and obtaining 700,000 sequences of 17 bases, the redundancy is 1.0. Become.
  • the average number of sequences containing a certain base is 1190. Assuming that this base is G in the sequence of 1133 and A in the sequence of 57, there is a gene polymorphism consisting of two bases, G and A, at this site. It turns out that the frequency is 4.8%.
  • the tying of the child polymorphism can be performed. Since it is necessary to identify the individual from which each sequence is derived, the ability to type one individual per MPDS or the microbeads derived from each individual by dividing the flow cell area Fill and perform MP DS. Since the number of individuals is smaller than that of gene polymorphism typing, it is possible to increase the redundancy and improve the accuracy and / or increase the size of the target DNA to perform tying on many genes at once. . While many of the conventional diving methods target only known gene polymorphisms, according to the method of the present invention, there is a possibility that a novel gene polymorphism can be discovered simultaneously with tying.
  • Example 1 target only known gene polymorphisms, according to the method of the present invention, there is a possibility that a novel gene polymorphism can be discovered simultaneously with tying.
  • yeast extract 0.5% NaCl, pH 7.0
  • LB-chloramfecole plate solidified by adding 1.5% agar to the above medium at 37 ° C. The culture was performed aerobically.
  • HL-60 cells ATCC CCL 240
  • KATO III cells H SRRB J CRB061 1
  • DMEM Dulbecco's modified method Igu Le medium
  • HL—60 fine RNA prepared from vesicles and KATO III cells was converted into type I, the primers represented by SEQ ID NO: 1 in the Sequence Listing, the reverse primers represented by SEQ ID NO: 2 in the Sequence Listing, and the On Step RNA PCR Kit.
  • RT_PCR was performed using (AMV) (manufactured by Takara Paio) to amplify cDNA encoding human aldehyde dehydrogenase 2.
  • the PCR reaction product was separated by agarose gel electrophoresis, a gel block containing 2.4 kb DNA was cut out, and DNA was purified therefrom using EAS YTRAP Ver. 2 (Takara Bione; h).
  • the tag vector pLCV2 was constructed according to the method described in the Bulletin of the American Academy of Sciences, Vol. 97, pp. 165-1670, 2000. After pLCV2 was digested with BamH'I and Bb sl (both manufactured by YouEngland Piorap (NEB)), dephosphorylation was performed using ⁇ small intestine alkaline phosphatase (CIAP, manufactured by Takara Bio Inc.). The ends were blunted using DN AB lintng Kit (manufactured by Takara Bio Inc.).
  • Samples A, B, and C were mixed at a weight ratio of 10: 1 and 100: 1, respectively.
  • the following operation was performed for each sample. 5 g each of sample A, sample B, and sample C were dissolved in 400 ⁇ l of TE buffer (1 OmM Tris—HC1 pH7: 5, ImMEDTA), and UR-20P (Tomy Seie) The ultrasonic treatment for 15 seconds was performed 5 times according to). DNA that has been dephosphorylated with CIAP is purified by phenol treatment, chloroform treatment, and ethanol precipitation, and the DNA ends are blunted using the Takara Blunting Kination Ligation Kit (Takara Bionet; fcII). And phosphoric acid.
  • the fragmented DNA and the above-described linearized pLCV2 were ligated using a DNA Ligation Kit (manufactured by Takara Bio Inc.), and E. coli TOP 10 was excised by electroporation using the obtained recombinant plasmid. Transformed.
  • the number of independent clones was calculated from the number of colonies formed by inoculating a part of the transformant on an LB-chloramphenicol plate, and another part was transferred to six 50 ml LB medium containing chloramphenicol. Inoculate and cultivate, QI AGEN P 1 a sm id Plasmid DNA was purified from the culture using Midi Kit (Qiagen).
  • the number of independent clones per LB medium containing 50 ml of chloramphenicol was about 160,000. Plasmid DNA obtained from each culture was used as a tag library pool, and a tag library consisting of six pools was obtained.
  • the tag library pool was subjected to PCR using type I, FAM-labeled PCR-R primer (SEQ ID NO: 3) and biotinylated PCR-F primer (SEQ ID NO: 4) to amplify the target DNA fragment and the portion containing the tag. .
  • the operation is performed for each pool, and in this example, one pool is described.
  • T4 DNA polymerase manufactured by Takara Bio Inc. was allowed to act in the presence of dGTP to make the tag portion single-stranded.
  • a covalent bond was formed between the target DNA fragment and the anti-tag by the action of T4 DNA ligase on the sorted microphone-mouth beads, and then quenched with Dpnil. Further, after T4 DNA polymerase was allowed to act on the microbeads in the presence of dGTP, the starting adapter was ligated using T4 DNA ligase.
  • the starting adapter is composed of the oligonucleotide represented by SEQ ID NO: 5 in the sequence listing whose 5'-end is labeled with FAM, and the nucleotide sequence represented by SEQ ID NO: 6 in the sequence listing phosphorylated at one end. The oligonucleotides shown are annealed. Microphone beads with fluorescence by FAM were sorted using a MoFlo cytometer (second sorting).
  • a microbead to which an initiation adapter is connected is filled in a flow cell, and the base sequence of a DNA fragment on a microphone mouth bead according to the operation of the MPSS method described in Nayya Biotechnology, Vol. 18, pp. 630-634, 2000 It was determined. As a result, about 800,000 sequences consisting of 20 bases were obtained.
  • D aildi cells (ATCC CCL-213), HT-29 cells (ATCC HTB-38), A431 cells (ATCC CRL-1555) and SW480 cells (ATCC CCL-228) each containing 10% fetal serum DM
  • E aildi cells (ATCC CCL-213), HT-29 cells (ATCC HTB-38), A431 cells (ATCC CRL-1555) and SW480 cells (ATCC CCL-228) each containing 10% fetal serum DM
  • the cells were cultured in M in the presence of 5% CO 2 at 37 ° C for 7 days. These cells were collected, and RNA was prepared from each of them using a Trizol reagent. CDNA was synthesized from these RNAs by using Reverse Transcriptase M—MLV (RNase H-1) (Takarapaio). Next, the above-mentioned cDNA was designated as type II, and a primer p53 1L represented by SEQ ID NO: 8 in the sequence listing, a primer p53-2R represented by SEQ ID NO: 9 in the sequence listing, and Takara Ex Taq Hot Start PCR was performed using Version (manufactured by Takara Bio Inc.) to amplify the cDNA encoding p53.
  • telomere sequence Of the published nucleotide sequence of p53c DNA (NM 000546), amplified by the above RT-PCR SEQ ID NO: 10 in the sequence listing.
  • the PCR product was separated by agarose gel electrophoresis, a gel block containing 1.9 kb DNA was cut out, and the RT-PCR product was purified using QIAquick Gel Extraction Kit (Qiagen). did.
  • Samples were prepared by mixing equal amounts of RT-PCR products prepared from the four types of cells. This sample was subjected to sonication, dephosphorylation treatment, blunt-end blunting, ligation to pLCV2, transformation of TOP10, and preparation of a plasmid in the same manner as in Example 1 to obtain a tag library.
  • This sample was subjected to sonication, dephosphorylation treatment, blunt-end blunting, ligation to pLCV2, transformation of TOP10, and preparation of a plasmid in the same manner as in Example 1 to obtain a tag library.
  • microphone mouth beads to which the cDNA fragment on the tag library was bound were prepared in the same manner as in Example 1.
  • the nucleotide sequence of the DNA fragment on the microbeads was determined. As a result, about 940,000 sequences consisting of 20 bases were obtained. These sequences were clustered to remove sequences with an appearance frequency of less than 50, and then compared with the published base sequence of p53 cDNA (NM-000546). As a result, about 790,000 sequences were mapped on p5.3cDNA as a completely matched sequence or a sequence containing a single base mismatch. For each base site of p53 cDNA, the total appearance frequency of the mapped sequence and the appearance frequency of each base were counted.
  • Example 2 direct sequencing was performed on the RT-PCR product obtained in Example 2 (1), and sites where base substitution was observed between cells (three sites) were identified.
  • Table 1 shows the frequency of occurrence of sequences corresponding to each base substitution in DNA on microbeads for these sites.
  • the appearance frequency of the base at the base substitution site corresponded to the base content expected from the mixing ratio of the RT-PCR product in the sample.
  • the present invention provides a method for determining a DNA base sequence and a method for detecting a mutation.
  • a large amount of DNA nucleotide sequence can be analyzed at lower cost than by a conventional method such as an automatic sequencer using the dideoxy method.
  • the use of the mutation detection method of the present invention makes it easy to detect mutations from a large number of samples, so that infrequent mutations can be found at low cost. As a result, effective and safe medical treatment by applying polymorphic tying such as SNP becomes possible. Sequence listing free text
  • SEQ ID NO: 1 PCR primer to amplify a gene encoding numan
  • SEQ ID NO: 2 PCR primer to amplify a gene encoding human
  • SEQ ID NO: 3 PCR primer PCR-R to amplify a DNA fragment in tag library pool.
  • SEQ ID NO: 4 PCR primer PCR-F to amplify a DNA fragment in tag library pool.
  • SEQ ID NO: 6 Oligonucleotide thick initiating adapter.
  • SEQ ID N0: 8 Oligonucleotide thick initiating adapter.
  • SEQ ID N0: 9 PCR primer to amplify a gene encoding human p53 cDNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method of determining DNA base sequences with respect to a multiplicity of samples inexpensively with high precision; and a method of detecting mutations inexpensively with high precision by the use of the base sequence determining method.

Description

変異の検出方法  Mutation detection method
技術分野 Technical field
本発明は、 DN A塩基配列の決定方法に関する。 また、 本発明は該塩基配列決 定方法を応用した変異の検出方法に関する。 明  The present invention relates to a method for determining a DNA base sequence. The present invention also relates to a method for detecting a mutation using the method for determining a base sequence. Light
背景技術 Background art
細 1  Fine 1
DNAの塩基配列決定方法は生物の遺伝情報を得る上で必須の技術である。 従 来広く用いられてきた塩基配列決定技術は化食学曰^军法 〔マクサム (Ma x am) ら、 米国科学アカデミー紀要 (P r o c e e d i n g s o f Na t i o n a 1 Ac a d emy o f S c i e n c e s U S A) 、 第 74巻、 第 125 8〜1262頁、 1977年〕 と酵素合成法 〔サンガー (S a n g e r) ら、 米 国科学アカデミー紀要、 第 74卷、 第 5463〜5467頁、 1977年〕 に大 別される。 前者はマクサム一ギルバート法、 後者はジデォキシ法またはサンガー 法と呼ばれており、 特に後者はその原理を応用した自動シークェンサ一が広く普 及して D N A塩基配列決定方法の主流となっている。 これらの方法は 1個の試料 につレ、て最低 1個の反応および電気泳動を必要とするので、 最新型のシークェン サーを使用しても一度に得られる配列数は 384個が限度である。  DNA sequencing is an essential technique for obtaining genetic information of organisms. Conventionally, widely used nucleotide sequencing techniques are described in the Chemical Chemistry [Maxam et al., Proceedings of Nationa 1 Accady of Sciences USA, Vol. 74, 1258-1262, 1977] and the enzymatic synthesis method [Sanger et al., Bulletin of the American Academy of Sciences, Vol. 74, pp. 5463-5467, 1977]. The former is called the Maxam-Gilbert method, and the latter is called the dideoxy method or the Sanger method. In the latter case, in particular, the automatic sequencer based on the principle has been widely spread and has become the mainstream of DNA sequencing. Since these methods require at least one reaction and electrophoresis per sample, the maximum number of sequences that can be obtained at one time using the latest sequencer is 384. .
マツシブリー パラレル シグネチャー シークェンシング法 〔MP S S法、 ブレナ一 (B r e nn e r) ら、 ネイチヤー ノィォテクノロジー (N a t u r e B i o t e c hn o l o gy) 、 第 18巻、 第 630〜 634頁、 2000 年、 特表平 11一 507528〕 は上記の塩基配列決定法とは全く異なった原理 により塩基配列を決定する技術である。 試料となる DNAをマイク口ビーズに結 合させ、 マイクロビーズをフローセルに 2次元的に充填し、 ここで一連の反応、 検出を行うことにより、 約 20塩基の配列を、 一度に約 100万個決定すること ができる。  Matsushiburi Parallel Signature Sequencing Method (MPSS method, Brenner et al., Nature Biotechnology, Volume 18, 630-634, 2000, Special Edition Table 1-111 507528] is a technique for determining a base sequence based on a completely different principle from the above-described base sequence determination method. The DNA to be sampled is bound to the microbeads, the microbeads are two-dimensionally filled in a flow cell, and a series of reactions and detections are performed. You can decide.
前記の MP S S法に適用される試料の処理に関する DNAマイクロビーズァレ ィ技術は特表 2000-515006およぴブレナ一ら、 米国科学アカデミー紀 要、 第 97卷、 第1665〜1670頁、 2000年に開示されている。 DNA microbead array for sample processing applied to the MPSS method described above The technology is disclosed in JP-T-2000-515006 and Brenna et al., Bulletin of the National Academy of Sciences, Vol. 97, pp. 165-1670, 2000.
同種の生物であってもゲノム DN A塩基配列は個体間で異なっており、 この現 象おょぴ異なっている部位を遺伝子多型と呼ぶ。 通常、 集団の中で 1%以上の頻 度で現れるものを遺伝子多型と定義する。 遺伝子多型のマーカーとしては、 主と して次の 3種類が使用されている。 すなわち、 制限酵素切断片長多型 (r e s t r i c t i o n f r a gme n t l e n g t h p o l ymo r ph i sm^ R F L P) 、 単純配歹帳多型 (s imp l e s e qu e n c e l en g t h p o l ymo r p h i sm, S S LP) および一塩基多型 (s i ng l e n u c l e o t i d e p o l ymo r p h i sm, SNP) である。 特定のゲノム 領域にある程度大きな挿入、 欠失または制限酵素認識部位の変異が存在する場合、 その部位のプローブを使用してサザンハイブリダイゼーションを行うことにより RF LPを解析することができる。 し力 し、 RF LPとして検出可能な多型はゲ ノム中にそれほど頻繁に存在するわけではないので細かな多型の網羅的な解析に は向いていない。 ゲノム中には 1〜 6塩基の反復配列が多く存在し、 これをマイ クロサテライトと呼ぶ。 マイクロサテライトの反復回数は個体により異なってい ることがあり、 これを S S LPと呼ぶ。 マイクロサテライトの周辺の配列は反復 配列ごとに異なっているので、 -特異的なプライマーを使用してポリメラーゼ連鎖 反応 (PCR) により増幅したのちに、 ゲル電気泳動により増幅産物の鎖長を分 析することにより反復回数を容易に知ることができる。 し力 しながら、 詳細な多 型解析を行うためには S S L Pよりもさらに高密度な多型マーカーが必要である。 S NPは最も頻繁に見られる遺伝子多型であり、 ヒトでは約 1 k bに 1ケ所の割 合で存在する。 疾患や医薬品の薬効♦副作用と個体差の関係を理解し、 より効果 的かつ安全な医療を行うためには SNPの解析が有用であり、 SNPのスクリー ユングやタイビングが世界的に大規模に行われている。  Even in the same species of organisms, the genomic DNA base sequence differs among individuals, and the site where these phenomena are different is called a genetic polymorphism. Usually, a gene that occurs at a frequency of 1% or more in a population is defined as a genetic polymorphism. The following three types of polymorphism markers are mainly used. That is, restriction fragment length polymorphism (restrictionfra gme ntlengthpol ymo r ph i sm ^ RFLP), simple arrangement polymorphism (s imp lese qu encel en gthpol ymo rphi sm, SS LP) and single nucleotide polymorphism (si ng lenucleotidepol ymo rphi sm (SNP). When a relatively large insertion, deletion, or mutation of a restriction enzyme recognition site exists in a specific genomic region, RFLP can be analyzed by performing Southern hybridization using a probe at that site. However, polymorphisms that can be detected as RF LPs are not so frequently present in genomics, so they are not suitable for comprehensive analysis of detailed polymorphisms. There are many repetitive sequences of 1 to 6 bases in the genome, which are called microsatellite. The number of microsatellite repetitions may vary from individual to individual, and is referred to as SSLP. The sequence around the microsatellite is different for each repetitive sequence. -Amplify by polymerase chain reaction (PCR) using specific primers and analyze the chain length of the amplified product by gel electrophoresis. Thus, the number of repetitions can be easily known. However, in order to perform detailed polymorphism analysis, a higher density of polymorphic markers than S SLP is required. SNP is the most frequently found polymorphism and is present in humans at a rate of about 1 kb. SNP analysis is useful for understanding the relationship between side effects and individual differences, and for performing more effective and safe medical treatment.Screening and tying of SNPs are conducted on a large scale worldwide. Has been done.
新規 S N Pの検出方法としては、 複数個体のゲノム D N A塩基配列を比較する 方法が最も直接的な方法である。 SNPを発見するためには多数の個体について 塩基配列を解析し個体間での塩基配列の違レヽを比較する必要があるが、 シークェ ンス反応と自動シークェンサ一による解析には多大のコストと労力を要する。 例 えば、 10 k bの遺伝子領域について 1 19個体から SNPを検出する場合、 1 回のシークェンス解析によって得られる配列長を 250塩基、 解析の歩留まりを 80%とすると、 11, 900個のシークェンス解析を行う必要がある。 そこで. 塩基配列解析時に複数の試料を混合してコストを低く抑える方法も行われている 力 それでもなお多大のコストを要するとともに、 混合する試 を多くすると データの信頼性が損なわれるという問題点がある。 発明の開示 The most direct method for detecting a new SNP is to compare the genomic DNA sequences of multiple individuals. In order to discover SNPs, it is necessary to analyze the nucleotide sequences of many individuals and compare the differences in the nucleotide sequences between individuals.However, the sequence reaction and analysis using an automatic sequencer require a great deal of cost and labor. It costs. Example For example, when detecting SNPs from 119 individuals for a 10 kb gene region, if the sequence length obtained by one sequence analysis is 250 bases and the analysis yield is 80%, 11,900 sequence analyzes will be performed. There is a need. Therefore, a method of mixing multiple samples to reduce the cost during base sequence analysis is also being used. Power Still costs a great deal of money, and increasing the number of mixing trials reduces the reliability of data. is there. Disclosure of the invention
本発明の目的は、 多数の試料の DN A塩基配列を安価かつ高精度に決定する方 法を提供することにある。 また、 この塩基酉己列決定法を用いて安価かつ高精度に 変異を検出する方法を提供することも本発明の目的である。  An object of the present invention is to provide a method for inexpensively and accurately determining the DNA base sequence of a large number of samples. It is also an object of the present invention to provide a method for detecting mutations at a low cost and with high accuracy using the base rooster sequence determination method.
本発明者らは鋭意研究の結果、 DNAを断片化し、 該断片化 DNAをタグべク ターに連結してタグライブラリーを作製し、 塩基配列を決定しようとする DNA 断片をマイク口ビーズに結合させ、 MP S S法と同様の工程からなる操作で塩基 配列を決定することにより DN A塩基配列を効率よく決定できることを見出し、 また、 同様の方法によつて変異を検出できることを見出して本発明を完成した。 すなわち、 本発明の第 1の発明は DN A塩基配列の決定方法であって、 以下の 工程を含むことを特徴とする。 - - - - The present inventors have conducted intensive studies, fragmented DNA, ligated the fragmented DNA to a tag vector, prepared a tag library, and bounded a DNA fragment whose base sequence was to be determined to a microphone opening bead. The present inventors have found that a DNA sequence can be determined efficiently by determining a nucleotide sequence by an operation comprising the same steps as the MPSS method, and that the present invention has been found that mutation can be detected by a similar method. completed. That is, the first invention of the present invention is a method for determining a DNA base sequence, which comprises the following steps. ----
(1) 標的 DNAを断片化する工程、 (1) fragmenting the target DNA,
(2) 断片化した標的 DN Aをタグベクターに連結し、 タグライブラリーを作製 する工程、  (2) ligating the fragmented target DNA to a tag vector to produce a tag library,
(3) 標的 DNAの断片とタグ配列が連結された DNAを、 タグライブラリ一力 ら調製する工程、  (3) a step of preparing a DNA in which a tag sequence and a fragment of a target DNA are linked to each other from a tag library,
(4) 工程 (3) で得られた DNAをマイクロビーズに結合させる工程、  (4) a step of binding the DNA obtained in step (3) to microbeads,
(5) 必要に応じて、 マイクロビーズ上の DNAの末端に開始アダプターを連結 する工程、  (5) If necessary, a step of linking a starting adapter to the end of the DNA on the microbead,
(6) マイクロビーズをフローセルに 2次元的に充填し、 各ビーズの位置を記録 する工程、  (6) two-dimensionally filling microbeads into a flow cell and recording the position of each bead,
(7) マイクロビーズ上の標的 DN Aを制限酵素消化し、 突出末端を生成させる 工程、 (7) Restriction digestion of target DNA on microbeads to generate protruding ends Process,
(8) 工程 (7) で生成した標的 DNA由来の突出末端に当該末端と相補的なェ ンコーデッド アダプターをライゲーシヨンさせる工程、  (8) a step of ligating the protruding end derived from the target DNA generated in the step (7) with an encoded adapter complementary to the end,
(9) 工程 (8) で得られたマイクロビーズとデコーダー プローブとのハイブ リダィゼーシヨンを行い、 標的 DNAとライゲーシヨンされたェンコ一デッド アダプターを同定する工程、 および  (9) hybridizing the microbeads obtained in step (8) with a decoder probe to identify an encoded adapter ligated to the target DNA; and
(10) 工程 (9) のマイクロビーズよりデコーダー プローブを除去し、 得ら れたマイクロビーズを工程 (7) 以下の工程に使用する工程。  (10) A step of removing the decoder probe from the microbeads in the step (9) and using the obtained microbeads in the steps following the step (7).
また、 本発明の第 2の発明は変異の検出方法であって、 以下の工程を含むこと を特徴とする。  Further, a second invention of the present invention is a method for detecting a mutation, comprising the following steps.
(1) 検出対象となる標的 DNAを増幅する工程、  (1) amplifying the target DNA to be detected,
(2) 増幅した標的 D'N Aを断片化する工程、  (2) fragmenting the amplified target D'NA,
(3) 断片化した標的 DNAをタグベクターに連結し、 タグライブラリーを作製 する工程、  (3) ligating the fragmented target DNA to a tag vector to produce a tag library,
(4) 標的 DNAの断片とタグ配列が連結された DNAを、 タグライブラリーか ら調製する工程、  (4) a step of preparing a DNA in which a tag sequence and a fragment of the target DNA are linked from a tag library,
• (5) 工程 (4) で得られた DN Aをマイクロビーズに結合させる工程、  • (5) binding the DNA obtained in step (4) to microbeads,
( 6 ) 必要に応じて、 マイグロビーズ上の D N Aの末端に開始アダプターを連結- する工程、  (6) If necessary, a step of linking a starting adapter to the end of DNA on the microglobes,
(7) マイクロビーズをフローセルに 2次元的に充填し、 各ビーズの位置を記録 する工程、  (7) Two-dimensionally filling the microbeads into the flow cell and recording the position of each bead,
(8) マイクロビーズ上の標的 DNAを制限酵素消化し、 突出末端を生成させる 工程、  (8) a step of digesting the target DNA on the microbeads with a restriction enzyme to generate protruding ends,
(9) 工程 (8) で生成した標的 DNA由来の突出末端に当該末端に相補的なェ ンコーデッド アダプターをライゲーシヨンさせる工程、  (9) ligating the protruding end derived from the target DNA generated in step (8) with an encoded adapter complementary to the end,
(10) 工程 (9) で得られたマイクロビーズとデコーダー プローブとのハイ プリダイゼーシヨンを行い、 標的 DNAとライゲーシヨンされたェンコーデッド アダプターを同定する工程、  (10) a step of performing hybridization of the microbeads obtained in step (9) and a decoder probe to identify an encoded adapter ligated to the target DNA,
(11) 工程 (10) のマイクロビーズよりデコーダー プローブを除去し、 得 られたマイクロビーズを工程 (8) 以下の工程に使用する工程、 および (11) Remove the decoder probe from the microbeads in step (10) to obtain Using the obtained microbeads in the following step (8), and
(12) 工程 (7) 〜 (11) によって解読された標的 DNAの塩基配列と、 (1) で増幅した DN Aの既知の塩基配列との間でホモロジ一サーチを行い、 塩 基配列の違いを抽出する工程。 発明を実施するための最良の形態  (12) Perform homology search between the nucleotide sequence of the target DNA decoded in steps (7) to (11) and the known nucleotide sequence of the DNA amplified in (1), and The step of extracting BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically.
本明細書で使用する用語の定義と説明は以下の通りである。 特に定義するもの 以外は分子生物学、 分子遺伝学等の当業者の間で一般的に理解されている意味で 用語を用いている。  The definitions and explanations of the terms used in this specification are as follows. Except where specifically defined, terms are used in a meaning generally understood by those skilled in the art of molecular biology, molecular genetics, and the like.
「D N Aマイク口ビーズァレイ技術」 とは特表平 1 1— 507528およぴブ レナ一ら、 米国科学アカデミー紀要、 第 97巻、 第1665〜1670頁、 20 00年に開示された技術およびこれを応用して遺伝子発現や遺伝子構造を解析す る技術を意味する。 すなわち、 タグと呼ぶオリゴヌクレオチドを結合した DN A と、 タグに相捕的なオリゴヌクレオチドであるアンチタグを結合したマイク口ビ ーズとを、 タグとアンチタグの間のハイブリダィゼーションにより結合させる技 術である。 その結果、 マイクロビーズ上に固定ィ匕された DNAのライブラリーを 作製することができ、 1個のマイク口ビーズには 1種類の D Ν· Aが結合して \、る-。  "DNA Microphone Bead Array Technology" is a technology disclosed in Japanese Patent Application Publication No. 11-507528 and Brena et al., Bulletin of the National Academy of Sciences, Vol. 97, pp. 165-1670, 2000 It refers to technology for analyzing gene expression and gene structure by applying it. In other words, the technique of binding the DNA to which an oligonucleotide called a tag is bound and the mic mouth bead to which the anti-tag which is a complementary oligonucleotide is bound to the tag by hybridization between the tag and the anti-tag. It is art. As a result, a library of DNA immobilized on the microbeads can be prepared, and one type of DΝA is bound to one bead of the microphone mouth.
「タグライブラリー」 とは DNAマイク口ビーズァレイ技術においてマイク口 ビーズに結合させる DN Aのライブラリーを意味する。 タグライブラリーの各ク ローンはマイクロビーズに結合させる DNAとタグ配列を同一分子内に含む D N Aであり、 これらのクローンの集合がタグライブラリーである。  “Tag library” refers to a library of DNAs that is bound to the microbeads in the DNA microbead array technology. Each clone in the tag library is DNA containing the tag sequence and the DNA to be bound to the microbeads in the same molecule, and a set of these clones is the tag library.
「タグ」 とは DNAマイク口ビーズァレイ技術においてマイク口ビーズに結合 させる D N Aと共有結合により .結合しているオリゴヌクレオチドであり、 各マイ クロビーズに単一配列の DN Aを配置するために使用する。 タグのレパートリー はタグライプラリーのクローン数よりも十分に大きいことが必要である。  A “tag” is an oligonucleotide that is covalently linked to DNA to be attached to the microbeads in DNA microbead array technology, and is used to place a single-sequence DNA on each microbead. The repertoire of tags must be sufficiently larger than the number of clones in the tag library.
「アンチタグ」 とは DNAマイク口ビーズァレイ技術においてマイク口ビーズ と共有結合により結合したォリゴヌクレオチドであり、 前記のタグと相補的な配 列を持つ。 1個のマイク口ビーズには単一配列のアンチタグが結合しており、 ァ ンチタグのレパートリーはタグのレパートリーと実質的に同じ大きさである。An “anti-tag” is an oligonucleotide that is covalently bonded to a microbead in DNA microbead array technology and has a sequence that is complementary to the tag. A single array of anti-tags is bound to one microphone mouth bead. The repertoire of multi-tags is substantially the same size as the repertoire of tags.
「MP S S法」 とは特表 2 0 0 0— 5 1 5 0 0 6およびネイチヤー バイオテ クノロジー、 第 1 8卷、 第 6 3 0〜6 3 4頁、 2 0 0 0年に開示された技術を意 味する。 すなわち、 D NAマイクロビーズアレイ技術により作製した、 D NAが 結合したマイクロビーズをフローセルに 2次元的に充填し、 タイプ li s制限酵素 による消化、 それにより生成した突出末端へのアダプターの連結、 連結されたァ ダプターの蛍光プローブによる識別をフローセル中で行う技術である。 The “MPSS method” is a technology disclosed in Japanese Patent Application Laid-Open No. 2000-501500 and Nayya Biotechnology, Vol. 18, pp. 60-634, 2000. Means. In other words, microbeads to which DNA has been bound, prepared by DNA microbead array technology, are two-dimensionally packed in a flow cell, digested with type liS restriction enzymes, and the resulting protruding ends are connected to an adapter and ligated. This is a technique for identifying the adapters using fluorescent probes in a flow cell.
「ェンコーデッド アダプター」 とは MP S S法において、 標的 D NAの突出 末端へのライグーションに使用する一部 2本鎖のオリゴヌクレオチドの混合物を 意味する。  The term “encoded adapter” refers to a mixture of partially double-stranded oligonucleotides used for ligation to a protruding end of a target DNA in the MPSS method.
ェンコ一デッド アダプターの一方の末端 (以下、 A末端という) は、 後述の デコーダー プローブがハイプリダイズしうる配列を有する突出末端であればよ い。  One end of the adapter (hereinafter referred to as A-terminal) may be a protruding end having a sequence to which a decoder probe described below can hybridize.
他方の末端 (以下、 B末端という) は、 次の条件を備えた突出末端であればよ い。  The other end (hereinafter, referred to as B-terminus) may be a protruding end satisfying the following conditions.
i ) 本発明における 「標的 D N A断片の塩基配列を決定する工程」 で使用するタ イブ Γ I s制限酵素により生成する標的 D NAの末端にライゲーシヨンしうる 5, 一または' 3, 一突出末端である。 すなわち、 前記の制限酵素が N塩基突出し た 5 ' — (または 3 ' -) 末端を生成する場合、 A末端も N塩基突出した 5 ' ― (または 3 ' —) 末端である。  i) The type used in the “step of determining the base sequence of the target DNA fragment” in the present invention: a 5, 1 or '3, one protruding end capable of ligating to the end of the target DNA generated by the type ΓIs restriction enzyme. is there. That is, when the above-mentioned restriction enzyme generates a 5'- (or 3'-) end protruding N base, the A-terminal is also a 5'- (or 3'-) end protruding N base.
i i ) 同一の配列の A末端を有するェンコ一デッド アダプターにおいて、 B末 端の n番目の塩基 ( 1≤n≤N) は A、 G、 Cまたは Tのいずれかであり、 他の 位置については 4種類の塩基の混合物である。  ii) In an adapter with the same sequence at the A-terminus, the n-th base (1≤n≤N) at the B-terminus is any of A, G, C or T; A mixture of four bases.
i i i ) 前記の制限酵素によって生成する、 すべての考えられる突出末端の配列 に相補的な配列を網羅している。  iii) Covers the sequences complementary to all possible overhanging sequences generated by the above restriction enzymes.
一方、 ェンコ一デッド アダプターの中央の 2本鎖部分は前記のタイプ I I s 制限酵素認識配列を有している。 この制限酵素認識配列は、 標的 D NA断片にェ ンコーデッド アダプターをライゲーシヨンして得られる D NAを前記制限酵素 により消化した場合に、 ライゲーションに使用された突出末端の配列に隣接する 標的 DN Aの配列が突出末端として生成するように設計されていればよい。 同一の A末端を有するェンコーデッド アダプターを 1個のグループとした場 合、 各グループのェンコ一デッド アダプタ一は 4N_1個の B末端を持つものの 混合物であり、 ェンコーデッド 了ダプター全体は 4 X N個のグループ、 N X 4 N種類の配列からなる。 On the other hand, the central double-stranded portion of the enzyme adapter has the type II s restriction enzyme recognition sequence described above. This restriction enzyme recognition sequence is adjacent to the protruding end sequence used for ligation when DNA obtained by ligating an encoded adapter to a target DNA fragment is digested with the restriction enzyme. It suffices if the sequence of the target DNA is designed to be generated as a protruding end. If one group of encoded adapters with the same A-terminus is a group, the encoded adapters in each group are a mixture of 4 N_1 B-terminals, and the entire encoded adapter is 4 XN groups. , NX 4 consists of N types of arrays.
好適に使用できるェンコ一デッド アダプターの例として、 米国科学ァカデミ 一紀要、 第 97卷、 第 1665〜 1670頁、 2000年に記載されているもの が挙げられる。 当該ェンコ一デッド アダプタ一はタイプ I I s制限酵素として B b V Iを使用する場合に適用可能であり、 A末端は 10塩基の 3, 一突出、 B 末端は 4塩基の 5, 一突出構造を有している。  Examples of suitable adapters that can be suitably used include those described in American Academy of Sciences, Vol. 97, pp. 165-1670, 2000. The enzyme adapter is applicable when using BbVI as a type II s restriction enzyme. The A-terminus has a 3-base overhang with 10 bases, and the B-end has a 5-overhang structure with 4 bases. are doing.
「デコーダー プローブ」 とは MP S S法においてどのグループに属するェン コーデッド アダプターがライグーションされたかを検出するために使用する蛍 光標識オリゴヌクレオチドであり、 ェンコーデッド アダプターの A末端の配列 に相補的な配列を有していればよい。 デコーダー プローブに使用される蛍光色 素に特に限定はなく、 フィコエリスリンのようなタンパク質、 フルォレセインの ような低分子化合物及び量子ドット等が使用可能である。  "Decoder probe" is a fluorescently labeled oligonucleotide used to detect which group of the encoded adapter belongs to the MPSS method, and a sequence complementary to the A-terminal sequence of the encoded adapter is used. You only need to have it. There is no particular limitation on the fluorescent dye used for the decoder probe, and proteins such as phycoerythrin, low molecular weight compounds such as fluorescein, and quantum dots can be used.
「タイプ I I s制限酵素」 とは非対称な配列を認識して認識配列と異なる部位 を切断する制限酵素である。 本発明における I7標的 DN A断片の塩基配列を決定 する工程」 に使用されるタイプ I I s制限酵素は次の条件を備えていればよい。 i) 5, 一または 3' 一突出末端を生成する。 “Type II s restriction enzyme” is a restriction enzyme that recognizes an asymmetric sequence and cuts a site different from the recognition sequence. Type II s restriction enzymes used in step "of determining the nucleotide sequence of I 7 target DN A fragment of the present invention need only include the following conditions. i) Generate 5, 1, or 3 'overhanging ends.
i i) 生成する末端の突出塩基長を Nとしたとき、 切断部位と認識配列の間の距 離が N塩基以上である。  i i) The distance between the cleavage site and the recognition sequence is N bases or more, where N is the length of the protruding base at the generated end.
「標的 DN A断片の塩基配列を決定する工程」 に使用するタイプ I I s制限酵 素の好適な例として、 Bb v Iが挙げられる。 下記のように、 本酵素は GCAG C配列を認識して 4塩基が突出した 5, 一末端を生成する。  A preferred example of the type IIs restriction enzyme used in the "step of determining the nucleotide sequence of the target DNA fragment" is BbvI. As shown below, this enzyme recognizes the GCAG C sequence and generates a 5,1 terminal with four bases protruding.
5' . . . GCAGCNNNNNNNN-3 5 '... GCAGCNNNNNNNN-3
3' . . . CGTCGNNNNNNNNNNNN-5 「標的 D NA」 とは塩基配列を決定する対象となる D N Aを意味する。 また、 変異を検出する対象となる D NAをも意味する。 標的 D N Aの調製方法に特に限 定はなく、 例えばゲノム D NA、 c D NA、 これらから P C Rにより増幅した D NA、 これらの D NAをベクター、 例えばプラスミドベクターまたはパクテリォ ファージベクター、 にクローン化した D NA、 クローンィ匕した D NAの混合物、 およびこれらのクローン化した D NAから制限酵素消化等によりベクター部分を 除去したものが挙げられる。 3 '... CGTCGNNNNNNNNNNNN-5 “Target DNA” refers to DNA whose nucleotide sequence is to be determined. It also refers to the DNA for which the mutation is to be detected. There is no particular limitation on the method of preparing the target DNA.For example, genomic DNA, cDNA, DNA amplified by PCR from these DNAs, or these DNAs are cloned into a vector, for example, a plasmid vector or a bacterio phage vector. NA, a mixture of cloned DNA, and those obtained by removing the vector portion from these cloned DNAs by restriction enzyme digestion or the like.
「変異」 とは個体間、 同一個体のアレル間、 細胞間または同一細胞のアレル間 でゲノム D N A配列が異なつていることおよぴ異なっている部位を意味する。 す なわち、 遺伝子多型、 突然変異、 変異剤や電磁波による変異、 人為的な遺伝子組 換えによる変異、 ウィルス等の感染によるゲノム D NA配列の変ィヒ等を含む。  The term “mutation” means that genomic DNA sequences are different between individuals, between alleles of the same individual, between cells, or between alleles of the same cell, and at different sites. That is, it includes genetic polymorphisms, mutations, mutations caused by mutagenic agents or electromagnetic waves, mutations caused by artificial gene recombination, and changes in the genomic DNA sequence caused by infection with a virus or the like.
上記の 「変異」 には 「塩基置換」 、 「欠失変異」 、 「揷入変異」 、 等の種々の 形態の変異が包含される。  The above “mutation” includes various forms of mutation such as “base substitution”, “deletion mutation”, “insertion mutation” and the like.
本明細書に記載の 「塩基置換」 とは、 核酸上の特定の部位において、 その一部 の塩基が他の塩基に置換されていることを指す。 本明細書に記載の 「塩基置換」 において置換されている塩基の数には特に限定はなく、 1塩基もしくはそれ以上 の塩基に置換が存在してもよい。 塩基配列中の一個の塩基に見られる置換は 「一 塩基置換多型 ( S N P) J —と呼ばれている。 また、 核酸に人為的に導入された塩 - - - 基置換も本明細書における 「塩基置換」 に含まれる。  As used herein, the term “base substitution” means that at a specific site on a nucleic acid, a part of the base is replaced by another base. The number of bases substituted in the “base substitution” described in the present specification is not particularly limited, and one or more bases may be substituted. Substitutions found in one base in the nucleotide sequence are called "Single Nucleotide Substitution Polymorphisms (SNPs) J. In addition, salt substitutions artificially introduced into nucleic acids--- It is included in “base substitution”.
本明細書に記載の 「欠失変異」 とは、 核酸上の特定の部位において、 その一部 の塩基配列が欠失していることを意味する。 欠失した塩基配列は、 1塩基でもよ いし複数の塩基であってもよい。 またこれらの塩基配列の欠失は、 核酸上の特定 の領域において複数箇所生じているものも含まれる。 さらに、 遺伝子の特定の領 域、 特に限定はされないが例えばェキソン及び Z又はィントロンの領域、 さらに は当該遺伝子の全長が欠損した場合も 「欠失変異」 に含まれる。 また、 核酸に人 為的に導入された塩基配列の欠失も本明細書における 「欠失変異」 に含まれる。  As used herein, the term "deletion mutation" means that at a specific site on a nucleic acid, a part of the nucleotide sequence is deleted. The deleted base sequence may be a single base or a plurality of bases. In addition, deletions of these nucleotide sequences include those occurring at a plurality of positions in a specific region on a nucleic acid. Furthermore, “deletion mutations” include deletion of a specific region of a gene, for example, but not limited to, for example, the region of exon and Z or intron, and deletion of the full length of the gene. Further, deletion of a base sequence artificially introduced into a nucleic acid is also included in the “deletion mutation” in the present specification.
本明細書に記載の 「挿入変異」 とは、 核酸上の特定の部位において、 塩基配列 が揷入されていることを意味する。 揷入された塩基配列は、 1塩基でもよいし複 数の塩基であってもよいし、 任意の鎖長であってもよい。 また、 これらの塩基配 列の揷入は、 核酸上の特定の領域において複数箇所生じているものも含まれる。 また、 核酸に人為的に導入された塩基配列の揷入も本明細書における 「揷入変 異」 に含まれる。 The “insertion mutation” described in this specification means that a base sequence is inserted at a specific site on a nucleic acid. The inserted base sequence may be a single base, a plurality of bases, or an arbitrary chain length. In addition, these base sequences The insertion of a row includes those occurring at a plurality of positions in a specific region on the nucleic acid. In addition, insertion of a base sequence artificially introduced into a nucleic acid is also included in the “insertion mutation” in this specification.
本発明は、 ゲノム多型やバリエーションの検出、 特に、 遺伝子上の塩基置換、 例えば SNPの検出、 スクリーニングに好適である。  INDUSTRIAL APPLICABILITY The present invention is suitable for detecting genomic polymorphisms and variations, particularly for detecting and screening base substitutions on genes, for example, SNPs.
本発明の第 1の実施形態は D N A塩基配列の決定であり、 下記の各工程により 実施される。  The first embodiment of the present invention is the determination of a DNA base sequence, which is performed by the following steps.
(1) 標的 DNAを断片化する工程  (1) Step of fragmenting target DNA
本発明を実施するに当たっては、 まず標的 DN Aを断片化する。 本明細書では、 標的 DNAの内部配列を末端に持つ DNAを調製することを断片化と呼ぶ。 断片 化の方法に特に限定はないが、 酵素を用いる方法、 超音波処理ゃシァリング等の 物理的方法、 酸処理等の化学的方法、 またはこれらの方法を組み合わせた方法を 使用することができる。 酵素としてはデォキシリボヌクレアーゼ (DNa s e) が使用でき、 その中でも制限酵素、 DNa s e I等のエンド型酵素が好適に使用 できる。 また、 ェキソヌクレアーゼ、 例えば BAL 31ェキソヌクレアーゼ、 ェ キソヌクレアーゼ III、 ェキソヌクレアーゼ、 T4 DNAポリメラーゼ等に よつて標的 D N Aを部分消化することによっても標的 D N Aの内部配列を末端に 持つ DNAが得られるので、本明細書においてはェキヅヌクレア"ゼによる部分 - 消化も断片化に含まれる。 In practicing the present invention, the target DNA is first fragmented. In this specification, preparation of DNA having an internal sequence of the target DNA at the end is referred to as fragmentation. The method of fragmentation is not particularly limited, but a method using an enzyme, a physical method such as sonication shearing, a chemical method such as an acid treatment, or a method combining these methods can be used. Deoxyribonuclease (DNase) can be used as the enzyme. Among them, restriction enzymes and endo-type enzymes such as DNaseI can be suitably used. Alternatively, DNA having an internal sequence at the end of the target DNA can be obtained by partially digesting the target DNA with an exonuclease, for example, BAL31 exonuclease, exonuclease III, exonuclease, T4 DNA polymerase, or the like. As such, partial-digestion with E. coli nuclease is also included in the fragmentation herein.
断片化方法は、 決定したい配列が標的 DNAの全配列である力 その一部であ る力、 一部であればどの部分であるかによって適宜選択できる。 標的 DNAの全 配列を決定する場合には DN Aをランダムに断片化する方法、 例えば DNa s e I処理、 超音波処理、 酸処理等が好適に使用できる。 また、 決定したい配列の近 傍に特定の配列が存在することがわかっている場合にはその配列を認識する制限 酵素を用いて断片化することにより、 目的の部分の配列を効率よく決定できる。 断片化の度合いは決定したい配列の長さや断片化方法によつて適宜選択すればよ いが、 以下に行う塩基配列決定の工程では約 20塩基の配列が解読できるので、 断片の大半が 20 b p以上であるような条件を設定することが望ましい。  The fragmentation method can be appropriately selected depending on whether the sequence to be determined is the whole sequence of the target DNA, a part of the force, and if so, which part. When the entire sequence of the target DNA is determined, a method of randomly fragmenting DNA, for example, DNaseI treatment, ultrasonic treatment, acid treatment and the like can be suitably used. Further, when it is known that a specific sequence exists near the sequence to be determined, the sequence of the target portion can be determined efficiently by fragmentation using a restriction enzyme that recognizes the sequence. The degree of fragmentation may be appropriately selected depending on the length of the sequence to be determined and the fragmentation method.However, in the base sequencing step described below, a sequence of about 20 bases can be decoded. It is desirable to set the conditions as described above.
標的 DN Aの断片化方法の一例として、 以下の方法が好適に使用可能である。 まず、 標的 DNAを PCRにより増幅する。 このとき、 一方または両方のプライ マーをピオチン化しておく。 次いで、 超音波処理により標的 DN Aを断片化し、 アルカリホスファターゼによる末端リン酸基の除去、 D N Aポリメラーゼによる 末端の平滑化、 ポリヌクレオチドキナーゼによる 5, 一末端のリン酸ィ匕を行う。 この末端に Mm e I認識部位を有する第 1のアダプターを連結し、 ァビジンを固 相化した磁気ビーズにビォチンを持つ D N Aを結合させる。 磁気ビーズに結合し なかった DNAを洗浄、 除去したのち、 Mme Iで消化して第 1のアダプターと それに隣接する約 20塩基対の標的 DNAからなる DNAを切り出す。 この DN Aの Mme I消化により生じた末端に第 2のアダプターを連結する。 ポリアタリ ルアミドゲル電気泳動により第 1のアダプター、 標的 DN Aの約 20 b p断片お ょぴ第 2のアダプターからなる DNAを精製し、 これを铸型とし、 第 1のァダプ ター配列を持つプライマーと第 2のアダプター配列を持つプライマーを用いた P CRを行う。 こうして得られた DNAを以下の工程のダグライブラリー作製に使 用する。 As an example of the method for fragmenting the target DNA, the following method can be suitably used. First, the target DNA is amplified by PCR. At this time, one or both primers are biotinylated. Next, the target DNA is fragmented by sonication, and the terminal phosphate group is removed by alkaline phosphatase, the terminal is blunted by DNA polymerase, and phosphorylation of the one end by polynucleotide kinase is performed. A first adapter having a MmeI recognition site at this end is ligated, and DNA containing biotin is bound to magnetic beads on which avidin has been immobilized. After washing and removing the DNA that has not bound to the magnetic beads, the DNA is digested with MmeI to cut out a DNA consisting of the first adapter and a target DNA of about 20 base pairs adjacent thereto. A second adapter is ligated to the end generated by MmeI digestion of this DNA. Purify DNA consisting of the first adapter, an approximately 20 bp fragment of the target DNA and the second adapter by polyatarylamide gel electrophoresis. Perform PCR using a primer with the adapter sequence. The DNA thus obtained is used in the following steps for preparing a doug library.
(2) 断片化した標的 DN Aをタグベクターに連結し、 タグライブラリーを作製 する工程 '  (2) Step of ligating the fragmented target DNA to a tag vector to prepare a tag library ''
工程 (1) で作製された、 断片化した標的 DNAをタグベクターに連結する。 • -タグベクターに含まれるタグ配列としては、 特表平 11'一- 507528-に-開示さ - れたものが使用でき、 その中でも、 米国科学アカデミー紀要、 第 97巻、 第 16 65〜 1670頁、 2000年に述べられたものが特に好適に使用できる。 また、 タグべクターは薬剤耐性等の選択マーカーを含んで 、ることが望ましレ、。 大腸菌 を宿主として使用する場合、 マーカーとしてはアンピシリン耐性、 クロラムフエ 二コール耐性、 カナマイシン耐性、 ストレプトマイシン耐性等の遺伝子が使用で さる。  The fragmented target DNA prepared in step (1) is ligated to a tag vector. • As the tag sequence contained in the tag vector, those disclosed in Japanese Translation of PCT International Publication No. 11'1-507528- can be used. Among them, the Bulletin of the National Academy of Sciences, Vol. 97, No. 1665-1670 Pages, 2000, are particularly preferably used. It is also desirable that the tag vector contains a selection marker for drug resistance and the like. When E. coli is used as a host, genes such as ampicillin resistance, chloramphenicol resistance, kanamycin resistance, and streptomycin resistance can be used as markers.
タグベクターに連結する DN A断片の末端は酵素処理、 例えば BAL31ェキ ソヌクレアーゼ、 T4 DNAポリメラーゼ、 タレノウ (K l e n ow) 酵素ま たはこれらの酵素の組み合わせによる処理によつて平滑化してもよい。 このよう にして調製した DN A断片は、 平滑末端を生成する制限酵素処理により直鎖化し たタグベクターと効率よく連結できる。 物理的または化学的処理によって断片化 した D N Aの末端形状は不揃いで、 通常は 5, 一 Ο Η、 5 ' —リン酸、 3, 一 O Η、 3 ' —リン酸のものが混在している。 このうち T 4 D NAリガーゼ等の D N A連結酵素の基質になるのは 5, 一リン酸基と 3, 一 OH基を持つ D NAだけ なので、 アル力リホスファターゼ等の酵素により末端のリン酸基を除去したのち に T 4ポリヌクレオチドキナーゼ等の酵素により 5 ' —末端を選択的にリン酸ィ匕 すれば、 効率よくベクターに連結可能な D NA断片となる。 断片化 D NAの平滑 化した末端にリンカ一を連結してリンカ一の配列を認識する制限酵素で消化する、 またはアダプターを連結する、 ことによって突出末端とすることができる。 この D NA断片は、 相補的な末端を有する直鎖状のタグベクターとさらに効率よく連 結することができる。 The ends of the DNA fragment ligated to the tag vector may be blunt-ended by enzymatic treatment, for example, treatment with BAL31 exonuclease, T4 DNA polymerase, Klenow enzyme, or a combination of these enzymes. . The DNA fragment thus prepared can be efficiently ligated to a tag vector that has been linearized by treatment with a restriction enzyme that generates blunt ends. Fragmentation by physical or chemical treatment The end shapes of the DNA fragments are irregular, and usually contain a mixture of 5, 10Ο, 5'-phosphate, 3, 1 O, 3'-phosphate. Of these, only DNA having 5, monophosphate and 3, 1OH groups can be used as substrates for DNA ligases such as T4 DNA ligase. After removal of the DNA, selective phosphorylation of the 5'-end with an enzyme such as T4 polynucleotide kinase results in a DNA fragment that can be efficiently ligated to a vector. A protruding end can be obtained by ligating a linker to the blunted end of the fragmented DNA and digesting with a restriction enzyme that recognizes the sequence of the linker, or ligating an adapter. This DNA fragment can be more efficiently linked to a linear tag vector having complementary ends.
断片化 D NAが連結されたタグベクターを適当な宿主、 好ましくは大腸菌に導 入する。 D N Aの宿主への導入は公知の方法によって行うことができ、 特に限定 はないが、 大腸菌を宿主として形質転換を行う場合にはエレクトロポレーシヨン 法やコンビテントセルを用いた方法が使用できる。 タグベクターのマーカー遺伝 子に対応する選択圧のもと、 形質転換体を培養し、 その細胞から断片化 D NAと タグベクターが連結された D N Aの混合物であるタグライブラリ一を調製する。 タグライブラリ一の調製においては、 公知の方法で D N Aの調製を実施すればよ く、 タ-グベタターがプラスミドべクターである場合には例えばアル力リ一 S D S · 法が使用できる。 形質転換を行った宿主細胞の一部を固形選択培地に接種し、 出 現するコ口ニー数を計数することにより、 タグライブラリ一に含まれる独立した クローン数を測定することが望まし 、。 独立したクローン数は目的により適宜設 定すればょレ、が、 MP S Sの配列決定能力を考慮すれば 1 0 4以上、 好ましくは 1 0 5以上、 さらに好ましくは 1 0 6以上に設定すればよレ、。 タグライブラリー を複数個のプールとして作製しておき、 使用するプールの個数を選択することに より目的のクロ一ン数を得る方法が有効である。 この場合、 プール 1個あたりの クローン数を 1万〜数十万、 作製するプール数を 2個から 1 0 0個とすることに より目的のクローン数を有するタグライブラリ一を簡便に調製できる。 The tag vector linked to the fragmented DNA is introduced into an appropriate host, preferably E. coli. DNA can be introduced into a host by a known method, and there is no particular limitation. When transformation is performed using Escherichia coli as a host, an electroporation method or a method using a competent cell can be used. The transformant is cultured under the selection pressure corresponding to the marker gene of the tag vector, and a tag library, which is a mixture of fragmented DNA and DNA linked to the tag vector, is prepared from the cells. The preparation of the tag library may be performed by preparing the DNA by a known method. When the tag vector is a plasmid vector, for example, the Arikari-SDS method can be used. It is desirable to measure the number of independent clones contained in the tag library by inoculating a part of the transformed host cells into a solid selection medium and counting the number of expressed knees. Independent clones number appropriately set Surebayore the purpose, but, 1 0 4 or more in consideration of the sequencing capabilities of MP SS, preferably 1 0 5 or more, more preferably be set to 1 0 6 or more Yeah. It is effective to prepare a tag library as a plurality of pools and obtain the desired number of clones by selecting the number of pools to be used. In this case, a tag library having the desired number of clones can be easily prepared by setting the number of clones per pool to 10,000 to several hundred thousand and the number of pools to be prepared from 2 to 100.
特表平 1 1— 5 0 7 5 2 8のタグべクターは、 タグ部分の配列が異なる約 1 7 0 0万種類のプラスミドの混合物である。 MP S S法により配列解析を行うため には 1個のマイク口ビーズには 1種類の配列の DN Aを結合させる必要があり、 そのためには 1種類のタグ配列には 1種類の標的 D N A配列を対応させることが 必要である。 タグライブラリーの各プールに含まれるクローン数を 17万〜 10 0万に設定し、 標的 DN Aのマイク口ビーズへの結合をプールごとに行うことに より、 2種類以上の標的 DN Aが結合したタグの割合を 0. 5〜数%という低い 値に抑えることができる。 The tag vector of Tokuheihei 1 1-5 0 7 5 2 8 is a mixture of about 1.70 million types of plasmids with different tag sequences. Sequence analysis by MPSS method In this method, it is necessary to bind one type of DNA to one microphone mouth bead, and therefore, one type of tag sequence must correspond to one type of target DNA sequence. By setting the number of clones included in each pool of the tag library to 170,000 to 100,000 and binding the target DNA to the microphone bead for each pool, two or more target DNAs bind Tags can be reduced to a low value of 0.5 to several percent.
(3) 標的 DNAの断片とタグ配列が連結された DNAを、 タグライプラリーか ら調製する工程  (3) Step of preparing DNA in which the target DNA fragment and the tag sequence are linked from the tag library
標的 DN Aの断片とタグを含む DN Aをタグライブラリーから調製する。 この 方法に特に限定はないが、 例えば 1種類または複数種類の適当な制限酵素で消化 した後にゲル電気泳動やゲルろ過等による分子量分画で前記 D N Aからベクター 部分を除去する方法、 および PCRによる方法が挙げられる。 特に、 PCRによ る方法は標的 D N Aとタグを含む D N Aを大量に調製する場合に簡便であること、 目的の部分だけを増幅できるのでベクター部分の混入を少量に抑えられること等 の利点がある。 この場合、 標的 DN A側のプライマーを蛍光基、 タグ側のプライ マーをビォチン等の特異的選別が可能な基で標識しておくことにより以後の操作 を効率的かつ簡便に行うことができる。  A fragment containing the target DNA fragment and the tag is prepared from the tag library. The method is not particularly limited.For example, a method of removing the vector portion from the DNA by digestion with one or more appropriate restriction enzymes, followed by molecular weight fractionation by gel electrophoresis or gel filtration, and a method by PCR Is mentioned. In particular, the PCR method has advantages such as being simple when preparing a large amount of DNA containing a target DNA and a tag, and being able to amplify only the desired portion, so that the contamination of the vector portion can be suppressed to a small amount. . In this case, the subsequent operation can be performed efficiently and easily by labeling the primer on the target DNA side with a fluorescent group and the primer on the tag side with a group capable of specific selection such as biotin.
- (4) 標的 D N Aの断片をマイクロビーズに結合させる工程 -- この DNAのタグ部分を例えば次の方法により 1本鎖化する。 米国科学ァカデミ 一紀要、 第 97卷、 第 1665〜: 1670頁、 2000年のタグは A、 T、 G塩 基からなり、 タグの相捕鎖は T、 A、 Cからなる。 前記 DNAについて、 必要に 応じてタグとタグ側の末端の間を切断する制限酵素で消化、 末端断片を除去した のち、 (10丁?存在下丁4 DNAポリメラーゼを作用させることによりタグ部 分だけを 1本鎖化できる。  -(4) Step of binding target DNA fragment to microbeads-The tag portion of this DNA is made single-stranded by, for example, the following method. American Academy of Sciences, Academi, Vol. 97, pp. 1665-, p. 1670. The tag for 2000 consists of A, T, and G bases, and the tag chain consists of T, A, and C. If necessary, digest the DNA with a restriction enzyme that cuts between the tag and the terminus on the tag side, remove the terminal fragment, and then use (4 DNA polymerase in the presence of 10 to 4 tags to remove only the tag portion). Can be single-stranded.
こうして得られた 1本鎖タグつき標的 DNA断片を、 アンチタグが結合したマ イク口ビーズ (以下、 マイクロビーズと略す) に結合させる。 マイクロビーズは、 例えば特表平 1 1-507528と米国科学アカデミー紀要、 第 97巻、 第 16 65〜 1670頁、 2000年に記載された方法で調製することができる。 1本 鎖タグつき標的 DNAとマイクロビーズを混合し、 インキュベーションする。 ィ ンキュベーシヨン液の組成、 温度等の条件は、 マイクロビーズ上のアンチタグと 断片化標的 D N Aに結合した 1本鎖タグが特異的にハイブリダィズする条件であ れば特に限定はないが、 米国科学アカデミー紀要、 第 97巻、 第 1665〜16 70頁、 2000年に記載の条件、 すなわち 50 OmM Na C l、 10 mM リン酸 Na、 0. 0 l%Twe e n 20, 3% デキストラン硫酸中で 72。C、 3日間ハイブリダイズさせる条件は好適に使用できる。 「特異的にハイブリダイ ズする」 とは、 互いに相補的なタグとアンチタグはハイプリダイズするが、 非相 補的な配列を含むタグとアンチタグはハイプリダイズしないか、 あるいは低頻度 にしかハイブリダイズしないことを意味する。 マイクロビーズを洗浄したのち、 1本鎖タグつき標的 D N Aがハイブリダイゼーシヨンにより結合したマイク口ビ ーズを選別する。 標的 DNA側の PCRプライマーを蛍光標識しておけば、 当該 標識を指標にセルソーターを用いて選別できるので、 操作の容易性、 得られるマ イク口ビーズの純度等の点で有利である。 The thus obtained target DNA fragment with a single-stranded tag is bound to anti-tagged micro-mouth beads (hereinafter abbreviated as microbeads). Microbeads can be prepared, for example, by the method described in JP-T-11-507528 and the bulletin of the National Academy of Sciences, Vol. 97, pp. 1665-1670, 2000. Mix target DNA with single-stranded tag and microbeads and incubate. I The conditions of the composition and temperature of the incubation solution are not particularly limited as long as the anti-tag on the microbeads and the single-stranded tag bound to the fragmented target DNA specifically hybridize. Vol. 97, pp. 1665-1670, 2000, ie, 50 OmM NaCl, 10 mM Na phosphate, 0.01% Tween 20, 3% in dextran sulfate 72. C, Conditions for hybridization for 3 days can be suitably used. `` Specifically hybridizes '' means that the complementary tag and antitag hybridize, but the tag and antitag containing non-complementary sequences do not hybridize or hybridize only infrequently. Means After washing the microbeads, the microbeads to which the target DNA with single-stranded tag is bound by hybridization are selected. If the PCR primer on the target DNA side is fluorescently labeled, it is possible to select using a cell sorter using the label as an index, which is advantageous in terms of operability, purity of the obtained micromouth beads, and the like.
D N Aリガーゼによつてマイク口ビーズに結合した標的 D N A断片とアンチタ グとの間に共有結合を形成させる。 使用する DNAリガーゼに特に限定はないが、 例えば T 4 D N Aリガーゼおよび大腸菌 D N Aリガーゼが好適に使用できる。 DNAリガーゼによる反応に先立って、 dATP、 dGTP、 dCTP、 dTT P存在下、 DNAポリメラーゼを作用させると DN Aリガーゼ反応の効率が向上 - する場合があるので、 必要に応じてこの反応を行えばよい。 使用する DNAポリ メラーゼに特に限定はないが、 例えば T4 DN Aポリメラーゼが好適に使用で さる。  A covalent bond is formed between the anti-tag and the target DNA fragment bound to the microbeads by DNA ligase. The DNA ligase to be used is not particularly limited. For example, T4 DNA ligase and Escherichia coli DNA ligase can be suitably used. Performing DNA polymerase in the presence of dATP, dGTP, dCTP, or dTTP prior to the reaction with DNA ligase may increase the efficiency of the DNA ligase reaction.This reaction may be performed if necessary. . The DNA polymerase to be used is not particularly limited, but for example, T4 DNA polymerase is preferably used.
(5) 標的 DNA断片の塩基配列を決定する工程  (5) Determining the base sequence of the target DNA fragment
上記 (4) の工程において調製された、 マイクロビーズに固定化された DNA の塩基配列を以下に示した操作にしたがって決定することができる。  The base sequence of the DNA immobilized on the microbeads prepared in the above step (4) can be determined according to the following operation.
(a) マイクロビーズ上の標的 DNAの末端の、 蛍光基を含む DNA断片を制限 酵素で除去し、 開始アダプターを連結する。 この目的のために、 適当な制限酵素 認識配列をタグベクターに揷入しておくことが望ましい。 このあとの一連の反応 を行って DN A塩基配列を決定することができれば開始アダプターの配列に特に 限定はない。 すなわち、 次の工程で使用するタイプ lis制限酵素の認識配列を、 正しい位置にもっていればよい。 例えばネイチヤー バイオテクノロジー、 第 1 8卷、 第 630〜634頁、 2000年に述べられているように、 標的 DNAの 末端から 4塩基ずつ解析するための開始アダプター (開始アダプター 1) と、 標 的配列の末端から 2塩基離れた部位から 4塩基ずつ解析するための開始アダプタ 一 (開始アダプター 2) の 2種類のアダプターを使用してもよいし、 1種類の開 始ァダプタ一だけを使用してもよい。 (a) Remove the DNA fragment containing the fluorescent group at the end of the target DNA on the microbeads with a restriction enzyme, and ligate the starting adapter. For this purpose, it is desirable to insert an appropriate restriction enzyme recognition sequence into the tag vector. The sequence of the initiation adapter is not particularly limited as long as the DNA sequence can be determined by performing a series of subsequent reactions. That is, the type lis restriction enzyme recognition sequence used in the next step is You just need to be in the right position. For example, as described in Nayya Biotechnology, Vol. 18, pp. 630-634, 2000, a start adapter (start adapter 1) for analyzing four bases from the end of the target DNA and a target sequence Starter adapter (start adapter 2) for analysis of 4 bases at a distance of 2 bases from the end of the primer may be used, or only one starter adapter may be used. Good.
あるいは、 工程 (2) で使用するタグベクター中の、 標的 DNAをクローニン グする部位付近に次の工程で使用するタイプ II s制限酵素の認識配列をあらかじ め揷入しておくことにより、 上記の蛍光基を含む DNA断片の除去と開始ァダプ ターの連結を省略することができる。  Alternatively, the recognition sequence of the type II s restriction enzyme to be used in the next step is previously inserted into the tag vector used in step (2) near the site where the target DNA is to be cloned. Removal of the DNA fragment containing the fluorescent group and ligation of the starting adapter can be omitted.
(b) こうして調製したマイクロビーズをフローセルに 2次元的に充填する。 フ ローセルはマイク口ビーズの直径よりもやや広い間隔で重ね合わされたガラス板 から成っており、 出口付近にはビーズの流出を防ぐダムがある。 フローセル中で . 以下の反応を行って標的 D N Aの塩基配列を決定する。  (b) The microbead prepared in this way is two-dimensionally filled in a flow cell. The flow cell is composed of glass plates stacked at intervals slightly wider than the diameter of the microphone bead, and there is a dam near the outlet to prevent the beads from flowing out. Perform the following reaction in a flow cell to determine the nucleotide sequence of the target DNA.
(c) まず、 数十万個〜百数十万個のビーズをフローセルに充填し、 ビーズが発 する蛍光を CCDカメラで撮影して各ビーズの位置を記録する。  (c) First, hundreds of thousands to hundreds of hundreds of thousands of beads are filled in a flow cell, and the fluorescence emitted by the beads is photographed with a CCD camera to record the position of each bead.
(d) 開始アダプタ一はタイプ lis制限酵素認識配列を持ち、 この酵素で消化す ると標的 DNAの末端が突出末端となるようにデザィンされている。 ビーズが充 - 填されたフロ一セルにタイプ II s制限酵素を流してビーズ上の D N Aと反応させ ることによって標的 DNAの末端を突出末端とする。 タイプ lis制限酵素は突出 末端を生成するものであれば特に限定はないが、 4塩基突出末端を生成する酵素、 例えば B b V Iが好適に使用できる。  (d) The starting adapter has a type lis restriction enzyme recognition sequence, and is designed so that the end of the target DNA becomes a protruding end when digested with this enzyme. The type II s restriction enzyme is passed through the flow cell filled with beads and reacted with DNA on the beads to make the end of the target DNA a protruding end. The type lis restriction enzyme is not particularly limited as long as it generates a protruding end, but an enzyme generating a 4-base protruding end, for example, BbVI can be suitably used.
(e) 上記 (d) の工程で生成した標的 DNAの突出末端にェンコ一デッド 了 ダプターをライゲーションさせる。 ェンコ一デッド アダプター混合物と T 4 DNAリガーゼをフローセルに流し込み反応させることによって、 前記の突出末 端の配列に相補的な配列を持ったェンコーデッド アダプターが特異的にライゲ ーシヨンされる。 本発明で使用するェンコ一デッド アダプター及びデコーダー プローブの好適な例として、 米国科学アカデミー紀要、 第 97卷、 第 1665〜 1670頁、 2000年に記載されているものが挙げられる。 当該文献に開示さ れたェンコーデッド アダプタ一はタイプ li s制限酵素として B b v Iを使用す る場合に合わせて設計されている。 当該アダプタ一は一方の末端に 4塩基の 5 ' 一突出、 他方の末端に 1 0塩基の 3, 一突出を持つ、 一部が 2本鎖の合成 D NA である。 ェンコ一デッド アダプターの 2本鎖部分の配列は共通であり、 突出末 端の配列によって 1 6グループに分かれている。 同一のグループに属するェンコ 一デッド アダプタ一は、 5 '—突出末端のうち 1塩基と 3 ' —突出末端配列の すべてが共通であり、 5, 一突出末端の残り 3塩基は 4種類の塩基の混合物であ る。 (e) Ligation of an end adapter is performed on the protruding end of the target DNA generated in the above step (d). By flowing the mixed adapter mixture and T4 DNA ligase into a flow cell and causing a reaction, the encoded adapter having a sequence complementary to the sequence at the protruding terminal is specifically ligated. Suitable examples of encoder adapters and decoder probes for use in the present invention include those described in the Bulletin of the National Academy of Sciences, Vol. 97, pp. 165-1670, 2000. Disclosed in the document The resulting encoded adapter is designed for the use of BbvI as a type lis restriction enzyme. The adapter is a partially double-stranded synthetic DNA having a 4 ′ 5 ′ overhang at one end and a 10 ′ 3,1 overhang at the other end. The sequence of the double-stranded portion of the dead adapter is common, and is divided into 16 groups by the sequence at the protruding end. Enco and dead adapters belonging to the same group have one 5'-protruding end and one 3'-protruding end sequence in common, and the remaining three bases of one protruding end have four types of bases. It is a mixture.
( f ) どのェンコ一デッド アダプターがライゲーションされたかを検出するた めに 1 6種類のデコーダー プローブをフローセルに流してハイブリダィゼーシ ヨンを行う。 1種類のデコーダー プローブをハイプリダイズさせるたびに C C Dカメラで蛍光を記録して画像データをコンピューターに取り込んだあと、 温度 'を上げてデコーダー プローブを除去する。  (f) In order to detect which encoding adapter was ligated, 16 types of decoder probes were flowed through the flow cell to perform hybridization. Each time one type of decoder probe is hybridized, the fluorescence is recorded with a CCD camera, the image data is imported to a computer, and the temperature is increased to remove the decoder probe.
ェンコ一デッド アダプターの構造は、 M P S Sを行うことができるものであ れば特に限定はない。 すなわち、 標的 D N Aの突出末端に連結される 1本鎖部分 と、 タイプ li s制限酵素認識配列を持つ 2本鎖部分と、 デコーダー プローブを ハイブリダイズさせるための 1本鎖部分を有していればよい。 タイプ II s制限酵 素認識配列とその位置は、—ここで使用するタィプ ΙΓ s制限酵素により認識され、 次に決定したい塩基が突出する末端を生成させうるものであればよレ、。 デコーダ 一 プローブはェンコーデッド アダプターのデコーダー プローブ結合配列に 相補的な配列と蛍光基を有していればよく、 蛍光基としては例えばフィコエリス リンが好適に使用できる。  The structure of the encoder adapter is not particularly limited as long as it can perform MPSS. That is, if it has a single-stranded portion linked to the protruding end of the target DNA, a double-stranded portion having a type lis restriction enzyme recognition sequence, and a single-stranded portion for hybridizing a decoder probe, Good. The type II s restriction enzyme recognition sequence and its position can be recognized by the type II s restriction enzyme used here, as long as it can generate a protruding end from which the base to be determined next protrudes. The decoder-one probe only needs to have a sequence complementary to the decoder probe binding sequence of the encoded adapter and a fluorescent group. As the fluorescent group, for example, phycoerythrin can be suitably used.
( g ) ェンコ一デッド アダプターがライゲーシヨンされた標的 D NAについて ェンコーデッド アダプターの 2本鎖部分を認識するタイプ II s制限酵素で消化 すると、 以上で決定した塩基配列に瞵接する塩基が突出末端となる。 ここからは ェンコ一デッド アダプターのライゲーシヨン (e ) 、デコーダー プローブに よるハイプリダイゼーシヨンと C C Dカメラによる記録及ぴデコーダ一 プロ一 ブの除去 (f ) のサイクルを繰り返すことによってこの塩基の配列が決定できる, 以上のようにして、 数十万個から 1 0 0万個の、 約 2 0塩基からなる D NA配 列が得られる。 ( g ) When digestion of the target DNA ligated to the encoded adapter with a type II s restriction enzyme that recognizes the double-stranded portion of the encoded adapter, the base adjacent to the base sequence determined above becomes a protruding end. From here on, the base sequence is determined by repeating the cycle of ligation of the adapter ( e ), hybridization with the decoder probe, recording with the CCD camera, and removal of the decoder probe (f). Yes, as described above, several hundred thousand to 100,000 DNA bases consisting of about 20 bases A row is obtained.
上記の、 断片化された標的 DN Aの塩基配列決定方法は、 「マツシブリー パ ラレル ダイスドー DN A シークェンシング (Massively Parallel Diced-DNA Sequencing, MPDS) 法」 と命名されている。  The above-described method for determining the nucleotide sequence of the fragmented target DNA is referred to as the “Massively Parallel Diced-DNA Sequencing (MPDS) method”.
本発明の第 2の実施形態は、 変異の検出である。 本発明の方法により変異を検 出するにあたり、 検出の対象となる標的 DNAのサイズ (A) 、 個体数 (B) 、 冗長度 (C) 、 前記の MP DS法により決定する配列長 (D) および MPDS法 で得られる配列数 (E) の間には次の関係がある。  A second embodiment of the present invention is the detection of a mutation. In detecting a mutation by the method of the present invention, the size (A), the number of individuals (B), the redundancy (C), and the sequence length (D) determined by the MPDS method described above, of the target DNA to be detected And the number of sequences (E) obtained by the MPDS method has the following relationship.
(A) X (B) X (C) = (D) X (E)  (A) X (B) X (C) = (D) X (E)
ジョンゲニール (J o n g e n e e l) ら、 米国科学アカデミー紀要、 第 10 John Genieel, et al., Bulletin of the National Academy of Sciences, Chapter 10
0卷、 第 4702〜4705頁によれば、 1回の MP S Sを行った場合、 GAT C配列を除くと (D) =17、 (E) =700, 000なので、 例えば 10 k b の標的 DNAを冗長度 10でスクリーニングしたい場合には 1 19個体を一度に 解析できる。 即ち、 1%の頻度で現れる変異を発見できる。 この標的 DNAは連 続した領域であってもよいし、 複数の領域からなっていてもよレ、。 例えば、 上記 の個体数について上記の冗長度で c DN Aに存在する変異の検出を行う場合、 c DNAの多くは 10 k bよりも短いので、 配列長の合計が 10 k bである複数の 遺伝子について同時に変異を検出することもできる。 これと-同等の解析を従来の - 自動シークェンサ一でプライマーウォーキングによって行う場合、 1解析あたり に得られる配列長を 250塩基、 解析の歩留まりを 80 %とすると、 1 1, 90 0解析を行う必要がある。 According to Vol. 0, pp. 4702-4705, if one round of MPSS is performed, (D) = 17 and (E) = 700,000 excluding GAT C sequence, for example, target DNA of 10 kb If you want to screen with redundancy 10, 119 individuals can be analyzed at once. That is, mutations that appear at a frequency of 1% can be found. This target DNA may be a continuous region or may be composed of a plurality of regions. For example, when detecting mutations present in cDNA with the above-mentioned redundancy for the above population, most of the cDNAs are shorter than 10 kb, so multiple genes whose total sequence length is 10 kb At the same time, mutations can be detected. When performing an analysis equivalent to that of the conventional method by primer walking with an automatic sequencer, if the sequence length obtained per analysis is 250 bases and the analysis yield is 80%, it is necessary to perform 11,900 analysis There is.
本願発明の変異の検出方法にぉレ、ては、 検出の対象となる標的 D N Aを増幅し たうえ、 その塩基配列が決定される。 検出の対象となる標的 DNAのサイズは解 析対象の遺伝子のサイズ、 個体数、 必要な冗長度によって適宜選択すればよい。 増幅の容易性の点では数 k b以下または十数 k b以下が望ましい。 これを超える 広い領域を対象としたい場合にはいくつかの領域に分割して別々に増幅すればよ レ、。 増幅方法に特に限定はなく、 i n V i t r oで増幅する方法や i η ν ί ν οで増幅する方法が使用できる。 例えば、 ?〇尺法ぉょび1〇八1^法 (国際公 開第 00/56877号) のような試験管内増幅法が好適に使用できるし、 標的 D NAをクローユングし、 大腸菌等の宿主細胞内で増幅してもよいし、 これらの 方法を組み合わせて使用してもよい。 In the method for detecting a mutation according to the present invention, a target DNA to be detected is amplified, and its base sequence is determined. The size of the target DNA to be detected may be appropriately selected depending on the size of the gene to be analyzed, the number of individuals, and the required degree of redundancy. From the standpoint of ease of amplification, it is desirable that the number be several kb or less or ten and several kb or less. If you want to cover a wider area than this, you can divide it into several areas and amplify them separately. The amplification method is not particularly limited, and a method of amplifying in vitro or a method of amplifying by iηνίνο can be used. For example,? In vitro amplification methods, such as the 〇 method and the 180 ぉ method (International Publication No. 00/56877), can be suitably used. DNA may be cloned and amplified in a host cell such as Escherichia coli, or a combination of these methods may be used.
こうして増幅した標的 D N Aの塩基配列を、 本発明の第 1の実施形態により決 定し、 変異の検出を実施する。  The nucleotide sequence of the target DNA thus amplified is determined according to the first embodiment of the present invention, and the mutation is detected.
複数の個体から検出する場合には各個体に由来する試料を混合するが、 どの段 階で混合するかについて特に限定はない。 試験管内増幅を行う場合には铸型とな る各個体由来のゲノム D NAまたは c D NAを混合してから増幅してもよいし、 個体ごとに増幅した標的 D NAを混合してもよいし、 断片化済みの標的 D NAを 混合してもよいし、 個体ごとに作製したタグライブラリ一を混合してもよいし、 個体ごとにマイグロビーズを調製し、 混合してから MP D S法による塩基配列の 解読を行つてもよいし、 これ以外の段階で混合してもよい。  When detecting from a plurality of individuals, samples from each individual are mixed, but there is no particular limitation on the stage at which the samples are mixed. When performing in vitro amplification, genomic DNA or cDNA from each individual who becomes type III may be mixed and then amplified, or the target DNA amplified for each individual may be mixed. Then, the fragmented target DNA may be mixed, the tag library prepared for each individual may be mixed, or migrobeads may be prepared for each individual, mixed, and then mixed with the MPDS method. The nucleotide sequence may be deciphered by the above method, or may be mixed at other stages.
標的配列の既知の配列と M P D S法により得られた配列の間でホモロジーサー チを行う。 ホモロジ一サーチのプログラムとしては B L A S T等の公知のものが 使用できる。 ヒトのようにゲノム解析が完了しており標的 D N Aの配列が入手可 能な生物種の場合にはこの配列に対してホモ口ジーサーチを行うことによりァラ インメントが可能であり、 配列が異なる塩基とその頻度から変異の存在と頻度を 知ることができる。  A homology search is performed between the known sequence of the target sequence and the sequence obtained by the MPDS method. Known programs such as BLAST can be used as the homology search program. In the case of species such as human whose genome analysis has been completed and the target DNA sequence is available, alignment can be performed by performing homology search on this sequence, and the sequence differs. The presence and frequency of the mutation can be known from the base and its frequency.
- - 複数の群、 例えば正常人群と患者群から標的 D NAを調製じ、 '本発明の第 2の 実施形態である変異の検出を行うことにより、 疾患に関連のある遺伝子多型をス クリーニングすることができる。 この場合、 各群の個体数は、 どの程度の頻度で 現れる遺伝子多型をスクリーニングしたいのか、 また、 標的 D NAのサイズと必 要とする冗長度によって適宜設定することができる。 例えば、 1 0 k bの標的 D N A領域に存在する遺伝子多型を 1 1 9個体からスクリーニングして 1 7塩基の 配列が 7 0 0, 0 0 0個得られた場合、 冗長度は 1 .0となる。 こうして得られた 1 7塩基の配列と既知の配列のアラインメントをとつたとき、 ある塩基を含む配 列の数は平均 1 1 9 0である。 この塩基が、 1 1 3 3個の配列では G、 5 7個の 配列では Aであったとすると、 この部位には Gと Aの 2種類の塩基からなる遺伝 子多型が存在し、 Aの頻度は 4 . 8 %であることがわかる。  --Target DNA is prepared from a plurality of groups, for example, a normal group and a patient group, and the mutation is detected according to the second embodiment of the present invention, thereby screening for a genetic polymorphism associated with a disease. can do. In this case, the number of individuals in each group can be set as appropriate depending on how often a gene polymorphism that appears should be screened, and the size of the target DNA and the required redundancy. For example, when screening polymorphisms present in a target DNA region of 10 kb from 119 individuals and obtaining 700,000 sequences of 17 bases, the redundancy is 1.0. Become. When the thus obtained 17-base sequence is aligned with a known sequence, the average number of sequences containing a certain base is 1190. Assuming that this base is G in the sequence of 1133 and A in the sequence of 57, there is a gene polymorphism consisting of two bases, G and A, at this site. It turns out that the frequency is 4.8%.
本発明の第 1の実施形態である D N A塩基配列の決定を行うことにより、 遺伝 子多型のタイビングを行うことができる。 各配列がどの個体に由来するかを識別 する必要があるので、 1回の MP DSについて 1個体のタイピングを行う力、 あ るいはフロ一セルの区域を区切って各個体に由来するマイクロビーズを充填して MP D Sを行えばよい。 遺伝子多型のタイビングに比べると個体数が少ないので、 冗長度を高くして精度を向上させ、 および/または標的 DNAのサイズを大きく して一度に多数の遺伝子についてタイビングを行うことが可能である。 従来のタ ィビング法の多くは既知の遺伝子多型のみを対象としていたのに比べ、 本発明の 方法によればタイビングと同時に新規遺伝子多型を発見できる可能性がある。 実施例 By determining the DNA base sequence according to the first embodiment of the present invention, The tying of the child polymorphism can be performed. Since it is necessary to identify the individual from which each sequence is derived, the ability to type one individual per MPDS or the microbeads derived from each individual by dividing the flow cell area Fill and perform MP DS. Since the number of individuals is smaller than that of gene polymorphism typing, it is possible to increase the redundancy and improve the accuracy and / or increase the size of the target DNA to perform tying on many genes at once. . While many of the conventional diving methods target only known gene polymorphisms, according to the method of the present invention, there is a possibility that a novel gene polymorphism can be discovered simultaneously with tying. Example
以下に実施例を挙げて本発明をさらに具体的に説明するが、 本発明は以下の実 施例のみに限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
また、 本明細書に記載の操作のうち、 プラスミド DNAの調製、 制限酵素消化 などの基本的な操作についてはサムブルック (S a mb r o o k) ら、 モレキュ ラー .クローニング:ァ .ラボラトリー .マニュアル第 2版 (Mo 1 e c u 1 a r C l o n i n g —A La b o r a t o r y Ma nu a l—) 、 コール ド スプリング ハーバー ラボラトリー プレス (Co l d Sp r i n g Ha r b o r La b o r a t o r y P r e s s) 、 1989年に記載の方法 によった。—さらに、 以下に示す大腸菌を用いたプラスミ ドの構築には、 特に記載 のない限り大腸菌 TOP 10を宿主として使用した。 また、 形質転換された大腸 菌は 30 μ g/m 1のクロラムフエ二コールを含む LB培地 ( 1 %トリプトン、 Among the operations described in this specification, the basic operations such as plasmid DNA preparation and restriction enzyme digestion are described in Sambrook, et al., Molecular Cloning: Laboratory. Edition (Mo 1 ecu 1 ar Cloning-A La boratory Manu al-), Cold Spring Harbor Laboratory Press (cold spring harbor laboratory press), 1989. —Furthermore, for construction of plasmids using Escherichia coli shown below, E. coli TOP10 was used as a host unless otherwise specified. In addition, the transformed Escherichia coli was transformed into an LB medium (1% tryptone, 30 μg / ml) containing chloramphenicol.
0. 5%酵母エキス、 0. 5%NaC l、 pH7. 0) 、 あるいは上記培地に 1. 5 %の寒天を加え固化させた LB—クロラムフエェコールプレートを用いて 3 7 °Cで好気的に培養した。 0.5% yeast extract, 0.5% NaCl, pH 7.0), or LB-chloramfecole plate solidified by adding 1.5% agar to the above medium at 37 ° C. The culture was performed aerobically.
実施例 1  Example 1
(1) 試料の調製  (1) Sample preparation
HL-60細胞 (ATCC CCL- 240) および KATO I I I細胞 (H SRRB J CRB061 1) を 10%ゥシ胎児血清含有ダルベッコ変法ィーグ ル培地 (DMEM) 中、 5% C02存在下、 37 °Cで 3日間培養した。 細胞を 回収し、 ト リゾノレ試薬 (ギブコ社製) を用いて RNAを調製した。 HL— 60細 胞および KATO I I I細胞から調製した RNAを鍚型に、 配列表の配列番号 1 で示されるフォヮ一ドプライマ一、 配列表の配列番号 2で示されるリバースブラ イマ一および On e S t e p RNA PCR K i t (AMV) (タカラパ ィォ社製) を用いて RT_ PCRを行い、 ヒトアルデヒドデヒドロゲナーゼ 2を コードする c DNAを増幅した。 P CR反応物をァガロースゲル電気泳動により 分離し、 2. 4 k bの DN Aを含むゲルプロックを切り出して、 ここから EAS YTRAP V e r . 2 (タカラバイオネ; h ) を用いて DNAを精製した。 During HL-60 cells (ATCC CCL 240) and KATO III cells (H SRRB J CRB061 1) 10% © shea fetal serum-containing Dulbecco's modified method Igu Le medium (DMEM), 5% C0 2 presence, 37 ° C For 3 days. The cells were collected, and RNA was prepared using Trizonore's reagent (Gibco). HL—60 fine RNA prepared from vesicles and KATO III cells was converted into type I, the primers represented by SEQ ID NO: 1 in the Sequence Listing, the reverse primers represented by SEQ ID NO: 2 in the Sequence Listing, and the On Step RNA PCR Kit. RT_PCR was performed using (AMV) (manufactured by Takara Paio) to amplify cDNA encoding human aldehyde dehydrogenase 2. The PCR reaction product was separated by agarose gel electrophoresis, a gel block containing 2.4 kb DNA was cut out, and DNA was purified therefrom using EAS YTRAP Ver. 2 (Takara Bione; h).
(2) タグライブラリーの作製  (2) Preparation of tag library
米国科学アカデミー紀要、 第 97巻、 第 1665〜 1670頁、 2000年に 記載の方法に従ってタグベクター p LCV 2を構築した。 pLCV2を B amH' Iと Bb s l 〔いずれも-ユー イングランド パイオラプ (NEB) 社製〕 に より消化したあと、 ゥシ小腸アルカリホスファターゼ (C IAP、 タカラバイオ 社製) により脱リン酸処理を行い、 DN A B l un t i ng K i t (タカラ バイオ社製) を用いて末端を平滑化した。  The tag vector pLCV2 was constructed according to the method described in the Bulletin of the American Academy of Sciences, Vol. 97, pp. 165-1670, 2000. After pLCV2 was digested with BamH'I and Bb sl (both manufactured by YouEngland Piorap (NEB)), dephosphorylation was performed using 小 small intestine alkaline phosphatase (CIAP, manufactured by Takara Bio Inc.). The ends were blunted using DN AB lintng Kit (manufactured by Takara Bio Inc.).
HL— 60細胞おょぴ KATO I I I細胞から調製した P C R産物を 1 : 1, HL-60 cells. PCR product prepared from KATO I I I cells
10 : 1、 100 : 1の重量比で混合し、 それぞれ試料 A、 試料 B、 試料 Cとし た。 以下の操作は試料ごとに行った。 各々 5 gの試料 A、 試料 B、 試料 Cを 4 00 μ 1の TE緩衝液 (1 OmM Tr i s— HC 1 pH7: 5, ImM E DTA) に溶解し、 UR—20P (トミー精ェ社製) により 15秒間の超音波処 理を 5回行った。 C I APで脱リン酸処理を行った DN Aをフエノール処理、 ク ロロホルム処理、 エタノール沈殿によって精製し、 タカラ B l un t i n g K i n a t i o n L i g a t i o nキット (タカラバイオネ; fc¾) を用いて DNA 末端の平滑化とリン酸ィヒを行った。 Samples A, B, and C were mixed at a weight ratio of 10: 1 and 100: 1, respectively. The following operation was performed for each sample. 5 g each of sample A, sample B, and sample C were dissolved in 400 μl of TE buffer (1 OmM Tris—HC1 pH7: 5, ImMEDTA), and UR-20P (Tomy Seie) The ultrasonic treatment for 15 seconds was performed 5 times according to). DNA that has been dephosphorylated with CIAP is purified by phenol treatment, chloroform treatment, and ethanol precipitation, and the DNA ends are blunted using the Takara Blunting Kination Ligation Kit (Takara Bionet; fcII). And phosphoric acid.
この断片化 DN Aと上記の直鎖化した p LCV2を DNA L i g a t i o n K i t (タカラバイオ社製) を用いて連結し、 得られた組換えプラスミ ドを用い たエレクトロボレーシヨンにより大腸菌 T O P 10を形質転換した。 形質転換体 の一部を LB—クロラムフエニコールプレートに接種して生じたコロニー数から 独立したクローン数を算出するとともに、 別の一部を 6本の 50mlのクロラム フエ二コール含有 LB培地に接種して培養し、 Q I AGEN P 1 a sm i d Mi d i K i t (キアゲン社製) を用いて培養物からプラスミド DNAを精製 した。 50mlのクロラムフエ二コール含有 LB培地 1本あたりの独立したクロ 一ン数は約 16万であった。 各々の培養から得られたプラスミ ド DNAをタグラ イブラリープールとし、 6個のプールからなるタグライブラリーを得た。 The fragmented DNA and the above-described linearized pLCV2 were ligated using a DNA Ligation Kit (manufactured by Takara Bio Inc.), and E. coli TOP 10 was excised by electroporation using the obtained recombinant plasmid. Transformed. The number of independent clones was calculated from the number of colonies formed by inoculating a part of the transformant on an LB-chloramphenicol plate, and another part was transferred to six 50 ml LB medium containing chloramphenicol. Inoculate and cultivate, QI AGEN P 1 a sm id Plasmid DNA was purified from the culture using Midi Kit (Qiagen). The number of independent clones per LB medium containing 50 ml of chloramphenicol was about 160,000. Plasmid DNA obtained from each culture was used as a tag library pool, and a tag library consisting of six pools was obtained.
(3) マイクロビーズの調製  (3) Preparation of microbeads
タグライブラリープールを錡型、 FAM標識 PCR— Rプライマー (配列番号 3) とピオチン化 PCR— Fプライマー (配列番号 4) を用いて PCRを行い、 標的 D N Aの断片とタグを含む部分を増幅した。 この PCRから第 1回目のソー ティングまではプールごとに操作を行い、 本実施例ではその中の 1プールについ て記載している。 PCR産物を P a c l (NEB社製) で消化後、 dGTP存在 下 T4 DN Aポリメラーゼ (タカラバイオ社製) を作用させてタグ部分を 1本 鎖化した。  The tag library pool was subjected to PCR using type I, FAM-labeled PCR-R primer (SEQ ID NO: 3) and biotinylated PCR-F primer (SEQ ID NO: 4) to amplify the target DNA fragment and the portion containing the tag. . From the PCR to the first sorting, the operation is performed for each pool, and in this example, one pool is described. After digesting the PCR product with PacI (manufactured by NEB), T4 DNA polymerase (manufactured by Takara Bio Inc.) was allowed to act in the presence of dGTP to make the tag portion single-stranded.
こうして調製した 1本鎖タグつき標的 DN A断片 50 Z gと、 米国科学ァカデ ミー紀要、 第 97卷、 第 1665〜1670頁、 2000年に記載の方法により 調製したアンチタグが結合したマイク口ビーズ 1. 67 X 107個を混合し、 ' 100 1の5001111^ NaC l、 1 OmM リン酸ナトリウム、 0. 01% Twe e n 20、 3% デキストラン硫酸中で 72 °C、 3日間ハイブリダィズ させた。 マイクロビーズを 5 OmM Tr i s—H-C l (pH8)ヽ 5 OmM Na C 1、 3mM Mg C 12 に続いて 1 OmM Tr i s一 HC 1 (pH8) 、 ImM EDTA、 0. 01% Twe e n 20で洗浄したのち、 M o F 1 o サイトメーター (ダコ サイトメーシヨンネ ± ) を用いて FAMによる蛍光強度 が上位 1 %であるマイク口ビーズをソーティングした (第 1回目のソーティン グ) 。 50 Zg of the target DNA fragment with a single-stranded tag prepared in this manner and a microphone mouth bead 1 in which the anti-tag prepared by the method described in the Bulletin of the American Academy of Sciences, Vol. 97, pp. 165-1670, 2000, 1 67 × 10 7 cells were mixed and hybridized in '100 1 5001111 ^ NaCl, 1 OmM sodium phosphate, 0.01% Tween 20, 3% dextran sulfate at 72 ° C for 3 days. Microbeads 5 OmM Tr is-HC l ( pH8)ヽ5 OmM Na C 1, 3mM Mg C 1 2 followed by 1 Omm Tr IS one HC 1 (pH8), ImM EDTA , with 0. 01% Twe en 20 After washing, the microbead beads with the highest 1% of the fluorescence intensity by FAM were sorted using a MoF1 o cytometer (Dako Cytometry +) (first sorting).
ソーティングしたマイク口ビーズに T 4 DNAリガーゼを作用させることに よって標的 DNA断片とアンチタグの間に共有結合を形成させ、 次いで Dp nil で消ィヒした。 さらに dGTP存在下 T 4 DN Aポリメラーゼをマイクロビーズ に作用させたあと、 開始ァダプターを T 4 D N Aリガーゼを用 ヽて連結した。 なお、 開始ァダブターは 5 ' —末端が F AM標識された配列表の配列番号 5で示 されるオリゴヌクレオチドと 5, 一末端がリン酸化された配列表の配列番号 6で 示されるオリゴヌクレオチドをァニールさせたものである。 MoF l oサイトメ 一ターを用いて F AMによる蛍光を持つマイク口ビーズをソーティングした (2 回目のソーティング) 。 A covalent bond was formed between the target DNA fragment and the anti-tag by the action of T4 DNA ligase on the sorted microphone-mouth beads, and then quenched with Dpnil. Further, after T4 DNA polymerase was allowed to act on the microbeads in the presence of dGTP, the starting adapter was ligated using T4 DNA ligase. The starting adapter is composed of the oligonucleotide represented by SEQ ID NO: 5 in the sequence listing whose 5'-end is labeled with FAM, and the nucleotide sequence represented by SEQ ID NO: 6 in the sequence listing phosphorylated at one end. The oligonucleotides shown are annealed. Microphone beads with fluorescence by FAM were sorted using a MoFlo cytometer (second sorting).
(4) マイクロビーズ上の D N A断片の塩基配列の決定  (4) Determination of base sequence of DNA fragment on microbead
開始アダプターを連結したマイクロビーズをフローセルに充填し、 ネイチヤー バイオテクノロジー、 第 18卷、 第 630〜634頁、 2000年に記載の MP S S法の操作に準じてマイク口ビーズ上の DNA断片の塩基配列を決定した。 そ の結果、 20塩基からなる約 80万個の配列が得られた。  A microbead to which an initiation adapter is connected is filled in a flow cell, and the base sequence of a DNA fragment on a microphone mouth bead according to the operation of the MPSS method described in Nayya Biotechnology, Vol. 18, pp. 630-634, 2000 It was determined. As a result, about 800,000 sequences consisting of 20 bases were obtained.
配列表の配列番号 7で示される標的 DN A (ヒトアルデヒドデヒドロゲナーゼ 2) の配列 (Ge nBa nk NM— 000690の一部) に対して、 MP DS 法で得られた配列のホモロジ一サーチを B LASTによって行った。 その結果、 配列表の配列番号 7で示される配列の 1935番目の塩基は Gまたは Aであり、 この塩基が Aである配列の比率は試料 Aでは約 50 %、 試料 Bでは約 9 %、 試料 Cでは約 1%であった。 よって、 この部位の塩基は HL— 60細胞では Gのホモ、 KATO I I I細胞では Aのホモであることが明らかになった。  For the sequence of the target DNA (human aldehyde dehydrogenase 2) shown in SEQ ID NO: 7 (part of GenBank NM—000690), a homology search of the sequence obtained by the MPDS method was performed using BLAST. Made by. As a result, the base at position 1935 in the sequence represented by SEQ ID NO: 7 in the sequence listing is G or A, and the ratio of the sequence in which this base is A is approximately 50% in sample A, approximately 9% in sample B, and approximately 9% in sample B. In C, it was about 1%. Thus, it was revealed that the base at this site was a homozygous G in HL-60 cells and an homozygous A in KATO II I cells.
実施例 2  Example 2
(1) 試料の調製  (1) Sample preparation
D a il d i細胞 (ATCC CCL—213) 、 HT— 29細胞 (ATCC HTB-38) 、 A431細胞 (ATCC CRL— 1555) 及び SW480 細胞 (ATCC CCL— 228) を、 それぞれ 10 %ゥシ胎児血清含有 DM E D aildi cells (ATCC CCL-213), HT-29 cells (ATCC HTB-38), A431 cells (ATCC CRL-1555) and SW480 cells (ATCC CCL-228) each containing 10% fetal serum DM E
M中、 5% CO 2存在下、 37 °Cで 7日間培養した。 これらの細胞を回収し、 そのそれぞれからトリゾル試薬を用いて RN Aを調製した。 これらの RNAを錶 型に R e v e r s e Tr a n s c r i p t a s e M— ML V (RN a s e H一) (タカラパイォ社製) を用いて cDNAを合成した。 次いで前記の cDN Aを鑤型とし、 配列表の配列番号 8で示されるプライマー p 53 1 L、 配列表 の配列番号 9で示されるプライマー p 53—2 R及び T a k a r a Ex Ta q Ho t S t a r t V e r s i o n (タカラバイオ社製) を用いて P C R を行い、 p 53をコードする cDNAを増幅した。 公開されている p 53 c D NAの塩基配列 (NM 000546) のうち、 上記の RT— P CRにより増幅 される配列を配列表の配列番号: 10に示す。 PCR産物をァガロースゲル電気 泳動により分離し、 1. 9 k bの DNAを含むゲルブロックを切り出して、 ここ から Q IAqu i c k Ge l Ex t r a c t i on K i t (キアゲン社 製) を用いて RT— PCR産物を精製した。 The cells were cultured in M in the presence of 5% CO 2 at 37 ° C for 7 days. These cells were collected, and RNA was prepared from each of them using a Trizol reagent. CDNA was synthesized from these RNAs by using Reverse Transcriptase M—MLV (RNase H-1) (Takarapaio). Next, the above-mentioned cDNA was designated as type II, and a primer p53 1L represented by SEQ ID NO: 8 in the sequence listing, a primer p53-2R represented by SEQ ID NO: 9 in the sequence listing, and Takara Ex Taq Hot Start PCR was performed using Version (manufactured by Takara Bio Inc.) to amplify the cDNA encoding p53. Of the published nucleotide sequence of p53c DNA (NM 000546), amplified by the above RT-PCR SEQ ID NO: 10 in the sequence listing. The PCR product was separated by agarose gel electrophoresis, a gel block containing 1.9 kb DNA was cut out, and the RT-PCR product was purified using QIAquick Gel Extraction Kit (Qiagen). did.
(2) タグライプラリーの作製とマイクロビーズの調製  (2) Preparation of tag lip rally and preparation of microbeads
4種類の細胞から調製した R T— P C R産物を等量ずつ混合し、 試料 Dとした。 この試料について実施例 1と同様の方法により超音波処理、 脱リン酸処理、 末端 の平滑化、 p L C V 2との連結、 T O P 10の形質転換及ぴプラスミドの調製を 行い、 タグライブラリーを得た。  Samples were prepared by mixing equal amounts of RT-PCR products prepared from the four types of cells. This sample was subjected to sonication, dephosphorylation treatment, blunt-end blunting, ligation to pLCV2, transformation of TOP10, and preparation of a plasmid in the same manner as in Example 1 to obtain a tag library. Was.
さらに、 実施例 1と同様の方法により、 タグライブラリー上の cDNA断片が 結合したマイク口ビーズを調製した。  Further, microphone mouth beads to which the cDNA fragment on the tag library was bound were prepared in the same manner as in Example 1.
(3) マイクロビーズ上の D N A断片の塩基配列の決定  (3) Determination of base sequence of DNA fragment on microbead
実施例 1と同様の方法により、 マイクロビーズ上の DN A断片の塩基配列を決 定した。 その結果、 20塩基からなる配列が約 94万個得られた。 これらの配列 のクラスタリングを行い、 出現頻度が 50回未満の配列を除去した後、 公開され ている p 53 cDNAの塩基配列(NM— 000546) と比較した。 その結 果、 約 79万個の配列が完全に一致した配列又は 1塩基のミスマッチを含む配列 として p 5· 3 c DN A上にマッピングされた。 p 53 c DNAの各塩基部位 につ 、て、 マッピングされた配列の出現頻度の合計と塩基ごとの出現頻度を数え た。  In the same manner as in Example 1, the nucleotide sequence of the DNA fragment on the microbeads was determined. As a result, about 940,000 sequences consisting of 20 bases were obtained. These sequences were clustered to remove sequences with an appearance frequency of less than 50, and then compared with the published base sequence of p53 cDNA (NM-000546). As a result, about 790,000 sequences were mapped on p5.3cDNA as a completely matched sequence or a sequence containing a single base mismatch. For each base site of p53 cDNA, the total appearance frequency of the mapped sequence and the appearance frequency of each base were counted.
一方、 実施例 2 (1) で得られた RT— PCR産物のダイレクトシークェンシ ングを行い、 細胞間で塩基置換が見られる部位 (3ケ所) を同定した。 これらの 部位について、 マイクロビーズ上の DN Aにおける各塩基置換に対応する配列の 出現頻度を表 1に示す。  On the other hand, direct sequencing was performed on the RT-PCR product obtained in Example 2 (1), and sites where base substitution was observed between cells (three sites) were identified. Table 1 shows the frequency of occurrence of sequences corresponding to each base substitution in DNA on microbeads for these sites.
表 1に示されるように、 ダイレクトシークェンシングで特定された塩基置換は As shown in Table 1, the base substitutions identified in direct sequencing
MPDS法によっても検出された。 また、 塩基置換部位における塩基の出現頻度 は、 試料における RT— PC R産物の混合割合から予想される塩基の含有率に対 応したものであった。 表 1 It was also detected by the MPDS method. The appearance frequency of the base at the base substitution site corresponded to the base content expected from the mixing ratio of the RT-PCR product in the sample. table 1
Figure imgf000024_0001
産業上の利用の可能性
Figure imgf000024_0001
Industrial potential
本発明によって、 D NA塩基配列の決定方法と変異の検出方法が提供される。 本 発明の D N A塩基配列決定方法を使用すれば、 ジデォキシ法による自動シークェ ンサ一等の従籴法に比べて安価に大量の D N A塩基配列を解析することができる。 また、 本発明の変異の検出方法を使用すれば、 多数の検体から変異を検出するこ とが容易になるので、 頻度の低い変異を低コストで発見することができる。 それ によって、 S N Pをはじめとする多型のタイビングを応用した効果的かつ安全な 医療が可能となる。 配列表フリーテキスト The present invention provides a method for determining a DNA base sequence and a method for detecting a mutation. By using the DNA sequencing method of the present invention, a large amount of DNA nucleotide sequence can be analyzed at lower cost than by a conventional method such as an automatic sequencer using the dideoxy method. In addition, the use of the mutation detection method of the present invention makes it easy to detect mutations from a large number of samples, so that infrequent mutations can be found at low cost. As a result, effective and safe medical treatment by applying polymorphic tying such as SNP becomes possible. Sequence listing free text
SEQ ID NO: 1; PCR primer to amplify a gene encoding numan  SEQ ID NO: 1; PCR primer to amplify a gene encoding numan
al coho 1 dehy drogenas e 2 cDNA. al coho 1 dehy drogenas e 2 cDNA.
SEQ ID NO: 2; PCR primer to amplify a gene encoding human SEQ ID NO: 2; PCR primer to amplify a gene encoding human
a 1 coho 1 dehy drogenas e 2 cDNA. a 1 coho 1 dehy drogenas e 2 cDNA.
SEQ ID NO: 3; PCR primer PCR - R to amplify a DNA fragment in tag library pool.  SEQ ID NO: 3; PCR primer PCR-R to amplify a DNA fragment in tag library pool.
SEQ ID NO: 4; PCR primer PCR - F to amplify a DNA fragment in tag library pool.  SEQ ID NO: 4; PCR primer PCR-F to amplify a DNA fragment in tag library pool.
SEQ 丄 D NO: 5; Oligonucleotide constituting initiating adapter.  SEQ 丄 D NO: 5; Oligonucleotide minor initiating adapter.
SEQ ID NO: 6; Oligonucleotide constituting initiating adapter. SEQ ID N0:8; PCR primer to amplify a gene encoding human p53 cDNA. SEQ ID N0:9; PCR primer to amplify a gene encoding human p53 cDNA. SEQ ID NO: 6; Oligonucleotide thick initiating adapter. SEQ ID N0: 8; PCR primer to amplify a gene encoding human p53 cDNA.SEQ ID N0: 9; PCR primer to amplify a gene encoding human p53 cDNA.

Claims

請 求 の 範 囲 1 以下の工程を含むことを特徴とする DNA塩基配列の決定方法; Scope of Claim 1 A method for determining a DNA base sequence, comprising the following steps;
(1) 標的 DNAを断片化する工程、  (1) fragmenting the target DNA,
(2) 断片化した標的 DNAをタグベクターに連結し、 タグライブラリーを作製 する工程、  (2) ligating the fragmented target DNA to a tag vector to produce a tag library,
(3) 標的 DN Aの断片とタグ配列が連結された DNAを、 タグライブラリーか ら調製する工程、  (3) preparing a DNA in which the target DNA fragment and the tag sequence are linked from a tag library,
(4) 工程 (3) で得られた DNAをマイクロビーズに結合させる工程、  (4) a step of binding the DNA obtained in step (3) to microbeads,
(5) 必要に応じて、 マイクロビーズ上の DN Aの末端に開始アダプターを連結 する工程、  (5) If necessary, a step of linking a starting adapter to the end of the DNA on the microbeads,
(6) マイクロビーズをフローセルに 2次元的に充填し、 各ビーズの位置を記録 する工程、  (6) two-dimensionally filling microbeads into a flow cell and recording the position of each bead,
(7) マイクロビーズ上の標的 DNAを制限酵素消化し、 突出末端を生成させる 工程、  (7) Restriction enzyme digestion of the target DNA on the microbeads to generate a protruding end,
(8) 工程 (7) で生成した突出末端に当該末端と相補的なェンコ一デッド ァ ダブターをライゲーションさせる工程、  (8) a step of ligating the protruding end generated in the step (7) with an encoding adapter which is complementary to the end,
(9) 工程 (8) で得られたマイクロビーズとデコーダー プロ ブとのハイブ- - リダィゼーシヨンを行い、 標的 DNAとライゲーシヨンされたェンコーデッド アダプターを同定する工程、 および  (9) Hive-reduction of the microbeads obtained in step (8) with a decoder probe to identify an encoded adapter ligated to the target DNA; and
(10) 工程 (9) のマイクロビーズよりデコーダー プローブを除去し、 得ら れたマイクロビーズを工程 (7) 以下の工程に使用する工程。  (10) A step of removing the decoder probe from the microbeads in step (9) and using the obtained microbeads in step (7) and subsequent steps.
2. 以下の工程を含むことを特徴とする変異の検出方法;  2. A method for detecting a mutation, comprising the following steps:
(1) 検出対象となる標的 DNAを増幅する工程、  (1) amplifying the target DNA to be detected,
(2) 増幅した標的 DNAを断片化する工程、  (2) fragmenting the amplified target DNA,
(3) 断片化した標的 DNAをタグベクターに連結し、 タグライブラリーを作製 する工程、  (3) ligating the fragmented target DNA to a tag vector to produce a tag library,
(4) 標的 DNAの断片とタグ配列が連結された DNAを、 タグライプラリーか ら調製する工程、 (5) 工程 (4) で得られた DNAをマイクロビーズに結合させる工程、(4) a step of preparing a DNA in which a tag sequence is linked to a fragment of a target DNA from a tag library, (5) binding the DNA obtained in step (4) to microbeads,
( 6 ) 必要に応じて、 マイクロビーズ上の DN Aの末端に開始アダプターを連結 する工程、 (6) If necessary, a step of linking a starting adapter to the end of the DNA on the microbeads,
(7) マイクロビーズをフローセルに 2次元的に充填し、 各ビーズの位置を記録 する工程、  (7) Two-dimensionally filling the microbeads into the flow cell and recording the position of each bead,
(8) マイクロビーズ上の標的 DN Aを制限酵素消化し、 突出末端を生成させる 工程、  (8) Restriction enzyme digestion of the target DNA on the microbeads to generate protruding ends,
(9) 工程 (8) で生成した突出末端に当該末端と相補的なェンコ一デッド ァ ダプターをライゲーションさせる工程、  (9) a step of ligating the protruding end generated in the step (8) with an encoding adapter complementary to the end,
(10) 工程 (9) で得られたマイクロビーズとデコーダー プローブとのハイ ブリダィゼーシヨンを行い、 標的 DNAとライゲーシヨンされたェンコーデッド アダプターを同定する工程、  (10) a step of hybridizing the microbeads obtained in the step (9) with a decoder probe to identify an encoded adapter ligated to the target DNA;
(11) 工程 (10) のマイクロビーズよりデコーダー プローブを除去し、 得 られたマイクロビーズを工程. (8) 以下の工程に使用する工程、 および  (11) The decoder probe is removed from the microbeads in the step (10), and the obtained microbeads are used in the step (8).
(12) 工程 (7) 〜 (11) によって解読された標的 DN Aの塩基配列と、 (12) the nucleotide sequence of the target DNA decoded in steps (7) to (11),
• (1) で増幅した DN Aの既知の塩基配列との間でホモロジ一サーチを行い、 塩 基配列の違いを抽出する工程。 • A step of conducting a homology search with the known nucleotide sequence of the DNA amplified in (1) to extract differences in the nucleotide sequence.
PCT/JP2004/010893 2003-07-25 2004-07-23 Method of detecting mutation WO2005010184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003201989 2003-07-25
JP2003-201989 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005010184A1 true WO2005010184A1 (en) 2005-02-03

Family

ID=34100529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010893 WO2005010184A1 (en) 2003-07-25 2004-07-23 Method of detecting mutation

Country Status (1)

Country Link
WO (1) WO2005010184A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147168A2 (en) * 2006-06-16 2007-12-21 The Children's Mercy Hospital Attenuation of hyperoxia-induced cell death with mitochondrial aldehyde dehydrogenase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027080A2 (en) * 1994-04-04 1995-10-12 Lynx Therapeutics Inc Dna sequencing by stepwise ligation and cleavage
WO1997046704A1 (en) * 1996-06-06 1997-12-11 Lynx Therapeutics, Inc. Sequencing by ligation of encoded adaptors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027080A2 (en) * 1994-04-04 1995-10-12 Lynx Therapeutics Inc Dna sequencing by stepwise ligation and cleavage
WO1997046704A1 (en) * 1996-06-06 1997-12-11 Lynx Therapeutics, Inc. Sequencing by ligation of encoded adaptors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRENNER, S. ET AL.: "Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays", NATURE BIOTECHNOLOGY, vol. 18, 2000, pages 630 - 634, XP002199492 *
BRENNER, S. ET AL.: "In vitro cloning of complex mixtures of DNA on microbeads: Physical separation of differentially expressed cDNAs", PNAS, vol. 97, no. 4, 2000, pages 1665 - 1670, XP002183229 *
KOYAMA, N. ET AL.: "DNA Microbeads Array Gijutsu o Mochiita Idenshi Hatsugen Kaiseki", NIPPON NOGEI KAGAKU KAISHI, vol. 76, no. 5, 2002, pages 474 - 479, XP002984907 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147168A2 (en) * 2006-06-16 2007-12-21 The Children's Mercy Hospital Attenuation of hyperoxia-induced cell death with mitochondrial aldehyde dehydrogenase
WO2007147168A3 (en) * 2006-06-16 2008-08-07 Childrens Mercy Hospital Attenuation of hyperoxia-induced cell death with mitochondrial aldehyde dehydrogenase

Similar Documents

Publication Publication Date Title
US20240352507A1 (en) Method for increasing throughput of single molecule sequencing by concatenating short dna fragments
JP7033602B2 (en) Barcoded DNA for long range sequencing
US20120028814A1 (en) Oligonucleotide ligation, barcoding and methods and compositions for improving data quality and throughput using massively parallel sequencing
EP2620511A1 (en) Single molecule nucleic acid sequence analysis processes and compositions
US20230056763A1 (en) Methods of targeted sequencing
CN110139931B (en) Methods and compositions for phased sequencing
US11401543B2 (en) Methods and compositions for improving removal of ribosomal RNA from biological samples
WO2013192292A1 (en) Massively-parallel multiplex locus-specific nucleic acid sequence analysis
JPH04503752A (en) Improved methods for in vitro DNA amplification, genome cloning and mapping
WO2017024991A1 (en) Swine bcr heavy-chain multiplex pcr primer and application thereof
EP2820153B1 (en) Method of identifying vdj recombination products
CN114729349A (en) Method for detecting and sequencing barcode nucleic acid
US20240271126A1 (en) Oligo-modified nucleotide analogues for nucleic acid preparation
AU2017217868B2 (en) Method for target specific RNA transcription of DNA sequence
WO2005010184A1 (en) Method of detecting mutation
WO2005038026A1 (en) Method of typing mutation
EP1582599A1 (en) Method for purifying microbeads
WO2024112758A1 (en) High-throughput amplification of targeted nucleic acid sequences
JP2024035109A (en) Methods for accurate parallel detection and quantification of nucleic acids
JP2005117943A (en) Method for analyzing gene expression

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP